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Abstract. We consider a scalar conservation law with zero-flux boundary conditions imposed

on the boundary of a rectangular multidimensional domain. We study monotone schemes applied

to this problem. For the Godunov version of the scheme, we simply set the boundary flux
equal to zero. For other monotone schemes, we additionally apply a simple modification to the

numerical flux. We show that the approximate solutions produced by these schemes converge

to the unique entropy solution, in the sense of [7], of the conservation law. Our convergence
result relies on a BV bound on the approximate numerical solution. In addition, we show that

a certain functional that is closely related to the total variation is nonincreasing from one time
level to the next. We extend our scheme to handle degenerate convection-diffusion equations,

and for the one-dimensional case we prove convergence to the unique entropy solution.

1. Introduction

We are interested in an initial-boundary value problem of the form
ut +∇ · f(u) := ut +

d∑
i=1

fi(u)xi
= 0, (x1, . . . , xd) ∈ Ω, t ∈ (0, T ),

f(u(x, t)) · ν = 0 a.e. on ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

Here Ω = Πd
i=1(0, ai) is an open rectangular region in Rd, and ν is the a.e. defined outward unit

normal vector to the spatial region Ω. We assume the flux functions u 7→ fi(u) are Lipschitz-
continuous and satisfy fi(0) = fi(1) = 0, fi(u) ≥ 0 for u ∈ [0, 1]. We assume that the initial
function u0 satisfies

u0 ∈ L1(Ω) ∩ BV(Ω); u0(x) ∈ [0, 1] ∀x ∈ Ω.

The well-posedness of the Cauchy problem corresponding to (1.1) was established by Kružkov
[19]. The Dirichlet problem, where the conserved quantity u is specified on the spatial boundary,
has also been well understood for a long time [4]. On the other hand, the study of problem (1.1),
which specifies zero flux through the spatial boundary, did not begin until more recently.

Problems like (1.1) occur in several applications, including porous media flow, sedimentation
processes, and road traffic. For example, batch or continuous sedimentation processes are utilized
in many industrial applications in which a solid-fluid suspension is separated into its solid and
fluid components under the influence of gravity. Relevant models often give rise to hyperbolic (or
degenerate parabolic) equations with the zero flux (homogeneous Neumann) boundary condition.
For examples of such applications in the one-dimensional setting, see, e.g., [5, 8, 10].

Karlsen, Lie, and Risebro [18] proposed a front tracking algorithm for producing approximate
solutions to (1.1). For the one-dimensional case, they proved that the front tracking approxi-
mations converge to a unique weak solution. Their convergence proof relied on a total variation
bound. They also proposed a front tracking algorithm for the multidimensional version of the
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problem, using dimensional splitting. They did not prove convergence of their multidimensional
scheme, the main obstacle being the lack of a total variation bound. The authors of [7] studied
the multidimensional version of the problem, allowing for a fairly general boundary (specifically, a
regular deformable Lipschitz boundary). They also proposed a definition of L∞ entropy solution,
which we have adopted below for the special case of a rectangular boundary. Bürger, Frid and
Karlsen considered a sequence of regularized parabolic problems, and proved convergence to a
unique entropy solution, using the compactness result of [20]. In both [18] and [7], the authors
mentioned the seeming lack of a BV bound in the multidimensional case. A significant extension
of the results in [7] to general boundary value problems can be found in Andreianov and Sbihi [3].
These authors consider conservation laws with a general dissipative boundary condition, which in-
cludes as particular cases the Dirichlet, Neumann (flux), Robin, and obstacle boundary conditions.
Well-posedness results for degenerate parabolic problems have been provided by Andreianov and
Gazibo [1, 2].

For the Cauchy problem, the theory of monotone schemes has been well established for a long
time [11, 15, 21]. For the Cauchy problem again, but with a degenerate diffusion term included,
the theory of monotone schemes was addressed more recently [13].

To our knowledge, there are no previous published results on the subject of convergence of
finite difference schemes for the zero-flux boundary problem (1.1), even for the important one-
dimensional case. However, there is a recent convergence result for an implicit finite volume
method for degenerate parabolic equations (with zero flux condition), due to Andreianov and
Gazibo [2]. The convergence proof in [2] is rather involved, relying on sophisticated energy (weak
BV) estimates and nonlinear weak convergence techniques. Our proof, on the other hand, is
short and elementary, relying on BV estimates obtained through a slight modification of the total
variation functional (the only intricate trick involved).

Compared to references [18] and [7], we have added the hypothesis fi(u) ≥ 0, which is crucial
to our total variation bound. This is an entirely natural assumption for applications such as
sedimentation in closed vessels, traffic flow, and certain two-phase porous media flow problems.
We study monotone schemes as applied to (1.1). Away from the boundary, the schemes are
standard as in [11, 15, 21]. We handle the boundary condition in the obvious way, setting the
numerical flux that is normal to the boundary equal to zero. For schemes other than the Godunov
version, we additionally modify the numerical flux slightly, in order keep the flux nonnegative.
For the Godunov version, this modification is not required. In any case, the result is a very easily
implemented class of numerical schemes.

We prove that the schemes mentioned above produce approximate solutions that converge to the
unique entropy solution in the sense of [7]. As part of the convergence proof, we establish a bound
on the total variation of the approximate solutions. In fact we prove that a certain functional,
denoted TV∗, which is closely related to the total variation, is nonincreasing from one time level
to the next. Although the scheme is formally first order accurate (as are all monotone schemes),
it is potentially a starting point for higher order schemes. In particular, a design goal would be
to achieve second (or higher) order formal accuracy while maintaining the property that TV∗ is
nonincreasing. We extend our scheme to handle the more general case of a degenerate convection-
diffusion equation. We obtain some partial results in that direction, namely that the total variation
bound still holds for the extended scheme, and that the extended scheme satisfies a discrete entropy
inequality consistent with the ones found in [1] and [14]. For the one-dimensional version of the
extended scheme, we prove convergence to the unique entropy solution. The analogous result for
the multidimensional problem remains open, the main difficulty being the lack of an existence
result for the trace of the total flux along the spatial boundary.

The remaining part of this paper is organized as follows: In Section 2 we recall the notion of
entropy solution. The difference scheme is defined in Section 3, and analyzed in Section 4. A few
one- and two-dimensional numerical examples are presented in Section 5. In Section 6 we briefly
discuss how the scheme can be modified to handle degenerate convection-diffusion equations.
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2. Notion of solution

In the sequel, we mostly restrict the presentation to d = 2, and use the notation x = x1, y = x2,
f1 = f , f2 = g. The corresponding definitions and results will be clear from this case. Let

QT := Ω× (0, T ), Q
T

:= Ω× [0, T ), ΠT := Rd × (0, T ), ΠT := Rd × [0, T ),

and denote by C∞0 (QT ) the set of all infinitely smooth functions on QT with compact support.
The space of test functions C∞0 (ΠT ) is defined analogously.

We will use the following definition of entropy solution, taken from [7] and here adapted to the
case of a two-dimensional rectangular domain:

Definition 2.1. A function u ∈ L∞(QT ) is called an entropy solution of the initial-boundary
value problem (1.1) if the following conditions are satisfied:

(1) For all κ ∈ R and all φ ∈ C∞0 (QT ), φ ≥ 0, the following entropy inequality holds:∫ T

0

∫
Ω

{|u− κ|φt + sign(u− κ) (f(u)− f(κ))φx + sign(u− κ) (g(u)− g(κ))φy} dx dy dt ≥ 0.

(2.1)

(2) The initial condition is satisfied as a limit in the following L1 sense:

ess lim
t→0+

∫
Ω

|u(x, y, t)− u0(x, y)| dx dy = 0. (2.2)

(3) The boundary condition is satisfied in the following pointwise sense:(
f(uτ ), g(uτ )

)
· ν = 0 a.e. on ∂Ω× (0, T ), (2.3)

where uτ is the strong trace of u.

Remark 2.1. Taking κ = 0, κ = 1 in the entropy inequality (2.1), the result is∫ T

0

∫
Ω

{uφt + f(u)φx + g(u)φy} dx dy dt = 0,

meaning that u is a weak solution of the conservation law ut + f(u)x + g(u)y = 0 in QT .

