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Abstract

This thesis has assessed whether a six-parameter extension of the Pareto dis-
tribution may be used in an automatic procedure for selecting the claim size
distribution in property insurance. This fitted distribution was compared to
eight of its special case distributions with regards to the estimation of the
99% and 99.5% reserve for data consisting of property insurance claims on
office and industrial buildings from Gjensidige forsikring as well as a sub-
set of the data. As the data contained extreme claims, the claims above
a certain threshold were modeled with a two-parameter Pareto distribution
according to Pickand’s theorem. The threshold was set at the 96.7% and
92.0% quantile for the total and reduced data, respectively. As a result, the
two-parameter Pareto over-threshold distribution dominated the modeling
of the reserve leading to virtually no significant differences in the estimated
reserves for the different under-threshold models combinations, especially for
the smaller data set, for which the threshold was lower.

The Extended Pareto and the four-parameter Pareto distributions were se-
lected as preferred under-threshold distributions for the total and reduced
data, respectively. The two-parameter Pareto distribution was chosen as the
preferred under-threshold distribution to estimate the 99% and 99.5% re-
serves for both the total and the reduced data. The six-parameter extension
of the Pareto distribution failed to optimize the parameter v, which lead to
the four-parameter Pareto distribution. However, the four-parameter Pareto
distribution is more flexible than the two-parameter Pareto and the Extended
Pareto distribution, and since there are little difference in the estimation of
the reserve for the three models, the four-parameter Pareto distribution may
automatically selected to estimate the 99% and 99.5% reserves.

However, if the quantity of interest was further left in the distribution, such as
the the premium or the 95% quantile, the under-threshold distribution would
have more influence in the modeling and perhaps the Extended Pareto dis-
tribution or an other distribution would have been chosen.

KEY WORDS: Property insurance, Claim size distribution, Threshold,
Pareto distributions, Heavy-tailed data, Monte Carlo methods, Bootstrap,
Maximum likelihood estimation, Model selection, Reserve estimation.
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1 Introduction

When dealing with heavy-tailed data, the claim severity modeling may be
divided into two parts; an under-threshold distribution and an over-threshold
distribution, modeling claims below and above the selected threshold b, re-
spectively [Bolviken, 2014, p. 328|. Generally the data is fitted to several
claim size distributions, the results are compared and the best fitted model is
selected and its parameters estimated from historical data |Belviken, 2014, p.
314]. However, selecting an appropriate model using this method may be
difficult and time-consuming. A different way to model the claim size is to
adapt more complex families of distributions, with more frequently used dis-
tributions as special cases. The six-parameter Pareto distribution, which will
be introduced in the next chapter, is constructed based on a parameterized
power transformation inspired by Box and Cox (1964), now with six param-
eters instead of two. This thesis intends to assess whether the six-parameter
Pareto distribution may be used in an automatic procedure for selecting the
claim size distribution compared to its one, two, three and four parameter
special case distributions in order to make the process less time-consuming
and efficient.

EU insurance legislation requires insurance companies to reserve a sufficient
amount of capital to cover their liabilities over a one-year time perspective
with a 99.5% probability [European Comission, 2009]. This thesis aims to
study how the uncertainty in the fitted under-threshold distributions increase
with the number of parameters and the impact of uncertainty on the esti-
mated 99% and 99.5% reserves.

This study will be performed on data consisting of property insurance claims
on office and industrial buildings from January 2001 to October 2015 from
Gjensidige forsikring. The aim is to repeat the procedure on a subset of the
data to study how the sample size influences the uncertainty in the reserve.

In chapter 2, the methods used in this thesis are presented. These include
model evaluation methods, selecting a threshold for the data, and the esti-
mation and bootstrapping of the reserve.

Chapter 3 will aim to give the results for the different under-threshold distri-
butions, the over-threshold distribution and the reserves estimated with the
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nine different models. The results will then be presented for a subset of the
data.

Chapter four will aim to give a conclusion.
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2 Methods

2.1 Maximum likelihood estimation

The most common method for parameter estimation is the Maximum likeli-
hood estimation |Gray and Pitts, 2012, p. 59|. The idea is to select estimated
parameters maximizing the probability of observing the sample given the dis-
tribution.

Given k parameters 61,0s,...,0;, assume the sample Z1,...,7,, consists of iid
observations with density function f(z;61,0s,...,0;) [Jong and Heller, 2008, p.
40].

Their joint density function is:

n

Fz1, s 20301, 05, 0) = T ] £ (21,01, 02, ..., 00). (1)

i=1

Taking the logarithm of equation (1) leads to the log-likelihood function:
‘C(Qly 027 ceey 919) = Z log (f(zh 017 02; sy ek)) : (2)
i=1

The Maximum likelihood estimator of the parameter 6; will be denoted éj.

In a few straightforward situations, the parameters can be estimated by differ-
entiating the log-likelihood function with respect to the parameter of interest
and setting the equation equal to zero:

0 log(f(2, 01,04, ...,01))
i=1
00,

=0, j=1,.. k. (3)

In general, optimization requires numerical maximization of the log-likelihood,
or equivalently minimization of the negative log-likelihood function [Millar,
2011, p. 101].
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Important properties of Maximum likelihood estimation

Invariance:
Let g be a one-to-one function and 6; the Maximum likelihood estimate

~

(MLE) of 6, . Then g(f;) equals the MLE of g(6;).

Consistency:
As the number of observations increases, the estimated parameter gets closer
to the true value: 0, N ;, as n — oo.

Asymptotically unbiased and normally distributed:
The following limits are only valid under certain conditions and assumptions
and the interested reader is referred to [Lehmann, 1999, p. 469|.

The level of bias goes to zero as the sample size increases:

~

E(Qj) — Gj as n — oQ.

A

As the sample sizes becomes large, /n ( j —Qj) becomes normally dis-

tributed with mean zero, and variance I-1(6), where I(0) is the Fisher infor-
mation matrix given by:

- (e[-7202)

For the multi-parameter case, the vector of Maximum likelihood estimates be-
comes asymptotically multivariate normally distributed, cf. [Klugman et al.,
2008, p. 395| and [Lehmann, 1999, p. 498|.

The following equation holds for all 6;,0,,....0,, as n — oo:
Vi (01,85, 00)7 = (61,05,..,00)") 5 N(0,17(6)), (4)

where 0 = (0,...,0).

The Fisher information matrix for the multi-parameter case is given:
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92 92 92
a_ej 90,005 00,00,
S o o
06200 062 96,06
1(0)=FE |- 2 2 . PR L(61,602,...,60k) | - (5)
52 52 52
90,001 00,002 862

2.2 Evaluating the model

The goodness-of-fit of the different claim size distributions will be assessed by
the Kolmogorov-Smirnov hypothesis test, Q-Q plots and the Akaike (AIC)
and the Bayesian information criteria (BIC).

AIC is one of the most favored methods for model selection [Claeskens et al.,
2008, p.22]. Given a statistical model of a set of data,

AIC = —2L + 2p, (6)

where L is the log-likelihood in equation (2) and p is the number of estimated
parameters.

The goodness-of-fit, measured by L, is awarded with the negative sign, and
the penalty is an increasing function of p.

The Bayesian Information Criteria (BIC) was originally developed by Gideon
E. Schwarz to assess models with regard to a given posterior probability.
However, the criteria is applicable as a general model selection criteria under
certain assumptions. The interested reader is referred to [Sadanori Konishi,
2007, p. 211-212]. BIC exercise a heavier penalty for for p, and favors models
with fewer estimated parameters than AIC.

BIC = —2L + plog(n), (7)

where L is the log-likelihood in equation (2), n the sample size of the data
and p is the number of estimated parameters.

When comparing statistical models, the model with the lowest AIC or BIC

3
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is selected because both methods are based on a trade-off between goodness
of fit and the complexity of the model. The model with the less parameters
along with the best fit is chosen [Jong and Heller, 2008, p. 62-63].

The Q-Q plot is a graphical technique that plots the empirical quantiles
against the corresponding quantiles of the distribution of interest. An ap-
proximately straight line indicates that the two data sets belongs to the same
distribution [Walpole et al., 2007, p. 241].

The Kolmogorov-Smirnov test is not a tool to compare the different dis-
tributions against each other. The assessment is a hypothesis test and will
be used independently for a distribution to determine whether the data set
has a specific theoretical distribution. The test examines the fit between the
observed frequency and the expected (fitted) frequency.

The hypothesis tested is:

H,: The data follows the specified distribution
H,: The data does not follow the specified distribution

The Kolmogorov-Smirnov test statistic is defined as:

D, = sup |Fn(z) —F(Z) |’ (8)

0<Z<b

where F(z) is the given distribution function of the observed observations,
F,(z) the empirical cumulative distribution function of the data and b the
threshold level. The model distribution function F(z) is assumed to be con-
tinuous for all values of z [Klugman et al., 2008, p. 448|. Hj is rejected at
an « level of significance when D,, > K, where K, is the critical value.

The Kolmogorov-Smirnov test is distribution free, which means that the
distribution of the test statistic under Hj is equal to the distribution of the
sample, regardless of the distribution tested [Gray and Pitts, 2012, p. 67].

The cumulative distribution function of K, is given by:

Vor & ((%1)2 n? )
P (K, <+/nD,) =1— ¢ o ) |
( ) =1= . 2

for every fixed \/nD,, > 0 as n — oo [Feller, 1948, p. 178|.

6
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The p-values in section 3.1.1 and section 3.3.1 will be performed on the
under-threshold data. For this reason the p-values have been obtained using
Monte Carlo to simulate D, - the observed value 100,000 times from the
distribution under H,, where F is the distribution to be tested. The number
of simulated D,,s > the observed D, is calculated (see Appendix (B)).

2.3 Bootstrap and Monte Carlo methods

Monte Carlo methods are frequently applied in the insurance industry. These
methods use statistical sampling on a computer to find solutions to problems
|Korn, 2010, p. 55].

Let ¢ = ¢)(0) be the quantity of interest to estimate, for example the reserve,
which may be estimated by ¢ »(0 ) When no expression for ¢ is available,
1 may be estimated by Monte Carlo. The Monte Carlo estimate of 1 (6 )
is denoted ¢y, (6). When ¢(8) is estimated by Monte Carlo, error due to
simulation occurs in addition to estimation error. Let 1%, = * (6) be the
Monte Carlo approximation of ¢ (8). Then:

U= = U — ¢ + Y—9
total error Monte Carlo error estimation error

The Monte Carlo error is the error generated due to the fact that 1 is approx-
imated by %7, and the deviation between 6 and 6 gives rise to the estimation
error [Bglviken, 2014, p.229-230).

Acommonresultis\&;—w|—>0asm—>oo, and|1ﬂ—z/1]—>0asn
— 00. In other words, the Monte Carlo error will decrease with the number
of replications, and the estimation error decreases with the number of data
observations. As the number of data observations usually is fixed, estimation
error is normally more serious than the Monte Carlo error |Balviken, 2014, p.
230-231]. The numbers of replications in this thesis are set large enough for
the Monte Carlo error to be negligible compared to the estimation error.

Assume that 1(0) can be written in the form:
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The quantity ¥ (@) in equation (9) may be approximated by the Monte Carlo
estimate:

= %Z (10)

where equation (10) is obtained by sampling m iid samples z* ~ f(z;8).
Then the function h is calculated for all samples 2], ...,z and the average
of the m samples is computed.

As an example, simply for illustration, consider the special case of equation
(9) and (10) where h(z) = z:

v(6) = B(2) = [ 2f(z16)d:

The Monte Carlo estimate becomes:

-3

=1

SIH

Based on the Strong law of large numbers, ¢, (8) — (), almost surely
when m is sufficiently large [Robert and Casella, 2004, p. 83|.

If f has finite expectation and variance, the standard deviation can be esti-
mated by

5 = Xm:(z A )2

=1

Algorithm 1 illustrates the procedure of computing the estimated mean wA*
and standard deviation §* when the true values of ¢ and s are unknown.
First input the distribution of Z, and the vector of estimated parameters 6.
Then m claim sizes are generated from the given distribution with estimated
parameters 6. Finally the estimated mean and standard deviation are com-
puted based on the Monte Carlo sample.

The bootstrap method is a computer-based method for estimating the un-
certainty in the estimated vector of parameters 6.
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Algorithm 1 Algorithm for estimating the mean and standard deviation.

~

1: Input f(z), 0 A
2: Fori =1 to m draw z} ~ f(z,0)
3: Compute

Uy = 2211 m?
2

A 1

= CE Y

4: Return wA* and §*.

The non-parametric bootstrap applies resampling with replacement. Con-
sider a data set with n observations = (z1, ..., x,). Then m;, new data sets
of size n, &7 = (2};,...2};), are drawn from x with replacement. For each
sample drawn, the vector of parameters 6; is estimated by éj with the same
method of estimation used to estimate 6 |Gray and Pitts, 2012, p. 322-323].
The parametric bootstrap method generates my, new samples &} = (27, ..., Z};)
~ f(z;é) of the same size n as the original sample. For each sample i, 0;
is estimated by é:, which in our case is obtained by Maximum likelihood

estimation [Miranda et al., 2011, p. 14-17].

The nonparametric bootstrap is not as precise as the parametric bootstrap,
given that the parametric model is correct. For this reason the parametric
bootstrap method will be applied in this thesis [Shao and Tu, 1995, p. 16].

For the parametric bootstrap, the Maximum likelihood estimates é{, é;,...ﬁfnb
are returned from the generated samples Z7, rﬁ;,...,ﬁz;b, respectively. A con-
fidence interval (CI) and standard deviation can be estimated to assess the

uncertainty. Let the sample mean of the bootstrap estimated vector be:
~ Ui A*
6" = £
2m

The bootstrap estimate of the standard error of 0 is:

mp

Ax 1 Ax 7*2
5 = mb—lz<0i_9>’

i=1

which is the sample standard deviation of (é’l*, é;‘ ) HA;%) [Devore and Berk,
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2007, p. 339].

When 6 is being underestimated, o* < é, and @* > 6 indicates overestima-
tion of 8. An adjustment may be made for correction:

6= 6 - (5* - é) — 20 — 6", (11)
estimate — \——
! ! adjustment

where 6*%¢ is the bias corrected bootstrap estimate of @ [Bglviken, 2014, p.
241-242]. The adjustment term in equation (11) will increase 6** when 6 is
underestimated, and decrease 6*¢ when 0 is overestimated.

An approximate 100(1 - a)% confidence interval for 6* is given by sorting
the estimates in increasing order:

N* N* N*

The % and 1 - % empirical quantiles of 8* are given by:

(O3 13 )

which gives rise to the possibility of asymmetric confidence intervals [Rubin-
stein and Kroese, 2008, p. 115].

2.4 Reserve

Let the total loss on policy and portfolio level be X and X, respectively,
where

X =7 +..+ Zy,
;V 23231—%...+-21N}

Z; being the size of each claim i, N the number of claims on policy level, and
N the number of claims on portfolio level.

10
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Given a portfolio with J policies, each with claim X, for i = 1,....J. The
overall claim of the portfolio is given by:

X=X +..+X, (13)
Equation (13) may also be written as:

X =27+ ..+ 2,
which is the representation used in the calculation of the reserve in this thesis.

The probability that the actual loss X will be greater than a given percentile
qe is formulated as:

P(X > q.) =€ (14)

The solvency capital, or the reserve, is denoted by ¢. |Bolviken, 2014, p.
6]. EU insurance legislation requires insurance companies to reserve enough
capital to cover their liabilities over the following 12 months with a 99,5 %
probability [European Comission, 2009]. This is equal to saying that the
insurance company must have sufficient capital to cover a potential loss up
to the 99.5 percentile. In this thesis, the 99% and the 99.5% reserves will
be used to select the claim size distribution and study how the uncertainty
in the under-threshold distributions increase with the number of parameters
fitted to the distributions. The impact of the uncertainty on the reserve will
also be studied.

2.5 Estimating and bootstrapping the reserve

Estimating an upper quantile ¢. by Monte Carlo is done by simulating z1,...,2,
quantities of interest, sorting them in decreasing order z(;) > ... > 2(,) and
letting the estimated quantile g}, = 2(cm)-

Algorithm 2 describes the process of estimating the claim reserve by Monte
Carlo simulation. First input the Maximum likelihood estimated parameters
for the under-threshold distribution é, the Maximum likelihood estimated
parameters for the over-threshold distribution 4%, 5%, the estimated claim
intensity i, the distribution f(z), J, T and p = ns/n, where n-, is the

11
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number of claims above the threshold b, and n is the total number of claims.
Draw the total number of claims N* and the number of claims above the
threshold N;b from the Binomial distribution. Simulate and sum the claims
below and above the threshold. Claims are then sorted in decreasing order
and the reserve is returned.

Algorithm 2 Algorithm for estimating the reserve.
1: Input é7 ééba Bb> f, J, T, f(Z)ap - n>b/n
2: For j =1..m
Draw N* ~ Poisson(JiT)
Draw N, ~ Binomial(N*, p)
e NNz,
Draw Z7, ..., 2., ~ f(2:0),
A A Sb A
Z0 Z};’;b ~ Pareto(a®, 8°) + b

* N* A>|< N* A*
3 & <_A2k:§1b AZk + Yt 2
4: Sort AT, .., X
kal) Z e Z Xgm)
5: Return ¢. = X(*Em).

Algorithm 3 bootstraps the reserve. Step 2 - 4 involves bootstrap estimations
of the model parameters (i, 8, «,3). For each set of bootstrap estimates

(ﬂf, 07, a;, ;‘), j number of Monte Carlo simulations are drawn to estimate

the reserve, and based on the bootstrap estimates ¢; ;, ..., ¢ ,,, of the reserve,
the influence of the selected distribution on the uncertainty in the reserve
can me examined [Bglviken, 2014, p. 248|. Step 6 draws the number of
claims from a Poisson distribution with parameter Jj T. Step 7 draws the
number of claims over the threshold from the Binomial distribution with
parameters N** from step 6 and p = n-p/n being the number of claims
above the threshold and n being the total number of claims. The number of
claims below the threshold is denoted N<b*. N<b* claim sizes are drawn from
the claim size distribution with the parameters estimated with Maximum
likelihood estimation in step 4. Then N > b* claim sizes are drawn from the
over-threshold distribution and the threshold b is added. Step 8 sums the
number of claims below the threshold and the number of claims above the
threshold and adds them together.

12



2.6 Claim frequency 2 METHODS

Algorithm 3 Algorithm for bootstrapping the reserve.

1: Input m, mp, n<p, Nyp, [L,é, f(z), &b, BAT T, p= nsp/n
2: Fori=1,....,my
3: Draw N* ~ Poisson(Af),
%f,...,Zbe f(z;0), A
VAL Z;l;b ~ Pareto(a®, 3°)
4: [Ll — N*/A
5% MLE 5. -
ei Zl?" Zn<ba
A*b B*b {MLE Zfb Z*bb
) n>
5: FOI‘J =1,
: Draw N** ~ Poisson(J iy T)
7 Draw ./\/;b ~ Blnomlal(/\/** p)
Ngb* — N** -

Draw Z3*, .. Z/*\;<b* ~ f(z; é:)

7, 250, ~ Pareto(a;t, Bi) + b

8: X** «— ZN<b Z**+ZN>b Z**b
9: Sort Xl**,... X

X(*I’S > ... > X(**)

10: Return ¢}, = = X

(em)

2.6 Claim frequency

The claim frequency equals the number of claims arriving within the time
interval [0,T| divided by T. These events are treated as random variables,
usually modeled by the Poisson or Negative binomial distribution |[Gray and
Pitts, 2012, p. 11].

The Poisson process is the most common model for claim frequency in general
insurance. Claims are assumed to occur at random, one following the other,
with a constant intensity. Let N; denote the number of claims for policy
i, and N' = N;+ Ny+...+N; the number of claims on portfolio level. For
Ni, ..., N,, independent Poisson variables with parameters \i,...,\,, N =
N1 + ...+ N, has a Poisson distribution with parameter A\; + ... + A, for

13
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proof see [Klugman et al., 2008, p. 103|. The claim numbers at policy and
portfolio level follow the Poisson distribution with parameters A = y'T, and
A = Ju'T, respectively. The claim intensity p is the policy average within the
time interval of exposure to risk T, and J is the number of policies [Gray and
Pitts, 2012, p. 12]. In this thesis, the claim intensity p will be set identical
for all claims.

The Poisson point mass function is given by:

A

P(N=n)=e k.

n=0,1,2..

The mean, standard deviation and skewness are given as:

E(N) =\, sd(N) = VN, and skew(N) = %

Consider n claims. The Maximum likelihood estimate of the claim intensity
1 is given by:

S

p=", (15)

where n is the total number of claims and A = T, + ... + T,, is the total
exposure to risk [Belviken, 2014, p. 284].

i

The negative binomial distribution may be a better fit than the Poisson dis-
tribution for the claim frequency. Consider the mean and variance for the
negative binomial distribution:

kg kq

E[N| rE Var[N| = p <1

Since p < 1, Var|[N] > E|[N], which is not possible for the Poisson distri-
bution. As a result, given the same mean as for the Poisson, the negative
binomial distribution permits larger uncertainty and a heavier tail than the
Poisson distribution. Therefore, the Poisson distribution may not be able to
provide a good model for the number of claims. Also the negative binomial
distribution may be a better choice for a heavy-tailed claim frequency distri-
bution |Gray and Pitts, 2012, p. 16-17].

As the main focus in this thesis is the claim size distribution, the Poisson
distribution will be the only choice of claim frequency distribution.

14
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2.7 Claim size distributions

2.7.1 The Exponential distribution

The Exponential distribution is a special case of the Gamma distribution,
see equation (24), when the shape parameter a = 1 |Dickson, 2005, p. 6].
The Exponential density is defined as:

f(z) = pe™, z >0, (16)

where 8 > 0. The expectation and standard deviation of the Exponential
distribution are given by:
1

E|Z] =sd(Z) = —.
G
As the Exponential distribution only depends on one parameter, the rate,
or inverse scale parameter (3, it is less flexible than the Gamma and other
distributions with more than one parameter. The Exponential distribution
may be regarded as a heavy-tailed Gamma and a light-tailed two-parameter
Pareto distribution [Bglviken, 2014, p. 322|. In fact, the Exponential distri-
bution is the special case of many distributions (see Appendix (A.3)).

The log-likelihood function for the Exponential distribution is specified as:
£(5) = nlog(B) = 3 =6, 50 (17
i=1

Taking the derivative of equation (17) w.r.t. B, setting the equation equal to
zero and solving for § gives the estimate:

-1
R 1 <
-(i5e)

15
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2.7.2 The Weibull distribution

The Weibull distribution is a popular distribution in statistical literary work
|[Kleiber and Kotz, 2003, p. 174]. Its probability density function is given by:

=5 (g)a_lexm—z/ma, 250, (18)

where the parameters o > 0 and g > 0.

The Weibull distribution is connected to the Exponential distribution in the
following way:

Z = pyYe, (19)
where Y is Exponentially distributed parameter 1.

The expectation and standard deviation are defined as:

E(Z) =T (1 + é) . and
aizy=fr (1+2) v (14 2)"

The log-likelihood function for the Weibull distribution is defined as:

Lo, B) = n<log(a) — alog(ﬁ)) + (a—1) Zlog(zi)

—Zj: (%)a a,B > 0. (20)

Taking the derivative of equation (20) with respect to 3 yields the following
equation:

= 1
%:—ngﬂxzz@ 3> 0. (21)

16
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Setting equation (21) equal to zero and solving for B gives the MLE estimate
for 5:

B = (%Zz“) (22)

Inserting equation (22) in equation (20), gives the log-likelihood function of
a:

Q-

L(a, B) =L(a) =n | log(a) — alog <% Z;f)

=1

+ (a—1) Z log(z;) — n. (23)

The MLE estimate & may be optimized numerically by maximizing the like-
lihood function given in equation (23) with respect to a.

The Weibull distribution as a special case

Letting 7 = v = # = 1 and o — oo in equation (58), gives the following
equation:

Z = lim li Go\" _ lim Gy x li AT Yy
= Jim fim Sl ) =B fmGe x lim 7= ) =AY,
N——

Y ~exp(1) =1

where Y ~ exp(1). Therefore Z ~ Weibull(5,n).

17
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2.7.3 The Gamma distribution

The probability distribution function of the Gamma distribution is given by:

f(z) = %zo‘_le_ﬁz, z >0, (24)

where the Gamma function is defined as:

e}

I'(a) = / 2 le7dz. (25)

0

The parameters a > 0 and 5 > 0, are the shape and rate parameters respec-
tively [Kleiber and Kotz, 2003, p. 284|.

