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1. Introduction

The osculatory behavior of scrolls in PN has been investigated in many
papers. The fact that they contain many lines implies that the dimension of
every k-th osculating space is considerably smaller than what is expected for
a general smooth projective variety. In particular, for n-dimensional scrolls
over curves this dimension does not exceed kn and assuming that equality
holds at a general point one can describe the k-th inflectional locus and its
cohomology class [17]. Recently, an analogous investigation has been carried
out also for scrolls over projective varieties of dimension ≥ 2 [18].

A natural question arising from these studies (which we have also been
asked when presenting our results) is: what about other special varieties,
in particular quadric fibrations over a curve? The aim of this paper is to
approach this question. Actually, we focus on case k = 2 and we analyze the
relationships between the osculatory behavior of such varieties and several
other aspects of their geometry, like linear normality, embedding in a scroll,
ampleness, etc.

The case of quadric fibrations looks particularly nice since any quadric
fibration X ⊂ PN over a smooth curve C is naturally contained as a divisor
inside a projective bundle P over C, and the embedding of X in PN extends
to a morphism ϕ : P → PN to the same projective space, which maps every
linear fiber of P isomorphically to the linear span of the corresponding fiber
of X in PN . This map ϕ, however, is not always an embedding, which turns
out to be equivalent to the fact that its image R = ϕ(P ) may not be a scroll
over C.

In a sense this contrasts the naive expectation that the inflectional locus
of X should be determined by that of R. On the one hand, when ϕ is
an embedding, looking at the pair (P,X) one can compare the osculatory
behavior of X with respect to that of R along X. In particular, letting Φ2

denote the second inflectional locus, we have that Φ2(X) ⊇ X ∩ Φ2(R) and
we have examples showing that this is not an equality in general. On the
other hand, Φ2(X) always contains the set S of singular points of singular
fibers of X if n ≥ 3 and all singular fibers if n = 2, facts which are not
evident if we simply look at the pair (X,P ), because the linear span of a
fiber F of X is a linear Pn inside R regardless of the fact that F is a smooth
or a singular fiber.

Date: August 13, 2013.
1



2 A. Lanteri, R. Mallavibarrena, R. Piene

We realize the role of S via another, more direct geometric approach,
looking at X ⊂ PN by itself, and at the linear subsystem of hyperplane
sections of X having a given point x ∈ X as a singular point of multiplicity
3 (Theorem 12).

We want to emphasize that everywhere we work without the assumption
that X is linearly normally embedded. This allows us to put in evidence
flexes arising from isomorphic projections or even hypo-osculation phenom-
ena deriving from them (Section 7).

Among the results, we mention the upper bound we obtain for the highest
dimension σk of a k-th osculating space to an n-dimensional quadric fibration
X: we have σk ≤ k(n + 1) − 1 (Corollary 15). Observe that for k = n = 2
this is the same natural bound occurring for any smooth surface, while this
is not the case for k = 2 in higher dimension and for k ≥ 3 even for n = 2.
As a consequence, conic fibrations have no special role among surfaces from
the point of view of osculation for k = 2. However, we include this case in
our discussion not only for sake of completeness but also for the library of
examples they offer to illustrate concretely the various situations arising in
our study.

In some instances (maximal dimension of the generic osculating space
and appropriate codimension of the inflectional locus) we determine the
cohomology class of Φ2(X) by means of Porteous’ formula (Theorem 16).
In particular for a conic bundle in P6 with finitely many flexes we obtain an
explicit formula for their number (Proposition 23), which gives rise to some
speculation for the smallest number of flexes occurring in this context.

Special attention is devoted to the case of rational quadric fibrations,
i.e., C = P1, since in this case the vector bundle V giving rise to P is
decomposable, which allows us to make explicit all the integers (a0, . . . , an)
and b determining P , and X inside P . For instance, when a0 ≥ 2 we
show that Φ2(X) = S if n ≥ 3 and the union of singular fibers if n = 2
(Corollary 13). Another relevant point fitting into this setting is the study
of quadric fibrations X ⊂ P2n+1 (Proposition 17) and the related analysis of
the projective embeddings of Qn−1 × P1 and the corresponding inflectional
loci (Proposition 18 and Proposition19).

The paper is organized as follows. In Section 2 we relate the kth jet map
of a smooth projective variety to that of any of its smooth divisors and we
produce some Chern class computations. In Sections 3 and 4 we present
quadric fibrations over curves in general and over P1 respectively, focusing
the discussion on properties which are relevant for the sequel. Section 5
is devoted to the osculating spaces of quadric fibrations: we determine the
appropriate upper bound for their dimensions for any k and we compute
the cohomology class of the inflectional locus for k = 2. In Section 6 we
consider quadric fibrations whose enveloping scroll has small codimension in
the ambient projective space, producing also some explicit computations in
the rational case. In Sections 7 and 8 we focus on the case of conic fibra-
tions, i.e., n = 2, in projective spaces of dimension 6, 5 and 4, specializing
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our formulas and exhibiting several examples which illustrate a variety of
interesting phenomena.

2. Background material

Let M ⊂ PN = P(V ) be a non-degenerate smooth projective variety of
dimension m, let L be the hyperplane bundle and identify V with a subspace
of H0(M,L). Let PkM (L) be the kth principal parts bundle of L and let
jMk : VM = V ⊗ OM → PkM (L) be the sheaf homomorphism associating to
every section of L in V its kth jet evaluated at x, for every x ∈ M . We
simply write jk instead of jMk when there is no ambiguity for the variety M
we are dealing with. We recall that for every x ∈ M and for every k ≥ 2
the kth osculating space to M at x is defined as Osckx(M) := P(Imjk,x).

Let sk denote the maximum rank of jk,x on M . The kth inflectional locus
of M is defined as follows:

Φk(M) := {x ∈M | rk(jk,x) < sk}.
For instance, if (M,L) is a scroll over a smooth curve, then sk ≤ km + 1,
with equality in general (e.g., see [17]). We will evaluate sk for quadric
fibrations over curves in Section 5. Clearly, the dimension σk mentioned in
the Introduction is simply sk − 1.

Now let X ⊂ M be a smooth hypersurface and let LX be the restriction
of L to X. Let ΩX and ΩM denote the locally free sheaves corresponding to
the cotangent bundles of X and M respectively and let Sk denote the kth
symmetric power operation. To relate the kth principal part bundles of L
on M and of LX on X, consider the exact sequence

(1) 0→ OX(−X)→ ΩM |X → ΩX → 0

twisted by L, the standard exact sequence on M

(2) 0→ SkΩM ⊗ L → PkM (L)→ Pk−1
M (L)→ 0,

restricted to X, and the exact sequence on X

0→ SkΩX ⊗ LX → PkX(LX)→ Pk−1
X (LX)→ 0.

For k = 1, combining these three exact sequences we get a surjective map
φ1 : P1

M (L)|X → P1
X(LX) giving rise, thanks to the snake lemma, to the

following commutative diagram

0 0
↓ ↓

0 → OX(−X)⊗ LX → K1 → 0
↓ ↓ ↓

0 → ΩM |X ⊗ LX → P1
M (L)|X → LX → 0

↓ φ1 ↓ id ↓
0 → ΩX ⊗ LX → P1

X(LX) → LX → 0
↓ ↓ ↓
0 0 0 ,
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from which we see that the kernel of φ1 is the line bundle K1 = OX(−X)⊗
LX . Similarly, for k = 2 we have a surjective map φ2 as in the diagram

0 0 0
↓ ↓ ↓

0 → K⊗LX → K2 → OX(−X)⊗ LX → 0
↓ ↓ ↓

0 → S2ΩM |X ⊗ LX → P2
M (L)|X → P1

M (L)|X → 0
↓ φ2 ↓ φ1 ↓

0 → S2ΩX ⊗ LX → P2
X(LX) → P1

X(LX) → 0
↓ ↓ ↓
0 0 0 ,

where K is the kernel of the map S2ΩM |X → S2ΩX . This is a locally free
sheaf of rank

(
m+1

2

)
−
(
m
2

)
= m. On the other hand, taking into account the

exact sequence (1), we see that K ∼= ΩM |X⊗OX(−X). Once K is known, we
can describe K2 via the first exact row in the latter diagram. The obvious
relation between PkM (L) and its restriction to X is provided by the exact
sequence

0→ PkM (L)⊗OM (−X)→ PkM (L)→ PkM (L)|X → 0.

In particular,
(
PkM (L)

)
x
∼=
(
PkM (L)|X

)
x

for every x ∈ X. Now, let 〈X〉
be the linear span of X in PN , and let W be the quotient of V defined by
the inclusion 〈X〉 = P(W ) ⊆ P(V ). For k ≤ 2, taking into account the
isomorphism above, we can consider the following commutative diagram

V
jM
k,x−→

(
PkM (L)

)
x

ρ ↓ ↓ (φk)x

W
jX
k,x−→

(
PkX(LX)

)
x
,

where ρ : V → W is the obvious surjection. Set j′k,x = jXk,x ◦ ρ; clearly,
rk(j′k,x) = rk(jXk,x). So, letting k = 2, we have a commutative diagram

(3)

V
id−→ V

jM2,x ↓ ↓ j′2,x(
P2
M (L)

)
x

(φ2)x−→
(
P2
X(LX)

)
x
,

where the lower horizontal homomorphism is surjective, being induced by
the sheaf homomorphism φ2 introduced in the second big diagram.

Lemma 1. For every x ∈ X, we have

(4) rk(jM2,x)− (m+ 1) ≤ rk(jX2,x) ≤ rk(jM2,x)− 1.
4
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Proof. According to (2), we have

(5)
(
P2
M (L)

)
x
∼=
(
S2ΩM ⊗ L

)
x
⊕
(
P1
M (L)

)
x
.

at every point x ∈ M , and the same holds for
(
P2
X(LX)

)
x

at every point
x ∈ X. Now fix x ∈ X. With the local coordinates around x chosen before,
the matrix representing j′1,x is

M1 =


s
su1

.

.
sum−1

 ,

s ranging over a basis of V . Similarly, the matrix representing jM1,x is

M̃1 =
(
M1

sv

)
.

Clearly,
rk(j′1,x) = rk(M1) = m

and

(6) rk(jM1,x) = rk(M̃1) = m+ 1.