In view of Definition 2.1, we will need to know that the strong boundary trace uτ exist. For this
purpose, we could adopt (the two-dimensional version of) the genuinely nonlinearity condition of
[20]. In the present paper, however, we will manage to construct solutions u with bounded total
variation, and with u ∈ BV(QT ) the strong trace uτ is known to exist [12].

The following is an equivalent definition of entropy solutions [7].

Definition 2.2. A function u ∈ L∞(QT ) is called an entropy solution of the initial-boundary
value problem (1.1) if the following entropy inequality holds ∀κ ∈ R, ∀φ ∈ C∞c (ΠT ), φ ≥ 0:∫ T

0

∫
Ω

{|u− κ|φt + sign(u− κ) (f(u)− f(κ))φx + sign(u− κ) (g(u)− g(κ))φy} dx dy dt

+

∫
Ω

|u0 − κ|φ(x, y, 0) dx dy +

∫ T

0

∫
∂Ω

sign(uτ − κ)(f(κ), g(κ)) · ν φ dHN−1 dt ≥ 0,

where uτ is the trace of u.

Entropy solutions are unique. More precisely,

Theorem 2.1 ([7, Theorem 3.]). Suppose that u and v are entropy solutions of (1.1) with initial
conditions u|t=0 = u0(x), v|t=0 = v0(x). Assume that u0, v0 ∈ L∞(Ω). Then,∫

Ω

|u(x, t)− v(x, t)| dx ≤
∫

Ω

|u0(x)− v0(x)| dx.

In particular, there is at most one entropy solution to the zero flux problem (1.1).
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3. Difference schemes

We begin by discretizing Ω. For positive integers J and K, define the spatial mesh sizes
∆x = a1/J and ∆y = a2/K. Let ZJ = {1, . . . , J}, ZK = {1, . . . ,K}. Define the grid points

xj = (j − 1/2)∆x, yk = (k − 1/2)∆y, j ∈ ZJ , k ∈ ZK . (3.1)

We will sometimes use the notation

xj± 1
2

= xj ±∆x/2, yk± 1
2

= yk ±∆y/2.

With this setup, the spatial boundaries coincide with

0 = x 1
2
, a1 = xJ+ 1

2
, 0 = y 1

2
, a2 = yK+ 1

2
.

We define intervals Ixj = [xj− 1
2
, xj+ 1

2
), Iyk = [yk− 1

2
, yk+ 1

2
). Similarly, we select a time increment

∆t > 0 and discretize the time interval [0, T ]: tn = n∆t for n = 0, . . . , N , where N = bT/∆tc,
resulting in the time strips

In = [tn, tn+1).

Let χj(x), χk(y), χn(t) be the characteristic functions for the intervals Ixj , Iyk , In respectively.
Define χnj,k(x, y, t) = χj(x)χk(y)χn(t) to be the characteristic function for the rectangle

Rnj,k = Ixj × I
y
k × I

n.

We will use Unj,k to denote the finite difference approximation of u(xj , yk, t
n). We discretize the

initial data u0(x, y) via

U0
j,k =

1

∆x∆y

∫
Ixj

∫
Iyk

u0(x, y) dx dy. (3.2)

The difference solution
{
Unj,k

}
is extended to all of QT by defining

u∆(x, t) =

N∑
n=0

K∑
k=1

J∑
j=1

χnj,k(x, y, t)Unj,k, (x, y, t) ∈ QT , (3.3)

where ∆ = (∆x,∆y,∆t).
Let f̄(v, u) and ḡ(v, u) denote two-point numerical fluxes that are consistent with f(u) and g(u).

With our notation, the first (second) argument denotes the right (left) state. Recall that a two
point flux q̄(v, u) is consistent with q(u) if q̄(u, u) = q(u). The numerical flux q̄(v, u) is monotone
if it is nonincreasing with respect to its first argument, nondecreasing with respect to its second
argument. We will assume that the numerical fluxes f̄(v, u) and ḡ(v, u) are monotone, and also
Lipschitz continuous with respect to both variables. Some of the most commonly encountered
two-point monotone fluxes are the Godunov flux:

q̄(v, u) =

{
minw∈[u,v] q(w), u ≤ v,
maxw∈[v,u] q(w), u > v,

the Lax-Friedrichs flux:

q̄(v, u) =
1

2
(q(u) + q(v))− α

2λ
(v − u) , α ∈ (0, 1],

and the Engquist-Osher flux:

q̄(v, u) =
1

2
(q(u) + q(v))− 1

2

∫ v

u

|q′(w)| dw.

If the flux has the form q(u) = uw(u), where u 7→ w(u) is nonnegative and nonincreasing on [0, 1],
the Hilleges-Weidlich flux [16, 9] is also a possibility:

q̄(v, u) = uw(v).

We will employ the following modified flux

q̂(v, u) = max (0, q(v, u)) . (3.4)
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It is readily verified that q̂ is monotone, Lipschitz continuous (with Lipschitz constants not ex-
ceeding those of q̄), and consistent with q. Note that for the special cases where q̄ is the Godunov
flux or the Hilleges-Weidlich flux, q̂ = q̄.

To simplify the presentation, we use ∆x
+ and ∆x

− to designate the difference operators in the x
direction, e.g.,

∆x
+U

n
j,k = Unj+1,k − Unj,k = ∆x

−U
n
j+1,k,

and ∆y
+ and ∆y

− are defined similarly.
With λx(∆) = ∆t/∆x, λy(∆) = ∆t/∆y, the algorithm takes the following (conservation) form

V n+1
j,k = Unj,k − 2λx∆x

−f̂(Unj+1,k, U
n
j,k), 2 ≤ j ≤ J − 1, 1 ≤ k ≤ K,

V n+1
1,k = Un1,k − 2λxf̂(Un2,k, U

n
1,k), 1 ≤ k ≤ K,

V n+1
J,k = UnJ,k + 2λxf̂(UnJ,k, U

n
J−1,k), 1 ≤ k ≤ K.

(3.5)


Wn+1
j,k = Unj,k − 2λy∆y

−ĝ(Unj,k+1, U
n
j,k), 2 ≤ k ≤ K − 1, 1 ≤ j ≤ J,

Wn+1
j,1 = Unj,k − 2λy ĝ(Unj,2, U

n
j,1), 1 ≤ j ≤ J,

Wn+1
j,K = Unj,k + 2λy ĝ(Unj,K , U

n
j,K−1), 1 ≤ j ≤ J.

(3.6)

Un+1
j,k = (1/2)V n+1

j,k + (1/2)Wn+1
j,k . (3.7)

We will refer to (3.5) as the x portion of the scheme, and (3.6) as the y portion. It is clear
that if we fix a single k ∈ ZK in the x portion, or if we fix j ∈ ZJ in the y portion, we get a
one-dimensional scheme for ut + f(u)x = 0 in the first case, or ut + g(u)y = 0 in the second case.

Remark 3.1. Instead of combining the x and y portions of the scheme via (3.7), we could also
combine them via dimensional splitting. All of the results of this paper would remain true, and
in fact the CFL condition below could be relaxed, resulting in twice the allowable time step ∆t.

Remark 3.2. When (xj , yk) and its neighboring gridpoints are away from the boundary of Ω,
the marching formulas (3.5), (3.6), (3.7) result in

Un+1
j,k = Unj,k − λx∆x

−f̂(Unj+1,k, U
n
j,k)− λy∆y

−ĝ(Unj,k+1, U
n
j,k), (3.8)

as one might anticipate. In fact, we can extend (3.8) to the entire compuational grid, i.e., (j, k) ∈
ZJ × ZK , if we agree that when a numerical flux involves an “out of bounds index ” (meaning
outside the range 1 ≤ j ≤ J, 1 ≤ k ≤ K), then we set that flux equal to zero. For example, we

define f̂(Un1,k, U
n
0,k) = 0.

Remark 3.3. In the important one-dimensional case, where the spatial domain is Ω = [0, a1],
and the conservation law is ut + f(u)x = 0, the scheme is simply

Un+1
j = Unj − λx∆x

−f̂(Unj+1, U
n
j ), 2 ≤ j ≤ J − 1,

Un+1
1 = Un1 − λxf̂(Un2 , U

n
1 ),

Un+1
J = UnJ + λxf̂(UnJ , U

n
J−1).