The expectation and standard deviation are specified as:

E[Z] = % and sd(Z) = %

On the occasion of f = «, equation (24) becomes a standard Gamma distri-

bution: N
i z > 0. (26)

1) = £y ,

The log-likelihood function for the Gamma distribution may be written as:

£(0,8) = nalog(8) + (a = 1) Y log(z) = B

—nlog (T'(a)), (27)
where o, § > 0. The partial derivative with respect to [ is given as:
oL na -
i=1

Setting equation (28) equal to zero and solving for 3 gives the MLE estimate
for 5:

: z > 0. (29)
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Substituting equation (29) into equation (27), leads to the log likelihood
function, depending only on «:

L(a, B) = L(a) = nalog (g) + (a—1) Z log(z;)

- %Z z —nlog (I'(a)), (30)

where @ > 0 and fori = 1 ton, z; > 0. The MLE & may be obtained by
maximizing equation (30) with respect to «, using numerical methods.

The Gamma distribution as a special case

Letting 7 = v =n = 1, and @ — oo in equation (58), yields:

7 = lim bGo

wﬁaa(;a

— 6G9, (31)

which is a Gamma distributed random variable with parameters, # and
(see Appendix (A.1)).

2.7.4 The Log-gamma distribution

The Log-gamma distribution is a transformation of the Gamma distribution.
When log (Z) is Gamma distributed, Z is Log-gamma distributed. The Log-
gamma probability density function is given as (see Appendix (A.4)):

-7

1 a—1_-p-1 2
o) og(2)* 27", 2 >0, (32)

f(z)

where o > 0 and 8 > 0 are both shape parameters [Kleiber and Kotz, 2003, p.
169].
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The mean and standard deviation are given as:

E(Z)z(l—%>_a, 6>1,

Substituting z; by log(z;) in equation (29) and (30) in section (2.7.3) gives
the log-likelihood estimate of 5 and log-likelihood function of «:

B=— S 704 , where z; > 0, for each i =1 ton, and  (33)

> log(zi) “log
i=1

n

Lo, B) = L(a) = nalog (

2 ) 4 0= 1) 3 togtlons)

Zlog

log Z log(z;) — nlog (I'(a)), (34)
where o > 0 and fori =1 to n, zi>0.

Numerical methods may be applied to maximize equation (34) with respect
to a.

The Log-gamma distribution as a special case

Letting 8 = n =1, and 7 = % and letting o and v go to infinity in equation
(58), gives the following equation:

Y v
7 = lim hm( 5G9> —1 = lim (1+5—G9) —1

Y00 ar—+00 ’yGa Y—+00 vy
— exp(Gog) — 1,

where Gy is a Gamma distributed random variable. Therefore Z + 1 is a Log-
gamma distributed random variable with parameters 6 and £ (see Appendix

(A4)).
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2.7.5 The Log-normal distribution

The Log-normal distribution is a transformation of the Normal distribution.
When log(Z) is normally distributed, Z is Log-normal. The Log-normal
probability density function is given by:

N2
f(z) = . 12W§exp (—% (longu) ) : z > 0. (35)

On a logarithmic scale, the parameters p and o are the location and scale pa-
rameters, respectively |[Gray and Pitts, 2012, p. 35]. The mean and standard
deviation are given by:

E(Z) =exp (u + %02> , and
sd(Z) = E[Z]\/exp (c2) — 1.

The Log-normal log-likelihood function may be expressed in the following
way:

L(,0) = —nlog() — 3 log(2r) - > log(=)

2
1 [ log(zi) —
-5 ; <T : o,z > 0. (36)

By setting
oL a
— = Zlog(zi) —np =0, z; >0, and
o
oL n "1 2
%Z—;—Fzg(log(zi)—u) =0, o,z >0,

i=1

and solving for p and o, the following estimates are obtained:

n

; log(z;) 3 (log(z) — i)’

fi=""— and 5= =1 - . (37)
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The Log-normal distribution as a special case

From equation (58) we have
X
log(z + ) = log(53) + 7 log (1 + T) , (38)

G
where X=—2 is the ratio of two independent standard Gamma variables.
«

Now, let 7 = /7, 7 =1, and 8 = exp(—,/7 + { + 1) in equation (38):

log(z+ﬂ):—ﬁ+£+%+:ﬂog (1+%)}

-

(*)

Using a Taylor expansion on (x) gives:

X X? X3
710g(1—|——> —Xﬁ—7+0(—).

Vi v
Let v = o20:
z = exp (§+0\/§(X—1)—%(XQ—l)—f—O(U)\(/;)) - 5. (39)
1
VO(X —1) = VO(Gy — 1) + €, where e = VOGy (G_ — 1) .

Let
U=V0(Gy—1)=Y =0,
where Y is Gamma distributed with parameters 6 and v/0. Moreover

My(t) = E[e"V] = B[ V9]
— e_t\/gE[etY]

0
1
— Vo <—1 — L) . (40)
NG
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Taking the logarithm of equation (40):

t

log (M (t)) = —tvV — flog <1 - —)

2
Thus My (t) — e which is the standard Normal moment generating func-
tion.

From equation (40), we have

2 _ L2
5—9G9(Ga2 Ga+1 .

Since Gy and H, are independent, it follows that:

B[¢?) = 0B|Gy) (E[H;) — 2E[Ho] + 1),

where H, is an inverse-Gamma variable with parameters o and «. Hence,

2) = (0+1) CYQ— ol — o — o —
E(f ) - (a—l)(a—Z))( 2 ( 2>+( 1)( 2))
O+ 1)(a+2)
CEN ) (41)

Letting 6 — oo, and % — 00, yield E|€?] — 0.
As E[¢%]— 0, (E[£])? must also converge to zero as the variance cannot be neg-

ative. Hence ¢ itself must converge to zero. This means that v (X — 1) =
U+ & — N, where N is standard normal.

1
Consider §(X2 — 1) in equation (39). As § — oo, @ — o0, Gy — 1 and
G4, — 1, we have

1
~(X*—1)—=0.
2

X3
a0

23
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What remains of equation (39) is

y = ef—&-oN7

which is a Log-normal random variable.

2.7.6 The two-parameter Pareto distribution

The two-parameter Pareto distribution is commonly used in claim size mod-
eling [Daykin et al., 1994, p. 89]. Due to its heavy tail, measured by «,
the two-parameter Pareto distribution is a favored distribution in property
insurance |Kleiber and Kotz, 2003, p. 59]. The probability density function
of the two-parameter Pareto distribution is given by:

___op*
f(Z)— (ﬂ—FZ)O‘Jrl’

where the parameters o and 3 are strictly positive.

z >0, (42)

The cumulative distribution function is defined as:

/80[

F(Z):l—m7

z > 0. (43)

For large values of «, the two-parameter Pareto distribution tends to the thin
tailed Exponential distribution (see Appendix (A.3)):

lim of

a=ro0 (B + z)ot1 = Pexp(—zp). (44)

On the other hand, the smaller «, the heavier is the tail of the distribution.
The skewness is also regulated by « [Kleiber and Kotz, 2003, p. 59|, while /3
is the scale parameter [Gray and Pitts, 2012, p. 41].
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The mean and standard deviation are given by:

E[Z] = b , a>1, and
a—1

, a > 2.

The log-likelihood function for the two-parameter Pareto distribution is spec-
ified as:

L(, B) = nlog(a) + nalog(B) — (a +1) Y log(B + =),

=1

a,8>0 (45)

Setting

9_522+Zlog( B ):o, a>0, (46)
=1

Ja  « B+ z

and solving for « yields the estimate:

d:(%glog(u%))l. (47)

Inserting equation (47) into equation (45) returns the log-likelihood function

of f:

n

L(&,B) = L(B) = nlog KSR,
izzllog (T)

+(n—1) Z log(z; + B) + n*log(B). (48)

=1

Equation (48) is a function of 5 only, and may be optimized with respect to
[ by the use of numerical methods.
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The two-parameter Pareto distribution as a special case

Letting 7 = v = 6 = 1 = 1 in equation (59), gives the following equation for
the random variable Z:

Z =aX,

where X is Extended Pareto distributed.

Using the following formula to calculate f,(z):

f2) =21, (—) (49)

where X is a continuous variable with probability density function f,(z) and
cumulative distribution function F,(x) [Klugman et al., 2008, p. 62].

The following equation is obtained:

1 T(a+1) 1

() == . 50
f (Z> 6 OCF(OC) < 5 )a—i-l ( )
——— [ 1+ —
=1 af
Multiplying the numerator and denominator in equation (50) by (a8)**!
gives:
a(af)”
(2) = ——F—— where «, 8,z > 0. ol
1) = o : 51

This is the two-parameter Pareto distribution with parameters (o, af3).

2.7.7 The Extended Pareto distribution

The Extended Pareto is a generalized version of the two-parameter Pareto
distribution with three parameters. The probability density function is given
by:

(a10) (/8"
0T 01z "0 (52)

26
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where the shape parameter «, and the scale parameters 5 and 6 are all strictly
positive [Bolviken, 2014, p. 335].

When 6 = 1, the distribution function becomes the two-parameter Pareto
distribution:

o e .
f(z)_(1+z/6)1+a_(5+z)1+a’ > 0.

In Appendix (A.2) it is shown that the Gamma distribution can be derived
as a limit of the Extended Pareto distribution.

The mean and standard deviation of the Extended Pareto distribution are
defined as (see Appendix (A.1)):

0p

, a > 2.

sd(Z) = B(Z) (m

The estimated parameters (&, B, é) may be derived by numerically optimizing
the log-likelihood function given by:

L(a,p,0) =
n [log (T'(a + 0)) —log (T(a)) — log (T'(9)) — flog (3)]

+(9—1)Zlog(zi)—(a+0)210g <1+%> (53)

where «, 3, 6 > 0.

2.7.8 The four-parameter Pareto distribution

One obtains what is denoted as the four-parameter Pareto distribution in
this thesis by letting v = 7 = 1 in equation (64). The probability density
function is given by:
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) - (Z)ﬁgggﬁ(lf()) 7 (54
3] o

The mean and standard deviation are given by (see Appendix A.5):

3

™lw

3=

a1 T'(a —n)T(0 + 1)
B(2)=5(5) rare =~ *17l
sd[Z] = —B (5>
['(a)T(0)

% /T (@)D(O)T (@ — 2n)0(0 + 20) — (D — )T(0 + 7)°.

The log-likelihood function for the four-parameter Pareto distribution is de-
fined as:

L(e,8,8,n) =

nf (log(0) — log(a)) + nlog (I'(a+ 6)) — nlog(B) —nlog(n)  (55)
0 = Zi

—nlog (I'(«)) — nlog (I'(9)) + (E - 1) Zlog (E) (56)

=1

_(04+9)i10g <1+ (%)g) (57)

providing «, 3, n, 6 > 0.

2.7.9 The six-parameter Pareto distribution

28



2.7 Claim size distributions 2 METHODS

The following distribution, that is denoted the six-parameter Pareto distri-
bution in this thesis, is based on a parameterized power transformation [Box
and Cox, 1964|, with six parameters.

Z:6<<1+¥)V—1), (58)

_G
-

where

X

Gy and G, are independent variables belonging to the standard Gamma dis-
tribution with parameters ¢ and «, respectively. The six-parameter Pareto
distribution has many special cases, among those are the following distribu-
tions: the two-parameter Pareto, Extended Pareto, four-parameter Pareto,
Gamma, Weibull, Log-Gamma, Log-normal and the Exponential distribu-
tion.

0
Let X* = 659. This variable is Extended Pareto distributed [Bolviken,
gy

2014, p. 324]. The random variable Z in (58) becomes:
1 aX* UANSA
Z = 1+ - —1;.
A2 (5)) -1 o

The following formula will be used to find the distribution function of Z:

99~ ()
0z

1) = £:(97'(2)) , (60)

where Z = g(x) is a monotonic function (strictly increasing or decreasing)
|[Devore and Berk, 2012, p. 221].

The inverse function of Z is given by:

X=g2) = %{7’

«
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with derivative

G () )

It is known that the random variable X* is Extended Pareto distributed
with distribution function given by equation (52) in section (2.7.7). Substi-
tuting equation (61) into equation (52) gives the distribution function of X*

=g (2):

where 3,a,60 > 0 and z > 0. For justification see Appendix (A.1).

Inserting equation (62) and (63) into equation (60) gives the probability
density function of Z:

The log-likelihood function for the six-parameter Pareto distribution is given
by:
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£(’}/7 777 T? a’ 97 /6) =

() Swe((3en) ) () EweG)
—n ( lg(5) +log(r) + log(s) — 010g(6) + 8log(a) —  lox(r)

~1og (T (o + 6)) + log (T (a) + log (T <9>>)

_(a+9)é:bg<1+<(%+ﬂ>i—1>;§#>, (65)

providing «, 0, 5, n, 7 > 0, and v > 1 for the distribution to be unimodal.

The parameters («, 6, 5, n, 7, v ) can be estimated by optimizing the log-
likelihood function.

2.7.10 Modeling extreme claim sizes

The Pareto family has a unique performance in its extreme right tail. This
is a very useful characteristic when dealing with excess claim sizes. Extreme
claims exceeding a threshold b, are commonly modeled by the (Generalized)
Pareto distribution |Beirlant et al., 2009]. The (Generalized) Pareto distri-
bution has two special case distributions, the two-parameter Pareto distri-
bution and the Exponential distribution. The interested reader if referred
to [Hosking and Wallis, 1987]. To obtain a better estimate of the claim size
distribution, the claims may be divided in two, where claims up to and in-
cluding a threshold b, will be fitted to the six-parameter Pareto distribution,
or one of its special cases. The remaining claims will be modeled as a (Gen-
eralized) Pareto distribution.

Let Z be a sequence of mutually independent random variables, representing
insurance claims, with continuous distribution function F(z)<1, V z. Setting
some threshold b, gives the over-threshold distribution:

Zy=2—b|Z>b

According to Pickand’s theorem Z, becomes (Generalized) Pareto distributed
as b — oo |Pickands III, 1975] and |Bglviken, 2014, p. 325-328]. Hence Z,
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=7 -b | Z > b, will be modeled by the (Generalized) Pareto distribu-
tion [Belviken, 2014, p. 326]. The remaining question is where to set the
threshold b. To be able to apply Pickand’s theorem, b must be sufficiently
large. However, as b — oo, the number of claims above b decreases and the
parameters may become hard to estimate. Given an iid sample 71, ..., Z,, a
frequently used technique to determine the threshold in risk analysis is the
mean excess plot. The mean excess function is given by:

M(b) _ z?:l (ZZ - b) I[Zi>b]
Z?:l [[sz>b]

for 0 < b < max (71, ..., Z,). The points {(Z(k),M(Z(k))> 1<k < n} are
plotted, where Z(;) > ... > Z,) are the claim sizes sorted in decreasing order.

The underlying data in the over-threshold distribution should show a pattern
of linearity for large values of the threshold b [Ghosh and Resnick, 2011].

2.7.11 Claims below the threshold

For all the claim sizes below the threshold b, the following formulas will be
used. Consider the data Z | Z < b, where b is the threshold. The conditional
probability density function is given by:

f(z]ng):P{Z(;)b):;((Z;, 2 <b. (66)

The conditional cumulative distribution function is given by:
F(z)

<b
Foy  C7

where equation (66) and (67) are the truncated probability density and cu-
mulative distribution functions, respectively.

F(z]|z<b) = (67)

The Maximum likelihood function for the truncated data is given by:

Ly, (0;z <) Zlog fzi| 2z <b;0))

= Zlog (2:;0)) —nlog (F (b;0))

_r (07 2) —nlog (F (b:0)) . (68)
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The quantile function for the truncated distribution becomes:

F
F(z\ng):F

F(z) =uF(b).
The inverse of equation (69):
2= FL (P (b)),

is the quantile function used to compute the qqg-plot.

(69)

Sections 2.7.1 - 2.7.9 have not taken truncation into account. The truncated
log-likelihood function may be obtained by inserting the log-likelihood func-
tion of interest in equation (68). The non-truncated estimators may be used

as starting values when optimizing equation (68).
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3 Results

Estimation in R

The parameters for the under-threshold distributions are first fitted by Max-
imum likelihood estimation assuming the non-truncated distribution, where
the start values are determined by the method of moments. The optimization
is executed using the ’optim’ function in R. For the Exponential distribution,
the mean is used to find a start value for 5. The two-parameter distributions
use the mean and the variance to set the start values for the two parame-
ters of interest. The Extended Pareto distribution uses the mean, variance
and skewness. The four-parameter Pareto distribution takes the estimated
parameters &, 6 and B from the Extended Pareto distribution and sets n —
1 as start values. The six-parameter Pareto distribution uses &, é7 B and 7
estimated by the four-parameter Pareto distribution, with 7 = v = 1.

The parameter estimates obtained for the non-truncated distributions are
then used as start values for optimization of the truncated distributions.
The optimization is performed using the ’optim’ function in R. When using
‘optim’, the logarithm of the parameters is estimated. The reason for this is
to enforce positive values. The parameters are then transformed back by tak-
ing the exponential of the estimates. The exception is the parameter v in the
six-parameter Pareto distribution that needs to be > 1 for the six-parameter
distribution to be unimodal. The function ’optim’ estimates the transformed
gamma parameter represented by ¢ = — log(4)—log(1— 1/&%. The parameter

is then transformed back by the transformation y = —————.
exp (gb) +1

The over-threshold distribution applies Maximum likelihood estimation us-
ing the mean and variance to find start values for @ and g for the Pareto
distribution, for Z, = (Z — b|Z > b). The function ’optim’ is used for opti-
mization.
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Data and claim frequency

The data set consists of property insurance claims on office and industrial
buildings from Januar 2001 to October 2015 from Gjensidige forsikring. The
total exposure to risk A = 213,700 policy year. The resulting claim intensity

. N n . .
estimate is 1 = — = 0.03. After removing claims < 0 from the data set,

A

6,411 claim sizes remain.

Table 1 presents a summary of the total data. The data ranges from 1 to
1.055x10% NOK, which indicates a great spread in the total claim size data.
The middle value is at 3.765x10* NOK, which reveals a heavy right tail in
the data. The standard deviation o = 3.012x10° indicates a great variation
in the data set. The skewness — 1.632x10, and the kurtosis — 3.995x102,
which again reveal a heavy tail in the claim size distribution. The data ap-
pears to have extreme values.

Summary

Min. | 1st Qu. Median Mean 3rd Qu. | Max.
1.000 | 1.095x10* | 3.765x10* | 5.605x10° | 1.249x10° | 1.055x 108

Table 1: Five-number summary of the data without threshold.

3.1 The claim size distributions

The threshold

The estimated mean excess function of the sorted claims is plotted against
the sorted claims in figure 1 below, as described in section 2.7.10. The thres-
hold level b is determined from this plot. Figure 1 shows a roughly linear
trend from around 4x10%° NOK. Setting the threshold at 4x10°, gives the
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Mean excess plot

Mean excess

T T f T T
0e+00 2e+06 4e+06 Ge+06 8e+06 1e+07

Threshold

Figure 1: Mean excess plot.

over-threshold distribution 207 data points to be fitted to the (Generalized)
Pareto distribution. Removing the 207 claims exceeding the threshold level,
leaves 6,204 claims to be fitted to the under-threshold distribution.

3.1.1 The under-threshold claim size data
Table 2 shows a summary of the under-threshold claim size data.

Summary

Min. | 1st Qu. Median Mean 3rd Qu. | Max.
1.000 | 1.043x10* | 3.527x10* | 1.910x10° | 1.039x10° | 3.969x10°

Table 2: Five-number summary of the under-threshold data.

Table 2 shows that the under-threshold empirical model has mean = 1.910x10°.
The standard deviation = 4.873x10° which reveals a great amount of uncer-
tainty. The data does not appear to be Exponentially distributed as the
standard deviation is greater than the mean. The skewness = 4.417, which
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implies that the under-threshold model is more symmetric about its mean
than the total empirical model. This is expected as the extreme claims have
been removed. The kurtosis = 2.186x 10 has been reduced compared to that
of the total empirical model. The under-threshold model has a much lighter
tail than the total empirical model, which is reasonable as the extreme right
tail has been removed.

Comparing the spread between the minimum and maximum value, and the
1st quantile and the 3rd quantile in table 1, with table 2, shows that the
spread has been notably reduced in the under-threshold model. The median
is also more centered in table 2. However, this is expected as the extreme
claims have been removed.

Table 3 displays the Maximum likelihood estimates for claims below the
threshold b and a 95% confidence interval for the parameters based on 10,000
bootstrap samples to estimate the error in the fitted parameters. There is no

need for adjustments for correction in the bootstrap estimates as 0 is very
close to the vector of Maximum likelihood estimates @ for all distributions.

The lower and upper 95% confidence intervals lie quite close for the Expo-
nential distribution which means that the Maximum likelihood estimate has
little uncertainty. This is expected as the Exponential distribution has only
one parameter to be estimated from 6,204 observations.

The confidence intervals for both parameters in all the two-parameter distri-
butions are narrow, which indicates little estimation uncertainty. Again this
is no surprise as there are only two parameters to be estimated from a large
amount of data.

The Extended Pareto distribution displays narrow confidence intervals for
all three bootstrap simulated parameters, which implies little uncertainty in
the Maximum likelihood estimations. When 6 = 1, the Extended Pareto
distribution equals the two-parameter Pareto distribution. Table 3 shows
that the confidence interval for 6, [1.462,1.702], does not include 1 and 0 is
therefore significantly different from 1. In other words, the fitted Extended
Pareto distribution is significantly different from the two-parameter Pareto
distribution.

37



8¢

Maximum likelihood estimation

Distribution | Parameters with confidence intervals

Exponential 5 = 5.236x107% [5.127 x 1079,5.347 x 1079

Weibull = 5.429x107! [5.339 x 1071, 5.522 x 107] f=9.352x10* [8.983 x 10%,9.738 x 104
Gamma @ 4.030x 1071 [3.936 x 1071,4.128 x 107! B = 2.109%1075 [2.026 x 107°,2.196 x 1079

[ [
[ [
Log-gamma | & — 3.170x10  [3.081 x 10,3.267 x 10] B =3.010x10 [2.924 x 10,3.103 x 10]
Log-normal = 1.056x10  [1.052 x 10,1.060 x 10] o = 1.832 [1.802, 1.862]
2-par. Pareto | & — 7.108x107! [6.725 x 101, 7.516 x 107] B = 2.242x10* [2.053 x 10%,2.450 x 10%]
Ext. Pareto | & = 6.051x107! [5.731 x 107",6.395 x 10! 0 = 1.571 [1.462,1.702]
B =2.381x10* [2.244 x 10*,2.524 x 104]
4-par. Pareto | @ — 4.793x107! [3.713 x 107',6.318 x 10} 0 —1.234 0.481 x 1071, 1.688]
B = 2.280x10% [2.124 x 10*,2.448 x 10%] 7 = 8.510x10~" [7.070 x 1071, 1.031]
6-par. Pareto | & — 4.795x107! [3.774 x 10*,7.024 x 107] 0 —1.234 0.950, 1.824]
3 = 2.566x10* il = 8.512x107 [0.715,1.085)]
7= 1.125 4 = 1.000 [1.000,1.116]
g = 2.281x10% [2.028 x 10%,2.462 x 10"]

Table 3: Maximum likelihood estimated parameters with 95% confidence intervals for the under-threshold distribu-

tions.
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3.1 The claim size distributions 3 RESULTS

The confidence intervals for the four-parameter Pareto distribution show that
the uncertainty in all the parameters has increased from the confidence inter-
vals for the Extended Pareto distribution, which is normal as the uncertainty
increases with the number of parameters. The Extended Pareto distribution
is a special case of the four-parameter Pareto distribution. The Extended
Pareto distribution occurs when n = 1. The 95% CI for 7, [0.710,1.026],
indicates that 7 is not significantly different from 1. Including the additional
parameter 7 is of no benefit. The other estimated parameters do not differ
much from those estimated with the Extended Pareto distribution.

The confidence intervals for the six-parameter Pareto distribution indicate
that the spread has increased in the confidence intervals for &, 6 and 7 from
the confidence intervals for the four-parameter Pareto distribution, which is
expected as two more parameters have been fitted. The estimated parameter
4 is not significantly different from 1, and once again 7 is not significantly
different from 1. When v — 1, the parameters § and 7 are impossible to
identify and equation (58) becomes:

8.,
X, (70)

7 =
where the parameters § and 7 are only represented as the ratio 3 /7. For this
reason the Maximum likelihood estimate B/7 and a 95% CI for the bootstrap
simulated ratio 5*/7* is computed.

Setting 4 and 7 equal to one, leads to the Extended Pareto distribution.
Hence, the Extended Pareto distribution is again preferred.

Figure 2 presents Q-Q plots for all the nine under-threshold distributions to
illustrate how well each distribution fits the data. The Exponential Q-Q plot
overestimates small claims, which is no surprise as the Exponential distri-
bution has a very light left tail. The Exponential distribution also fails to
capture the extreme right tail of the sample distribution as the plot is located
above the 45 degree line to the right. This indicates that the Exponential
distribution is not heavy enough in the tails to model the data.

