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Abstract

Model-driven engineering is an approach that has increased in popularity during the

course of the last couple of decades. In model-driven engineering models are first-

class artefacts, which provides the software engineers with a powerful abstraction for

handling complexity and ensuring separation of concerns. This allows engineering

software that is easier to understand and reason about than traditional approaches to

software engineering, which in turn lowers the costs of development and maintenance.

A key to the success of model-driven engineering is model management opera-

tions, e.g. model composition and model migration. However, current approaches

for metamodel composition are not type-safe, or address how existing models are

impacted when metamodels are composed. Ensuring type-safety and correctness

of metamodel composition approaches, with following model migration and model

composition, is of great importance.

This thesis describes 1) how the structure and operational semantics of metamod-

els can be composed and adapted type-safely while ensuring the validity of existing

models, 2) how the operational semantics of metamodels can be integrated practic-

ally non-intrusively and 3) how metamodels can be typed to support variance and

reuse.

Three main results are presented. The first result is a collection of language

constructs that realise a type-safe template-based mechanism for composition and

adaptation of metamodels, including a framework that migrate and/or compose

existing models. The result also includes a framework for formal analysis of these

operations. The second result is two mechanisms for integrating the operational

semantics of metamodels, as defined by class operations, practically non-intrusively.

The third result is a theory for realising metamodel types by means of class nesting,

and how this allows substitutability and polymorphism for metamodels as a whole.
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Chapter 1

Introduction

Modelling is an essential activity in natural sciences. It allows representing a part

of the world in terms of abstractions, which are easier to understand and reason

about. This includes the ability to perform simulations of processes. In computer

science, it may be argued that modelling is the very foundation that makes comput-

ing possible. In general terms, computer science is the discipline of creating models

using computers. In many cases the models may also be executed for calculating or

deriving new knowledge. Models in computer science are in principle mathematical

models. They are expressed using a language containing modelling concepts often

referred to as language constructs. A model or program comprises instantiations of

the language constructs which are combined according to a set of well-formedness

rules. The well-formedness rules are a formalisation of the language’s structure and

can be expressed in several ways, e.g. by using a grammar. A language’s constructs

reflect one particular problem domain, or domain under study.

A popular representation of a language’s well-formedness rules is a metamodel.

A metamodel is a precise formalisation of a set of valid models. And as the name

suggests, it is a model of models. A metamodel defines the language of all the

models possible to synthesise by using the metamodel. The most common way of

defining a metamodel is in terms of a class model. The class model is either specified

using a graphical or textual notation, where the former is the most common. A

class represents a language construct, whereas the relationships between the classes

define how the instances of the constructs may be combined to form valid models.

Metamodelling is the activity of defining metamodels. It is a key activity in model-

driven engineering [8] and domain-specific modelling [80].

The popularity of metamodelling has steadily increased since the invention and

standardisation of the Unified Modeling Language (UML)1 in 1997, even though

the concept was discussed as early as in 1991 [81]. In particular, class diagrams or

class models have been found to support metamodelling well. Hence, metamodel-

ling is a rather young discipline and is a current research field. In most situations,

a metamodel is considered as an alternative to a grammar, i.e. it defines the ab-

1http://www.uml.org

3
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stract syntax of its models. However, various interpretations of what constitutes a

metamodel exist. For instance, constructs for specifying static semantics, e.g. in

the form of Object Constraint Language (OCL)2 rules, may be considered being

part of the metamodel. The Kermeta community3 additionally considers opera-

tional semantics specified within class operations to be an inherent component of

metamodels.

Software evolution is a driving force for change in computer science [82]. It

reflects the need for updating software as new or altered requirements emerge or

technological innovations present new opportunities. Additionally, performing gen-

eral improvements and addressing errors in software drive software evolution. The

term software covers all artefacts related to software development and use. This

includes both models/programs and languages. Evolution of models4 is something

most users of software is familiar with. New versions of applications and operating

systems appear on a regular basis. Languages need to evolve in a similar manner,

though not as frequently. Specifically, the metamodel defining a language evolves

in a process which is typically referred to as metamodel adaptation. Metamodel

adaptation means to change (including extending and reducing) a metamodel for

a specific purpose, e.g. to address changed or new requirements. The problem

of evolving metamodels is considerably more intricate than evolving models. The

reason is that there are bindings between a metamodel and other software artefacts.

Consequently, changing a metamodel impacts all the artefacts that are defined re-

latively to the metamodel. This includes models, transformations, editors, model

validators, analysis tools, etc. These artefacts, including the metamodel itself, con-

stitute what is known as the metamodelling ecosystem [3]. The metamodel is the

core artefact in any ecosystem, and changes applied to this need to be propagated

to the related artefacts.

There are several model management operations/activities in model-driven en-

gineering that can be applied to address evolutionary pressure. The three most

common are model transformation, model composition and model migration. In

principle, all operations can be explained and reified with model transformations.

However, it is common to differentiate the operations for clarity and focus. The work

of this thesis focuses on model composition (structure and operational semantics)

and model migration. In addition, we investigate how metamodels may be typed.

Model composition is the operation of combining two or more models into a

resulting model. The term covers combination of metamodels since a metamodel is a

model. However, the activity of combining metamodels is typically more challenging

than combining models because of the bindings between the metamodel and the

other artefacts in the ecosystem, and therefore, involves additional sub activities

2http://www.omg.org/spec/OCL
3http://www.kermeta.org
4We use the word model to refer to both non-executable models and executable models/pro-

grams.
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(e.g. model migration). To be precise, we use the nuance metamodel composition

when referring to a combination of metamodels. Metamodel composition is applied

to gain a holistic view of a system, e.g. for the purpose of verifying consistency or

generating source code. Metamodel composition also addresses evolution by allowing

to increase (and alter) the expressiveness of a metamodel. At a high level, metamodel

composition is achieved by composing a metamodel with another metamodel or

metamodel fragment resulting in a composed metamodel.

Metamodel adaptation is an activity that may occur in context with metamodel

composition. It may be applied before metamodel composition to assist in the com-

position process or after to rectify undesirable effects resulting from the composition,

or for the purpose of aligning the metamodel with the problem domain.

Model migration is the activity of co-adapting models as their metamodel is

adapted due to evolutionary pressure. While model migration may be performed

manually there are clear incentives for automating this process, which has resulted

in an increased focus on mechanisms for model migration. The purpose of model

migration is to change the models in such a way that they are compatible with

the adapted metamodel. This is achieved by generating co-adapted models whose

objects are all valid instances of classes in the adapted metamodel.

Model-driven engineering (MDE) envisions models as first-class entities. The

relations in the metamodelling ecosystem reflect this vision. Specifically, artefacts

relate to models at the abstraction level of models, and not in terms of their constitu-

ent objects. For instance, a transformation accepts models of a particular type; the

same applies to model editors. Model typing is a research direction that aims at find-

ing solutions for typing models as holistic entities to better support the model-centric

view of MDE. Model typing allows to precisely specifying the input parameter(s)

of an artefact in terms of a model type. The model type specifies properties that a

model must have for it to be read and processed correctly by an artefact. This po-

tentially means that models of different metamodels may be processed by the same

artefact as long as they comply to the model type specified by the artefact. A deriv-

ative of model typing is metamodel typing. A metamodel type specifies properties

that may be shared by several metamodels.

Meta(model) composition, model migration and model typing are ongoing re-

search directions and there are still open questions that need to be addressed. Our

overall goal with this thesis is to improve model management operations and model

typing in MDE with particular focus on (1) supporting type-safe metamodel com-

position and adaptation including type-safe composition of operational semantics,

(2) addressing model migration directly as metamodels are adapted and composed,

(3) allowing metamodels to be typed using well-known object-oriented mechanisms,

and (4) creating mechanisms for metamodel composition and model migration that

are easier to understand and use than the current available mechanisms. The re-

search theme underlying all contributions is composition, adaptation and reuse of

metamodels and models.



6 1.1. Overview of the Mechanisms and Artefacts

1.1 Overview of the Mechanisms and Artefacts

The thesis addresses three main problems areas: metamodel composition (including

composition of operational semantics), model migration and typing of metamodels.

We have developed several artefacts during the work of this thesis. Each artefact

contributes to one or more of the goals identified. The problem area(s) addressed

for each artefact is mentioned.

1.1.1 Artefact A: Constructs for Type-Safe Metamodel Composi-

tion and Adaptation

We have defined an extension to the Kermeta metamodelling language with new

constructs for composing metamodels’ abstract syntax and operational semantics.

The language extension also contains constructs for adapting metamodels to sup-

port a more precise or extended problem domain. The new constructs comprise a

mechanism for type-safe metamodel composition with adaptation, which is based

on defining metamodels as reusable templates, referred to as metamodel templates.

Instantiating the new language constructs yields composition and adaptation direct-

ives which are applied on the metamodels given as input. The mechanism supports

building hierarchies of metamodel templates. Problem area: Metamodel composi-

tion.

1.1.2 Artefact B: Framework for Derived Migration of Models

As a continuation of the metamodel template mechanism, we have defined a frame-

work that utilises the user-specified composition and adaptation directives for mi-

grating models. The directives are used to calculate a set of transformations that

semi-automatically update existing models. The transformations can be generated

instantly as metamodels are composed and/or adapted, or later when they are re-

quired. This includes the ability to selectively generate transformations between any

two templates/metamodels in a template hierarchy that represent a valid migration

route.

Problem area: Model migration.

1.1.3 Artefact C: Framework for Metamodel Composition and Ad-

aptation with Model Migration

We have formalised a framework that utilises analysis for supporting migration of

models as metamodels are composed and adapted. The framework takes one or

more metamodels and an adaptation strategy as input. The adaptation strategy

is analysed to verify that it can be applied successfully on the metamodels. The



Chapter 1. Introduction 7

analysis calculates a set of effects which are used to alter the metamodels and trans-

form existing models to re-establish model conformance. Problem area: Metamodel

composition and model migration.

1.1.4 Artefact D: Framework for Non-Intrusive Integration of Op-

erational Semantics

We have defined a framework that allows composing metamodels’ operational se-

mantics by defining mappings between metamodel constructs. The framework allows

models of different metamodels to exchange information (at runtime) in a practic-

ally non-intrusive manner, thereby minimising the impacts on other artefacts in the

metamodelling ecosystem. Problem area: Metamodel composition.

1.1.5 Artefact E: A Theory for Realising Metamodel Types

Metamodels may be typed by utilising class nesting. We have developed a theory

that elaborates how this may be realised. The essence of the theory is how an

enclosing class acts as a type for an enclosed metamodel. A metamodel may be

adapted by utilising subtyping. Attributes and operation parameters may be typed

with the enclosing class which consequently gives access to the metamodel structures.

We refer to the enclosing class as a metamodel type. We have also studied how

genericity can be achieved by supporting generic type parameters for the enclosing

class. Problem area: Metamodel typing.

1.1.6 Additional Artefacts

We have developed two additional artefacts which we will only discuss briefly. These

are a metamodelling language for integration of operational semantics and a theory

for using the framework for metamodel composition and migration for refactoring

of metamodels. The artefacts are elaborated in research reports and referred to as

Additional Artefact I and Additional Artefact II.

1.1.7 Terminologies and Differences

There are some minor differences in terminology used in the papers and the thesis.

We list them here to avoid confusion. First, the terms adaptation and customisa-

tion have been used to describe how metamodels are changed to address aspects of

evolution. In this thesis, we use the term adaptation exclusively for this activity.

Second, in some of the papers the term dynamic semantics is used. This term refers

to what we in this thesis name operational semantics, i.e. executable semantics that

is defined in/by class operations. Third, in the papers we use the phrase integration

of operational semantics which refers to how the operational semantics of different
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metamodels are composed, e.g. by overriding operations. In this thesis, we will also

use the phrase composition of operational semantics.

1.2 Structure of the Thesis

The thesis is divided in two parts. Part I introduces the work and puts it in context

with established computing science disciplines and state of the art. It also presents

the research method we have used and discusses the problems we have studied in

terms of a problem statement and success criteria. We give a brief overview of each

artefact and discuss and evaluate the work. This includes positioning the artefacts

with respect to related work. Throughout the thesis we organise the discussion

according to three overall areas of study: model and metamodel composition, model

migration and model typing. Part II includes the research papers which document

our work in greater details. The papers may be referred for additional information

where necessary.



Chapter 2

Background

This chapter discusses the background for our work and presents important prin-

ciples and practices on which we base our artefacts. We also discuss premises on

which our problem statement is based.

2.1 Model-Driven Engineering

In essence, computing is the act of representing a real-life problem in terms of com-

puter abstractions that represent a potentially executable model of the problem.

The model may represent an intentional simplification of the problem. In the early

days of computing, these models or programs were constructed in terms of abstrac-

tions of the solution space; the models included concepts related closely to the

underlying computer hardware or operating system. In the 1960s and 1970s several

programming languages were invented, in particular general-purpose object-oriented

languages like Simula and Smalltalk. These languages provided language constructs

on a higher abstraction level which meant that the models could now more closely

reflect concepts of the problem space. Complexity became easier to handle and it

was simpler to reason about the models and the problems being modelled.

The need for better abstractions, improved ways of handling the increasing

complexity in software development and an increased demand for productivity are

primary driving forces behind advancements in computer science. The languages of

the 1960s and 1970s made programming simpler. However, manually writing code

both requires a lot of resources and is error prone. An attempt to improve software

engineering emerged in the 1980s in the form of Computer-Aided Software Engineer-

ing (CASE) [11]. CASE focused on using general-purpose graphical representations,

e.g. state machines and structure diagrams, to model software solutions [9]. The

representations could be used for generating implementation artefacts. CASE had

some drawbacks hindering its wide adoption in industry, e.g. the general representa-

tions were too generic and could not be customised for specific application domains.

Also, they did not map well to the underlying platforms.

9



10 2.1. Model-Driven Engineering

Today, development using frameworks and platforms are prominent in industry.

The frameworks and platforms provide common services for constructing applica-

tions in various application domains. However, complexity has risen to an almost

unmanageable level which requires a lot of time being spent on implementation de-

tails and activities related to integration and deployment of software solutions [9].

The focus on low-level details also results in difficulties in gaining an overall un-

derstanding of a software system which reduces software quality and makes system

evolution complicated.

Model-Driven Engineering (MDE) [8] is an approach that has increased in pop-

ularity during the last couple of decades. The principles of MDE can be traced back

to the CASE effort, and it may be argued that CASE was indeed one of the first

attempts of MDE. MDE alleviates complexity by allowing modellers to construct

software at a higher abstraction level than what is typically possible using a tradi-

tional software development approach. This means that focus can be on the design

and overall properties of software rather than on its implementation details. This

in turn promises increased productivity and reduced costs.

Models are the primary artefacts in MDE and they are used in all engineering

phases. Importantly, models are intended as machine-readable entities from which

other artefacts may be synthesised using transformations or code generators. The

models are typically domain-specific, meaning that problems are expressed using

constructs that closely reflect concepts in the problem space. Low-level details are

abstracted away from the models and instead incorporated in transformations or

code generators that translate the models to executable programs, which may utilise

pre-defined frameworks and platforms. A software system can be described using

several models where each model represents a specific view(point)/concern or aspect

of the system. This increases separation of concerns and allows different stakeholders

to focus on their area of expertise.

MDE embraces models as the key artefacts. Appropriate tools for creating and

manipulating models are essential in order to realise the MDE vision. Transforma-

tions and code generators are examples of such tools. Other types of tools includes

model editors (concrete syntax), model checkers, tools for model differencing and

versioning, and tools for composing and migrating models. These tools may also be

referred to as modelling artefacts which realise model management operations.

There are two prominent approaches in MDE [27]. The first is centred around

using UML with profiling to support modelling of domain-specific concepts (e.g.

with the help of UML CASE tools). The second approach focuses on using dedicated

Domain-Specific Languages (DSLs) which provide modelling abstractions that more

closely reflect concepts of a particular problem domain. The software engineering

practices differ depending on what approach that is chosen, and mechanisms for

bridging profiled UML models and DSLs using model transformations have been

devised, e.g. [27][28]. In the industry, it can be witnessed a movement from using

general purpose languages (GPLs) to DSLs [18] which underlines the importance of
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MDE. In this thesis we follow the second approach to MDE.

Model-Driven Development (MDD)1 [14][10] is an approach that is often used

synonymously with MDE. There is no accepted definition of how MDE and MDD

relate. However, a common understanding is that MDD is more concrete than

MDE, i.e. that MDE encompasses MDD2. Another name that often appears in

association with MDE and MDD is Model Driven Architecture (MDA)3. MDA was

standardised by the Object Management Group (OMG)4 in 2001 and can be seen

as one particular MDD approach. MDA specifies how software systems can be

divided between high-level business models and low-level implementation models

and thereby separating design from software architecture. One of the key operations

motivating the usefulness of the separation in abstraction levels is the ability to

perform model-to-model transformations, e.g. a model at a higher abstraction level

can be transformed to a model on a lower abstraction level. Model-Based Engineering

(MBE) is yet another name that appears in conjunction with MDE and MDD. It

may be viewed as an approach in which models are utilised in software development,

but where the models are not key artefacts as is the case with MDE and MDD5.

In this thesis we will not differentiate between MDE or MDD, since the differences

are irrelevant with respect to the mechanisms the thesis discusses. We will use the

terms interchangeably.

2.2 Metamodelling

In MDE, the models are usually made using DSLs. A common approach for defining

DSLs is to use metamodelling which yields one or more metamodels. A metamodel

is a model of models [4]. That is, a model of a language of models [13]. A metamodel

contains constructs for creating models within a specific problem domain (problem

space) also known as the System Under Study (SUS). Hence, the metamodel reflects

the concepts and structure of this problem domain. In computer science, the use

of the term metamodel typically corresponds to a class model. The origin of the

class model is UML which was standardised by OMG in 1997. A class model has

a set of classes which are connected by relations. It formalises the concepts and

structure/relationships of a selected part of a problem domain. The resemblance

to a grammar is clear, as a metamodel defines the abstract syntax its models may

have. Moreover, both static semantics, e.g. in the form of OCL rules and opera-

tional semantics in the form of class operations [12] may be considered as inherent

components of a metamodel.

The Meta Object Facility (MOF)6 standard by OMG is considered the industry

1This is the same as Model-Driven Software Development (MDSD).
2http://modeling-languages.com/relationship-between-mdamdd-and-mde
3http://www.omg.org/mda
4http://www.omg.org
5http://modeling-languages.com/model-based-engineering-vs-model-driven-engineering-2
6http://www.omg.org/mof
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standard for specifying metamodels. MOF was coincidently standardised with UML

in 1997. UML and MOF are aligned (MOF is a subset of UML) and both standards

share the same metamodel for their definition. MOF is a metamodelling architecture

oriented around the key concepts Classifier and Instance (or Class and Object). The

properties of an instance are described by its classifier. Using classification results

in metalayers where each layer is an abstraction of the properties of the layer right

below in a linear manner. The MOF standard itself supports an arbitrary number of

layers. However, in most literature four layers are typically considered to comprise

the MOF architecture: the M0 layer contains the runtime data or runtime objects,

M1 comprises models or programs whereas M2 contains the metamodel(s) with

formalised concepts and structure for describing the models. Finally, M3 contains

the meta-metamodel providing concepts and structure definitions for constructing

metamodels on M2. The constructs on the meta-metamodel layer are meta-circular,

which means that they can be used to describe themselves. Typically, the meta-

metamodel is MOF itself or a derivative like the Ecore metamodel of the Eclipse

Modeling Framework (EMF)7.

Metamodels are defined during an activity known as metamodelling [2]. Metamod-

elling primarily comprises problem domain analysis, conceptualisation and abstrac-

tion which serve in the construction of one or more metamodels. A metamodel re-

flects the concepts and structure of one particular problem domain. A metamodel’s

concepts are usually defined at an abstraction level which makes it straightforward

to map the metamodel concepts to the concepts and terminology of the problem

domain. This opens up for non-technical stakeholders to take part in the modelling

process and improves communication between non-technical stakeholders and the

developers. Linguistic metamodelling is the most common form of metamodelling.

It is typically used as a tool for defining languages [10]. MOF and EMF/Ecore

support linguistic metamodelling.

An important notion in metamodelling is model conformance. Model conform-

ance is a property which states whether a model is well-formed and valid according

to a specific metamodel, which is also referred to as a reference model [4][32]. That

is, whether a given model is a member of the set of all models that are possible to

synthesise by using a specific metamodel. A model conforms to a metamodel if every

object in the model is a valid instance of a class (and only one) in the metamodel.

This is also known as strict metamodelling [5]. The model conformance property

is reified as a relation between a model and a metamodel. Similar relations exist

between editors, tools, transformations and their metamodel. And as mentioned,

altering a metamodel thus impacts most artefacts in the metamodelling ecosystem

[3].

There are alternatives when it comes to specifying domain-specific models. One

of the most common approaches is to tailor the classes of a UML class diagram

7http://eclipse.org/modeling/emf
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using profiles8. One of the key advantages using profiles is the many development

tools that are available for UML. Another variant of DSLs is embedded or internal

DSLs. An embedded DSL is a language that is implemented using general purpose

constructs of a GPL with the purpose of extending the GPL with domain-specific

constructs [83]. A GPL program using the embedded constructs is by definition a

program of the DSL. In this thesis we only consider languages and DSLs that are

defined using metamodelling.

Other Metamodelling Schemes

This subsection gives a brief overview of other approaches/architectures for metamod-

elling.

Multilevel Metamodelling MOF-based architectures are organised in four metalay-

ers. However, a metamodelling architecture may have an arbitrary number of layers.

An example of such an approach is discussed in [5], i.e. a way of organising UML

where instantiation of model elements follows the same scheme regardless of model

layer. For instance, instantiating a metamodel element should be no different than

instantiating a model element. The approach builds on using strict metamodelling

and clabjects. A clabject on one layer is an instance of a metaclabject on the layer

directly above (except for the top layer). A clabject is an object that has both a

type facet and an instance facet. The instance facet contains the attribute values

(slots) and method instances defined by the metaclabject from which the clabject

is an instance. The type facet of a clabject specifies properties that can be given

values or instantiated, i.e. attributes and methods.

Deep instantiation is an alternative instantiation relationship that builds on the

principle of clabjects [6]. The essence of deep instantiation is how model elements

have a potency. The potency is an integer that describes how many times an element

can be instantiated, e.g. an element with potency 2 can be instantiated twice, while

an element with potency 0 can not be instantiated (and is e.g. an object or a slot,

etc.). Instantiating an element decrements its potency by one. The approach also

uses the notions of single and dual fields. A single field, e.g. an attribute, does

only have a value if its potency is 0 (representing a slot). A dual field may have a

value for each instantiation of the field. Using potency allows carrying information

across model layers. For instance, an attribute can be ”transferred” across layers if

the potency of the attribute is 2 or higher.

Powertypes, Prototypical Concept Pattern and Nested Metalayers Other ap-

proaches for metamodelling include using powertypes, prototypical concept pattern

and nested metalayers [6].

8http://www.omg.org/uml
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A powertype allows defining a concept as an instance of one class and as a

subtype of another. This makes it possible to provide features for the concept

through inheritance, whereas the concept/object is still an instance of another class.

In other words, both a direct and an indirect relationship are obtained.

Another way of combining instantiation and inheritance is to define a class as

a subtype of another class (that provides a set of features). Both the class and

superclass reside on the same layer. An object (on a lower layer) of the class will

thus acquire the features of both the class and the superclass through instantiation.

This is known as the prototypical concept pattern.

By differentiating between context, it is possible to achieve a strict instanceOf

relationship for both M0 and M1 objects that instantiate classes at M2 (first-class

relationships). Typically, this would not be strict as M0 objects are supposed to be

instances of M1 classes. This is, however, possible by treating M0 and M1 as the

same layer (nesting of layers), as seen from M2. At the same time an object at M0

may be linked to an object at M1 (second-class relationship). Hence, M0 objects

may have a dual classification.

Ontological Metamodelling Ontological metamodelling takes metamodelling a step

further from what a purely linguistic metamodelling approach is capable of. In an

ontological metamodelling architecture it is possible to accurately describe how con-

cepts at a given metalayer relate, i.e. how an entity is an ontological instance of

another entity [10]. In other words, ontological metamodelling allows defining do-

main metatypes or metaconcepts which support a more accurate definition of a

domain’s concepts and their properties. The concepts are organised in ontological

layers reflecting the ontological instanceOf relation between them. A framework

named MetaDepth supporting both multilevel linguistic and ontological metamod-

elling is discussed in [7].

2.2.1 Metamodelling Frameworks and Tools

EMF9 is one of the most popular frameworks for defining metamodels with gener-

ated tool support. It supports defining metamodels as Ecore models, conforming to

the Ecore meta-metamodel, and their behavioural semantics in terms of Java code

[86]. EMF supports automatic generation of skeletal Java classes, an API reflecting

a specific Ecore model and a model editor. Each class in an Ecore model has a

corresponding Java class and interface. EMF also supports reflective programming

which makes it possible to program functionality (e.g. tools) in a generic manner,

and thereby support reading and processing of models conforming to different Ecore

models. EMF uses XML Metadata Interchange (XMI)10 for persistence of Ecore

9http://eclipse.org/modeling/emf
10http://www.omg.org/spec/XMI
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models and (instance) models. The Ecore meta-metamodel closely resembles Es-

sential MOF (EMOF)11 (Ecore models can be XMI serialised as EMOF models and

vice versa).

Kermeta12 is a workbench/metalanguage for building languages/DSLs [12][56].

It allows defining languages in a modular manner where the different engineering

concerns, i.e. abstract syntax, static semantics and behavioural semantics, are ex-

pressed using dedicated meta-DSLs. The models of the meta-DSLs (at M2) are later

composed using an open-class composition semantics (static introduction). Abstract

syntax is expressed using EMOF, static semantics using OCL and behavioural se-

mantics with Kermeta (using an imperative object-oriented action language). The

behavioural semantics takes the role as operational or translational semantics. Ker-

meta allows building languages incrementally and supports language variants, e.g.

different behavioural semantics may exist for a given metamodel. Kermeta is com-

pliant with the Ecore metamodel.

Other metamodelling environments include the MetaEdit+ Workbench13, the

Generic Modeling Environment (GME)14 and eXecutable Metamodelling Facility

(XMF) [2]. MontiCore Language Workbench15 is a grammar-based workbench for

defining textual DSLs.

2.3 Model and Metamodel Composition

In MDE, a software system is typically modelled using several models where each

model describes properties related to a specific viewpoint [20] or view [29]. The set

of models (each confoming to its own metamodel) comprises a multi-model describ-

ing the entire system [110]. The main incentive for taking a multi-model approach

is separation of concerns which leads to software development and maintenance that

are easier to understand as complexity increases. This includes the ability to reason

about the concern or aspect described by each model in isolation and validating each

model separately [26]. Hence, a multi-model approach allows different stakeholders

to focus on their expertise domain without having to relate to concepts outside of the

domain, and increases productivity by providing more powerful language abstrac-

tions [2]. Aspect-Oriented Modelling (AOM), e.g. [21], is an approach that relies on

using a multitude of models to describe various system aspects. Language-Driven

Development (LDD) is another approach that advocates using several languages in

concert for software engineering [2].

Using a multi-model software engineering approach improves how a system is

modelled and designed. However, the models eventually have to be combined to

11http://www.omg.org/mof
12http://www.kermeta.org
13http://www.metacase.com/mwb
14http://www.isis.vanderbilt.edu/projects/gme
15http://www.monticore.de
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obtain a composed/integrated model of the system [20]. As an example, a system

may be designed in several class models (different concerns) that are composed

before implementation [92]. The composed model is required in order to combine

the concerns/viewpoints captured by each model, e.g. for generating executable

code or for verifying consistency. Model composition is also an important means of

addressing software evolution, which is required due to e.g. changes in requirements

and new technology. Another application of model composition is for supporting

variability management in product line engineering [23].

Models can either be composed manually or (semi-)automatically. Manual com-

position of large models is tedious and prone to errors [29]. Composition is an activ-

ity that is used repeatedly in MDE, and there are clear incentives for performing

composition automatically to the extent possible.

Model composition (or model merging) is the model management operation (or

process) of combining two or more source (or input) models into a composed (or out-

put/target/result/composite) model. Model composition approaches have emerged

from work on aspect-oriented modelling, database scheme integration and model

transformations [32]. Model composition may be understood according to three di-

mensions: syntactic, semantic and methodic [24]. The syntactic dimension covers

how the concepts and structure of source models are combined into a new model.

Semantic composition focuses on the meaning of the composed model in terms of

the languages and composition mechanism used. This also includes the mental con-

ception of what the composition of a given set of models means. The methodic

dimension deals with composition seen in the light of development processes and

tools.

At a conceptual level, model composition can be understood as addressing three

concerns [20]. First, what concepts to be composed need to be identified. Second,

the location in the composed model where the composed concepts are going to be

placed has to be selected. Third, it has to be decided how the integration of the

concepts should be performed. At a syntactic level, composition can be seen as

an iterative process where concepts are composed successively [20]. The order in

which the concepts are composed matters because elements reference each other.

The process may be further divided in four phases: the initial phase, comparison

phase, merge phase and post-composition phase [19]. In the initial phase the mod-

els are grouped according to their types. The purpose of the comparison phase is

to identify equivalence between elements in the source models. This is determined

by writing match rules that are executed by a match operator. The match rules

refer to the model elements’ signature. A signature is defined in terms of a model

element’s structural properties, i.e. an attribute or association end (reference) [25].

The models are combined in the merge phase using a composition/merge mechan-

ism/operator. The merged model elements represent integrated concept views [29].

Finally, the composed model may be verified against well-formedness rules in the

post-composition phase. Alternatively, the work of [20] proposes a model composi-
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tion process with four phases. The process does not identify an initial phase as in

[19] and has a phase named conformance checking. Conformance checking is used

to identify potential conflicts between matching elements that disallow merging. In

general, conformance checking may be integrated as part of the matching phase.

Model composition can be seen as a special type of model-to-model transforma-

tion [19][31][32][33]. Hence, model composition can be realised by using transform-

ations [22]. In [33], the authors discuss different approaches for realising model

composition by means of transformations. The approaches are differentiated based

on how generic the underlying transformations are; from the dedicated transform-

ation to the (theoretically) completely generic one. A dedicated transformation

incorporates knowledge about a specific pair of models (primary and aspect) and

only supports composition of these models. A transformation may support compos-

ition of a broader range of models at the cost of a more complex transformation

algorithm. The task of the transformation is to incorporate the information of an

aspect model into a primary model, hence achieving model composition. The op-

posite has also been argued for, i.e. that a model transformation is a special case of

model merging [30]. The argument says that a non-empty model MA may be merged

with an empty model MB , which can be seen as a transformation of the model MA

to a model MC conforming to the target metamodel (i.e. MA + MB ≡ MA → MC ).

One attempt of presenting canonical definitions of the term model composition

and requirements for model composition frameworks are discussed in [32]. In [24],

the authors discuss a theory about the semantics of model composition in the form

of an algebra. The motivation for the two works includes providing the necessary

foundation for comparing model composition solutions and building new ones, and

for assessing properties of existing solutions. In [32], composition is defined as the

operation that takes two input models and combines them to an output model as

dictated by the information in a correspondence model. The correspondence model

contains links that specify how elements in the two models relate. Semantics for three

types of composition operators is discussed in [24], i.e. property preserving, fully

property preserving and consistency preserving operators. In general, a composition

operator is defined as a function that takes two models as input and produces a

composed model as output. A general semantic composition operator is also defined,

i.e. as a function that takes two sets of systems as input and gives one set of systems

as output. In [34], the authors formalise what yields conflicts in a signature-based

composition of class models.

Metamodel composition is a special kind of model composition, where the com-

position is on a higher metalayer (M2) than that of model composition (M1).

Metamodel composition typically requires additional management operations to be

applied to ensure consistency and integrity, also referred to as coupled evolution

or co-evolution, in other artefacts in the metamodelling ecosystem. (In this thesis

we have focused on co-evolution of models, and not other artefacts that are im-

pacted when metamodels are composed and adapted.) We differentiate between two
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main usage scenarios of metamodel composition: 1) composition of metamodels in

a multi-view modelling approach where each metamodel reflects a specific concern

or aspect, and 2) composition of metamodels with the purpose of increasing the

expressiveness of a metamodel (including variability modelling/product line engin-

eering). Both scenarios affect the existing models (if available) of the metamodels.

For 1) this typically requires selecting existing models that are composed, whereas

2) may be addressed by composing existing models, or alternatively, update models

to reflect the additional well-formedness rules of the composed metamodel. The

latter situation occurs when there is not available models of all the metamodels

used in the composition, e.g. when a metamodel is extended with a limited number

of classes (metamodel fragment) that do not represent a concern that is typically

modelled on its own. We argue that metamodel composition can also, in some cases

(e.g. with respect to the second listed case), be seen as an evolution/adaptation, as

a metamodel composition can alternatively be described in terms of added classes

and class properties.

We primarily consider four methods, i.e. low-level operations, that can be

used for composing metamodels. These are merging of classes, creating a refer-

ence between two classes, using subtyping and using interface class(es). Additional

methods are described in [99], e.g. class refinement and template instantiation.

Merging of classes is achieved by taking the union of the contents of two or more

classes in order to create a composite class that replaces the source classes. Creating

a reference between two classes (of different metamodels) means that the one class

may reference (and contain) one or more objects of the other class. Subtyping can

be used to compose metamodels in three ways: a class of one metamodel may be

created as a subtype of a class of another metamodel, or alternatively, the class may

be made a supertype. Two metamodels may also be composed by specifying a class

in each metamodel as a subtype of a common supertype. Interfacing of metamodels

is achieved by creating one or more new classes that collectively act as an interface

between two or more metamodels, i.e. the metamodels relate to the class(es) of the

interface, e.g. by creating new references.

Model merging is another term used in in the literature for combining models.