Now, j′2,x is represented by the matrix

M2 =
(
M1

N

)
,

where N is the matrix whose rows are the second derivatives suiuj . Note
that N defines an element of

(
S2ΩX ⊗LX

)
x
. Hence, due to the direct sum

in the analog of (5) rewritten for
(
P2
X(LX)

)
x
, we have

(7) rk(M2) = rk(M1) + rk(N) = m+ rk(N).

Similarly, jM2,x is represented by the matrix

M̃2 =

(
M̃1

Ñ

)
=


M1

sv
N
N ′

 ,

where N ′ is the matrix whose rows are the derivatives of sv. Since Ñ defines
an element of

(
S2ΩM ⊗ L

)
x
, due to the direct sum in (5) we have

rk(M̃2) = rk(M̃1) + rk(Ñ) ≥ rk(M̃1) + rk(N).

Therefore, recalling (6) and (7),

rk(M̃2) ≥ m+ 1 + rk(N) = rk(M2) + 1.

This shows that
rk(jX2,x) = rk(j′2,x) ≤ rk(jM2,x)− 1.
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So the right inequality in the statement is proved. Next, note that

rk(jM2,x)− rk(jX2,x) = rk(jM2,x)− rk(j′2,x) ≤ dim(Ker(φ2)x),

due to the commutative diagram (3). But the kernel of (φ2)x is
(
K2

)
x
, as we

see from the second big diagram, and, clearly, rk(K2) = rk(K) + 1 = m+ 1.
This proves the left inequality. �

Example. Suppose that (M,L) is a scroll over a smooth curve C, with pro-
jection p : M → C. Then rk(jM2,x) ≤ 2m+ 1 for every x ∈M . Suppose that
equality holds at the general point, and let Φ2(M) = {x ∈ M | rk(jM2,x) ≤
2m} be the inflectional locus of M .

(a) Let X ⊂ M be any smooth hypersurface not contained in Φ2(M).
According to (4) we have that m ≤ rk(jX2,x) ≤ 2m at every point x ∈
X \Φ2(M). In Section 5 we will see that in general, if p makes X a quadric
fibration then equality on the right holds at the general point.

(b) Let X be a fiber of p. Clearly rk(jX2,x) = m at every point x ∈ X since
(X,LX) = (Pm−1,OPm−1(1)). This situation is covered by Lemma 1 and (4)
holds with equality on the left at the general point of a general fiber.

(c) Consider a general element X ∈ |L|, so that (X,LX) itself is a scroll
over the same base curve C as M . Then rk(jX2,x) ≤ 2(m − 1) + 1 at every
point x ∈ X. This situation too fits into Lemma 1, but now both inequalities
in (4) are strict.

We conclude this section collecting some Chern class computations we
need in the sequel.

Lemma 2. Let M ⊂ PN be any smooth projective variety of dimension m,
let L be the hyperplane bundle and set L := c1(L).

(i) c1(P2
M (L)) = (m+ 2)KM +

(
m+2

2

)
L.

(ii) If m = 2, then c2(P2
M (L)) = 5c2(M) + 5K2

M + 20KML+ 15L2.
(iii) If m = 3, then c3(P2

M (L)) = 7K3
M + 20KMc2(M) − 8c3(M) +

72K2
ML+ 48c2(M)L+ 180KML

2 + 120L3.
Here ci(M) stands for the i-th Chern class of the tangent bundle.

Proof. Standard computations, using (2) recursively. In particular, (ii) can
be found in [14] and (iii) in [5]. �

3. Generalities on quadric fibrations over curves

Let X ⊂ PN be a smooth complex projective variety of dimension n, and
let L := OPN (1)|X . As in [6], we say that X or (X,L) is a quadric fibration
(a conic fibration if n = 2) over a curve if there exists a surjective morphism
π : X → C onto a smooth curve C such that any general fiber F of π is
a smooth quadric hypersurface Qn−1 ⊂ Pn and L|F = OQn−1(1). We point
out that this definition is slightly more general than that frequently adopted
in adjunction theory [3, p. 81]. Actually, in our context it is true that KX +
(n − 1)L = π∗A for some line bundle A ∈ Pic(C), but A is not necessarily
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ample. For instance, the del Pezzo threefold (P1 × P1 × P1,O(1, 1, 1)) is a
quadric fibration over P1 via any of the projections onto the three factors in
our sense, but not in the adjunction theoretic one.

So, let X be a quadric fibration over C. We know that every fiber of π is
reduced for any n ≥ 2, and irreducible if n ≥ 3. Moreover, singular fibers,
if any, are quadric cones with an isolated singular point and L induces the
hyperplane bundle on each of them. Actually, X has Picard number ≥ 2;
moreover, (X,L) cannot be a scroll over a curve at the same time (except
(P1×P1,O(2, 1)), for which, however, the assertion above is obviously true).
Then KX + (n − 1)L is nef [7, (11.7)]. Thus the assertion follows from [7,
(11.8.5), argument in (5-ii) at pp. 100–101]. In particular, for n = 2, any
singular fiber has the form e1 + e2, where e1, e2 are two distinct (−1)-curves
in X with ei · L = e1 · e2 = 1.

Note that our X can be embedded fiberwise into a projective bundle over
C (see e.g. [6, Section 4]). Actually, L embeds every fiber Fu = π−1(u),
u ∈ C, of π as a quadric hypersurface in Pn, hence h0(LFu) = n + 1.
Therefore V := π∗L is a vector bundle of rank n + 1 on C. Moreover, V is
globally generated. To see this, for every u ∈ C, consider the diagram

H0(X,L) −→ H0(Fu,LFu)

↓ ↓

H0(C,V) −→ Vu,

where the vertical arrows are isomorphisms. Since L is very ample and
embeds Fu as a quadric hypersurface Q ⊂ Pn (smooth or a cone with vertex a
point), the restriction homomorphism H0(X,L)→ H0(Fu,LFu) is surjective
and then so is also the homomorphism H0(C,V)→ Vu.

Set P := P(V), let ξ be the tautological line bundle on P , and let π̃ :
P → C be the projection. Then X embeds fiberwise into P , i.e., π̃|X = π;
moreover, ξ|X = L, and X can be regarded as a divisor in the linear system
|2ξ + π̃∗B| for some line bundle B on C (here the additive notation is used
for the tensor product of line bundles). Set L̃ := ξ. Clearly L̃ is a spanned
line bundle and the pair (P, L̃) is a scroll over C. We emphasize, however,
that L̃ is not necessarily very ample, nor even ample (for an example see
[20, Theorem 1.5, 7th case in the table]). A relevant point is the following.

Lemma 3. The inclusion X ⊂ P induces an isomorphism H0(P, L̃) ∼=
H0(X,L).

Proof. Consider the exact sequence

0→ −L̃ − π̃∗B = L̃ −X → L̃ → L → 0.

Put F := −L̃− π̃∗B. We have π̃∗F = π̃∗(−L̃)⊗(−B) = 0, since π̃∗(−L̃) = 0.
Since also R1π̃∗F = 0 by Grauert’s theorem (see e.g. [9, Ch. III, Corollary
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12.9, p. 288]), we get hi(P,F) = 0 for i = 0, 1. Then the assertion follows
from the long cohomology sequence. �

It follows from Lemma 3 that we can identify V with a vector subspace
of both H0(X,L) and H0(P, L̃). Let ϕ : P → PN be the map defined by V
as a subspace of the latter. Note that the embedding of X in PN is given
by ϕ|X Clearly, ϕ is a morphism if V = H0(P, L̃) since L̃ is spanned. In
principle, however, a proper subspace V ⊂ H0(P, L̃) need not span L̃, so
that ϕ could be only a rational map. We show that this is not the case.

Proposition 4. The map ϕ : P → P(V ) is a morphism. Moreover, ϕ
restricted to every fiber of P is an embedding.

Proof. Suppose that V ⊂ H0(P, L̃) does not span L̃ at a point p ∈ P . Let
F̃0
∼= Pn be the fiber of P containing p and let F0 = Q (Qn−1 or a cone with

vertex a point) be the fiber of X inside F̃0 = Pn. Consider the commutative
diagram

H0(P, L̃) iso−→ H0(X,L)

ρ̃ ↓ ↓ ρ

H0(Pn,OPn(1)) r−→ H0(Q,OQ(1)),
where the horizontal homomorphisms are defined by restriction to X and the
vertical ones by restriction to the fibres F̃0 and F0 respectively. By what we
said, s(p) = 0 for every s ∈ V ⊂ H0(P, L̃), so that ρ̃(V ) ⊂ H0(Pn,OPn(1))
is a strict inclusion. On the other hand, ρ(V ) = H0(Q,OQ(1)), because ϕ|X
is an embedding. This is a contradiction, since r in the diagram above is an
isomorphism. Thus V spans L̃. Moreover, the above diagram shows that
ρ̃(V ) = H0(Pn,OPn(1)) for every fiber F̃ of P , hence ϕ|

F̃
is an embedding.

�

We set
R := ϕ(P ) =

⋃
u∈C
〈Fu〉,

so that R is the (n + 1)-dimensional algebraic subvariety of PN swept out
by the linear spans 〈Fu〉 of all fibers Fu (u ∈ C) of X. We refer to R as the
enveloping ruled variety (or scroll, when R is so) of our quadric fibration
X ⊂ PN . Note that X being non-degenerate is equivalent to R having the
same property.

Proposition 5. R is a scroll (over C) if and only if ϕ is an embedding.

Proof. If ϕ is an embedding, then R is obviously a scroll. To prove the
converse, assumeR ⊂ PN is a scroll over C, with π′ : R→ C, π : P → C, and
π = π′ ◦ ϕ. Since R is a scroll, R = P(π′∗OR(1)). Recall that V := π∗OP (1),
and set U =: π′∗OR(1). The map OR(1)→ ϕ∗ϕ

∗OR(1), equal to the adjoint
of the identity ϕ∗OR(1) = OP (1)→ OP (1), gives a natural map α : U → V

8
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of locally free sheaves on C, of the same rank. Since ϕ is an embedding for
each fiber of C, it follows that α gives isomorphisms U⊗k(x)→ V⊗k(x) for
each point x ∈ C. But then (by Nakayama), α : U → V is an isomorphism.
The morphism P → PN = P(V ) is obtained from VC → V = π∗OP (1) via
P = P(V)→ C × P(V )→ P(V ), and similarly R = P(U)→ PN is obtained
by R = P(U) → C × P(V ) → P(V ). Since P → PN factors via R → PN ,
VC → V factors via the isomorphism α : U → V. This implies that P is
isomorphic to R, so ϕ is an embedding. �

Suppose that ϕ is an embedding and consider the following diagram

P
ϕ→ R = ϕ(P )

∪ ∩

X ↪→ PN .