Figure 2 shows that the Weibull distribution underestimates claim sizes ap-
proximately above 4x10° NOK and does not have a sufficiently heavy right
tail for the data. However, the Weibull Q-Q plot shows a slight improvement
in fit from the Exponential Q-Q plot.
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Figure 2: Q-Q plots for all fitted under-threshold distributions.
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The right of the Gamma Q-Q plot shows that the Gamma distribution un-
derestimates claims above approximately 7x10° NOK and is not as heavy
in the right tail as the data. The plot displays a poor fit and suggests that
the under-threshold data is not Gamma distributed. The Weibull Q-Q plot
indicates the best fit so far.

The Log-gamma Q-Q plot shows a fairly linear relationship between the
sample, and the theoretical quantiles. However, except from the tails, the
Log-gamma distribution tends to underestimate the claims. The Log-gamma
distribution is more heavy-tailed than the previous presented distributions
and seems to give the best fit until now.

The Log-normal Q-Q plot indicates that the Log-normal distribution under-
values the claim sizes and fails to measure the extreme right tail of the data.
Comparing the Log-gamma to the Log-normal Q-Q plot, the Log-gamma
distribution seems to be a better choice of under-threshold claim size dis-
tribution. However, the Log-normal Q-Q plot displays a better fit than the
Q-Q plots for the Exponential, Gamma and Weibull distributions.

The two-parameter Pareto Q-Q plot displayed in figure 2 succeeds in measure
the tails of the distribution. This is expected as the Pareto is an extremely
heavy-tailed distribution. Based on the good linear relationship in the Q-Q
plot, the two-parameter Pareto distribution is preferred over the Log-gamma-
distribution.

The Extended Pareto Q-Q plot indicates a slightly better fit than the two-
parameter Pareto distribution as the points are even closer to a 45 degree
line. This supports the claim that the Extended Pareto is significantly dif-
ferent from the two-parameter Pareto distribution.

The relationship between the theoretical and the sample quantiles in the
four-parameter Pareto Q-Q plot implies a good fit and suggests that the
four-parameter Pareto distribution is a good choice of under-threshold dis-
tribution. However the plot shows no improvement from the Extended Pareto

Q-Q plot.

The six-parameter Pareto Q-Q plot illustrates a fit similar to that of the
four-parameter Pareto and Extended Pareto distribution. There is very lit-
tle difference between the Extended Pareto, the four- and the six-parameter
Pareto Q-Q plots.
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Statistics

Distribution o G, AIC BIC P-value
Exponential 1.912x10° | 1.912x10° | 1.63x10° | 1.63x10° | < 10~
Weibull 1.601x10° | 3.061x10° | 1.57x10° | 1.57x10° | < 10~
Gamma 1.907x10° | 3.000x10° | 1.58x10° | 1.58x10° | < 10~
Log-gamma 1.614x10° | 3.995x10° | 1.56x10° | 1.56x10° | 1.80x10~*
Log-normal 1.571x10° | 3.643x10° | 1.55%10° | 1.56x10° | < 10
Two-parameter Pareto | 1.749x10° | 4.366x10° | 1.55x10° | 1.55x10° | < 10~*
Extended Pareto 1.817x10° | 4.583x10° | 1.55x10° | 1.55x10° | 2.23x1073
Four-parameter Pareto | 1.817x10° | 4.583x10° | 1.55x10° | 1.55x10° | 4.30x10~*
Six-parameter Pareto | 1.817x10° | 4.583x10° | 1.55x10° | 1.55x10° | 4.70x 1074

Table 4: Statistics and model evaluation for the under-threshold data.
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3.1 The claim size distributions 3 RESULTS

Table 4 gives AIC and BIC values and compares the model selection criteria
between the different distributions. Also the Kolmogorov-Smirnov goodness-
of-fit test is applied to each individual under-threshold distribution. The
estimated mean and standard deviation for each distribution in table 4 and
table 11 have been computed with Monte Carlo based on 1,000,000 samples.

The Exponential and the Gamma under-threshold distributions have esti-
mated means equal to 1.912x10° and 1.907x10°, respectively, which both
lie the closest of all the means in table 4 to the under-threshold distribu-
tions empirical mean of 1.910x10°. The Extended, four-parameter and six-
parameter Pareto distributions underestimate the average claim size slightly.
All the remaining distributions underestimate the mean even more than the
Pareto distributions.

The Exponential, Gamma and Weibull under-threshold distribution have the
smallest standard deviation. This is expected as they have the lightest tails
of the distributions. The four different Pareto under-threshold distributions
have the largest standard deviation, as expected since the Pareto distribu-
tion has the heaviest tails of the distributions. The Extended Pareto, four-
parameter Pareto and six-parameter Pareto under-threshold distributions all
have standard deviations of 4.583x10° which are closest to the empirical
standard deviation. However all the under-threshold distributions underes-
timate the standard deviation.

It should be noticed that the Extended, four-parameter and six-parameter
Pareto under-threshold distributions have the same estimated average claim
size and estimated amount of uncertainty in the data. This supports the
claim that there is no significant difference between the three models.

The best goodness-of-fit based on AIC are all the Pareto distributions and the
Log-normal distribution, with AIC = 1.55x10° followed by the Log-gamma
distribution with AIC = 1.56x10°. Based on BIC, that exercises a heavier
penalty for number of estimated parameters, all the Pareto distributions have
the best goodness-of-fit with BIC = 1.55 x10° followed by the Log-gamma
and Log-normal distribution, both with BIC = 1.56x10°. The AIC and BIC
are not able to distinguish between the distributions with the lowest infor-
mation criteria values.

The p-value from the Kolmogorov—-Smirnov test is < 0.05 for all the distri-
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butions. The null hypothesis is rejected and it can be concluded that the
data does not follow any of the specific distributions. The reason for this
may be the result of a large data set with little uncertainty in the parameter
estimates, leading to the rejection of the null hypothesis, even when the Q-Q
plot indicates the opposite. This hypothesis will be tested when performing
the model selection methods on a subset of the data.

The Q-Q plots indicate that all the versions of the Pareto distributions fit
the data well. Because the under-threshold claim size data have large uncer-
tainty and a heavy right tail, one of the Pareto distributions were expected to
be the best choice of model as it has a very heavy right tail. The fitted four-
parameter Pareto and six-parameter Pareto distribution are not significantly
different from the Extended Pareto distribution. However, the Extended
Pareto is significantly different to the two-parameter Pareto as 0 differs sig-
nificantly from 1. This indicates that the Extended Pareto distribution is
the best choice of under-threshold distribution for the data. The question is
whether the model with the Extended Pareto under-threshold distribution
will be selected as the best fitted model for a reduced sample of the data.

3.1.2 The over-threshold claim size distribution

Because the over-threshold data, consisting of only 207 claims, has an ex-
treme right tail, it is reasonable to model the data with the two-parameter
Pareto distribution.

Table 5 shows the Maximum likelihood estimates for claims above the thres-
hold b and a 95% confidence interval for the estimates based on 10,000 boot-
strap simulations. The Maximum likelihood estimates are very close to the
means of the bootstrap estimates and therefore no adjustments are needed.
The confidence interval for B* in table 5 shows a great amount of uncertainty
in B , which is normal in the Pareto distribution and expected when modeling
extreme claims.

Table 6 shows that there is insufficient evidence to reject Hy and conclude
that the over-threshold claim size data do not follow the two-parameter
Pareto distribution. This is expected due to Pickand’s theorem, when the
threshold is set appropriate, and indicates that the chosen threshold is rea-
sonable.
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Maximum likelihood estimate

& 3 95 % CI for &* | 95 % CI for 3*
2.778 | 1.362x 107 | [1.973,5.185 x 10] | [8.463 x 10°,2.938 x 10|

Table 5: Maximum likelihood estimated parameters with 95% confidence
intervals for the over-threshold data.

Goodness-of-fit test

D, P-value
3.769x1072 | 9.303x 107"

Table 6: Kolmogorov-Smirnov goodness-of-fit test for the over-threshold
data.

Over—threshold Q—Q Plot
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Figure 3: Two-parameter Pareto over-threshold Q-Q plot.

Figure 3 shows an approximate linear relationship for the 207 observations
in the over-threshold model. The plot shows a good liner relationship, which
indicates that the threshold level b = 4x10° is sufficiently large for Pickand’s
theorem to be valid. It seems to be a fine balance between skewness and vari-
ance as the plot is approximately 45 degrees.
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3.1.3 The reserve

The aim now is to estimate the 99% and the 99.5% reserve for next year
(i.e. T = 1) for a portfolio of 30,000 policies. Table 7 shows the resulting
estimates along with 95% confidence intervals. Density functions for the esti-
mated 99% and the 99.5% reserves are plotted in figure 4 and 5, respectively,
based on 1,000 bootstrap simulations and 100,000 Monte Carlo simulations.

The 99% estimated reserve with 95% confidence intervals in table 7 and fig-
ure 4 indicate that the width of the confidence intervals does not increase
according to the number of parameters fitted to the under-threshold dis-
tributions. In other words, the uncertainty in the estimated reserve does
not increase with the number of parameters fitted to the model. The esti-
mated reserve with the Gamma under-threshold distribution has the most
narrow confidence interval of all the estimates, and therefore the smallest
amount of uncertainty in the 99% simulated reserve. The estimated re-
serve with the two-parameter Pareto under-threshold distribution has the
second smallest confidence interval. The estimated reserves with the fol-
lowing under-threshold distributions follows with 95% confidence intervals
in increasing order: the six-parameter Pareto, Extended Pareto, Weibull,
Log-gamma, Log-normal, four-parameter Pareto and finally the Exponential
distribution, with the widest interval, hence the greatest amount of uncer-
tainty in the 99% estimated reserve of all the nine estimates. Having the
smallest amount of uncertainty does not necessarily mean having the correct
amount of uncertainty in the estimated reserve. As the Extended Pareto
distribution was the favored under-threshold distribution, the lower and up-
per 95% confidence bounds for the 99% reserve estimated with the Extended
Pareto under-threshold distribution will be compared with the respective
values estimated with the other distributions.
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Estimated Reserve

Distribution 99% reserve 99.5% reserve

Exponential 7.920x108 [6.632 x 10%,1.121 x 10%] | 8.584x10° [6.913 x 10%,1.348 x 10°
Weibull 7.712x108 [6.373 x 108,1.047 x 10°] | 8.334x 108 [6.644 x 108, 1.254 x 10°
Gamma 7.957x10% [6.650 x 10%,1.057 x 10Y] | 8.615x10% [6.922 x 10%,1.249 x 10?

Log-gamma

6.291x10% [4.898 x 10%,9.047 x 108

6.947x10°% [5.168 x 10%,1.093 x 10°

Log-normal

Two-parameter Pareto

Extended Pareto

7.847x 105 [6.643 x 107, 1.071 x 10°

8.533x10° [6.957 x 10%,1.275 x 10°

Four-parameter Pareto

7.924% 108 [6.609 x 10%,1.105 x 10°

8.522x 108 [6.887 x 10%,1.331 x 10°

Six-parameter Pareto

]
[ ]
{ 1
7.676x10° [6.352 x 10%,1.079 x 10
7.737x10° [6.526 x 10°,1.056 x 10
[ ]
[ ]
[ ]

7.918x 108 [6.573 x 10%,1.061 x 10°

]
[ ]
| |

8.343x10° [6.660 x 10°, 1.286 x 107]

8.164x 10° [6.819 x 10°, 1.264 x 107]
[ ]
[ ]
[ ]

8.519x 105 [6.833 x 10%,1.261 x 10°

Table 7: Estimated 99% and 99.5% reserves with 95% confidence intervals.
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Table 7 and figure 4 display that the estimated reserve with the Exponen-
tial under-threshold distribution has a wider confidence interval than the re-
serve estimated with the Extended Pareto under-threshold distribution. The
estimated 99% reserve with the Exponential under-threshold distribution is
higher than the corresponding value for the Extended Pareto under-threshold
distribution which suggests that the reserve estimated with the Exponential
under-threshold distribution is slightly overestimated. However, the 99% re-
serve estimated with the Exponential under-threshold distribution lies within
the confidence interval for the reserve estimated by the Extended Pareto
under-threshold distribution which indicates that the two estimated reserves
are not significantly different.

Table 7 and figure 4 show that the reserve estimated with the Weibull under-
threshold distribution has a smaller lower and upper confidence bound than
the reserve estimated with the Extended Pareto under-threshold distribution
and the 99% reserve which suggests that the 99% reserve estimated with the
Weibull under-threshold distribution is somewhat underestimated. Yet the
99% reserve estimated with the Weibull under-threshold distribution is lo-
cated within the confidence intervals estimated with the Extended Pareto
under-threshold distribution. Hence the two estimates do not differ signifi-
cantly.

The 99% reserve estimated with the Gamma under-threshold distribution
has a lower confidence bound very close to that estimated with the Extended
Pareto under-threshold distribution. The upper confidence bound is slightly
lower than that estimated with the Extended Pareto under-threshold distri-
bution. The 99% reserve estimated by the Gamma under-threshold distribu-
tion is larger than that estimated by the Extended Pareto under-threshold
distribution, which indicates that the reserve estimated with the Gamma
under-threshold distribution is slightly overestimated. However the 99% re-
serve estimated with the Gamma under-threshold distribution lies within
the confidence interval estimated with the Extended Pareto under-threshold
distribution. Hence the reserve estimated with the Gamma under-threshold
distribution is not significantly different to the reserve estimated with the
favored Extended Pareto under-threshold distribution.

Table 7 shows that the 99% reserve estimated with the Log-gamma under-
threshold distribution has the smallest lower and upper confidence bound
of all the models. Figure 4 illustrates that the density of the reserve es-
timated with the Log-gamma under-threshold distribution is shifted to the
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Figure 4: Probability density functions of the 99% Monte Carlo simulated
reserves with 95% confidence intervals for the nine models. The 99% Monte
Carlo simulated reserves are presented by the dashed line. The 95% confi-
dence intervals are illustrated by the white area.
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Figure 5: Probability density functions of the 99.5% Monte Carlo simulated
reserves with 95% confidence intervals for the nine models. The 99.5% Monte
Carlo simulated reserves are presented by the dashed line. The 95% confi-

dence intervals are illustrated by the white area.
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left of the density of the reserve estimated with the Extended Pareto under-
threshold distribution. The 99% reserve estimated with the Log-gamma
under-threshold distribution is considerably smaller than that of the Ex-
tended Pareto distribution, which is illustrated well in figure 4. It seems
like the 99% reserve estimated with the Log-gamma under-threshold distri-
bution is underestimated. The 99% reserve estimated with the Log-gamma
under-threshold distribution is smaller than the lower 95% confidence bound
estimated with the Extended Pareto under-threshold distribution. Hence at
a 5% level of significance, the 99% reserve estimated with the Log-gamma
under-threshold distribution is significantly different from the reserve esti-
mated with the Extended Pareto under-threshold distribution.

The lower 95% confidence bound for the 99% reserve estimated with the Log-
normal under-threshold distribution is lower than that estimated with the
Extended Pareto under-threshold distribution. The upper confidence bound
however, is almost equal to that estimated with the Extended Pareto under-
threshold distribution. The 99% reserve estimated with the Log-normal
under-threshold distribution is not significantly different from that estimated
with the favored under-threshold distribution.

Table 7 and figure 4 display that both the lower and upper confidence bounds
for the 99% reserve estimated with the two-parameter Pareto under-threshold
distribution are smaller than those estimated with the Extended Pareto
under-threshold distribution, and the 99% reserve is also smaller than that
estimated with the preferred Extended Pareto under-threshold distribution.
However, there is no significant difference between the two estimated reserves
as the 99% reserve estimated with the two-parameter Pareto under-threshold
distribution lies within the confidence interval estimated with the Extended
Pareto under-threshold distribution.

The 95% lower confidence bound for the reserve estimated with the four-
parameter Pareto under-threshold distribution is slightly lower than that es-
timated with the Extended Pareto under-threshold distribution. The upper
bound however, is slightly larger compared to that estimated with the Ex-
tended Pareto under-threshold distribution. The 99% reserve estimated with
the four-parameter Pareto under-threshold distribution is higher than that
estimated with the preferred under-threshold distribution, but lies within
the confidence interval estimated with the Extended Pareto under-threshold
distribution, and it can be concluded that the two estimated 99% reserves
do not differ significantly.
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Table 7 and figure 4 show that the lower and upper 95% confidence bounds
estimated with the six-parameter Pareto under-threshold distribution are
somewhat smaller than those estimated with the Extended Pareto under-
threshold distribution, and the 99% reserve is marginally larger. However,
the 99% reserve estimated with the six-parameter Pareto under-threshold
distribution lies within the confidence interval estimated with the Extended
Pareto under-threshold distribution. Hence the two estimated reserves do
not differ significantly.

Considering the estimated 99.5% reserves, table 7 and figure 5 again show
that the uncertainty in the estimated reserves does not increase with the
number of parameters fitted to the under-threshold distribution. Compar-
ing the size of the 95% confidence intervals for the 99.5% reserves estimated
with the different under-threshold distributions, the results are similar to
those of the 99% estimated reserves. The exceptions are the confidence in-
terval estimated with the Weibull under-threshold distribution now having
the fourth largest interval, the confidence interval estimated with the Log-
gamma under-threshold distribution now being the second smallest and the
confidence interval estimated by the two-parameter Pareto under-threshold
distribution now having the fifth smallest confidence interval. The differences
are small and seem unimportant as there is still no apparent correlation be-
tween the width of the confidence intervals and the number of parameters
fitted to the under-threshold distributions.

Comparing the lower and upper confidence bounds for the 99.5% reserve esti-
mated with the favored Extended Pareto under-threshold distributions with
the remaining estimates gives results consistent with those for the 99% esti-
mated reserves. The exceptions being the 99.5% reserve estimated with the
Gamma under-threshold distribution now having a slightly smaller lower con-
fidence bound than that estimated with the Extended Pareto under-threshold
distribution, and the 99.5% reserve estimated with the four-parameter and
six-parameter Pareto under-threshold distributions now being slightly smaller
than that estimated with the Extended Pareto under-threshold distribution.

The 99.5% reserve estimated with the Log-gamma under-threshold distribu-
tion is once again significantly different from the reserve estimated with the
Extended Pareto under-threshold distribution. All the remaining estimates
are once more not significantly different from that estimated with the Ex-
tended Pareto under-threshold distribution at a 5% level of significance.
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Figure 4 and figure 5 illustrate a heavy right tail in both the 99% and 99.5%
reserves estimated by all models. As a result of the heavy right tail all the
estimated reserves represented by ¢, are located towards the lower confidence
bounds for all models.

Most of the 99% and 99.5% estimated reserves, and their respective 95% con-
fidence bounds lie very close for all the different under-threshold distributions
and only the reserves estimated with the Log-gamma under-threshold distri-
bution are significantly different from those of the favored Extended Pareto
under-threshold model. This model combination also seems to underestimate
the reserve. Choosing this model may lead to Gjensidige forsikring not being
able to cover their liabilities with the required 99% or 99.5% probability, and
this model should not be selected. However, choosing one of the remaining
model combinations to estimate the reserve shows no significant difference
from that estimated with the preferred Extended Pareto under-threshold dis-
tribution if they are only to be used for estimation of the reserve.

The 99% and 99.5% reserves estimated with the two-parameter Pareto under-
threshold distribution is not significantly different from those estimated with
the Extended Pareto under-threshold distribution and the estimates are quite
similar. Perhaps the two-parameter Pareto distribution is a better choice of
under-threshold distribution to model the reserve than the Extended Pareto
distribution as it has one less parameter to be fitted to the model and the
difference in the reserve estimated with the two under-threshold distributions
in combination with the claim frequency and over-threshold distribution is
marginal.

From figure 1, the threshold was placed at 4x10% NOK. Table 7 shows that
the 99% and 99.5% estimated reserves, and their respective 95% confidence
intervals all have values above the threshold. This indicates that the over-
threshold distribution largely controls the estimated reserves. This may ex-
plain why the estimated reserves and their respective 95% confidence in-
tervals are so similar for all the estimates and why the uncertainty in the
estimated reserve does not increase with the number of parameters fitted
to the under-threshold distribution. Considering figure 2, the difference be-
tween the distributions would likely be larger if the focus was the quantiles
further left in the distribution such as the 95% or the 90% quantile.
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3.2 Reducing the sample size 3 RESULTS

3.2 Reducing the sample size

A smaller sample of 500 claims is selected at random without replacement
from the total data.

Claim frequency calculations for the reduced data

The claim frequency for the reduced sample size is calculated with exposure
to risk A = 16,667 policy years leading to the same claim intensity g = 0.03
as for the original data set.

3.3 The reduced claim size data

Table 8 shows that the spread has decreased with the reduced data, which is
expected as a subset of the total claims have been selected. The median and
the mean is larger than that for the total data without threshold. The stan-
dard deviation o = 3.712x10% indicates a large amount of uncertainty in the
reduced sample. The skewness — 1.431x10, and the kurtosis — 2.417x 102
are smaller than those of the total data, but still indicate a heavy tail and
extreme values in the distribution.

Summary

Min. 1st Qu. Median | Mean 3rd Qu. | Max.
2.980x10% | 1.104x10* | 4.350x10"* | 6.700x10° | 1.717x10° | 6.903x10"

Table 8: Five-number summary of the reduced data without threshold.

The threshold for the reduced data

The mean excess plot for the reduced data is illustrated below. According
to the plot in figure 6, a reasonable threshold is 1,5x10° NOK as the plot
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Figure 6: Mean excess plot for the reduced data.

displays an approximately linear relationship from this point. Also the thres-
hold selected for the total data corresponds to the 96.7% quantile. Setting
the threshold = 1,5x10° corresponds to the 92.0% quantile which is close to
the quantile for the total data. There are now 460 claims under the threshold
and 40 claims to be fitted to the over-threshold model.

3.3.1 The reduced under-threshold claim size data

Table 9 gives a summary of the under-threshold data. It shows that the
spread has decreased for the reduced under-threshold data, which is expected
as the extreme claims have been removed. However, table 9 still displays a

great spread in the reduced under-threshold data.

Summary
Min. 1st Qu. Median Mean 3rd Qu. | Max.
2.980x107% | 9.321x10% | 3.768x10* | 1.325x10° | 9.936x10* | 1.448x10°

Table 9: Five-number summary of the reduced under-threshold data.
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The standard deviation ¢ = 2.506x10° still exposes a large amount of un-
certainty. The standard deviation is larger than the mean. This suggests
that the data is far from Exponentially distributed. The skewness = 2.994
is smaller than the skewness for the total under-threshold model. The de-
creasing asymmetry is not extraordinary as the extreme claims have been
removed. The kurtosis has also been reduced to 1.412x10. Even though the
tail is less heavy, the kurtosis for the reduced sample still signals a heavy tail
in the under-threshold claim size distribution. Hence, the reduced data also
appears to have extreme values.

Table 10 gives the Maximum likelihood estimates and a 95% confidence in-
terval for the estimated parameters based on 10,000 bootstrap simulations,
given the reduced sample. Again the average of the bootstrap estimates lie
close to the Maximum likelihood estimates and there is no need for adjust-
ment in the bootstrap estimates.

Table 10 shows that the confidence intervals for all the parameters estimated
from the reduced sample, are much wider than those for the total data in
table 3. Hence the uncertainty in the Maximum likelihood estimates has
increased with the reduced data. This is expected as the sample size now
has been reduced to less than 1/10 of the original data, and the uncertainty
in the estimates increases as the sample size decreases.

The confidence interval for the Exponential distribution is very narrow and
indicates little uncertainty in the Maximum likelihood estimate, just like with
the total data. The two-parameter distributions also have narrow confidence
intervals, revealing little uncertainty, like with the total data. Again, this is
expected as only two parameters are fitted to the data.

The confidence intervals for the Extended Pareto distribution in table 10
shows a great amount of uncertainty in the estimated parameter 6. The un-
certainty in the respective confidence intervals for the total data in table 3
is significantly smaller, meaning that introducing a third parameter for the
reduced sample creates significantly greater uncertainty in the Maximum like-
lihood estimate of # compared to the respective uncertainty, given the total
data. However, the other two parameters show little uncertainty in the Max-
imum likelihood estimates, as with the total data. As with the total data,
the 95% confidence interval for 6 under the Extended Pareto distribution
in table 10, [1.719,5.480], does not include 1, and is therefore significantly
different from 1. Hence the Extended Pareto distribution is significantly dif-
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ferent from the two-parameter Pareto distribution.

Table 10 shows that the confidence intervals for the four-parameter Pareto
distribution reveals greater uncertainty in the estimated parameters than the
Extended Pareto distribution, as with the total data, which again is expected
as an additional parameter is fitted. Table 3 indicated that 7 was not sig-
nificantly different from 1, and that introducing a fourth variable for the
total data is of no use. Table 10 however, illustrates that the 95% confidence
intervals for 7 under the four-parameter Pareto distribution, [1.326,4.125],
does not include 1, and is consequently significantly different from 1. This
means that the four-parameter Pareto distribution is significantly different
from the Extended Pareto distribution for the reduced data.