(3.9)

4. Convergence analysis

We will assume that the following CFL condition is satisfied:

For all u, v, z, w ∈ [0, 1],

− λx f̂(v, w)− f̂(u,w)

v − u
+ λx

f̂(z, v)− f̂(z, u)

v − u
≤ 1

2
,

− λy ĝ(v, w)− ĝ(u,w)

v − u
+ λy

ĝ(z, v)− ĝ(z, u)

v − u
≤ 1

2
.

(4.1)

For the Godunov, Engquist-Osher, and Lax-Friedrichs (with α = 1) fluxes we can substitute the
somewhat simpler CFL condition below, which implies (4.1):

λx max
w∈[0,1]

|f ′(w)| ≤ 1/2, λy max
w∈[0,1]

|g′(w)| ≤ 1/2. (4.2)



6 KARLSEN AND TOWERS

Having selected the spatial mesh sizes ∆x and ∆y, the CFL condition amounts to a restriction on
the size of the time step ∆t. For the convergence analysis that follows, we will assume that the
mesh size ∆→ 0 with the CFL condition (4.1) satisfied.

Remark 4.1. For the one-dimensional scheme (3.9), the 1/2 on the right sides of the CFL
conditions (4.1) and (4.2) can be replaced by 1.

We will employ the following two measures of total variation of the numerical solution Un:

TV(Un) :=

K∑
k=1

∆y

J−1∑
j=1

∣∣∆x
+U

n
j,k

∣∣+

J∑
j=1

∆x

K−1∑
k=1

∣∣∆y
+U

n
j,k

∣∣ ,
TV∗(Un) := TV(Un) +

K∑
k=1

∆y
(
Un1,k − UnJ,k

)
+

J∑
j=1

∆x
(
Unj,1 − Unj,K

)
.

The functional TV is the standard total variation for a grid function defined on a rectangle,
while TV∗ turns out to be a more convenient quantity for the zero-flux boundary value problem
of this paper. Note that if Unj,k ∈ [0, 1] for all (j, k) ∈ ZJ × ZK (which will be established in

Lemma 4.1 below) then,

TV(Un) ≤ TV∗(Un) + a1 + a2,

TV∗(Un) ≤ TV(Un) + a1 + a2.
(4.3)

It is readily verified that each of the x and y portions of the scheme, as well as the overall
scheme, preserves total mass:

∆x∆y

J∑
j=1

K∑
k=1

Un+1
j,k = ∆x∆y

J∑
j=1

K∑
k=1

V n+1
j,k = ∆x∆y

J∑
j=1

K∑
k=1

Wn+1
j,k = ∆x∆y

J∑
j=1

K∑
k=1

Unj,k. (4.4)

The one-dimensional versions of the x and y portions are also total mass preserving (in the one-
dimensional sense):

∆x

J∑
j=1

V n+1
j,k = ∆x

J∑
j=1

Unj,k, k ∈ ZK

∆y

K∑
k=1

Wn+1
j,k = ∆y

K∑
k=1

Unj,k, j ∈ ZJ .

(4.5)

Lemma 4.1. The scheme is monotone, meaning that

if Unj,k ≤ Ũnj,k for all (j, k) ∈ ZJ × ZK ,

then Un+1
j,k ≤ Ũ

n+1
j,k for all (j, k) ∈ ZJ × ZK .

(4.6)

In addition, the computed solution satisfies

Unj,k ∈ [0, 1], for all (j, k) ∈ ZJ × ZK , n = 0, 1, 2, . . . , N.

Proof. Since u0(x, y) ∈ [0, 1], due to (3.2) we will also have U0
j,k ∈ [0, 1], and thus the CFL

condition (4.1) will be satisfied when we compute V 1 and W 1. Consider the first equation in
(3.5). It follows from a standard calculation for one-dimensional monotone schemes that for
2 ≤ j ≤ J − 1, 1 ≤ k ≤ K, V 1

j,k is a nondecreasing function of U0
j−1,k, U0

j,k, U0
j+1,k. Now

consider the second and third equations of (3.5). Using the CFL condition again, along with the
monotonicity of the numerical flux, we find that V 1

1,k is a nondecreasing function of U0
1,k and U0

2,k,

and that V 1
J,k is a nondecreasing function of U0

J−1,k and U0
J,k. Thus the x-portion of the scheme

is monotone on the first time step, i.e.,

if U0
j,k ≤ Ũ0

j,k for all (j, k) ∈ ZJ × ZK then V 1
j,k ≤ Ṽ 1

j,k for all (j, k) ∈ ZJ × ZK ,
and by a similar argument, the analogous monotonicity property holds for the y-portion of the
scheme. Monotonicity of the overall scheme, (4.6), at least on the first time step, now follows from
from the observation that the averaging step (3.7) preserves monotonicity.
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Now let Zero (One) denote the grid function that is identically = 0 (identically = 1). Both of
these grid functions are fixed points of the scheme. The initial data satisfies

Zeroj,k ≤ U0
j,k ≤ Onej,k,

and since we have established (4.6) for the first time step, we have

Zeroj,k ≤ U1
j,k ≤ Onej,k.

Clearly, the foregoing argument can be repeated inductively, completing the proof. �

Lemma 4.2. We have the following time continuity property for the computed solution:

∆x∆y

J∑
j=1

K∑
k=1

∣∣∣Un+1
j,k − U

n
j,k

∣∣∣ ≤ B ·∆t,
where B is independent of ∆x, ∆y, ∆t.

Proof. The monotonicity of the scheme, along with the total mass preserving property (4.4), allows
us to apply the Crandall-Tartar lemma [17], which yields

∆x∆y

J∑
j=1

K∑
k=1

∣∣∣Un+1
j,k − U

n
j,k

∣∣∣ ≤ ∆x∆y

J∑
j=1

K∑
k=1

∣∣∣Unj,k − Un−1
j,k

∣∣∣ ≤ . . . ≤ ∆x∆y

J∑
j=1

K∑
k=1

∣∣U1
j,k − U0

j,k

∣∣ .
It remains to estimate this last sum. From (3.5), we have, for fixed k ∈ ZK ,

J∑
j=1

∣∣V 1
j,k − U0

j,,k

∣∣ ≤ 2λx
J−1∑
j=2

∣∣∣∆x
−f̂(U0

j+1,k, U
0
j,k)
∣∣∣+ 2λx

∣∣∣f̂(U0
2,k, U

0
1,k)
∣∣∣+ 2λx

∣∣∣f̂(U0
J,k, U

0
J−1,k)

∣∣∣
≤ 4λxLf̄

J−1∑
j=1

∣∣∆x
+U

0
j,k

∣∣+ 2λx ‖f(u0)‖∞ .

(4.7)

Here Lf̄ is a Lipschitz constant for the numerical flux f̄ (and thus also for f̂).
Multiplying (4.7) by ∆x∆y, and then summing over k, the result is

∆x∆y

K∑
k=1

J∑
j=1

∣∣V 1
j,k − U0

j,,k

∣∣ ≤ 4∆xλxLf̄

K∑
k=1

∆y

J−1∑
j=1

∣∣∆x
+U

0
j,k

∣∣+ 2a2∆xλx ‖f(u0)‖∞ . (4.8)

Replacing ∆xλx by ∆t, and recalling that u0 ∈ BV(Ω), u0(x, y) ∈ [0, 1] we have

∆x∆y

K∑
k=1

J∑
j=1

∣∣V 1
j,k − U0

j,,k

∣∣ ≤ B1 ·∆t.

A similar calculation starting from (3.6) gives

∆x∆y

J∑
j=1

K∑
k=1

∣∣W 1
j,k − U0

j,,k

∣∣ ≤ B2 ·∆t. (4.9)

Since ∣∣U1
j,k − U0

j,,k

∣∣ ≤ (1/2)
∣∣V 1
j,k − U0

j,,k

∣∣+ (1/2)
∣∣W 1

j,k − U0
j,,k

∣∣ ,
we can combine (4.8) and (4.9):

∆x∆y

K∑
k=1

J∑
j=1

∣∣U1
j,k − U0

j,,k

∣∣ ≤ 1

2
(B1 +B2) ∆t,

thus completing the proof. �
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Lemma 4.3. The functional TV∗ is nonincreasing:

TV∗(Un+1) ≤ TV∗(Un), n = 0, 1, 2, . . . , N,

and we have the following bound on the total variation:

TV(Un) ≤ TV(u0) + 2a1 + 2a2, n = 1, 2, . . . , N.