A consequence of Lemma 3 is that X is linearly normally embedded in PN
if and only if so is its enveloping scroll R.

Let X ⊂ PN be a quadric fibration over C, and consider R = ϕ(P ). If
C = P1, then |L̃| maps P to either a scroll or a cone, as it will be clear
from Section 4. If, in addition, X is linearly normal, then V = H0(P, L̃) by
Lemma 3, hence R itself is necessarily a scroll or a cone. However, this is
no longer true in general if either

a) C 6= P1, even if X is linearly normal, or
b) C = P1, but X is not linearly normal.

As to a), R is neither a scroll nor a cone for the elliptic conic bundle in P5

discussed before Proposition 22, as we will see in Section 7. On the other
hand, R is a cone for the elliptic conic fibration in P4 mentioned in Section
8. As to b), consider that by projecting a scroll into a lower dimensional
space one can produce singularities, e. g., a double locus. Set ∆ = Sing(R).
Clearly, ∆ ∩ X ⊆ Sing(X) = ∅, since X is smooth. Therefore X does not
meet ϕ−1(∆). If dim(∆) > 0, this means that X, as a divisor inside P ,
cannot be ample. For an example see Section 7 (Togliatti’s example).

In particular we have

Corollary 6. If R is a developable or a singular ruled variety (but not a
cone), then X is either irrational or not linearly normal.

To conclude this section, we compute some numerical characters of our
quadric fibration X in terms of a := degV, b := degB and the genus q :=
g(C) of the base curve C.

Proposition 7. Let µ, g = g(X,L) and d = d(X,L) be the number of
singular fibers of π : X → C, the sectional genus and the degree of X ⊂ PN ,
respectively. Then

9
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(1) µ = 2a+ (n+ 1)b;
(2) g = a+ b+ 2q − 1;
(3) d = 2a+ b.

Proof. According to [6, (3.3)], the singular fibers of π correspond to the
zeroes of a section of the line bundle 2 detV + (n + 1)B on C. Hence their
number is given by (1). To prove (2), recall that KP = −(n + 1)L̃ +
π̃∗(KC + detV), by the canonical bundle formula for projective bundles.
As X ∈ |2L̃+ π̃∗B|, by adjunction we get KX + (n− 1)L = π∗G, where G is
a line bundle on C of degree deg G = 2q−2+a+b. Hence the genus formula
shows that g = deg G + 1, which gives (2). Finally, taking into account
the Chern–Wu relation, we have d = Ln = L̃n · X = L̃n · (2L̃ + π̃∗B) =
2L̃n+1 + π̃∗B · L̃n = 2a+ b. �

Note that when µ = 0, π : X → C is in fact a fiber bundle, hence we refer
to X as a quadric bundle. In particular, if X is a quadric bundle, it follows
from Proposition 7 (1), that b = − 2a

n+1 .

4. Rational quadric fibrations

Here we collect some material on rational quadric fibrations, which will
be useful in Section 6.

Quadric fibrations over P1 are discussed in [20, Sect. 1 in general, and
Sect. 4 for n = 3]. First of all, as we said, V = π∗L is a spanned vector
bundle of rank n+ 1 on P1, hence we can write

V =
n⊕
i=0

OP1(ai) where 0 ≤ a0 ≤ a1 ≤ · · · ≤ an.

Then a =
∑n

i=0 ai. Moreover, B = OP1(b). Let F̃ be a fiber of π̃ : P → P1

and let z0, . . . , zn be the homogeneous coordinates on F̃ corresponding to
the summands of V. As X is the zero locus of a section s ∈ H0(P, 2L̃+ bF̃ )
we can describe X fiberwise by an equation

(8)
(
z0 . . . zn

)
A

z0
...
zn

 = 0,

where A = [αij(u)] is a symmetric (n + 1) × (n + 1) matrix whose entries
depend on u ∈ P1. The map sending s to the matrix A is just the composite
isomorphism

H0(P, 2L̃+ bF̃ ) ∼= H0(P1, S2V ⊗OP1(b)) ∼=
⊕
i≤j

H0(P1,OP1(ai + aj + b)),

where S2 stands for the second symmetric power, from which we see that
αij ∈ H0(P1,OP1(ai + aj + b)). In particular,

detA ∈ H0(P1, 2 detV + (n+ 1)OP1(b)),
10
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so that the number of singular fibers of X is µ = 2a + (n + 1)b, according
to Proposition 7 (1). Notice that for n = 3 [20, Theorem 4.2] gives explicit
conditions for the existence of a smooth X in the linear system |2L̃+ bF̃ | in
terms of the multidegree (a0, a1, a2, a3) of V and b.

Now let Ci be the section of P → C corresponding to the surjection
V → OP1(ai). Note that L̃ · Ci = ai. Thus the map ϕ : P → PN defined by
V as a vector subspace of H0(P, L̃) sends Ci to a rational curve of degree ai
in PN (to a point if ai = 0). Computing the intersection (in P ), we have

(9) X · Ci = (2L̃+ bF̃ ) · Ci = 2ai + b.

Hence, if 2ai + b < 0 for some i, then X ⊃ Ci. In terms of the matrix A,
this means that αii(u) = 0 for all u ∈ P1, since h0(OP1(2ai + b)) = 0. In
other words, X contains the point (0 : · · · : 0 : 1 : 0 : · · · : 0) (with 1 in
ith position) on every fiber F̃ . On the other hand, if X 6⊃ Ci, then the
above relation says that X meets the section Ci at a finite set of points: in
particular, if X 6⊃ Ci, then

(10) X ∩ Ci = ∅ if and only if 2ai + b = 0.

So we have

Remark. Suppose that ai = 0. Then ϕ(Ci) is a point. This prevents Ci from
being contained in X, since ϕ|X is an embedding. Therefore X meets Ci at
b points (in particular, b ≥ 0).

In fact the possibility for some ai to be zero is somehow restricted, as
shown by the following proposition.

Proposition 8. Let a0 = 0. Then
1) a2 ≥ 1 and b = 0 or 1;
2) if, in addition, a1 = 0, then X meets both C0 and C1 at a single

point. In particular, b = 1.

Proof. If a2 = 0 then a0 = a1 = a2 = 0. Let Σ be the subscroll (P2-
subbundle) of P generated by C0, C1, and C2, consider the conic fibration
X ∩Σ and let γu denote its fiber inside F̃u := π̃−1(u), where u ∈ P1. Clearly
ϕ maps each fiber of Σ isomorphically to a fixed plane Λ ⊂ PN , but it cannot
map every fiber γu to the same conic inside Λ, since ϕ|X is an embedding.
Then ϕ maps two distinct fibers γu, γu′ (u 6= u′) to two distinct conics
inside Λ. As these conics intersect, we argue that there is a point on γu
and a point on γu′ having the same image via ϕ. But this is impossible
since ϕ|X is an embedding. This proves the first assertion in 1). The second
follows from [20, Lemma 1.1]. Now suppose that a0 = a1 = 0. In every
fiber F̃u consider the line `u joining the points where the fiber meets C0 and
C1. Let Σ = P(OP1 ⊕OP1) be the subscroll (P1-subbundle) of P generated
by C0 and C1, whose fibers are the lines `u. Note that ϕ maps every line
`u isomorphically to a fixed line λ ⊂ PN . Clearly Σ ∼= P1 × P1, and by

11
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considering the two projections π|Σ, ϕ|Σ of Σ, we can regard C0 and ` = `u
as the generators of Pic(Σ). Consider D := X ∩ Σ, which is a divisor on Σ.
Thus D = αC0 + β`, up to linear equivalence. We have

α = (αC0 + β`) · ` = D · ` = X · ` = 2,

since `u and X∩ F̃u are a line and a quadric hypersurface respectively inside
F̃u = Pn. On the other hand, C0 and C1 cannot be contained in X, by the
Remark above. Moreover, X ∩ C0 can consist of one point at most, since
ϕ|X is an embedding. Therefore

β = (2C0 + β`) · C0 = D · C0 = 0 or 1.

In conclusion, either: i)D = 2C0, or ii)D = 2C0+`, up to linear equivalence.
In case i) D consists of two sections in the same linear equivalence class as
C0. But then ϕ would map each of them to a single point of λ, which is
impossible since ϕ|X is an embedding. In case ii) D is a section of the
projection ϕ|Σ : Σ→ λ = P1, whose fiber is C0. Thus

1 = D · C0 = X · C0 = (2L̃+ bF̃ ) · C0 = 2a0 + b = b.

The same is true for C1, since a1 = 0 too. This gives 2). �

Finally, we point out that in the rational case the positivity properties of
X as a divisor inside P can be easily expressed.

Proposition 9. Consider the line bundle M := 2L̃+ bF̃ ∈ Pic(P ). Then
(1) M is nef if and only if 2a0 + b ≥ 0.
(2) M is ample if and only if it is very ample, if and only if 2a0 +b > 0.

Proof. Set W = V(−a0). Then W is normalized as in [3, p. 74]. Moreover,
P = P(W), with tautological line bundle ζ := L̃ − a0F̃ . Therefore M =
2ζ + (2a0 + b)F̃ . Then the assertion follows from [3, Lemma 3.2.4]. �

5. Second osculating spaces and flexes

Let X ⊂ PN = P(V ) be a quadric fibration over a smooth curve C with
dim(X) = n as in Section 3, and consider P and L̃. If ϕ is an embedding (in
particular L̃ is very ample) then the situation fits into the general setting
considered in Section 2, with (M,L) = (P, L̃). Moreover, things are easier
than there, because j′2,x = jX2,x in the present situation, thanks to Lemma
3. In particular, according to (4), at every point x ∈ X such that rk(jP2,x) =
2n+ 3 (i.e., x 6∈ Φ2(R); recall that R = ϕ(P )) we have

n+ 1 ≤ rk(jX2,x) ≤ 2n+ 2.