Model merging is a special case of model composition [32]. Model merging implies

that all information from the source models are preserved in the resulting model,

and that information is not duplicated in the resulting model. These requirements

do not apply to model composition mechanisms which may have varying semantics,

i.e. information duplicates may be allowed in the resulting model. The term merging

is also used in the literature to describe how two model elements are combined or

unified into one single model element, e.g. two properties with the same signatures

may be merged into one property by a merging mechanism/operator.

Model weaving is an approach that is related to model composition. It can

also be used as a basis for realising model composition [22]. Model weaving is the

process of establishing links between models. The links are expressed in a weaving
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model (correspondence model). Hence, the weaving model can be understood as

model composition at a more abstract level. The notion of weaving is also used in

techniques for aspect orientation, i.e. for asymmetric weaving of aspect models into

a base model, e.g. [34][31]. In this case, weaving is a specific approach for realising

model composition.

Metamodels are adapted to address changes in requirements, platforms or as

a consequence of new technology. Adaptation is typically achieved by manually

altering the metamodel [58]. Adaptation of metamodels may also be performed

as part of a metamodel composition. There are two types of adaptations that are

common. First, it may be required to adapt metamodels to facilitate composition. A

typical situation is to rename model elements to force or disallow matching between

two or more metamodels in signature-based composition [29]. This is achieved by

using pre-merge directives. Second, post-merge directives may be used to align the

resulting metamodel to its target problem domain. This also includes addressing

concerns regarding achieving a well-formed metamodel after the composition [19].

It should be noted that metamodels may also be adapted prior to composition for

the purpose of aligning the resulting metamodel to its domain. However, we regard

such adaptations as the result of applying post-merge directives since the order for

which these adaptations are performed is typically of lesser importance.

The authors of [44] present a formal framework for proving the correctness of

composition operators. The approach allows describing (compatible) higher-level

composition operators in terms of two primitive composition operators: union and

substitution. Models are treated as graphs. The union operator creates a com-

bined graph from a set of source graphs. The substitution operator allows giving

typed objects (graph nodes) new names, e.g. it is a form of renaming operator.

Model conformance is assessed (expected property) and proven for both the oper-

ators. Construction of proofs for higher-level operators can be built on the proofs

for the primitive operators. Building proofs for higher-level operators is based on

verification of pre- and post-conditions (property-specific contracts).

2.4 Model Migration

Models capture business value, e.g. in the form of software solutions, business pro-

cesses/logic and intellectual property. There is a clear incentive for ensuring that

models are co-adapted and reused as their formal definition changes and evolves.

Otherwise the models become invalid. This activity or process is known as model

migration, co-adaptation or coupled evolution/co-evolution. In MDE, the term model

migration means that models are updated to conform to an adapted or changed

metamodel by executing a migration strategy [75]. Conformity is essential to en-

sure the inherent correctness of the models and that they can be understood and

processed correctly by artefacts. A migration strategy can be specified in different

ways, e.g. by using a transformation language, a GPL like Java or by combining
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specifically designed abstractions. Exogenous model transformations are typically

used, as opposed to endogenous transformations [75]. The former type of trans-

formation is defined between different types of metamodels, whereas for the latter

type of transformation the source and target metamodel are the same. In MDE,

a metamodel is expected to evolve [73], which underlies the importance of having

support for model migration.

Co-adaptation of models (or other artefacts) can be described as a three-step

process [3]: relations definitions, change impact detection and adaptation. Relations

definitions means to specify the relations between the metamodel and the depend-

ing artefacts, e.g. the conformance relation between models and their metamodel.

Change impact detection involves assessing impacts that occur in the models when

changes are applied to the metamodel. The impacts depend on the relation being

considered, e.g. the conformance relation. Adaptation means to update the models

to valid instances of the target metamodel.

Model migration can be performed manually or semi-automatically by applying

migration mechanisms. Manual model migration is a tedious and difficult activity

which may lead to inconsistencies between a model and its metamodel [70][58]. It

also requires a substantial effort which makes cost-effective MDE difficult to achieve

[71]. As a result of these challenges, computer-aided model migration has been an

active research direction the last decade.

There are three main types of model migration approaches [75][76]: manual spe-

cification, operator-based approaches and metamodel matching approaches. Manual

specification means that every co-adaptation step is specified using a (dedicated)

transformation language or a GPL like Java. Operator-based approaches allow spe-

cifying both metamodel adaptations and model migration using a library of coupled

operators, i.e. a coupled operator both adapts a metamodel and specifies how mod-

els are to be migrated to accommodate the metamodel changes. Metamodel match-

ing approaches infer migration strategies by analysing an evolved metamodel and

its metamodel history [75]. There are two subcategories of metamodel matching

approaches: differencing approaches and change recording approaches. Differen-

cing approaches, also known as state-based approaches [18], work by analysing two

metamodel variants with the purpose of deriving a difference model or matching

model. The difference model may be created automatically or by application of

heuristics that help identifying equivalences and differences between two metamod-

els. Which approach to use depends on the complexity of the metamodel adapt-

ations. The difference model is used for inferring the migration strategy. Change

recording approaches collect information about primitive metamodel changes and

use these changes for inferring the migration strategy. Change recording approaches

support a higher granularity of migration steps than differencing approaches. This

is because analysing two metamodel variants may not reveal all the atomic migra-

tion steps that were applied to produce the evolved metamodel from the original

metamodel, i.e. information required to create a correct migration strategy may
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not be available by comparing two metamodel variants. In [64] it is stated that

evolution can be specified manually, be recorded or detected automatically for both

operator-based and difference-based approaches. Metamodel matching approaches

can be characterised as dependent since the requirements for evolution of models

are inferred from the requirements for evolution of metamodels [117]. Similarly,

approaches for manual specification are dependent. Operator-based approaches are

interdependent ; evolution of both metamodels and models are specified at the same

time.

Metamodels can be changed/adapted in several different ways. This includes

adding and removing elements, generalisation and restriction of properties, and ap-

plying refactoring operations like moving a property or extracting a class [58]. The

type of change determines the complexity of the model migration and whether model

migration can be achieved at all. It also determines how automatable the migration

process is. In [72], metamodel changes are classified in three categories: Non-breaking

changes, breaking and resolvable changes and breaking and unresolvable changes.

Non-breaking changes means changes that do not break the conformance between

existing models and the new metamodel variant. Adding an optional attribute (i.e.

an attribute with a zero lower bound multiplicity) in a class is an example of such

a change. A breaking and resolvable change is an adaptation that can be resolved

and propagated automatically to the models, e.g. renaming a metamodel element is

such an adaptation. Breaking and unresolvable changes can not be resolved auto-

matically. That is, they break the conformance relation between the models and the

metamodel. An example of such a change is setting a regular reference as contain-

ment, with the result that two objects may contain the same object(s). Another ex-

ample of a change that is considered breaking and unresolvable is adding a property

that has a non-zero lower bound multiplicity (i.e. a mandatory property) [57]. How-

ever, this change can be accommodated by generating a default value(s)/object(s)

for the property in the model and thereby re-establish model conformance (though

the user may typically later set/provide a correct value(s)/object(s) for the prop-

erty to get a sound and meaningful model. By definition, the latter example is

not automatically unresolvable. In this thesis, we only consider changes that disal-

low automatic re-establishment of model conformance as breaking and unresolvable

changes. Breaking and unresolvable changes can typically only be addressed by hu-

man intervention because additional information (not possible to derive) has to be

specified. A metamodel change may not always be possible to distinguish in terms

of low-level atomic steps [70]. In such cases the order of the changes may matter

because of interdependencies. Therefore, metamodel changes are further classified

either as parallel dependent or parallel independent [70]. For parallel dependent

changes interdependencies have to be identified and isolated.

Another way of viewing a metamodel adaptation and corresponding model mi-

gration is in the form of a coupled change [71]. Coupled changes are classified

according to whether automatic migration is supported (and whether model migra-



22 2.5. Model Typing

tion transformations can be reused). Three categories are identified in [71]: model-

specific coupled change, model-independent metamodel-specific coupled change and

metamodel-independent coupled change. A model-specific change requires using a

model transformation that can only be used to migrate one specific model of a given

metamodel, i.e. the transformation can not be used to migrate other models of the

same metamodel. A model-independent metamodel specific coupled change indic-

ates that it is possible to create a transformation that can be applied on all models

of variants of the same metamodel (i.e. between metamodels of a specific domain).

Finally, metamodel-independent coupled changes represent adaptation and migra-

tion scenarios that can be expressed in a generic manner independently of a specific

domain/metamodel variants.

Metamodel adaptations can be categorised according to their preservation prop-

erties, i.e. different forms or levels of semantics- and instance-preservation [58].

The different levels of instance-preservation describe how instances of a metamodel

are preserved or varied during migration. Instance-preservation is correlated with

semantics-preservation. Based on the level of semantics-preservation, metamodel

adaptations can be grouped in refactoring, construction and destruction. Altern-

ative terms used to categorise adaptations are additive or additions, subtractive or

deletions, and updative or changes [57][74].

2.5 Model Typing

A type can be understood as a collection of computational entities that share one

or more properties [77]. Types allow naming and organising concepts and ensuring

that data is interpreted and processed in a certain manner. If a model or program

is type-safe it can be guaranteed that the data contained in the model or program

is manipulated, e.g. by operations, within the boundaries defined by the types. By

relating types, e.g. in the form of subtyping, it is possible to support substitutability,

reuse, customisation and genericity. Typing is a well-known concept in programming

and modelling languages, e.g. object-oriented languages use classes for explicitly

defining the types of the model objects.

A model in MDE is typically represented as a collection of objects. Each object

has a corresponding class in a MOF-compatible metamodel [53]. The classes of

the metamodels are related using bi-directional references and subtyping. These

relations are reflected in the models, e.g. a reference between two classes yields

a link between two or more objects of the respective classes. In MDE, models are

considered first-class artefacts. Other artefacts in the metamodelling ecosystem read

and process the models, e.g. transformations and editors. From an architectural

point of view it is unnatural to think about the type of a model in terms of the

types of the objects it contains, as the other artefacts in the ecosystem intuitively

accept models as input and not a collection of objects [53]. Instead, it should be

possible to reason about the type of a model as seen as a holistic entity. There has
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not been much work on model types in MDE. The most prominent work is based on

type matching using a structural conformance relation which indicates whether two

models are conformant [53]. That is, a model type matches a reference model type if

the model type have all the metaclasses of the reference model type (with identical

names), and the classes of the model type contain the same number of properties

and operations with identical signatures as the respective classes in the reference

model type. This means that the model type must have at least the same structure

as the reference model type.

A related topic to model typing is megamodels [78]. A megamodel is a model

conforming to a metamodel with elements representing models, metamodels and

other artefacts. This means that models and artefacts can be related at a higher

abstraction level which gives an architectural view on the MDE ecosystem. Also,

family polymorphism [79] is related to model types. Family polymorphism is a

programming language mechanism that supports expressing and managing multi-

object relations, i.e. class families. A family is characterised by a set of class

relations. The actual classes are not known statically, i.e. it is a generalised kind of

polymorphism.





Chapter 3

State of the Art

In this chapter we discuss the state of the art of (meta)model composition, model

migration and model typing.

3.1 Model and Metamodel Composition

There exist many different approaches to model composition. In this section we

go through the most important ones, and categorise them according to their op-

erational scheme for easier reference. We use the six categories: signature-based

and rule-based composition, aspect-oriented model composition, other composition

approaches, composition by establishing semantic links, integration utilising ontolo-

gies or semantic analysis and component-based integration. For completeness, we

include two UML-based mechanisms for composition and adaptation.

Package Merge and UML Profiles

One of the simplest approaches to model composition is known as UML Package

Merge1. Package Merge is a name-based composition approach that works by mer-

ging identically named classes of different packages. Specifically, the mechanism is

used to combine the different views of the UML metamodel. The mechanism can be

used iteratively to construct larger packages from smaller ones.

Another mechanism provided by UML is profiles. Profiles support extending and

restricting UML metaclasses with the purpose of better reflecting a problem domain

or a platform. They are defined using stereotypes, tag definitions (a stereotype’s

properties) and constraints. Profiles allow the modeller to e.g. provide a syntax and

notation for concepts, new types and semantics.

1http://www.omg.org/uml

25



26 3.1. Model and Metamodel Composition

3.1.1 Signature-Based and Rule-Based Composition

Model Composition using Kompose

A straightforward approach for signature-based model composition is supported by

the Kompose tool [26], as implemented in Kermeta. Kompose allows decorating a

language’s metamodel with functionality for automatic matching and merging of ele-

ments in models conforming to the metamodel. The purpose of the decoration is to

identify classes in the metamodel whose instances comprise mergeable elements, and

to specify signatures for the model elements. The latter also includes defining what

makes two signatures identical with respect to merging. A signature (or signature

type) is a set of syntactic properties associated with a model element (type) [29].

The signature distinguishes one model element from the others, i.e. two elements

with the same signatures can not coexist in a model. Merging of model elements is

achieved by using a generic composition operator. The algorithm for the compos-

ition operator may be redefined e.g. to get a specific order for the composition of

the model elements. Kompose includes a mechanism for conflict detection. It also

allows the user to specify pre- and post-directives for handling conflicts, forcing or

disallowing matching between elements, overriding default merge rules and adapting

the composed models. Kompose also supports matching and merging of Ecore-based

metamodels. We see Kompose as a signature-based composition approach. How-

ever, it can also be viewed as a simple aspect-oriented composition mechanism (that

utilises a signature-based composition scheme).

Model Merging with EML

The Epsilon Merging Language (EML) [30] allows merging models using rules and

strategies. EML is built on top of the Epsilon Object Language (EOL)2. Match

rules are used to describe what gives a valid match and equality between classes

of different metamodels. Merge rules specify what elements that can be merged

and the elements that are produced in the target model resulting from the merging.

Finally, transform rules describe how elements in the source models, which do not

have a match, are transformed to elements in the target model. The specified rules

are tested iteratively with respect to two source models. Strategies are algorithms

that allow defining the matching, merging and transformation logic in a generic

manner. Strategies are particularly useful in situations when models are instances

of the same metamodel by reducing the number of rules that have to be specified

explicitly. Strategies can be inferred automatically [32].

2http://www.eclipse.org/epsilon/doc/eol
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3.1.2 Aspect-Oriented Model Composition

Model Weaving using XWeave

XWeave is a model weaver that allows asymmetric weaving of aspect models into a

base model [31]. It is based on EMF and allows weaving both metamodels (Ecore

models) and models (instances of Ecore models). Model elements intended to be

woven together (pointcuts) are identified by matching names or by defining ex-

pressions in the openArchitectureWare (oAW) expression language3 (a derivative

of OCL). Both homogeneous and heterogeneous aspect models are supported, i.e.

aspect models whose elements are added several places in the base model or only

one place, respectively. The term weaving used by the authors reflects how aspects

are woven with/into a base model in the same way as weaving is used in aspect-

orientation techniques. This includes specifying pointcuts. However, the very mech-

anism of merging an aspect model with a base model corresponds to how the term

model composition is used by (other) model composition approaches. XWeave only

supports adding model elements to a base model (positive variability) and not re-

moving elements (negative variability).

In [52], the authors discuss an approach for aspect-oriented and model-driven

product line engineering. XWeave is here used to support positive variability. The

authors also discuss a tool for negative variability, named XVar and a tool for

defining relations between metamodels known as XJoin. XWeave, XVar and XJoin

are tools in oAW.

Generic Weaving with GeKo

GeKo is an aspect-oriented tool for weaving advice models with a base model as

dictated by a pointcut model [38]. The tool is built using Kermeta and thereby

supports all types of models that are instances of EMOF metamodels. The approach

works by defining mappings between the base, advice and pointcut models. The

mappings are realised as links between the concrete syntax of model elements. A

pointcut model is either a subset of the base model or defined in an abstract manner

by giving metamodel elements roles that can be substituted by join points in a

base model. The latter approach supports defining reusable aspects which may

be utilised for different base models (e.g. security and authentication aspects).

Matching of pointcuts with base models for the purpose of identifying join points is

achieved using a Prolog-based matching engine. Composition of models works by

partitioning the objects of the base and advice models in five sets and later cleaning

the resulting model. The base model is partitioned in three sets: objects that will

be kept as is, objects that will be removed from the model and objects that will

be replaced by advice model objects. Similarly, the advice model is partitioned

in two sets: objects that will replace base model objects and objects that will be

3http://www.eclipse.org/gmt/oaw
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added to the base model. The partitioning is induced by the mappings (morphisms)

between the base, aspect and pointcut models. Hence, composition is achieved

by replacing base model objects with advice model objects. Cleaning consists of

two steps. First, the properties in an advice model object, that replaces a base

model object, are modified with information from the corresponding properties in

the replaced base model object. In other words, primitive values and links are

maintained by the replacing advice model object. Also, other base model objects

(that will be kept) linking to replaced objects are updated to point to replacing

objects in the advice model (as long as the respective reference is not composite).

Second, links to removed objects in the base model are removed to get a consistent

resulting model. This includes removing an object that links another object(s),

corresponding to a property with a lower bound of 1, that has been removed during

partitioning.

Reusable Aspect Models

In [46], the authors discuss an approach for aspect-oriented design of software sys-

tems in terms of aspect models. An aspect model describes both the structure and

behaviour of a specific concern and comprises three UML diagrams: a class diagram,

a state diagram and a sequence diagram. An aspect has an interface consisting of

all the public operations in classes in the class diagram. The sequence diagram

describes how objects collaborate at runtime, whereas the state diagram indicates

what messages an object accepts in its various states. The term aspect is in aspect-

oriented approaches typically used to describe a cross-cutting concern. However, in

[46] an aspect is a reusable piece of functionality that addresses any kind of con-

cern. Aspects are composed using two composition mechanisms. Class diagrams are

merged using Kompose [26]. State and sequence diagrams are woven by detecting

join points according to a pointcut model, which serve to identify where an advice

model is applied/composed. Any model element can be used to define a pointcut and

hence serve as a join point. An aspect may depend on other aspects, which gives a

hierarchy of aspects, i.e. a high-level functionality aspect can be built from low-level

functionality aspects. An important consideration is that aspects should be general

and reusable for several applications. This implies that systems are decomposed into

several low-level functionality aspects. The approach does not support automatic

detection of conflicts between aspects. However, warn0ings about potential conflicts

are issued to the modeller. Conflicts may be resolved by defining conflict resolution

aspect models. These models specify a conflict criteria condition that states when a

conflict occurs and the adaptations required to address the conflict. The adaptations

are applied automatically when the conflict criteria condition is verified. An aspect

is used in a target model by instantiating it. This involves mapping instantiation

parameters (e.g. classes) of the aspect to elements in the target model.
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Composing Multi-View Aspect Models

In [34], the authors discuss how multi-view aspect models are composed. The work

builds on the KerTheme approach [87], which allows describing a concern in a model

with two views. The first view is expressed using Executable Class Diagrams (ECD).

An ECD models the concepts and structure of its problem domain and the behaviour

of the classes (objects) reflecting these concepts. The second view is modelled with

sequence diagrams and models the global interactions and coordination between

objects in models conforming to the ECD. This view is also referred to as a scenario.

A model either represents a base or aspect concern, i.e. either a base or aspect model.

Composition of two base models (both views) is achieved using symmetric merging,

whereas composition of a base model with an aspect model (both views) is realised

using asymmetric weaving. Merging combines two model elements that represent a

different view on the same concept. The authors propose four composition operators

that support the various composition scenarios.

Two base ECDs are merged using a signature-based approach. The composition

process consists of finding matching model elements in two source models based

on the model elements’ identifiers (names). Matching model elements are then

compared to detect conflicts, e.g. merging two classes containing equally named

properties with different types yields a conflict. Conflict resolution is performed by

manually providing composition specifications, in the form of transformations, that

address how the conflicts should be resolved. Composition of base ECDs include

combining classes, properties and operations, respectively. Merging of operations is

achieved by renaming the matching operations (i.e. operations with the exact same

signature) and defining a new operation that invokes these renamed operations in a

specific order.

Composition of the sequence diagrams in two base models mainly works by manu-

ally identifying points at which the one diagram is merged with the other. Three

merge operators are suggested by the authors: amalgamated sum, sequential com-

position and inclusion.

Composing the ECD of a base model with the ECD of an aspect model is achieved

using aspect weaving. Aspect weaving has two phases. First, a part of the aspect

model, known as the pointcut, is used to determine join points, i.e. places in the

base model where the aspect model should we woven in. Second, another part of the

aspect model, known as the advice, is composed with the identified join points. The

join points, i.e. join point operations, are described using an expression language.

The advice is a class that contains three crosscutting operations (inherited from

a special purpose aspect class): pre, proceed and post. The operations specify

crosscutting behaviour. The advice/aspect class is renamed and merged with every

base join point class that contains a join point operation (i.e. several copies of the

advice class are used if needed). Conflicts occur between the operations in the join

point class and aspect class by giving operations identical names. The conflicts are

resolved in two phases by the merging operator which gives a correct order regarding
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how the operations should be invoked. Consequently, the crosscutting behaviour is

implemented in the base model.

Asymmetric composition of sequence diagrams is achieved by specifying an as-

pect as two sequence diagrams; one sequence diagram comprises the pointcut whereas

the other specifies the advice. The composition works by replacing the behaviour

at the detected join point in the base model with the behaviour of the advice in the

aspect model.

Aspect Weaving Utilising JPDDs

Aspect-orientation for MDD is taken a step further in [35]. The approach alleviates

how complex pointcuts can be specified by allowing the designer to work at a higher

abstraction level. In particular, the approach improves how to deal with situations of

dynamic join point selection constraints, i.e. constraints that are based on runtime

information and decide whether certain (advice) code should be executed. The ap-

proach works by weaving an aspect model into an application model (base model),

according to pointcut descriptions using Join Point Designation Diagrams (JPDDs).

A JPDD is a UML profile which allows specifying queries, i.e. pointcuts are spe-

cified using a (profiled) sequence diagram. Contrary to other MDD aspect-oriented

weaving approaches, the approach of [35] does not work by replacing a matched

model segment with an advice. Instead, a set of automatically generated model

transformations are responsible for finding potential join points. The transforma-

tions are also responsible for collecting runtime information required to evaluate the

dynamic selection constraints and verifying that an advice is executed only if the

dynamic selection constraints are satisfied. The transformations perform changes at

several places in an application model. The weaver is based on a set of transform-

ation templates which are instantiated with values specified in the JPDD given as

input to the weaver. The templates represent patterns for monitoring the dynamic

conditions: control flow constraints, state-based constraints or data flow constraints.

Using a JPDD makes it easier to specify pointcuts whose dynamic join point selec-

tion constraints are based on information that is scattered in the base model. It also

relieves the designer from manually having to verify the consistency between the

model transformations as a result of evolutional changes, (i.e. due to dependencies

between the transformations). The approach allows using a different notation for

specifying pointcuts than the notation used for the base and aspect models. The

result of the weaving is a UML model. The authors of [35] state that the benefits of

their approach are at a minimum if the information required to evaluate the dynamic

selection constraints of a pointcut is gathered at the point where the aspect is going

to be applied (i.e. if the information is not scattered in the base model).
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Aspect-Oriented Composition using Graph Transformations

An approach for aspect-oriented composition using graph transformations is dis-

cussed in [40]. Base models are described using UML. That is, class, sequence and

state diagrams are supported. An aspect is described as an increment of a base

model or another aspect; it describes both join points (in the form of pointcuts) and

advices, i.e. how the base model should be modified at the join points. Any type of

model element can be a join point and advices do not have restrictions, e.g. they

are not limited to the standard before, after and around advice types. Pointcuts

are described as a sequence of elements which allow identifying join points precisely

(only available for state and sequence diagrams). Aspect rules are expressed in the

concrete syntax of the UML diagrams (it is common to specify such using abstract

syntax). Critical pair analysis (a way of detecting interactions between graph trans-

formation rules) is used to detect conflicts and dependencies. A conflict indicates

that an aspect prevents another aspect from being applied (which requires the base

or aspect models to be modified), whereas a dependency indicates that one aspect

has to be applied before another. Code generation from class and state diagrams is

supported.

Contract-Based Composition

Obliviousness is a desirable property in aspect-oriented approaches, in which base

models are created unawarely of aspect models. The authors of [45] motivate that

obliviousness may break the interfaces of a base model and important assumptions

made by its creator. This is because the application of aspects may alter the base

model in ways not foreseen or desired by the creator of the base model. To address

this concern, the authors present contract-based composition of model-based aspects.

A contract acts as an interface of the base model dictating what elements that

can be accessed and changed by an aspect. The contract can be divided in two

parts: a composition contract and an assumption contract. The composition contract

specifies what elements of the base model that can be accessed and modified when

applying an aspect. The assumption contract is derived from an aspect and describes

the intention of the aspect, i.e. how it will affect a base model. The two contract

parts are compared to check the applicability of an aspect on a given base model.

The composition contract is specified manually and constitutes an instance of a

metamodel comprising the contract concepts. The constraints in the composition

contract are specified using an extended version of OCL. It is also possible to specify

invariants which are checked for the composite model. The approach is compatible

with MOF-based languages. The purpose of using contracts is to prevent illegal

modifications of the base model and reduce the chance of introducing semantic

errors.
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Theme/UML With MDA Support

In [50], the authors discuss an approach where MDA is realised on top of Theme/UML.

Theme/UML is an aspect-oriented language created as an extension to UML. It

provides constructs for modularisation and composition. The central unit of en-

capsulation is a theme. The theme construct is an extension of the UML package

concept and is used to specify a base or aspect concern. A theme can include any

type of UML diagram. An aspect theme utilises templates. The interaction of the

templates with a base theme is described using sequence diagrams. A theme is a

self-contained unit which does not refer elements outside of its definition, i.e. it

is declaratively complete. Composition is performed by either merging elements,

overriding an element with another or by binding an aspect theme to a base theme,

i.e. for composition of a crosscutting concern with a base theme. Binding supports

merging of both the syntax and behaviour of the aspect theme with the base theme.

The authors in [50] use Theme/UML as basis for realising MDA. In their approach,

the composition semantics of Theme/UML is defined by a marking profile. (Mark-

ing allows identifying elements for transformation non-intrusively.) Using this profile

allows a designer to create a composition specification. A UML diagram and a file

containing marked UML elements are mapped/transformed to a model which is an

instance of a composition metamodel (specified using EMF). The composition model

is transformed (i.e. composition of the themes/models is performed) to a platform-

independent model and later to a platform-specific model (refinement). Finally, the

platform-specific model is used for code generation (synthesis). The transformations

are described using Java and XPand4 (a template language).

3.1.3 Other Composition Approaches

Conceptual Domain Composition

An alternative take on composition of DSLs is discussed in [36]. The approach

builds on what the authors refer to as conceptual composition, i.e. the domains

of DSLs are combined by creating a composed domain. The composed domain is

hence a derivative of the subdomains of the constituent DSLs. Composition is re-

ified at three different places. First, a composed metamodel is defined by building

on the metamodels of the DSLs and creating relations between their concepts (i.e.

classes). The composed metamodel reflects a composed domain of the DSLs’ sub-

domains. Two types of relations may be used: associations and correspondences.

An association relates concepts that have different semantics. A correspondence

relates concepts that represent a unified concept in the composed metamodel, i.e.

the concepts represent different aspects of a unified concept and have overlapping se-

mantics. Hence, the composed metamodel encompasses the metamodels from two or

more DSLs with added relations between their concepts. The composed metamodel

4http://www.eclipse.org/gmt/oaw
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may also be extended with new concepts and relations to reflect an extended do-

main. Second, to achieve integration of the DSLs behavioural semantics, a new

composition interpreter has to be implemented. The composition interpreter’s task

is to synchronise the interpreters of the DSLs. Aspect-oriented programming is used

to capture events in the DSLs’ interpreters which results in invocations of methods

in the composition interpreter. Third, a composed model is created for relating the

existing models made using the DSLs. The composed model conforms to the com-

posed metamodel. It is interpreted by the composition interpreter. The composed

metamodel and composition interpreter give a new DSL which can be composed with

other DSLs. An important design decision is that existing metamodels, models and

interpreters (and other tools) do not need to be changed (inspiring the conceptual

nature of the composition approach), i.e. as a consequence of evolution. The new

artefacts act as a superstructure on top of the existing artefacts. The interpreters

are implemented in Java. Each metamodel concept/class has a corresponding class

in its associated interpreter. The concept’s behaviour is defined as methods in the

interpreter class. This allows treating the state of an interpreter (i.e. a set of Java

objects) as the runtime state of the modelled system5. Mappings are defined between

an interpreter and tools using aspect-oriented programming. The tools interface to-

wards the ”real” system being modelled and allows synchronising the state of the

interpreter/model with the state of the system. The approach allows using features

which are implemented similarly as mappings. A feature allows defining optional

domain behaviour that can be selected for certain applications in the domain. That

is, an application can be adapted to address additional or alternative requirements.

This is possible without changing any of the existing artefacts.

Composition through Parameterisation

In [37], the authors discuss a composition framework for assembling DSLs from

smaller building blocks referred to as domain concepts. A domain concept comprises

a metamodel and a transformation. The transformation maps models of the domain

concept metamodel to models of one or more target metamodels/languages whose

semantics is well-defined. Hence, the semantics for a domain concept is defined in

terms of a transformation to another language (or languages). Composition of DSLs

is achieved by parameterising a domain concept with another domain concept, i.e.

by substituting a domain concept with another domain concept, either partially or

totally. Parameterisation is applied at both a syntactic and a semantic level. At the

syntactic level, the parameterisation allows composing the metamodels of different

domain concepts. This is achieved by specifying two types of parameters; a formal

parameter is substituted by an effective parameter according to a (possibly empty)

set of conditions. A parameter is a subset of a metamodel, i.e. a selected set of

classes and relations. This means that only a few selected classes and relations from

5This resembles how EMF and Kermeta work.
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a metamodel may be used as an effective parameter while the remaining classes and

relations of the metamodel are discarded. Parameterisation at the semantic level

concerns transformation composition. The approach supports both composition of

DSLs and adaptation of DSLs.

3.1.4 Composition by Establishing Semantic Links

Model Weaving using the ATLAS Model Weaver

Model weaving is an approach for establishing relations between the elements of

different models using links as expressed in a weaving model [22]. A link has a type

that reflects the semantics of the relation it represents, e.g. equivalence (merging),

replacement (overriding), subtype (inheritance), etc. Model composition is one of

the applications of model weaving. It is realised in two steps. First, elements of

different models are related in a weaving model. Second, the weaving model is then

used to generate model-to-model transformations that are executed to compose the

models. Using weaving models allows defining model composition at a more abstract

level by hiding away details on how the composition is realised. That is, the specific

details on how the composition is performed are implemented in the transformation

generator and the transformations. A weaving model can be created manually or

semi-automatically by executing matching heuristics with manual refinement. As

a comparison, executing match rules using EML gives a weaving model [32]. The

weaving model is also known as a correspondence model.

The authors discuss an approach for semi-automatically generating weaving mod-

els and model transformations in [55]. Matching transformations are executed with

the purpose of producing a weaving model. The weaving model is refined using

matching heuristics (calculating similarity values between elements) and manual

intervention. The best fitting links are selected using filtering whereas rewriting

analyses the relationships between links to capture transformation patterns, e.g.

nesting, inheritance and concatenation. The final version of the weaving model may

then be used to generate model transformations.

Integrating Models Through Mega Operations

The authors of [41] discuss a related approach to model weaving where MOF-based

metamodels and models are integrated. Two types of integration operations are

motivated: weaving and sewing, referred to as mega operations6. Weaving addresses

scenarios where different concern/aspect models are assembled to produce a model

for a whole domain. Hence, weaving supports a tight integration of a set of models.

The operation works on both the metamodel level and the model level. Specific-

ally, a model conforming to one metamodel is woven with a model conforming to

6A megamodel is a model whose elements represent models.
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another metamodel yielding a model conforming to the woven metamodel (result-

ing from weaving the two source metamodels). Weaving is further differentiated in

four operations: overrides, references, prune and rename. The overrides operator

allows replacing conceptually (semantically) overlapping model elements, references

supports adding associations between classes, prune makes it possible to remove re-

dundant model elements, whereas rename can be used to give model elements new

names. Despite using the word weaving by the authors, this kind of operation is

typically referred to as model composition in the literature.

Sewing takes another approach for integrating models. The sewing operation

supports scenarios where different domain models need to be integrated while at the

same time preserving their autonomy. In contrast to the weaving operation, sewing

does not combine the metamodels and models intrusively. Instead, the operation

utilises mediators which dictate the valid sewing possibilities at the model level.

Sewing is divided into the operations synchronizes and depends. The synchron-

izes operation e.g. allows propagating values between class attributes in different

models, whereas the depends operator makes it possible to specify structural de-

pendencies, i.e. that a model element in one model depends on a model element in

another model. The authors note that mediators on the model level, corresponding

to the synchronizes and depends operations, may be realised using Query, View and

Transformation (QVT)7 transformations. The authors also discuss how alternat-

ive mediators representing associations and generalisations may be achieved using

Java Metadata Inferface (JMI)8 and EMF. That is, the mediators are established in

terms of runtime Java objects. On the code level, the authors suggest that execut-

able code generated from the (structural) models can accommodate the mediating

behaviour (in the form of glue code) of the sewing operation either by manually

customising the generated code or by using aspect-orientation, e.g. based on the

AspectJ 9 weaver. Using web services to achieve the mediating behaviour between

models is also suggested.

Both the weaving and sewing operations are elaborated with integration con-

straints which act as filters to further constrain what model elements that should be

affected by the operations. As an example, an element may only be overridden by

another element if both elements in question have the same value for an identifier

attribute.

The authors discuss how the weaving and sewing operations can be realised as

QVT transformations, though they do not state having verified their approach by the

implementation of a prototype. An important motivation for their approach is reuse

of integration knowledge by addressing integration at both the metamodel level and

the model level, i.e. not only at the model level. The authors state that integration

at the model level should be performed fully automatically by deriving (and execut-

7http://www.omg.org/spec/QVT
8http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html
9http://eclipse.org/aspectj
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ing) integration directives, as governed by the integration at the metamodel level.