Proof. Consider the x portion of the scheme (3.5) for a fixed k ∈ ZK . Since the index k is fixed for
the moment, we simplify the notation by temporarily omitting it. This one-dimensional x-portion
of the scheme (3.5) can be written in incremental form:

V n+1
j = Unj + Cnj+ 1

2
∆x

+U
n
j −Dn

j− 1
2
∆x
−U

n
j , 2 ≤ j ≤ J − 1,

V n+1
1 = Un1 − 2λxf̂(Un2 , U

n
1 ),

V n+1
J = UnJ + 2λxf̂(UnJ , U

n
J−1),

(4.10)

where

Cnj+ 1
2

= −2λx
f̂(Unj+1, U

n
j )− f(Unj )

∆x
+U

n
j

, Dn
j− 1

2
= 2λx

f(Unj )− f̂(Unj , U
n
j−1)

∆x
−U

n
j

.

Due the fact that the numerical flux f̂ is monotone, and to the CFL condition (4.1), the incremental
coefficients satisfy

Cnj+ 1
2
≥ 0, Dn

j+ 1
2
≥ 0, Cnj+ 1

2
+Dn

j+ 1
2
≤ 1. (4.11)

An application of ∆x
+ to (4.10) results in

∆x
+V

n+1
j =

(
1− Cnj+ 1

2
−Dn

j+ 1
2

)
∆x

+U
n
j + Cnj+ 3

2
∆x

+U
n
j+1 +Dn

j− 1
2
∆x

+U
n
j−1, 2 ≤ j ≤ J − 2,

∆x
+V

n+1
1 =

(
1−Dn

3
2

)
∆x

+U
n
1 + Cn5

2
∆x

+U
n
2 + 2λxf̂(Un2 , U

n
1 ),

∆x
+V

n+1
J−1 =

(
1− CnJ− 1

2

)
∆x

+U
n
J−1 +Dn

J− 3
2
∆x

+U
n
J−2 + 2λxf̂(UnJ , U

n
J−1).

(4.12)

Due to (4.11), and the fact that f̂ ≥ 0, it follows from (4.12) that∣∣∆x
+V

n+1
j

∣∣ ≤ (1− Cnj+ 1
2
−Dn

j+ 1
2

) ∣∣∆x
+U

n
j

∣∣
+ Cnj+ 3

2

∣∣∆x
+U

n
j+1

∣∣+Dn
j− 1

2

∣∣∆x
+U

n
j−1

∣∣ , 1 ≤ j ≤ J − 2,∣∣∆x
+V

n+1
1

∣∣ ≤ (1−Dn
3
2
)
∣∣∆x

+U
n
1

∣∣+ Cn5
2

∣∣∆x
+U

n
2

∣∣+ 2λxf̂(Un2 , U
n
1 ),∣∣∆x

+V
n+1
J−1

∣∣ ≤ (1− CnJ− 1
2
)
∣∣∆x

+U
n
J−1

∣∣+Dn
J− 3

2

∣∣∆x
+U

n
J−2

∣∣+ 2λxf̂(UnJ , U
n
J−1).

Summing over 1 ≤ j ≤ J − 1, and then canceling the telescoping terms, we get

J−1∑
j=1

∣∣∆x
+V

n+1
j

∣∣ ≤ J−1∑
j=1

∣∣∆x
+U

n
j

∣∣+ 2λxf̂(Un2 , U
n
1 )) + 2λxf̂(UnJ , U

n
J−1).

After substituting

2λxf̂(Un2 , U
n
1 )) = Un1 − V n+1

1 , 2λxf̂(UnJ , U
n
J−1) = V n+1

J − UnJ ,
and then rearranging, the result is

J−1∑
j=1

∣∣∆x
+V

n+1
j

∣∣+ V n+1
1 − V n+1

J ≤
J−1∑
j=1

∣∣∆x
+U

n
j

∣∣+ Un1 − UnJ . (4.13)

At this point, we reinstate the k part of the subscript. Multiplying (4.13) by ∆y, and then
summing over k, the result is

K∑
k=1

∆y

J−1∑
j=1

∣∣∣∆x
+V

n+1
j,k

∣∣∣+ V n+1
1,k − V

n+1
J,k

 ≤ K∑
k=1

∆y

J−1∑
j=1

∣∣∆x
+U

n
j,k

∣∣+ Un1,k − UnJ,k

 . (4.14)

Still focusing on the x portion of the scheme, recall the first equation of (4.5), which states that
the one-dimensional version (which results when k is fixed) preserves total mass. Also, the proof
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of Lemma 4.1 reveals that the one-dimensional version of the x portion is monotone. Thus, we
can apply the Crandall-Tartar lemma [17]:

∆x

J∑
j=1

∣∣∣V n+1
j,k+1 − V

n+1
j,k

∣∣∣ ≤ ∆x

J∑
j=1

∣∣Unj,k+1 − Unj,k
∣∣ , k = 1, . . . ,K − 1. (4.15)

Applying the first equation of (4.5), we find that

J∑
j=1

∆xV n+1
j,1 =

J∑
j=1

∆xUnj,1,

J∑
j=1

∆xV n+1
j,K =

J∑
j=1

∆xUnj,K ,

which we combine as follows:

J∑
j=1

∆x
(
V n+1
j,1 − V n+1

j,K

)
=

J∑
j=1

∆x
(
Unj,1 − Unj,K

)
. (4.16)

Summing (4.15) over k, and then adding (4.16), we get

K−1∑
k=1

∆x

J∑
j=1

∣∣∣V n+1
j,k+1 − V

n+1
j,k

∣∣∣+

J∑
j=1

∆x
(
V n+1
j,1 − V n+1

j,K

)

≤
K−1∑
k=1

∆x

J∑
j=1

∣∣Unj,k+1 − Unj,k
∣∣+

J∑
j=1

∆x
(
Unj,1 − Unj,K

)
.

(4.17)

Adding (4.14) to (4.17), we arrive at

TV ∗(V n+1) ≤ TV ∗(Un).

The same type of calculation, this time applied to the y portion (3.6), yields

TV ∗(Wn+1) ≤ TV ∗(Un).

It is readily verified that the TV∗ functional is convex, and so

TV ∗(Un+1) = TV ∗
(
(1/2)V n+1 + (1/2)Wn+1

)
≤ (1/2)TV∗(V n+1) + (1/2)TV∗(Wn+1)

≤ TV ∗(Un).

By induction on n, we thus have that for all n = 0, 1, . . . , N ,

TV ∗(Un) ≤ TV∗(U0) ≤ TV(U0) + a1 + a2

≤ TV(u0) + a1 + a2.

Here we have used the second inequality of (4.3). Using the first inequality of (4.3), we have

TV(Un) ≤ TV(u0) + 2a1 + 2a2.

�

Lemmas 4.1, 4.2, and 4.3 give an L∞ bound, a bound on L1 time translates, and a spatial
variation bound. With these bounds, the following lemma results from a standard compactness
argument [11] and the Lax-Wendroff theorem.

Lemma 4.4. The sequence of approximations u∆ converges along a subsequence in L1(QT ) and
boundedly a.e. to a function u ∈ L1(QT )∩BV(QT ). The limit function u is a weak solution of the
conservation law ut + f(u)x + g(u)y = 0 in QT .

Remark 4.2. We will see below (Theorem 4.1) that the convergence of u∆ is actually not just
along a subsequence. The entire computed sequence converges.
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Figure 1. Extension of initial data from Ω to R2. With the data extended in
this way, the numerical fluxes evaluate to zero outside of Ω, due to the fact that

f̂(0, 0) = f̂(0, 1) = f̂(1, 1) = 0, and similarly for ĝ.

Next, we set out to verify that the limit u of the numerical scheme is an entropy solution in
the sense of Definition 2.1. We start by extending the initial data, and the scheme, to all of R2.
The spatial grid is extended in the obvious way, taking j ∈ Z, k ∈ Z in (3.1). The extended initial
data is denoted v0(x, y), and the extended numerical solution is denoted V nj,k. There are several
ways of extending the initial data that are suitable for our purposes; see Figure 1. For the sake of
concreteness, we extend u0 according to

v0(x, y) =



u0(x, y), (x, y) ∈ Ω

0, x ≤ 0

1, x ≥ 1

0, y ≤ 0, x ∈ (0, a1)

1, y ≥ 1, x ∈ (0, a1).