In a moment we will see that in many cases equality on the right occurs at
the general point of X. Anyhow, an obvious consequence of Lemma 1 is the
following

12
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Corollary 10. Suppose that ϕ is an embedding, so that we can consider
Φ2(R). Then Φ2(R) ∩ X ⊆ Φ2(X). In particular, if R is hypo-osculating
along X (i.e. rkjR2,x < 2n + 3 at every point x ∈ X), then X is hypo-
osculating.

In fact we have examples of strict inclusion, e.g. see the remark after
Theorem 12. Moreover, we will see that all singular points of singular fibers
of X belong to Φ2(X), even though the approach used in Section 2 does
not make evident their special role. So, here we study the dimensions of the
second (and higher) osculating spaces by a different approach, relying on
the size of the linear subsystem of osculating hyperplanes to X at a given
point. This will make evident the role of singular points of singular fibres.
Another advantage of this approach is that it does not require ϕ to be an
embedding.

From now on in this section we put jk = jXk , since there is no ambiguity.
We know that X has only finitely many singular fibers, and each of them is
a quadric cone with vertex a point. Let S be the set of these vertices. The
following lemma is inspired by [13]. For every hypersurface Z of X, every
point y ∈ X and every integer r ≥ 0 we denote by |V − Z − ry| the linear
system defined by the vector subspace of sections s ∈ V vanishing along Z
and having a point of multiplicity ≥ r at y. We use the same notation with
L in place of V whenever V = H0(X,L).

Lemma 11. Let x ∈ X and let F be the fiber containing x.
(i) If n ≥ 3 then F is a fixed component of |V − 3x|, the moving part

being either |V −F − 2x| or |V −F − x| according to whether x 6∈ S
or x ∈ S respectively.

(ii) If n = 2 then the same conclusion holds provided that x is not a
smooth point of a singular fiber.

(iii) Let n = 2, let F = e1 +e2 be a singular fiber, where e1 and e2 are two
lines, and let x ∈ ei \ ej. Then ei is a fixed component of |V − 3x|,
the moving part being |V − ei − 2x|.

Proof. First suppose that x ∈ Fsm is a smooth point of F and let D ∈
|V −3x|. In cases (i) and (ii) we can take an irreducible conic γ in F passing
through x. If γ were not contained in D, then we would get

2 = L · γ = D · γ ≥ multx(D) ≥ 3,

a contradiction. Therefore γ ⊂ D. This occurs for all γ and since the closure
of the locus swept out by the various γ’s is the whole fiber F we have that
F ⊂ D. Moreover, this happening for any D ∈ |V −3x|, we conclude that F
is a fixed component of |V − 3x|. Write D = F +E, where the residual part
E is a hypersurface. The fact that F is smooth at x implies that E must
have a double point at x. This shows that the moving part of |V − 3x| is
|V − F − 2x|. Now suppose that F is singular, i.e., a quadric cone, and let
x be its vertex. We can repeat the argument with a line ` ∈ F through x in

13
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place of a conic. Since LF is the hyperplane bundle, if ` is not contained in
D ∈ |V − 3x| we have

1 = L · ` = D · ` ≥ multx(D) ≥ 3,

a contradiction. Arguing as before we thus conclude that F is a fixed com-
ponent of |V − 3x|. Write D = F + E as before. Since F has a double
point at x, the only condition E has to satisfy it that of passing through x.
Therefore the moving part of |V − 3x| is |V − F − x|. This proves (i) and
(ii). The same argument applied to the line ei proves (iii). �

Lemma 11 shows that dim(|V − 3x|) is equal to either dim(|V −F − 2x|)
or dim(|V − F − x|) according to whether x 6∈ S or x ∈ S respectively in
cases (i) and (ii), while dim(|V −3x|) = dim(|V −ei−2x|) in case (iii). This
allows us to compute (or estimate) the dimension of |V − 3x|. Thus, from
the obvious equality

N = dim(|V − 3x|) + dim(Osc2
x(X)) + 1,

noting that dim(|V −F |) = N−(n+1) since 〈F 〉 = Pn, and dim(|V −ei|) = 2,
we get the following results.

a1) If x 6∈ S, and x is not a smooth point of a singular fiber in case n = 2,
then rk(j2,x) = n+h+1, where h is the number of linearly independent linear
conditions to be imposed to the elements in |V −F | in order to have a double
point at x; in particular, n + 1 ≤ rk(j2,x) ≤ 2n + 2 (since 0 ≤ h ≤ n + 1).
Moreover, let

WF := {s ∈ V |s = 0 on F}.
Clearly we can regard WF as a vector subspace of H0(X,L − F ). Suppose
that

L − F is ample and spanned by WF .

Then the right inequality above is strict if and only if x ∈ J1(WF ), the first
jumping set of WF (see [19]). In fact the higher jumping sets allow us to
say more, see below.

a2) If n = 2 and x is a smooth point of a singular fiber then rk(j2,x) =
2 +h, where h is the number of linearly independent linear conditions to be
imposed to the elements in |V − ei| in order to have a double point at x; in
particular, 3 ≤ rk(j2,x) ≤ 5 (since j1,x has rank 3 everywhere and h ≤ 3).
An additional comment as in a1) can be repeated referring to the vector
subspace Wei .

b) If x ∈ S, then n+ 1 ≤ rk(j2,x) ≤ n+ 2, with equality on the left if and
only if x is a base point of |WF |.

As a consequence, we obtain

Theorem 12. Let X ⊂ PN = P(V ) be a quadric fibration with dim(X) = n
over a smooth curve, and let L, S and WF for every fiber F be as before.

14



Inflectional loci of quadric fibrations 15

(1) We have n+ 1 ≤ rk(j2,x) ≤ 2n+ 2 for every x ∈ X, and rk(j2,x) ≤
n+ 2 for every x ∈ S.

(2) If n = 2, then rk(j2,x) ≤ 5 at any smooth point of any singular fiber;
in particular, Φ2(X) contains all singular fibers.

(3) If WF spans L − F for every singular fiber F , then rk(j2,x) = n+ 2
for all x ∈ S.

(4) If L−F is ample and spanned by WF for every fiber F , then rk(j2,x) =
2n+2 for all x ∈ (X \S)\

⋃
F J1(WF ) if n ≥ 3 (for all x not lying on

singular fibers and
⋃
F J1(WF ) if n = 2). In particular, if in addition

|WF | defines an immersion for any fiber F , then rk(j2,x) = 2n + 2
at all points x 6∈ S, if n ≥ 3 (all points not lying on singular fibers
if n = 2), and Φ2(X) = S (with rk(j2,x) = n + 2 for all x ∈ S) if
n ≥ 3.

In fact, looking at a single fiber Fu of X we can say even more. Assume
for simplicity that n ≥ 3. If L − Fu is ample and spanned by WFu , then

Φ2(X) ∩ Fu =
(
J1(WFu) ∩ Fu

)
∪ Sing(Fu).

Moreover, for any smooth point x of Fu lying on Φ2(X) we have that
rk(j2,x) = 2n+ 2− r if x ∈ Jr(WFu).

Remark. Suppose that L−Fu is ample and spanned by WFu for every u ∈ C.
Recall that the first jumping set J1(WFu) is just the ramification divisor of
the morphism defined by WFu . If h0(L− Fu) = n+ 1 for every u ∈ C, then
we have a finite morphism ψu : X → Pn and the ramification formula says
that KX = ψ∗uKPn +Ru, where Ru is the ramification divisor. Therefore

Ru = KX + (n+ 1)(L − Fu).

In particular, as (KX)Fu = KFu = −(n − 1)LFu since (X,L) is a quadric
fibration, we have that (Ru)Fu ∈ |2LFu |. Moreover, since all fibers are
numerically equivalent, we see that the numerical equivalence class of Ru
is the same for all u ∈ C: call it R. Thus both R and the numerical
equivalence class of the closure of Φ2(X) \ S, when restricted to any fiber,
are the same. So, under the assumptions above, Φ2(X) \ S cuts every fiber
Fu along a quadric section. Note however, that even if S = ∅, this does
not at all imply that the cohomology class of Φ2(X) is R. For an explicit
example see the discussion after Proposition 22.

The case when C = P1 is of particular interest because then all fibers are
linearly equivalent.

Let C = P1, let (a0, . . . , an) be the multidegree of V = π∗L, with 0 ≤
a0 ≤ a1 ≤ · · · ≤ an, and let V = H0(X,L) (i. e., assume that X is linearly
normally embedded). Consider the vector bundle

V ⊗OP1(−1) =
n⊕
i=0

OP1(ai − 1),

15
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whose tautological line bundle on P is L̃ − F̃ . Clearly, L̃ − F̃ is spanned for
a0 ≥ 1, and very ample for a0 ≥ 2. In particular,

i) if a0 ≥ 1 then WF spans L − F for every fiber F ;
ii) if a0 ≥ 2, then L − F is very ample for every fiber F .

So, in the rational case we have the following.

Corollary 13. Let X be a linearly normally embedded rational quadric fi-
bration and suppose that a0 ≥ 2. Then

(1) Φ2(X) = S and rk(j2,x) = n+ 2 at every point x ∈ S if n ≥ 3;
(2) Φ2(X) is the union of singular fibers if n = 2.

In particular, X is uninflected if and only if X has no singular fibers.

Note that if a0 ≥ 2, then Φ2(R) is empty [16, Corollary 2.3]. For instance,
let (a0, . . . , an) = (2, . . . , 2). Here the emptiness of Φ2(R) also follows from
the fact that ϕ(P ) = R ⊂ P3n+2 is a balanced rational normal scroll, fitting
in the range considered in [17, Corollary 2]. Since L̃ is very ample, so is
2L̃, and then any general element X ∈ |2L̃| is a smooth hypersurface. By
restricting the projection P → P1 to X we thus get a quadric fibration.
Since a = 2(n+ 1) and b = 0, there are µ = 4n+ 4 singular fibers, and then
Corollary 13 says that Φ2(X) = S consists of 4n+ 4 points if n ≥ 3. So here
we have the strict inclusion ∅ = Φ2(P ) ∩ X ⊂ Φ2(X) = S (compare with
Corollary 10).