Another important motivation for the work is that specifying basic transformations

manually do not scale up for complex models. Instead, integration can be handled

by abstractions in the form of weaving and sewing operations.

Relating Views Using a Multiple-View Metamodel

An approach for variability management in product lines is described in [51]. The

approach builds on unifying different phases in software development and views

within these phases by expressing relations in a multiple-view metamodel. A phase

is modelled as a composite class composed of different view classes. Each view

class is again a composite class comprising classes representing concepts in the view.

In other words, classes are nested in two levels. View consistency is enforced by

checking rules defined relatively to the relationships between the classes (of different

views) in the metamodel.

3.1.5 Integration Utilising Ontologies or Semantic Analysis

Integration of DSLs Using Ontologies

One way of integrating languages is by unifying these in terms of an ontology. The

authors of [39] present one such approach where a reference ontology is used for

defining semantics for metamodel constructs. Integrating several languages involves

identifying metamodel constructs that overlap semantically. By mapping the relev-

ant/identified classes and their properties of the metamodels to the concepts and

relationships of a common ontology it is possible to express cross-language rela-

tionships and constraints. That is, semantic links are established between models

of different languages. The approach allows representing model elements in terms

of ontology concepts and property assertions (representations that can be used to

derive semantic equalities between models) instead of merely describing the corres-

pondences between elements in different models which is the case using a weaving

model (e.g. equivalence, subtype, etc.). The authors present an upper ontology of

general concepts for modelling languages relevant to system design and implement-

ation. The authors state that more specific ontologies would also be required. The

motivation for using an ontology to integrate languages is to achieve a decoupled

integration of different models (and the models are kept consistent), the ease in

which ontologies can be extended with application specific knowledge, and support

for reasoning and inference. Also, using an ontology gives a holistic view of how

modelling artefacts relate in an overall system description. The authors do not

discuss runtime execution of models.
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Lifting of Metamodels to Ontologies

In [43], the authors discuss how metamodels of modelling languages can semi-

automatically be lifted to ontologies with the purpose of improving the integration of

the metamodels. By lifting metamodels to ontologies, matching between metamod-

els can be performed at a conceptual level, where implicit domain concepts in the

metamodels are made explicit (e.g. concepts represented by class attributes are

extracted and instead represented as classes). Using ontologies improves the found-

ation for logical reasoning and instance classification which may be of support in the

integration process. The lifting process comprises three steps. A metamodel is first

converted into a pseudo-ontology (using Atlas Transformation Language (ATL)10

transformations). Second, the pseudo-ontology is refactored to unfold hidden con-

cepts which should be made explicit in the ontology. Lastly, the ontology may be

semantically enriched with axioms and it may be related to other available onto-

logies. The authors propose that matching of ontologies can yield more concise

mappings between concepts than creating mappings between metamodels directly.

A mapping consists of references to a source and target element and a confidence

rate (from zero to one). Mappings between ontologies can be generated automatic-

ally and later refined manually. The mappings may be used for deriving bridgings

(weaving model) between the original metamodels, which in turn can be used to

derive model transformations. A part of the motivation is that the ontology re-

factoring addresses heterogeneities with respect to how metamodels are defined, i.e.

that semantically equal concepts may be modelled differently in metamodels.

Assisted Integration Using Text Analysis

The semantics of domain-specific modelling languages are typically expressed in

natural language. The authors of [48] claim that metamodels do not contain enough

semantic information to support integration decisions, i.e. finding what concepts of

different metamodels that overlap semantically. In particular, if the terminologies

used in the different metamodels are too far apart then additional information is

required to make educated choices. Hence, the authors propose using analysis of

informal semantics specifications to present concept candidates that are semantically

similar. By evaluating the proposed candidates from the analysis with a manually

specified reference mapping between concepts of two languages (two cases/language

pairs were used), the authors conclude that the proposed candidates help finding

semantically similar/matching concepts.

10http://eclipse.org/atl
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3.1.6 Component-Based Integration

Components Comprising Code and Models

Integrating models by defining them as components is another branch of model com-

position. The authors of [47] present an approach where both code and executable

models are grouped together in components. The functionality of a component is

either implemented purely in code, in one or more models or as a combination of

a code base and one or more models. The behavioural semantics of the models are

defined in terms of interpreters. The code and models are connected via a mediator

module. The mediator ensures that exchange of data and invocation of operations

(both ways) are possible. A component has two types of ports: functionality ports

and management ports. Functionality ports act as conventional component access

points, whereas management ports allow accessing and manipulating the internal

constituents of the component, e.g. querying and transforming the models. The

ports are reified as Java interfaces and allow a component to be connected to other

components or tools. A component can be adapted (referred to as tailoring) to

create variants (e.g. different products in a product line) and adapted at runtime

to address changes in the operating environment of the component. A reference

implementation has been defined using Java and OSGi11. The authors motivate

their approach by arguing that the alignment between code and models is improved

when both these artefacts are grouped in components. Furthermore, inconsistencies

are reduced by interpreting the models directly, i.e. no code is generated from the

models.

Construction of Languages using Variability Modelling

Constructing languages from smaller building blocks/components is a viable ap-

proach. However, as argued by the authors of [49], this approach requires handling

implicit dependencies between language assets in order to produce the languages.

These dependencies typically need to be addressed manually by a language de-

veloper. The authors propose using variability modelling for expressing dependen-

cies, which simplifies how languages are assembled and makes it easier for domain

experts to participate. The approach utilises Neverlang [84] - a framework for build-

ing DSLs using BNF grammar [77], and the Common Variability Language (CVL)12.

CVL is a language for management of variability for models conforming to MOF

metamodels. Language components are defined in Neverlang. A component is a

slice (Neverlang terminology) that refers to a piece of syntax and a role defining the

semantics for the syntax. Syntax and roles are defined in modules. The construction

of languages from the components is achieved by creating a variability model for a

family of languages. Creating the variability model is supported by inspecting a de-

pendency graph which maps the dependencies between the components. The graph

11http://www.osgi.org
12http://www.variabilitymodeling.org
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can be derived automatically by analysing the components. Building a specific lan-

guage is achieved by selecting a set of features as described by the variability model

(resolving the variability). Composition directives are derived from the selected fea-

tures (resolution model) by using a derivation operator. Neverlang then combines

the components and produces an interpreter. The composition of the components

is syntax-driven and implicit, i.e. a grammar rule defined in one component may

depend on non-terminals defined in other components.

3.2 Model Migration and Co-evolution

Research on co-evolution can be traced back three decades to evolution of database

schemas with co-evolution of data [113]. However, here we will only focus on recent

approaches for model (artefact) co-evolution. We organise the available mechan-

isms according to whether they calculate metamodel differences or use a stepwise

adaptation/co-adaptation. Also, we include some other approaches to model migra-

tion.

3.2.1 Difference Models

Automatic Co-evolution of Models

In [57], the authors discuss how model co-evolution can be performed automatically

by calculating a difference model representing changes between two metamodels.

The difference model is an instance of an extended KM3 meta-metamodel [85]. The

extended metamodel contains constructs for modelling each individual change per-

formed in a metamodel, e.g. the addition of a class or removal of a reference. A

higher-order transformation generates a model transformation based on the differ-

ence model.

The authors categorise metamodel changes either as parallel independent or par-

allel dependent. Parallel independent changes may be performed in an arbitrary

order since these do not relate each other. Parallel dependent changes require a spe-

cific order to achieve confluence, since the changes relate to each other. Resolution

of dependencies is discussed further in [70].

The difference model is produced by an automatic analysis of the two metamodels

(e.g. using EMF Compare13). It is then used as input to higher-order transform-

ations in ATL which produce the model-to-model transformations (also in ATL)

when executed. The model-to-model transformations co-evolve the models. Parallel

dependent changes are briefly discussed. These are solved by calculating a differ-

ence powermodel which contains all possible submodels of a given difference model.

The intention is that the dependent changes can be reduced to independent changes

which may be handled automatically.

13http://www.eclipse.org/emf/compare
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Co-evolution of Artefacts using EMFMigrate

EMFMigrate is an approach for co-evolving modelling artefacts in a uniform way

[18]. It is based on specifying migration rules which can further be decomposed into

rewriting rules. Each rewriting rule is evaluated with respect to a provided difference

model (which is manually specified or automatically generated), and applied if the

guard (boolean expression) of the rule is true. Several migration rules comprise a

migration program. A migration program may import a library of migration rules

pertinent to a particular migration scenario, e.g. a library with migration rules

defined accordingly to the ATL metamodel or Ecore metamodel.

Adaptation by Detection of Changes

The work of [59] resembles the approach in [57] by how co-evolution is achieved

by deriving and executing model-to-model transformations. The main difference is

how the difference model, or matching model as it is named in [59], is computed.

Specifically, the approach in [59] is based on using heuristics (comprising a matching

strategy) to identify equivalences and differences between two metamodels. A part

of the motivation for using heuristics is that complex changes, i.e. a set of actions

that affect multiple metamodel concepts, can not be appropriately identified using

tools such as EMF Compare. The authors claim that heuristics are needed because

comparing metamodels is an NP complete problem. Each heuristic produces an

intermediate matching model. The final matching model is used as input for a

higher-order transformation that produces the model-to-model transformation.

Migration using a Graphical Representation of a Difference Model

An approach based on specifying the difference model using a graphical notation

is discussed in [60]. Contrary to [57] and [59], the model is specified explicitly by

the user. Migration rules are expressed using classes and relations as found in two

versions of a metamodel (i.e. the old and evolved metamodels). The metamodel

elements comprising the migration rules are mapped to indicate an evolutional step,

e.g. a class named X in the old metamodel may be mapped to a class named Y in

the evolved metamodel indicating that the X class has been given the new name Y.

Additional conditions and commands (e.g. for querying models and setting attribute

values) can be specified imperatively in C++ to describe more complex migration

rules. Breaking and resolvable changes are automatically addressed, whereas break-

ing and unresolvable changes are dealt with manually. Code for migrating the models

is generated automatically.
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3.2.2 Stepwise Adaptation

Adaptation of Metamodels with Co-adaptation of Models

The author of [58] discusses an approach (theoretic framework) for simultaneous

adaptation of metamodels and models. That is, models are co-adapted as a con-

sequence of applying well-defined adaptations to their metamodel. Models are co-

adapted by executing co-transformations. A co-transformation is created by instan-

tiating a co-transformation pattern. Each metamodel adaptation instantiates a suit-

able co-transformation pattern. The metamodel adaptations are classified according

to their semantics- and instance-preservation properties yielding three categories of

adaptations: refactoring, construction and destruction. The provided framework

also shows how properties concerned with semantics-preservation are correlated with

properties of instance-preservation.

Coupled Evolution of Metamodels and Models

Changing a metamodel implies applying a derived change to the existing models.

In [63], such a coupled change is known as a coupled transaction. Evolution and

co-evolution of metamodels and models, respectively, can thus be expressed by com-

posing any number of coupled transactions in a sequential manner. The authors

discuss two types of coupled transactions: reusable and custom. Reusable coupled

transactions represent metamodel-independent changes that are applicable to several

different metamodels (using parameters), whereas custom coupled transactions are

pertinent to specific metamodels. The authors claim that a criterion for a successful

migration approach lies in the ability to reuse migration knowledge and at the same

time allow for expressiveness. Reuse is addressed in terms of reusable transactions

that can be picked from a library. Expressiveness is achieved by providing the user

with a Turing-complete language containing primitives for adaptation and migra-

tion. The approach, referred to as COPE, has been realised on top of EMF; also

known as the Edapt framework14.

Operators for Coupled Evolution of Metamodels and Models

In [64], the authors discuss a set of 61 reusable coupled operators for evolution

of metamodels with automatic co-evolution of models. The operators are classi-

fied according to three criteria: language preservation, model preservation and bi-

directionality. The aim of the authors is practical completeness, i.e. a catalogue

of operators that can be used to realise the most common evolutions of metamod-

els with co-evolution of models. The operators have been identified by studying

the state of the art and as a result of performing case studies. The operators ad-

dress evolution concerned with core metamodelling constructs, and do not support

evolution regarding e.g. operations, derived features or constraints.

14http://www.eclipse.org/edapt
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Migration of Models with Support for Multiplicity Changes

Changing the multiplicity of an association or adding an association between two

classes in a metamodel may yield multiplicity constraint violations. This means

that an existing model of the metamodel no longer fulfills the constraints implicitly

specified by the multiplicities of the association, i.e. objects may need to be added or

removed from the model. In [62], multiplicity constraint violations are addressed by a

rule-based model migration approach. The approach first handles structure and type

migration (merging of classes, moving properties, etc.) and then resolves multiplicity

constraint violations. The authors discuss association inheritance and how this can

be addressed. Model migration is given in the form of transformation rules, i.e. in

the Henshin model transformation language15. Model migrations can be generated

automatically. However, manual intervention and customisation of migrations may

be required. The authors claim that their approach can result in correctly typed

models with no violation of multiplicity constraints in a finite number of migration

steps as long as the metamodel is finite satisfiable. A finite satisfiable metamodel

means a metamodel whose association multiplicitiy constraints are carefully chosen

such that there exists at least one model that fulfills them. Whether a metamodel

is finite satisfiable can be decided by solving a linear system of inequalities.

3.2.3 Other Migration Approaches

Migration using Conservative Copy

A model transformation is either of type new-target or existing-target [66]. A new-

target transformation initialises an empty target model and builds the model sequen-

tially based on the contents of the source model. An existing-target transformation

initialises the target model as an exact copy of the source model and deletes elements

to reflect requirements of the transformation. In [66], a hybrid transformation type

is discussed; known as conservative copy. Conservative copy means that the target

model is initialised only with elements from the source model that conforms to the

target metamodel. A user-controlled version of conservative copy is also discussed

in which a type mapping function may be used to specify an evolved metamodel

type (class) for each original metamodel type. In addition, it is possible to specify

ignored features which are not automatically copied to the target model. Based

on an analysis, the authors claim that using conservative copy in the general case

requires using fewer model operations than using new-target or existing-target trans-

formations. Hence, they believe conservative copy transformations are better suited

for model migration. The authors have created a migration language named Ep-

silon Flock, and as the name suggests, it is built on top of Eclipse Epsilon16 - a

platform for realising model management. Flock is a rule-based transformation lan-

15http://www.eclipse.org/henshin
16http://www.eclipse.org/epsilon
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guage supporting both declarative and imperative code. It uses conservative copy

for migrating models. The authors state that Flock is best suited for migrations

that do not encompass large-scale metamodel revisions.

Detecting Co-evolution Failures

In [61], the authors present an approach for detecting discrepancies between a

metamodel and its models. This includes analysing models with respect to their

metamodel after a third party co-adaptation mechanism has been applied. Specific-

ally, models may not be co-adapted correctly using such a mechanism. The corner-

stone in the approach is the use of constraints that enforce syntactic and semantic

properties. The validity of a model with respect to a metamodel (conformance with

additional constraints) may be proven by analysing the constraints. Constraints are

updated as a result of applying changes to a metamodel. As pointed out, a model

may not have been co-evolved correctly (or not been co-evolved at all). In this re-

spect, the authors discuss how options for correct co-adaptation can be derived and

suggested to the user by a reasoning engine (not yet implemented). This includes

the ability to co-evolve models automatically in some situations. The authors claim

that their approach may address situations with side effects, i.e. when an executed

model adaptation may induce invalidity in other parts of a model.

The foundation for the work is discussed in [65] where the authors present an

approach for co-evolving constraints as changes are applied to a metamodel. The

approach is based on using constraint templates with variables, that are instantiated

to generate or update constraints enforcing rules for elements in a metamodel. A

constraint template may e.g. address reference multiplicities and hence be instan-

tiated multiple times to produce constraints than enforce the multiplicities for each

reference in a metamodel. Management of constraints is performed automatically

by a template engine in an incremental manner, i.e. focusing on only the changed

metamodel elements.

Model Migration using Attributed Graph Transformations

A transformation language and environment, named Henshin, for in-place transform-

ations of EMF models are discussed in [67]. An in-place transformation operates

directly on the (source) model, whereas an out-place transformation creates a copy

of the source model and, hence, does not change the source model. Henshin allows

specifying transformations using a declarative style, which allows formal reasoning

about the transformations. It can be used to specify model migration using manual

specification, i.e. transformation rules are specified for both a metamodel and its

models. A rule is expressed as two graphs in a visual syntax; a left-hand side graph

describes a pattern identifying where the changes specified by a right-hand side

graph should be applied. (The two graphs may be combined into one graph.) The
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authors state that Henshin can potentially be used for an operator-based approach

as well.

Co-evolution with Transformation of Wrapped Models

In [69], the authors present an approach for evolution and co-evolution of metamod-

els and models, respectively, using graph transformations as specified in Henshin.

The underlying idea of the approach is that transformations for both the metamodel

level and the model level can be expressed in the same graph(s). This is achieved

using model object wrappers.

In EMF, all model objects are instances of classes indirectly implementing the

EObject interface. The type of a model object, i.e. the metamodel class of which

a model object is an instance, can only be determined by using reflection. The

approach addresses this by wrapping each EObject instance in a wrapper object

(instance of WObject) with the purpose of making type-instance relations between

a metamodel and model available as structural features. This way, the type of a

model object (EClass object), the type of a link instance (EReference object) and the

type of a value instance (EAttribute object) can be accessed using references instead

of reflection. Also, object values and links can be accessed in a generic way.

By specifying metamodel and model level changes in the same graph it is pos-

sible to increase the expressiveness of migration rules (supporting metamodel-specific

changes). That is, the metamodel changes and the corresponding model changes are

represented directly at the same conceptual level without the need to sequence a set

of low-level co-evolution operations. Metamodel evolution and model migration are

achieved by transforming the metamodel and an existing model according to opera-

tions specified in the graph (e.g. preserve, create, delete). The evolved metamodel is

directly available in the graph, whereas a co-evolved model is acquired by extracting

the changed EObject instances from the wrapper objects. Hence, evolution of the

metamodel and a model is performed as an atomic step (the approach also supports

delaying the execution of the model migration).

A Formal Approach to Metamodel Evolution

A technique for model migration using diagrammatic specifications in terms of graph

theory and category theory is discussed in [68]. Metamodel modifications are spe-

cified using metamodel evolution rules (transformations), whereas models are trans-

formed by migration rules corresponding to the rules applied on the metamodel.

Specifically, the left and right hand sides of a migration rule conform to the left and

right hand sides of a metamodel evolution rule, respectively.
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3.3 Model Templates and Model Typing

In this section we discuss approaches for model templates and model typing.

3.3.1 Model Templates

Genericity by Means of Concepts

The authors of [42] argue that reuse, genericity, modularity and extensibility in MDE

artefacts can be improved by utilising requirement-centric specifications instead of

type-centric specifications. Specifically, they propose using structural concepts for

specifying structural and behavioural requirements. A concept adds a level of indir-

ection and allows defining behaviour in a more abstract way, instead of directly for

a particular metamodel. The behaviour of a concept may be applied non-intrusively

to all metamodels that fulfill the requirements of the concept. The notion of concept

refers to the set of requirements required by type parameters in generic program-

ming to ensure correct template instantiation and execution. A concept is a pattern

specification of structure that needs to be found in a metamodel (for the concept

to be applicable to the metamodel). Hence, the concept is defined in terms of a

metamodel. The elements of the metamodel comprising the concept definition act

as variables and are bound to elements of a specific metamodel(s). Example ap-

plications for concepts are generic simulators and code generators. These may be

executed for all instances of metamodels that are compatible with the concepts used

to define the simulators or generators.

A concept can only be bound to metamodels that fulfill the structural require-

ments of the concept. To increase the flexibility of concepts, the authors propose

hybrid concepts. A hybrid concept specifies structural requirements in terms of op-

erations that the specific metamodels need to implement. Using operations allow

for greater variations in the metamodels. A structural concept may realise a hy-

brid concept with a default implementation of the operations in the hybrid concept.

Hence, a metamodel may be bound to a structural concept that provides an im-

plementation of the operations instead of binding directly to the hybrid concept.

Similarly, a concept may also be specialised to create hierarchies of concepts.

An approach for defining reusable models as model templates is also discussed. A

model template contains a model (fragment) and uses a concept to specify interface

requirements. The concept is defined by using types from a metamodel, according

to a typed on relation. Models conforming to this metamodel are valid actual para-

meters in instantiations of the model template. Hence, the model (fragment) of the

template may be composed with models used as actual parameters without modi-

fying the metamodel of the models. A model template can utilise several concepts

for expressing more than one interface. This means that several models (used as

actual parameters) may be combined using a model template. A derivative of model

templates is generic model templates. A generic model template defines its interface
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requirements in terms of a concept that can be bound to different metamodels, in-

stead of a concept that is typed on one particular metamodel. Hence, the variables

of the concept may be bound to elements of different metamodels. Generic model

templates therefore express patterns that can be applied to families of metamodels.

A generic model template may be instantiated with models conforming to all com-

patible metamodels, i.e. metamodels that fulfill the requirements of the template

concept.

Finally, the authors discuss semantic mixin layers in the form of metamodel tem-

plates. A metamodel template supports extending a metamodel with structure for

realising behaviour. The behaviour is defined externally (e.g. as a simulator) over

the generic types of the template and an associated concept. All metamodels that

fulfill the requirements of the concept may be extended with the associated beha-

viour of the template. The metamodels are extended using a mechanism similar to

package merge. Hence, an instance of a template is an extended version of a specific

metamodel. Only structure that is optionally with regard to model instantiation

may be added to the metamodel to ensure conformance between existing models

and the extended metamodel17. One type of application for metamodel templates is

to add a simulation infrastructure to metamodels. The authors state that concepts

can be thought of as representatives for (meta)model types.

3.3.2 Model Typing

Model Type as a Collection of Object Types

In [53], the authors discuss how a model type can be defined as an extension to

object-oriented typing, i.e. as a collection of model object types (a set of meta-

classes) and their relations. The approach is centred around a model-type con-

formance relation which indicates whether two model types are type compatible.

The conformance relation is based on type matching and states that a model type

matches a reference model type if the model type contains equally named types/-

metaclasses as the reference model type where the respective classes have the same

number of properties (e.g. relations) and operations whose signatures are identical.

The conformance relation allows building tools/model-related services that have an

input parameter typed by a required model type. Models that are type compatible

with the required model type may be read and processed by the tools/services. That

is, models that are typed by a provided model type which in turn is conformant with

the required model type of the tools/services. Model types can be used in expres-

sions and to type variables. The conformance relation also dictates whether a model

type may be substituted with another. Model types allow tools and other artefacts

like, e.g. transformations, to be reused in a flexible manner.

17Not discussed in the paper, but clarified with author.
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Metamodel Refactoring using Model Types

The authors of [118] present an approach for defining generic transformations by

means of model types, aspect weaving and derived properties. The approach works

by defining a generic metamodel with representations of common concepts (classes)

that are found in a set of target metamodels; metamodels for which the generic

transformations should be valid. The target metamodels are adapted by weaving in

aspects, i.e. additional properties and derived properties are added with the pur-

pose of making the target metamodels type compatible with the generic metamodel.

Transformations, in this case refactoring transformations, can then be written once

according to the generic metamodel and then be applied for all the target metamod-

els. Model typing supports establishing a matching relation between the classes

(types) of the generic metamodel and the classes of the target metamodels, respect-

ively. This in turn supports substitutability when it comes to applying the trans-

formations. In this work two constraints regarding matching of classes are removed.

First, the classes can have different names as long as they are structural compliant,

i.e. as discussed in [53]. Second, the matching also applies to subclasses of a given

class.

3.3.3 Subtyping of Model Types

Substitutability is an important property in object-oriented approaches. In [54], the

authors present four subtyping relations for applications on models. In particular,

the discussion relates to how model types may be subtyped, which allows subtyping

at the model level. The key criterion for a subtyping relation is that a model

typed by one model type can be safely substituted by a model typed with another

model type. This in turn means that model manipulations, e.g. transformations,

can be reused. The authors discuss how adaptations may be applied to induce a

valid subtyping relation (making the structures of two model types isomorphic, i.e.

equivalent). They also discuss partial model substitutability where only a subset of

a model type, known as the effective model type, is considered.
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Research Method

The research method used to structure and evaluate the work of this thesis is known

as technology research [1]. It closely resembles the classical research method and

comprises three main phases: problem analysis, innovation and evaluation. In clas-

sical research the problem is the need for new theories that explain the world around

us. Technology research is about creating artefacts that improve properties of sys-

tems or processes, and is therefore often applied research. On the contrary, classical

research is typically basic research.

Technology research is an iterative process revolving around the three identified

phases. The initial step of the process is the identification of a problem that can

be understood as a need for a new or improved artefact. The result of the problem

analysis phase is a set of requirements that the artefact must fulfill. In the innovation

step, an artefact is constructed according to the identified requirements. The overall

research hypothesis is that the artefact satisfies the identified need as specified by

the requirements. The overall hypothesis is decomposed into sub-hypotheses which

assert desirable properties or qualities of the artefact. The hypotheses are tested in

the evaluation phase by constructing predictions. The requirements are the basis

from which predictions are made. It can then be argued that an artefact fulfills its

need by generalising from a set of verified predictions (which also means that the

requirements are satisfied). Evaluation may lead to new insight that is further used

as input for a new problem analysis phase.

Three types of scientific methods in computer science are differentiated in [107]:

theoretical computer science, experimental computer science and computer simula-

tion. Conceptualising and designing artefacts with evaluation in terms of prototypes,

as discussed in this thesis, belongs to the discipline of experimental computer sci-

ence. We have also worked according to what is considered theoretical computer

science, e.g. in terms of formalising desirable properties of an artefact.

In the context of this thesis, the artefacts are in the form of language constructs,

frameworks and theories. The artefacts realise a number of mechanisms. The re-

quirements for the artefacts are given in Chapter 5.
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4.1 From Problem Analysis to Artefacts

The problems investigated in this thesis were identified by studying the state of the

art. From the start of the project we chose to have a broad view on model-driven

engineering and domain-specific modelling with the purpose of identifying weak-

nesses of available mechanisms for metamodelling, in particular model composition

and adaptation. We identified several existing modelling mechanisms that would

be relevant to evaluate with respect to metamodels, e.g.: package templates, class

nesting and generic types. We first investigated using generic types in relation with

class nesting, and later moved on to study whether (and how) package templates

could be applied for metamodels. Even though several approaches for (meta)model

composition exist, we could not find one that supports composition of metamodels

that have operational semantics defined by class operations. In other words, we

could not find related work on metamodel composition approaches that are type-

safe (with the exception of aspect-oriented programming). During the course of

the project we shifted focus to address model co-evolution as this is critical when

metamodels are adapted. Approaches for model co-evolution, i.e. model migration,

are typically realised as either matching-based mechanisms or as mechanisms that

adapt a metamodel and its models in a stepwise coupled manner. We defined an

analysis framework for composition and adaptation of metamodels with co-evolution

of models, that works as an operator-based approach with change recording. Com-

position of metamodels can be seen as a form of evolution. However, we did not

find related work on migration approaches that explicitly treat metamodel composi-

tion as an evolution, and support generating transformations for either migrating or

composing existing models (two choices). Working on model migration inspired us

to seek solutions to how models may be combined without compromising the valid-

ity of related model artefacts like tools and editors. This included elaborating the

theory on how class nesting can be used to define a typing scheme for metamodels.

The problem analysis is thoroughly discussed in Chapter 5.

4.2 Innovation

The innovation pertinent to the work of this thesis is the design and realisation

of the artefacts. For Artefact A, the innovation lies in how the package template

concept has been elaborated to be useful for metamodels. The innovation regarding

Artefact B is how transformations for model migration can be calculated based

on instantiation directives. This includes generating transformations reflecting how

metamodels evolve throughout a template hierarchy. Artefact C provides a new

way of analysing and verifying metamodel composition and adaptation. A part of

the innovation is how the analysis has been formalised. Also, both Artefact B and

Artefact C support composition of models following metamodel composition. For

Artefact D we have invented a new way for integrating the operational semantics of
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metamodels. The innovation is how integration is specified by means of mappings

between metamodel elements and how proxy classes can be used as substitutes for

other classes. Artefact E is based on using class nesting for defining metamodel

types. The innovation is here a theory that explains how class nesting can be

applied for typing of metamodels. The artefacts are discussed in Chapter 6 and in

Chapter 7.

4.3 Evaluation

We have implemented four prototype tools/frameworks that have been used to eval-

uate the artefacts. We have used the tools/frameworks on several example cases

(which can be seen as simple case studies [116]). Adaptation and migration of Petri

net metamodels/models is a well-known problem in the literature on model migra-

tion approaches [75]. We therefore chose to evaluate Artefact A, Artefact B and

Artefact C on Petri nets. That is, adaptation of Petri net metamodels (including

model migration) that do not require deleting elements or changing the multipli-

cities of references (i.e. from the metamodel µ2 to the metamodel µ5 as given in

[58] including intermediate steps)1. We have also partially validated Artefact A and

Artefact C by adapting the GMF Graph metamodel [102]. For Artefact D we used a

non-trivial problem where the semantics of a GPL is integrated with the semantics

of a state machine language. We have also used other examples to test the artefacts.

Artefact C has additionally been evaluated analytically in terms of proving that

re-establishment of model conformance during model migration can be guaranteed.

For Artefact E we have used logical argumentation for evaluating the use of class

nesting for defining metamodel types. The prototypes are described in Chapter 6.

1The value for the weight attribute in the models has to be manually set to 1 since there is no
support by the artefacts for setting specific default values for properties.
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Problem Analysis

In this chapter we present the problems that are addressed in this thesis and mo-

tivate their importance. We first briefly present the current challenges and goals

in MDE as these are the origin of the specific problems we have solved. We then

concretise further according to the three areas of study, i.e. metamodel composition,

model migration and model typing, in the form of a problem statement. A list of

requirements for the artefacts and overall research questions are then given. The

requirements are later used in the evaluation of our work.

5.1 Challenges and Goals in MDE

MDE is a promising approach for addressing the increasing complexity in software

development and for improving productivity. However, there are several challenges

and open questions that need to be addressed. The challenges are related. However,

for clarity we divide them into six categories.

5.1.1 Complexity and Ease of Use

One of the key challenges in software engineering is the increasing complexity both

with regard to the problems that need to be solved and the software that need

to be created to solve these problems. This complexity needs to be addressed in

structured and intuitive ways. In other words, the complexity must be handled

by decomposing problems and software into smaller concerns which are easier to

understand and reason about. One goal such wise is to create software that is easy

to use and helps understanding the problem at hand. Specifically, complexity should

not be solved by introducing new complexity.

Tools are an important part of MDE, e.g. tools for model management. Un-

fortunately, the tools available are not typically perceived as easy to use [89], e.g.

language development tools which are not necessarily designed with the end user in

mind [49][56]. The immediate drawback of this is that the technological threshold
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and learning curve for using MDE are significant [16]. MDE concepts are also diffi-

cult to understand, e.g. because of a high level of abstraction [17]. These issues in

turn reduce the chances of acceptance and adoption of MDE in the industry [89].

More focus has to be put on creating solutions for involving all stakeholders; includ-

ing those that do not have the technical expertise of software developers. Enabling

communication and interaction between technical and non-technical experts is con-

sidered as one of the successes of MDE [17]. Hence, MDE should help by reducing

complexity and not making the software engineering process itself too complex [17].

5.1.2 Costs and Productivity

Improving productivity is a challenge in all business endeavours. In software engin-

eering, productivity depends on several things including the level of complexity the

engineers must handle, the type of problems at hand and the quality of available

tools and mechanisms. Also, the degree of automation that can be used directly

impacts how much time that is spent on a given problem.

Productivity may be assessed in terms of short-term productivity and long-term

productivity. Short-term productivity says how much functionality a certain arte-

fact may currently deliver, whereas long-term productivity depends on how resilient

an artefact is to change and how valuable it is in the long-term, i.e. an artefact’s

longevity [10]. Improving productivity can indirectly be seen as the effort of increas-

ing an artefact’s current and long-term value. In [10] it is argued that increasing an

artefact’s long term value is strategically more important than primarily focusing

on an artefact’s current value since the return on investment will be greater. That

is, reuse of solutions is a focus point.

To increase productivity in MDE it is necessary to improve how artefacts, e.g.

models, metamodels and transformations, can be managed, evolved and reused [89].

The overall goal is to increase the artefacts’ long-term value. Language development

is a central activity in MDE which is both complex and time-consuming. Languages

are often made from scratch [54] even though reuse would be possible by applying

the right techniques, e.g. by composing already available modules [49]. Reusability

increases productivity and reduces costs, and has been recognised as a key issue in

modelling language design [16]. However, composing modules is typically only feas-

ible for skilled language developers [49] which, as mentioned, increases the threshold

for adoption of MDE in industry. There is also a cost and risk of applying MDE

because of required changes to the software development process [89].

To increase the long-term value of a domain-specific language and hence make

it economically viable, the language should support modelling of many applications

[36]. One way of achieving this is to support adaptable metamodels that can be

tailored for different domains [61]. Finding optimal solutions to this is an open

question [16]. Moreover, design tools should be adaptable as well for supporting a

variety of disciplines, domains and applications [65].
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5.1.3 Evolution and Traceability

Software evolves and requires maintenance. There are many types of evolution

including e.g. architecture evolution and language evolution [82]. Evolution can

also be categorised according to the types of changes applied, e.g. if the evolution is

a consequence of improving the longevity of software by addressing new requirements

or whether the evolution results from correcting errors in the software. (Support for

scalability is also an important goal.) Hence, software changes continuously which

consumes a large amount of resources [82].

Traceability allows tracking changes in software and supports e.g. impact ana-

lysis and verification of requirements. In particular, impact analysis helps determ-

ining the consequences of applying changes. Supporting traceability is therefore

desirable.