Table 10 shows that the confidence intervals for &, 6 and 7 are wider for the
six-parameter Pareto distribution compared to the four-parameter Pareto
distribution. This was also true for the total data, and is normal as two ad-
ditional parameters have been fitted to the data. The six-parameter Pareto
distribution in table 10 shows that 4 = 1 and the parameters 7 and (8 can
not be determined individually and will again be presented as the ratio 3/7.
As with the four-parameter distribution, 7 is significantly different from 1,
and as with the total data, the 95% confidence intervals for 4, [1.000, 2.504],
includes one and is therefore not significantly different from 1, leading back
to the four-parameter distribution. The four-parameter Pareto distribution
is now favored.

Figure 7 contains Q-Q plots for all the under-threshold distributions fitted to
the reduced sample. The Exponential Q-Q plot in figure 7 indicates that the
Exponential distribution exaggerates small claims and underestimates large
claims. The same result was present for the total data in figure 2. Again,
the Exponential distribution is overly light-tailed and not able to model the
data.

Figure 7 shows that the Weibull distribution fits the data better than the
Exponential distribution, although it underestimates claims above approx-
imately 2x10° NOK. The Q-Q plot for the Weibull distribution given the
reduced data shows a better fit than that of the total data in figure 2. As
with the total data, the Weibull distribution is not heavy enough in the
right tail to capture the extreme claims but is favored over the Exponential
distribution.
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Maximum likelihood estimation

Distribution | Parameters with confidence intervals

Exponential | 3 = 7.544x107° [6.998 x 1075,8.165 x 1079]

Weibull = 5.992x107! [5.621 x 1071,6.404 x 10_1] B = 8551x10* [7.439 x 10* 9.824 x 104]
Gamma = 4.828x107! [4.427 x 1071,5.311 x 1071] B = 3.600x1076 [3.117 x 107°,4.200 x 1079

= 1.136x10* [8.462 x 103,3.485 x 10%]

o [ [
o [ [
Log-gamma | & — 3.788x10  [3.422 x 10,4.237 x 10] 3 = 3.615 3.263 x 10,4.047 x 10]
Log-normal | i — 1.057x10 [1.043 x 10,1.072 x 10] & — 1.785 [1.669, 1.906]
2-par. Pareto | & — 6.238x107! [8.599 x 107!, 1.506] B =2.016x10* [2.542 x 10%,5.465 x 10%]
Ext. Pareto | & — 4.163x107! [3.163 x 10~,5.361 x 10~] 0 — 2.436 [1.719, 5.480]
B =1.950x10* [1.540 x 10*,2.432 x 104]
4-par. Pareto | & [0.539,5.279 x 107! 0 = 2.536x10% [1.492 x 10,1.687 x 10°]
B = 2.394x10% [1.742 x 10*,3.110 x 10%] 7 = 2.440 [1.326,4.125]
6-par. Pareto | & [5.598 x 1071,3.754 x 10] 0 — 2.438x10° [7.181,2.415 x 10'3]
B = 2.777x10* i = 2.444 [1.335,9.883]
7 4 = 1.000 [1.000, 2.504]
p
T

Table 10: Maximum likelihood estimated parameters with 95% confidence intervals for the reduced data under-

threshold distributions.
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The Gamma Q-Q plot in figure 7 indicates an improvement in fit compared
to the Gamma Q-Q plot in figure 2. However, figure 7 shows that the Gamma
distribution underestimates claims even more than the Weibull distribution.
Both figure 2 and figure 7 indicate that the Gamma distribution is not suf-
ficiently heavy in the right tail to model the data. As with the total data,
based on the Q-Q plot, the Weibull distribution is preferred over the Gamma
distribution.

The Log-gamma Q-Q plot for the total data showed a slightly better fit and
the plot was smoother than that of the reduced sample in figure 7. The
reason for this may be that the total data consists of a significantly greater
amount of data and may lead to a smoother curve and perhaps a better fit.
The Log-gamma Q-Q plot for the total data displayed a better fit than the
Exponential, Weibull and Gamma distributions in figure 2. This is also the
case for the reduced data as figure 7 shows that the Log-gamma Q-Q plot
has points lying closer to a 45 degree line than the three previously presented
distributions. Hence, the Log-gamma distribution is now preferred.

The Log-normal Q-Q plot tends to underestimate claims from approximately
2x10% NOK but presents a better fit than the previous plots in figure 7. Tt
is also a slight improvement in fit from that in figure 2. Based on the Q-Q
plots the Log-normal distribution is now favored which was not the case for
the total data, where the Log-gamma distribution was favored over the Log-
normal distribution.

The two-parameter Pareto Q-Q plot in figure 7 shows an even better fit than
that of the Log-normal as it captures the tails well. Compared to the two-
parameter Pareto Q-Q plot in figure 2, it indicates a somewhat poorer fit.
However, this may be due to the reduction in the sample size, as there are
fewer data points to fit than before. Looking at figure 7, the two-parameter
Pareto distribution is clearly preferred over the previous distributions, just
as with the total data.

Figure 2 indicated a better fit for all the Pareto distributions compared to
figure 7, which is expected as the reduced sample has only 500 observations
to be fitted. All the Pareto Q-Q plots in figure 7 look very similar and do
not reveal a significant difference between them. This was also the case with
the Pareto Q-Q plots for the total data in figure 2, except from the Extended
Pareto distribution that indicated a slightly better fit than the two-parameter
Pareto distribution.
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As with the total data, according to the Q-Q plots in figure 7, the two-
parameter, Extended, four-parameter and six-parameter Pareto distributions
all seem to be the best choice of under-threshold distribution to model the
reduced data as it is not possible to distinguish between them.

Table 11 presents the simulated mean and standard deviation, the AIC and
BIC values and a goodness-of-fit test for all the under-threshold distribu-
tions. The Exponential mean in table 11 is slightly larger than the Exponen-
tial standard deviation. This may be due to a tiny error in the Monte Carlo
simulation despite the fact that 1,000,000 simulations have been computed.
The Gamma distribution has like with the total data the closest simulated
mean to that of the empirical under-threshold distribution, closely followed
by the Extended Pareto, four-parameter and six-parameter Pareto distribu-
tions, who now unlike with the total claim size, slightly overestimate the
average. In contrast to the total claim size comparison in table 4, the Expo-
nential mean now deviates the most from the under-threshold empirical mean
of all distributions in table 11. As in table 4, all the remaining distributions
underestimate the mean. This was not the case for the total data where the
Exponential distribution was the only distribution not to underestimate the
mean.

As in table 4, the Exponential, Weibull and Gamma distribution have the
smallest standard deviations, being the lightest tailed distributions. Equally
to table 4, all the Pareto distributions in table 11 have the greatest standard
deviations, being the most heavy-tailed distributions.

As in table 4, the Extended, four-parameter and six-parameter Pareto dis-
tributions all have standard deviations closest to the empirical standard de-
viation. Their standard deviations are now almost identical to the empirical
standard deviation. The two-parameter Pareto distribution follows with a
tiny underestimation in the standard deviation. The remaining distributions
underestimate the standard deviation.

Equivalent to the statistics listed in table 4, the Extended, four-parameter
and six-parameter Pareto distributions in table 11 have the same mean and
standard deviation. Again, this suggests that there is not much of a differ-
ence between the three models.
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Statistics

Distribution Q G AIC BIC P-value
Exponential 1.325x10% | 1.323x10% | 1.18x10* | 1.18x10* | < 10~*
Weibull 1.234x10° | 1.930x10° | 1.16x10* | 1.16x10* | 3.700x10~*
Gamma 1.328x10° | 1.868x10° | 1.14x10* | 1.14x10* | < 107*
Log-gamma 1.035x10° | 1.958x10° | 1.14x10* | 1.14x10* | 1.765x 107!
Log-normal 1.179x10° | 2.094x10° | 1.14x10* | 1.14x10* | 2.801x 107!
Two-parameter Pareto | 1.266x10° | 2.331x10° | 1.14x10° | 1.14x10° | 4.957x10~!
Extended Pareto 1.344x10° | 2.508x10° | 1.14x10* | 1.14x10* | 2.584x 101
Four-parameter Pareto | 1.344x10° | 2.508x10° | 1.14x10* | 1.14x10* | 5.209x 10!
Six-parameter Pareto | 1.344x10° | 2.508x10° | 1.14x10* | 1.14x10* | 5.203x 10!

Table 11: Statistics and model evaluation for the reduced under-threshold data.
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Based on both the AIC and BIC values in table 11, the Exponential dis-
tribution has the highest AIC and BIC values both equal to 1.18x10* and
therefore the worst fit of all the distributions, which was also the case for the
total data in table 4. The Weibull distribution has the second worst fit now
with AIC and BIC both equal to 1.16x10*. Table 4 also ranked the Weibull
distribution as the second worst fit based on the AIC and BIC values. The
rest of the distributions have equal AIC and BIC values and it is impossible
to distinguish between them. However, this was not the case with the total
data, where all the Pareto distributions stood out with lowest AIC and BIC
values (except from the AIC value for the Log-normal distribution that was
equal to the AIC values for the Pareto distributions).

The hypothesis presented for the total data set claiming that the large
amount of data resulted in rejection of the null hypothesis is supported in
table 11. The hypothesis for the Exponential, Weibull and Gamma distribu-
tions are rejected and it may be concluded that the data do not follow any of
the specific distributions. However, the null hypothesis is not rejected for the
other distributions and it cannot be concluded that the data are not signifi-
cantly different from the distributions. This is consistent with the Q-Q plots
for the reduced sample in figure 7 which display a poor fit for the Exponen-
tial, Weibull and Gamma distributions.

The Q-Q plots however indicate that one of the Pareto distributions should
be selected. The 95% confidence intervals in table 10 shows that the four-
parameter Pareto distribution is significantly different to the Extended Pareto
distribution, and that the six-parameter Pareto distribution is not signif-
icantly different to the four-parameter distribution. Taking all the model
selection tools into account, the result is not the same as with the total data.
The four-parameter Pareto is the preferred under-threshold distribution for
the reduced data. However, it is important to notice that the differences
between the fitted models have been reduced with the sample size, and the
choice is not straightforward. The information criteria values are more simi-
lar and the Q-Q plots for all the distributions do not differ as much between
the distributions as they did with the total data, perhaps because the data
size has been reduced. The next question will be how the number of param-
eters in the claim size distribution influence the uncertainty in the reserve
for a smaller data set.
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3.3.2 The reduced over-threshold claim size distribu-
tion

As with the total over-threshold data, the reduced over-threshold data has
an extreme right tail, now with 460 claims to be fitted to the over-threshold
distribution. For this reason the two-parameter Pareto distribution will be
used to model the over-threshold claim size data.

Table 12 presents the Maximum likelihood estimates for claims above the
threshold b and a 95% confidence interval for the estimates based on 10,000
bootstrap simulations, given the reduced sample. As with the total data,
the mean of the bootstrap estimates is very close to the Maximum likelihood
estimate for both estimated parameters, and there is no need for adjustment
in the bootstrap simulations.

Maximum likelihood estimate

& B 95% CI for &* 95% CI for 3*
2.017 | 5.229%x10° | [1.175,3.868 x 10] | [2.187 x 10°,1.138 x 10|

Table 12: Maximum likelihood estimated parameters with 95% confidence
intervals for the over-threshold reduced data.

As in table 5, the confidence interval for B* in table 12 displays large uncer-
tainty. Both & and B are located to the left in their respective confidence
intervals in table 12, while they are both more centered in table 5. This may
be a result of the reduced sample size, as only 40 observations are used to
estimate the parameters, leading to large estimated values influencing the
upper confidence bounds, as the parameters are strictly positive.

(Goodness-of-fit test

D, P-value
7.596x1072 | 9.751x 1071

Table 13: Kolmogorov-Smirnov goodness-of-fit test for the reduced over-
threshold data.

Table 13 fails to reject the null hypothesis, using the Kolmogorov-Smirnov

64



3.3 The reduced claim size data 3 RESULTS

goodness-of-fit test, that the reduced sample is Pareto distributed, as with
the total data. This means that a reasonable threshold b has been selected.
Figure 8 shows three extremely large values to the right having a great in-
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Figure 8: Two-parameter Pareto over-threshold Q-Q plot for the reduced
data.

fluence on the Q-Q plot. This may be the result of the reduced sample,
where only 40 observations have been fitted and a few extreme observations
are expected. Disregarding the three extreme values, the Q-Q plot shows an
approximately linear relationship between the theoretical quantiles and the
sample quantiles. Figure 8 indicates that the over-threshold model is Pareto
distributed, which indicates that the threshold b = 1,5x10° is determined
correctly.

3.3.3 The reduced data reserve

The objective is to estimate the 99% and the 99.5% reserve for next year
(i.e. T =1) for a portfolio of 2,340 policies, which is comparable to the port-
folio of 30,000 for the full data set. Table 14 shows the resulting estimates
along with a respective 95% confidence interval. The density functions for
the 99% and 99.5% estimated reserves are plotted in figure 9 and 10, respec-
tively. The simulations are based on 1,000 bootstrap simulations and 100,000
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Monte Carlo simulations. The right tails of the density functions have been
cut off to obtain the same scale for all the plots in figure 9 and 10. The 99%
estimated reserves with confidence intervals in table 14 and figure 9 show
that the width of the confidence intervals does not increase with the num-
ber of parameters fitted to the under-threshold distributions for the reduced
sample. This was also the case for the total data.

The amount of uncertainty for the different estimates shows no pattern con-
sistent with the amount of uncertainty from the total data. The reserve
estimated with the Extended Pareto under-threshold distribution has the
smallest confidence interval of all the estimates. The 99% reserve estimated
with the following under-threshold distributions follows with 95% confidence
intervals in increasing order: the Gamma, two-parameter Pareto, Exponen-
tial, four-parameter Pareto, six-parameter Pareto, Weibull, Log-normal and
at last the Log-gamma distribution.

Now, the reserve estimates and confidence bounds resulting from different
under-threshold distributions will be compared to the ones for the four-
parameter Pareto, which is the favored distribution for the reduced sample.
Table 14 and figure 9 show that the reserve estimated with the Exponential
under-threshold distribution has a lower confidence bound almost identical to
that estimated with the four-parameter Pareto under-threshold distribution,
but the upper confidence bound is smaller. The 99% reserve estimated with
the Exponential under-threshold distribution is slightly larger than that esti-
mated with the favored under-threshold distribution, but lies within its 95%
confidence interval, and is therefore significant at a 5% level of significance.

The lower confidence bound for the 99% reserve estimated with the Weibull
under-threshold distribution is smaller than that estimated with the preferred
under-threshold distribution, and the upper confidence bound is larger. The
99% reserve estimated is marginally smaller, and lies within the confidence
interval of the reserve estimated with the favored under-threshold distribu-
tion. Hence, there is no significant difference between the two 99% estimated
reserves.

The 99% reserve estimated with the Gamma under-threshold distribution
has a slightly larger lower confidence bound and a smaller upper confidence
bound compared to that estimated with the four-parameter Pareto under-
threshold distribution, and the 99% reserve is somewhat larger. Again, there
is no significant difference between the two 99% estimated reserves.
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Estimated Reserve

Distribution 99% reserve 99.5 % reserve

Exponential 1.697x10° [7.492 x 107,5.809 x 107] | 2.212x 10° [8.128 x 107, 9.890 x 10°]
Weibull 1.641x 10° [7.342 x 107, 6.208 x 10°] | 2.092x 10° [7.941 x 107, 1.116 x 10%]
Gamma 1.690x10% [7.512 x 107,5.526 x 108] | 2.189x10% [8.139 x 107,9.368 x 10°]
Log-gamma 1.571x10% [6.681 x 107,6.505 x 108] | 2.036x10% [7.291 x 107,1.129 x 10
Log-normal 1.573x10% [7.375 x 107,6.316 x 108] | 2.051x10°% [8.107 x 107,1.082 x 10
Two-parameter Pareto | 1.649x10° [7.564 x 107,5.663 x 10°] | 2.128 x10® [8.192 x 107, 9.688 x 10°]
Extended Pareto 1.671x10% [7.755 x 107,5.168 x 108] | 2.179x10° [8.435 x 107,8.951 x 10°]
Four-parameter Pareto | 1.652x10% [7.493 x 107,5.954 x 10%] | 2.160x10® [8.167 x 107,1.031 x 107]
Six-parameter Pareto | 1.653x10° [7.717 x 107,6.287 x 10%] | 2.146x10% [8.365 x 107,1.092 x 107]

Table 14: Estimated 99% and 99.5% reserves with 95% confidence intervals for the reduced data.
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3.3 The reduced claim size data 3 RESULTS

Table 14 and figure 9 display that the 99% reserve estimated with the Log-
gamma and the Log-normal under-threshold distributions have a wider con-
fidence interval than for the four-parameter Pareto under-threshold distribu-
tion and the 99% reserves are smaller. However the 99% reserves estimated
with the Log-gamma and the Log-normal under-threshold distributions for
the reduced sample are not significantly different from the 99% reserve esti-
mated with the four-parameter Pareto under-threshold distribution, as both
estimates lie within the 95% confidence interval estimated by the favored
under-threshold distribution.

Table 14 and figure 9 illustrate that the lower confidence bound estimated
with the two-parameter Pareto under-threshold distribution is larger, and
the upper confidence bound smaller than that estimated with the favored
under-threshold distribution, whereas the 99% reserves are almost identical.
Once again the 99% reserve estimated by the two-parameter Pareto under-
threshold distribution is not significantly different from the reserve estimated
with the four-parameter under-threshold distribution.

The confidence interval estimated with the Extended Pareto under-threshold
distribution is narrower than that of the favored under-threshold distribution,
and the 99% reserve is marginally larger. Again it can be concluded that the
99% reserve estimated with the Extended Pareto under-threshold distribu-
tion does not differ significantly from that estimated with the four-parameter
Pareto under-threshold distribution.

The upper and lower confidence bounds estimated with the six-parameter
Pareto under-threshold distribution are both larger compared to those esti-
mated with the four-parameter Pareto under-threshold distribution, whereas
the 99% reserve is almost identical. Once more the 99% reserve estimated
by the six-parameter Pareto under-threshold distribution is not significantly
different from the reserve estimated by the four-parameter Pareto under-
threshold distribution.

Table 14 and figure 10 reveal that the width of the 95% confidence inter-
vals for the estimated 99.5% reserves does not increase with the number of
parameters fitted to the under-threshold distributions. The ranking of the
size of the 95% confidence intervals for the 99.5% estimated reserves are sim-
ilar to the ranking of the 99% estimated reserves. The exceptions are the
Weibull under-threshold now giving the second largest amount of uncertainty,
the Log-normal giving the fourth largest amount of uncertainty and the six-
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Figure 9: Probability density functions of the 99% Monte Carlo simulated
reserves with 95% confidence intervals for the nine models, given the reduced
data. The 99% Monte Carlo simulated reserves are presented by the dashed
line. The 95% confidence intervals are illustrated by the white area.
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Figure 10: Probability density functions of the 99.5% Monte Carlo simulated
reserves with 95% confidence intervals for the nine models, given the reduced
data. The 99.5% Monte Carlo simulated reserves are presented by the dashed
line. The 95% confidence intervals are illustrated by the white area. The
upper confidence intervals are marked by the symbol .
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parameter Pareto giving the third largest amount of uncertainty. As with
the total data, the differences are marginal. For this reason it is reasonable
to believe these differences to be irrelevant.

Comparing the lower and upper 95% confidence bounds for the 99.5% re-
serve estimated with the four-parameter Pareto under-threshold distribu-
tion to the confidence bounds for the reserves estimated with the remain-
ing under-threshold distributions gives similar results to those for the 99%
estimated reserves for the reduced sample. The exceptions are the lower
confidence bounds for the reserve estimated with the Exponential and the
Gamma under-threshold distributions now being slightly smaller than that
of the favored under-threshold distribution. Comparing the 99.5% reserve
estimated with the four-parameter Pareto under-threshold distribution with
the remaining estimates gives similar results to those with the 99% esti-
mated reserves. The only exceptions being the reserves estimated with the
two-parameter and six-parameter Pareto under-threshold distributions now
being slightly smaller. Once again all the 99.5% reserves estimated with the
different under-threshold distributions are not significant different from the
reserve estimated with the favored under-threshold distribution, and it can
not be concluded that any of them differ significantly from the 99.5% reserve
estimated with the four-parameter Pareto under-threshold distribution.

As with the total data, figure 9 and figure 10 display a heavy right tail for
all the density plots given the reduced sample. Once again all the estimated
reserves represented by §. are located towards the lower confidence bounds
for all the estimates. Once more all the 99% and 99.5% estimated reserves,
and their respective 95% confidence bounds, are very similar for all the differ-
ent under-threshold distributions and none of the estimates are significantly
different from the reserve estimated with the four-parameter Pareto under-
threshold distribution at a 5% level of significance.

As the 99% and 99.5% reserves estimated with the two-parameter Pareto
and the Extended Pareto under-threshold distributions are not significantly
different from those estimated with the favored model and the confidence
intervals are very similar, it may be preferable to chose a model with an
under-threshold distribution containing fewer parameters to model the re-
serve. Selecting the model with the two-parameter Pareto under-threshold
distribution gives two less parameters to be estimated to the model, and the
difference in the estimated reserve is not significant compared to the reserve
estimated with the four-parameter Pareto under-threshold distribution. For
this reason selecting the two-parameter Pareto under-threshold distribution
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seems to be a better choice than the four-parameter or the Extended Pareto
under-threshold distribution if the models are only to be used for the esti-
mation of the reserve.

The uncertainty in the estimated reserve does not increase with the number
of parameters fitted to the under-threshold distribution for the total and the
reduced data. However, note that the width of the confidence intervals have
increased significantly from the total data to the reduced sample, which is
very clear in figure 9 and figure 10. The increased uncertainty in the reduced
sample is likely a result from estimation error, which naturally increases as
the sample size decreases. Also, table 3, 5, 10 and 12 shows that the un-
certainty increases in the Maximum likelihood estimate with the number of
parameters fitted to the distributions.

The threshold was placed at 1.5x10% NOK from figure 6 for the reduced
data. As with the estimated reserves for total data in table 7, table 14 shows
that the 99% and 99.5% estimated reserves, and their respective 95% con-
fidence intervals all have values above the threshold, which means that the
over-threshold distribution (largely) models the reserve for all the models.
This may again explain why the results for the estimated reserves are very
similar and why the uncertainty does not increase according to the number
of parameters fitted to the under-threshold distribution.

The threshold was set at the 96.7% quantile for the total data, giving the
under-threshold distribution a slightly greater influence in estimating the re-
serve compared to the models for the reduced data, and may explain why
the 99% and 99.5% reserves estimated with the Log-gamma under-threshold
distribution were significantly different from the model with the Extended
Pareto under-threshold distribution.

The threshold was set at the 92.0% quantile for the reduced sample giving the
over-threshold distribution more influence over the reserve and may explain
why there was no significant difference between the reserve estimated with
the four-parameter Pareto under-threshold distribution and the eight models
for the reduced sample. The differences would perhaps have been greater if
the focus had been on quantiles further left in the distribution, such as the
95% or the 90% quantile.

Given the total data, all the 99% and 99.5% reserves and their respective
95% confidence bounds were quite similar for all the estimates. However

the 99% and 99.5% reserve estimated with the Log-gamma under-threshold
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distribution were significantly different from those estimated with the Ex-
tended Pareto under-threshold distribution. The model combination with
this under-threshold distribution seemed to underestimate the threshold and
Gjensidige forsikring will not be able to cover their liabilities with a 99% and
99.5% probability, and takes on a greater risk if choosing this model. The
other reserves estimated with the remaining under-threshold distributions
were not significantly different to the 99% and 99.5% reserve estimated with
the Extended Pareto under-threshold distribution.
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4 Conclusion

This thesis has assessed whether a six-parameter extension of the Pareto dis-
tribution may be used in an automatic procedure for selecting the claim size
distribution, compared to its one, two, three and four-parameter special case
distributions on data consisting of property insurance claims on office and
industrial buildings. The procedure was repeated on a subset of the data to
study how the sample size influence the uncertainty in the estimated reserves.

The thresholds were set at 4x10° NOK and 1.5x10° NOK for the total
and reduced data, respectively. The best fitting models were selected based
on Q-Q plots, AIC and BIC values and the Kolmogorov-Smirnov hypothesis
tests. A 95% confidence interval for the estimated parameters were simulated
to test the significance of the parameters. The Extended Pareto and the four-
parameter Pareto distribution were selected as the best fitting models for the
under-threshold data, given the total and reduced data, respectively.

The 99% and 99.5% reserves with 95% confidence intervals were simulated
by nested bootstrap simulations for the different combinations of the Poisson
distributed claim frequency, over-threshold distribution and the nine different
under-threshold distributions. The results were compared with that simu-
lated with the favored under-threshold distribution. The 99% and 99.5%
reserves were estimated by Monte Carlo simulation. The estimated reserves
were compared with that estimated with the preferred under-threshold distri-
bution. The estimates were also compared with the 95% confidence interval
simulated with the favored under-threshold distribution.