(4.18)

Referring to Figure 1, this corresponds to taking v0(x, y) = 0 in Ωcnw, and v0(x, y) = 1 in Ωcse.
The extended scheme is then exactly formula (3.8) of Remark 3.2, except that now we ignore
the requirement to set certain numerical fluxes equal to zero if they have indices that are out
of bounds. We define the discrete initial data V 0

j,k and the approximate solution v∆(x, y, t) by

extending the formulas (3.2) and (3.3) in the obvious way. In fact, based on (4.18), the discrete
version of v0 will be

V 0
j,k =



U0
j,k, (j, k) ∈ ZJ × Zk

0, j < 1

1, j > J

0, k < 1, 1 ≤ j ≤ J
1, k > K, 1 ≤ j ≤ J.

For the type of fluxes q(u) appearing in this paper, i.e., q(0) = q(1) = 0, q(u) ≥ 0, the modified
numerical flux has the following property for u, v ∈ [0, 1], which plays a crucial role in what follows:

q̂(v, 0) = 0, q̂(1, u) = 0. (4.19)
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To see this, note that by monotonicity and consistency we have

q̂(v, 0) ≤ q̂(0, 0) = 0,

q̂(1, u) ≤ q̂(1, 1) = 0.

Lemma 4.5. For mesh points (xj , yk) ∈ Ω (equivalently (j, k) ∈ ZJ×ZK), the extended numerical
solution agrees with the original numerical solution, i.e.,

V nj,k = Unj,k, (j, k) ∈ ZJ × ZK , n = 0, 1, 2, . . . , N. (4.20)

and thus v∆(x, y, t) = u∆(x, y, t) for (x, y) ∈ Ω.

Proof. Clearly, V 0
j,k = U0

j,k for (xj , yk) ∈ Ω. Given a grid point (xj , yk) we define its neighbors to

be the four grid points (xj±1, yk), (xj , yk±1). Due to the stencil of the scheme, it is clear that if
(xj , yk) ∈ Ω, and if all four of its neighbors are also in Ω then V 1

j,k = U1
j,k.

We wish to show that V 1
j,k = U1

j,k in the remaining cases also. Before proceeding, consider a

numerical flux q̂(v, u) where one or both of the arguments correspond to a point (xj , yk) /∈ Ω. Due
to the way that we extended the initial data, such a flux is of the form q̂(v, 0) or q̂(1, u) where
q = f or q = g. According to (4.19), each such numerical flux vanishes.

Now suppose that (xj , yk) ∈ Ω, but one or more of its neighbors lies outside of Ω. Then U1
j,k

is computed using (3.8), setting any numerical flux with an out of bounds index to zero. But
according to the observation above, the extended scheme will set those same numerical fluxes
equal to zero, and so we will have V 1

j,k = U1
j,k in this case also.

We claim that for gridpoints (xj , yk) /∈ Ω, we will also have V 1
j,k = V 0

j,k. All numerical fluxes

involved in this case have at least one argument corresponding to a point (xj , yk) /∈ Ω. All such
numerical fluxes vanish, and so V 1

j,k = V 0
j,k.

We have shown (4.20) holds for n = 1. It is clear that we can repeat this argument at the next
time level, completing the proof by induction on n. �

Recall the Kružkov entropy function |u− κ|, indexed by κ ∈ R, and the associated entropy
fluxes F (u) = sign(u−κ)(f(u)− f(κ)), G(u) = sign(u−κ)(g(u)− g(κ)). Following [11], we define
the numerical entropy fluxes:

F̂ (v, u) := f̂(v ∨ κ, u ∨ κ)− f̂(v ∧ κ, u ∧ κ),

Ĝ(v, u) := ĝ(v ∨ κ, u ∨ κ)− ĝ(v ∧ κ, u ∧ κ).
(4.21)

Here, and in what follows, we suppress the dependence on κ, in order to simplify the notation.
The numerical entropy fluxes F̂ and Ĝ are consistent with F and G, i.e., F̂ (u, u) = F (u) and

Ĝ(u, u) = G(u).

Lemma 4.6. For the extended scheme, we have the following discrete entropy inequalities (one
for each κ ∈ R):

V n+1
j,k ≤ V nj,k − λx∆x

−F̂ (V nj+1,k, V
n
j,k)− λy∆y

−Ĝ(V nj,k+1, V
n
j,k), (j, k) ∈ Z× Z. (4.22)

Proof. With the scheme extended in this way, the proof of this lemma is standard as in [11]. �

Lemma 4.7. The sequence of approximations v∆ converges along a subsequence in L1
loc(ΠT ) and

boundedly a.e. to a function v ∈ L1
loc(ΠT )∩BVloc(ΠT ). The limit function v is a weak solution of

the conservation law vt + f(v)x + g(v)y = 0 in ΠT .

Proof. By construction, V nj,k ∈ [0, 1]. Also by construction,

∆x∆y
∑
j∈Z

∑
k∈Z

∣∣∣V n+1
j,k − V nj,k

∣∣∣ = ∆x∆y

J∑
j=1

K∑
k=1

∣∣∣Un+1
j,k − U

n
j,k

∣∣∣ ≤ B ·∆t,
with the same constant B appearing in the statement of Lemma 4.2.

In addition, we claim that the spatial total variation of v∆ is locally bounded. Let K be a
compact subset of R2. Fix a time level tn. Let v∆(tn) := v∆(·, ·, tn). Then

TVK(v∆(tn)) ≤ TVK∩Ω(v∆(tn)) + TVK∩Ωc(v∆(tn)) + 2a1 + 2a2,
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where Ωc denotes the complement of Ω. Since v∆ = u∆ for (x, y) ∈ Ω, Lemma 4.3 provides a
uniform bound on TVK∩Ω(v∆(tn)). By construction, the function v∆(tn) is constant in K ∩ Ωc,
except for unit jumps along two half-lines. Thus TVK∩Ωc(v∆(tn)) is also uniformly bounded.

With these bounds, the proof is concluded exactly like the proof of Lemma 4.4. �

By extracting further subsequences, we can assume in what follows that u∆ → u and v∆ → v
along a common subsequence, so that we will have v|QT

= u.

Lemma 4.8. The limit solution u is an entropy solution in the sense of Definition 2.1.

Proof. Starting from (4.22), by a standard Lax-Wendroff type calculation (see eg., [11]), we find
that for any κ ∈ R and any test function φ ∈ C∞0 (ΠT ) with φ ≥ 0,∫ T

0

∫
R2

{|v − κ|φt + sign(v − κ) (f(v)− f(κ))φx + sign(v − κ) (g(v)− g(κ))φy} dx dy dt

+

∫ T

0

∫
R2

|v0(x, y)− κ|φ(x, y, 0) dx dy ≥ 0.

(4.23)

With the observation that C∞0 (QT ) ⊂ C∞0 (ΠT ), and that v = u on QT , the inequality (4.23)
implies that the entropy inequality (2.1) of Definition (2.1) is satisfied for our limit solution u.
Moreover, the initial condition (2.2) follows easily from (4.23) and the BV regularity of u.

It remains to prove the limit satisfies the boundary condition (2.3). Starting from the extended
difference scheme, again by a standard Lax-Wendroff type computation, we conclude that for any
test function φ ∈ C∞0 (ΠT ),∫ T

0

∫
R2

{vφt + f(v)φx + g(v)φy} dx dy dt = 0. (4.24)

Since v ∈ BV(QT ), which ensures the existence of a strong trace vτ on ∂Ω× (0, T ), it follows from
(4.24) that (

f(vτ ), g(vτ )
)
· ν = 0 a.e. on ∂Ω× (0, T ).

Clearly, u = v on QT implies that vτ = uτ , and hence the boundary condition (2.3) follows. �

Theorem 4.1. Suppose the flux functions f, g are Lipschitz-continuous and satisfy, for h = f, g,
h(0) = h(1) = 0, h ≥ 0 on [0, 1]. Moreover, suppose u0(x) ∈ [0, 1], and that u0 ∈ BV(Ω). Then
the approximate solutions

{
u∆
}

∆>0
, defined by (3.3), (3.5), (3.6), and (3.7), converge in L1(QT )

to the unique entropy solution u of the initial-boundary value problem
ut + f(u)x + g(u)y = 0 in QT ,(
f(u), g(u)

)
· ν = 0 on ∂Ω× (0, T ),

u = u0 on Ω× {t = 0},
(4.25)

where Ω ⊂ R2 is an open rectangular region.