The need for change drives evolution of MDE artefacts [82]. Evolution can

be seen as the process of re-establishing consistency between an artefact and its

problem domain, and is one of the main challenges in MDE [15][17]. New or changed

requirements is one of the fundamental drivers for change in software engineering

[10]. In MDE this is particularly evident because of the focus on using domain-

specific modelling. Domain-specificity comes at the cost of being highly sensible to

change [71]. A DSL has a constrained number of problem-specific constructs which

allow modelling a certain type of problems. Or put differently, only a pre-defined

set of problems can be modelled as opposed to using GPLs in which practically

any kind of problem may be expressed and solved. The constructs of a DSL are

typically rigidly defined and there is little room for supporting variance regarding

the types of problems that can be modelled or the accuracy with which the problems

can be modelled. Consequently, desirable changes have to be reflected by evolving

the languages; meaning that the language constructs have to be adapted to meet

new requirements or the language have to be extended with new constructs. This

includes adapting language notation, e.g. concrete syntax and model editors.

Evolution of an artefact can typically not be seen in isolation from other artefacts

in the metamodelling ecosystem. The reason is that artefacts are related and chan-

ging one artefact may require co-evolving other artefacts to maintain consistency

[15][3]. Assessing the impacts of changing a model or metamodel has been identi-

fied as a major challenge in model evolution [16]. Specifically, changing metamod-

els normally impacts several other artefacts as these are defined relatively to the

metamodel.

5.1.4 Verification and Correctness

The most important concern regarding software is that it performs correctly. This

requires rigorous testing of software and verification of its properties. And important

concept in this regard is determinism, i.e. the ability to derive the future state and

operation of software based on currently available information.
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Verification and validation are important activities in MDE and there has been a

lot of work on formal approaches for supporting MDE [16]. These activities require

a formal foundation. Two challenges are to integrate tools for formal verification

into modelling environments and defining DSLs that enforce model correctness [16].

5.1.5 Type-Safety

Type-safety is an important property of software which ensures that type errors

do not occur during execution of code. In MDE, type-safety should be verifiable

prior to execution of the operational semantics. For metamodels that specify opera-

tional semantics, type-safety is checked by the type-checker for the action language

used to specify the code. Second, model management operations and mechanisms

(e.g. model typing) that affect the operational semantics should seek to preserve

type-safety. For example, when both the structure and operational semantics of

metamodels are composed and/or adapted, it should be possible to verify that the

execution of the resulting operational semantics does not result in type errors. We

will discuss a couple of scenarios of composition and adaptation of metamodels that

will induce type errors if they are not addressed explicitly.

Renaming classes is a commonly used basic operation in MDE. Classes are used

to type variables, references, operations and operation parameters. When a class is

given a new name, a type error is introduced for all elements that are typed with

the class. To rectify this, all declarations that use the old class name have to be

updated to use the new name of the class. The same correction has to be done when

classes are merged since at most one of the source classes may retain its name.

Renaming of classes also induces type errors within code (operational semantics).

An example of this is an expression where a class is being instantiated. When the

class is renamed as an adaptation, a type error is induced because the code tries

to instantiate a class that is no longer accessible using the old name. Type errors

may also occur if a class is given a new name whereas the old name is used for

another class. The result of this is that code referring to the old class name will now

unintentionally be referring to the other class which has taken the name. Clearly,

this class is not type-compatible with the old class.

In other words, code that was type-safe prior to the composition/adaptation

has to be type-safe after the composition/adaptation. This also implies that e.g. all

features and operations accessed on an object before composition and adaptation are

available on the respective object after composition and adaptation. This typically

means that features and operations can not be deleted.

5.1.6 Representation and Modularisation

A problem may typically be modelled and solved in many different ways. Finding an

optimal solution includes creating an optimal representation of the problem. This

includes selecting an appropriate abstraction level and deciding how to segment the
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problem in views/viewpoints (concerns) and perspectives. This includes multi-view

software that supports participation of different stakeholders. Important aspects are

reusing information effectively and avoiding replication of information.

Using multiple DSLs to realise a design is a common approach in MDE [56]. This

allows addressing complexity and hiding details that are not relevant for a given

concern [89]. A model may describe a single viewpoint. Viewpoints are typically

dependent which requires defining relationships (correspondences) between elements

of different viewpoints [90], which is not a trivial problem. The problem of relating

different viewpoints can be differentiated into two subproblems: the conceptual

integration of viewpoints and verification of consistency between the viewpoints [94].

Composing models representing different viewpoints and concerns is one approach

for integrating the viewpoints in order to generate a global specification for a system.

5.1.7 Technological Heterogeneity and Compatibility

Allowing heterogeneous software and data to work in concert is another challenge in

software engineering. This includes creating bridges between different technologies

and integration with legacy software. Compatibility between different versions and

variations of software is also a current challenge.

Using standardised metamodelling frameworks and meta-metamodels help alle-

viate difficulties regarding interoperability of technologies and tools. However, there

are still many challenges in integrating different technologies while at the same time

addressing challenges pertinent to evolution. Different technologies and tools do not

evolve in a synchronised manner, which complicates the picture. On top of this,

user-friendliness should be ensured. Heterogeneity is an increasing concern, e.g.

because of how systems are built from several systems [17].

5.2 Problem Statement

In Chapter 2 we discussed model and metamodel composition, model migration

and model typing, and the importance of these activities in MDE. In Chapter 3

we presented the available approaches and mechanisms for realising these activities.

However, as discussed, there are still challenges and open questions that need to

be addressed. In this section, we discuss the problems we have studied in further

details and motivate their importance.

5.2.1 Metamodel Composition

Metamodelling is used increasingly in the industry. However, many approaches and

tools available lack sufficient support for reusability, extensibility, modularity and

ease of composition of artefacts, e.g. models and metamodels [42]. Model composi-

tion and metamodel composition are central operations in MDE that address these
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requirements. Improving model and metamodel composition therefore has a ma-

jor impact on the usability of MDE and its applicability and adoption in industry.

Model composition has been studied extensively. On the other hand, there are still

open questions regarding metamodel composition that need to be addressed. Spe-

cifically, available tools have to improve in order to support evolution of metamodels

and not only models [17]. This includes support for metamodel composition.

MDE is a model-centric approach, which requires the use of multiple domain-

specific languages for creating the different models [56]. With respect to traditional

software engineering, MDE adds two major new tasks to the software engineering

process: language design and language integration. This implies that software de-

velopers need to master language design and their integration as well as using the

languages for creating solutions. This requires tools that are both intuitive and

simple to understand and use [89]. OMG issued a request for proposal known as

the Metamodel Extension Facility RFP1 in 2011. With the RFP, OMG solicits ap-

proaches that may replace UML Profiles for extending and integrating metamodels

and subsets of metamodels. The request is still pending.

A model is formalised by a metamodel. Composing models therefore requires

the metamodels to be composed as well to be able to acquire a formalisation of the

composed model. In this thesis we focus on composition of metamodels defined by

class models.

Correctness, Conflict Handling and Composition of Operational Semantics

One of the major limitations of current metamodel composition approaches is the

limited support for ensuring and asserting correctness of the composition. In a large

survey on aspect-oriented modelling approaches (for use in MDE) it was concluded

that more sophisticated conflict detection and resolution mechanisms are needed

[92]. Creating DSLs that enforce model correctness by construction has been iden-

tified as a challenge [16]. This challenge also pertains to operations on models and

metamodels. Type-safety is a necessity when metamodels also define operational

semantics. EMF and Kermeta are metamodelling frameworks that support defining

the operational semantics of metamodels (languages) in terms of class operations.

That is, the classes in EMF and Kermeta metamodels define types, with dynamic se-

mantics, whose use can be type-checked2. With the exception of static introduction

(open classes) in Kermeta [56], we are not aware of any dedicated mechanism that

supports type-safe composition of metamodels with operational semantics defined

in class operations.

In MDE, the dynamic semantics of a metamodel (language) can be defined in

several different ways, including approaches for translational, operational, exten-

sional and denotational semantics [2]. Most existing approaches in MDE (with e.g.

1http://www.omg.org/cgi-bin/doc.cgi?ad/2011-6-22 (accessed early 2017)
2EMF uses Java to specify the semantics whereas Kermeta uses an action language.
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the exception of EMF and Kermeta) rely on using a translational approach where

structural models are transformed to executable code. A disadvantage with this

approach is that knowledge is kept both in the models and the code [46]. Changing

either artefact requires updating the other dependent artefact. This results in in-

formation redundancy which may result in model and code not being aligned and

thereby causing inconsistencies [47]. It may also make evolution more challenging

and even lead to information erosion. It is argued that well-defined semantics at the

model level is necessary for increasing the value of models [92]. Having this semantics

defined within metamodels ensures that model and code appear as integrated logical

units of functionality. Hence, there is a clear motivation for supporting metamodels

that specify operational semantics, and composition of such metamodels. How can

metamodels that specify operational semantics be composed type-safely without in-

troducing a new layer of complexity? Can the operational semantics be composed

simultaneously as the metamodel structure is composed? And, how can conflicts

that appear be addressed in the operational semantics without having to manually

changing the code?

Composition of Multiple Metamodels

Many of the available composition approaches support composition of only two

(meta)models simultaneously. The approaches need to be used iteratively when

more than two (meta)models need to be composed. Each iteration requires identi-

fying what concepts to compose and resolution of conflicts (i.e. refactoring of the

metamodels). Unfortunately, since each iteration only considers two metamodels,

new conflicts may be induced with respect to further iterations. These conflicts later

have to be addressed in the remaining iterations. Composing several metamodels

iteratively may therefore result in unnecessary difficulties and reduce the usability of

the composition approach. It can also be necessary to provide an ordering of how the

metamodels should be composed which is not a trivial task. MDE suggests using

multiple languages in concert [56], which motivates the importance of supporting

composition of several metamodels simultaneously.

Reusability of Metamodels

Reusability has been recognised as a key issue when designing modelling languages

[16]. Building (meta)models by selecting pre-made fragments is a solution for in-

creasing productivity and reducing costs [42][49]. A goal is to promote reusable

metamodel variants and at the same time avoid redundancy of variations. To in-

crease applicability of the fragments it should be possible to adapt them for differ-

ent domains [61]. Of this follows that a mechanism for composition of metamodels

should provide means for adapting the metamodels as part of the composition. How

can adaptations that preserve type-safety be supported? Is it possible to organise

metamodel variations and versions in an intuitive way that avoids redundancy?
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Conceptual Composition

One of the main difficulties with composing (and adapting) metamodels is the many

artefacts in the metamodelling ecosystem that may be impacted by such an oper-

ation. There are two main types of solutions to this problem. First, the impacted

artefacts can be updated to ensure compatibility with the composed (or adapted)

metamodel. Second, instead of explicitly merging the structures of two (or more)

metamodels during composition, semantic links are instead created between ele-

ments in the different metamodels. The links collectively represent a conceptual

composition. The best known work on this is the Atlas Model Weaver (AMW) [22],

which supports defining several types of links (correspondences) between elements

in different models. As far as we know, there is no approach available that supports

composing metamodels, that define operational semantics in class operations, using

semantic links while at the same time integrating the operational semantics.

Integrating different languages by explicitly composing the structures of their

metamodels is not trivial [43], it requires artefacts to evolve which is challenging

[17] and it may even not be possible to acquire a composed metamodel for all in-

volved languages, e.g. because the concepts of the metamodels reside on different

abstraction levels and/or have differences with regard to semantics [90]. Is it possible

to support type-safe integration of metamodels that specify operational semantics

by means of semantic links? And, can such mechanism be completely non-intrusive

to avoid inducing impacts on other artefacts?

Ease of Use

Composition of (meta)models is one of the key operations in MDE. Hence, its ap-

plication should be as straightforward and efficient as possible, which is also stated

in [16]. However, the available composition approaches are not straightforward to

use and require skills in language development. Being able to have non-technical

stakeholders participate more directly in the software engineering process is a goal of

MDE. Furthermore, many mechanisms specify composition directives in a separate

resource, e.g. a composition or weaving model, which results in additional artefacts

that need to be maintained.

5.2.2 Model Migration

Metamodels formalise domain knowledge and are used as reference for a large number

of artefacts [18]. The definition of these artefacts depends on the metamodel’s defin-

ition. A metamodel evolves over time [61], which means that dependent artefacts

(models, transformations and tools) are rendered invalid with regard to the evolved

metamodel. One such artefact is models. Existing models will in many cases not

conform to the resulting metamodel following an adaptation. This requires creating

model-to-model transformations that update or migrate existing models each time
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a metamodel is adapted to ensure they conform to the evolved metamodel. This is

a research challenge [91].

Transformation Required After Composition

Composing metamodels creates a situation where existing models of the metamodels

may often not conform to the composed metamodel. There are two solutions to this.

First, a model composition approach can be used for manually selecting two (or

more) models which are then composed for acquiring a composed model conforming

to the composed metamodel. Second, transformations can be made in order to

update the models so that they conform to the composed metamodel. That is, the

models are changed to meet the updated set of well-formedness rules imposed by

the composed metamodel. The type of approach chosen for composing/updating the

models depends on the premise for using metamodel composition in the first place.

For composition of metamodels defining languages for different viewpoints of

a system it would typically be required to use a model composition approach for

acquiring an integrated view of the system (utilising existing models). In situ-

ations where metamodel composition is used to e.g. increase the expressiveness of a

metamodel, by composing a metamodel with some kind of additional features, it may

instead be preferable to just update all the existing models of the metamodel with

the minimum required objects/values in order to establish conformance with the

extended metamodel. This is required when there is no models available conforming

to the extension (metamodel fragment). This latter case of metamodel composition

can be seen as an evolution since the composition can be described in terms of a

number of sequential evolutionary steps, e.g. adding new classes and relations, and

adding properties to existing classes (reflecting merging of classes). Hence, a migra-

tion approach that calculates a difference model from two metamodels may detect

the result of a metamodel composition. Existing models can then be transformed to

conformant versions of the evolved metamodel by generating default objects and val-

ues. However, there is no difference-based migration approach that supports model

composition as a consequence of metamodel composition. Also, a difference-based

approach can not be used when more than two metamodels are composed by only

comparing the original and evolved metamodel.

Similarly, an operator-based migration approach may describe metamodel com-

position in terms of multiple operations. However, we are not aware of any operator-

based approach that supports composing metamodels directly, with corresponding

model composition. Again, this also requires the approach to support operating on

several metamodels. Edapt3 (based on COPE [63]) is an operator-based approach

that supports an operation known as Replace Class which allows migrating instances

of one class to another. This operation may in principle be used to imitate model

composition. However, the use of the operation is constrained.

3http://www.eclipse.org/edapt
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Migration approaches that rely on manual specification may address metamodel

composition with corresponding model migration/composition, e.g. Flock [66], EM-

FMigrate [18] or Ecore2Ecore ([75]). However, there is an incentive for using auto-

matic approaches. Supporting efficient migration of models as a consequence of

changing metamodels is identified as a prerequisite for cost-effective MDE [71]. This

includes addressing changes resulting from metamodel composition. Is it possible to

define a model migration mechanism that also supports model composition straight-

forwardly as a consequence of metamodel composition?

Correctness

Differencing approaches do not guarantee producing a correct migration strategy

with respect to the actual changes that were performed on a metamodel. For some

domains, differencing approaches are therefore not suitable, and approaches that are

deterministic and produce correct results are required [76]. Static analysis has been

identified as a way of verifying conformance preservation in a model-independent

manner [63]. Can analysis be used to assert that model migration is performed

correctly?

5.2.3 Model Typing

Typing is one of the most successful concepts in programming languages. It allows

specifying collections of entities that share a set of properties. The entities may

be treated equally with respect to operations, and correctness may be asserted by

means of type checking.

The metamodel plays an essential role in a metamodelling ecosystem as it repres-

ents a specification that many artefacts depend on. In other words, the artefacts are

defined according to a specific metamodel which may be understood to have a spe-

cific type comprising its properties [42]. Typing is a concept that may alleviate the

difficulties in supporting variance in the metamodel (due to required co-evolution).

Some work has been performed on model types, e.g. [53]. However, the question on

how to support metamodel types is still an open question.

Variance and Reuse

There are several advantages of supporting metamodel types. First, artefacts may

be defined according to the properties of a metamodel type instead of the prop-

erties of a metamodel, which would increase the reuse value of the artefacts and

ensure longevity [42]. A metamodel type constitutes an abstraction over several

metamodels sharing a common set of properties and thereby allows reuse. That

is, different metamodels may share the same artefacts and the artefacts are more

resilient to metamodel evolution. This further means that a metamodel type repres-

ents the minimal set of metamodel properties that an artefact is required to handle.
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Changing properties of a metamodel irrelevant to its type therefore does not (neces-

sarily) impact the dependent artefacts. Second, types provide a means for realising

polymorphism. This includes supporting genericity which allows specifying generic

behaviour for metamodels [42]. Can metamodels be typed in a conventional way

in order to utilise existing mechanisms that are based on typing? Is it possible to

type metamodels and at the same time utilise type parameters? And, can several

metamodel types be used in unison?

5.3 Requirements

Based on the problem statement, we present a list of specific requirements that

capture desirable properties and characteristics of the artefacts discussed in this

thesis. We also give a list of general requirements that are not tied to the specific

problems we have investigated.

5.3.1 Specific Requirements

1. Metamodel composition mechanisms should automatically ensure and assert

the correctness of their application to the extent possible. Having metamodel

composition mechanisms that produce correct results is essential for creating

high quality MDE solutions. It means that manual verification and correc-

tion is reduced to a minimum. This increases confidence in the software and

improves productivity, which in turn is important for gaining acceptance of

MDE.

2. Composition of operational semantics should be supported for metamodels that

define such in class operations. Supporting composition of metamodels’ struc-

ture and operational semantics ensures that additional mechanisms do not

have to be applied for achieving an integrated semantics for the composed

metamodel.

3. It should be possible to statically type-check metamodel compositions for meta-

models that specify operational semantics in class operations. Type checking

is essential when composing operational semantics. It ensures that the execu-

tion of models conforming to the composed metamodel does not result in type

errors, i.e. the integrity of the composed semantics is high. The type checking

should be static. Dynamic type checking is not desirable since this may require

recomposing the metamodels if type errors occur at runtime. The added flex-

ibility of dynamic type checking is not needed when composing metamodels.

4. A metamodel composition mechanism should support composing an arbitrary

number of metamodels simultaneously. Being able to consider several metamod-

els simultaneously during composition improves conflict handling and increases
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agility. It also means that there is no need to order the metamodels prior to

composition. To achieve this, the mechanism needs to support symmetric

composition.

5. Metamodels should be organised in a way that eases reuse and avoids redund-

ancy of metamodel variations. Organising metamodels according to different

variants and versions improves management of evolution. It makes it easier

to identify the most suitable metamodel variant for a given task and ensures

traceability by supporting the generation of a change history.

6. Approaches for composing metamodels should take artefacts that are dependent

on the metamodels into consideration; in particular the models. Co-evolution

is typically required when metamodels evolve. Having means for co-evolving

artefacts or making artefacts resilient to metamodel changes improves how

evolution is handled.

7. Approaches for metamodel composition should support adapting metamodels

as part of the composition operation. It may be necessary to adapt metamod-

els to facilitate composition. Supporting such natively by the composition

mechanism reduces the need of adapting metamodels prior to composition.

8. Mechanisms supporting adaptation of metamodels should support both meta-

model-specific and metamodel-independent adaptations (coupled changes). Sup-

porting metamodel-specific changes are important to reflect particular problem

domains, whereas metamodel-independent changes allow reusing adaptations

(and migrations) for several metamodels (and models).

9. Migration approaches should produce conformant models automatically, to the

extent possible, and verify correctness of the migration. By producing con-

formant models, manual intervention is reduced to a minimum. In particular,

this is advantageous when composition is used to extend a metamodel with

new features.

10. It should be possible to type metamodels. Having a clear notion of a metamodel

type improves how variance and reuse can be addressed in the metamodelling

ecosystem.

5.3.2 General Requirements

1. Approaches for model management should be easy to use and reduce complex-

ity; not introduce new layers of complexity. Intuitive and straightforward ap-

proaches simplify the software engineering process, make it easier to reason

about the problems being solved and are likely to be received better by the

developers.
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2. Management of models should be performed using declarative languages to the

extent possible. Having declarative languages may lower the threshold for par-

ticipation by non-technical stakeholders. This is because declarative languages

enable a greater focus on what needs to be managed and where this manage-

ment should be performed; with respect to how the management should be

achieved.

3. Approaches for model management should be applicable to as many (meta)-

models as possible. Useful approaches are likely to be more cost-efficient. They

may also help simplifying the software engineering process because the tool set

is kept smaller.

4. Approaches for model management should be supported by development tools

and editors. The availability of stable tools is imperative for getting acceptance

of an approach and for supporting real case usage scenarios.

Three overall research questions have been investigated during the work with

this thesis:

RQ1: How can correct, type-safe and flexible composition and adaptation of

metamodels’ structure and operational semantics be achieved?

RQ2: How can evolution of metamodels and corresponding co-evolution of

models be addressed to ensure correctness and flexible reuse?

RQ3: How can metamodel types be defined to support variance and reuse

type-safely?

The research questions abstract over the details given in the problem statement.

They are answered in Chapter 8.





Chapter 6

Contributions
This chapter describes the five artefacts that constitute the main contributions. We

will introduce each of the artefacts and discuss their main properties. Additional

details and in-depth explanations of each artefact are found in the respective research

papers of Part II. The additional artefacts, as documented in research reports, will

only be discussed in Chapter 7.

Operational Semantics Integration

Paper II

Model Migration

Metamodel Composition

Metamodel Adaptation

A Theory for Realising 
Metamodel Types

Framework for Metamodel 
Composition and Adaptation 

with Model Migration

Framework for Derived 
Migration of Models

Framework for Non-Intrusive 
Integration of Operational 

Semantics

A Language for Integration of 
Operational Semantics

Constructs for Type-Safe 
Metamodel Composition and 

Adaptation

Metamodel Typing

Paper I Paper VI

Paper IV Paper V

Research Report II

Paper II

E

A

B

C D

Paper III

Framework Extension for 
Refactoring of Metamodels 

with Model Migration

Research Report I

Figure 6.1: Overview of the artefacts and the papers in which they are discussed

Figure 6.1 gives an overview of the artefacts and in which papers they are dis-

cussed. The artefacts and papers are organised according to five topics: metamodel

composition, metamodel adaptation, model migration, operational semantics integ-

ration and metamodel typing. Several of the areas overlap. For instance, Artefact

C addresses metamodel composition, metamodel adaptation and model migration.

It is described in detail in Paper IV.
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We have created a graphical notation for illustrating how the artefacts operate.

The notation is inspired from current conventions and standards, and comprises

two types of concepts. The first type of concepts comprises structural units, e.g.

templates, metamodels, classes, class properties and so forth. The other type of

concepts includes relations, operations/transformations and mappings that can be

applied on the structural units, e.g. metamodel adaptation or class merging. The

capabilities of each artefact can be described in terms of a selection of relations,

operations and/or mappings. The graphical notation for the structural units is

given in Figure 6.2.

T

M

Template

Metamodel (M2)

Model (M1)

CClass

Object
C (m)

m

Inner Classes

a
o()

or
C D

E

or

C C1

C2

+

+

i

Figure 6.2: The notation for the structural units

In Figure 6.2, the C class is specified with one attribute named a and one oper-

ation named o. This indicates that the a attribute and o() operation are of special

interest. It does not mean that the class does not have additional content. The

same applies for inner classes, e.g. the classes C1 and C2 are two inner classes of C

that are emphasised. An object has a type and an identifier (index). The identifier

is needed to differentiate between several objects of the same class. The model in

which the object reside is given in parentheses.

Figure 6.3 gives an overview of the relations and low-level operations supported

by the graphical notation. The left column shows the notation for describing how a

template is instantiated in another template (or package), and two types of trans-

formations: metamodel adaptation/composition and model migration. Furthermore,

the notations for model conformance, classification and subtyping are shown.

The right column of the figure gives five low-level (atomic) operations; here

applied on templates. Notation wise, the operations may be applied on the other

structural entities as well, e.g. directly on metamodels. High-level operations can

be achieved by sequencing low-level operations.
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Template 
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Figure 6.3: Relations and low-level operations

In the figure, three renaming operations are performed during instantiation of the

T1 metamodel template in the T2 template. (We will discuss metamodel templates

later.) First, an attribute named a in the X class of the T1 template is renamed to

aa. Second, an operation named o in the Y class is renamed to oo. Third, the class

C in T1 is renamed to D. Additions follow a similar scheme. The new contents is

shown to the left of add arrows. A class C with (at least) an attribute named a and

an operation named o is added to the T4 template. An attribute named b of type Int

and an operation named p is added to the D class of T4. Types are specified when

it is of relevance, e.g. as seen for the b attribute. Moreover, the operation q() found

in the C class in T5 is overridden during instantiation of this template in T6. The

class C from T7 is merged with the D class from T8 during instantiations of these

templates in T9. The resulting class is given the name E. Finally, the type for the r

reference in the Z class of T10 is given the type Y instead of X.

Asymmetric Class Mapping 
(proxy)

G H
a b

o() p()

E F

C D

Symmetric Class Mapping 
(equivalence)

Structure Mapping 
(proxy)

Object Mapping 
(link)

G (m1) H (m2)
i j

Figure 6.4: Class-, structure- and object mappings, and structure export/import
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Figure 6.4 gives a set of mappings. A class may be a placeholder (proxy) for

another class, i.e. C is a proxy for D. In the figure, E and F are equivalent in terms

of structural properties. Moreover, the a attribute of G is mapped to the b attribute

of H, while the o() operation is mapped to the p() operation. That is, the attributes

and operations are structurally equivalent, respectively. Finally, there is a mapping

between a G object and an H object.

We will use two examples to explain the artefacts. The first example uses a

metamodel (i.e. a language) for modelling of state machines, whereas the second ex-

ample uses a metamodel for modelling simple arithmetic expressions. The metamod-

els are introduced later.

6.1 Artefact A: Constructs for Type-Safe Metamodel

Composition and Adaptation

We have defined a set of new language constructs for composition and adaptation of

metamodels that address limitations of current approaches for metamodel compos-

ition. Most of the constructs are closely based on the package template mechanism

[95][96][97], and we therefore refer to them collectively as the metamodel template

mechanism. Metamodel templates support both purely structural metamodels and

metamodels that define operational semantics by means of class operations.

6.1.1 Overview

The metamodel template mechanism allows defining metamodels as reusable tem-

plates. A metamodel template contains the definition/blueprint of an EMOF-

compatible class model/metamodel. Instantiation of a template causes the meta-

model defined in the template to be produced and added to the context in which

the instantiation occurs (local copy). The context is either another template or a

package. A metamodel template may be instantiated several times in the same con-

text. During instantiation, the classes of the metamodel may be adapted using a

combination of instantiation directives. Merging classes from different templates is

also supported. An instantiation directive is specified in a textual concrete syntax

reflecting a specific construct/operation. A template instantiation (i.e. each dir-

ective, except for retyping) preserves type-safety of the enclosed metamodel. Each

instantiation of a template gives a unique metamodel with its own distinct set of

regular Kermeta classes, which are not related to classes produced in another in-

stantiation. When templates are instantiated in other templates we get a tree-like

structure we refer to as a template hierarchy.

Metamodel composition is achieved by instantiating two or more templates in

the same context and then merging two or more classes from the different metamod-

els. Alternatively, the metamodels may be composed by establishing references
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between classes of the metamodels. This include creating new classes (interfacing)

that represent conceptual bridges between two metamodels. It is also possible to

use subtyping between classes of different metamodels. There are two types of ad-

aptation possible. The first type of adaptation is concerned with the structure of

a metamodel. Specifically, it is possible to rename classes, properties (i.e. attrib-

utes and references) and operations. Moreover, new classes may be added to a

metamodel and new properties and operations may be added to the existing classes.

It is also possible to change the type of a reference. The second type of adaptation

relates to the operational semantics of the metamodels (as defined in class opera-

tions). This includes the ability to override operations and adding code by creating

new operations. This in turn supports composition and adaptation of operational

semantics.

Initially we used the same syntax for the instantiation directives as used by

the package template mechanism. However, it may be argued that this syntax is

difficult to read. We therefore invented a more straightforward syntax for some of the

directives that we will use to explain the mechanism1. The constructs/instantiation

directives may be divided into two groups. The first group comprises constructs

derived directly from the package template mechanism. The second group consists

of constructs designed specifically for application on metamodels. Tables 6.1 and

6.2 give an overview of the two groups of constructs.

Construct Original Syntax Revised Syntax Description

A1 inst T [with] instantiate(T, ...) Template instantiation

A2 C1 => C2 C1 -> C2 Class renaming

A3 p1 -> p2 p1 -> p2 Property renaming

A4 o1() -> o2 o1() -> o2 Operation renaming

A5 implicit merge(C1, C2, ..., Cn, D) Class merging

A6 C adds {...} codeblock cb {...} add(C, cb) Addition of code

Table 6.1: Constructs modelled on package template operations

Kermeta is a language and framework/workbench for engineering of metamodels

[12]. It allows specifying both the structure and semantics of metamodels. Kermeta

does not contain language constructs for composing metamodels (except for its open

classes nature), and we found it to be a good candidate for illustrating the new

constructs for composition and adaptation of metamodels.

1The implemented prototype uses the original version of the syntax.
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Construct Original Syntax Revised Syntax Description

B1 inst t1:... instantiate(..., t1) Namespace declaration

B2 r1 :-> t1::C retype(r1, t1.C) Retyping

B3 group C1, C2, ..., Cn -> P group(C1, C2, ..., Cn, P) Class grouping

Table 6.2: Additional constructs

In the following, we treat the constructs as an extension of the Kermeta language,

and use Kermeta to illustrate the mechanism. This corresponds to a prototype tool

we have created that works on a subset of Kermeta.

The discussion of the mechanism is organised in six topics: basic metamodel ex-

tension and adaptation, propagation of names, symmetric composition and compos-

ition of semantics, full static type-checking and preservation of type-safety, template

hierarchies and traceability.

6.1.2 Basic Metamodel Extension and Adaptation

We will illustrate how a template with a metamodel for modelling of state machines

can be extended and adapted for modelling of state machines with weighted trans-

itions (including adaptation of the operational semantics). A weighted state machine

allows adding a weight between 0 and 1 (including endpoints) to each transition of

a state machine [100]. The weight associated with a transition indicates the prob-

ability of this transition being triggered. The sum of the weights of all the outgoing

transitions from a state must add up to 1. We consider a variant of the weighted

state machine that allows the sum of all the weights to be less than 1 (but never

more than 1). This means that a transition is not always triggered when an event

is received (and the current state is not changed). The semantics of the added lan-

guage functionality is as follows. Every transition is associated with an event. A

given weighted transition is triggered if two conditions are fulfilled. First, the state

machine must receive an event that is associated with one of the transitions of the

current state. Second, the weight/probability of the transition has to be greater

than or equal to a random generated floating point number in the interval [0,1]. A

regular transition triggers if the first condition is fulfilled.

Figure 6.5 gives an overview of the case by using the graphical notation previously

introduced. The figure shows how the templates TStateMachine and TWeightedTrans-

ition are instantiated and combined to create the metamodel named M in the stateM-

achine package. Four directives are used to achieve this: the step(...) operation of the

State class is overridden with a new definition (ovr), the Transition and WTransition

classes are merged and given the new name WeightedTransition (mrg), the val attribute

of the Weight class is renamed to probability (rnm), and an attribute named descrip-

tion and an operation named triggerWeighted are added to the WeightedTransition class

(add twice). Three consecutive dotes (...) represent additional code (or structural
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elements) that has been omitted from the figure. New and changed elements are

shaded for easier reference. (The names of most references are excluded for clarity.)

S

W

I
M

StateMachine

StateTransition

Transition,
WTransition

mrg Weighted
Transition

Weight

name : String
trigger()

step(Event) val : Real

StateMachine

StateWeightedTransition

name : String
description : String
trigger()
triggerWeighted()

step(Event)

add

ovrstep(Event) State

probability
Weighted
Transition

Weight.val
description : String
triggerWeighted()

TStateMachine (S) TWeightedTransition (W)

stateMachine (M)

WTransition

Weight

probability : Real

weight 1..1

operation step(…) is do
  … trigger() …
end

operation step(…) is do
  … triggerWeighted() …  
end

operation triggerWeighted() is do
     if … weight.probability … then
        trigger()
      end  
end

weight 1..1

step(…) v1.0

step(…) v2.0

triggerWeighted() v1.0rnm

Event

Event

run()

run()

Figure 6.5: Composing and adapting metamodels
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// TStateMachine.kpt
template TStateMachine
{

class StateMachine {
attribute states : State [1..*]# stateMachine
attribute events : Event [1..*]
reference currentState : State [1..1]
reference initialState : State [1..1]
operation run() is do ... end

}
class State {

reference stateMachine : StateMachine [1..1]# states
attribute outgoing : Transition [0..*]# source
reference incoming : Transition [0..*]# target
operation step( event : Event ) is do

var target : Transition
target := outgoing.select{ t | event.equals( t.event ) }
if target != void then

target.trigger ()
end

end
}
class Transition {

attribute name : String
reference event : Event [1..1]
reference target : State [1..1]# incoming
reference source : State [1..1]# outgoing
operation trigger () is do

source.stateMachine.currentState := target
end

}
class Event { ... }

}

Figure 6.6: Template for modelling of state machines

Figure 6.6 gives an excerpt of the template containing the metamodel for model-

ling of state machines, whereas Figure 6.7 gives the other template containing classes

for modelling of weighted transitions, i.e. the classes WTransition and Weight. Notice

that Kermeta uses the keyword reference for references/associations and attribute for

class attributes (of primitive types) and containment references. We use the revised

syntax for the instantiation directives in the example.