Insurance companies do not want to bind an unnecessary high amount of
money and miss the opportunity of investment return. However, not meeting
the capital requirements to cover the claims may lead to economical difficul-
ties and perhaps even bankruptcy. The 99% and 99.5% estimated reserves
for the total data based on the model combination with the Log-gamma
under-threshold distribution were significantly underestimated compared to
the ones estimated with the Extended Pareto under-threshold distribution.
There were however no significant differences between the remaining models
in estimating the 99% and 99.5% reserve for the total data. For the reduced
data set there was no significant difference between any of the reserve esti-
mates. All the 99% and 99.5% reserves and their confidence intervals were

74



4 CONCLUSION

of much higher value than the thresholds established for both the total and
reduced data. This means that the over-threshold distribution largely mod-
eled the estimated reserves for both data sets. This can likely explain why
the reserves and their confidence intervals were so similar for all the models.
However, the threshold was set at the 96.7% quantile for the total data, as
opposed to the 92% quantile for the reduced data set. This might have given
the under-threshold distribution a slightly greater influence in estimating the
reserve, for the full data set, which may explain why the Log-gamma under-
threshold distribution was significantly different for this data set. It may also
explain why the uncertainty in the reserve did not increase with the number
of parameters even though the uncertainty in the Maximum likelihood esti-
mations did.

The total data with 6,411 claims > 0 for property insurance claims on of-
fice and industrial buildings from Gjensidige forsikring is a great amount of
data. Being the largest insurance company, Gjensidige forsikring had 25,3 %
of the market share for non-life premiums in Norway in 2015 [Finans Norge,
2016]. Estimating the reserve with heavy-tailed data from a different Norwe-
gian insurance company is likely to give a considerably smaller set of claims,
which, based on the result from the reduced data, perhaps may lead to all
the reserves estimated with different under-threshold distributions not being
significantly different.

Note that the data given by Gjensidige forsikring has a very heavy right tail
and the results may differ for a set of data with a lighter right tail, where
the threshold is set to the right of the estimated reserve, or there are no
extreme claims, making an over-threshold distribution unnecessary. Perhaps
this would lead to greater differences between the estimated reserves and it
may be that one of the Pareto distributions combined with the claim fre-
quency (and the over-threshold distribution) no longer would be the best
choice of model.

This thesis has focused on the estimation of the reserve, which was shown to
be modeled (largely) by the over-threshold distribution as described above.
However, if the focus was the center of the distribution, for instance the pure
premium, the mean, or quantiles further left in the distribution, the results
would likely differ. The means computed with the different under-threshold
distributions had substantial variations for both the total and the reduced
data. This indicated that focusing below the threshold, would lead to greater
differences in results between the different combinations of claim frequency
and under-threshold distributions. Also the standard deviation computed
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in table 4 and 11 increased with number of parameters fitted to the model.
Hence, the uncertainty in the reserve would likely increase with the number
of parameters fitted to the model, if the focus had been further left in the
distribution.

The Extended Pareto and the four-parameter Pareto were selected as under-
threshold distributions for the total and reduced data, respectively. When
estimating the reserves, the two-parameter Pareto was chosen as the favored
under-threshold distribution to estimate the 99% and 99.5% reserves for both
the total and reduced data. The six-parameter Pareto distribution failed to
optimize the parameter v and seemed to be too complex to model the data.
However, the four-parameter Pareto distribution is a more flexible distribu-
tion than the Extended and two-parameter Pareto distributions and seemed
to be a better option than the six-parameter Pareto distribution in estimating
the 99% and 99.5% reserves. Hence the four-parameter Pareto distribution
may be automatically selected to estimate the 99% and 99.5% reserves.

Introducing reinsurance as a threshold to cover the event of extreme claims
is a common practice in the insurance industry. It could also allow for the
data to be modeled with only one claim severity distribution. This could
possibly lead to greater differences between the fitted models, and perhaps
larger variation between the estimated reserves.

It could be interesting to estimate the pure premium, or other quantiles fur-
ther left in the distribution than the reserve to see how it would influence
the choice of under-threshold distribution

A final possible extension would be to perform the same methods on a differ-

ent data set, perhaps one with a lighter right tail to assess how the uncertainty
in the estimated reserves would differ between the nine model combinations.
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A Appendix

A.1 The Extended Pareto distribution

The Extended Pareto random variable is given as:
0 G U
gz - 270

aG, V'

where Gy > 0 and GG, > 0 are two independent standard Gamma distributed
variables with shape parameters § > 0 and a > 0, respectively [Bolviken,
2014, p. 335|. If G ~ Gamma(\, 1), then for a constant > 0, A\G ~
Gamma(\, A) [Gray and Pitts, 2012, p. 29|. Therefore U ~ Gamma(6,0)
and V ~ Gamma(a,a) are two independent random variables with density
functions f,(u) and f,(v), respectively [Bolviken, 2014, p. 324].

F(Z)=P(Z <z)= P0Gy < zaG,) =PU <V)

The following formula will be used to calculate the Extended Pareto distri-
bution function:

o0

1) = / 0fo(0) fulv2)du, (71)

0

given the independence of U and V [Rice, 2007, p. 98]. Since U and V are
independent variables, it follows that:

99

m (v2)? ' exp(—v20), and (72)

fulvz) =

fo(v) = - v exp(—va). (73)

Inserting equation (72) and (73) into equation (71) provides the following
equation:

a® 6 0—1

() T(0)

f(z)= /va+91 exp (—v(a+ 6z)) dv. (74)
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Letting v(a+67) = u and multiplying and dividing equation (74) by I'(a+6),
leads to the equation:

f(z) = )du. (75)

a® 0’ F(a+9 ]O w0 exp (—
[(a)T(0) 201 ['(a+6)
0

J/

-1
e . . . (67
Dividing the numerator and denominator by a®? and letting 8 = 2 one

obtains:

1 T(a+6) 201

AOT()I(0) (1 4 z/B)*o

1 I(a+6) (2/8)%!
BL()I(0) (14 zp)*+

The mean and standard deviation of the Extended Pareto distribution can
be calculated using the formula:

f(z) =

Z>0. (76)

[e.9]

. . i 2 9 1+
B(Z) = / S f(2)ds = / % +/ i s ()
0 0

Recognizing (77) as an Extended Pareto distribution with parameters « - i,
and 6 + i, the equations will be as below:

BCELIALY / Mat6) (/9
ING)) B(a—i)I'(0+1) (14 2z/8)>t?

J/

:1

(78)

Using the recursion formula I'(a) = (o — 1)I'(a — 1), for a > 1 [Walpole
et al., 2007, p. 195], the first and second moments yield:

D(a—1)T(0 + 1)
I'(a)  T'(0)
05

= , > 1.
a—1 @

Fa—1)  60I'(09)
(a =1 (a—1) T'(0)

E(Z) = B = g
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s Tla—2T0+2)5 (o —2) 000 + 1YT(0) ,
B =T~ @-De-9re-y 10
00+ 1) i
“la-Da—2 > 2

The standard deviation is then

sa2) = £(2) (G5 ) -

2.
O(a —2) “-

A.2 From Extended Pareto to Gamma

The Gamma distribution can be derived as a limit of the Extended Pareto
distribution. Letting

B = 2 and a— oo in equation (52),

06
gives |Bolviken, 2014, p. 335]:

iy LD(+0) (z/8)" 1o 98 T(a+0) (2860/a)"!
a=oo BT(O)T () (14 2/B)°+0 amoo a T()T(0) (14 280/a)*™""
N e’ v

-

b1 ¢2

(79)

Using the fact that

r 0
lim Lo +0) =1 [Abramowitz and Stegun, 1965, p. 257],
a—oo T (v)

we have

. a8 T (a+0) . a71B0

lim = lim ———.

a—oo ['(0)  afT'(«) a—oo  I'(0)

=1
Setting ¢; and ¢ together yields:
0)? 0—1 0-1(39) B0
oS T(9) (1+ 250/a) "7 NG

where equation (80) is a Gamma distribution with shape parameter 6 > 0
and scale parameter 56 > 0.
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A.3 From two-parameter Pareto to Exponen-
tial

Dividing the numerator and denominator in (43) by 3! and inserting 3

(a 1)

= , the two-parameter Pareto density function leads to the following

$
equation:
af 1
1+a (81)
(«-1) (1+ &)
N——— ~ )
w1 w2

Dividing the numerator and denominator of each term in w; by « and taking
the limit as « goes to infinity gives:

=¢.

I = 1
oo 1 abee (1 1)

Taking the limit of wy as « goes to infinity gives us the following equation:

lim wy = lim (1 + )

a—00 a—00 (a — 1)

el (( ) )]

= lim exp{(—a—l)log (1+< x_fl)>}
i oo %))
o1 5%0) (557

o]y e (14 ) i 0/
§

= exp

= exp

a—0o0 a—r0o0

1
log 1 + (a 1
lim
a—r 00

= exp
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The following equation is obtained using L‘Hopital’s rule:

E23 z€

810g<1+(a—1)) ((171)2(1+ rc&l )

exp ¢ — lim 326%1 =exp{ — lim %
foJe e

. a’xé
=exp{ — lim
P a—oo (2 — 2o+ xé(a—1) +1

= exp {— lim i n } = exp(—x§).

e R e

The following formula results from setting w; and wy together:

§ exp(—z§).

A.4 The Log-gamma distribution

Let X be Gamma distributed with probability density function f,(z) as in
equation (25). Using formula (60) with Z = g(X) = exp(X) following the
Log-gamma distribution. The inverse function is ¢g~'(X) = g(Z) = log(Z).

fo(2) = f2(9(2)) 8% — Fﬁ(;) log ()~ #1082 %
= rfoo log()*~'=777, 2>, (82)

where o > 0 and 5 > 0 |Kleiber and Kotz, 2003, p. 169].

A.5 The four-parameter Pareto moments

Letting v = 7 = 1, in equation (58) gives:
7z = pX"

G
where X = G—e is Extended Pareto distributed with parameters «, § and %.

84



A.5 The four-parameter Pareto moments A APPENDIX

The following is obtained from equation (78):

04)’7 ['(a—n)(6 —1—77).

B = (5 () ()

B(7) = pix) = (3)"HC F—(;@?EZ; .

Hence,
o (21 T(a —2n)T(0 + 2n)

BX = (5) =
ozt = g () Lo 200022
2 o (a2 (T(a =T +1n)\*
(E[Z)" =5 (5) ( I'(a)T(0) )

_ B(5)"
2] = T @

% \/D(@)L(B)L (@ — 2)D(6 + 2n) — (Dex — )00 +n)°.
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B R-SCRIPT

B R-script

This section contains codes for calculations in section 3.

B.0.1 Reading the data

Reading the total data and removing claims < 0:

mydata <— read.csv("C:/Users/stina/Desktop/mydata.csv")
claims1l <— as.numeric(gsub(’\\.’,’ " mydata|,8]))
claims <— subset(claimsl, claimsl > 0)

B.0.2 Descriptive statistics for the total data

Computing descriptive statistics in table 1:

summary ( claims)
sd (claims)

library (moments
library (fBasics
skewness (claims
kurtosis (claims

)
)
)
)

B.0.3 Selecting the threshold

Computing the mean excess plot and selecting the data below the threshold
b in subsection 3.1:

#mean excess plotl

library (laeken)

meanExcessPlot (claims)

abline (v=4e+6, \dots)
#setting the threshold

b <— 4e6

7z <— subset(claims, claims<=b)
n <— length(z)

#quantile for threshold

ecdf (claims) (b)
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B.0.4 Descriptive statistics for the under-threshold data
Codes for table 2:

summary ( z )
sd(z)

skewness (z)
kurtosis (z)

B.0.5 Codes used in optimization
zBar <— mean(z)

s2 <— var(z)
skewZ <— mean((z—zBar)"~3)/s2"1.5

B.0.6 Fitting the over-threshold distribution given the

total data
#setting the overtreshold
b <— 4e6
zc <— subset(claims, claims>b)
7zc <— 7c—b

n <— length(zc)

#Descriptive statistics used in optimization
zcBar <— mean(zc)

s2c¢ <— var(zc)

skewZc <— mean((zc—zcBar)"3)/s2°1.5

#FEstimation , non—truncated
mlpareto <— function (par, zc)
{beta <— exp(par)

alpha <— 1/mean(log(1+zc/beta))
—log (alpha/beta)+1/alpha+1}

alpha.start <— max(1.0001,2%s2c¢/(s2c—zcBar"2))
beta.start <— zcBarx(alpha.start—1)

start .par <— beta.start

log.start.par <— log(start.par)
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est.pa <— optim(log.start.par, mlpareto,method="BFGS" ,7z—
7c)

est .beta <— exp(est.pa$par)

est.alpha <— 1/mean(log(1+zc/est.beta))

est.par.pa <— c(est.alpha,est.beta)

alpha.b <— est.par.pa|l]

beta.b <— est.par.pa|2]

ppareto <— function(zc,alpha ,beta)
{1—(1+zc/beta) " (—alpha)}

qpareto <— function (u,alpha  beta)
{betax((1—u)"(—1/alpha)—1)}

#QYQ-plot

u <— ppoints(n)

qpar <— qpareto(u,est.par.pa|l],est.par.pa|[2])

plot (gpar, sort(zc), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="2—parameter_Pareto_
overtreshold _.Q-Q_Plot")

#Goodness—of—fit : Kolmogorov Smirnowv

Fn <— (0:(n—1))/n

F <— ppareto(sort(zc),est.par.pa|l|,est.par.pa|2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l—sqrt(2+*pi)/vksum(exp(—0.125%seq(1,10000,2)
~2%pit2/v"2))

c(Dn,p.value)

#Bootstrap

avec=c ()

bvec=c ()

alpha.b=est .par.pa|l]
beta.b=est .par.pa|2]
m b=10000

for (i in 1:m b)

#simulate Pareto
{z par=beta.bx(runif(n)**(—1/alpha.b)—-1) ;
est.pa <— optim(log(beta.b) ,mlpareto,method="BFGS" ,z=z
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par)
bvec|i] <— exp(est.pa$par)
avec|i| <~ 1/mean(log(l+z par/bvec|i]))
print (c(avec|[i],bvec[i]))}

#Confidence intervals

qalp=sort (avec)

c(qalp[0.05%m b],qalp[0.95%m b])
gbet=sort (bvec)

c(gbet|[0.05%m b]|,qbet|[0.95%m b])

B.0.7 Selecting the reduced data

#non parametric bootstrap to select data with
replacement

library (moments)

library (fBasics)

mb=1

for (i in 1:mb)
{x.star.t=sample(claims ,500,replace=FALSE)
print (x.star.t)}

HAwrite. csv(z. star.t, file ="C:/Users/stina/Desktop/Latex
/smallsample . csv")

mydata.small <— read.csv("C:/Users/stina/Desktop/Latex/
smallsample.csv")

claims.small <— as.numeric(gsub(’\\. ,’
[.2]))

sort (claims.small)

max(claims.small)

summary ( claims . small)

sd (claims . small)

skewness (claims.small)

kurtosis (claims.small)

" mydata.small

#mean exces plot
library (laeken)
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meanExcessPlot (claims.small)
abline (v=2e+6, \dots)

#under—threshold distribution

b <= 1500000

z <— subset(claims.small, claims.small<=b)
length(z)

#over—threshold distribution
zc <— subset(claims.small, claims.small>b)
length (zc)

#quantile for threshold
ecdf (claims.small) (b)

#descriptive statistic for the under—treshold data
summary ( z )

sd(z)

skewness (z)

kurtosis (z)

#Codes used in optimization

zBar <— mean(z)

s2 <— var(z)

skewZ <— mean((z—zBar)~3)/s2"1.5

B.0.8 Fitting the over-threshold distribution given the
reduced data

#setting the overtreshold

zt .h <— subset(claims.small, claims.small>b)
zt .h <— zt.h-b

n <— length(zt.h)

#Fitting the distributlions

zcBar <— mean(zt .h)

s2¢ <— var(zt.h)

skewZc <— mean((zt.h—zcBar)"3)/s2c¢"1.5
b <— 1.5¢6
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# FEstimation, non—truncated
mlpareto <— function (par,zt.h)
{beta <— exp (par)

alpha <— 1/mean(log(1+zt.h/beta))
—log (alpha/beta)+1/alpha+1}

alpha.start <— max(1.0001,2%s2c/(s2c—zcBar"2))

beta.start <— zcBarx(alpha.start—1)

start .par <— beta.start

log.start.par <— log(start.par)

est.pa <— optim(log.start.par, mlpareto,method="BFGS" ,z=
zt . h)

est .beta <— exp(est.pa$par)

est.alpha <— 1/mean(log(l+zt.h/est.beta))

est.par.pa <— c(est.alpha,est.beta)

alpha.b <— est.par.pa|l]

beta.b <— est.par.pa|2]

ppareto <— function(zt.h, alpha  beta)
{1—(1+2zt .h/beta) "(—alpha)}

qpareto <— function (u,alpha  h beta)
{betax((1—u)"(—1/alpha)—1)}

# QQ-plot

u <— ppoints(n)

gpar <— qpareto(u,est.par.pa|l],est.par.pa|[2])

plot (gpar, sort(zt.h), xlab="Theoretical_quantiles",
ylab="Sample_quantiles", main="Pareto_overtreshold _Q
—Q_Plot" jcex.axis=1.5,cex.main=2.5, cex.lab=2)

#Goodness—of—fit : Kolmogorov Smirnov

Fn <— (0:(n—1))/n

F <— ppareto(sort(zt.h) , est.par.pa|[l]|,est.par.pa|[2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l—sqrt(2+*pi)/vksum(exp(—0.125%seq(1,10000,2)
~2%pi~2/v"2))

c(Dn,p.value)

#Bootstrap
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avec—=c ()

bvec=c ()

alpha.b=est .par.pa|l]
beta.b=est . par.pa[2]
m _b=100000

for (i in 1:m b)

#simulate Pareto

{z par=beta.bx(runif(n)**(—1/alpha.b)—-1) ;

est.pa <— optim(log(beta.b) ,mlpareto,method="BFGS" ,z=z
par)

bvec|i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z par/bvec|[i]))}

#Confidence intervals

qalp=sort (avec)

c(qalp[0.05%m b],qalp[0.95%m b])
gbet =sort(bvec)
c(gbet[0.05%m b],gbet[0.95%m b])

The following codes have been used to fit the under-threshold distributions,
bootstrap simulation of parameter, and estimate the reserves with 95%
confidence intervals for the total data. For the reduced data let b =
1.5%x10%, J = 2340, change the estimated 99% and 99.5% with those
estimated for the reduced sample and use the parameters fitted with the
over-threshold distribution for the reduced sample.

B.0.9 The Exponential under-threshold distribution

b <— 4e6
n <— length(z)

# Estimation , non—truncated
est.par.exp <— 1/zBar

# FEstimation truncated

mlexp.c <— function(log.par,z,b)
{beta <— exp(log.par)

b <— 4e6
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#minus loglikelihood for truncated distribution divided
by n
—log (beta)+beta*mean(z)+log (pexp(b,beta))}

#optimizing beta
est.exp.c <— optim(log(est.par.exp) ,mlexp.c,method="
BFGS" ,z=z ,b=b)

#beta
est.par.exp.c <— exp(est.exp.c$par)
betaexp <— est.par.exp.c

#Simulated mean and sd for the truncated distribution
options (max. print=999999)

m = 1000000

z.star=rexp (round(mx1.1)  betaexp)

z.star <— (z.star|z.star <= b|)[1:m]

mean(z.star)

sd(z.star)

#QQ-plot

u <— ppoints(n)

#qexp produces a vector of quantiles for the
exponential dist.

#pexp produces a vector of probabilites for the
exponential dist. F(b)

#uxpexrp = F(z) = uxF(b)

gqpar <— gexp (uxpexp(b,est.par.exp.c),est.par.exp.c)

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="Exponential _Q-Q_Plot"
,cex.axis=1.5,cex . main=2.7, cex.lab=2)

JAIC
—2x (sum(dexp(z, est . par.exp.c,log=TRUE) )—nx*log (pexp (b,
est.par.exp.c)))+2

4BIC
—2% (sum(dexp (7, est .par.exp.c,log=TRUE) )—nx*log (pexp (b,
est.par.exp.c)))+log(n)

#Goodness—of—fit : Kolmogorov Smirnov
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4 GoF: KS

Fn <— (0:(n—1))/n

#Given distribution function F(z[|z |geq b) = F(z)|F(b)

F <— pexp(sort(z),est.par.exp.c)/pexp(b,est.par.exp.c)

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

#Cdf of K alpha produces the p wvalue

p.value <— l-sqrt(2*pi)/vssum(exp(—0.125%seq(1,10000,2)
~2%pi~2/v"2))

c(Dn,p.value)

m<— led

Dn.sim <— rep(0,m)

normconst <— pexp(b,est.par.exp.c)

for(i in 1:m)

{

7.star <— rexp(2*n,est.par.exp.c)

z.star <— (z.star|z.star <= b|)[1l:n]

F.star <— pexp(sort(z.star),est.par.exp.c)/normconst
Dn.sim|i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)

#Bootstrap of uncertainty in beta

m b=10000

beta.ml.star=rep(NA,m b)

for (i in 1:m b)

{x.star=rexp (round(n*1.1) ,betaexp)

Xx.star <— (x.star|[x.star <= b])[1l:n]

optstarexp <— optim(log(1/mean(x.star)),mlexp.c,method=
"BFGS" ,z=x.star)

beta.ml.star|[i]| <— exp(optstarexp$par)

print (beta.ml.star[i])}

#Confidence intervals
g=sort (beta.ml.star)
c(q[0.05%m b],q[0.95%m b])

#Reserve
options (max. print=999999)
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m=100000

mb=1000

n=length (z)

nb=length (zc)

N=nb+n

mu. hat=0.03
beta.hat—=betaexp
eps=0.01

eps2=0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb /N

qeps . star=rep (NA,mb)
qeps . star2=rep (NA,mb)
beta.ml. star=rep (NA,mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,;mb)

for (i in 1:mb)

{N.star=rpois (1 ,A#mu. hat)

mu. star [1] <— N.star /A

z.star=rexp (round(n*2) , betaexp)

z.star <— (z.star|z.star<=b]|)|[1l:n]

optstarexp <— optim(log(1/mean(z.star)),mlexp.c,method=
"BFGS" ,z—z.star)

beta.ml.star|[i]| <— exp(optstarexp$par)

z.star.b beta.bx(runif(nb)xx(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec|i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar=rpois(1,J+mu. star |[i]|*T)
N.star.gtb=rbinom (1, N.star.mcstar, p)
N.star.leqb=N.star.mcstar — N.star.gtbh

z.star . mestar <— rexp(round (N.star.leqb*2) beta.ml.star
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[i])

z.star.mestar <— (z.star.mecstar|[z.star.mcstar<=b]) [1:N.

star.leqb |
z.star.mcstar.b=bvec[i]*(runif(N.star.gth)*x(—1/avec|i
]1)-1) + b
X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing—TRUE) )

X=matrix (X,m)

geps.star|i]|=apply(X,2,sort) [mx(1—eps) |
qeps.star2|i|=apply(X,2,sort) [mx(1—eps2) |
print (qeps.star|i])

print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%_
reserve", xlab="Reserve" xlim=c(0e+8,2e¢+9),cex.axis

—=1.2,cex.main=1.5, cex.lab=1.3)

axis(l,at=7.920e+08,expression (hat(epsilon)), cex.axis
=0.2)

abline (v=7.920e+08,1ty=3)

abline (v=q[0.01*mb])

abline (v=q[0.99*mb])

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve" | xlab="Reserve" xlim=c(0e+8,2e+9),cex
caxis=1.2,cex.main=1.5, cex.lab=1.3)

axis(1,at=8.584+08,expression (hat(epsilon)), cex.axis
=0.2)

abline (v=38.584¢+08,1ty —=3)

abline (v=q[0.005*mb])

abline (v=q[0.995*mb])

#confidence intervals
g=sort (qgeps.star)
c(q[0.01*mb]|,q[0.99%mb])
c(q[0.005%mb]| ,q[0.995*mb])

#Monte Carlo simulated reserve
options (max. print—=999999)
m=100000

eps=0.01

eps2—=0.005
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beta.hat=est .par.exp.c

X=rep (NA m)

for (j in 1:m)
{N.star.mcstar=rpois (1, J*mu. hat«T)

N.star.gtb=rbinom (1, N.star.mcstar, p)

N.star.leqb=N.star.mcstar — N.star.gth

z.star . mcstar <— rexp(round (N.star.leqbx1.1) beta.hat)

z.star.mestar <— (z.star.mecstar|[z.star.mcstar<=b]) [1:N.
star.leqb |

z.star.mcstar.b=beta.b*(runif (N.star.gth)*x(—1/alpha.b)
—1) + b

X[j]=sum(z.star.mcstar) + sum(z.star.mcstar.b)}
print (sort (X, decreasing=TRUE) )

X=matrix (X,m)

qeps . star=apply (X,2,sort) [mx(1—eps) |

qeps . star2=apply (X,2,sort) [mx(1—eps2) |

print (qeps.star)

print (qeps.star2)