Proof. By Lemma 4.4,
{
u∆
}

∆>0
converges along a subsequence. Recalling Lemma 4.8, the limit

u of any such convergent subsequence is an entropy solution in the sense of Definition 2.1. The
uniqueness claim follows from Theorem 2.1. Moreover, since entropy solutions are unique, the
convergence of u∆ is not just along a subsequence, but along the entire computed sequence. �

5. Numerical examples

Example 1. Figure 2 shows a one-dimensional example. The spatial domain is Ω = (0, 1), and
the flux is f(u) = u(1− u). The initial data is

u0(x) =

{
1, x ≤ 1/2,

0, x > 1/2.

We apply the one-dimensional version of the scheme, using the Godunov flux and the (modified)
Lax-Friedrichs flux, with α = 1. The mesh size is (∆x,∆t) = (.02, .015). The Lax-Friedrichs
approximation is more diffusive than the Godunov approximation, as expected. The solution
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Figure 2. Example 1. The solid line is the (modified) Lax-Friedrichs solution,
and the dashed line is the Godunov solution. Plot a) shows the development of
a rarefaction fan. In Plot b), the edges of the rarefaction fan have reached the
boundary, and shocks have formed. Plot c) shows the two shocks moving toward
each other. In Plot d), a single steady shock remains.

initially develops a (decreasing) rarefaction fan. When the edges of the rarefaction reach the
boundaries, the solution at the left (right) boundary begins to decrease (increase) as a function
of time, and we get a pair of (increasing) shocks, one moving right, the other moving left. These
shocks are visible in panel c) of Figure 2. Eventually, the two shocks meet, the rarefaction is
annihilated by the shocks, and only a single steady shock remains.

This problem corresponds to a simple traffic flow model, with cars traveling from left to right.
The zero flux boundary conditions model a pair of red lights, so that cars can neither enter nor
leave this road segment. We start with all of the cars on the left half of the road, and none on
the right half. With all of the cars moving to the right, we end up with the situation reversed.
The steady shock that eventually develops models a traffic jam, with no movement of cars, as one
might expect.

Example 2. Figure 3 shows a two-dimensional example using the Godunov flux. The spatial
domain is Ω = (0, 1)×(0, 1), and we take f(u) = g(u) = u(1−u). Figure 4 shows the same problem,
but using the modified Lax-Friedrichs flux. The mesh size is (∆x,∆y,∆t) = (.02, .02, .009). The
initial data is

u0(x) =

{
cos(.5πr), .5πr ≤ .75,

0, .5πr > .75,

where r =
√

1.5(x− .25)2 + .6(y − .25)2. We start with all of the mass concentrated near the
(0, 0) corner of Ω. With increasing time the mass is convected toward the (1, 1) corner, eventually
reaching a steady state. The steady state solution features an increasing jump from u = 0 to
u = 1. As expected the Lax-Friedrichs solution is more diffusive than the Godunov solution.
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Figure 3. Example 2. Godunov flux. Solution shown in plot d) is essentially
steady state.

6. Degenerate convection-diffusion equations

Closely related to (1.1) is the zero-flux initial boundary value problem for a degenerate convection-
diffusion equation, which we state as follows:

ut +∇ · f(u)−∆A(u) = 0, (x1, . . . , xd) ∈ Ω, t ∈ (0, T ),

(f(u(x, t))−∇A(u)) · ν = 0 a.e. on ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(6.1)

where the convective flux f is as before. Regarding the diffusion function A, we assume that it
belongs to Lip([0, 1]), with Lipschitz constant ‖A′‖, and that the following degenerate parabolicity
condition holds:

A(·) is nondecreasing with A(0) = 0.

We allow for the situation where A degenerates (i.e., is constant) on a finite set of disjoint intervals,
that is,

A′(w) = 0, ∀w ∈
M⋃
i=1

[αi, βi],

where αi < βi, i = 1, . . . ,M , M ≥ 1. With this condition, the problem is said to be strongly
degenerate. A significant consequence of strong degeneracy is that solutions are not generally
continuous, and there is no uniqueness without an additional entropy condition. An important
application where the problem (6.1) arises is pressure filtration of a flocculated suspension [6].

In [1] Andreianov and Gazibo define a notion of entropy solution for (6.1), and prove existence
of entropy solutions using a vanishing viscosity approximation. They prove uniqueness of entropy
solutions in the one-dimensional case. In [14] Gazibo proposes and analyzes an implicit finite
volume scheme for (6.1). Andreianov and Gazibo prove convergence of that scheme to an entropy
solution in [2, 14].

The degenerate parabolic problem (6.1) exhibits some difficulties that are not present in the
purely hyperbolic problem (1.1). For the purely hyperbolic problem, our spatial variation bound
guarantees strong traces of u and therefore also strong traces of the normal component of the flux
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Figure 4. Example 2. Lax-Friedrichs flux. Solution shown in plot d) is essen-
tially steady state.

(f(u), g(u)) · ν. For the degenerate parabolic problem, one would like to have strong traces of
the total flux (f(u)− A(u)x, g(u)− A(u)y) · ν. This would follow from a spatial variation bound
for A(u)x and A(u)y, but such a bound is not available. However, by specializing to the one-
dimensional problem, we obtain a spatial variation bound for the total flux f(u)−A(u)x, and so
we do have the required strong trace in this important case, see Remark 6.4 below.

In what follows, we extend our scheme to handle the problem (6.1), and discuss some results
that are straightforward extensions of those in Section 4. Due to the difficulties mentioned in the
previous paragraph, our results for the multidimensional problem are less complete than for the
purely hyperbolic problem. We then focus on the one-dimensional problem, and prove convergence
to the unique entropy solution.

The difference scheme discussed in the previous sections is easily modified to incorporate the
diffusion term. With µx(∆) = ∆t/∆x2, µy(∆) = ∆t/∆y2, the difference equations (3.5), (3.6),
(3.7) become:

V n+1
j,k = Unj,k − 2λx∆x

−f̂(Unj+1,k, U
n
j,k) + 2µx∆x

+∆x
−A

n
j,k, 2 ≤ j ≤ J − 1, 1 ≤ k ≤ K,

V n+1
1,k = Un1,k − 2λxf̂(Un2,k, U

n
1,k) + 2µx∆x

+A
n
1,k, 1 ≤ k ≤ K,

V n+1
J,k = UnJ,k + 2λxf̂(UnJ,k, U

n
J−1,k)− 2µx∆x

−A
n
J,k, 1 ≤ k ≤ K.

(6.2)


Wn+1
j,k = Unj,k − 2λy∆y

−ĝ(Unj,k+1, U
n
j,k) + 2µy∆y

+∆y
−A

n
j,k, 2 ≤ k ≤ K − 1, 1 ≤ j ≤ J,

Wn+1
j,1 = Unj,k − 2λy ĝ(Unj,2, U

n
j,1) + 2µy∆y

+A
n
j,1, 1 ≤ j ≤ J,

Wn+1
j,K = Unj,k + 2λy ĝ(Unj,K , U

n
j,K−1)− 2µy∆y

−A
n
j,K , 1 ≤ j ≤ J.

(6.3)
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Un+1
j,k = (1/2)V n+1

j,k + (1/2)Wn+1
j,k . (6.4)

Here we have used the notation Anj,k = A(Unj,k). The CFL condition (4.1) must be modified. It
becomes

For all u, v, z, w ∈ [0, 1],

− λx f̂(v, w)− f̂(u,w)

v − u
+ λx

f̂(z, v)− f̂(z, u)

v − u
+ 2µx

A(v)−A(u)

v − u
≤ 1

2
,

− λy ĝ(v, w)− ĝ(u,w)

v − u
+ λy

ĝ(z, v)− ĝ(z, u)

v − u
+ 2µy

A(v)−A(u)

v − u
≤ 1

2
.