// TWeightedTransition.kpt
template TWeightedTransition
{

class WTransition
{

attribute weight : Weight [1..1]
}

class Weight
{

attribute val : Real
}

}

Figure 6.7: Template containing classes for modelling of weighted transitions
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package stateMachine;
require "TStateMachine.kpt"
require "TWeightedTransition.kpt"

instantiate( TStateMachine , sm );
instantiate( TWeightedTransition , wt );
wt.Weight.val -> probability;
merge( sm.Transition , wt.WTransition , WeightedTransition );

codeblock c1
{

// Overrides the existing step() operation when added to State
operation step( event : Event ) is do

var target : Transition
target := outgoing.select{ t | event.equals( t.event ) }

if target != void then
target.triggerWeighted ()

end
end

}

codeblock c2
{

attribute description : String

operation triggerWeighted () is do
// generates a random number between 0 and 1
var randomNumber : Real init ...
if weight.probability >= randomNumber then

trigger ()
end

end
}

add( State , c1 );
add( WeightedTransition , c2 );

Figure 6.8: Template instantiation

Figure 6.8 shows instantiation of the two templates within a package named

stateMachine. instantiate( TStateMachine, sm ) initiates instantiation of the TStateMa-

chine template and declares sm as a namespace identifier. The namespace identifier is

later used to reference the classes of the template for the specific instantiation (sev-

eral instantiations of the same template yield several namespace identifiers). Simil-

arly, wt is declared as a namespace identifier for the content of the TWeightedTransition

template. wt.Weight.val -> probability renames the val attribute of the Weight class to

probability. The Transition and WTransition classes from the two templates are merged

and given the new name WeightedTransition using the merge directive.
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package stateMachine;

class StateMachine {
attribute states : State [1..*]# stateMachine
attribute events : Event [1..*]
reference currentState : State [1..1]
reference initialState : State [1..1]
operation run() is do ... end

}
class State {

reference stateMachine : StateMachine [1..1]# states
attribute outgoing : WeightedTransition [0..*]# source
reference incoming : WeightedTransition [0..*]# target
operation step( event : Event ) is do ... triggerWeighted () ... end

}
class WeightedTransition {

attribute name : String
attribute description : String
reference event : Event [1..1]
reference target : State [1..1]# incoming
reference source : State [1..1]# outgoing
attribute weight : Weight [1..1]

operation trigger () is do ... end

operation triggerWeighted () is do
// generates a random number between 0 and 1
var randomNumber : Real init ...

if weight.probability >= randomNumber then
trigger ()

end
end

}
class Weight {

attribute probability : Real
}
class Event { ... }

Figure 6.9: Metamodel for modelling of weighted state machines

Two code blocks are then defined. codeblock c1 contains a new definition for the

step(...) operation in the State class. The step(...) operation is overridden when this

code block is later added to the State class. That is, only the overridden operation

is included in the State class after instantiation. The new definition of the step(...)

operation invokes the triggerWeighted() operation which is defined in codeblock c2 and

later added to the WeightedTransition class. triggerWeighted() evaluates the value of the

probability attribute of the Weight class to determine whether a transition should be

triggered. An attribute named description of type String is also specified in codeblock

c2. The package containing the resulting metamodel is given in Figure 6.9. Notice

how the outgoing attribute and the incoming reference in the State class are now typed

with the WeightedTransition class.
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6.1.3 Propagation of Names

In the example, the val attribute of the Weight class was given the new name prob-

ability. We also gave the name WeightedTransition to the class resulting from merging

the Transition and WTransition classes. Giving a new name to a merged class can

be seen as a renaming as well. Renaming is not constrained to the contents of a

single template. Instead, renaming an element affects the contents of all templates

of a hierarchy that reference or use the element. That is, the new name replaces all

names the element previously had resulting from earlier applications of the rename

and merge directives. Renaming is not resolved before instantiation which means

that the name for a given element is decided first at the very last moment. An

example will illustrate this.

operation print() is do
  var v : Y
  v := y
  stdio.writeln( v.name )
end

y 0..1

print() v1.0

T1 T2

Y YY

X.y yy

I

rnm

rnm

MI

YY YYY

yyyrnm

rnm

X
print()

Y
name : String

yy 0..1

X
print()

YY
name : String

yyy 0..1

X
print()

YYY
name : String

operation print() is do
  var v : YY
  v := yy
  stdio.writeln( v.name )
end

print() v2.0

operation print() is do
  var v : YYY
  v := yyy
  stdio.writeln( v.name )
end

print() v3.0

X.yy

Figure 6.10: Propagation of names during instantiation

Figure 6.10 gives a template hierarchy comprising two templates and a pack-

age/metamodel: T1, T2 and M. T2 contains an adapted version of the metamodel

defined in T1, i.e. T1 is instantiated by/inside T2. T2 is instantiated in a package

giving the metamodel M. Four renaming operations are performed during the in-

stantiations. The shaded code illustrates how the content of the print() operation

changes to reflect the renaming operations. That is, the code shows the definition

of the print() operation at different locations in the hierarchy. As an example, v2.0

of print() is produced if the T2 template is instantiated in a package without further

renaming operations. To be clear, the print() operation is only defined once, yet its

code reflects the renaming directives used in the instantiations.
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template T1 {
class X {

attribute y : Y[0..1]

operation print() is do
var v : Y
v := y
stdio.writeln( v.name )

end
}
class Y {

attribute name : String
}

}

template T2 {
instantiate( T1, t1 );
t1.Y -> YY;
t1.X.y -> yy;

}

package p {
instantiate( T2, t2 );
t2.YY -> YYY;
t2.X.yy -> yyy;

}

Figure 6.11: Implementation of the templates and the instantiations

package p;

class X {
attribute yyy : YYY [0..1]

operation print () is do
var v : YYY
v := yyy
stdio.writeln( v.name )

end
}
class YYY {

attribute name : String
}

Figure 6.12: The resulting package after the final instantiation

Figure 6.11 gives the definitions of the templates and the package. The T2

template instantiates the T1 template and gives the Y class the new name YY,

whereas the y attribute of the X class is renamed to yy. The p package instantiates

the T2 template and renames the same class and attribute again: the YY class is now

renamed to YYY and the yy attribute of the X class is given the name yyy. Figure

6.12 shows the resulting p package after the final instantiation.

As can be seen in Figure 6.12, the content of the p package is structurally the

same as the content of the T1 template. However, a new name is given to one of the

classes and one of the attributes. The new names are propagated to all places where

the old names were used, e.g. in the print() operation. In general, a new name is also
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propagated to statements within operations, e.g. if and loop statements, expressions

like class instantiation (new) and variable and operation declarations. The name

propagation occurs at an arbitrary number of nested scopes. Propagation of names

works in the same way when classes are merged and thereby given a new name.

Consequently, all code is updated when elements are renamed or classes are merged.

When the metamodels define operational semantics the value of name propaga-

tion becomes even more evident. Consider the print operation of the X class in Figure

6.11. As we have seen, renaming resulted in a new name and type (i.e. the type name

is new) for the y attribute. If these renamings are not reflected in the statements

of the operation, the code of the operation will no longer be syntactical correct.

As can be seen, renaming preserves type-safety. It ensures that the structure of

metamodels is well-formed and that the combination and adaptation of operational

semantics (when the metamodels specify such) do not result in type errors.

template T1
{

class X {
operation o() is do

var y : Y init Y.new
end

}
class Y {}

}

template T2
{

class Z {}
}

package p {
instantiate( T1, t1 );
instantiate( T2, t2 );
merge( t1.Y, t2.Z, YZ );

}

Figure 6.13: Merging of two classes with propagation of name

Figure 6.13 shows how the new name for a merged class propagates to a vari-

able declaration statement and a class instantiation expression. The result of the

instantiations is given in Figure 6.14.

package p;

class X
{

operation o() is do
var y : YZ init YZ.new

end
}

class YZ {}

Figure 6.14: The resulting package
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6.1.4 Symmetric Composition and Composition of Semantics

The metamodel template mechanism supports symmetric composition of an ar-

bitrary number of metamodels, e.g. by merging classes or by creating references

between classes of different metamodels. Symmetric composition means that all

concerns are equal with respect to how they can be combined [92].
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operation exec() : Real is do
  result := interpret()
end

Figure 6.15: Creating a metamodel for plotting of mathematical expressions

Composition mechanisms that only support asymmetric composition are not

ideal in situations where several metamodels have constructs whose semantics over-

lap. First, these mechanisms typically need to be used repeatedly in order to

compose the metamodels. Second, composing the operational semantics (if the

metamodels provide such by class operations) may be more difficult. Consider the
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three templates of Figure 6.15. The Pr template comprises a metamodel for mod-

elling of simple plots of mathematical expressions. Ex contains a metamodel for

modelling of simple mathematical expressions, whereas Fu contains a metamodel for

modelling of parameterless functions. The metamodels of the templates are com-

bined to create a new metamodel for creating and plotting mathematical expressions

with functions.

template Pr {
class Program {

attribute expressions : Expression [0..*]
attribute plots : Plot [0..*]

operation exec() is do ... end
}
abstract class Expression {

operation eval() : Real is abstract
}
class Plot {

reference expressions : Expression [1..*]
attribute caption : String
operation plot() is do ... end

}
}

template Ex {
abstract class Expression {

operation interpret () : Real is abstract
}

class Add inherits Expression { ... }
class Sub inherits Expression { ... }
class Multi inherits Expression { ... }
class Number inherits Expression { ... }
abstract class FunctionCall inherits Expression { ... }

}

template Fu {
abstract class FunctionExpression {

operation exec() : Real is abstract
}
class Function {

attribute expressions : FunctionExpression [0..*]
operation exec() : Real is do ... end

}
class FunctionCall {

reference function : Function [1..1]
operation execute () : Real is do ... end

}
}

Figure 6.16: Source templates

The definitions of the templates are given in Figure 6.16. As can be seen, all the

metamodels have a class for describing an expression. A natural choice is therefore

to compose the three metamodels by merging the expression classes. In addition, the

two classes for expressing function calls are logical candidates for merging. Since we

allow symmetric composition all the metamodels can be composed simultaneously.
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package m {
instantiate( Pr, pr );
instantiate( Ex, ex );
instantiate( Fu, fu );

merge( pr.Expression , ex.Expression , fu.FunctionExpression ,
Expression );

merge( ex.FunctionCall , fu.FunctionCall , FunctionCall );

codeblock c1 {
operation eval() : Real is do

result := interpret ()
end

operation exec() : Real is do
result := interpret ()

end
}

codeblock c2 {
// Overrides the inherited eval() operation from Expression
// when added to FunctionCall
operation eval() : Real is do

result := execute ()
end

}

codeblock c3 {
attribute functions : Function [0..*]

}

add( Expression , c1 );
add( FunctionCall , c2 );
add( Program , c3 );

}

Figure 6.17: Constructing the composite metamodel

Figure 6.17 shows how composition of the metamodels is achieved using the

metamodel template mechanism. Figure 6.18 gives the resulting package m after

instantiating the templates. Merging an abstract class with a concrete class gives a

concrete merged class. A merged class is only abstract if all the constituent classes,

as referred to in the merge operation, are abstract. Overriding an abstract operation

always gives a concrete operation as result.

As a comparison, let us consider how things play out if we use an asymmetric

composition mechanism, i.e. that can only compose two metamodels simultaneously.

A possible approach is to first treat the metamodel of T1 as the base metamodel and

compose this with the metamodel of the T2 template which takes an aspect role. The

resulting metamodel can then be regarded as a base metamodel and be composed

with the metamodel of T3. We could also start by first composing the metamodels

of T2 and T3, and then compose the resulting metamodel with the metamodel of

T1. Regardless of how the metamodels are composed, we are required to use the

composition mechanism two times in order to compose the metamodels. Additional

metamodels (other than the three listed) would have complicated the composition
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further. On the other hand, symmetric composition with support for composing an

arbitrary number of metamodels simultaneously increases agility by handling the

composition of all metamodels in one single step.

package m;

class Program {
attribute functions : Function [0..*]
...

}
abstract class Expression {

operation eval() : Real is do
result := interpret ()

end

operation exec() : Real is do
result := interpret ()

end

operation interpret () : Real is abstract
}
class Plot { ... }
class Add inherits Expression {}
...
class Function {

attribute expressions : Expression [0..*]
operation exec() : Real is do ... end

}
class FunctionCall inherits Expression {

reference function : Function [1..1]
operation execute () : Real is do ... end
operation eval() : Real is do

result := execute ()
end

}

Figure 6.18: The resulting metamodel after composition and adaptation

package p;
...

codeblock c1 {
operation eval() : Real is do

if self.isKindOf( FunctionCall ) then
result := execute ()

else
result := interpret ()

end
end

}

add( Expression , c1 );

Figure 6.19: Composition of operational semantics

Composing the operational semantics of metamodels may require symmetric

composition. As an example, let us assume that we would like to override the

eval operation of the Expression class only once, and not twice as in Figure 6.17. This
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requires that all metamodels are composed simultaneously. Figure 6.19 illustrates

this.

6.1.5 Full Static Type-Checking and Preservation of Type-Safety

An important feature of metamodel templates is the ability to preserve the type-

safety of metamodels when they are adapted and composed, i.e. that the application

of the instantiation directives is type-safe. When metamodels contain operational se-

mantics, it is essential that this can be guaranteed statically, i.e. when the templates

are instantiated. All template directives, except for retyping, preserve type-safety.

This means that the operational semantics of a metamodel will be type-safe also

after the metamodel has been composed, and/or adapted, with another metamodel,

or metamodels, as long as the operational semantics of the two metamodels were

type-safe in the first place.

In [98], the authors show that package template programs (utilising a core version

of package templates) are consistent. A package template program is a combination

of templates and packages (resembling what we refer to as a template hierarchy).

Templates and packages are either closed or open. Closed templates and packages do

not instantiate other templates, while open templates and packages do. The content

of a closed template or package is a subset of Java. A closed template (or package)

is therefore semantically complete and self-contained (as long as contents of external

packages are not referenced), which means that its content can be type-checked by

a Java compiler.

The authors define four transformations (fortifying, renaming, addition handling

and composing) that implement the semantics of the package template operations

(directives). The transformations are semantics-preserving, i.e. they preserve the

intention and meaning of a package template program, with the exception of renamed

elements, shadowed variables and overridden methods. The authors show that a

template program comprising an open package and a set of open and closed type-

safe templates can be transformed to a closed type-safe package, which means that

the package template operations are consistent and preserve type-safety.

The same reasoning can be applied to the metamodel template mechanism. A

closed template comprises a metamodel that can be type-checked by the underlying

metamodelling language, e.g. Kermeta. The directives preserve type-safety if an

open package or template, and a set of open and closed type-safe templates, can be

reduced to a closed template or package whose metamodel is type-safe according to

the metamodelling language. An important observation is that renaming is done

sequentially. This implies that an element can not be given the same name of an

existing element (of the same type). An existing name can first be used again on

another element if the element that originally had the name has been given a new

name. By construction, this also means that all references to the old name have

been updated. Using the old name on a new element would now be safe.
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The work of [98] shows that this is the case for the directives that are based on

the package template operations. However, metamodel templates differ in two major

ways from package templates: the metamodel mechanism provides additional and

alternative instantiation directives and the mechanism operates on EMOF/Ecore

models (metamodels) and not Java programs. This has to be taken into considera-

tion.

Metamodel Templates Versus Package Templates Metamodel templates use name-

space identifiers for accessing the template classes. This increases flexibility during

instantiations and allows using a dedicated merge directive instead of achieving class

merging implicitly by giving two or more classes the same name, as is the case with

package templates. It also allows specifying code blocks whose content can be ad-

ded to several classes. The metamodel template mechanism also provides a retyping

directive and a directive for grouping of classes.

Using namespace identifiers does not conflict with the pre-conditions and rules

specified for the transformations in [98]. The reason for this is that using namespace

identifiers only decouples directives with respect to how the directives are specified

using the package template notation. The directives can easily be rewritten to the

more condensed form as used by the package template mechanism2. This includes

rewriting of the dedicated directive for class merging.

Retyping works by giving a new type to a reference. The retyping directive was

designed to give users a light-weight approach for establishing a reference between

classes of different metamodels. The new reference type has to be a subtype of the

previous reference type by construction; all class features and operations (of the old

reference type) are therefore still accessible after retyping. However, the directive is

not type-safe with regard to write operations. An example of an unsafe operation

that causes a type error is when an instance of the old reference type is added to the

reference (which now has been retyped to a subtype). The directive for grouping of

classes creates a new package in which the specified classes are added. Since classes

can be referenced across package boundaries, this directive is type-safe. Finally, a

code block, used in combination with an addition directive, is semantically equivalent

to an addition class in the package template mechanism. The content of a code block

may be added to several classes by using more addition directives. However, this

is the same as specifying several addition classes (all with the same content) using

the package template notation. Consequently, code blocks are type-safe according

to [98].

Another difference with metamodel templates, with respect to package templates,

is that metamodel templates are not instantiated at compile-time. A package tem-

plate is instantiated during compilation which means that the classes from the tem-

plate instantiation are added directly in the generated Java byte code. Metamodel

2This form is also used by the implemented metamodel template prototype.
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templates operate on a higher abstraction level. This means that template instan-

tiation is resolved as an independent step. That is, the template instantiation pro-

duces a specific metamodel, i.e. a set of regular Kermeta classes, which can be used

for modelling. Compilation or interpretation of the Kermeta code is first performed

before/when a model executes.

Metamodels Versus Programs Metamodels relate classes using bi-directional (con-

tainment) references/associations which the package template mechanism is not de-

signed for. A reference also has a multiplicity which specifies the range (number) of

objects it may reference or contain.

Bi-directional references do not introduce type errors as long as the renaming

of a reference is reflected in the opposite reference (also known as opposite property

in MOF3) of the opposite class (if such is specified). The opposite reference does

not have to be unique since this is not a property of the opposite class. In other

words, several references in a class may have equally named opposite references.

This means that it is not possible to induce naming conflicts for opposite references.

Using containment references and different multiplicities do not cause any problems

since these properties/constraints are not altered by the directives.

6.1.6 Template Hierarchies

Since templates may be instantiated within each other it is possible to create tem-

plate hierarchies. A template hierarchy is a graph consisting of nodes in the form

of templates, and optionally a package, and template instantiations comprising

the edges of the graph. Paper VI describes this structure more carefully. The

main achievement with template hierarchies is that metamodel evolution can be

addressed in steps, where a template may be defined as a direct derivative of other

templates through instantiations; and consequently forming branches. Metamodel

elements acquired through a branch, i.e. elements defined in the templates of a

branch, can be adapted regardless of what templates these elements are defined

in. Moreover, metamodels can be built by using already defined metamodel tem-

plates. Each template of a template hierarchy can be instantiated which produces

a specific metamodel variant or version. That is, all previous variants and versions

of a metamodel are available. A template hierarchy therefore naturally maintains

traceability information on how metamodels evolve.

6.1.7 Traceability

Available metamodel composition mechanisms produce a composed metamodel from

two or more metamodels. However, these mechanisms do not have much support

for internal traceability, i.e. traceability between different versions or variants of

3http://www.omg.org/mof
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models [92]. One reason for this is that the source metamodels can typically not be

recovered easily from the composed metamodel. This requires backtracking changes

by inspecting source metamodels and related files (e.g. a weaving model). Metamod-

els defined in templates evolve in hierarchies. Thus, changes can easily be traced

by navigating a branch in a template hierarchy. Specifically, the instantiation dir-

ectives traversed by navigating the branch describe all changes applied to a given

metamodel and can collectively be seen as a difference model, i.e. a model that

describes the primitive changes between two metamodel versions [71].

6.1.8 Design Decisions and Limitations

The metamodel template mechanism supports composition and adaptation of meta-

models by applying a sequence of pre-defined metamodel-specific instantiation dir-

ectives. The metamodel-specific nature of the directives is caused by how the applic-

ation of a directive requires specifying what specific metamodel element(s) that the

directive should work on. Because of this, a template instantiation (including the

directives) can not be reused or applied for other templates and therefore not reflect

evolutionary patterns that may apply to several metamodels. The directives are

essentially parallel independent [70]; conflicts occurring during class merging need

to be addressed using renaming directives prior to the merge directive. In such case,

the merge directive is dependent on one or more renaming directives.

A limitation of the mechanism is the limited number of available directives. In

particular, there are no destructive directives [58], e.g. it is not possible to specify

that an element should be deleted. There are three reasons backing the decision of

having a reduced set of directives.

First, one of the major goals and achievements of metamodel templates is the

ability to support type-safe composition and adaptation. Directives for e.g. deleting

elements complicate how preservation of type-safety can be achieved. The code

of an operation may refer to any attribute, reference or operation of the class in

which the operation is defined. Moreover, it is possible for an operation to refer any

attribute, reference or operation of all classes that can be navigated by references.

The running state machine example illustrates this (see Figure 6.6). This means

that we would have to make sure that all references to a deleted element (attribute,

reference or class) or a moved element (attribute, reference or operation)4 in the code

are identified and notified to the user. This may be achieved by a thorough analysis

of the code of every operation that may potentially refer to a deleted or moved

element, i.e. the latter also requires that the code of the class, to which an attribute

or reference is moved, is updated to utilise the new (moved) attribute or reference.

The result of the analysis would be a number of markers that identify places in the

code that need to be revised by the user. A disadvantage with manually updating

the code is the risk of changing the metamodel semantics and introduce errors. In

4Moving elements in a class hierarchy may in some cases preserve type-safety.
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the metamodel template mechanism we reduce this risk by only allowing adding

new/updating the code by overriding operations, i.e. all changes are contained

within overridden operations. This localisation of the changes makes it easier to

identify potential anomalies and errors that may occur during execution of the code

following adaptation. However, overriding operations can not address necessary

code changes well when elements are deleted or moved. (Complete new code may be

specified by overriding an operation, but it is not a practical solution.) It is possible

to disregard the goal of preserving type-safety. However, this will counteract one of

the major achievements using metamodel templates.

Merging of attributes and references is another directive that is not supported

because of the goal of preservation of type-safety; since code may (are likely to)

refer to the attributes and references. In addition, attributes of different classes that

appear identical may indeed have different semantics [43], which makes merging

of these attributes questionable. Following a similar argumentation, merging of

operations is not supported. Also, operations (may) contain code which makes

merging of operations an open question, i.e. it is not evident how the code of the

different operations can be combined.

Second, the mechanism supports the majority of the most common metamodel

adaptations, which according to different sources are: addition of properties [53],

modifications of elements, e.g. renaming of classes and attributes [60] and addi-

tion, deletion and modification of attributes and references, e.g. modification by

changing the multiplicity of a property or moving an attribute to another class [65].

Hence, even with the limited number of directives, most common adaptations can be

performed. Changing the multiplicity of a property may as well compromise type-

safety. The code of an operation may expect a certain number of values or objects.

Changing either the lower or upper bound of a multiplicity may render such code

invalid.

Third, having destructive directives makes automatic model migration more dif-

ficult. This is discussed in the next section regarding Artefact B.

Metamodels defined in templates can be composed by merging of classes or by

establishing relationships (references or subtyping) between classes. All these forms

of composition are symmetric. Symmetric composition ensures a high degree of agil-

ity and flexibility in how metamodels can be composed. However, being able to also

compose metamodels asymmetrically is advantageous in situations when an aspect

(advice) metamodel has to be composed with a base metamodel at several places.

It is not obvious when to apply a symmetric or asymmetric composition approach

[92], which means that having support for both kinds of approaches increases the

usability of a mechanism. In MDE, asymmetric composition is typically concerned

with open class and pointcut-advice mechanisms [92]. Of the two choices, using a

pointcut-advice mechanism is more expressive when it comes to specifying where an

aspect should be composed (woven) with the base model.

The metamodel template mechanism provides a foundation for building an asym-
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metric composition mechanism, or more precisely, an extension for supporting asym-

metric composition. The extension may be created as a pre-processor that accepts a

mixture of templates and specifications of pointcuts. A pointcut can be defined using

an expression language or by modelling the pointcut as a metamodel fragment repres-

enting a specific structure and names that must be matched in the base metamodel.

These ways of defining pointcuts are used by XWeave [31]. Using pointcuts allows

applying the same aspect metamodel to all places in a base metamodel that fulfill

the requirements of the pointcut. The output of the pre-processor would be a set of

instantiation directives, which means that the actual composition is still performed

symmetrically and type-safe.

A more thorough explanation and examples using the metamodel template mech-

anism are found in Papers II and VI. This includes an explanation of the retyping

directive.

6.2 Artefact B: A Framework for Derived Migration of

Models

Adapting and/or composing metamodels using the metamodel template mechanism

results in the creation of a new metamodel or metamodel variant. The mechan-

ism works exclusively on metamodels and does not consider existing models of the

source metamodels. This means that existing models have to be composed using

a third-party model composition mechanism or otherwise updated in order to re-

establish conformance with the new metamodel or metamodel variant. We have

created a prototype framework that builds on Artefact A. The framework supports

semi-automatic migration and composition of existing models. The framework gen-

erates name mappings and specifications for generating default objects and values

from the template instantiation directives specified by the user. (The retyping dir-

ective does not allow semi-automatic migration and is therefore not considered.)

Generating default objects and values is required for re-establishing model conform-

ance [73][64]. The name mappings and specifications comprise basic transformations

in a raw format (tuples). The basic transformations can be used as input for gener-

ating model-to-model transformations, e.g. in ATL.

6.2.1 Overview

The framework is a continuation of the metamodel template mechanism and works

by utilising the user-specified template instantiation directives, with the exception

of the retyping directive which is not supported. The directives are used for deriving

transformations that when executed migrate or compose existing models. A migra-

tion route denotes a path in a template hierarchy comprising an arbitrary number of

templates and two packages. The packages contain the source and target metamod-
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els for a (potentially valid) migration transformation. For a valid migration route,

models of the source metamodel may be migrated to models of the target metamodel.

From the user’s perspective, the process of migrating models comprises two steps.

First, the user specifies the source and target metamodels of a migration by pointing

out two packages in the hierarchy. The framework checks the validity of the migra-

tion route. If the migration route is valid, a number of transformations is generated.

The transformations correspond to the cumulative result of all actions caused by all

the instantiation directives that previously generated the two metamodels. Second,

the user selects the models of the source metamodel that are intended to be mi-

grated, which are then transformed to conformant models of the target metamodel.

The process of composing models is similar with the process of migrating models.

The difference is that several source metamodels are specified, which in turn requires

selecting a model (and objects) of each of the source metamodels for the composition

to be performed.

6.2.2 Model Migration and Composition

A template hierarchy may have several different forms, and the metamodels defined

in the templates may be adapted and composed in many ways. Hence, what models

that can be successfully migrated and composed are conditioned on the structure of

the hierarchy and the type of instantiation directives that have been used throughout

the hierarchy. A hierarchy may be decomposed in terms of three basic structures: a

branch, two branches connected by a common template and merged branches.

source branchtarget branch

target 
template

source
template

source
template

target 
template

Figure 6.20: Migration routes in a template hierarchy

Model Migration

For migration of models there are only two types of migration routes that are prag-

matic: a branch and two branches connected by a common template. A branch
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reflects how a metamodel changes linearly in variations and versions. This is the

typical scenario for how a metamodel evolves. A metamodel may also evolve in

two or more parallel versions which is reflected by the other type of migration route.

However, for model migration to make sense for this kind of evolution, only renaming

of elements (and overriding of operations) can be used in the instantiations.

Figure 6.20 shows examples of two migration routes, one of each kind, in a

template hierarchy (the notation for the templates is simplified). The source and

target templates are instantiated in packages giving a source and target metamodel,

respectively.

Model Composition

Model composition only makes sense when two or more templates are instantiated

in a template or package, yielding a number of merged branches. Transformations

for model composition can be derived straightforwardly from the instantiation dir-

ectives. A valid composition is possible if all conflicts can be resolved, i.e. all classes

in the resulting metamodel, and properties and operations of merged classes, need

to have unique names.

Transformations

The produced basic transformations comprise name mappings and specifications for

default objects and values which ensure that conformance is re-established when

properties with a non-zero lower bound multiplicity are added (either in code blocks

or as a consequence of class merging). To achieve this, the name mappings are used

to perform three operations on the model level. First, name mappings ensure that a

source model object is made an instance of the correct class in the target metamodel

when its class has been renamed. Second, name mappings make sure that the slots

in an object bind to the correct class properties. Third, objects are merged when

several class name mappings have the same target name.

6.2.3 Design Decisions and Limitations

The framework for derived migration of models utilises the template instantiation

directives for deriving transformations that migrate or compose existing models.

The framework and its use can be seen as an operator-based approach [75]. This

comes from the fact that the adaptation and composition directives are reflected

directly by co-evolution transformations on the model level. However, with respect

to other operator-based approaches available, we take things a step further since

templates may evolve in hierarchies. Therefore we calculate collapsed forms of the

transformations that reflect how several directives may be used on the same ele-

ments along branches in a template hierarchy. The directives yield non-breaking

and breaking resolvable changes [72] on the model level when migration follows a
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single branch (which is the situation where these terms make sense). The direct-

ives can also be classified as model-preserving and safely model-migrating [64] (if

we consider them as coupled operators). Only evolution resulting from applying the

renaming directives can be reversed by the mechanism (by using renaming again).

Even though model conformance can be re-established during migration, it is typ-

ically required to manually revise generated default objects and values. The instan-

tiation directives and generated transformations (coupled changes) are metamodel-

specific and model-independent [71], which means that their application is specific

to the contained metamodel of the template being instantiated, and that the applic-

ation of the directives reflects equally upon all existing models of the metamodel.

The main drawback of operator-based approaches has been identified as the

need to modify (i.e. adapt) metamodels using dedicated tools [18]. Changes to a

metamodel that is e.g. performed manually will not be reflected in the corresponding

model co-evolution operations. This is also the case with metamodel templates,

which means that all changes to a metamodel of a template have to be performed

using a combination of the available instantiation directives. Adapting a metamodel

manually or using another tool means that type-safety can no longer be guaranteed

and that corresponding transformations for migration and composition of models

are not generated for the particular adaptations.

The available directives do not cover all kinds of metamodel evolution scenarios.

The only way metamodel templates can be used to cover more evolution scenarios

is to add more directives. To support such directives we need to find a solution to

how automatic model migration can still be achieved.

Destructive directives induce difficulties when it comes to automatic model mi-

gration. For instance, deleting a class means that model objects of this class have to

be discarded which will change the meaning and soundness of the models. Similarly,

deleting attributes or references means that values and objects of these attributes

and references, respectively, are discarded or dereferenced. When a property is

moved to another class (which is not a superclass of the current class) it would be

possible to transfer the attribute values to objects of the class to which the property

has been moved or create new (reference) links to ensure that model conformance is

preserved. This requires a way of mapping a removed property to an added property,

e.g. as happening when a property is moved. However, when destructive directives

are used it is not possible to infer sound models automatically, i.e. we get breaking

and unresolvable changes which require interaction by the user.

Paper VI discusses the approach in greater details.

6.3 Artefact C: Framework for Metamodel Composition

and Adaptation with Model Migration

We have created a framework for analysis of metamodel composition and adaptation

that provides means for updating/migrating and composing the existing models of
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the metamodels given as input to the framework.

6.3.1 Overview

The framework analyses whether a user-specified set of composition and adapt-

ation operations applied on a set of metamodels yields a well-formed resulting

metamodel(s) and, if this is the case, calculates a set of effects which describe

the minimal number of changes that must be applied to existing models of these

metamodels in order to re-establish model conformance. MDE promotes the use of

several languages simultaneously for modelling of a software system, e.g. using a

multi-view approach where different concerns or aspects are modelled independently

from each other. Other approaches in MDE focus on constructing metamodels from

smaller building blocks and extending them with new features. In many cases, this

means that several metamodels need to be composed (simultaneously).

The framework handles situations that deal with multiple metamodels and gen-

erates effects describing how to compose or migrate existing models, i.e. models con-

forming to each metamodel used in the composition (if such models are available);

each set of source models need to be updated differently to re-establish conformance.

The effects generated comprise name mappings and object/value creation specific-

ations. The framework supports composing and adapting an arbitrary number of

metamodels according to an adaptation strategy. In this case, the term adaptation

also covers composition. A strategy contains a list of operations whose applica-

tion is analysed on the metamodels provided as input. The framework supports 16

operations, including class merging, class overriding and class interfacing. It also

supports diverse operations for refactoring purposes. The operations are formalised

in both Paper IV and Research Report I. The framework is formalised as a deduct-

ive system for judgements. It operates in two phases: the metamodel analysis and

adaptation/composition phase and the model migration/composition phase. The

phases preserve metamodel consistency and model conformance, respectively, as

discussed in [63].

6.3.2 Metamodel Analysis and Adaptation/Composition

In the first phase, the operations of the adaptation strategy are applied sequentially

on a number of metamodels. The analysis checks whether the adaptation strategy

is sound with respect to the metamodels, i.e. that it can be applied successfully and

that the resulting metamodel(s) is well-formed. It also resolves name conflicts.
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Figure 6.21: Adapting the metamodel for modelling of state machines

The result of the analysis is a set of adapted (and composed) metamodels and

accumulated effects which are used in the model migration and composition phase.

The effects specify elements that need to be renamed to resolve conflicts and spe-

cifications of objects and values that need to be created to ensure conformance.

Figure 6.21 illustrates how the metamodel for state machines can be extended

with support for weighted transitions. The classes are the same as in Figure 6.5. An

adaptation strategy supporting this case is given in Figure 6.22.

Φ= ad d P r o p(T rans i t i on, 〈St r i n g , d e s c r i p t i on, (0,1)〉) ·
ad dO p(T rans i t i on, 〈ε, t r i g g e rW ei g h t ed ,ε〉 ·
me r g e(T rans i t i on,W T rans i t i on) ·
r enameP r o p(W ei g h t , val , p r obab i l i t y)

Figure 6.22: Adaptation strategy for supporting weighted transitions

The strategy specifies that a property named description of type String and an

operation named triggerWeighted with no return type or parameters should be added

to the Transition class. A merge operation is then used to specify that the Transition

class and WTransition classes should be merged. Finally, the val property of the Weight

class is renamed to probability.

6.3.3 Model Migration/Composition

The effects generated by the analysis specify the changes that need to be per-

formed on existing models for these models to be conformant with the resulting

metamodel(s). In Paper IV we outline a function that transforms any existing

model of any metamodel provided as input to the framework (assuming that the ad-

aptation strategy was applied successfully). The function does this by going through

each operation of the adaptation strategy and updating the model respectively. This

includes querying the generated effects. The function handles operations used for

metamodel composition as well, e.g. merging of classes, and ensures that existing

models of the input metamodels are updated to be conformant with the resulting
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metamodel. Put differently, the function does not compose two or more existing

models, but ensure that each model is migrated to a valid instance of the result-

ing metamodel. However, the adaptation strategy and generated effects may also

be used as input to a function for model composition that composes a number of

user-specified models.