B.0.10 The Weibull under-threshold distribution

b <— 4eb6
n <— length(z)

#FEstimation , non—truncated

mlweibull <— function (par,z)

{alpha <— exp(par)

—log (alpha)+log(sum(z~alpha))—(alpha —1)+*mean(log(z))+1}

findAlphaWeibull <— function (alpha ,zBar, s2)
{zBar"2x(gamma(1+2/alpha)/(gamma(1+1/alpha))"2—1)—s2}

alpha.start <— uniroot (findAlphaWeibull ,interval=c
(0.9,1e6) ,extendInt="yes" ,zBar=zBar ,s2=s2)8root

beta.start <— zBar/gamma(1+1/alpha.start)

start .par <— alpha.start

log.start.par <— log(start.par)

est.we <— optim(log.start.par, mlweibull ,method="BFGS" ,z

:Z)
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est .alpha <— exp(est.we$par)
est .beta <— (mean(z alpha.start)) " (1/alpha.start)
est.par.we <— c(est.alpha,est.beta)

#FEstimation truncated

mlweibull.c <— function(log.par,z,b)

{alpha <— exp(log.par|1])

beta <— exp(log.par|[2])

b <— 4e6

—sum(dweibull(z, alpha , beta,log=TRUE) )+nx*log (pweibull(b,
alpha ,beta))}

est.we.c <— optim(log(est.par.we),mlweibull.c,method="
BFGS" ,z=z ,b=b)

est .par.we.c <— exp(est.we.c$par)

est .alphaw <— exp(est.we.c$par) [1]

est .betaw <— exp(est.we.c$par) [2]

#Y-plot

u <— ppoints(n)

gpar <— qweibull (uxpweibull (b, est.par.we.c|1],est.par.
we.c|2]) ,est.par.we.c|1],est.par.we.c|2])

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="Weibull _Q-Q_Plot"  cex
caxis=2,cex.main=2.7, cex.lab=2)

JAIC

—2% (sum(dweibull (z,est .par.we.c|[1],est.par.we.c|2],log=
TRUE) )—nxlog (weibull (b, est .par.we.c[1], est.par.we.c
[2])))+2%2

BIC

—2% (sum(dweibull (z,est .par.we.c|[1],est.par.we.c|2],log=
TRUE) )—nxlog (pweibull (b, est .par.we.c[1], est.par.we.c
[2]) ) )+log (n)*2

#Goodness—of—fit : Kolmogorov Smirnov

# GoF: KS

Fn <— (0:(n—1))/n

F <— pweibull(sort(z),est.par.we.c|1l],est.par.we.c|[2])/
pweibull (b, est .par.we.c|1], est.par.we.c|2])
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Dn <— max(abs(F-Fn))

v <— sqrt(n)=Dn

p.value <— l-sqrt(2*pi)/vxsum(exp(—0.125*seq(1,10000,2)
"2%xpi~2/v"2))

c¢(Dn,p.value)

m<— led

Dn.sim <— rep(0,m)

normconst <— pweibull(b, est.par.we.c|1]|, est.par.we.c
[2])

for(i in 1:m)

{

z.star <— rweibull(2%n,est.par.we.c|[l]|,est.par.we.c[2])

z.star <— (z.star|z.star <= b]|)[1l:n]

F.star <— pweibull(sort(z.star) ,est.par.we.c|1l],est.par
.we.c|[2])/normconst

Dn.sim|i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)

#simulating mean and sd

m—1000000

z.star <— rweibull (round (m«1.1) ,shape=est.alphaw B scale=
est . betaw)

z.star <— (z.star|z.star<=b]|) [1:m]

mean(z.star)

sd(z.star)

#Bootstrap of uncertainty in parameters

m b=10000

beta.ml.star=rep(NA,m b)

alpha.ml.star=rep(NA,m b)

for (i in 1:m b)

{x.star <— rweibull(round(nx1.1) ,shape=est.alphaw , scale
=est . betaw)

x.star <— (x.star|[x.star<=b]|)[l:n]

par—optim (log(c(est.alphaw,est.betaw)),mlweibull.c,z—x.
star)$par

alpha.ml.star|i]|=par|[1]

beta.ml.star |[i|=par|2]
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print (exp(c(alpha.ml.star[i]|,beta.ml.star[i])))}

mean (exp (alpha.ml.star))
mean (exp (beta.ml.star))

#Confidence intervals

qalp =sort(exp(alpha.ml.star))
c(qalp[0.05%m b],qalp[0.95%m b])
gqbet =sort (exp(beta.ml.star))
c(gbet[0.05%m b],gbet[0.95%m b])

#Reserve

m—100000

mb=1000

n=length (z)
nb=length (zc)

N=nb+n

mu. hat=0.03
beta.hat=betaexp
eps=0.01

eps2—=0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb/N

qeps . star=rep (NA,mb)
qeps . star2=rep (NA,mb)
beta.ml. star=rep (NA,mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)
{N.star=rpois (1 ,Asmu. hat)
mu. star [1] <— N.star /A

z.star <— rweibull (round(nx2) ,shape=est .alphaw, scale=

est . betaw)

z.star <— (z.star|[z.star<=b]|)|[1l:n]

par—optim (log(c(est.alphaw, est.betaw)) , mlweibull.c,z=z.

star)$par
alpha.ml.star|i|=exp(par|1])
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beta.ml.star |[i|=exp(par|[2])

z.star.b=beta.bx(runif(nb)+**(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec|[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star . mcstar=rpois (1, J+mu. star|i]|*T)

N.star.gtb=rbinom (1, N.star.mcstar, p)

N.star.leqb=N.star.mcstar — N.star.gth

z.star . mcstar=rweibull (round (N. star .leqb*2) ,alpha.ml.
star|[i]|,beta.ml.star[i])

z.star.mestar <— (z.star.mcstar|z.star.mestar<=b]) [1:N.
star.leqb |

z.star.mestar.b=bvec|[i]|*(runif(N.star.gth)sx(—1/avec|i
]1)-1) + b

X[j|]=sum(z.star.mcstar) + sum(z.star.mcstar.b)}

#print (sort (X, decreasing = TRUE))
X=matrix (X,m)

geps.star|i]=apply(X,2,sort) [mx(1—eps) |
qeps.star2|i|=apply (X,2,sort) [mx(1—eps2) |

print (qeps.star|i])
print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%._
reserve", xlab="Reserve" xlim=c(5e+8,2e¢+9),cex.axis

=1.2,cex.main=1.5, cex.lab=1.3)

axis(1l,at— 7.712e¢+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v=7.712e+08,1ty =3)

abline (v=q[0.05*mb]|)

abline (v=q[0.95*mb])

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve" | xlab="Reserve" ylim=c(0,4e—09),xlim=
c(be+8,2e+9),cex.axis=1.2 cex.main=1.5, cex.lab=1.3)

axis(1,at=8.334e+08,expression (hat(epsilon)),cex.axis
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=0.2)
abline (v=38.334¢+08,1ty =3)
abline (v=ql[0.05*mb])
abline (v=q1[0.95*mb])
g=sort (qgeps.star)
c(q[0.05+mb]|,q[0.95*mb])
ql=sort (qeps.star2)
c(ql[0.05%mb]|,ql[0.95=*mb])

#Monte Carlo simulated reserve
options (max. print=999999)
m—=100000

eps=0.01

eps2=0.005

beta.hat—=est .par.exp.c

X=rep (NA m)

for (j in 1:m)

{N.star . mcstar=rpois (1,J+mu. hat«T)
N.star.gtb=rbinom (1, N.star.mcstar, p)
N.star.leqb=N.star.mcstar — N.star.gtbh

z.star . mcstar=rweibull (round (N. star.leqbx1.1) est.

alphaw , est . betaw)

z.star.mestar <— (z.star.mecstar|[z.star.mcstar<=b]) [1:N.

star.leqb |

z.star.mcstar.b=beta.b*(runif (N.star.gth)*x(—1/alpha.b)

—1) + b

X[j]=sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE) )
X=matrix (X,m)

qeps . star=apply (X,2,sort) [mx(1—eps) |
qeps . star2=apply (X,2,sort) [mx(1—eps2) |
print (qeps.star)

print (qeps.star2)

B.0.11 The Gamma under-threshold distribution

b <— 4e6
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n <— length(z)

#Estimation , non—truncated

mlgamma <— function (par,z)

{alpha <— exp(par)

zBar <— mean(z)
alphax(1—log(alpha/zBar))+Hgamma(alpha)—(alpha —1)%mean(

log(z))}

alpha.start <— zBar~2/s2

start .par <— alpha.start

log.start.par <— log(start.par)

est.ga <— optim(log.start.par,mlgamma, method="BFGS" ,z—z
)

est .beta <— exp(est.ga$par)/zBar

est.par.ga <— c(exp(est.ga$par), est.beta)

#FEstimation truncated

mlgamma.c <— function(log.par,z,b)

{b <— 4e6

alpha <— exp(log.par|1])

beta <— exp(log.par|[2])

#dgamma 1s the density function of gamma

# negative LL divided by n

—sum (dgamma(z , alpha , beta ,log=TRUE) )+n=log (pgamma(b ,
alpha ,beta))}

#optimizing the parameters with log(est.par.ga) = the
parameters for the non—truncated data as starting
values.

est.ga.c <— optim(log(est.par.ga) mlgamma.c,method="
BFGS" ,z=z ,b=b)

est .par.ga.c <— exp(est.ga.c$par)

alphag <— exp(est.ga.c$par)[1]

betag <— exp(est.ga.c$par)[2]

#QYQ-plot

#generates set of probabilities at which to evaluate
the inverse distribution

u <— ppoints(n)

#qgamma produces a vector of quantiles for the gamma
function
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#pgamma produces a vector of probabilites for the gamma
function F(b)

Hukpgamma=F(z )=uxF(b)

gpar <— qgamma(uspgamma(b,est.par.ga.c[1],est.par.ga.c
[2]) ,est.par.ga.c|1],est.par.ga.c|2])

plot (gpar, sort(z),xlab="Theoretical_quantiles" ylab
Sample_quantiles" ,main—="Gamma_Q-Q_Plot" ,cex .axis
=1.5,cex.main=2.7,cex.lab=2)

_n

ZAIC

—2% (sum(dgamma(z , est .par.ga.c|1],est.par.ga.c|2],log=
TRUE) )—n=log (pgamma(b, est .par.ga.c[1],est.par.ga.c
[2]) ) ) +2%2

4BIC

—2+% (sum(dgamma(z , est .par.ga.c|1],est.par.ga.c|2],log=
TRUE) )—n*log (pgamma(b, est .par.ga.c|[1],est.par.ga.c
[2]) ) )+log (n)*2

4 GoF: KS

Fn <— (0:(n—1))/n

F <— pgamma(sort(z),est.par.ga.c|1l],est.par.ga.c[2])/
pgamma(b, est .par.ga.c|1]|,est.par.ga.c|2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)=*Dn

p.value <— l—sqrt(2+*pi)/vksum(exp(—0.125%seq(1,10000,2)
~2%pi~2/v"2))

c(Dn,p.value)

m<— leb

Dn.sim <— rep(0,m)

normconst <— pgamma(b,est.par.ga.c|[1],est.par.ga.c|[2])

for(i in 1:m)

{

z.star <— rgamma(2x*n,est.par.ga.c|[1l],est.par.ga.c|[2])

z.star <— (z.star|z.star <= b|)[1:n]

F.star <— pgamma(sort(z.star),est.par.ga.c|1],est.par.
ga.c|2]|)/normconst

Dn.sim|[i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)
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#simulating mean and sd

m=1000000

z.star=rgamma(round (m*1.1) ,shape=alphag ,rate=betag)
z.star <— (z.star|z.star <= b|)|[1:m]

mean(z.star)

sd(z.star)

#Bootstrap of uncertainty in parameters

m b=1000

beta.ml.star=rep(NA,m b)

alpha.ml.star=rep(NA,m b)

for (i in 1:m b)

{x.star=rgamma(round (n*x1.1) ,shape=alphag ,rate=betag)
x.star <— (x.star|x.star<=b|)|[l:n]

par=optim (log(c(alphag ,h betag)) ,mlgamma.c,z=x.star)$par
alpha.ml.star|[i|=par|[1]

beta.ml.star |[i]|=par|[2]

print (exp(c(alpha.ml.star[i|,beta.ml.star[i])))}
mean (exp (alpha.ml.star))

mean (exp (beta.ml.star))

#Confidence intervals

qalp=sort (exp(alpha.ml.star))
c(qalp[0.05%m b],qalp[0.95%m b])
gbet=sort (exp(beta.ml.star))
c(gbet[0.05%m b]|,qbet[0.95%m b])

#Reserve
m=100000
mb=1000
n=length (z)
nb=length (zc)
N=nb-+n

mu. hat=0.03
beta.hat=betaexp
eps=0.01
eps2—0.005
A=N/mu. hat
J=30000

T=1
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b=4e6

p=nb/N

geps . star=rep (NA,mb)
qeps . star2=rep (NA,mb)
beta.ml. star=rep (NA, mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)

{N.star= rpois(1,A%mu.hat)

mu. star [1] <— N.star/A

z . star=rgamma(round (n*x1.1) ,shape=alphag ,rate=betag)

z.star <— (z.star|z.star <= b]|)[1l:n]

par=optim (log(c(alphag ,h betag)) ,mlgamma.c,z=z.star)$par

alpha.ml.star|[i|=exp(par|1])

beta.ml.star |[i|=exp(par|[2])

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto, method="BFGS" ,z=z.
star.b)

bvec[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(1+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.star [i]|*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mecstar — N.star.gth

z.star . mcstar = rgamma(round (N. star.leqbx1.1) ,;alpha.ml.
star[i]|,beta.ml.star[i])

z.star.mestar <— (z.star.mcstar|z.star.mcstar <= b]) [1:
N.star.leqb ]

z.star.mcstar.b = bvec|i]|*(runif(N.star.gth)xx(—1/avec|
i])—-1) + b
X[j] = sum(z.star.mcstar) + sum(z.star.mecstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)

geps.star|i]=apply(X,2,sort) [mx(1—eps) |
geps.star2|i|=apply(X,2,sort) [mx(1—eps2) |
print (qeps.star|i])
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print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%._
reserve'" | xlim=c(0,5e+09),xlab="Reserve"  cex.axis

=1.2,cex.main=1.5, cex.lab=1.3)

axis(l,at=7.957e+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v= 7.957e+08,1ty = 3)

abline (v=q[0.05*mb])

abline (v=q[0.95*mb])

plot (density (geps.star2) ,main="Density_of_simulated_
99.5% _reserve" xlim=c(0,le+10), xlab="Reserve"  cex.
axis=1.2,cex . main=1.5, cex.lab=1.3)

axis(1,at= 8.615e¢+08,expression(hat(epsilon)),cex.axis
=0.2)

abline (v—=8.615e+08,1ty — 3)

abline (v=q[0.05*mb])

abline (v=q[0.95*mb])

q =sort(qgeps.star)

c(q[0.05+mb]|,q[0.95*mb])

#Monte Carlo simulated reserve
options (max. print=999999)
m=100000

eps = 0.01

eps2 = 0.005

beta.hat—est .par.exp.c

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.hat*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mecstar — N.star.gth

z.star . mcstar = rgamma(round (N. star.leqb*2) ;alphag ,
betag)

z.star.mestar <— (z.star.mcstar|[z.star.mcstar <= b]) [1:
N.star.leqb |

z.star . mcstar.b = beta.bx(runif (N.star.gth)*x(—1/alpha.
b)—1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}
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print (sort (X, decreasing = TRUE) )
X=matrix (X,m)

qeps.star=apply (X,2 ,sort) [m*(1—eps) |
qeps . star2=apply (X,2,sort) [mx(1—eps2) |
print (qeps.star)

print (geps.star2)

B.0.12 The Log-gamma under-threshold distribution

b <— 4eb6
n <— length(z)

#Estimation , non—truncated

mlgamma <— function (par,z)

{alpha <— exp(par)

zBar <— mean(z)

alphax(1—log(alpha/zBar))+lgamma(alpha)—(alpha —1)*mean(
log(z))}

zBarLog <— mean(log(z+1))

s2Log <— var(log(z+1))

alpha.start <— zBarLog~2/s2Log

start .par <— alpha.start

log.start.par <— log(start.par)

est.lga <— optim(log.start.par, mlgamma, method="BFGS" ,z=
log(z+1))

est.beta <— exp(est.lga8$par)/zBarLog

est.par.lga <— c(exp(est.lga$par) , est.beta)

#Estimation truncated

mlgamma.c <— function(log.par,z,b)

{alpha <— exp(log.par|[1])

beta <— exp(log.par|[2])

b <— 4e6

—sum (dgamma(z , alpha , beta ,log=TRUE) )+n=log (pgamma(b,
alpha ,beta))}

est.lga.c <— optim(log(est.par.lga) ,mlgamma.c,method="
BFGS" ,z=log(z+1),b=log(b+1))

est.par.lga.c <— exp(est.lga.c$par)
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alphalg <— exp(est.lga.c$par)[1]
betalg <— exp(est.lga.c8par)|[2]

#Q-plot

#generates set of probabilities at which to evaluate
the inverse distribution

u <— ppoints(n)

#qgamma produces a vector of quantiles for the gamma
distribution

#pgamma produces a vector of probabilites for the gamma
distribution F(b)

#Z = exp (W)—1, W is gamma(alpha , beta)

AV = log(Z+1)

#f 2(z) = (1|z+1)f w(log(z+1)), where f w(log(z+1)) is
dgamma ( gamma distribution )

#F z(z) = P(Z leq z) = P(e~w —1 leq z) = P(W leq log(z
+1)) = F w(log(2+1)), which is pgamma.

Huxpexrp = F(z) = uxF(b)

#u =F z(z) = F w(log(z+1))

# log(z+1) = F w™(—1)(u)

#z = e (F w (—1)(u)) —1, where F W*(—=1)(u) is qgamma

gpar <— exp (qgamma(uxpgamma(log (b+1),est.par.lga.c|1],
est.par.lga.c|2]) ,est.par.lga.c|1l],est.par.lga.c|2])
)—1

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles" , main="Log—gamma_Q-Q_Plot",
cex.axis=1.5,cex. main=2.7, cex.lab=2)

ZAIC

—2% (sum(dgamma(log (z+1),est.par.lga.c|[1],est.par.lga.c
[2] ,1log=TRUE)—log(z+1))—n+*log (pgamma(log (b+1),est .
par.lga.c|l],est.par.lga.c[2])))+2%2

BIC

—2% (sum(dgamma(log (z+1),est.par.lga.c|[1],est.par.lga.c
[2] ,1log=TRUE)—log(z+1))—n+*log (pgamma(log (b+1),est .
par.lga.c|l],est.par.lga.c[2])))+log(n)=*2

#Goodness—of—fit: Kolmogorov Smirnov
Fn <— (0:(n—1))/n
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F <— pgamma(log(sort(z)+1),est.par.lga.c|1]|,est.par.lga
.c[2]) /pgamma(log(b+1),est .par.lga.c[1l],est.par.lga.
c[2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l—sqrt(2+*pi)/vksum(exp(—0.125%seq(1,10000,2)
"2%pit2/v"2))

c(Dn,p.value)

m <— led

Dn.sim <— rep(0,m)

normconst <— pgamma(log(b+1),est.par.lga.c|1],est.par.
lga.c[2])

for(i in 1:m)

{

z.star <— exp(rgamma(2x*n,est.par.lga.c|[1],est.par.lga.c
[2]) )1

z.star <— (z.star|z.star <= b|)[1l:n]

F.star <— pgamma(log(sort(z.star)+1),est.par.lga.c|1],
est.par.lga.c|2])/normconst

Dn.sim|i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)

#simulating mean and sd

m=1000000

7z . star—exp (rgamma(round (m«1.1) ;shape=alphalg ,rate=
betalg))

z.star <— (z.star|z.star <= b|)[1:m]

mean(z.star

sd(z.star)

3

#Bootstrap of uncertainty in parameters

m b=10000

beta.ml.star=rep (NA,m b)

alpha.ml.star=rep(NA,m b)

for (i in 1:m b)

{x.star-rgamma(round(nx1.1) ,shape—alphalg ,rate=betalg)

x.star <— (x.star|x.star <= b])[1l:n]

par—optim (log(c(alphalg ,betalg)) ,mlgamma.c,z=x.star)$
par
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alpha.ml.star|[i|=par|[1]

beta.ml.star |[i]|=par|[2]

print (exp(c(alpha.ml.star[i|,beta.ml.star[i])))}
mean (exp (alpha.ml.star))

mean (exp (beta.ml.star))

#Confidence intervals

qalp =sort(exp(alpha.ml.star))
c(qalp[0.05%m b],qalp[0.95%m b])
qbet =sort(exp(beta.ml.star))
c(gbet[0.05%m b],qbet[0.95%m b])

#Reserve

m—=100000

mb=1000

n=length (z)
nb=length (zc)

N=nb-+n

mu. hat=0.03
beta.hat=betaexp
eps=0.01

eps2—=0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb/N

geps . star=rep (NA,mb)
geps . star2=rep (NA,mb)
beta.ml. star=rep (NA,mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)

{N.star= rpois(1,A%mu.hat)

mu. star[i] <— N.star/A

7z . star—rgamma(round (n*2) ,shape—alphalg ,rate=betalg)

z.star <— (z.star|z.star <= b|)[1l:n]

par—optim (log(c(alphalg ,betalg)) ,mlgamma.c,z=z.star)$
par
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alpha.ml.star|[i|=exp(par|1])

beta.ml.star [i]|=exp(par|[2])

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est .pa <— optim(log(beta.b) mlpareto ,method="BFGS" ,z=z.
star.b)

bvec[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.star [i]*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mecstar — N.star.gth

z.star.mcstar = rgamma(round (N. star.leqb*2) ;alpha.ml.
star|i|,beta.ml.star|i])

z.star.mestar <— (z.star.mcstar|[z.star.mcstar <= b]) [1:
N.star.leqb ]

z.star . mcestar.b = bvec|i]|*(runif (N.star.gth)xx(—1/avec|
i])—-1) + b
X|[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)

geps.star|i]=apply(X,2,sort) [mx(1—eps) |
qeps.star2|i|=apply(X,2,sort) [m«x(1—eps2) |
print (qgeps.star|[i])

print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%_
reserve" | xlab="Reserve" xlim=c(4.5e+8,2¢+9),cex.

axis=1.2,cex . main=1.5, cex.lab=1.3)

axis(1,at= 6.291e+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v=6.291e+08,1ty = 3)

abline (v=q[0.01*mb])

abline (v=q[0.99*mb]|)

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve" | xlab="Reserve" xlim=c(4.5e+8,2.5e+9)
,cex.axis=1.2,cex.main=1.5, cex.lab=1.3)

axis(1l,at= 6.947+08,expression (hat(epsilon)) , cex.axis
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=0.2)
abline (v=6.947e+08,1ty = 3)
abline (v=q[0.005*mb])
abline (v=q[0.995*mb])
q =sort(qgeps.star)
c(q[0.01+mb]|,q[0.99*mb])
c(q[0.005%mb]| ,q[0.995*mb])

#Monte Carlo simulated reserve
options (max. print=999999)
m=100000

eps — 0.01

eps2 = 0.005

beta.hat=est .par.exp.c

X=rep (NA m)

for (j in 1:m)

{N.star . mcstar = rpois (1, J*mu.hat*T)
N.star.gth = rbinom(1, N.star.mcstar, p)
N.star.leqb = N.star.mcstar — N.star.gth

z.star.mcstar = rgamma(round (N.star.leqbx1.1) jalphalg,

betalg )

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:

N.star.leqb]

z.star.mcstar.b = beta.b*(runif (N.star.gth)*x(—1/alpha.

b)—1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE) )
X=matrix (X,m)

qeps . star=apply (X,2,sort) [mx(1—eps) |
qeps . star2=apply (X,2,sort) [mx(1—eps2) |
print (geps.star)

print (qeps.star2)

B.0.13 The Log-normal under-threshold distribution

b <— 4e6
n <— length(z)
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# Estimation , non—truncated
est.par.ln <— c(mean(log(z)) ,sd(log(z)))

# Estimation truncated

mllognormal.c <— function(log.par,z,b)

{

mu <— log.par|[1]

sigma <— exp(log.par|2])

b <— 4eb6

—sum(dlnorm (z ,mu, sigma , log=TRUE) )4+nx*log (plnorm (b ,mu,
sigma) )

}

est.ln.c <— optim(c(est.par.ln|[1],log(est.par.Iln|2])),
mllognormal.c, method="BFGS" , 7=z ,b=b)
est.par.In.c <— c(est.In.c$par|[1]|,exp(est.In.c$par[2]))

muln <— est.ln.c$par|1]|
sigmaln <— exp(est.ln.c$par|[2])

#simulating mean and sd

m=10000000

z . star=rlnorm (round (m*1.1) ,muln,sigmaln)
z.star <— (z.star[z.star <= b]) [1:m]
mean(z.star)

sd(z.star)