Notice that conditions i) and ii) before Corollary 13 are only sufficient.
Actually the spannedness or very ampleness of a line bundle on X does not
imply that the same property holds for the line bundle on P inducing it.

The geometric approach developed before for k = 2 can be extended to
higher values, leading to the determination of an upper bound for the generic
rank of jk. As a byproduct, it will also exhibit an unexpected role played by
the parity of k. As before, let S be the set of singular points of the singular
fibers of X. Then Lemma 11 can be generalized as follows.

Lemma 14. Let F be the fiber containing x.
(i) Let x ∈ X \ S. Then the linear system |V − (k + 1)x| has

(i-a) (k − 1)F as fixed component, the moving part being |V − (k −
1)F − 2x|, if either n ≥ 3 or n = 2 and F is a non-singular
fiber.

(i-b) tei as fixed component, the moving part being |V − tei − (k +
1 − t)x|, if n = 2, F = e1 + e2 and x ∈ ei \ ej, where t = k

2 or
k+1

2 according to whether k is even or odd.
(ii) Let x ∈ S and set k′ = [k/2], where [ ] stands for the least integer

function. Then |V −(k+1)x| has k′F as fixed component, the moving
part being either |V −k′F −x| or |V −k′F −2x| according to whether
k is even or odd.

Proof. The proof proceeds by induction (on k) from Lemma 11. �
16
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This allows us to estimate the rank of jk,x at every point x ∈ X. For
example, for x ∈ X \ S if n ≥ 3 and for x outside the singular fibers if
n = 2, we have that dim(|V − (k + 1)x|) = dim(|V − (k − 1)F − 2x|) =
dim(|V − (k − 1)F |) − h, where h is the number of linearly independent
linear conditions needed to impose on elements of |V − (k − 1)F | in order
to have a double point at x. Clearly, h ≤ n+ 1. Note that for any integer s
we have dim(|V − sF |) ≥ dim(|V |)− s(n+ 1) since 〈F 〉 = Pn (with equality
for s = 1, because |V | is very ample). This gives

dim(|V − (k + 1)x|) ≥ N − (k − 1)(n+ 1)− h.

Therefore, from the obvious equality

N = dim(|V − (k + 1)x|) + dim(Osckx(X)) + 1,

we get the bound
rk(jk,x) ≤ (k − 1)(n+ 1) + h.

This shows that rk(jk,x) ≤ k(n + 1) for every x ∈ X \ S if n ≥ 3 and for
every x outside the singular fibers if n = 2. In any case, this inequality holds
at the general point, hence at any point of X. Similarly, for x ∈ S we get
rk(jk,x) ≤ k′(n+ 1) + 1 or ≤ (k′ + 1)(n+ 1) according to whether k is even
or odd. In particular we obtain

Corollary 15. Let X ⊂ PN = P(V ) be a quadric fibration of dimension n
over a smooth curve, and let sk denote the maximal rank of jk,x on X. Then

sk ≤ k(n+ 1).

Remark. Let M ⊂ PN be any smooth surface and let L be its hyperplane
bundle. Then rkP2

M (L) = 6. So, the upper bound for s2 provided by
Theorem 12 when n = 2 is the same holding for any smooth surface. It
turns out that conic fibrations over curves do not play any special role among
surfaces from the point of view of osculation if we confine to k = 2. This is
not the case, however, for k ≥ 3. Actually, for k = 3, Corollary 15 shows
that s3 ≤ 9, while rkP3

M (L) = 10.

We shall now come back to the case k = 2. Under suitable assumptions
we determine the cohomology class of the inflectional locus.

Theorem 16. Let X ⊂ PN = P(V ) be a quadric fibration of dimension
n ≥ 2 over a smooth curve, for which the generic rank of j2,x is 2n+ 2 (i.e.,
the maximum). Suppose that Φ2(X) is empty or of the expected codimension
(N − 2n)

(
n
2

)
. Then the cohomology class of Φ2(X) is given by

[Φ2(X)] = det[c(n
2)−i+j

(P2
X(L))], 1 ≤ i, j ≤ N − 2n.

Proof. Consider the vector bundle map

j2 : VX → P2
X(L).

17
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Note that VX and P2
X(L) have ranks dim(V ) = N+1 and

(
n+2

2

)
respectively.

Hence, due to the assumption on the rank of j2,x, the expected codimension
of the degeneracy locus D2n+1(j2), which is equal to Φ2(X), is

` :=
(
N + 1− (2n+ 1)

)((n+ 2
2

)
− (2n+ 1)

)
= (N − 2n)

(
n

2

)
.

Thus, if Φ2(X) has codimension `, then Porteous formula [8, Thm. 14.4,
p. 254] says that its class is given by

det[c(n+2
n )−(2n+1)−i+j(P

2
X(L)⊗ V ∨X )], 1 ≤ i, j ≤ N + 1− (2n+ 1).

This is the same expression as in the statement, since VX is the trivial
bundle. �

Remark. The condition that the generic rank of j2,x is maximal implies that
P2n+1 = Osc2

x(X) ⊆ PN , hence

(11) N ≥ 2n+ 1.

On the other hand, the fact that ` ≤ n is equivalent to N−2n ≤ 2
n−1 , which

in order to be compatible with (11) requires that

(12) n ≤ 3.

Therefore, conditions (11) and (12) fix the range of validity of the formula
in Theorem 16. It works for (n,N, `) = (2, 5, 1), (2, 6, 2) and (3, 7, 3). In
these cases, the explicit expression of [Φ2(X)] is given by c1, c2

1 − c2 and
c3 respectively, where ci = ci(P2

X(L)), and hence can be computed using
Lemma 2.

6. Quadric fibrations and enveloping scrolls
of low codimension

Let X ⊂ PN be a quadric fibration over a smooth curve C, and consider
again V, P := P(V), the morphism ϕ : P → PN defined by V , regarded as
a subspace of H0(P, L̃), and the enveloping ruled variety R := ϕ(P ). As
noted in Section 3, R ⊂ PN is an (n + 1)-dimensional variety swept out
by a 1-dimensional family of Pns parameterized by C. Clearly, X can be
embedded in a PN for any N ≥ 2n + 1, and, usually, one says that X has
small codimension to mean that codimPN (X) ≤ dim(X), i.e., N ≤ 2n.

Remark. If X has small codimension, then ϕ is not an embedding.
Otherwise, according to Proposition 5, R would be a scroll of dimension

(n+ 1) over C contained in P2(n+1)−2 = P2n, but this is impossible.

Therefore, the smallest value of N for which ϕ can be an embedding, is
2n + 1. So, let N = 2n + 1 and suppose that ϕ is an embedding. Then,
by Proposition 5, R is a scroll over C. But the only (n + 1)-dimensional
scroll over a curve in P2n+1 is the Segre product Pn × P1. Then C = P1,
and V = OP1(1)⊕(n+1). In particular, V = H0(P, L̃), a = degV = n + 1
and L̃ = OPn×P1(1, 1); then X ∈ |OPn×P1(2, 2 + b)| for some integer b.

18
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Furthermore, since R is Pn × P1 ⊂ P2n+1 Segre-embedded by ϕ, we have
h0(L) = h0(L̃) = 2n + 2, so that X itself is linearly normally embedded
in P2n+1 (this also follows from a general fact pointed out in Section 3).
Finally, the number of singular fibers of X is µ = (n + 1)(2 + b), hence
b ≥ −2, and equality occurs if and only if X is a quadric bundle. Moreover,
in this special case, from the fact that X ∈ |OPn×P1(2, 0)| we argue that
X itself is the product of a smooth (n − 1)-dimensional quadric with P1.
Recall that P = Pn × P1 ⊂ P2n+1 is perfectly hypo-osculating, because
rk(jP2,x) = 2n+ 2 < 2 dim(P ) + 1 at every point. Thus X is hypo-osculating
by Corollary 10. If µ > 0, then Φ2(X) ⊇ S 6= ∅, so that X cannot be
perfectly hypo-osculating. On the other hand, if µ = 0, i.e. X is Qn−1 × P1

embedded in P2n+1 via the Segre embedding, a direct check shows that j2,x
has rank 2n+ 1 at every point (e. g., see the comment concerning the case
α = 1 before Proposition 19; see also [23, Theorem 0.5] for n = 2). In
conclusion, this gives the following result.

Proposition 17. Let X ⊂ P2n+1 be a quadric fibration, with dim(X) = n,
hyperplane bundle L, and consider P and ϕ. If ϕ is an embedding, then
P = Pn × P1, ϕ is the Segre embedding, X ∈ |OPn×P1(2, µ

n+1)|, where µ is
the number of singular fibers of X, and X is linearly normally embedded. In
particular, (n + 1)|µ; µ = 0 if and only if X = Qn−1 × P1; moreover, X is
hypo-osculating, and it is perfectly hypo-osculating if and only if µ = 0.

A corollary of Proposition 17 is that ifX ⊂ P2n+1 is a quadric fibration not
linearly normally embedded, then ϕ is not an embedding (or, equivalently,
R is not a scroll by Proposition 5). The example of the Togliatti–del Pezzo
surface in Section 7 fits exactly in this situation.

As for the Segre product Qn−1×P1, we note that there is essentially only
one way to embed it in a projective space as a quadric bundle.

Proposition 18. Let X ⊂ PN be a quadric fibration. If X ∼= Qn−1 × P1,
then V = OP1(α)⊕(n+1) with α > 0.

Proof. Clearly P = P(V) with V as in Section 4. The assumption on X
implies that L = OX(1, α) for some integer α > 0. Moreover, KX = OX(1−
n,−2). On the other hand, by adjunction,

KX = (KP +X)X = (1−n)L+(a+b−2)F = OX(1−n, α(1−n)+a+b−2),

and by comparing these two expressions we get

α(1− n) + a+ b = 0.

Since X has no singular fibers we know that b = − 2a
n+1 . This, combined

with the above relation, gives

(13) (a, b) =
(
(n+ 1)α,−2α

)
.

19
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Keeping the notation as in Section 4, let Ci be the section of P corresponding
to the summand OP1(ai) of V. If Ci ⊂ X we have

ai = deg(Ci) = Ci · L̃ = Ci · OX(1, α) ≥ α.
On the other hand, if Ci 6⊂ X, then (9) and (13) show that

0 ≤ Ci ·X = 2ai + b = 2(ai − α),

hence ai ≥ α also in this case. Hence

ai ≥ α for every i = 0, . . . , n.