Figure 6.23 illustrates the two ways metamodel composition, in the form of class

merging, can be addressed at the model level, i.e. by migrating the existing models

to conformant versions of the composed metamodel or by composing the existing

models (as selected by the user) to a model of the composed metamodel.

M2

M1

MM1 MM2 MM3 CMM(MM1, MM2, MM2) = MMc

m1 : MM1 m2 : MM2 m3 : MM3

Cm(m1, m2, m3 )MMC = mc : MMc

T(m1)MMC = m1' : MMc T(m2)MMC = m2' : MMc T(m3)MMC = m3' : MMc

Composition

M
ig
ra
ti
o
n

1 1

1

11 1

Figure 6.23: The two ways merging of classes can be addressed on the model level

The figure shows three metamodels that are composed by class merging (CM M (...)),
i.e. the three black classes and the two red classes in the metamodels are merged.

Some of the references have a non-zero lower bound for their multiplicities. i.e. the

lower bound is 1. This means that (at least) one object of the related grey class

needs to be created. Models of MM1, MM2 and MM3 are shown. The models are

composed (Cm(...)) to constitute a model of MMc. They are also migrated (T (...))
into versions that are conformant with MMc.

σ = [T rans i t i on 7→c W ei g h t edT rans i t i on] +
[W T rans i t i on 7→c W ei g h t edT rans i t i on] +

[val
W ei g h t
7→ p p r obab i l i t y]

δ = 〈〈W ei g h t edT rans i t i on, wei g h t , 1〉〉

Figure 6.24: Effects generated by the analysis

The generated effects produced by the analysis for the running example are
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given in Figure 6.245. The name mappings (σ) reflect the merge and renameProp

operations. A value specification is generated (in δ) which states that a default

object (of type Weight) should be generated for the weight reference (attribute) in

the WeightedTransition class. This is required since the lower multiplicity of this

reference is 1.

6.3.4 Multiple Metamodels

The framework supports composition and adaptation of an arbitrary number of

metamodels simultaneously. In other words, an adaptation strategy may contain

operations pertaining to any number of metamodels. The advantages of this is par-

ticularly evident on the model level. The available model migration approaches

typically support migration between two versions of a metamodel and do not sup-

port composition of metamodels directly. A common approach in MDE is to use

several languages to model a system. This means that different concerns or as-

pects (views) can be modelled separately and later be composed to create a com-

posed model for the whole system. The composed model conforms to a composed

metamodel, and the production of the composed model reflects the adaptation and

composition operations applied on the various metamodels. The framework sup-

ports this multi-language approach efficiently, since adaptation and composition of

an arbitrary number of metamodels and models are treated simultaneously. Also

in situations where a metamodel is extended with additional features, as defined

in several metamodel fragments/patterns our approach may be useful, i.e. if there

exist models of the metamodel fragments that need to be composed with the models

of the metamodel being extended.

6.3.5 Formalisation

We have formalised the operation of the framework. Not many approaches for

(meta)model composition and adaptation, or model migration formalise their op-

erations. The authors of [88] argue that the impact assessment and the adapta-

tion semantics are typically mixed in current approaches for co-evolution, and that

formalising migration approaches improves the insight and information accessible to

designers which may improve the design and realisation of tools.

The formalisation we have used improves readability of the adaptation and com-

position operations and makes it easier to understand the premises and the result

of an operation, i.e. the mechanics of the framework is made clearer. Thus, it

provides an optimisation space that is easier to reason about than an implementa-

tion. For instance, it is easy to extend the framework with additional operations,

which are added as new rules. And importantly, we have used the formalisation

5We assume that WeightedTransition is the name generated by the framework.
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to prove that the framework operates correctly i.e. with respect to re-establishing

model conformance.

6.3.6 Design Decisions and Limitations

The framework allows specifying an adaptation strategy that when applied composes

and adapts metamodels. The model migration part of the framework is a hybrid

between an operator-based and change recording approach. This is because we

create a record of the changes (effects) which are later used in model co-evolution

transformations to migrate (or compose) the models. Together the operations and

the effects (i.e. the name mappings) can be seen as a kind of difference model

[70] which describes all metamodel changes. The format of adaptation strategies

is generic, which means that an adaptation strategy may be shared by different

modelling frameworks.

The operations supported yield non-breaking and breaking resolvable changes

[72]. They can also be classified as model-preserving and safely model-migrating

[64] (if we consider them as coupled operators). Evolution resulting from applying

the renaming and pull/push operations and can be reversed by applying inverse op-

erations. There exists a parallel dependency [70] between some of the operations,

e.g. a property or operation can not be added to a new class before the class has

been created. The dependencies can be handled straightforwardly by an appropri-

ate manual sequencing of the operations. Since the sequence of the operations is

reflected in the model migration phase (i.e. the adaptation strategy drives the model

migration), there are no unresolved dependencies that occur during migration. This

is not the case for difference-based model migration approaches where dependencies

need to be resolved. That is, difference models do not contain information on the

sequence of the applied metamodel changes. The operations and generated effects

(viewed as coupled changes) are metamodel-specific and model-independent [71].

As with the metamodel template mechanism, the framework does not support

destructive operations. This can easily be added by defining new rules (which po-

tentially build on the existing rules). Operations for deleting and moving elements

induce the same difficulties on the model level with respect to automatic model mi-

gration, i.e. discarding objects and values will not preserve the intended meaning of

the models which implies that manual intervention is required. Moving properties

and operations up and down in class hierarchies is partially supported. That is, we

support versions of such operations that preserve model conformance.

As similarly argued with metamodel templates, we do not support merging of at-

tributes, references and operations since such elements may have different semantics

even though their names (and parameters) are identical. Adding operations to sup-

port this is not difficult should such be required. However, operations for merging of

attributes and references may impair the ability to automatically compose models

(required after metamodel composition) in certain situations. For instance, let us
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assume that two references from two different metamodels are merged. The first

reference has a multiplicity of 0..n, whereas the other has a multiplicity of 0..m.

We assume that references can be merged even though their multiplicities are not

identical. In this situation, the merged reference gets the most general multipli-

city of the two references. The problem occurs when n and m are both specific

integers (i.e. not *). In this situation, due to model composition, the total number

of objects intended to be associated/linked by the merged reference may exceed the

upper bound of its multiplicity. This means that objects have to be discarded in

order to produce a model that conforms to the composite metamodel. Deciding

what objects to discard can not be performed automatically. That said, it can be

difficult to justify merging of references that have different multiplicities, since these

references are likely to have a different semantics and are therefore not suitable for

being merged. Also, the most common upper bounds are 1 and *. Therefore, it only

makes sense (semantically) to support merging of references as long as 1) the types

of the references (classes) and the classes containing the references are evaluated to

be semantically equal and merged respectively, and 2) the multiplicities are compat-

ible, i.e. when the lower bounds are identical and one of the upper bounds is *, or

when the lower bounds are identical and both upper bounds are either * or 1. The

latter case makes sense since the referenced objects in the source models (either zero

or one in each model) are likely to be composed as well. Similar reasoning applies

for merging of attributes.

The work of [63] closely resembles our work. The approach is based on using

coupled transactions (coupled changes), which means that there is a corresponding

model migration segment being generated for each metamodel adaptation. What

we do instead is to generate effects which are accumulated throughout the analysis.

We then use the effects in addition to the adaptation strategy to update the mod-

els. As discussed, in situations where there are more than one source metamodel

there are two ways to reuse/update the existing models in order to ensure model

conformance. Both ways of updating the models can be achieved from the generated

effects and the adaptation strategy. The approach discussed in [63] only supports

the first situation, i.e. migration (corresponding to adaptation of one metamodel)

and not composition (corresponding to composition of metamodels) of the existing

models. Model migration and composition can be described in terms of two distinct

algorithms. The algoritm for model migration is sketched in Paper IV.

Metamodel composition can by [63] (and other approaches) be described as an

adaptation in terms of using several operations for adding new classes and class

attributes, and operations for adding relationships between these classes. Also,

difference-based approaches can detect such additions and generate transformations

for updating existing models of the source metamodel. However, with Artefact C, it

is possible to compose pre-made metamodels directly, and importantly, we can dif-

ferentiate and migrate/compose models conforming to all of the source metamodels.

This is not possible with any migration approach that we are aware of.
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Paper IV explains in detail how the analysis works and how the effects are gen-

erated.

6.4 Artefact D: A Framework for Non-Intrusive Integ-

ration of Operational Semantics

Composing metamodels will in most cases impact existing models and model man-

agement tools which are rendered invalid. We have defined a framework that allows

integrating the operational semantics of metamodels more or less non-intrusively.

This is achieved by creating a set of mappings between elements of different metamod-

els.

6.4.1 Overview

Composing the structures of metamodels usually means that existing models and

tools are impacted. Hence, there is a clear incentive for enabling composition of

metamodels without explicitly combining their structures. One way of achieving this

is to utilise proxy classes. A proxy class in one metamodel conceptually represents

a class in another metamodel. This is achieved by creating mappings between the

two classes and their contents. The mappings comprise a unification point between

the two metamodels. Two metamodels may be unified with one or more unification

points as described in a unification model. We refer to the mappings as M2-mappings

as they connect elements on the M2 layer of the MOF metamodelling architecture.

A class in one metamodel may be a proxy for a class of another metamodel if

all the attributes and operations of the proxy class can be mapped to attributes

and operations of the target class, i.e. the classes are conceptually equal from

the perspective of the proxy. (The target class may contain additional attributes,

references and operations.) At runtime (i.e. when the operational semantics is

executed), an object of a proxy class therefore (partially) represents an object of

the target class. Or more specifically, the attributes and operations of the proxy

class represent a selection of the attributes and operations of the target class. It is

possible for a proxy to represent all attributes and operations of a target class. As

before, we use Kermeta in the examples (the implementation works on Ecore models

(metamodels)/Java, see Paper V).

6.4.2 Unification at M2

Figure 6.25 shows the general scheme of how a proxy class represents a class of

another metamodel.
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// MMA
class Consumer {

attribute proxy : Proxy [1..*]

operation run() is do
proxy.proxyAtt := 3.3
proxy.proxyOp( "Test" )

end
}

class Proxy {
attribute proxyAtt : Double
operation proxyOp( val : String ) is do ... end

}

// MMB
class Target {

attribute targetAtt : Double
attribute otherAtt : Integer

operation targetOp( name : String ) is do ... end
operation otherOp () is do ... end

}

Figure 6.25: Proxy and target classes

MMA has a class named Proxy that consists of an attribute proxyAtt and an

operation proxyOp. The operation run() in the Consumer class merely sets a value for

the attribute and invokes the operation. MMB contains a class named Target with

an attribute named targetAtt and an operation named targetOp. It also contains an

additional attribute and operation which are not relevant for the integration.

Figure 6.26 shows an overview of how the operational semantics of the two

metamodels are integrated. Specifically, the proxyAtt attribute of Proxy is mapped to

represent the targetAtt of Target, and the proxyOp(...) operation of the Proxy class is

mapped to represent the targetOp(...) operation of the Target class. Both attributes

are typed with Double. A mapping reflects that both Double types are identical.

Similarly, both operations have a parameter of type String which yields a mapping

as well. The four mappings yield three unification points.
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Figure 6.26: Integration of the operational semantics

A unification point specifies (partial) structural equivalence between two classes

or types. Unification of the Proxy and Target classes gives one asymmetric unifica-

tion point (partial equivalence), whereas the unifications of the Double (x2) and String

(x2) types yield two symmetric unification points (full equivalence). A symmetric

unification point indicates that the classes/types unified are identical type-wise. For

example, both the Double types in the two metamodels represent floating point num-

bers (which is trivial as both metamodels are defined using the same metamodelling

language).

In the example, it is easy to see that the mappings between the Proxy and Target

classes give a valid unification type-wise. Specifically, the attribute proxyAtt and

targetAtt are both of type Double, whereas the operations have no return type and a

parameter of type String.

6.4.3 Runtime

Two metamodels and a collection of unification points describing their structural in-

tegration resemble what is known as a multimetamodel [110]: M = (M1, M2, M12, r1, r2),
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where a pair x1 ∈ M1, x2 ∈ M2 is the same (i.e. representing a structural overlap) if

x ∈ M12, r1(x) = x1, r2(x) = x2. M12 contains the common concepts between the

metamodels, whereas r1 and r2 are graph mappings.

The mappings represent a conceptual composition of the two metamodels. Dur-

ing execution of the semantics, i.e. when the run() operation is invoked, the frame-

work redirects the assignment of the proxyAtt attribute in the run() operation to the

targetAtt attribute. That is, the targetAtt attribute, and not the proxyAtt attribute,

is assigned the value 3.3. Furthermore, the invocation of proxyOp(...) in run() is

resolved as an invocation of the targetOp(...) operation. What we achieve is that the

operational semantics of the metamodels are integrated in an almost non-intrusive

manner, i.e. the metamodel structure has not been changed in order to integrate

the semantics.

6.4.4 Linking at M1

There will typically be many models/programs of a metamodel. Moreover, the

models may contain several objects of the same classes.

Proxy (ma)
1

Target (mb1)
1

Proxy (ma)
3

Target (mb2)
3

Proxy (ma)
2

Target (mb1)
2

Proxy (ma)
4

Target (mb3)

4

ma : MMA mb1 : MMB
mb2 : MMB
mb3 : MMB

Figure 6.27: Linking model for the example

At runtime the correct models and objects need to be linked. This is achieved

by creating M1-mappings between objects. A set of M1-mappings yields a linking

model. Figure 6.27 illustrates such a model. The model maps four objects of the

Proxy class in the model ma to four objects of the Target class distributed across the

models mb1, mb2 and mb3.

6.4.5 Design Decisions and Limitations

The framework for integration of operational semantics makes it possible to execute

the operational semantics of different metamodels in concert, by establishing map-

pings between metamodel structures and model objects, and adding glue/bridging
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code that either set the values of attributes or invoke operations. The main advant-

age of using proxies is that the code in the source metamodel has implicitly access

to structure of the classes in the target metamodel (since this is the same structure

as that defined for the proxy classes). This means that we do not need to import

the target metamodel and thereby (mostly) avoid changing the metamodel in ways

that induce impacts on other artefacts. Every non-abstract class in a metamodel

can be a proxy class. A proxy class can also be added e.g. by declaring it as a

subclass of an existing class. For the latter case, this means that the metamodel

structure has been extended/changed. However, existing models are still valid after

the subclass has been added. Tools are also compatible with the new metamodel

version unless a model contains instances of the subclass (reflective model editors

will automatically support the subclass). Moreover, creating an instance of a proxy

class is only relevant for integration purposes, i.e. as a proxy represents a concept

of another metamodel.

Defining unification points resembles how signature matching works for a signat-

ure-based model composition approach. The signature type for an asymmetric uni-

fication point comprises all the elements of the proxy class, i.e. these elements must

be matched by corresponding elements in the target class. An element matches an-

other based on a qualified choice by the user (i.e. elements are matched manually).

The name of the elements do not need to match; only the type. For symmetric

unification points all elements of both classes/types in question must match. The

unification model can also be seen as a weaving model [88], which enables the cre-

ation of equality links for the purpose of interoperability and data integration [22],

i.e. we are able to align models.

A difficulty with establishing mappings between metamodels is that elements

in the different metamodels, which seem like good candidates for being unified,

may express semantically different concepts. This means that even though all the

elements of a proxy class may be mapped to the structure of a target class, it is

difficult to assert that the proxy and target classes have the same semantics (or

at least may be unified in a way that makes sense semantically). In the general

case, it is very difficult to infer the semantics of concepts from their syntactic form

[20] which means that the semantics of the metamodels need to be evaluated before

establishing mappings [48]. This applies to all approaches that compose metamodels.

The potential issues resulting from semantic incompatibility first emerge when code

is executed, since the execution of the code reifies the intended operational semantics

of a metamodel. For our approach, the metamodel classes that relate to the proxy

class have associated model code (as defined in corresponding Java classes)6 that

expects the values it processes to reflect the pre-decided semantics of the proxy

class. If the semantics of the target class, i.e. the model code of this class, differs

from the expected semantics (i.e. that of the proxy class), problems may occur at

6In EMF, the abstract syntax is defined in Ecore models (metamodels) and operational se-
mantics in associated model code.
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runtime.

For the metamodel template mechanism we allow adapting the code by over-

riding operations, which means that problems related to semantic differences may

be addressed. Similarly, the model code of classes relating to the proxy class may

be adapted by updating this manually. The main premise for our approach is that

metamodels are changed as little as possible in the process of integrating the op-

erational semantics. Changing the model code means that metamodels, or more

specifically their model code, are changed in an intrusive manner. However, chan-

ging the content of Java methods do not impact artefacts in the ecosystem with

respect to structural compatibility. This is because the definitions of artefacts relate

to the structural properties of a metamodel and not its operational semantics. These

structural relationships (like conformsTo, domainConformsTo, dependsOn, etc. [3])

still hold regardless of how the code of methods is changed.

A related challenge when creating mappings between metamodels is that a concept

in one metamodel may be represented differently in another metamodel. For in-

stance, a concept represented by a class in one metamodel may be represented by

several classes in another metamodel. And, an attribute (representing an impli-

cit/hidden concept) in one metamodel may be represented by a class in another

metamodel, etc. The current version of the framework only allows one-to-one map-

pings between elements (of the same kind, e.g. between two attributes). In theory, it

would be possible to support one-to-many mappings, where the elements of a proxy

class are mapped to elements distributed between several target classes. Mapping

attributes or operations of the proxy class to attributes or operations of several

classes in the target metamodel would not hinder a correct lookup at runtime.

One way of ensuring that one-to-one mappings are sufficient for mapping the

structure of metamodels is to first utilise an ontology-based approach, e.g. by lifting

the metamodels to ontologies [43]. The purpose of this operation is to make im-

plicit concepts in the metamodels explicit (e.g. concepts represented by attributes)

and improve the (meta)model alignment. This means that the user only has to

specify one-to-one mappings between the ontologies. However, the one-to-one map-

pings between the ontologies still need to be transformed into mappings between

metamodel structures which at least requires support for one-to-many mappings by

the framework. Alternatively, a metamodel may be refactored, but this results in

severe impacts on other artefacts.

A concept may also be expressed at different abstraction levels in different

metamodels, which makes it difficult to establish mappings between the elements

representing the concept. This can not be addressed without changing one or both

of the metamodels. However, if this is the case, it is questionable whether the oper-

ational semantics of the two metamodels are ideal candidates for being integrated.

As have been illustrated, integrating the operational semantic of metamodels is

not always straightforward, but the approach has several advantages in addition to

reducing the impacts on artefacts, e.g. metamodels and models are kept autonomous
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and synchronised without the need to explicitly compose their structures, which in

turn means that there is no entanglement of concepts. This means that concerns

and aspects can be modelled in separate views and later be integrated merely by

creating mappings between the metamodels and models.

The unification model expresses structural equivalence between elements of differ-

ent metamodels, i.e. it is a type of weaving model that only allows defining equality

relationships between elements. Of this follows that a proxy class overrides its target

class. Hence, the actual composition of metamodels is in terms of relationships to

the proxy class, as expressed in the source metamodel. The question is whether the

unification model is expressive enough to perform complex compositions. A weav-

ing model may utilise other types of relationships, like merge. However, it is not

clear how e.g. merge relationships between elements can be realised in the code that

integrates the operational semantics of the metamodels.

In Paper V we discuss how the framework allows integrating the semantics of a

GPL metamodel with the semantics of a metamodel for modelling of state machines.

The purpose is to support modelling of objects’ behaviour in terms of state machine

models. The paper also discusses how unification models can be verified to ensure

that all unification points are valid.

6.5 Artefact E: A Theory for Realising Metamodel Types

There has not been much work on typing models or metamodels. We have identified

class nesting as a promising mechanism for realising metamodel types. By enclos-

ing a metamodel within a class, we are able to utilise established object-oriented

mechanisms on the metamodel layer.

6.5.1 Overview

A metamodel comprises a number of classes. Each non-abstract class defines a

type. The contents of the class, i.e. attributes, references and operations, define the

properties of the type; this includes contents inherited from one or more superclasses.

In other words, the class defines the properties of its instances (model objects). In

object-oriented programming languages, a class may also contain inner classes. If

an inner class is non-static, it contributes to defining the type of the outer class.

The underlying idea of our approach is to use class nesting for defining metamodel

types. Specifically, an outer class contains an enclosed metamodel, comprising a set

of non-static inner classes, that may act as a type for the enclosed metamodel.

Both the outer and inner classes contribute to the definition of the type, and we

refer to these classes collectively as a metamodel type. The outer and inner classes

can be subtyped to specialise a metamodel, which supports substitutability and

polymorphism.



106 6.5. Artefact E: A Theory for Realising Metamodel Types

StateMachine

StateTransition

name : String
trigger()

name : String
step(Event)

TStateMachine

+

states 1..*

Event

events 1..*

...

...

stateMachine 1..1

Figure 6.28: A metamodel type for modelling of state machines

Figure 6.28 shows how class nesting can be used to create a type for the state

machine metamodel. The metamodel is enclosed by the TStateMachine class, i.e. the

TStateMachine class acts as a type for the enclosed metamodel. As can be seen, four

classes are enclosed in the TStateMachine class. Figure 6.29 gives the implementation

of the metamodel type. The classes of the metamodel are accessed using an instance

of the TStateMachine class. This is required e.g. when creating a model conforming

to the enclosed metamodel.

Figure 6.30 illustrates how a model can be created programmatically. The model

is stored by the sm variable which is typed with the top node/root class of the

metamodel (all model objects are transitively accessible from an object of the top

node class).
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package state_machine;

class TStateMachine {
class StateMachine {

attribute states : State [1..*]# stateMachine
attribute events : Event [1..*]
reference currentState : State [1..1]
reference initialState : State [1..1]
operation run() is do ... end

}
class State {

reference stateMachine : StateMachine [1..1]# states
reference incoming : Transition [0..*]
attribute outgoing : Transition [0..*]# source
operation step( event : Event ) is do

...
end

}
class Transition {

attribute name : String
reference event : Event [1..1]
reference source : State [1..1]# outgoing
reference target : State [1..1]
operation trigger () is do

source.stateMachine.currentState = target
end

}
class Event { ... }

}

Figure 6.29: Implementation of the metamodel type for modelling of state machines

operation createModel () : TStateMachine.StateMachine is do
// Creates an instance of the metamodel type
var tsm : TStateMachine init TStateMachine.new
// Creates an instance of the top node class
var sm : TStateMachine.StateMachine init tsm.StateMachine.new
// Creates a state and adds it to the state machine
sm.states.add( tsm.State.new )
...
// Assigns the model as the result from the operation
result := sm

end

Figure 6.30: Creating a state machine model

Figure 6.31 illustrates how the parameter of an operation (e.g. implementing a

model management operation) can be typed with the StateMachine class from the

metamodel type. The TStateMachine type is a reference type. The operation can

process models conforming to all metamodels of metamodel types that subtype this

reference type.
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operation transitionTable( sm : TStateMachine.StateMachine )
: String is do
...
sm.states.each{ s | ... }
...

end

Figure 6.31: Typing a parameter with the StateMachine class of the metamodel type

6.5.2 Specialisation of a Metamodel

Both the outer class and the inner classes of a metamodel type may be special-

ised. Let us see how the TStateMachine class and the enclosed metamodel classes

may be specialised to support modelling of state machines with weighted trans-

itions. Figure 6.32 illustrates how this is achieved. First, a class for the special-

ised metamodel type named TWeightedStateMachine is created. The class extends

TStateMachine. Second, the classes Transition and State are specialised by creating

new classes in TWeightedStateMachine that extend the respective classes in TStateMa-

chine. The Transition class is extended with a new attribute (containment reference)

named weight of type Weight, whereas the specialised State class overrides the in-

herited step(...) operation with new code for evaluating the value of the probability

attribute in the added Weight class. In Kermeta, overridden operations are specified

using method instead of operation. The Event class is omitted from the figure.

StateMachine

StateTransition

name : String
trigger()

step(Event)

TStateMachine

transitionTable() : String

+

TWeightedStateMachine

StateTransition

step(Event)

+

method step() is do
  ...
  if ... probability >= ... then
    transition.trigger() 
  end
  ...
end

step(...) v2.0

probability : Real

Weight

weight 1..1

states 1..*
stateMachine 1..1

Figure 6.32: Specialising the metamodel type to support weighted transitions

Figure 6.33 gives the implementation of the specialised metamodel type. The

code supports having state machine models with both regular and weighted trans-

itions. This time the step(...) operation contains the code for evaluating the weight

associated with a transition.
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package weighted_state_machine;
require "state_machine.kmt"

class TWeightedStateMachine inherits TStateMachine {
class State inherits TStateMachine.State {

// Overridden
method step( event : Event ) is do

var transition : Transition init
outgoing.select{ t | t.event.equals( event ) }

if transition.isKindOf( Transition ) then // Weighted transition
// generates a random number between 0 and 1
var randomNumber : Real init ...
if transition.asType( Transition ). weight.probability

>= randomNumber then
transition.trigger ()

end
else // Regular transition

transition.trigger ()
end

end
}
class Transition inherits TStateMachine.Transition {

attribute weight : Weight [1..1]
}
class Weight {

attribute probability : Real
}

}

Figure 6.33: A metamodel type for weighted state machines

Figure 6.34 illustrates how the metamodel for modelling of state machines is

specialised (adapted) and what classes that are instantiated in a model to utilise

weighted transitions. The model editor first creates an instance of the specialised

outer class (as illustrated in Figure 6.30) and the user then instantiates the spe-

cialised State (S) and Transition (T) classes (M refers to the StateMachine class). It

is possible to have state machine models containing both kinds of transitions. A

regular state is selected by instantiating the original Transition class. Transformation

of existing state machine models, with the purpose of including weighted transitions,

is straightforward by transforming all objects of the State class to instances of the

specialised State class and a selection (or all) of the Transition objects to instances

of the specialised Transition class. This includes creating an object of the Weight

class for each weighted transition which is required due to the lower multiplicity of

the weight attribute in the specialised Transition class. Objects of the Event class are

omitted from the figure. A model comprises objects of the inner classes. The object

of the outer class is not considered a part of the model.
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Figure 6.34: Transforming state machine models to utilise weighted transitions

Since specialisation of a metamodel is achieved using subtyping, we get additional

polymorphism at the metamodel level. Specifically, a tool may take an instance of

a class in a metamodel subtype as input and still operate correctly according to the

classes and operations of the original type (supertype). Consequently, we are able

to reuse both metamodels and tools.

6.5.3 Customising the Metamodel

So far the outer class has only enclosed the metamodel classes. The outer class

may have additional attributes. The attribute values may determine certain char-

acteristics of the enclosed metamodel. For instance, the operational semantics of

several metamodel classes may be tuned by adjusting the value for the attributes.

This means that the operational semantics of the metamodel can be customised at a

global level. The customisation applies to all models of the metamodel, without the

need to explicitly alter the models, i.e. changing values in objects of the metamodel

classes.

In Paper III we also add a reference to the top node metamodel class (i.e. the

StateMachine class), which means that tools and editors may reference the current

loaded model on which they work on. By having such reference it is also possible to

utilise operations in the outer class. The operations can be used by tools and editors

to e.g. generate information about the loaded model. Figure 6.35 shows such an

operation for generating the transition table.
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package state_machine;

class TStateMachine {
// References the currently loaded model
reference sm : StateMachine [1..1]

operation transitionTable () : String is do
sm.states.each{ s | ... }
...
result := ...

end

class StateMachine { ... }
...

}

Figure 6.35: Global operation for generating the transition table

6.5.4 Using Several Metamodel Types

The MOF metamodelling architecture supports multiple inheritance. This means

that a class may have several superclasses. For metamodel types this is interesting

because it allows defining a metamodel type using several supertypes. The overall

type for a metamodel can thus be seen as a combination of several types.

class TSomeType inherits TStateMachine , TX, TY, TZ {
class M inherits TStateMachine.StateMachine , TX.X {

reference y : TY.Y[1..*]
...

}
...

}

Figure 6.36: Defining a metamodel type using multiple inheritance

Figure 6.36 gives a metamodel type named TSomeType that inherits from four

supertypes. The definitions of the classes in TSomeType (either new or redefined)

combine the inherited elements from the supertypes either through inheritance or by

adding references. The M class exemplifies this. Each supertype represents a specific

aspect or concern of the enclosed metamodel. In other words, each supertype gives

a specific perspective on the metamodel. As an example, there may be a tool

that is typed with the StateMachine class of TStateMachine. The tool only considers

model objects pertinent to describing a state machine, regardless of whether these

objects are linked with other kinds of objects used to describe other aspects of the

metamodel. What this means is that existing tools may be used for a large number

of metamodels as a metamodel type can inherit from the types used to define the

tools.

6.5.5 Design Decisions and Limitations

We have discussed how class nesting can be used for defining metamodel types. The

outer class acts as a type for the enclosed metamodel. The input of an artefact can
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therefore be typed by the outer class and one of its inner classes (e.g. the root class),

which ensures an intuitive way of type-safe reuse.

We have seen how multiple inheritance can be used to define a metamodel type

that can be viewed/processed according to several concerns (supertypes). In such

cases, the metamodel type represents a composition of structure for modelling of

several concerns. Using supertypes this way is particularly powerful as tools defined

relatively to the supertypes may be shared by diverse metamodel types, which is a

goal in itself [93], and resembles how concepts impose requirements on a metamodel

as discussed in [42]. Similarly, the supertypes impose requirements on the metamod-

els as imposed by tools (model management operations).

Type reflection can be implemented straightforwardly when it comes to meta-

model types since all features of a metamodel type are defined in terms of inner

classes and properties of these classes (and eventually as attributes in the outer

class). A model object is an instance of an inner class. This means that metadata

for the outer class can be accessed reflectively from any model object which in turn

gives access to all the inner classes. This allows determining the metamodel type

of the metamodel that the object is instantiated from. The purpose of supporting

type reflection is e.g. for producing generic tools. Type inference is related to type

reflection. It is not obvious how type inference can be beneficial when it comes

to metamodel types. However, we believe it can be supported without too much

difficulties.

The authors of [99] discuss how languages can be composed in terms of nesting

the classes of one language within a single class of another language, which the

authors also refer to as a class refinement. This notion corresponds well to how the

outer class (representing a concept or concern) is refined by the enclosed metamodel

classes. In principle, this means that metamodel types can be used in several levels,

i.e. an enclosed class may itself contain enclosed classes. A possible way this could

work is that the outermost class represents a metamodel type containing different

metamodels/languages for modelling distinct concerns or aspects of a system, i.e.

the various system views. That is, the outer class (system type) contains a set

of metamodel types (view types) which in turn contains metamodels. Modelling a

concern or aspect of a system then translates to first instantiating the outermost class

and then instantiating the metamodel type for the desirable concern or aspect which

gives access to the metamodel for modelling of this particular concern or aspect. In

theory, it would also be possible to use additional levels of metamodel types to

support modelling at lower abstraction levels, e.g. a metamodel class enclosing a

number of classes. The new level refines the class on the level above. Using class

nesting this way corresponds to a composition according to the authors of [99], i.e.

a class is composed of several enclosed classes. The practicability of nesting classes

in more than two levels is not clear. It also requires having models that reflect the

nested structure of the nested metamodel classes. When we have only two levels of

class nesting we do not need this if the purpose of the levels are to add structure for
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representing views containing enclosed metamodels. A model will still have a flat

structure consisting only of objects of classes within the innermost level, i.e. of a

metamodel. (We here assume that a model represents one view). Yet, structuring

the classes in different levels can be utilised by tools and editors, e.g. an editor may

present the levels in an intuitive manner which makes it easy to navigate and find

the correct view.

The operational semantics of a metamodel may contain code for deleting model

objects. Let us assume that a subtype introduces a reference with a non-zero lower

bound multiplicity. A model may potentially be rendered non-conformant during

execution if the aforementioned code deletes objects that are linked to by the refer-

ence. However, this is not a problem that is unique for metamodel types. The same

problem can happen using subtyping in e.g. Kermeta.

It is important to ensure that (instances of) classes of different metamodel sub-

types are not mixed. Mixing instances of classes from different metamodel types

may induce type errors. Let us assume a metamodel type comprising a class X con-

taining an operation opX(...) with a parameter typed with a class Y. In a metamodel

subtype the operation in the X class is redefined to invoke a new operation opY() that

has been added to the Y class. Invoking the operation opX(...) in the X class with

an instance of the original Y class will induce a type error since this version of the Y

class does not contain the opY() operation. The type error occurs since Y is used as

a parameter for the operation opX(...), i.e. the parameter in the subtype is covariant

with respect to the type of the original parameter. Together with polymorphism

this redefinition is not type-safe.

However, if we use virtual operations and overriding, we do not get a type error

as illustrated. This is because the instance provided as argument to the invocation

of opX(...) will be used to determine what version of opX(...) that should be invoked.

That is, if an instance of the original Y class is provided as argument, then the

original opX(...) operation will be invoked.

MOF does not provide semantics for redefining or overriding operations7. The

theory on metamodel types is based on the Java type system. Java supports over-

riding methods and allows parameters to be contravariant and the return type to

be covariant. Kermeta also allows overriding operations. By allowing overriding

operations, instead of redefinition, the issue of mixed subtypes is addressed. How-

ever, redefinition can also be supported. The outer class of a metamodel type is

instantiated by an editor. The editor may be configured to always instantiate the

most recent version/subtype of a class, which in turn avoids mixing instances of

different classes in a class hierarchy. This configuration also avoids errors related

to type casting, i.e. when an instance of a supertype is tried being type converted

to a subtype. This situation may happen when a reference typed with a supertype

contains both instances of the supertype and a subtype.