# QQ-plot

u <— ppoints(n)

gpar <— qglnorm (usplnorm(b,est.par.In.c|[1],est.par.ln.c
[2]) ,est.par.In.c[1],est.par.ln.c|[2])

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles" , main="Log—normal _Q-Q_Plot",
cex.axis=1.5,cex. main=2.7, cex.lab=2)

4 AIC

—2% (sum(dlnorm(z, est.par.In.c[1],est.par.ln.c|2],log=
TRUE) )—n=log (plnorm (b, est .par.ln.c[1],est.par.ln.c
[2]) ) )+2%2
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4 BIC
—2% (sum(dlnorm(z, est .par.In.c|[1],est.par.ln.c|2],log=
TRUE) )—n=log (plnorm (b, est .par.In.c[1],est.par.ln.c

[2])))+1log (n)x*2

4 GoF: KS

Fn <— (0:(n—1))/n

F <— plnorm(sort(z),est.par.ln.c|[l]|,est.par.Iln.c|2])/
plnorm (b, est .par.ln.c|[1],est.par.ln.c|2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l-sqrt(2*pi)/vxsum(exp(—0.125*seq(1,10000,2)
~2%pi~2/v"2))

c¢(Dn,p.value)

#Bootstrap of uncertainty in mu and sigma

m b=10000

mu.ml. star=rep (NA,m b)

sigma.ml. star=rep (NA,m b)

for (i in 1:m b)

{

x.star=rlnorm(round(n*1.1) ,muln, sigmaln)

Xx.star <— (x.star|x.star <= b])[1l:n]

par=optim(c(muln,log(sigmaln)) ,mllognormal.c,z=x.star)$
par

mu.ml.star [i]=par[1]

sigma.ml. star | i|=par|2]

print (c(mu.ml.star [i],exp(sigma.ml.star[i])))

}

mean (mu.ml. star)
mean (exp (sigma.ml.star))

#CI

gmu =sort (mu.ml.star)
c(qmu[0.05%m b|,qmu[0.95%m b])

qsig =sort (exp(sigma.ml.star))
c(qsig|0.05%m b],qsig|0.95%m b])

#RESERVE
options (max. print=9999999)
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m— 100000
mb=1000

n= length(z)
nb=length (zc)

N= nb+ n

mu. hat= 0.03
eps — 0.01
eps2= 0.005
A=N/mu. hat
J= 30000
T=1

b = 4e6

p = nb/N

mu.ml. star=rep (NA, mb)
sigma.ml. star=rep (NA, mb)
avec = c()

bvec = c()

mu. star=rep (NA,mb)

geps . star=rep (NA,mb)
qeps . star2=rep (NA,mb)
for (i in 1:mb)

{

N.star= rpois(1,A+mu. hat)
mu. star [1] <— N.star /A

z.star=rlnorm(round(n%1.1) ;muln, sigmaln)

z.star <— (z.star|z.star <= b]|)[1l:n]

par—optim(c(muln,log(sigmaln)) ,mllognormal.c,z=z.star)$
par

mu.ml.star |[i]|=par|[1]

sigma.ml. star |i|=exp(par|2])

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec|[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)
for (j in 1:m)
{
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N.star.mcstar = rpois(1,J«mu.star [i]|*T)
N.star.gth = rbinom(1, N.star.mcstar, p)
N.star.leqb = N.star.mecstar — N.star.gth

z.star.mcstar = rlnorm (round (N.star.leqb*2) mu.ml. star |
i],sigma.ml.star[i])

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:
N.star.leqb |

z.star.mcstar.b = bvec|i]|*(runif(N.star.gth)xx(—1/avec|
i])—1) + b
X[j] = sum(z.star.mcstar) + sum(z.star.mecstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)
qeps.star|i]=apply(X,2,sort) [mx(1—eps) |
geps.star2|i]|=apply(X,2,sort) [m«x(1—eps2) |

print (qeps.star|i])
print (qeps.star2|i])}

mean (X)

#density

plot (density (qeps.star) ,main="Density _of_simulated _99%_
reserve", xlab="Reserve" xlim=c(5e+8,2e¢+9),cex.axis

=1.2,cex.main=1.5, cex.lab=1.3)

axis(l,at= 7.676e+08,expression(hat(epsilon)),cex.axis
=0.2)

abline (v=7.676e+08,1ty = 3)

abline (v=q[0.05*mb])

abline (v=q[0.95*mb])

plot (density (qeps.star2) main="Density_of_simulated_
99.5% _reserve", xlab="Reserve" xlim=c(5e+8,2¢+9),
ylim=c (0,4e—09),cex.axis=1.2,cex.main=1.5, cex.lab
=1.3)

axis(1,at= 8.343e¢+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v=8.343e+08,1ty = 3)

abline (v=ql[0.05%mb])
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abline (v=q1[0.95*mb])

q =sort(qgeps.star)
c(q|0.05+mb]|,q[0.95*mb])

ql =sort(qgeps.star2)
c(ql[0.05%mb]|,ql[0.95=*mb])

ZMC reserve
options (max. print—=9999999)
m—=1000000

n= length(z)
nb=length (zc)
N= nb+ n

mu. hat—= 0.03
eps = 0.01
eps2= 0.005
A=N/mu. hat

J= 30000
T=1

b = 4e6

p = nb/N
X=rep (NA m)
for (j in 1:m)

.star.mcstar = rpois (1, Jxmu.hat*T)

2 2 2

N

sigmaln)

.star.gtb = rbinom (1, N.star.mcstar, p)
.star.leqb = N.star.mcstar — N.star.gth

.star.mcstar = rlnorm (round(N.star.leqb*1.1) ,muln,

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:

N.star.leqb |

z.star.mcstar.b = beta.bx(runif(N.star.gth)*xx(—1/alpha.

b)-1) + b

X[j] =sum(z.star.mcstar) + sum(z.star.mecstar.b)}
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print (sort (X, decreasing = TRUE) )
X=matrix (X,m)

geps . star=apply (X,2 ,sort) [mx(1—eps) |
qeps.star2=apply (X,2,sort) [mx(1—eps2) |

print (qeps.star)
print (geps.star2)

B.0.14 The two-parameter Pareto under-threshold dis-
tribution

b <— 4eb6
n <— length(z)

# Estimation , non—truncated
mlpareto <— function(par,z)
{beta <— exp(par)

alpha <— 1/mean(log(1+z/beta))
—log (alpha/beta)+1/alpha+1}

alpha.start <— max(1.0001,2%s2/(s2—zBar"2))
beta.start <— zBarx(alpha.start—1)
start .par <— beta.start
log.start.par <— log(start.par)
est.pa <— optim(log.start.par, mlpareto ,method="BFGS" ,z—
z
)
est .beta <— exp(est.pa$par)
est.alpha <— 1/mean(log(1+z/est.beta))
est.par.pa <— c(est.alpha, est.beta)

#Estimation truncated

#pdf
dpareto <— function(z,alpha , beta)
{alphax(1+z/beta) ~(—(alpha+1))/beta}

7edf

ppareto <— function(z,alpha ,beta)
{1—(1+z/beta) “(—alpha)}
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qpareto <— function (u,alpha  h beta)
{betax((1—u)"(—1/alpha)—1)}

mlpareto.c <— function (log.par,z,b)

{alpha <— exp(log.par|[1])

beta <— exp(log.par|[2])

b <— 4e6

—sum(log (dpareto(z,alpha ,beta)))4n*xlog(ppareto(b,alpha,
beta) )}

est.pa.c <— optim(log(est.par.pa),mlpareto.c,method="
BFGS" ,z=z ,b=b)
est.par.pa.c <— exp(est.pa.c$par)

#simulating mean and sd

m=1000000

z.star = est.par.pa.c|2]|*(runif(round(m«1.1))**(—1/est.
par.pa.c|l])—1);

z.star <— (z.star|z.star <= b|)[1:m]

mean(z.star)

sd(z.star)

#Q-plot

u <— ppoints(n)

gpar <— qpareto (uxppareto(b,est.par.pa.c|[1l],est.par.pa.
c|2]) ,est.par.pa.c|1],est.par.pa.c|2])

plot (gqpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles" , main="Two—parameter_Pareto_
Q-Q_Plot" jcex.axis=1.5,cex.main=2.7, cex.lab=2)

ZAIC

—2%(sum(log (dpareto(z,est.par.pa.c|1],est.par.pa.c|2]))
)—nx*log (ppareto(b,est.par.pa.c|1],est.par.pa.c|2])))
+2%2

4BIC

—2%(sum(log (dpareto(z,est.par.pa.c|1],est.par.pa.c|2]))
)—nx*log (ppareto (b, est.par.pa.c|1],est.par.pa.c|2])))
+log (n)*2

#Goodness—of—fit: Kolmogorov Smirnov
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Fn <— (0:(n—1))/n

F <— ppareto(sort(z),est.par.pa.c|l],est.par.pa.c|[2])/
ppareto (b, est.par.pa.c|1l],est.par.pa.c|2])

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l—sqrt(2+*pi)/vksum(exp(—0.125%seq(1,10000,2)
"2%pit2/v"2))

c(Dn,p.value)

m<— led

Dn.sim <— rep(0,m)

normconst <— ppareto(b,est.par.pa.c|[l]|,est.par.pa.c|[2])

for(i in 1:m)

{

z.star <— est.par.pa.c|2|*(runif(round(2%n))"(—1/est.
par.pa.c|1l])—1)

z.star <— (z.star|z.star <= b]|)[1l:n]

F.star <— ppareto(sort(z.star),est.par.pa.c|l],est.par.
pa.c|2]|)/normconst

Dn.sim|i| <— max(abs(F.star—Fn))

¥

p.value.sim <— mean(Dn.sim >= Dn)

#Bootstrap

alpha.hat = est.par.pa.c|1]

beta.hat = est.par.pa.c|2]

alpha.boot=rep(NA,m b)

beta.boot=rep (NA,m b)

m b = 10000

for (i in 1:m b)

{z_par = beta.hatx(runif(round(n*x1.1))*%(—1/alpha.hat)
—1);

z par <— (z par|z par <= b])[1l:n]

par <— optim(log(est.par.pa.c),mlpareto.c,method="BFGS"
,z=z_par)$par

alpha.boot|i| <— par|1]

beta.boot|i| <— par|2]

print (exp(c(alpha.boot[i],beta.boot|[i])))}

mean (exp (alpha . boot))
mean (exp (beta. boot) )
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#Confidence intervals

qalp =sort (exp(alpha.boot))
c(qalp[0.05%m b],qalp[0.95%m b])
qbet =sort (exp(beta.boot))
c(gbet[0.05%m b],qbet[0.95%m b])

#Reserve

m—=100000

mb=1000

n=length (z)
nb=length (zc)

N=nb-+n

mu. hat=0.03
beta.hat=betaexp
eps=0.01

eps2—0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb/N

geps . star=rep (NA,mb)
geps . star2=rep (NA,mb)
beta.ml. star=rep (NA,mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)

{N.star= rpois(1,A%mu.hat)

mu. star[i] <— N.star/A

z.star — beta.hatx(runif(round(n*2))**x(—1/alpha.hat)—1)

z.star <— (z.star|z.star <= b]|)[1l:n]

par <— optim(log(est.par.pa.c),mlpareto.c,method="BFGS"
,z=7.star )$par

alpha.ml.star|[i] <— exp(par|[1])

beta.ml.star[i] <— exp(par|2])

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.

122



B R-SCRIPT

star.b)
bvec|i] <— exp(est.pa$par)
avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))
X=rep (NA,m)

for (j in 1:m)

{N.star . mcstar = rpois(1l,J*mu.star [i]*T)

N.star.gtb = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mecstar — N.star.gth

z.star.mcstar = beta.ml.star|i|*(runif(round(N.star.
leqb*2))%%(—1/alpha.ml.star[i])—1)

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <— b]) [1:
N.star.leqb ]

z.star . mestar.b = bvec|i]|*(runif (N.star.gth)xx(—1/avec]|
i])—-1) + b
X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing — TRUE) )

X=matrix (X,m)

qeps.star|i]=apply(X,2,sort) [mx(1—eps) |
qeps.star2|i|=apply(X,2,sort) [mx(l—eps2) |
print (qeps.star|i])

print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density _of_simulated _99%_
reserve'" | xlab="Reserve" xlim=c(5e+8,2e+9),ylim=c

(0,4e—09) ,cex.axis=1.2,cex.main=1.5, cex.lab=1.3)
axis(1l,at= 7.737e¢+08,expression(hat(epsilon)),cex.axis
=0.2)
abline (v=7.737e+08,1ty = 3)
abline (v=q[0.01*mb])
abline (v=q[0.99*mb])

plot (density (qeps.star2) main="Density_of_simulated_
99.5% _reserve" | xlab="Reserve" xlim=c(5e+8,3.1e+9),
ylim=c(0,3.1e—09),cex.axis=1.2,cex.main=1.5, cex.lab
=1.3)

axis(1,at— 8.164+08,expression (hat(epsilon)), cex.axis
=0.2)

abline (v=8.164e+08,1ty = 3)

abline (v=q[0.005%mb]|)
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abline (v=q[0.995*mb])

q =sort(qgeps.star)
c(q[0.01%mb],q[0.99*mb])
c¢(q[0.005*mb]|,q[0.995+mb])
#c(q[0.05%mb], q[0.95%xmb])

#Monte Carlo simulated reserve
options (max. print=999999)
m=100000

eps = 0.01

eps2 — 0.005

beta.hat=est .par.exp.c

X=rep (NA m)

for (j in 1:m)
{N.star.mcstar = rpois(1,J*mu.hat*T)

N.star.gthb = rbinom(1, N.star.mcstar, p)
N.star.leqb = N.star.mecstar — N.star.gth

z.star.mecstar = beta.hat*(runif(round(N.star.leqb=*2) )%

(—=1/alpha.hat)—1);

z.star.mestar <— (z.star.mecstar|z.star.mcstar <= b]) [1:

N.star.leqb ]

z.star . mcstar.b = beta.bx(runif (N.star.gth)*x(—1/alpha.

b)—1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE))
X=matrix (X,m)
qeps . star=apply (X,2 ,sort) [mx(1—eps) |

qeps . star2=apply (X,2,sort) [mx(1—eps2) |

print (qgeps.star)
print (geps.star2)

B.0.15 The Extended Pareto under-threshold distri-

bution

b <— 4e6
n <— length(z)
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#Estimation , non—truncated

mlExtPareto <— function (log.par,z)

{par <— exp(log.par)

alpha <— par|[1]

theta <— par|[2]

beta <— par|[3|

b <— 4e6

mloglik <— —sum(lgamma(alpha+ttheta)—lgamma(alpha)—
lgamma (theta)+thetax(log(theta)—log(alpha)—log(beta)
)+(theta—1)*log(z)—(alphat+theta)*log(l+z*theta/(
alphaxbeta)))

if(is.na(mloglik))

mloglik <— 1e30

else if (mloglik > 1e30)

mloglik <— 1e30

mloglik }

findAlpha <— function (alpha ,zBar, s2  skewZ)

{theta <— zBar"2x(alpha—1)/(s2%(alpha—2)—zBar"2)

2xsqrt ((alpha—2)/(thetax(alpha+theta—1)))*(alpha+2%
theta—1)/(alpha —3)—skewZ}

alpha.start <— uniroot(findAlpha ,interval=c(3.0000001,1
e6) ,extendInt="yes" ,zBar=zBar,s2=s2 , skewZ=skewZ)$
root

if (alpha.start <= 3)

alpha.start <— 1000

theta.start <— max(zBar~2x(alpha.start—1)/(s2x(alpha.
start —2)—zBar~2) ,1e—6)

beta.start <— zBarx(alpha.start—1)/alpha.start

start.par <— c(alpha.start,theta.start, f beta.start)

log.start.par <— log(start.par)

est.ep <— optim(log.start.par, mlExtPareto,z=2)

est.par.ep <— exp(est.ep$par)

#FEstimation truncated
rExtPareto <— function (m, par)
{alpha <— par|1]

theta <— par|2]

beta <— par|3]
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Gtheta <— rgamma(m, theta ,theta)
Galpha <— rgamma(m, alpha ,alpha)
betaxGtheta/Galpha}

dExtPareto <— function(z,par)

{alpha <— par|1]

theta <— par|2]

beta <— par|[3|

exp (lgamma(alphattheta )—lgamma(alpha)—lgamma(theta)+
thetax(log(theta)—log(beta)—log(alpha))-+(theta—1)%
log(z)—(alphattheta)*log(l+zxtheta/(betaxalpha)))}

pExtPareto <— function (z,par)

{tmp <— try(integrate (dExtPareto,lower=0,upper=z , par—
par,stop.on. error=FALSE)$value , silen t=TRUE)

if (is.numeric(tmp))

tmp

else

1}

qExtPareto <— function(p,par,q.start,eps=0.1,tol=1e—9)
{q.c <— max(q.start ,0)

q.l <~ max(q.start—eps,0)

.u <— max(q.start+eps,0)

.¢ <— pExtPareto(q.c,par)

.1 <~ pExtPareto(q.1,par)

.u <— pExtPareto(q.u,par)

T T TR

if (abs(p.c—p) > tol)

{while (abs(p.c—p) > tol)
{if(p.c > p)

{if(p.1 > p)

{ while(p.1 > p)

{q.1 <— max(q.l—eps,0)

| <— pExtPareto(q.l,par)}}
u<—4q.c

c < (q.l+q.u)/2

.¢ <— pExtPareto(q.c,par)
u <— pExtPareto(q.u,par)}
s
f

~ooT T L as

Ise
if(p.u < p)

126



B R-SCRIPT

{while(p.u < p)

{q.u <— max(q.uteps,0)

p.u <— pExtPareto(q.u,par)}}
1 <—q.c

¢ <~ (q.l4q.u)/2

.¢ <— pExtPareto(q.c,par)

.1 <~ pExtPareto(q.l,par)}}}

.c}

mlextpareto.c <— function(log.par,z,b)

{par <— exp(log.par)
—sum(log (dExtPareto(z,par)))+n*log (pExtPareto(b,par))}

QL T T QL L

est.ep.c <— optim(log(est.par.ep),mlextpareto.c,method=
"BFGS" ,z=z ,b=b)
est .par.ep.c <— exp(est.ep.c$par)

#simulating mean and sd

m=1000000

ul=rgamma(round (m*2) ,est .par.ep.c|2]|,est.par.ep.c|2])
u2=rgamma (round (m*2) ,est .par.ep.c|1],est.par.ep.c|1])
z.star=(est.par.ep.c|3])*(ul/u2)

z.star = (z.star|z.star <= b]) [1:m]

mean(z.star)

sd(z.star)

#QQ-plot

u <— ppoints(n)

z.sim <— rExtPareto(le6,est.par.ep.c)

q.start <— quantile(z.sim ,uxpExtPareto(b, est.par.ep.c))

gpar <— rep(0,n)

Fb <~ pExtPareto(b,est.par.ep.c)

for(i in 1:n)

{gpar[i] <— qExtPareto(u[i]|*Fb,est.par.ep.c,q.start[i],
eps=0.1xq.start[i], tol=1le—3)}

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="Extended_Pareto_Q-Q_
Plot" ,cex.axis—=1.5,cex.main=2.7, cex.lab=2)

#AIC
—2x (sum(log (dExtPareto(z, est.par.ep.c)))—nx*log(
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pExtPareto (b, est.par.ep.c)))+2x3

#BIC
—2x (sum(log (dExtPareto(z, est.par.ep.c)))—nxlog(
pExtPareto(b,est.par.ep.c)))+log(n)=*3

#Goodness—of—fit: Kolmogorov Smirnov

Fn <— (0:(n—1))/n

z.sort <— sort(z)

F <— pExtParetoVec(z.sort,est.par.ep.c)/pExtPareto(b,
est.par.ep.c)

Dn <— max(abs(F-Fn))

v <— sqrt(n)=Dn

p.value <— l—sqrt(2#*pi)/vksum(exp(—0.125%seq(1,10000,2)
~2%pi~2/v"2))

c¢(Dn,p.value)

m<— led

Dn.sim <— rep(0,m)

normconst <— pExtPareto(b,est.par.ep.c)

for (i in 1:m)

{

z.star <— rExtPareto(2%n,est.par.ep.c)

z.star <— (z.star|z.star <= b|)[1l:n]

F.star <— pExtParetoVec(sort(z.star),est.par.ep.c)/
normconst

Dn.sim|i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)

#Bootstrap of uncertainty in parameters

m_b=10000

alpha.ml.star=rep(NA,m b)

theta.ml.star=rep(NA,m b)

beta.ml.star=rep (NA,m b)

for (i in 1:m b)

{ul=rgamma(round (n*2) ,est.par.ep.c[2],est.par.ep.c|[2])
u2-rgamma(round (n*2) ,est .par.ep.c|1],est.par.ep.c|1])
x.star=(est.par.ep.c[3])*(ul/u2)

x.star = (x.star[x.star <= b]|)[1l:n]
par=optim(log(c(est.par.ep.c|l|,est.par.ep.c|[2],est.par
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.ep.c[3])),mlextpareto.c ,z=x.star, b=b)$par

alpha.ml.star|i]|=par|[1]

theta.ml.star|i]|=par|[2]

beta.ml.star [i|=par|[3]

print (exp(c(alpha.ml.star|i]|,theta.ml.star|[i], beta.ml.
star[i])))}

mean (exp (alpha.ml.star))

mean (exp (theta.ml.star))

mean (exp (beta.ml.star))

#Confidence intervals

qalp =sort(exp(alpha.ml.star))
c(qalp[0.05%m b],qalp[0.95%m b])
qthet = sort(exp(theta.ml.star))
c(qthet|[0.05%m b|,qthet[0.95%m b|)
gbet =sort(exp(beta.ml.star))
c(qbet[0.05%m b]|,qbet[0.95%m b])

#Reserve

m—=100000

mb=1000

n=length (z)
nb=length (zc)

N=nb-+n

mu. hat=0.03
beta.hat=betaexp
eps—=0.01

eps2—=0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb/N

geps . star=rep (NA,mb)
geps . star2=rep (NA,mb)
beta.ml. star=rep (NA, mb)
avec=c ()

bvec—=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)
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{N.star= rpois(1,A%mu.hat)

mu. star [1] <— N.star /A

ul=rgamma(round (n*2) ,est .par.ep.c|2]|,est.par.ep.c|2])

u2=rgamma(round (n*2) ,est .par.ep.c[1],est.par.ep.c|1])

z.star=(est.par.ep.c|3])*(ul/u2)

z.star = (z.star|z.star <= b]) [1:n]

par—optim (log(c(est.par.ep.c|l]|,est.par.ep.c[2],est.par
.ep.c[3])),mlextpareto.c ,z=z.star ,b=b)$par

alpha.ml.star[i|=exp(par|1])

theta.ml.star |[i|=exp(par|[2])

beta.ml.star |[i|=exp(par|3])

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec|[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star . mcstar = rpois(1,J*mu.star [i]|*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mcstar — N.star.gth

ul=rgamma(round (N.star.leqb*2) ,theta.ml.star|i]|,theta.
ml.star[i])

u2=rgamma(round (N. star .leqb*2) jalpha.ml.star[i],alpha.
ml.star[i])

z.star.mcstar=(beta.ml.star[i])=*(ul/u2)

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:
N.star.leqb ]

z.star.mcestar.b = bvec|i]|*(runif (N.star.gth)xx(—1/avec|
i])—-1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)

qeps.star|i]=apply(X,2,sort) [mx(1—eps) |
qeps.star2|i]=apply(X,2,sort) [mx(1—eps2) |
print (qeps.star|i])

print (qeps.star2[i])}

#density
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plot (density (qeps.star) ,main="Density_of_simulated _99%_
reserve'"  xlab="Reserve" xlim=c(0,2e+9),cex.axis
=1.2,cex.main=1.5, cex.lab=1.3)

axis(1,at= 7.847e+08,expression(hat(epsilon)) , cex.axis
=0.2)

abline (v=7.847e¢+08,1ty = 3)

abline (v=q[0.01*mb])

abline (v=q[0.99*mb])

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve", xlab="Reserve" xlim=c(0,2.5e+9),cex.
axis=1.2,cex . main=1.5, cex.lab=1.3)

axis(1l,at— 8.533+08,expression (hat(epsilon)), cex.axis
=0.2)

abline (v=8.533+08,1ty = 3)

abline (v=q[0.005%mb])

abline (v=q[0.995*mb])

q —sort(qgeps.star)

c(q[0.01*mb]|,q[0.99%mb])

c(q[0.005%mb| ,q[0.995*mb])