But
∑n

i=0 ai = a = (n+ 1)α by (13), and therefore ai = α for every i. �

It turns out that for X = Qn−1 × P1, any inclusion X ⊂ PN as a quadric
bundle, not necessarily linearly normal, factors through the inclusion X ⊂
Pn×Γ, where Γ ⊂ Pr is a smooth rational curve of some degree α(≥ r) and
the Segre embedding Pn × Pr ⊂ PN . Clearly, r = N−n

n+1 .

We can explicitly describe Φ2(X) for such X, at least when Γ ⊂ Pr can
be described by homogeneous coordinates

(14) (1 : u : · · · : uk : · · · : uα−1 : uα)

for k taking r − 3 values in the range 1 < k < α − 1. We insist on this
case, since the role these X play for quadric fibrations is analog to that of
balanced rational scrolls in the study of the osculatory behavior of scrolls.
First of all, we point out the following fact:

(15) u ∈ Φ2(Γ) if and only if u2 does not appear in (14).

Next, note that X, due to its special feature, is fiberwise defined in P by a
homogeneous equation of degree 2 not depending on the fibers. In terms of
the matrix appearing in (8), this says that A = [αij ] is a constant matrix
(with respect to u ∈ P1), and we can assume that A has the form:

A =

 0 0 −1
2

0 I 0
−1

2 0 0

 ,

I standing for the identity matrix of order (n − 1). In other words, X is
described in terms of the homogeneous coordinates z0, . . . , zn in the fiber F̃u
for any u ∈ C, by the following equation:

z0zn =
n−1∑
i=1

z2
i .

Every section Ci of P (i = 0, . . . , n) is a copy of Γ mapped by ϕ to a smooth
rational curve of degree α in a Pri ⊂ PN , and we can regard R = ϕ(P ) as
the decomposable scroll, in the sense of [16, p. 1550], generated by them.
Clearly, C0 ⊂ X, while Ci ∩X = ∅ for i = 1, . . . , n, due to the equation of
X. Set

ci(u) = Ci ∩ F̃u
20
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for every u ∈ P1, consider the affine coordinates vi = zi/z0 on F̃u and use
(v1, . . . , vn, u) as local coordinates on P . Identifying V with a subspace of
H0(P, L̃), every s ∈ V can be written locally as

s = c0(u) +
n∑
i=1

vici(u).

Thus, regarding V with a subspace of H0(X,L) and using (v1, . . . , vn−1, u)
as local coordinates on X, the same section s can be written as

s = c0(u) +
n−1∑
i=1

vici(u) + ψcn(u),

where ψ = ψ(v1, . . . , vn−1) =
∑n−1

i=1 v
2
i . Describing R ⊂ PN as a decompos-

able scroll we can assume that ci(u) has homogeneous coordinates given by
(14) in a linear subspace Pr ⊂ PN ; moreover condition (15) can be rephrased
for every Ci (embedded by ϕ). Thus points p ∈ X are described in PN by
the following homogeneous coordinates

(1 : u : .. : uk : .. : uα : v1 : v1u : .. : v1u
k : .. : v1u

α : .. : ψ : ψu : .. : ψuα),

in terms of their local coordinates (u, v1, . . . , vn−1) on X. Hence the matrix
representing the homomorphism j2,p = jX2,p at p is

M2(p) =



s
sv1
. . .
svn−1

su
. . .
svivj

. . .
suv1
. . .

suvn−1

suu



(p) ,

its first row s corresponding to the (N + 1)-tuple displayed above. Consider
the submatrix T of M2(p), of type

(
n+2

2

)
× (2n+ 2), whose first row is

(1, u, v1, v1u, . . . , vn−1, vn−1u, ψ, ψu),

i. e., the 2n + 2 columns of T are the derivatives of those components of s
whose degree with respect to u is ≤ 1. It is immediate to check that T has
rank (1 + n) + 1 + (n − 1) = 2n + 1. The first summand counts the first
n + 1 independent rows; the second corresponds to the block of rows svivj :
note that ψvivj = δij , hence all such rows are zero except those of type svivi ,
which are all proportional to each other; finally, the last summand counts
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the independent rows corresponding to the mixed derivatives with respect
to u and a vi. Note that the last row of T , corresponding to suu, is zero.

As rk(j2,p) ≤ 2n + 2 by Theorem 12, the inflectional locus Φ2(X) is de-
scribed by the (2n+2)×(2n+2)-minors obtained by augmenting a submatrix
of rank 2n+1 of T with a new column of M2(p) and the corresponding piece
of the row suu, the only further row which is not completely zero a priori
unless α = 1. In particular, for α = 1 we see that X is perfectly hypo-
osculating, the rank of j2,p being computed at every point by that of T ,
which is 2n+ 1.

If α ≥ 2 the terms on the row suu which are not a priori zero are monomials
of type 2k(k−1)uk−2, 2k(k−1)viuk−2 for i = 1, . . . , n−1 and 2k(k−1)ψuk−2.
So, taking into account (15) referring to C0 embedded by ϕ, we see that if
c0(0) 6∈ Φ2(C0) then rk(M2(p)) = rk(T ) + 1 = 2n + 2, at every point p, so
that Φ2(X) = ∅, while if c0(0) ∈ Φ2(C0), then Φ2(X) contains the fiber F0.

The previous discussion can be summarized as follows.

Proposition 19. Let Γ ⊂ Pr be a non-degenerate smooth rational curve of
degree α described by (14) and let X ⊂ PN (N = nr + n + r) be the image
of Qn−1 × Γ in the Segre embedding of Pn × Pr ⊂ PN .

(1) If α = 1, then X is perfectly hypo-osculating.
(2) If α ≥ 2, then Φ2(X) =

⋃
uj∈Φ2(Γ) Fuj . In particular, if Γ is linearly

normal, then Φ2(Γ) = ∅, hence X is uninflected.

In accordance with [16, Theorem 2.2] we can note that Φ2(X) = Φ2(R)∩X
in both cases.

Now consider again a quadric fibration over a smooth curve C of genus
q, X ⊂ PN , with dim(X) = n ≥ 2. Suppose that X is linearly normal
and that V is very ample. Hence R = ϕ(P ) is the enveloping scroll of X
and it is linearly normally embedded in the same projective space. Assume
furthermore that N = 2n+ 2. Then a conjecture of Ionescu and Toma [12,
p. 642] (which is in fact a theorem for n ≤ 3) says that q ≤ 1.

First suppose that q = 1. Then, according to [17, final remark], V =
Fn+1(p1+p2), where Fi+1 is defined inductively by a non-split exact sequence

0→ OC → Fi+1 → Fi → 0,

starting from F1 = OC(p) for some point p ∈ C, and p1, p2 ∈ C. In this
case a = degV = degFn+1 + 2 rk(Fn+1) = 2n+ 3. Note that this is also the
degree of R. The numerical characters of X, according to Proposition 7, are

d = 4n+ 6 + b, g = 2n+ 4 + b, µ = (n+ 1)(b+ 4) + 2.

As to b we can observe the following. The line bundle 2L̃ + π̃∗B must be
effective since its linear system has to contain X. Hence h0(2L̃ + π̃∗B) =
h0(S2V ⊗B) > 0, which implies that deg(S2V ⊗B) > 0. We have rk(S2V) =(
n+2

2

)
and deg(S2V) = (n+2) degV = (n+2)(2n+3), hence deg(S2V⊗B) =

22



Inflectional loci of quadric fibrations 23(
n+2

2

)
(4 + 2

n+1 + b). Therefore, the positivity condition gives b ≥ −4. In
particular, this shows that X cannot be a quadric bundle.

Next suppose q = 0. Then our assumptions say that a0 ≥ 1, h0(V) =
N + 1 = 2n + 3. Since V has rank n + 1, by the Riemann–Roch theorem
this implies a = degV = n + 2. Therefore (a0, . . . , an) = (1, . . . , 1, 2). In
this case R has degree n + 2. According to Proposition 7, the numerical
characters of X are

d = 2(n+ 2) + b, g = n+ b+ 1, µ = (n+ 1)(b+ 2) + 2.

Since we are in the rational case, normalizing the vector bundle in the form
V(−1) and applying [3, Lemma 3.2.4, p. 74] we see that 2L̃ + bF̃ is very
ample provided that b ≥ −1. Note that this condition is stronger than the
effectivity we used for q = 1. In fact, for any such b our R does really contain
a quadric fibration X ∈ |2L̃ + bF̃ |, which is linearly normally embedded in
P2n+2 by Γ(L̃X), with the above invariants. Even in this case we note that
X cannot be a quadric bundle.

Relying on the conjecture of Ionescu and Toma, the two situations de-
scribed before are the only possibilities for n ≤ 3, and at least conjecturally
for n ≥ 4, occurring for a quadric fibration X linearly normally embedded
in P2n+2 with V very ample.

As to the inflectional locus of R, in the rational case we know that Φ2(R) is
the decomposable subscroll of R generated by the lines ϕ(C0), . . . , ϕ(Cn−1).
In the elliptic case, the class of Φ2(R) can be described provided that appro-
priate assumptions formulated in [17] are satisfied. In both cases, according
to Corollary 10, X inherits an inflectional locus Φ2(X) which cuts a hyper-
plane section on every fiber.

7. Conic fibrations in P5 and P6

Let n = 2. Any conic fibration embedded in a projective space can be
mapped isomorphically to a conic fibration X ⊂ P5 via a generic projection.
Clearly, however, this projection may enlarge the inflectional locus or even
produce hypo-osculation (see the Togliatti example below). In the following,
we shall use the notation introduced in Section 3.

Proposition 20. Let X ⊂ P5 be a conic fibration over a smooth curve C. If
rk(j2,x) = 6 at the general point x ∈ X, then the cohomology class of Φ2(X)
is that of

2L+ 4π∗(KC + detV + B).
In particular, if X is not hypo-osculating, then Φ2(X) cuts out a 0-cycle of
degree 4 on every fiber of X.