7http://www.omg.org/mof
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Covariance and contravariance in the case of operation redefinition are discussed

further in Paper III.

In Paper I we investigate how the nested classes of a metamodel type may have

generic parameters. This allows parameterising a metamodel with additional classes

in order to temporarily adapt the metamodel for a specific problem domain. The

paper also briefly discusses type hierarchies and using virtual classes. Paper III

discusses metamodel types in greater details.

Current metamodelling languages (e.g. Kermeta as used for the illustrations)

do not support nesting of classes. The theory on metamodel types is based on how

class nesting is defined and used according to the Java type system.

6.6 Prototype Tools and Frameworks

Artefact A, Artefact B, Artefact D and the Additional Artefact II have been val-

idated by means of prototype implementations. The prototypes are based on EMF

and Kermeta.

6.6.1 Prototype Tool for Artefact A

The implemented prototype tool is defined as a Kermeta pre-processor. It is built

using the Eclipse Textual Modeling Framework (XText)8. The pre-processor is com-

patible with a subset of the Kermeta metamodelling language. This subset allows

defining metamodels containing operational semantics. The pre-processor supports

organising templates in hierarchies and supports all of the constructs/directives lis-

ted in Chapter 6. This includes the ability to define bi-directional relationships and

subtyping relationships between classes. All directives preserve type-safety and sup-

port re-establishing model conformance automatically. Kermeta was chosen since

operational semantics can be defined directly in class operations.

6.6.2 Prototype Framework for Artefact B

The prototype tool for Artefact B builds on the prototype for Artefact A. It com-

prises a framework for (semi-)automatic migration and model composition which is

achieved by deriving transformations from the instantiation directives used. This

includes the capability of chaining migrations, i.e. transformations are combined

using higher-order transformations. The term (semi-)automatic migration is used

since models that are intended to be migrated or composed need to be chosen expli-

citly by the user. The implemented transformation engine is limited to composition

of two models (i.e. their root objects are merged). However, the generated trans-

formations support simultaneous composition of an arbitrary number of models (and

composition of non-root objects).

8http://www.eclipse.org/modeling/tmf
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6.6.3 Prototype Framework for Artefact D

The framework realising Artefact D supports defining mappings between metamod-

els. The mappings are expressed as a unification model which for the prototype is

expressed directly in code (an alternative representation could have been an XML

file). The same applies for the linking model. The prototype is compatible with

EMF. That is, the operational semantics (model code) of Ecore models can be in-

tegrated. The glue/bridging code is added to the model code in a subclass of the

respective Java class. The prototype does not check that unification points are valid

(i.e. type compatible). This can be implemented straightforwardly by checking that

the respective source and target elements are of the same type.

6.6.4 Prototype Language for Additional Artefact II

We have implemented a metamodelling language that supports creating metamodels

with behaviour defined in class operations. The constructs of the meta-metamodel

resemble those of KM3 and Kermeta. In addition, there are constructs for exporting

and importing structure, i.e. attributes and operation signatures. Pre- and post-

conditions and invariants can be specified for operations and attributes, respectively.

6.6.5 Other Artefacts

We have not implemented Artefact C, only formalised it. Artefact E is based on

class nesting. Class nesting is not supported by any metamodelling framework/lan-

guage (that we are aware of). Adding such capability to an existing metamodelling

framework probably takes quite some work, and we have therefore not focused on

implementing this.





Chapter 7

Discussion

This chapter is organised in three sections. In the first section we take a broader

view of the artefacts and discuss general concerns and overall characteristics of our

solutions. In the second section we evaluate our work. This includes evaluating

the artefacts according to proposed metrics found in the literature and an overall

evaluation of the work with respect to the requirements stipulated in Chapter 5. In

the final section we discuss recent related work.

7.1 General Discussion

There are certain general properties and characteristics that are desirable for the

artefacts. Here we will discuss the most important ones. We will also briefly discuss

the additional artefacts as documented in the research reports.

7.1.1 Verification of Consistency of Compositions

The most important concern when composing metamodels and models is that the

resulting metamodel or model represents a well-formed and sound combination of

structures/elements. This e.g. requires that elements are evaluated for (semantic)

equality (with respect to the problem domain) known as matching, that consistency

between viewpoints are maintained, that conflicts are handled properly, and that

certain properties are preserved, e.g. model conformance between a metamodel and

its meta-metamodel (resulting in a well-formed metamodel) and model conformance

between existing models and a given metamodel. We will now discuss each of these

aspects with respect to the artefacts.

Matching of Concepts

For Artefact A and Artefact C, the user specifies a number of directives or opera-

tions describing how two or more metamodels should be composed. In other words,

we do not use any form of automatic matching of metamodels, e.g. by defining

117
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pointcuts that identify join points. This means there is a potential for concept

misidentification and concept misses [29], i.e. classes describing different concepts

are wrongly matched and integrated and concepts that are represented differently

are not identified as valid matches, respectively.

Viewpoint Consistency

In [90], it is argued that building a composed metamodel of several metamodels

describing distinct concerns (viewpoints) may be difficult because such action may

introduce viewpoint inconsistencies, i.e. because the abstraction level and level of

granularity of the viewpoints may be different and because they may have differ-

ent semantics. As discussed, lifting of metamodels to ontologies [43] can alleviate

such difficulties. It is also possible to use ontologies for guiding the composition

of metamodels. For Artefact C, the rules may be extended to consider ontological

knowledge, e.g. by matching concepts against a reference ontology. For instance,

the class merging rule may check that both classes intended to be merged can be

traced to the same (or similar) concept of the ontology. If this is the case, the two

classes represent a valid match. Another challenge pertinent to verification of model

viewpoint consistency is that different viewpoints may use different notations [51].

However, for metamodels this is of a lesser concern since most metamodels (i.e. class

models) are created using a common metamodelling framework and meta-metamodel

(e.g. EMOF/Ecore). The authors of [103] argue that if a multiview model conforms

to its metamodel, then the views are mutually consistent. Hence, by ensuring model

conformance of a composed model (with respect to a composed metamodel) we also

achieve consistency between the views as expressed in the source models.

Artefact D allows integrating the operational semantics of viewpoints without

explicitly composing their structures, which helps maintaining viewpoint consist-

ency. The glue/bridging code may address some variations regarding differences in

semantics and how concepts are represented. However, as discussed, operational

semantics of metamodels that are too far apart (semantically) will be difficult to

integrate successfully.

Conflict Handling

Conflicts can either be avoided in advance or detected and resolved when they occur

[92]. For Artefact A potential conflicts have to be manually addressed by using

renaming directives. This requires the directives to be sequenced correctly, e.g.

the conflicting elements of two classes have to be resolved before the classes are

merged. For Artefact C conflicts are resolved both manually, and detected and

resolved automatically by generating default names for conflicting elements.
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Model Conformance

The artefacts supporting metamodel composition ensure that model conformance is

preserved or re-established both at the metamodel level and model level if a given

set of directives or operations are applied successfully1.

A related problem of verifying consistency following (meta)model composition is

checking the consistency of the migrated models. This becomes more challenging as

the size of models increases [65]. As discussed previously, Artefact B and Artefact

C ensure that model conformance is established/maintained between a successfully

migrated model and its metamodel. However, it may be required to manually re-

vise the automatically generated default objects and values. And important aid in

identifying the default objects and values is to inspect the generated transforma-

tions/effects; which means that revision can be addressed efficiently regardless of

model size.

7.1.2 Extensibility and Scalability of the Artefacts

An important aspect of an approach is how well its tools and operations can be

extended to address new requirements, and how well the approaches scale to support

more complex and detailed problems. These properties directly affect the capabilities

and applicability of an approach.

We have foreseen some possible extensions of the artefacts, i.e. we have already

discussed how Artefact A and Arfefact C can be extended with additional direct-

ives/operations, and how Artefact D can be extended to support one-to-many map-

pings between metamodel elements. These extensions mean that a broader type

of problems can be supported. We have argued why supporting destructive direct-

ives/operations means that type-safety and (semi-)automatic model migration can

be difficult to support. However, it would be possible to have two different opera-

tion modes for the artefacts. The first mode for Artefact A/B would only provide

directives that preserve type-safety with support for (semi-)automatic model mi-

gration. The second mode would provide additional directives for a wider range of

usage scenarios, though type-safety and (semi-)automatic migration would not be

guaranteed. The modes would be similar for Artefact C.

The authors of [108] argue that filtering of concepts (e.g. a class or property)

is preferred instead of deleting these when metamodels are extended. The reason

backing this statement is that metamodels do not have to be changed intrusively

which will render existing models invalid. In [108], filtering is used to hide a concept

that should not be available in an extended metamodel2. The approach relies on

1We do not address the specific case where model composition may result in an object being
contained by more than one object.

2The authors use the term metamodel extension even though filtering and modification of con-
cepts occur, which justifies the use of the term adaptation.
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deriving an extended (virtual) metamodel based on an original (or previously ex-

tended) metamodel. Using filtering, the user is not confused by existing classes in

the metamodel that are not relevant anymore (even though they still exist). In

other words, the extended metamodel acts as a filtered projection of the original

metamodel. When metamodels are extended/adapted concretely things are not as

straightforward since obsolete elements make the metamodel more difficult to com-

prehend and relate to by artefacts. The open question is whether filtering by model

editors/graphical syntaxes is still a better choice with respect to deleting elements

which will introduce compatibility issues with existing models and tools. A related

work is metamodel pruning where an effective metamodel is calculated, i.e. unne-

cessary elements are removed, based on a set of rules and options [109].

Artefact B reflects the directives supported by Artefact A, i.e. the directives

that work on metamodels are reflected by transformations on models which means

that any extension of Artefact B is dictated by extensions of Artefact A. Artefact

E is based on using class nesting (in a similar way as supported by the Java type

system). The only possible extension we have identified for metamodel types is to

use generic parameters on the outer class, which is discussed in Paper I. This allows

abstracting details of a metamodel and customising the metamodel for a specific

usage.

Whether an artefact can be extended depends on what kind of extensions that

are desirable. For Artefact C it is possible to add new operations straightforwardly

due to the modularity of the rules (which can also be reflected in an implementa-

tion of the framework/rules). This includes the ability to generate additional effects

during the analysis. Artefact A and Artefact D can be extended fairly straightfor-

wardly. However, how easy these artefacts can be extended strongly depends on

how these artefacts are implemented, i.e. this is concerned with the architecture of

the implementation. For the prototypes of Artefact A and Artefact D this requires

some work.

We have not discussed static semantics (in the form of OCL statements) for any

of the artefacts. Supporting such is a natural extension of Artefact A and Artefact

C. If OCL is used, then renaming of elements and merging of classes require the

referenced elements of invariants, pre- and post-conditions to be updated to reflect

the new names given/produced [56]. For instance, an OCL statement may reference

a class whose name is renamed, and thus, the OCL statement is rendered invalid.

Since we do not support merging of properties, conflicts between several invariants

should not occur. Also, supporting addition of global constraints during compos-

ition is desirable. A global constraint involves elements from several metamodels

[110]. Providing means for automatic checking of global constraints during model

composition is also desirable.

The artefacts are designed so that they scale well for bigger problems. We have

not tested the following statements by an empirical study, but based on logical

reasoning on the design decisions for the artefacts we believe that the following is
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true. Artefact A can handle arbitrarily large metamodels and template hierarchies

(only limited by the design of the implementation and computer resources). An

arbitrary number of metamodels can be adapted and composed simultaneously. The

supported metamodels have to be defined using a subset of Kermeta; the subset

includes the important language concepts. We do not foresee any problems with

supporting the full version of Kermeta. The scalability of Artefact B corresponds

to that of Artefact A, i.e. migration of models according to template hierarchies of

arbitrary sizes is supported. Also, the size of the models being migrated is not of

importance. For Artefact C we allow simultaneous adaptation and composition of an

arbitrary number of metamodels of arbitrary sizes. The metamodels have to utilise

the most common structural elements of EMOF. We do not see any difficulties

with supporting the remaining concepts of EMOF. Artefact D allows integrating

the operational semantics between an arbitrary number of metamodels of arbitrary

sizes. This can be achieved by using an arbitrary number of proxies and mappings.

Artefact E supports metamodels of arbitrary sizes. It also allows using as many

supertypes as desirable through multiple inheritance.

7.1.3 Reuse and Expressiveness

The template instantiation directives and operations, of Artefact A and Artefact

C, respectively, for composition and adaptation of metamodels have to be applied

specifically to one or more metamodels. This means that a sequence of instanti-

ation directives or a sequence of operations can not be reused and applied on other

metamodels without manually specifying the new elements the directives or opera-

tions should work on.

Migration is achieved (semi-)automatically based on the directives or operations

used. The current versions of the artefacts do not support deriving migrations for

recurring migration knowledge [63] (corresponding to reusable adaptations).

A study of two industrial metamodels showed that 31% and 48%, respectively, of

all coupled changes to the metamodels were metamodel-independent [71]. Support-

ing reusable and metamodel-independent adaptations with corresponding migration

is therefore important. A way to support this is to allow the directives and opera-

tions to be generic, i.e. by using variables for the elements affected by the directives

or operations. A template instantiation or adaptation strategy can then be applied

to any metamodel for which there exist mappings between every variable of every

directive or operation and metamodel elements of the correct type (as dictated by

the semantics of the directives or operations). This in turns means that the same

(derived) migrations can be applied on models of all metamodels that can be ad-

apted by the generic template instantiation or adaptation strategy. The generic

variants of the directives and operations would be based on already defined direct-

ives and operations. Hence, the generic directives and operations do not induce new

challenges regarding preservation of type-safety or model conformance. For Artefact
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A, supporting generic directives requires that the template instantiation directives

can (optionally) be specified in a separate document and not only in the templates

and packages. Instantiating a template thus translates to selecting a template and

associating it with the (generic) directives. The design of the metamodel template

mechanism supports both internally and externally defined directives (the proto-

type only supports the former). A template instantiation or adaptation strategy

comprising generic directives/operations would identify a structural pattern(s), i.e.

metamodels sharing this pattern(s) would be candidates for adaptation (including

corresponding model migration). This means that it may be possible to infer some

of the mappings between the variables and the metamodel elements. For Artefact C

the adaptation strategy is separately specified. In Research Report I we discuss an

approach for applying the refactoring operations of Artefact C in a generic manner

by searching a metamodel for compatible structure. Defining generic directives and

operations by means of metamodel types may also be a viable solution.

We have already argued for the limited number of instantiation directives and op-

erations supported. All directives and operations, with the exception of code blocks

in Artefact A, are declarative, i.e. the user only specifies what to be achieved,

not how. This hides complexity and makes it easier to apply adaptations success-

fully. Providing means for specifying adaptations imperatively would support rare

(and complex) scenarios (including corresponding migration). With respect to pre-

serving type-safety this would typically be problematic. However, for some types of

adaptation, it would be possible to specify migrations that allow re-establishing con-

formance automatically. As argued, we aim for supporting the most common forms

of adaptations and corresponding migrations. For rare adaptations, it is always

possible to utilise a GPL.

For the other artefacts reuse is not a primary concern. For Artefact D, reusing

mappings between metamodels is typically not possible. For Artefact E, there is no

other aspects regarding reuse than what is natively available by using the subtyping

mechanism, e.g. that structure and code can be inherited and that input parameters

of tools and artefacts can be typed to utilise polymorphism.

7.1.4 Separation of Concerns

A DSL comprises both syntax and semantics (behavioural and static). It is argued

that separating the definitions of these concerns is advantageous since it allows

different stakeholders to focus on each concern and it supports different variation

points [56]. In addition, it is desirable to define behaviour independently of specific

metamodels [42]. Artefact A supports separating these concerns. One template

may define the syntax (classes and relationships), whereas another template may

contain classes with operations defining the behaviour. The classes of the different

templates can then be merged during template instantiations. The syntax and

behaviour may evolve independently in distinct branches and be maintained by
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different stakeholders. This supports having metamodels with different semantics

(semantic variation point).

For Artefact E, a similar separation of concerns can be achieved by inheriting pre-

defined behaviour from supertypes, or alternatively by defining tools and runtime

environments (e.g. an interpreter) based on the structure of a supertype that several

metamodel types specialise. For the latter case, the metamodel of a metamodel type

can then be purely structural whereas the operational semantics for executing models

of this metamodel is defined in an interpreter. This way, the interpreter can define

the operational semantics for several metamodels. In both cases, the behaviour can

be ”attached” selectively to the classes of a metamodel, i.e. the metamodel classes

subtype/specialise classes of the supertype. The metamodel classes either inherit the

behaviour directly (case 1) or the metamodel classes inherit the required structure

to be compatible with an interpreter that contains the behaviour (case 2). The

separation of behaviour from metamodels is similarly done in [42], and results in

an additional level of indirection between structure and behaviour. A drawback of

using subtyping to achieve this, as argued by the authors in [42], is that inheriting

the behaviour from a supertype results in an intrusive change to a metamodel, which

in turn requires the supertype to already exist. Also, the authors claim that this

approach may not be feasible if several semantics for the metamodel are needed. We

have already illustrated how the latter limitation can be addressed by using multiple

inheritance (refer Chapter 6). The severity of the limitation regarding intrusively

changing a metamodel depends on how metamodel types are used. In our case, we

want to utilise (and reuse) pre-defined tools or behaviour that are defined relatively

to a type that metamodel types subtype; the tools or behaviour already exists, and

is used in the metamodel definition phase. Therefore, in this case, we argue that the

intrusive change of a metamodel is acceptable.

7.1.5 Integration of Heterogeneous Metamodels and Models

All artefacts are designed to work on metamodels and models that are created using

the same metamodelling framework, i.e. Kermeta and EMF. There are incentives for

supporting the use of different metamodelling frameworks, or technological spaces, in

unison. In particular, different DSLs may be expressed using different technologies.

Also, it is argued that DSLs should be kept separately in their own space, where

their models are connected using dynamic links [101].

In Related Paper II, we have proposed a way of integrating the operational

semantics of metamodels by considering metamodels as services. The approach

works by defining service contracts, i.e. provider and consumer interfaces. An

interface relates to one or more class operations in a metamodel. The underlying

idea is that the operational semantics of the various metamodels are integrated in a

service-oriented manner as dictated by the interfaces, i.e. a provider interface has to

be matched by a consumer interface. A metamodel service may have an arbitrary



124 7.1. General Discussion

number of both provider and consumer interfaces which would allow integrating

the operational semantics in different ways. Service architectures can comprise an

arbitrary number of metamodels, i.e. the operational semantics of a metamodel

may be integrated with the operational semantics of several other metamodels. The

approach is particularly useful for decomposing the modelling of a system into several

concerns (viewpoints).

The approach utilises proxy model objects which give a transparent way of in-

voking operations. A proxy object represents one or more objects in another model,

and is inferred by the information in a provider interface. This means that all the

operations of the provider interface can be invoked on the proxy object. Operation

invocations on the proxy object (in a model MA of metamodel MMA) are trans-

lated to XML-based messages which is then resolved as invocations of the actual

operations on one or more objects in model MB of metamodel MMB. The consumer

interface specifies the operations that must be available on objects that reference

the proxy object, i.e. for the purpose of callback. By using a proxy object, it ap-

pears that the models are composed through the reference(s) to the proxy object

(in model MA). The specific models of the metamodels that should be integrated

are specified by the user. The actual (dynamic) link between two models is only

maintained during runtime. A proxy object is an instance of a temporarily added

metaclass (added to MMA).

The service-oriented nature of the approach allows different concerns to be mod-

elled without entanglement of concepts. A model describing one concern may utilise

services of one or more other models by invoking operations on proxy objects. Since

XML-messages are used for transferring operation invocations it is possible to sup-

port heterogeneous model integration as long as all the metamodelling frameworks

allow defining service contracts and a way of resolving XML-messages to operation

invocations and vice versa.

Both the framework for integration of operational semantics and the service-

oriented approach rely on a conceptual integration of concepts. Conceptual integra-

tion may simplify integration since it is not necessary to consider in depth how the

concepts are implemented [43] (yet knowing their semantics is essential).

7.1.6 Deriving Views and View Synchronisation

We have already discussed separation of concerns and heterogeneity. The main chal-

lenge in this respect is being able to support modelling according to different views

(languages), which becomes important as the complexity of a software system in-

creases [106]. We have discussed multi-view modelling with respect to (meta)model

composition. A disadvantage when composing models describing different views

is the inability to synchronise these with the resulting model from the composition

[106]. This means that changes performed on the resulting model can not be propag-

ated to the source models, or the other way around. We have not addressed this
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concern for Artefact A or Artefact C.

An alternative take on multi-view modelling is to derive views based on existing

metamodels and models, e.g. as discussed in [101] and [106]. The artefacts discussed

in this thesis were designed based on premises (stipulated as requirements) related

to type-safety and correctness, support for evolution (including model migration)

and reuse. In other words, providing means for deriving new views has not been a

focus point. However, we will review the capabilities of the artefacts that support

deriving new views.

Artefact D supports integrating models at runtime in terms of setting and get-

ting attribute values and invoking operations on the cross of metamodel boundaries.

This means that a new metamodel for a particular view can be constructed, where

several (or even all) of the classes are proxies for classes in other existing metamod-

els. Since updating the state of proxy class objects is reflected in models of the

existing metamodels (according to the mappings), we have a uni-directional form

of synchronisation. Importantly, the new view can be constructed non-intrusively,

i.e. without changing the existing metamodels. The use of proxy classes means that

virtual models can be used. A virtual model contains proxies representing elements

of other models [106]. That is, a virtual model does not contain concrete (domain)

data; the data is contained in the model objects represented by the proxies. For

Artefact D, virtual models can be realised if two conditions are fulfilled: 1) all

classes of the view metamodel are proxies and 2) all setter and getter methods for

the class attributes are overridden (in Java) to propagate/acquire values from the

target objects (that the proxy objects represent). The objects of the proxy classes

are used in the linking model as before to indicate what model objects should be

updated when the virtual model is updated. It is possible to extend the artefact to

update several concrete model objects based on ”updating” one single proxy object.

This may be interesting when the models cover overlapping views of some degree.

An object of a proxy class is always ”virtual” by default, which means that a model

can be partially virtual, i.e. where some values are propagated/acquired to/from

underlying models, whereas other changes are stored directly in the model of the

view metamodel.

Similarly, the approach discussed in Related Paper II allows building a new

metamodel for a particular view and connecting its operational semantics with the

operational semantics of other metamodels in a service-oriented manner. On the

contrary to Artefact D, it is only possible to invoke operations and not setting and

getting attribute values. Artefact E also supports defining new views by utilising

multiple inheritance, as discussed briefly. That is, a new view (metamodel type)

comprising concepts from several metamodel types can be created by inheriting

classes from the metamodel types. Model/view synchronisation is not available

when using inheritance to define a new view.



126 7.1. General Discussion

7.1.7 Additional Artefacts

We have developed two additional artefacts which are discussed in research reports.

The first artefact, as described in Research Report I, is an extension of Artefact

C, comprising eight operations for refactoring of metamodels and an experimental

approach for automatically detecting refactoring possibilities in metamodels. The

approach is based on instantiating the operations with structures from a metamodel

and evaluating whether the operations can be applied successfully (based on the

premises of the operations). The possible refactoring patterns are presented to the

user who selects which patterns to apply. The refactoring of the metamodel is

reflected on existing models which maintain conformance with the metamodel.

In Research Report II, we discuss a language for integration of metamodels’ op-

erational semantics. The approach works by exporting and importing metamodel

structure; exported structure, e.g. attributes and operation signatures, of one

metamodel are imported within class operations of another metamodel. The im-

ported structure can be used to define statements in the operation. That is, the

value of an attribute can be read or set from the operation, and an operation can

be invoked. Since structure is imported in operations, the approach does not induce

impacts on other artefacts since the relations between a metamodel and other arte-

facts do not consider the contents of operations. It is possible to attach contracts to

the exported structure, e.g. stating that the value of an attribute has to be within

a certain range. The language has been implemented as an executable prototype.

We will refer to this artefact as Additional Artefact II.

7.1.8 Usage Scenarios for the Artefacts

Artefact A/B (seen as one artefact) and Artefact C support certain kinds of meta-

model adaptations, i.e. constructive/additive and corrective/refactoring adapta-

tions. In addition, the artefacts support different kinds of metamodel compositions

and model migration/composition. The limited set of directives and operations

means that the artefacts, in their current versions, are best-suited for a specific kind

of usage scenarios, i.e. each tool has strengths and weaknesses [75].

Eight categories for choosing a model migration tool (with preceding adaptation)

is given in [75]. These are 1) frequent, incremental evolution, 2) reverse engineering,

3) modelling technology diversity, 4) quicker migration for larger models, 5) minimal

dependencies, 6) minimal hand-written code, 7) minimal guidance from user and 8)

support for metamodel-specific migration. For Artefact A/B and Artefact C we

believe the optimal usage scenarios are frequent, incremental (additive) evolution

where there is minimal need for hand-written code and minimal guidance from the

user, and where metamodel-specific migration is common, i.e. 1), 6), 7) and 8). In

addition, the Artefact A/B are specifically designed for metamodels that also define

operational semantics.
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For Artefact D and Additional Artefact II the usage scenarios are for integrating

the operational semantics of metamodels that define such, where it is important

to minimise impacts on artefacts and minimise changes to the metamodels. The

artefacts work well for prototyping integration between metamodels and in testing

scenarios. Also, situations where metamodels should only be loosely coupled are

ideal.

Metamodel types, i.e. Artefact E, are useful for creating language variations that

can utilise a common set of tools and behaviour.

Artefact A/B and Artefact C support similar usage scenarios. The main dif-

ferences are that Artefact A is type-safe, supports metamodels with operational

semantics, and are based on the use of templates.

Artefact D and the Additional Arterfact II also support similar usage scenarios.

However, the way integration of operational semantics is achieved indicates where

the artefacts are best suited. For Artefact D, integration is achieved in terms of

using proxy classes that override classes of other metamodels. For the Additional

Artefact II, integration is achieved by exporting structure from one metamodel that

is imported within class operations of another metamodel. Structure can be impor-

ted within arbitrary operations. It is also possible to import structure from several

metamodels within a single operation. This means that the approach is highly flex-

ible. However, it also makes the approach potentially more difficult to reason about

and understand for all stakeholders of a project. Additional Artefact II does not

induce any impacts on artefacts as long as the specification of what structure to

be exported is specified in an external document, i.e. not within the metamodels’

definitions (this is not supported by the prototype, but it is straightforward to im-

plement). Artefact D may induce impacts if a proxy class is added, i.e. if none of

the existing classes in a metamodel can be used as a proxy class. Whether to use

Artefact D or the Additional Artefact II depends both on the flexibility required,

what stakeholders that are involved and how critical it is to not induce impacts

on other artefacts, e.g. for prototyping and testing scenarios impacts may be more

acceptable.

7.1.9 Combining the Artefacts in the Same Modelling Environment

The artefacts yield different ways of composing and adapting metamodels. Each

artefact operates according to a set of rules, i.e. along a dimension. By combining

the artefacts we are able to compose and adapt metamodels along several dimen-

sions. For instance, metamodel templates may contain a combination of metamodels

and metamodel types. A template and the outer class of a metamodel type may

utilise generic type parameters. Moreover, metamodels produced by instantiating

templates may be integrated by creating mappings between them. Also, by extend-

ing a metalanguage with constructs for exporting and importing structure and for

treating metamodels as services we can integrate metamodels that are created in
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different metamodelling frameworks.

Furthermore, model types [53] and the built-in aspect weaving mechanism of Ker-

meta may be used in combination with the artefacts. Similarly as for metamodel

types, model types may be used when specifying generic template directives. Spe-

cifically, a generic directive may list one (or more) model types that specify the

structure that has to be matched in a metamodel. This includes listing several dif-

ferent model types, where each of the model types gives an optional set of required

structure/classes that needs to be matched.

We have mentioned how a revised version of the metamodel template mechanism

may have generic type parameters. A metamodel type can also be used to specify

a type parameter, i.e. the valid arguments have to be subtypes of the metamodel

type. Alternatively, model types can be used in a similar way. By using model

types the arguments do not have to be derivatives of a metamodel type. Instead,

the arguments/classes may be chosen as long as they can be matched successfully

with respect to the model type used as type parameter. The result of instantiating a

metamodel template with an argument(s) is a customised metamodel including the

provided arguments in its definition. In particular, this brings interesting options to

the table with regard to customising/integrating operational semantics.

Another possible direction is to use a metamodel type to define the operational

semantics of a corresponding model type. That is, the classes of the metamodel type

reflect those of the model type and vice versa. This allows providing operational

semantics for model types.

7.2 Evaluation

In this section we evaluate the artefacts based on metrics proposed by others in the

field and according to the requirements stipulated in Chapter 5. We also give our

thoughts on usability of the artefacts and how easy the artefacts are to learn.

7.2.1 Evaluation with Respect to Metrics

Here we will evaluate the artefacts with respect to metrics proposed in the literature.

We are not aware of specific metrics for evaluating Artefact D, Artefact E and the

Additional Artefact II.

Composition

It is not easy to compare composition approaches [20]. It may therefore be better to

evaluate an approach based on requirements and desirable properties. The authors of

[32] have identified four requirements for model composition frameworks, which are:

the ability to specify corresponding elements of different models, means for describing

how the corresponding elements are merged and composed, means for describing how
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non-corresponding elements are added to the target model and ways to manage and

reuse correspondences and merge/composition operations.

Artefact A and Artefact C meet three of the requirements. The forth require-

ment is not met. The correspondences between metamodels are specified manually

in the instantiation directives and operations. As an example, when merging two

classes the correspondence is established by referring to the two classes in the merge

directive/operation. Since correspondences are not specified separately, we do not

see that reuse of such makes much sense for Artefact A or Artefact C. We have

previously discussed reuse in terms of generic directives and operations.

The authors identify two additional desirable requirements, i.e. a composition

framework should provide ways of minimising the effort needed to specify composi-

tion operations, and a composition framework should not be dependent on a specific

metamodel for the purpose of supporting backwards compatibility, extensions and a

variety of tools. None of the artefacts consider these requirements explicitly.

Finally, the authors list four requirements for model composition tools: the ability

to verify composition operations, means for executing the operations, a debugger for

analysing the composition and a mechanism for serialising models. The prototype

for Artefact A satisfies the first, second and fourth of these requirements.

A framework for evaluating aspect-oriented modelling approaches is proposed in

[92]. The framework comprises a catalogue of evaluation criteria. We will use a

selection of these criteria to classify the artefacts, i.e. we focus on criteria pertinent

to concern composition. This allows comparing the artefacts with the approaches

evaluated in [92]. We will later compare the artefacts to one of these approaches.

The framework is primarily designed to evaluate UML-based approaches. Therefore,

there are some criteria that are not applicable to the artefacts. The criteria are

primarily relevant for Artefact A and Artefact C. However, we will relate to the

other artefacts where appropriate.

Composition Mechanism The composition mechanism used by Artefact A and

Artefact C is known as a compositor (CMP), i.e. classes are merged. In addition, the

artefacts support composing metamodels by defining relationships between classes.

Element Symmetry The artefacts support concerns that are decomposed symmet-

rically. This means that all concerns, both non-crosscutting and crosscutting, are

co-equal first-class elements that have the same underlying structure (as opposed

to having base and aspect concerns of different structures). We have discussed how

asymmetric decomposition of concerns can be supported as an extension of Artefact

A.

Rule Symmetry Both Artefact A and Artefact C specify directives/operations for

composition in a symmetrical manner. This means that directives/operations are

specified outside of the concerns (metamodels) that are composed. For Artefact A, it
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may seem that the (composition) directives are specified asymmetrically since they

are specified within templates. However, the directives are not part of the concerns

and could have been specified in a separate document. This would not have changed

the composition process.

Composition Symmetry Since we have element symmetry, we also have composi-

tion symmetry. This means that concerns, i.e. metamodels, are composed symmet-

rically. There are no constraints (e.g. following a base/aspect scheme) with respect

to how concerns can be composed.

Composition Artefact A and Artefact C compose concerns statically. Artefact D

and Additional Artefact II compose concerns in both a static and dynamic manner:

the mappings between metamodel structures are created statically, but the opera-

tional semantics of the metamodels are first integrated (according to the mappings)

when the models are executed.

Conflict Resolution Artefact A relies on conflict avoidance, which means that con-

flicts need to be detected and resolved manually before they occur. This applies for

Artefact C as well. However, Artefact C additionally detects some naming conflicts

which are resolved automatically.

Structural Composable Element Classes are the only elements that can be merged

by Artefact A and Artefact C.

Behavioural Composable Element No elements describing behaviour can be com-

posed (the artefacts operate on class models, which are structural models).

Match Method There is no support for automatic matching of elements. A match

between two elements is specified manually. The original syntax of Artefact A uses

match-by-name to initiate a class merge. Artefact D is based on match-by-signature,

as the mappings created between elements can be seen as matching of their signatures

- which have to be similar/identical.

Merge For Artefact A and Artefact C, a merge of two classes is specified manually

using a merge directive or merge operation, respectively. Artefact A supports mer-

ging several classes using one merge directive, whereas Artefact C can only merge

two classes with each use of the merge operation. Merging of multiple classes have

to be addressed by using several merge operations.

Override Artefact C allows overriding classes. This means that a class may replace

another as long as this new class contains at least all the properties and operations

of the class it replaces. Artefact D allows overriding classes using proxies.
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Bind Binding between composable elements (i.e. in a template parameter manner)

is not supported.

Abstraction The composition directives/operations have a low level of abstraction.

In other words, the specific classes that are intended to be merged are specified (in

contrast to a high level where e.g. composition is specified only by identifying two

packages whose contents should be composed).

We will compare the artefacts with the approach of [25], which is one of the

approaches being evaluated in [92] that most closely resembles the artefacts. Spe-

cifically, we will relate to how the approach supports composition of class diagrams.

We will base the comparison on the evaluation of the approach in [92].