#Monte Carlo simulated reserve
options (max. print=999999)
m=100000

eps = 0.01

eps2 = 0.005

beta.hat=est .par.exp.c

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.hatxT)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mcstar — N.star.gth

ul=rgamma(round (N.star .leqb*2) ,theta.hat theta.hat)

u2=rgamma(round (N.star .leqb#*2) ,alpha.hat alpha.hat)

z.star . mcstar=(beta.hat)*(ul/u2)

z.star.mestar <— (z.star.mcstar|[z.star.mcstar <= b]) [1:
N.star.leqb ]

z.star . mcstar.b = beta.bx(runif (N.star.gth)*x(—1/alpha.
b)—1) + b

X|[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}
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print (sort (X, decreasing = TRUE) )
X=matrix (X,m)

geps . star=apply (X,2 ,sort) [mx(1—eps) |
qeps.star2=apply (X,2,sort) [mx(1—eps2) |
print (qgeps.star)

print (qeps.star2)

B.0.16 The four-parameter Pareto under-threshold dis-
tribution

b <— 4e6

n <— length(z)

#FEstimation , non—truncated

mlFourPar <— function(log.par,z)

{par <— exp(log.par)

alpha <— par|1]

theta <— par|2]

beta <— par|3]

eta <— par|4]

v <— z/beta

mloglik <— —sum(lgamma(alpha+ttheta)—lgamma(alpha)—
lgamma( theta)+thetax(log(theta)—log(alpha))+(theta/
eta—1)xlog(v)—(alpha+theta)*log(l+thetaxv"(1/eta)/
alpha)—log(beta)—log(eta))

if(is.na(mloglik))

mloglik <— 1e30

else if (mloglik > 1e30)

mloglik <— 1e30

mloglik }

start.par <— c(est.par.ep,l)

log.start.par <— log(start.par)

est.fp <— optim(log.start.par,mlFourPar, z=z)
est.par.fp <— exp(est.fp$par)

#Estimation truncated
rFourPar <— function (m, par)
{alpha <— par|1]

theta <— par|[2]
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beta <— par|3]

eta <— par|[4]

Gtheta <— rgamma(m, theta ,theta)
Galpha <— rgamma(m, alpha ,alpha)

x <— Gtheta/Galpha

fourParTransform (par, Gtheta/Galpha)}

fourParTransform <— function (par, x)
{alpha <— par|1]

theta <— par|[2]

beta <— par|3]

eta <— par|[4]

betaxx"eta}

fourParTransformInv <— function (par,z)
{alpha <— par|1]

theta <— par|[2]

beta <— par|[3|

eta <— par|[4]

(z/beta) " (1/eta)}

dFourPar <— function (7, par)

{alpha <— par|1]

theta <— par|2]

beta <— par|3]

eta <— par|4]

v <— z/beta

exp (lgamma(alpha+theta )—lgamma(alpha)—lgamma(theta )+
thetax(log(theta)—log(alpha))+(theta/eta—1)xlog(v)—(
alpha+theta)*log(l+thetaxv~(1/eta)/alpha)—log(beta)—
log(eta))}

pFourPar <— function (z,par)

{tmp <— try(integrate (dFourPar 6 lower=0,upper=z , par=par,
stop.on. error=FALSE)$value , silent=IRUE)

if (is .numeric(tmp))

tmp

else

1}
qFourPar <— function(p,par,q.start ,eps=0.1,tol=1e—9)
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{alpha <— par|1]

theta <— par|2]

beta <— par|[3|

q.start.ep <— fourParTransformInv(par,q.start)
eps <— fourParTransformInv (par,eps)

par.ep <— c(par[1:2],1)

q.ep <— qExtPareto(p,par.ep,q.start.ep,eps,tol)
fourParTransform (par,q.ep)}

mlfourpar.c <— function(log.par,z,b)

{par <— exp(log.par)

—sum(log (dFourPar(z,par)))+nxlog(pFourPar(b,par))}

est.fp.c <— optim(log(est.par.fp),mlfourpar.c,method="
BFGS" ,z=z ,b=b)

est.par.fp.c <— exp(est.fp.c$par)

#simulating mean and sd

m=1000000

ul=rgamma(round (mx1.1) ,est .par.fp.c|2],est.par.fp.c|2])
u2=rgamma(round (m+1.1) ,est.par.fp.c|1],est.par.fp.c[1])
x.star=(est.par.fp.c[3]|)=*(ul/u2)*x*x(est.par.fp.c|[4])
x.star = (x.star[x.star <= b]|)[1:m]

mean(z.star)

sd(z.star)

#QQ-plot

u <— ppoints(n)

z.sim <— rFourPar(le6,est.par.fp.c)

q.start <— quantile(z.sim ,uxpFourPar(b,est.par.fp.c))

gpar <— rep(0,n)

Fb <— pFourPar(b,est.par.fp.c)

for (i in 1:n)

{qpar|i] <— qFourPar(u|i]|*Fb,est.par.fp.c,q.start[i],
eps=0.1xq.start[i], tol=1e—3)

}

plot (qpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="Four—parameter_Pareto

_Q-Q_Plot" ,cex.axis—=1.5,cex.main=2.7, cex.lab=2)

#AIC
—2x (sum(log (dFourPar(z,est.par.fp.c)))—n*log(pFourPar(b

134



B R-SCRIPT

,est.par.fp.c)))+2%4

BIC
—2x (sum(log (dFourPar(z, est.par.fp.c)))—n*log(pFourPar(b
,est.par.fp.c)))+log(n)=4

#Goodness—of—fit: Kolmogorov Smirnov

Fn <— (0:(n—1))/n

z.sort <— sort(z)

F <— pFourParVec(z.sort,est.par.fp.c)/pFourPar(b,est.
par.fp.c)

Dn <— max(abs(F-Fn))

v <— sqrt(n)=Dn

p.value <— l—sqrt(2#pi)/vksum(exp(—0.125%seq(1,10000,2)
~2%pi~2/v"2))

c¢(Dn,p.value)

m<— led

Dn.sim <— rep(0,m)

normconst <— pFourPar(b,est.par.fp.c)

for (i in 1:m)

{

z.star <— rFourPar(2*n,est.par.fp.c)

z.star <— (z.star|z.star <= b|)[1l:n]

F.star <— pFourParVec(sort(z.star),est.par.fp.c)/
normconst

Dn.sim|i| <— max(abs(F.star—Fn))

i

p.value.sim <— mean(Dn.sim >= Dn)

#Bootstrap of uncertainty in parameters
m_b=10000

alpha.ml.star=rep(NA,m b)
theta.ml.star=rep(NA,m b)
beta.ml.star=rep (NA,m b)
eta.ml.star=rep(NAm b)

for (i in 1:m b)
{ul=rgamma(round (n*2) ,est .par.fp.c[2],est.par.fp.c[2])
u2=rgamma(round (n*x2) ,est .par.fp.c|1],est.par.fp.c|1])
x.star=(est.par.fp.c[3]|)*(ul/u2)*x*(est.par.fp.c|4])
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x.star = (x.star|[x.star <= b]|)[1l:n]

par—optim (log(c(est.par.fp.c|[l]|,est.par.fp.c[2],est.par
fp.c[3]|, est.par.fp.c[4])),mlfourpar.c ,z=x.star, b
=b)$par

alpha.ml.star|[i|=par|[1]

theta.ml.star |[i|=par|[2]

beta.ml.star [i|—par|[3]

eta.ml.star|i]|=par|[4]

print (exp(c(alpha.ml.star[i|,theta.ml.star|[i]|, beta.ml.
star|[i], eta.ml.star|i])))}

alpha.ml.star))
theta.ml.star))
beta.ml.star))
eta.ml.star))

mean (exp
mean (exp
mean (exp
mean (exp

PN

#Confidence intervals

qalp =sort(exp(alpha.ml.star))
c(qalp[0.05%m b],qalp[0.95%m b])
qthet = sort(exp(theta.ml.star))
c(qthet[0.05%m b|,qthet[0.95%m b|)
gbet =sort(exp(beta.ml.star))
c(gqbet[0.05%m b],gbet[0.95%m b])
geta =sort(exp(eta.ml.star))
c(qeta[0.05%m b],qeta[0.95%m b])

#Reserve
m=100000
mb=1000
n=length (z)
nb=length (zc)
N=nb+4n

mu. hat=0.03
beta.hat=betaexp
eps=0.01
eps2—=0.005
A=N/mu. hat
J=30000

T=1

b=4e6

p=nb/N
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qeps . star=rep (NA,mb)
geps . star2=rep (NA,mb)
beta.ml. star=rep (NA,mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,;mb)

for (i in 1:mb)

{ N.star= rpois(1,A«mu.hat)

mu. star|i] <— N.star/A

ul=rgamma(round (n*2) ,est .par.fp.c[2],est.par.fp.c|2])

u2-rgamma(round (n*2) ,est .par.fp.c|1],est.par.fp.c|[1])

z.star=(est.par.fp.c[3])*(ul/u2)=*x(est.par.fp.c[4])

z.star = (z.star|z.star <= b])[1l:n]

par=optim(log(c(est.par.fp.c|1]|,est.par.fp.c[2],est.par
fp.c[3], est.par.fp.c[4])),mlfourpar.c ,z=z.star, b
—b)$par

alpha.ml.star|i|=exp(par|1])

theta.ml.star[i|=exp(par|2])

beta.ml.star |i|=exp(par|3])

eta.ml.star|[i]=exp(par|[4])

z.star.b = beta.bx(runif(nb)*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.star[i]*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mcstar — N.star.gth

ul=rgamma(round (N.star.leqb*2) ,theta.ml.star|i]|,theta.
ml.star[i])

u2=rgamma(round (N.star .leqb=*2) ,alpha.ml.star|[i]|,alpha.
ml.star[i])

z.star . mcstar=(beta.ml.star[i])*(ul/u2)**x(eta.ml.star|[i
1)

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:
N.star.leqb]

z.star.mestar.b = bvec|i|*(runif(N.star.gth)xx(—1/avec|
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i])—-1) + b
X[j] = sum(z.star.mcstar) + sum(z.star.mecstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)

qeps.star|i]=apply(X,2,sort) [mx(1—eps) |
geps.star2|i]|=apply (X,2,sort) [mx(1—eps2) |
print (qeps.star|[i])

print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%_
reserve" | xlab="Reserve" xlim=c(0,1.5e+9),cex.axis

=1.2,cex.main=1.5, cex.lab=1.3)

axis(1,at= 7.924e¢+08,expression(hat(epsilon)),cex.axis
=0.2)

abline (v—=7.924e+08,1ty = 3)

abline (v=q[0.05*mb])

abline (v=q[0.95*mb])

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve", xlab="Reserve" xlim=c(0,1.5e+9),ylim
=c(0,4.85e—09),cex.axis=1.2,cex.main=1.5, cex.lab
=1.3)

axis(1l,at= 8.522¢+08,expression(hat(epsilon)),cex.axis
=0.2)

abline (v=8.522e+08,1ty = 3)

abline (v=q1[0.05*mb])

abline (v=ql[0.95*mb])

q =sort(qgeps.star)
c(q0.05+mb]|,q[0.95*mb])
ql =sort(qeps.star?2)
c(ql[0.05%mb]|,ql[0.95=*mb])

#Monte Carlo simulated reserve
options (max. print=999999)

m=100000
eps = 0.01
eps2 = 0.005

beta.hat—=est .par.exp.c
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X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.hat«T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mcstar — N.star.gth
ul=rgamma(round (N.star.leqb=*2) ,est.par.fp.c|2], est.par.

fp.c[2])
u2=rgamma (round (N.star .leqb=*2) ,est .par.fp.c|[1], est.par.
fp.c[1])
z.star.mcstar=(est.par.fp.c[3]|)*(ul/u2)**x(est.par.fp.c
[4])

z.star.mestar <— (z.star.mecstar|[z.star.mcstar <= b]) [1:
N.star.leqb |

z.star.mcstar.b = beta.bx(runif(N.star.gth)*x(—1/alpha.
b)—1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE))

X=matrix (X,m)

qeps . star=apply (X,2,sort) [mx(1—eps) |

qeps . star2=apply (X,2,sort) [mx(1—eps2) |

print (qeps.star)

print (geps.star2)

B.0.17 The six-parameter Pareto under-threshold dis-
tribution

b <— 4e6
n <— length(z)

#Estimation , non—truncated

mlSixPar <— function(log.par,z)

{par <— exp(log.par)

alpha <— par|[1]

theta <— par|[2]

beta <— par|[3|

eta <— par|[4]

tau <— par|5]

invgamma <— exp(log.par|6])/(1+exp(log.par|[6]))
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v <— z/beta+1

w <— v invgamma

mloglik <— —sum(lgamma(alpha+ttheta)—lgamma(alpha)—
lgamma(theta)+thetax(log(theta)+log(tau)/eta—log(
alpha))—log(eta)+log(invgamma)—log (beta)+(invgamma
—1)xlog(v)+(theta/eta—1)xlog(w—1)—(alphattheta)=*log(
thetaxtau"(1/eta)/alphax(w—1)"(1/eta)+1))

if(is.na(mloglik))

mloglik <— 1e30

else if (mloglik > 1e30)

mloglik <— 1e30

mloglik }

start.par <— c(est.par.fp,rep(1,2))

start.par|[6] <— start.par[6]+1le—5

log.start.par <— log(start.par)

log.start.par|[6] <— —log(start.par|[6])—log(1—1/start.
par [6])

est.sp <— optim(log.start.par, mlSixPar,z=z)

est.par.sp <— exp(est.sp$par)

est.par.sp|6] <— 1/est.par.sp|6]+1.00001

gamma. sp <— 1/est.par.sp|6]+1

# FEstimation truncated

rSixPar <— function (m, par)
{alpha <— par[1]

theta <— par|[2]

beta <— par|3]

eta <— par|[4]

tau <— par|5]

gamma <— par [6 |

Gtheta <— rgamma(m, theta ,theta)
Galpha <— rgamma(m, alpha ,alpha)
sixParTransform (par, Gtheta/Galpha) }

sixParTransform <— function (par, x)
{alpha <— par|1]

theta <— par|[2]

beta <— par|3]

eta <— par|[4]

tau <— par|5]

gamma <— par |6 |
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betax((1+x"eta/tau) gamma—1)}

sixParTransform2 <— function (par,y)
{alpha <— par[1]

theta <— par|[2]

beta <— par|3]

eta <— par|[4]

tau <— par|5]

gamma <— par |6 |

x <— alphaxy/theta
beta*((1+x"eta/tau) gamma—1)}

sixParTransformInv <— function (par,z)
{alpha <— par|1]

theta <— par|[2]

beta <— par|3]

eta <— par[4]

tau <— par|5]

gamma <— par |6 |

v <— z/beta+1

w <— v~ (1/gamma)
tau”(1/eta)*(w—1)"(1/eta)}

dSixPar <— function(z,par)

{alpha <— par[1]

theta <— par|[2]

beta <— par|3]

eta <— par|[4]

tau <— par|5]

gamma <— par [6 |

v <— z/beta+1

w <— v~ (1/gamma)

exp (lgamma(alpha+theta )—lgamma(alpha)—lgamma(theta)—log
(eta)—log (gamma)—log (beta)fthetax(log(theta)+log(tau
)/eta—log (alpha))+(1/gamma—1)*log(v)-+(theta/eta—1)%
log (w—1)—(alpha+theta)*log(thetaxtau"(1/eta)/alphax(
w—1)"(1/eta)+1))}

pSixPar <— function(z,par)

{tmp <— try(integrate (dSixPar ,lower=0,upper=z , par=par,
stop.on. error=FALSE)$value , silent=ITRUE)
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if (is.numeric(tmp))
tmp
else

1}

qSixPar <— function(p,par,q.start ,eps=0.1,tol=1e—-9)
{alpha <— par|1]

theta <— par|2]

beta <— par|[3]|

q.start.ep <— sixParTransformInv(par,q.start)

eps <— fourParTransformInv (par,eps)

par.ep <— c(par|[1:2],1)

q.ep <— qExtPareto(p,par.ep,q.start.ep,eps,tol)
sixParTransform (par,q.ep)}

mlsixpar.c <— function(log.par,z,b)

{par <— exp(log.par)

alpha <— par|[1]

theta <— par|2]

beta <— par|3]

eta <— par|4]

tau <— par|5]

gamma <— (l+exp(log.par|[6]))/exp(log.par|6])
b <— 4e6

par <— c(alpha, theta 6 beta,eta,tau,gamma)
—sum(log (dSixPar(z,par)) )4n*xlog(pSixPar(b,par))}

est.sp.c <— optim(c(log(est.par.sp|[l:5]),—log(est.par.
sp|6])—log(l—1/est .par.sp[6])),mlsixpar.c,method="
BFGS" ,z=z ,b=b)

est .par.sp.c <— exp(est.sp.c$par)

est .par.sp.c[6] <— 1/est.par.sp.c[6]+1

gamma.sp <— 1/est.par.sp.c[6]+1

#beta/theta
est.par.sp.c|3]/est.par.sp.c|4]

#simulating mean and sd
options (max. print=9999999)

m=1000000

x.star=rSixPar(round(1.1%m) ,est.par.sp.c)
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x.star <— (x.star|x.star <= b])[1:m]
mean(z.star)
sd(z.star)

#QQ-plot

u <— ppoints(n)

z.sim <— rSixPar(le6,est.par.sp.c)

q.start <— quantile(z.sim ,uxpSixPar (b, est.par.sp.c))

gpar <— rep(0,n)

Fb <— pSixPar(b,est.par.sp.c)

for (i in 1:n)

{qpar[i] <— ¢SixPar(u|i]|*Fb,est.par.sp.c,q.start|[i],eps
=0.1%q.start[i], tol=1le—3)}

plot (gpar, sort(z), xlab = "Theoretical_quantiles",
ylab="Sample_quantiles", main="Six—parameter_Pareto_
Q-Q_Plot" jcex.axis=1.5,cex.main=2.7, cex.lab=2)

H#AIC
—2x (sum(log (dSixPar(z,est.par.sp.c)))—nx*log(pSixPar(b,
est.par.sp.c)))+2x6

4BIC
—2x (sum(log (dSixPar(z, est.par.sp.c)))—nx*log(pSixPar(b,
est .par.sp.c)))+log(n)*6

#Goodness—of—fit : Kolmogorov Smirnov

Fn <— (0:(n—1))/n

z.sort <— sort(z)

F <— pSixParVec(z.sort ,est.par.sp.c)/pSixPar (b, est.par.
sp.c)

Dn <— max(abs(F-Fn))

v <— sqrt(n)*Dn

p.value <— l-sqrt(2*pi)/vxsum(exp(—0.125*seq(1,10000,2)
~2%pi~2/v"2))

c¢(Dn,p.value)

m<— lebd

Dn.sim <— rep(0,m)

normconst <— pSixPar(b,est.par.sp.c)
for(i in 1:m)

{
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z.star <— rSixPar(2%n,est.par.sp.c)

z.star <— (z.star|z.star <= b|)[1l:n]

F.star <— pSixParVec(sort(z.star),est.par.sp.c)/
normconst

Dn.sim|i| <— max(abs(F.star—Fn))

}

p.value.sim <— mean(Dn.sim >= Dn)

#Bootstrap uncertainty

options (max. print=9999999)

m b=10000

alpha.ml.star=rep(NA,m b)

theta.ml.star=rep(NA,m b)

beta.ml.star=rep (NA,m b)

eta.ml.star=rep(NAm b)

tau.ml. star=rep (NA,m b)

gamma.ml. star—rep (NA,m b)

for (i in 1:m b)

{x.star=rSixPar (round(2*n) ,est.par.sp.c)

x.star <— (x.star|x.star <= b])|1l:n]

b <— 4eb6

par—optim(c(log(est.par.sp|[1:5]),—log(est.par.sp[6])—
log(l1—1/est .par.sp|6])),mlsixpar.c,z=x.star ,b=b)$par

alpha.ml.star|i|=exp(par|1])

theta.ml.star|i]=exp(par|2])

beta.ml.star |[i|=exp(par|3])

eta.ml.star|[i]=exp(par|[4])

tau.ml.star[i]=exp(par|5])

gamma.ml.star [i|=1/exp(par|6])+1

print (c(alpha.ml.star|[i],theta.ml.star[i],beta.ml.star |
i],eta.ml.star|[i],tau.ml.star|i], gamma.ml.star|[i]))

}

#Confidence intervals

qalp =sort(alpha.ml.star)
c(qalp|0.05+m b|,qalp|[0.95%m b])
qthet =sort(theta.ml.star)
c(qthet[0.05%m b|,qthet[0.95%m b])
qbet =sort(beta.ml.star)
c(gqbet[0.05%m b],gbet[0.95%m b])
qeta =sort(eta.ml.star)
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c(qgeta0.05%m b],qeta0.95%m b])
qtau =sort(tau.ml.star)
c(qtau[0.05%m b],qtau[0.95%m b])

qgam =sort (gamma.ml. star )
c(qgam|[0.05+m b]|,qgam|[0.95%m b])

#Reserve

m—=100000

mb=1000

n=length (z)
nb=length (zc)

N—nb-+n

mu. hat=0.03
beta.hat=betaexp
eps=0.01

eps2—=0.005

A=N/mu. hat

J=30000

T=1

b=4e6

p=nb/N

qeps . star=rep (NA,mb)
geps . star2=rep (NA,mb)
beta.ml. star=rep (NA, mb)
avec=c ()

bvec=c ()

mu. star=rep (NA,mb)

for (i in 1:mb)
{ N.star= rpois(1,Asmu.hat)
mu. star|i] <— N.star/A

z.star=rSixPar (round(2*n) ,est.par.sp.c)
z.star <— (z.star|z.star <— b|)[1l:n]

b <— 4e6

par—optim(c(log(est.par.sp[1:5]),—log(est.par.sp[6])—
log(1—1/est.par.sp[6])),mlsixpar.c,z=z.star ,b=b)$par

alpha.ml.star|[i|=exp(par|1])
theta.ml.star |[i|—=exp(par|[2])
beta.ml.star |[i|=exp(par|3])
eta.ml.star|i]|=exp(par[4])
tau.ml.star |i|=exp(par|5])
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gamma. ml.star[i]=1/exp(par[6])+1

z.star.b = beta.bx(runif(nb)=*x(—1/alpha.b)—1)

est.pa <— optim(log(beta.b) mlpareto,method="BFGS" ,z=z.
star.b)

bvec|[i] <— exp(est.pa$par)

avec|i] <— 1/mean(log(l+z.star.b/bvec|i]))

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J«mu.star [i]|*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mcstar — N.star.gth

z.star.mestar=rSixPar (round (N. star.leqb*2) ,c(alpha.ml.
star|[i],theta.ml.star|[i]|,beta.ml.star[i]|,eta.ml.star
|[i],tau.ml.star|i|,gamma.ml.star]|i]))

z.star.mestar <— (z.star.mcstar|[z.star.mcstar <= b]) [1:
N.star.leqb ]

z.star . mcestar.b = bvec|i]|*(runif(N.star.gth)xx(—1/avec|
i])-1) + b
X|[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing = TRUE) )

X=matrix (X,m)

geps.star|i]=apply(X,2,sort) [mx(1—eps) |
qeps.star2 [i]=apply(X,2,sort) [mx(1—eps2) |
print (qeps.star|i])

print (qeps.star2[i])}

#density
plot (density (qeps.star) ,main="Density_of_simulated _99%_
reserve", xlab="Reserve" xlim=c(0e+8,2e¢+9),cex.axis

=1.2,cex.main=1.5, cex.lab=1.3)

axis(1l,at— 7.918¢+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v=7.918e+08,1ty = 3)

abline (v=q[0.05*mb]|)

abline (v=q[0.95+*mb])

plot (density (qeps.star2) ,main="Density_of_simulated_
99.5% _reserve" | xlab="Reserve" xlim=c(0e+8,2.5e+9),
ylim=c (0,4e—09),cex.axis=1.2,cex.main=1.5, cex.lab
=1.3)
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axis(1,at= 8.519e¢+08,expression (hat(epsilon)),cex.axis
=0.2)

abline (v=8.519e+08,1ty = 3)

abline (v=q1[0.05*mb])

abline (v=ql[0.95%mb])

q =sort(qgeps.star)

c(q[0.05%mb| ,q[0.95*mb])

ql =sort(qeps.star2)

c(ql[0.05%mb]|,ql1[0.95=*mb])

#Monte Carlo simulated reserve
options (max. print=999999)
m=100000

eps = 0.01

eps2 — 0.005

beta.hat—=est .par.exp.c

X=rep (NA m)

for (j in 1:m)

{N.star.mcstar = rpois(1,J*mu.hat*T)

N.star.gth = rbinom(1, N.star.mcstar, p)

N.star.leqb = N.star.mecstar — N.star.gth

z.star . mestar=rSixPar (round (N. star.leqb*2)  est.par.sp.c
)

z.star.mestar <— (z.star.mcstar|z.star.mcstar <= b]) [1:
N.star.leqb |

z.star . mcstar.b = beta.bx(runif (N.star.gth)*x(—1/alpha.
b)—1) + b

X[j] = sum(z.star.mcstar) + sum(z.star.mcstar.b)}

print (sort (X, decreasing — TRUE))
X=matrix (X,m)

qeps . star=apply (X,2 ,sort) [mx(1—eps) |
qeps . star2=apply (X,2,sort) [mx(1—eps2) |

print (qeps.star)
print (qeps.star2)

147