Proof. According to Theorem 16, [Φ2(X)] = c1(P2
X(L)), since ` = 1. Thus

the class of Φ2(X) is that of 4KX+6L by Lemma 2 (i) (see also [23, Theorem
0.3]). Now, the canonical bundle formula for projective bundles gives KP =
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−3L̃+ π̃∗(KC + detV), hence, recalling that X ∈ |2L̃+ π̃∗B|, by adjunction
we get

KX = (KP +X)X = −L+ π∗(KC + detV + B).

This proves the assertion. �

Note that there are conic fibrations X ⊂ P5 not satisfying the assumption
of Proposition 20. As a consequence they may have finitely many points
where rk(j2,x) is strictly less than the maximum. In particular, it could
happen that Φ2(X) is finite. Here is an example.

Example (Togliatti’s example). Let Y ⊂ P6 be the del Pezzo surface of degree
6, and let L = −KY . According to a well-known result of Togliatti [25] (see
also [15, Corollary 4.2]) there exists a 6-dimensional vector subspace V of
H0(Y,L) such that: (a) Y can be projected isomorphically into P(V ), and
(b) for its image X ⊂ P5 we have rk(j2,x) < 6 for every x ∈ X. Abstractly,
X (= Y , by (a)) is the blow-up of P2 at three not collinear points p0, p1, p2

and L = −KX = η∗OP2(3)−e0−e1−e2, where η : X → P2 is the blowing up
and ei is the exceptional curve η−1(pi) (i = 0, 1, 2). As a consequence, our
X ⊂ P5 is a conic fibration over P1 in three different ways, each being defined
by the pencil of lines of P2 passing through one of the points pi. Each of
these fibrations has exactly two singular fibers: for instance, if π : X → P1

is given by the pencil through p0, then the two singular fibers of π are ˜̀i+ei
(i = 1, 2), where ˜̀i is the proper transform of the line `i ⊂ P2 joining p0

and pi. According to [15, Proposition 4.3] the rank of j2,x is 5 except at
the six points of the finite set T = ∪2

i=0Si, where Si is the set of singular
points of the singular fibers in the conic fibration defined by the pencil of
lines through pi. Hence Φ2(X) = T . A natural question is what are P and
R in this case. First of all, note that R cannot be a scroll. Otherwise, lying
in P5 it would be the Segre product P2 × P1, with X ∈ |OP2×P1(2, α)| for
some integer α. Then KX = (KP2×P1 +X)X = (OP2×P1(−1, α−2))X , hence

6 = K2
X = (OP2×P1(−1, α− 2))2 · (OP2×P1(2, α)) = −3α+ 8,

a contradiction. Since V is spanned, we can write V = ⊕2
i=0OP1(ai), with

0 ≤ a0 ≤ a1 ≤ a2. Then P = P(V) and X ∈ |2L̃ + bF̃ |. Note that h0(L̃) =
h0(L) = 7 by Lemma 3. Hence a = 4, and so 2 = µ = 2a+3b = 8+3b, since
π has two singular fibers. Therefore b = −2. This in turn implies a0 > 0
by Proposition 8. Then V = OP1(1)⊕2 ⊕OP1(2). In particular, 2a0 + b = 0.
According to Proposition 9, this shows that X is not an ample divisor inside
P . Note that P embedded in P6 by |L̃| is the scroll containing the original
surface Y . Let c ∈ P6 be the center of the projection P6 99K P(V ) = P5

giving rise to X. Clearly c 6∈ P : otherwise, projecting Y from c, the conic
F such that c ∈ F̃ would map 2 to 1 to a line, contradicting the fact that
the projection maps Y to X isomorphically.

As to R, note that the general hyperplane section of P , projected from c
gives rise to a quartic surface of P4 having a single double point. Since these
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surfaces are hyperplane sections of R we argue that R is a ruled variety of
degree 4 with a line of singular points: R is a quartic 3-fold of the second
kind according to [26, Theorem 6,(ii)] (see also [24, §3]).

The discussion in Section 6 includes rational conic fibrations in P5 such
that ϕ is an embedding. Now, let C = P1 again, but suppose that ϕ is not
an embedding. If X is linearly normal, then R is a cone, as pointed out in
Section 3. Moreover, a = 3 because 6 = h0(L) = h0(V) = 3 + a. Let us
focus on this case. There are “a priori” two possibilities, namely

(1) (0, 0, 3);
(2) (0, 1, 2).

In case (1) R is the cone with vertex a line, say `, over a smooth twisted
cubic Γ. Let Π be a general hyperplane containing `, and let qi, i = 1, 2, 3,
denote the points where Π intersects Γ. Then cutting X with Π, we see
that Π ∩ X consists of ` itself (note that ` ⊂ X, because, being contained
in every plane of R, it intersects every fiber F of X) plus the three fibers
Fi of X contained in the planes 〈l, qi〉, for i = 1, 2, 3. This says that X has
degree 7, hence Proposition 7 implies b = 1, g = 3, and µ = 9. For an
explicit description of X see [10, Theorem 4.1, ii), case k = 9]. We claim
that rk(j2,x) = 6 at the general point x ∈ X. Equivalently we show that
for a general fiber F of X, |L − 3x| = ∅ for a general x ∈ F . According
to Lemma 11 any element of |L − 3x| has the form F + E, where E is
an element of |L − F | having a double point at x. We have h0(L − F ) =
h0(V(−1)) = h0

(
OP1(−1)⊕2 ⊕ OP1(2)

)
= 3. Hence |L − F | is a net, and

therefore one cannot impose conditions on an element of |L − F | to have a
double point at a general point x ∈ F unless F itself is a fixed component
of |L−F |. But this is impossible. Otherwise |L− 2F | would be a net, while
h0(L− 2F ) = h0(V(−2)) = 2. Thus Proposition 20 applies and we conclude
that Φ2(X) = 2L+ 8F .

Lemma 21. Case (2) does not occur. In other words, the surface corre-
sponding to (1) is the only rational conic fibration, linearly normally embed-
ded in P5, with V not very ample.

Proof. In case (2) R is generated by a point, say v, a line ` and a conic γ.
It can be regarded as the cone of vertex v over the rational normal cubic
scroll Σ in the hyperplane Π := 〈`, γ〉 generated by ` and γ. Note that ` is
the minimal section of Σ, hence `2 = −1 on Σ. Call f the fibers of Σ. Note
that the hyperplane Π cuts X along a curve G, which must lie on Σ, and,
moreover, is a bisecant, i.e., G ∈ |2` + βf | for some nonnegative integer β.
This is due to the fact that every fiber f of Σ is a line inside the plane 〈v, f〉
of R, which contains a conic F . Now, since G is a hyperplane section of X,
the degree of X is d = G2 = (2` + βf)2 = 4(β − 1), a positive multiple of
4. Taking into account the expression of d provided by Proposition 7 (recall
that here q = 0, a = 3), we argue that b ≥ 2. But then Proposition 8, 1)
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prevents the linear system |2L̃ + bF̃ | from containing a smooth element as
X has to be, a contradiction. �

Note that in case (2) the invariants of X would be (d, g, µ) = (8, 4, 12).
We want to emphasize that a rational conic fibration X ⊂ P5 with these
invariants really does exist (e.g., see [11, (6.2)]). However, the corresponding
projective bundle (P, L̃) is the Segre product P2 × P1 in which X fits as an
element of |OP2×P1(2, 4)| (see Proposition 17).

When C is an irrational curve, ϕ is not an embedding by Proposition 17.
Here is an example.

Example (an elliptic conic bundle in P5). Let C be a smooth curve of genus
1 and let U be the rank-2 vector bundle on C arising as a non split extension

(16) 0→ OC → U → OC(z)→ 0,

for some z ∈ C. Recall that U is ample. Consider the P1-bundle over C,
X := P(U), with projection π, denote by σ the tautological section and set
Fy = π−1(y) for any y ∈ C. The line bundle L := 2σ + Fy is very ample
and |L| embeds X in P5 as a conic bundle of degree 8 (such (X,L) is a
rather known conic bundle, e. g., it is mentioned in [3, Thm 11.4.2, case
3, p. 288]). Now consider the rank 3 vector bundle V := π∗L. Note that
V = S2U ⊗ OC(y), due to the expression for L. In particular V is ample
and its degree is 6. Set P := P(V), let π̃ : P → C be the projection, and let
L̃ be the tautological line bundle on P . According to our general setting,
X embeds fiberwise in P as a divisor. In fact, recalling that X has no
singular fibers, we have that X ∈ |2L̃ − π̃∗D|, where D ∈ Pic(C) is a line
bundle of degree 4. On the other hand, V is not very ample. This follows
from the previous general discussion: in particular, it is equivalent to the
assertion that ϕ is not an embedding, or to the fact that R := ϕ(P ) is not
a scroll, since in the present case V = H0(X,L). Moreover, R is not even
a cone, since the ampleness of V prevents ϕ from contracting anything. In
conclusion, R is neither a scroll, nor a cone. As to the osculating spaces and
the inflectional locus of X we can complete the description as follows.

Proposition 22. Let (X,L) be as in the Example. Then the generic rank
of j2,x is 6; moreover, the class of the inflectional locus Φ2(X) is 2L + 8F
(or, equivalently, 4σ + 10F ).

Proof. Let Fw be any fiber of X. We claim that |L − 3x| = ∅ for a general
x ∈ Fw. This is equivalent to saying that Osc2

p(X) = P5 at a general point
p ∈ X. Since X has no singular fibers, according to Lemma 11 any element
of |L−3x| has the form Fw +E, where E is an element of |L−Fw| having a
double point at x. Note that S2U ⊗M is an ample vector bundle of degree
3 for any line bundle M∈ Pic(C) of degree zero. Hence

h0(L − Fw) = h0(V ⊗OC(−w)) = h0(S2U ⊗OC(y − w)) = 3.
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Thus |L−Fw| is a net and then we cannot impose conditions on an element
of |L − Fw| to have a double point at a general point x ∈ Fw unless Fw
is a fixed component of |L − Fw|. In this case, however, we would get
|L − Fw| = Fw + |T |, where |T | is a net of divisors linearly equivalent to
2σ + Fy − 2Fw. Note that the linear series |2w| on C contains a divisor of
the form y + y′ for some y′ ∈ C. Then T is linearly equivalent to 2σ − Fy′ .
Now consider the exact sequence

(17) 0→ σ − Fy′ → T → T |σ → 0.