Similarly as for Artefact A and Artefact C, the approach of [25] composes class

diagrams using the compositor mechanism. The approach differentiates between

base and aspect models. An aspect model is a parameterised package that contains

class diagram templates, communication diagram templates and sequence diagram

templates. A context-specific aspect is made by binding the elements of the tem-

plates to application-specific elements. The approach has element, rule and compos-

ition symmetry, and allows matching elements automatically based on their signa-

tures. This implies that structural conflicts are identified as well. An aspect model

is statically composed with a base model. Conflicts are addressed by using model

composition directives and element directives. The former allows specifying the or-

der of how aspects are composed with the base model. The latter allows adding,

removing and replacing model elements. The composable elements are Classifier,

Association, Operation and Model. Elements can be composed using merging or

overriding. The approach supports composition at both a high and low abstraction

level. For class diagrams, composition is performed at a low level.

Artefact A is also based on using templates. The difference compared to the

templates used by [25] is that metamodel templates do not have parameters in the

traditional sense. One way to use parameters for metamodel templates is in the

form of generic type parameters. This would allow customising a template for a

specific application. In Paper I we discuss similarly how this can be achieved for

nested classes. The approach of [25] allows describing the order of how aspects will

be composed with the base model. Using Artefact A, this is not required since con-

cerns/aspects can be composed directly with each other, i.e. we do not differentiate

between base and aspect models. An interesting possible direction for metamodel

templates is to allow defining other types of models/diagrams within the templates,

e.g. sequence models. This would give an alternative for specifying behaviour, by

means of how messages are sent between operations. It would require support for

asymmetric composition in addition to the already supported symmetric composition

mechanism. The approach of [25] supports merging of properties and operations.

Supporting such for Artefact A and Artefact C would be possible by differentiating

between two operation modes, as previously discussed.
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Migration

Four requirements for automated coupled evolution are proposed in [71]. These are

pertinent to: reuse of migration knowledge, expressive/custom migrations, modular-

ity of coupled changes and the availability of a history.

Artefact A/B and Artefact C do not support reuse of migration knowledge with

the purpose of supporting metamodel-independent changes. We have previously

discussed a way of supporting directives and operations of these kinds by utilising

variables for model elements in the directives/operations.

Artefact A/B and Artefact C do not support specifying custom migrations. The

reasons for this are the same as those regarding adding additional directives/opera-

tions.

The requirement for modularity states that there should be support for specifying

a coupled change (adaptation and migration) independently of other coupled changes

so that the coupled changes do not affect each other. The artefacts fulfill this

requirement.

The artefacts support the requirement regarding history, which says that it

should be possible to migrate models separately from the metamodel adaptation,

e.g. because the models may be distributed. This requires that information (a

history) for migrating models is generated and made available to the user(s).

Nine criteria for comparing model migration approaches are given in [75], i.e.

construction, change, extensibility, reuse, conciseness, clarity, expressiveness, inter-

operability and performance. The paper compares four approaches with respect to

the criteria. We will use these criteria to evaluate the Artefact A/B and Artefact

C in the light of this comparison. Specifically, we relate and compare the artefacts

to the characteristics of COPE [63] which is one of the four approaches being eval-

uated. The reason we focus on COPE is that the other approaches are too different

from the artefacts to yield interesting reference approaches. COPE is a recognised

operator-based approach which resembles the artefacts. It is the basis for the Ed-

apt framework3. (We base our comparison with COPE on the evaluation of this

approach in [75].)

Constructing the Migration Strategy Artefact A/B and Artefact C derive a migra-

tion strategy based on the directives and operations that are applied on metamodels.

This resembles how COPE uses a history of applied operations to generate the migra-

tion strategy. The evaluation of COPE states that it is not always straightforward

to know how to sequence operations in order to get a correct migration. For Artefact

A/B and Artefact C this does not seem to be problematic. The likely reason for

this is that the artefacts only support a limited number of directives/operations,

in particular, destructive directives/operations (and moving of elements) are not

supported. The evaluation states that reverse engineering a large metamodel can

3http://www.eclipse.org/edapt
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be challenging. For Artefact A, this is likely not to be problematic since the in-

stantiation directives specify every change that has been applied to a metamodel,

which collectively describe how the metamodel can be reverse engineered. All the

instantiation directives are available by inspecting a template hierarchy. A similar

reasoning applies for Artefact C. An adaptation strategy together with the gener-

ated effects (i.e. the name mappings) specify every change that has been applied to

a metamodel. However, the adaptation strategy and effects need to be stored for

later reference if reverse engineering should be supported.

Changing the Migration Strategy COPE supports fixing migrations that are in-

correct. It is also possible to chain migration strategies which means that models of

any previous metamodel version can be migrated to the current metamodel version.

For Artefact A and Artefact C, the transformations for migration are derived based

on the instantiation directives and operations that are used. Hence, migration only

makes sense when the metamodels in question have been adapted (and composed)

successfully. If this is the case, the migration will also be successful (only formally

proven for Artefact C). Artefact A supports chaining of migration strategies as well.

This means that models conforming to a previous metamodel version can be mi-

grated to the current metamodel version (i.e. of the same branch). This can easily

be achieved by specifying the source and target metamodel in a template hierarchy,

which results in the generation of a chained migration strategy (basic transforma-

tions). The same applies to Artefact C. However, as stated previously, this requires

the adaptation strategies to be appended after each other and the effects for all

the adaptation steps (metamodel versions) to be collected and normalised (i.e. in-

termediate names for elements are discarded). Together the composite adaptation

strategy and collected effects contain all the information necessary to migrate models

of a previous metamodel version.

Extensibility The library of available operations in COPE is extensive. It is also

possible for a user to write his/her own operations using a transformation language.

For Artefact A/B and Artefact C we have a limited set of directives and operations,

respectively. It is not possible for the user to write his/her own directives/operations.

Artefact C supports rule inheritance.

Reuse COPE allows reusing coupled operations (i.e. capturing both metamodel

evolution and model co-evolution). User-specified operations can also be reused.

Artefact A/B and Artefact C support reuse of directives and operations. However,

the specific elements referred to in the directives/operations need to be updated to

match those of another metamodel(s). We have discussed how generic variants of

the directives and operations can be made by using variables.
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Conciseness For COPE, each operation application is specified using one line of

code. The same applies to directives and operations for Artefact A and Artefact

C. The only exception is the definition of code blocks for Artefact A which may

have an arbitrary number of lines of code. An example of adaptating a Petri net

metamodel (with migration) is used to measure the number of operations needed

by each mechanism. COPE requires using 11 operations to perform the intended

adaptation (with migration). Performing the same adaptation using Artefact A sums

up to 10 instantiation directives if we exclude the default instantiation directive

which is always present, and count four usages of a fictive directive for deleting

references (since this is not supported). In addition, three new classes need to be

created (added without using the metamodel template mechanism). For Artefact C

we need to use 12 operations (including four usages of a fictive operation for deleting

references).

An example of adapting (with migration) the GMF Graph metamodel from ver-

sion 1.0 to version 2.0 requires 76 operations and 73 lines of additional code using

COPE. Artefact A and Artefact C do not have directives/operations for deleting ref-

erences. This action is required for adapting the GMF Graph metamodel. However,

we have used Artefact A and Artefact C for adapting the GMF Graph metamodel

from version 1.0 to 2.1 (extracts of these metamodels are found in [102]) with the

exception of deleting references. For Artefact A the adaptation requires 11 directives

(1x class renaming, 2x reference renaming, 4x code blocks, 4x add code blocks) and

adding three new classes. For Artefact C this requires using 11 operations (3x add

class, 4x add property, 1x rename class, 2x rename property, 1x add superclass).

In both cases, the resulting metamodel is well-formed. However, three old refer-

ences (one regular and one bi-directional) are present which clutter the metamodel

definition. Deleting these would require using a delete reference directive/operation

three times. In addition, Artefact C does not have the ability to change a class from

being abstract to concrete. This is a trivial action, but would require using one more

operation.

Note that the counts for the directives/operations for the two cases (Petri net

and GMF) only reflect the adaptation of the metamodels and do not address specific

concerns with respect to migration (as automatic migration when deleting elements

poses certain difficulties). Therefore, comparing the numbers with those of COPE

is not accurate.

Clarity A release history records what operations that have been applied when

using COPE, i.e. it is clear what changes that have occurred. Similarly, a template

hierarchy created using Artefact A contains all instantiation directives that have

been used to produce a certain metamodel variant or version. By traversing the

hierarchy it is possible to collect all directives that represent the differences from one

metamodel version to another. Artefact C does not store what operations that have

been used. To achieve the same level of documentation, it is required to manually
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save the adaptation strategies and generated effects.

Expressiveness COPE was able to adapt/migrate both test metamodels/models

given (Petri net and GMF Graph). Adaptation and migration of the Petri net

metamodel and models was achieved using only pre-defined operations. The GMF

Graph metamodel/models were adapted/migrated using pre-defined operations and

two custom migration actions. Artefact A and Artefact C do not have a directive/-

operation for deleting references. They can therefore not adapt the specific Petri net

metamodel as desirable. Adapting the metamodel using Artefact A and Artefact C

gives a well-formed metamodel. However, there are additional (obsolete) references

that clutter the metamodel definition. The artefacts are able to adapt the GMF

Graph metamodel 1.0 to a well-formed 2.1 version. However, as with the Petri

net case, we end up cluttering the metamodel with obsolete references. Also, the

artefacts do not support specifying custom migrations using imperative constructs.

Interoperability COPE (the tool) has certain dependencies, e.g. it requires Eclipse

and EMF. It does not require having both source and target metamodels for creating

a migration strategy. The source metamodel may be reverse engineered from the

target metamodel. Artefact A (i.e. the prototype realising the mechanism) is built

on EMF and uses the Textual Modeling Framework 4 (metamodels and models have

to be conformant with Kermeta/Ecore). However, the artefact can be realised using

other kinds of platforms and frameworks. For generating the migration strategy and

performing the migration, both the source and target metamodels (templates) need

to be available. Artefact C is not implemented as an executable tool. The source

and target metamodels need to be available for generating the migration strategy.

The target metamodel is required when performing the model migration.

Performance We have not evaluated the performance (i.e. execution time) of the

artefacts. This is not relevant since we only have prototype implementation of the

artefacts which do not necessarily yield the fastest execution times possible.

Usability and Learnability

Usability and learnability can not be measured without empirical (user) studies.

We have not focused on this. However, we believe that the artefacts are straightfor-

ward to use - specifically Artefact A/B, Artefact C and Artefact E. Artefact A/B

and Artefact C use declarative directives/operations, whereas Artefact E is based

on class nesting which is a familiar concept. The conciseness of template instanti-

ations (Artefact A) and adaptation strategies (Artefact C) are also satisfactory, as

previously discussed.

4http://www.eclipse.org/modeling/tmf
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Involving non-technical stakeholders in the different phases of software devel-

opment is considered important. For Artefact A/B, Artefact C and Artefact D we

think this is possible without too much difficulties. This further depends on whether

appropriate, simple to use (graphical) editors are created.

Validation of Artefacts on Industrial Cases

A limitation of the work is that we have not validated the artefacts on industrial

(large-scale) cases. Case studies are important in order to learn how scalable and

robust the approaches are, and for identifying limitations, e.g. with respect to

missing directives/operations. Also, such evaluation makes it possible to estimate

cost-effectiveness and return on investment which are important concerns regarding

applicability of an approach. Obtaining industrial data is very difficult [16]. In

particular, getting access to models of industrial metamodels is not easy. There

exists a library of metamodels for experimental use5. However, there is just a few

metamodels that are available in different versions.

7.2.2 Evaluation with Respect to Requirements

Here we will discuss to what degree the artefacts meet the requirements stipulated

in Chapter 5. The requirements are not applicable for all the artefacts. It will be

clear from the text which artefacts the requirements apply to.

Specific Requirements

1. Metamodel composition mechanisms should automatically ensure and assert

the correctness of their application to the extent possible. Artefact A achieves

this by providing instantiation directives that preserve type-safety. Type-

safety holds regardless of how the directives are sequenced (assuming no con-

flicts occur). Artefact C addresses this by using operations that are designed

to ensure a correct composition. The operations are formalised in rules that

state the premises for achieving a correct composition. If the analysis of an

adaptation strategy, with respect to a number of metamodels, is successful

then correctness of the composition (and adaptation) is guaranteed.

2. Composition of operational semantics should be supported for metamodels that

define such in class operations. This is achieved for Artefact A by allowing to

override operations, which in turn allows composing the operational semantics

of metamodels. Artefact D addresses this by forwarding operation invoca-

tions between the operational semantics of different metamodels. Additional

Artefact II allows importing structures within operations, which means that

the operational semantics of different metamodels can be composed, i.e. the

imported structures can be used in statements of the importing operation.

5http://web.emn.fr/x-info/atlanmod/index.php?title=zoos



Chapter 7. Discussion 137

3. It should be possible to statically type-check metamodel compositions for meta-

models that specify operational semantics in class operations. Artefact A ad-

dresses this by relying on instantiation directives that preserve type-safety.

For Artefact D this is ensured by verifying that all the types of the unifica-

tion points between the metamodels are compatible or equivalent. Additional

Artefact II meets this requirement by checking that imported properties and

operations have the correct types with respect to the statements where they

are used. This includes checking that the actual arguments used when invok-

ing an imported operation are compatible with the formal parameters of the

operation. The artefacts rely on static type-preservation/-checking.

4. A metamodel composition mechanism should support composing an arbitrary

number of metamodels simultaneously. This requirement is met by Artefact A,

Artefact C, Artefact D and the Additional Artefact II. Artefact A and Artefact

C support symmetric composition. The other two artefacts compose/integrate

the operational semantics in an asymmetric manner, e.g. a metamodel that

uses a proxy class can be seen as a base model. However, a kind of symmetry

can be achieved by using a two-way integration of the operational semantics,

i.e. both metamodels take a base and aspect role simultaneously.

5. Metamodels should be organised in a way that eases reuse and avoids redund-

ancy of metamodel variations. For Artefact A, this is achieved by organising

templates in hierarchies. The hierarchies encode the history of evolution in a

tree-like structure. No other artefact addresses this requirement specifically.

6. Approaches for composing metamodels should take artefacts that are depend-

ent on the metamodels into consideration; in particular the models. Artefact

A/B and Artefact C address this when it comes to models by supporting

(semi-)automatic model migration, i.e. model conformance is re-established

automatically after metamodels are adapted and composed. Model composi-

tion is also supported based on the transformations and effects that are gen-

erated. This requires specifying what models (and objects) that should be

composed. We have implemented a transformation engine for Artefact B that

allows composing two models by merging their root node objects. Artefact

D and Additional Artefact II fulfill this requirement since using these does

not impact other artefacts significantly. This is achieved by defining map-

pings between metamodels externally (unification model) and by importing

structures within operations. The effects generated by Artefact C (and the

adaptation strategy) may be used for co-evolving other artefacts. We have not

evaluated this possibility.

7. Approaches for metamodel composition should support adapting metamodels

as part of the composition operation. Artefact A and Artefact C meet this

requirement by providing instantiation directives and operations, respectively,
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for adapting metamodels. Adaptation can be performed both before and after

composition.

8. Mechanisms supporting adaptation of metamodels should support both metamodel-

specific and metamodel-independent adaptations (coupled changes). Artefact A

and Artefact C only support metamodel-specific (coupled) changes. We have

discussed how metamodel-independent (coupled) changes can be supported by

generic versions of the directives and operations.

9. Migration approaches should produce conformant models automatically, to the

extent possible, and verify correctness of the migration. Artefact B partially

meets this requirement, whereas Artefact C meets the requirement. Artefact B

produces conformant models automatically by deriving transformations which

when executed migrate existing models. However, we have not proven that

the derived transformations always produce a correct migration (hence the

partial fulfillment of the requirement). For Artefact C we have proven that

migration will always yield conformant migrated models. That said, it may

be required to manually revise generated default objects and values to ensure

a sound model that properly reflects properties of the problem domain.

10. It should be possible to type metamodels. Artefact E allows metamodels to be

typed, and thereby supports using object-oriented mechanisms like subtyping

and polymorphism for metamodels.

General Requirements

1. Approaches for model management should be easy to use and reduce complex-

ity; not introduce new layers of complexity. Artefact A provides a simple and

intuitive syntax for the instantiation directives, which we believe are straight-

forward to use. Sequencing the directives is not challenging. The only re-

quirements such wise is that renaming of properties and operations, with the

purpose of avoiding conflicts, is performed before classes are merged, and code

blocks have to be defined before they are added to a class. The complexity

regarding preservation of type-safety, e.g. propagation of names, are handled

behind the scenes and is therefore not a direct concern for the user. Using

Artefact C implies specifying an adaptation strategy comprising declarative

operations. We have not evaluated whether there is a difficulty associated

with sequencing the operations for larger adaptation strategies. Artefact A/B

and Artefact C migrate models (semi-)automatically. The only required action

by the user is to specify what models that should be migrated or composed.

2. Management of models should be performed using declarative languages to the

extent possible. Artefact A and Artefact C use declarative directives and op-

erations, respectively. Artefact A also allows creating code blocks with im-

perative code. For Artefact D, specifying mappings between the structures of
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metamodels can also be seen as a form of declarative language. However, the

model code associated with a metamodel utilising proxies needs to be updated;

which is achieved using imperative constructs of Java.

3. Approaches for model management should be applicable to as many (meta)-

models as possible. The artefacts support metamodels of arbitrary problem

domains. The directives and operations of Artefact A and Artefact C, respect-

ively, support metamodel-specific adaptations and compositions. Artefact D

supports specifying mappings between arbitrary types of metamodels.

4. Approaches for model management should be supported by development tools

and editors. We have not focused on defining tools or editors for the ap-

proaches. In particular, providing editors for specification of the adaptation

strategy (Artefact C), and the M1-/M2-mappings (Artefact D) would improve

readability and ease of use. That said, the prototypes of Artefact A and the

Additional Artefact II provide textual editors which improve readability.

7.3 Related Work

The papers and research reports discuss related work pertinent to the various arte-

facts, and try to differentiate the artefacts from similar approaches. In this section

we discuss recent work that has not been discussed in the papers or research reports.

This section can also be seen as an extension of the state of the art in Chapter 3.

In [101], the authors discuss a way of integrating models in a similar manner

as supported by Artefact D and Additional Artefact II, and discussed in Related

Paper II. The approach works by creating a virtual model in a conceptual space by

reusing features from models in technological spaces. A virtual model is made of

local concepts (instances of a generic modelling language) that are connected to the

concepts of models in the technological spaces. Additionally it is possible to define

new concepts in the virtual model that do not belong to any of the technological

spaces. The features in the models of the technological spaces are accessed using

technological connectors (representing different modelling paradigms), i.e. it is pos-

sible to read and write (and thus synchronise) information between models in the

technological spaces and the model in the conceptual space. Reuse of features from

the technological spaces can be achieved either by creating a dynamic link between

a concept in the virtual model and a concept in a technological space (which en-

sures synchronisation), or by using a proxy for a concept in a technological space.

There is a bi-directional connection between concepts in models of the technolo-

gical spaces and concepts in the virtual model, which means that updating either

model is reflected in the connected model. The approach supports models defined

using heterogeneous formalisms and different paradigms. The virtual model cross-

cuts the models of the technological spaces, i.e. it represents a combined model of

a multi-model system. Artefact D allows connecting metamodels and models using
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mappings. This in turn supports setting and getting values for attributes, and in-

voking operations. Similarly to what is discussed in [101], it is possible to construct

what is referred to as a virtual model (by first creating a new metamodel) and map

the concepts of this model to concepts of models conforming to existing metamodels.

The main difference is how the approach of [101] supports heterogeneous models (i.e.

different paradigms) and connecting concepts bi-directionally. Also, the approach

focuses on integration of structural models, whereas Artefact D focuses on integ-

ration of metamodels and models that have an associated operational semantics.

That is, the integration is achieved at runtime. In Related Paper II we discuss how

services can be used to support integration of heterogeneous models (for paradigms

that support operations).

EMF Views [106] is an approach for deriving modelling views non-intrusively

based on existing models (and metamodels). The views are non-materialised, which

means that actions performed on the view elements are forwarded to the underly-

ing models (only changes to attributes are propagated to the models). A viewpoint

is a description of concepts for a specific perspective that are collected from one

or more metamodels, potentially elaborated with new interrelations. A view is a

collection of virtual elements (proxies) connected to actual elements in the models

of the metamodels. A viewpoint is specified using a query language (or eventually

manually) that is oriented around three operations: project, select and join. Pro-

jection is used to specify what classes/features from the metamodels that should

be included in a view(point). Selection allows specifying conditions that need to

be satisfied by model elements for these elements to be included in the view. The

join operation specifies how the elements from the different models should be linked.

The links are stored in a weaving model. As discussed, Artefact D allows building

a new (viewpoint) metamodel whose concepts can be mapped to those of existing

metamodels. The linking model specifies what objects (whose Java runtime object

equivalents) that are to be connected during runtime. This means that a new view

can be constructed. However, the main difference is that integration between models

only happens at runtime. Also, synchronisation is only partially available. That is,

only changes to attributes in the new (view) model is propagated to the models of

the existing metamodels and not the other way around.

The authors of [108] discuss a lightweight mechanism for specifying extensions to

metamodels. The mechanism builds on EMF Views and allows defining extensions

using a generic textual DSL comprising a pre-defined set of atomic extension operat-

ors (of type add, modify and filter). Metamodel extensions are realised in a virtual

manner, i.e. the original metamodel is not changed intrusively. Instead, the ex-

tended metamodel utilises proxies that refer to elements in the original metamodel.

Similarly, models of the extended metamodel is virtualised in terms of proxies which

means that the concrete model data is propagated to existing models of the original

metamodel. Since the DSL is defined in a generic way (with respect to formalism)

it is possible for different modelling environments to reuse metamodel extensions.
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Eclipse EMF Facet6 is an approach for extending metamodels and models (by

adding new features) virtually (e.g. when a model is open) in a non-intrusive manner.

It is also possible to customise existing features. Query abstraction is supported

which means that facets can be specified and customisations can be performed using

query languages.

A consequence of using difference-based model migration approaches is that there

may be generated several alternative migration strategies that support transforming

existing models to valid instances of an evolved metamodel. This is also referred

to as the graph isomorphism problem, i.e. different transformations are equivalent

[112]. In [111], the authors present an approach that helps the user selecting the

optimal migration strategy. The approach works by manually defining a weaving

model between a model and classes in the evolved metamodel, i.e. the elements

in the model that need to be migrated are linked to the respective classes in the

evolved metamodel. The weaving model is then used as input to a transformation

that outputs a feature model. The feature model shows variability in terms of dif-

ferences between the alternative migration strategies, and shows potential conflicts

between the strategies. Traceability between metamodel changes and corresponding

migration alternatives is also supported. Artefact A/B and Artefact C are prescript-

ive approaches, on the contrary to inductive approaches [111], i.e. difference-based

approaches. For prescriptive approaches models are migrated based on predefined

operations, which avoids the difficulties of selecting a migration strategy after a

metamodel has evolved. The authors state that the process of model migration

should also consider aspects such as information erosion and finding a migration

strategy that applies the minimal number of model changes, and not only aiming

at preserving/re-establishing model conformance. For Artefact A/B and Artefact

C these aspects are not of particular interest as long as directives/operations for

deleting and moving elements are not used.

The authors of [112] present an approach for addressing co-evolution of models

in terms of an automated multi-objective optimisation process, i.e. co-evolution

is treated as an approximation based on heuristics. The process searches for a

combination of model edit operations dictated by three objectives: minimising 1)

the number of constraints that an evolved model violates with respect to the evolved

metamodel, 2) the number of applied model changes and 3) the dissimilarity between

the existing and evolved model. The model edit operations are of type create/delete,

retype (an element is replaced by an equivalent element with a different type), merge,

split and move. The best co-evolved models (based on an experiment) had a precision

and recall greater than 86% and a manual precision greater than 92%.

An approach for co-evolution of models and transformations by establishing

bi-directional transformations is discussed in [114]. The approach works by map-

ping two uni-directional transformations (e.g. as defined in ATL or ETL) to a

6http://projects.eclipse.org/projects/modeling.emft.emf-facet (version 1.0.0 was available in
2015)
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bi-directional graph transformation model using a higher-order transformation. The

higher-order transformation acts as a binding between the concepts of the uni-

directional transformations and the graph transformation. This way, changes ap-

plied to one artefact can be propagated to the other and vice versa. Changes can

be propagated between models, and between a model and a transformation (rep-

resented as a model). The models and/or transformation can reside on the same

or different abstraction levels. Transformation of multiple dependent models is also

possible. The approach of [114] resembles Artefact D to some degree, i.e. Artefact

D supports a uni-directional synchronisation of models at runtime. Supporting bi-

directional synchronisation should be possible as well, but we have not explored this

possibility.

We have not discussed related work on composition approaches for languages

defined using a grammar-based abstract syntax (as opposed to metamodels). The

reason for this is that the challenges pertinent to languages written in the two types

of abstract syntaxes differ. However, the approach discussed in [115] resembles our

work to some degree and is therefore of enough relevance to discuss. The approach

supports two types of language composition: language aggregation and language

embedding. Language aggregation works by relating concepts of different languages

with the purpose of interpreting models of the languages together yet keeping their

definition, i.e. the abstract syntax trees (ASTs) independent of each other. Lan-

guage embedding translates to composition of languages by embedding concepts

of one of the languages into the other language according to declared extension

points. The approach also supports language inheritance (can be seen as a form of

composition in this case). Language inheritance is used for extending or refining a

language where a new language can be defined by reusing and modifying concepts

of an existing language. Language aggregation, and particular cases of language

embedding, rely on using a symbol table infrastructure. The infrastructure allows

acquiring information from referenced models and interpreting elements of one lan-

guage as elements of another, e.g. when an element in one language references an

element in another language by name (language aggregation). The infrastructure

supports translating a concept of one language to a concept of another language. The

approach is based on the MontiCore Language Workbench7. Language aggregation

and language embedding resemble Artefact D where structure from one metamodel

can indirectly be referred to in another metamodel via a proxy. A proxy also acts

as an embedded concept from another language. Language aggregation and embed-

ding also resemble Additional Artefact II. Additional Artefact II supports defining

operations using imported structure and thereby allows integrating languages yet

preserving their autonomous definition. And finally, language inheritance resembles

metamodel typing, where a new metamodel/language can be defined in terms of con-

cepts of existing metamodels. The main difference between the approach in [115]

and the artefacts discussed in this thesis is that integration of models (with respect

7http://www.monticore.de



Chapter 7. Discussion 143

to language aggregation and embedding) can be achieved without impacting their

validity (i.e. not breaking model conformance). Also, the artefacts are practically

non-intrusive with respect to changing the metamodels, which essentially avoids im-

pacting other artefacts like tools. Both Artefact D and Additional Artefact II use a

form of identifier lookup, resembling the symbol table infrastructure of [115].

In [104][105] the authors discuss how graphical concrete syntaxes can be defined

in terms of metamodel specialisation (also referred to as an extension) instead of

metamodel instantiation. In the latter case a graphical syntax definition comprises

a collection of objects that are instances of a type model. On the other hand,

when using metamodel specialisation a specific graphical syntax definition is made

by specialising the classes of a base metamodel which contains concepts for defining

graphical syntax. The argument for using this approach is that the definition is direct

(at the same metalayer), precise and more understandable than using metamodel

instantiation. The authors argue that the innovation relies on the specialisation of

a whole metamodel. The work relates to that of Artefact E, i.e. the theory for

realising metamodel types. Similarly, we argue that a metamodel can be typed

and specialised as a whole. The authors of [104][105] base their approach on UML,

which means that associations can be redefined, i.e. the name of an association

end can be changed and the multiplicity may be narrowed. For Artefact E we

have not discussed this possibility; if the class operations of a metamodel contain

code (or similarly if an interpreter is used) then redefinition of associations requires

redefinition of operations as well. Otherwise, existing code will no longer execute

correctly. For the approach discussed in [104][105] it is not possible to add new

attributes or associations, but it is possible to specify OCL constraints. Other

specialisation restrictions are also enforced, which the authors argue are required to

ensure that the specialised classes preserve the intended meaning (though restricted)

of the classes in the base metamodel. Relating to Artefact E, new contents can

be added arbitrarily to the specialised classes. We argue that this is required for

reflecting how concepts evolve. Also, it means that more metamodel adaptations are

possible. We have not discussed OCL, but we foresee that it may provide a means

of increasing the preciseness of specialised classes.





Chapter 8

Conclusions and Future Work

In this thesis we have studied metamodel composition and adaptation, integra-

tion of metamodels’ operational semantics, (semi-)automatic model migration and

metamodel typing. The study aimed to find flexible solutions to how metamodels

can be composed and adapted (type-safely) with corresponding automatic model mi-

gration and composition, how impacts on artefacts in the metamodelling ecosystem

can be minimised (as a consequence of metamodel composition and adaptation) and

how metamodels can be typed to support reuse and variance. We here summarise

the main achievements in terms of contributions and identify improvements for the

artefacts.

8.1 Achievements

Based on the definition of package templates, we have derived a template-based

mechanism for type-safe composition and adaptation of metamodels. All of the sup-

ported template instantiation directives preserve type-safety, which means that the

metamodels may contain operational semantics which can be composed and adapted

as well. As a continuation of this mechanism, we have created a framework that

(semi-)automatically migrate or compose existing models, whose metamodel(s) have

been adapted and/or composed, based on the instantiation directives that have been

used. To the best of our knowledge, there are no other approaches for metamodel

composition and adaptation that preserve type-safety to the degree our mechan-

ism does. The metamodel template mechanism addresses many of the challenges

regarding metamodel composition, e.g. it ensures the correctness of compositions,

it allows composing an arbitrary number of metamodels simultaneously, it provides

means for easy reuse where metamodel versions are organised in hierarchies and its

use is oriented around easy to use directives.

In a similar approach, we formalise a framework for analysis of metamodel adapt-

ation and composition with corresponding model migration and composition. We

are not aware of any work that formalises these operations and proves that model

conformance is re-established automatically by means of a framework for analysis.
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We have created a framework for integrating the operational semantics of meta-

models which can be used practically non-intrusively. This in turn results in min-

imal impacts on artefacts like tools and editors. The integration of the operational

semantics is achieved by creating structural mappings between elements of different

metamodels. The mappings allow the models/code to get and set values of attrib-

utes and invoke operations at runtime on cross of metamodel boundaries. Similarly,

we have discussed an additional artefact comprising a language for exporting and

importing metamodel structure, which also allows integrating the operational se-

mantics of metamodels while creating few impacts on other artefacts.

A theory for defining metamodel types has been proposed. By defining a meta-

model within a class, we are able to define a reference type that tools and other

artefacts can be built around. A metamodel type that subtypes the reference type

is compatible with the tools and artefacts (i.e. with respect to the concern of the

supertype). This ensures that operational semantics and other forms for processors

can be defined once and reused by several metamodels. It is possible to consider (and

process) a metamodel type according to several views. Metamodel types support

inheritance and specialisation of metamodels.

8.2 Future Work

We have discussed some limitations with the artefacts. This section summarises

directions for future work according to these limitations. Specifically, there are

extensions we believe would improve the value and applicability of the artefacts.

8.2.1 Extensions

Artefact A and Artefact C do not support deleting or moving structural elements in

metamodels or changing multiplicities for class properties (Artefact C supports mov-

ing properties and operations in a class hierarchy under certain conditions). Extend-

ing the mechanisms with constructs for these actions would support a broader range

of adaptation scenarios. However, these actions should be differentiated as an addi-

tional set of directives/operations since type-safety and automatic re-establishment

of model conformance can not be guaranteed. A directive/operation that will not

induce difficulties with respect to type-safety or automatic model migration is that

of changing the lower bound of a multiplicity from zero to any number less or equal

to the upper bound.

Having means for coding custom migration using imperative constructs is ad-

vantageous. Such constructs would complement the additional set of directives/-

operations, e.g. by allowing describing how moved attributes or references can be

populated with values and objects, respectively. As an example, moving an attribute

can be seen as deleting one attribute and adding a new one (with the same name,

type and multiplicity) to another class. The value(s) of the old attribute should be
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moved respectively in the model, i.e. to the object of the class to which the attribute

has been moved1. This can be described as a mapping between the deleted attribute

and the new attribute.

Supporting generic versions of the directives/operations of Artefact A and Arte-

fact C is desirable. This would allow specifying adaptation/migration strategies

that can be reused. Moreover, we have discussed a way of supporting asymmetric

composition based on Artefact A which would allow specifying pointcuts with the

purpose of weaving in crosscutting concerns.

Another extension that would be advantageous is to support specifying the spe-

cific default values for primitively typed attributes. This is supported by EMF/E-

MOF, but not in Kermeta. For Artefact A and Artefact C specific default values

can be supported by extending the grammar for attributes/properties. For Artefact

C we would also require that the operation for adding properties is updated to al-

low specifying specific default values. This is not required for Artefact A as new

properties are added in code blocks which are written in Kermeta.

EMF is one of the most popular metamodelling frameworks. Implementing a

tool for supporting metamodel templates in EMF is therefore of interest. EMF is

principally close to Kermeta. However, the metamodel structure and operational

semantics (model code) are expressed in two different modelling spaces. This means

that at tool has to reflect this separation as well.

Finally, providing graphical tools will further improve usability and readability.

8.2.2 Validation

Validating the artefacts on industrial use cases is required to solidify the artefacts

and evaluate how applicable and usable the artefacts are. This requires Artefact C to

be implemented as an executable prototype (we have only evaluated it analytically

in terms of a proof, i.e. that model conformance can be guaranteed after migration).

We have not formally proved that Artefact B always ensures that model conformance

is maintained. A formalisation of this artefact would also make it easier for others

to generalise from our approach.

1This is not necessary when an attribute is pulled upwards in a class hierarchy.
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[45] J. Oldevik, M. Menarini and I. Krüger. Model Composition Contracts. In Model

Driven Engineering Languages and Systems, LNCS volume 5795, pages 531-545.

Springer 2009.

[46] J. Kienzle, W. A. Abed, F. Fleurey, J.-M. Jézéquel and J. Klein. Aspect-
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