(6.5)

Remark 6.1. The scheme (6.2), (6.3), (6.4) is essentially the explicit version of the implicit
finite volume scheme of references [2] and [14], in the special case where the control volumes
are rectangles arranged as a Cartesian mesh. We use the word “essentially” because of our flux
modification (3.4), which does not appear in [2, 14].

Proposition 6.1. Lemmas 4.1 and 4.3 remain valid for the approximate solutions Unj,k produced

by the modified scheme (6.2), (6.3), (6.4).

Proof. The proof of Lemma 4.1 requires only straightforward modifications. We simply mention
that the key new ingredients are the fact that A(·) is nondecreasing, and the CFL condition (6.5).

The proof of Lemma 4.3 is unchanged, except that one replaces the incremental coefficients
Cnj+ 1

2
, Dn

j+ 1
2

by

C̃nj+ 1
2

= Cnj+ 1
2

+ µx
∆x

+A
n
j

∆x
+U

n
j

, D̃n
j+ 1

2
= Dn

j+ 1
2

+ µx
∆x

+A
n
j

∆x
+U

n
j

.

We must check that

C̃nj+ 1
2
≥ 0, D̃n

j+ 1
2
≥ 0, C̃nj+ 1

2
+ D̃n

j+ 1
2
≤ 1,

but these inequalities follow from the assumption that A is nondecreasing, along with the CFL
condition (6.5).

�

Proposition 6.2. Recall the discrete entropy fluxes F̂ and Ĝ defined by (4.21). For every κ ∈ R,
we have the following discrete entropy inequality:∣∣∣Un+1

j,k − κ
∣∣∣ ≤ ∣∣Unj,k − κ∣∣−∆x

−R
n
j+ 1

2 ,k
−∆y

−S
n
j,k+ 1

2
, (6.6)

where

Rnj+ 1
2 ,k

=


λxF̂ (Unj+1,k, U

n
j,k)− µx∆x

+

∣∣∣Anj,k −A(κ)
∣∣∣ , 1 < j < J,

λxf(κ), j = 0,

−λxf(κ), j = J,

(6.7)

Snj,k+ 1
2

=


λyĜ(Unj,k+1, U

n
j,k)− µy∆y

+

∣∣∣Anj,k −A(κ)
∣∣∣ , 1 < k < K,

λyg(κ), k = 0,

−λyg(κ), k = K.

(6.8)

Proof. For a grid point (xj , yk) ∈ Ω that is away from ∂Ω, i.e., (xj±1, yk), (xj , yk±1) ∈ Ω, the proof
is a straightforward extension to two dimensions of Lemma 3.7 of [13], the main ingredient being
monotonicity.

Now consider a boundary grid point. For example, take the case of (x1, yk) ∈ Ω, where 2 ≤
k ≤ K − 1. Proceeding as in [13], one finds that∣∣∣Un+1

1,k − κ+ λxf(κ)
∣∣∣ ≤ ∣∣Un1,k − κ∣∣−Rn3

2 ,k
−∆y

−S
n
1,k+ 1

2
. (6.9)
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Recalling that f(κ) ≥ 0, it is easy to check that∣∣∣Un+1
1,k − κ+ λxf(κ)

∣∣∣ ≥ ∣∣∣Un+1
1,k − κ

∣∣∣+ λxsign(Un+1
1,k − κ)f(κ)

≥
∣∣∣Un+1

1,k − κ
∣∣∣− λxf(κ)

=
∣∣∣Un+1

1,k − κ
∣∣∣−Rn1

2 ,k
.

Inserting this last inequality into (6.9), we get the discrete entropy inequality (6.6).
The remaining boundary cases, i.e., j = J , k = 1, and k = K are handled in a similar manner.

We omit the details. �

Remark 6.2. From the proof above, it is evident that we could have alternatively defined the
boundary contributions as

Rn1
2 ,k

= −λxsign(Un+1
1,k − κ)f(κ), RnJ+ 1

2 ,k
= λxsign(Un+1

J,k − κ)f(κ),

Snj, 12
= −λysign(Un+1

j,1 − κ)g(κ), Snj,K+ 1
2

= λysign(Un+1
j,K − κ)g(κ).

(6.10)

The boundary terms defined by (6.7) and (6.8) are consistent with the discrete entropy inequality of
[2], while those of (6.10) are consistent with the discrete entropy inequality of [14]. Referring back
to the purely hyperbolic problem, if we ignore the diffusion terms, then the boundary contributions
defined by (6.10) give a discrete entropy inequality similar to the one in Definition 2.2. For our
purposes the (6.7), (6.8) version is preferable because it is difficult to prove that (6.10) converges
to its continuous counterpart when the mesh size approaches zero.

At this point, we specialize to the case of one space dimension, so that the spatial domain is
an interval Ω = (0, a1). The difference scheme simplifies to

Un+1
j = Unj − λx∆x

−f̂(Unj+1, U
n
j ) + µx∆x

+∆x
−A

n
j , 2 ≤ j ≤ J − 1,

Un+1
1 = Un1 − λxf̂(Un2 , U

n
1 ) + µx∆x

+A
n
1 ,

Un+1
J = UnJ + λxf̂(UnJ , U

n
J−1)− µx∆x

−A
n
J ,

(6.11)

with the data initialized via

U0
j =

1

∆x

∫
Ixj

u0(x) dx, (6.12)

and the approximate solution extended to all of QT using

u∆(x, t) =

N∑
n=0

J∑
j=1

χj(x)χn(t)Unj , (x, t) ∈ QT , (6.13)

where ∆ = (∆x,∆t). We will assume the following CFL condition:

For all u, v, z, w ∈ [0, 1],

− λx f̂(v, w)− f̂(u,w)

v − u
+ λx

f̂(z, v)− f̂(z, u)

v − u
+ 2µx

A(v)−A(u)

v − u
≤ 1/2.

(6.14)

For the Cauchy problem associated with the one-dimensional version of the PDE of (6.1),
convergence of monotone schemes was proven in [13]. For grid points away from the boundary,
our difference scheme is essentially the same as that of [13]. Following that reference we assume,
in addition to our previous assumptions, that

|f(u0)−A(u0)x| ∈ BV.

We will use the following definition of entropy solution, due to Andreianov and Gazibo [1,
Definition 2.3]. We have specialized it to the one-dimensional setting, and used the fact that
|f(κ) · ν| = f(κ), since f(·) ≥ 0.
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Definition 6.1. A function u ∈ L∞(QT ) taking values in [0, 1] is called an entropy solution of
(the one-dimensional version of) (6.1) if A(u) ∈ L2(0, T ;H1(Ω)) and if the following entropy
inequality holds ∀κ ∈ R, ∀φ ∈ C∞c (ΠT ), φ ≥ 0:∫ T

0

∫ a1

0

{|u− κ|φt + sign(u− κ) (f(u)− f(κ)−A(u)x)φx} dx dt

+

∫ a1

0

|u0 − κ|φ(x, 0) dx+

∫ T

0

f(κ) (φ(0, t) + φ(a1, t)) dt ≥ 0.

We will rely on the uniqueness portion of the following result, due to Andreianov and Gazibo.

Theorem 6.1 ([1, Theorem 4.1.]). The one-dimensional version of the problem (6.1) admits a
unique entropy solution in the sense of Definition 6.1.

For a fixed mesh size ∆, let

ẑ(v, u) = f̂(v, u)− (A(v)−A(u))/∆x,

and note that ẑ is nonincreasing as a function of v, nondecreasing as a function of u. We will
use the notation ẑv (ẑu) for the partial derivative of ẑ with respect to its first (second) argument.
Define

Znj+ 1
2

=

{
ẑ(Unj+1, U

n
j ), j = 1, . . . , J − 1,

0, j = 0, J,
, DAnj+ 1

2
=

{
∆x

+A
n
j /∆x, j = 1, . . . , J − 1,

0, j = 0, J.

(6.15)
We measure the total variation of these quantities using:

TV(Zn) =

J−1∑
j=0

∣∣∆x
+Z

n
j+ 1

2

∣∣ , TV(DAn) =

J−1∑
j=0

∣∣∆x
+DA

n
j+ 1

2

∣∣ .
Remark 6.3. By including the terms

∣∣∣∆x
+Z

n
1
2

∣∣∣ =
∣∣∣Zn3

2

∣∣∣ and
∣∣∣∆x

+Z
n
J− 1

2

∣∣∣ =
∣∣∣ZnJ− 1

2

∣∣∣ in the first

definition above, TV(Zn) is nonincreasing.