Twisting (16) by OC(−y′) we see that h0(σ − Fy′) = h0(U ⊗OC(−y′)) ≤ 1.
On the other hand, h0(T |σ) ≤ 1 since T |σ is a line bundle of degree 1. Then
the cohomology sequence of (17) shows that h0(T ) ≤ 2, contradicting the
fact that |T | is a net. This proves the first assertion in the statement, which
allows us to apply Proposition 20 and get the second assertion. �

Remark. In connection with the remark after Theorem 12 we point out that
here L − Fw is ample and spanned by WFw = H0(X,L − Fw) for every
w ∈ C. The ampleness comes from the fact that L − Fw is numerically
equivalent to 2σ, and σ itself is ample on X. As to the spannedness, write
L − Fw = KX + Mw, where Mw = 4σ + Fy − Fu − Fw is numerically
equivalent to M := 4σ − F , for every w ∈ C. Note that M is nef and
M2 > 5. Moreover, M = 2σ+(2σ−F ) is the sum of the double of an ample
divisor and a nef divisor, hence MD ≥ 2 for any effective divisor D on X.
Then the claimed spannedness follows from Reider’s theorem (see e.g. [3,
Theorem 8.5.1]). As h0(L−Fw) = 3, as shown in the proof of Proposition 22,
the morphism defined by WFw represents X as a double cover ψw : X → P2,
whose ramification divisor is Rw = KX + 3(L − Fw). An immediate check
shows that its cohomology class is different from that of Φ2(X) established
in Proposition 22. However, clearly, both classes cut out a 0-cycle of degree
4 on every fiber.

We conclude this Section considering conic fibrations in P6. Actually, in
this case, according to the final remark in Section 5, Theorem 16 applies to
count the flexes, provided that there are finitely many.

Proposition 23. Let X ⊂ P6 be a conic fibration over a smooth curve such
that rk(j2,x) is generically 6 and suppose that Φ2(X) is finite. Then X is a
conic bundle and the degree of Φ2(X) is given by

ι = 11K2
X − 5c2(X) + 56(g − 1)− 7d,

where d and g are the degree and the sectional genus of X.

Proof. X cannot have singular fibers by Theorem 12 (2). Next use Lemma
2, (i) and (ii), to compute c2

1 − c2. �
27



28 A. Lanteri, R. Mallavibarrena, R. Piene

From the abstract point of view, X is a P1-bundle over C. Thus expressing
K2
X and c2(X) in terms of the genus q of the base curve C, the above formula

becomes

(18) ι = 68(1− q) + 56(g − 1)− 7d.

Clearly, when ϕ is an embedding and the scroll R has a 2-dimensional
inflectional locus, then Φ2(X) cannot be 0-dimensional as required in Propo-
sition 23, since it has to contain X∩Φ2(R). However, the situation depicted
by Proposition 23 can occur, as the following example shows.

Example. Let Z ⊂ P8 be a conic bundle such that jZ2,z is surjective at every
point z ∈ Z; for instance we can take Z = P1 × P1 embedded by O(2, 2).
Then projecting Z from a general line ` produces a smooth surface X ⊂ P6

satisfying all the assumptions in Proposition 23. To see this, note that every
osculating space to Z is a P5, hence the second osculating developable of Z
is a hypersurface, say W , in P8. Clearly X is a conic bundle isomorphic to Z
since ` is general; moreover, as W intersects ` at degW points, we argue that
X has finitely many (degW ) inflection points. Hence the formula giving ι
applies to X. An alternative way to compute ι is the following. Note that
W is the image of the projectivization of P2

Z(L), where L = (OP8(1))Z , via
a linear subsystem of the complete linear system defined by the tautological
line bundle, say ξ. Therefore ι = degW = ξ7 and the Chern-Wu relation
gives ξ7 = c2

1−c2, where ci = ci(P2
Z(L)). Notice that this computation more

generally holds for the general projection X ⊂ P6 of any 2-regular surface
Z ⊂ P8, regardless of whether it is a conic bundle or not.

Here is an easy application of Proposition 23.

Proposition 24. Let X ⊂ P6 be a non-degenerate rational conic bundle
satisfying the assumptions of Proposition 23. Then ι ≥ 12 and equality
occurs if and only if X is the projection of P1 × P1 embedded in P8 by
O(2, 2), from a general line. Apart from this case, ι ≥ 40.

Proof. We have q = 0 by assumption. Moreover, the genus formula im-
mediately shows that d = 4g + 4, since X is a Segre–Hirzebruch surface
embedded as a conic bundle. Thus (18) gives ι = 28g − 16. If g = 0, then
X is a rational scroll and a conic bundle at the same time. But this im-
plies that (X,L) = (P1 × P1,O(1, 2)), which is impossible since X ⊂ P6

is non-degenerate. Therefore g ≥ 1, which implies ι ≥ 12 and equality is
equivalent to g = 1. As q = 0, this in turn is equivalent to L = −KX . Then
the assertion follows from the classification of del Pezzo surfaces. Note that
the effectiveness follows from the discussion in the Example above. �

Notice that for the rational conic bundleX ⊂ P6 with ι = 12 characterized
by Proposition 24, expressing the invariants d, g in terms of a and b and
recalling that b = −2

3a, (18) gives a = 6. So, recalling Proposition 18 and
(13) we argue that V = OP1(2)⊕3 and X ∈ |2L̃ − 4F̃ |.
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8. Conic fibrations in P4

Clearly, any conic fibration X ⊂ P4 is hypo-osculating. Also, Φ2(X) ⊇ S,
by Theorem 12 (1). Recall moreover that X is linearly normal, since it is
not the isomorphic projection of the Veronese surface.

It is known that there exist conic fibrations over a smooth curve of genus 1
embedded in P4 [1]. They have degree 8 and contain exactly 8 singular fibers.
Moreover, in [4] and [2] it is proved, independently, that every irrational
conic fibration X ⊂ P4 is of this type. Clearly, in this case V cannot be very
ample. In fact in [22, Proposition 1.2] it is shown that for the corresponding
P2-bundle P , the image R := ϕ(P ) is a cone.

Now, let X ⊂ P4 be a rational conic fibration. From the relation 5 =
h0(L) = h0(L̃) = h0(V) = 3 + a, we see that the multidegree (a0, a1, a2) of
V can only be either

(1) (0, 0, 2), or
(2) (0, 1, 1).

In case (1) R is the cone with vertex a line, say l, over the conic C2. Let Π
be a general hyperplane containing l, and call q1 and q2 the points where Π
intersects C2. Then cutting X with Π, we see that Π∩X consists of l itself
(note that l ⊂ X because, being contained in every plane of R, it intersects
at two points every fiber of X) plus the two fibers F1, F2 of X contained in
the planes 〈l, q1〉 and 〈l, q2〉 respectively. This says that X has degree 5. In
case (2) R is the cone with vertex a point over the smooth quadric surface
Q generated by the two directrix lines C1, C2. Let Π be the hyperplane
generated by the two lines C1, C2. Clearly, it cuts X along a curve, say
G, lying on the quadric Q and intersecting in two points each of the two
rulings. Then, the degree of X, which coincides with the self-intersection
G2 of this curve on Q is 4.

Having this in mind, recall that the rational conic fibrations in P4 are
completely classified [4]. In accordance with this classification, our X is one
of the following:

i) a del Pezzo surface of degree 4: i.e., X is the blow-up of P2 at 5 points
p0, . . . , p4 in general position, and L = η∗OP2(3)−e0−· · ·−e4, where
η : X → P2 is the blowing up and ei is the exceptional curve η−1(pi)
(i = 0, . . . , 4);

ii) a Castelnuovo surface of degree 5: i.e., X is the blow-up of P2 at 8
points p0, . . . , p7 in general position, and L = η∗OP2(4)− 2e0 − e1 −
· · ·−e7, where η : X → P2 is the blowing up and ei is the exceptional
curve η−1(pi) (i = 0, . . . , 7).

According to the above discussion, it follows that (1) corresponds to ii),
while (2) corresponds to i).

Note that in case i), X is a conic fibration over P1 in 5 different ways, each
being defined by the pencil of lines of P2 passing through one of the points
pi. We can observe that each of these fibrations has exactly 4 singular fibers:
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for instance, if π : X → P1 is given by the pencil through p0, then the 4
singular fibers of π are ˜̀i+ei (i = 1, . . . , 4), where ˜̀i is the proper transform
of the line `i joining p0 and pi. On the other hand, in case ii) there is a
unique structure of conic fibration π : X → P1, defined by the pencil of lines
through p0. Here there are 7 singular fibers, all of them having the form˜̀
i+ei (i = 1, . . . , 7), where, as before, ˜̀i is the proper transform of the line `i

joining p0 and pi. From Proposition 7 (1) and (3) we get µ = 2a+3b = d+2b
and this allows us to determine the class of X inside P . In case i) we have
that X ∈ |2L̃| (because 4 = µ = 4 + 2b), while in case ii) X ∈ |2L̃ + F̃ |
(because 7 = µ = 5 + 3b).

To complete the discussion, let us describe the inflectional locus Φ2(X)
in both cases.

In case i), according to [15, Theorem 2.1] the rank of j2,x is 5 at the general
point x ∈ X, and 4 at any point of the finite set T = ∪4

i=0Si where Si is the
set of singular points of the 4 singular fibers in the conic fibration defined
by the pencil of lines through pi. Note that T consists of 20 points, since
a straightforward verification shows that Si ∩ Sj = ∅ if i 6= j. Therefore,
Φ2(X) = T . In case ii), let x ∈ X. Relying on the plane model of X, we
can easily see that |L − 3x| = ∅ unless x ∈ S, the set of singular points
of singular fibers of X. Moreover, if x = ˜̀

i ∩ ei, then |L − 3x| is a single
element corresponding to the reducible plane quartic consisting of the line
`i and the cubic passing through p0, p1, p2, . . . , p7 and tangent in pi to the
direction represented by x. In other words, rkj2,x = 5 for all x ∈ X \ S and
rkj2,x = 4 at any point x ∈ S. Therefore, Φ2(X) = S.
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Saldini, 50, I-20133 Milano, Italy

Departamento de Algebra, Facultad de Ciencias Matemàticas, Plaza de las
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