Lemma 6.1. We have an L∞ bound and a spatial BV bound for Znj+ 1
2

and thus also DAnj+ 1
2
:

max
0≤j≤J

∣∣Znj+ 1
2

∣∣ ≤ max
0≤j≤J

∣∣Z0
j+ 1

2

∣∣ , TV(Zn) ≤ TV(Z0), (6.16)

and

max
0≤j≤J

∣∣DAnj+ 1
2

∣∣ ≤ C1, TV(DAn) ≤ C2, (6.17)

where the constants C1 and C2 are independent of the mesh size ∆.

Proof. The one-dimensional scheme (6.11) can be written

Un+1
j − Unj = −λx∆x

−Z
n
j+ 1

2
. (6.18)

We use (6.15) and (6.18) to derive an equation for the time evolution of Znj+ 1
2
, which is valid for

j = 1, . . . , J − 1:

Zn+1
j+ 1

2
= ẑ(Un+1

j+1 , U
n+1
j )

= ẑ(Unj+1, U
n
j ) +

∫ 1

0

d

dθ
ẑ(Unj+1 + θ(Un+1

j+1 − U
n
j+1), Unj + θ(Un+1

j − Unj )) dθ

= Znj+ 1
2

+ Cnj+ 1
2
∆x

+Z
n
j+ 1

2
−Dn

j− 1
2
∆x

+Z
n
j− 1

2
,

(6.19)

where

Cnj+ 1
2

= −λ
∫ 1

0

ẑv(U
n
j+1 + θ(Un+1

j+1 − U
n
j+1), Unj + θ(Un+1

j − Unj )) dθ ≥ 0,

Dn
j− 1

2
= λ

∫ 1

0

ẑu(Unj+1 + θ(Un+1
j+1 − U

n
j+1), Unj + θ(Un+1

j − Unj )) dθ ≥ 0.
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With the CFL condition (6.14), we have

0 ≤ Cnj+ 1
2
≤ 1

2
, 0 ≤ Dn

j− 1
2
≤ 1

2
. (6.20)

This, along with the incremental form (6.19) implies that Zn+1
j+ 1

2
is a convex combination of Znj+ 1

2
,

Znj− 1
2
, Zn

+ 3
2

, which gives the L∞ bound of (6.16) for 1 ≤ j ≤ J−1. When j = 0, J , the L∞ bound

is immediate, since Zn1
2

= Zn
J+ 1

2

= 0.

Next, we take spatial differences of the incremental form (6.19):

∆x
+Z

n+1
j+ 1

2
=
(
1− Cnj+ 1

2
−Dn

j+ 1
2

)
∆x

+Z
n
j+ 1

2
+ Cnj+ 3

2
∆x

+Z
n
j+ 3

2
+Dn

j− 1
2
∆x

+Z
n
j− 1

2
. (6.21)

This formula is valid for 1 ≤ j ≤ J − 2. For j = 0, J − 1 we use the fact that

Zn+1
1
2

= Zn1
2

= 0, Zn+1
J+ 1

2

= ZnJ+ 1
2

= 0.

Then,

∆x
+Z

n+1
1
2

= Zn+1
3
2

− Zn+1
1
2

= Zn3
2

+ Cn3
2
∆x

+Z
n
3
2
−Dn

1
2
∆x

+Z
n
1
2
− Zn1

2

=
(

1−Dn
1
2

)
∆x

+Z
n
1
2

+ Cn3
2
∆x

+Z
n
3
2
,

∆x
+Z

n+1
J− 1

2

= Zn+1
J+ 1

2

− Zn+1
J− 1

2

= ZnJ+ 1
2
−
(
ZnJ− 1

2
+ CnJ− 1

2
∆x

+Z
n
J− 1

2
−Dn

J− 3
2
∆x

+Z
n
J− 3

2

)
=
(

1− CnJ− 1
2

)
∆x

+Z
n
J− 1

2
+Dn

J− 3
2
∆x

+Z
n
J− 3

2
.

(6.22)

Taking absolute values of (6.21) and (6.22), then using (6.20), summing over j, and canceling
telescoping terms, we get

J−1∑
j=0

∣∣∆x
+Z

n+1
j+ 1

2

∣∣ ≤ J−1∑
j=0

∣∣∆x
+Z

n
j+ 1

2

∣∣ ≤ . . . ≤ J−1∑
j=0

∣∣∆x
+Z

0
j+ 1

2

∣∣ ,
which gives the spatial variation bound of (6.16).

For the bounds (6.17), note that DAnj+ 1
2

= f̂(Unj+1, U
n
j )− Znj+ 1

2
. Both the L∞ bound and the

total variation bound then follow from the Lipschitz continuity of f̂ , along with the one-dimensional
version of Proposition 6.1 and the bounds (6.16). �

We have the following convergence theorem for our one-dimensional scheme.

Theorem 6.2. The approximate solutions {u∆}∆>0 defined by the one-dimensional scheme (6.11),
(6.12), (6.13) converge in L1

loc(QT ) and boundedly a.e. in QT to

u ∈ L∞(QT ) ∩ BV(QT ).

In addition,
A(u)x ∈ L∞(QT ) and thus A(u) ∈ L2(0, T ;H1(Ω)). (6.23)

The limit function u is the unique entropy solution to the initial boundary problem (6.1).

Proof. Using the BV bound of Lemma 6.1, we get the following discrete time continuity bound by
repeating Lemma 3.5 of [13]:

J∑
j=1

∣∣Umj − Unj ∣∣ ≤ TV(Z0)
∆t

∆x
|m− n| . (6.24)

Using the bounds provided by the one-dimensional version of Proposition 6.1, along with (6.24),
one gets convergence along a subsequence in L1

loc(QT ) and boundedly a.e. in QT , to some function
u ∈ L∞(QT ) ∩ BV(QT ). Since z 7→ A(z) is Lipschitz-continuous, for the same subsequence we
also have A(u∆)→ A(u) ∈ L∞(QT )∩BV(QT ). For this same subsequential limit u, the assertion
(6.23) then follows from (6.17) of Lemma 6.1.

Next, we repeat the Lax-Wendroff type calculation found on page 1855 of [13], starting from
the one-dimensional version of the discrete entropy inequality (6.6), and taking into account the
boundary contributions at j = 1 and j = J . We conclude that the subsequential limit u satisfies
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the entropy inequality (6.1), and therefore by Theorem 6.1 u is the unique entropy solution of
(6.1). Finally, by uniqueness we have convergence to u of the entire computed sequence u∆, not
just a subsequence. �

Remark 6.4. Although strong traces of the total flux are not required for Definition 6.1, we
can prove their existence for this one-dimensional problem. In fact, by applying the test function
argument in the proof of Lemma 3.6 of [13], we get

∆x

J∑
j=0

∣∣Zmj+ 1
2
− Znj+ 1

2

∣∣ ≤ C√(m− n)∆t. (6.25)

Using this L1 time continuity result, along with Lemma 6.1, we have convergence of {z∆} to
z = f(u)−A(u)x ∈ L∞(QT ) ∩ L∞(0, T ; BV(Ω)). Thus the total flux satisfies

f(u)−A(u)x ∈ L∞(QT ) ∩ L∞(0, T ; BV(Ω)).

This implies that the boundary trace of f(u)−A(u)x exists. In addition, thanks to (6.25),

‖(f(u)−A(u)x) (·, t2)− (f(u)−A(u)x) (·, t1)‖L1(Ω) ≤ C
√
t2 − t1.

Acknowledgments

This work was supported by the Research Council of Norway via grant no. 250674/F20. We
would like to thank the anonymous referees for valuable comments.

References

[1] B. Andreianov and M. K. Gazibo. Entropy formulation of degenerate parabolic equation with zero-flux bound-

ary condition. Z. Angew. Math. Phys., 64(5):1471–1491, 2013.

[2] B. Andreianov and M. K. Gazibo. Convergence of finite volume scheme for degenerate parabolic problem with
zero flux boundary condition. In Finite volumes for complex applications. VII. Methods and theoretical aspects,

volume 77 of Springer Proc. Math. Stat., pages 303–311. Springer, Cham, 2014.
[3] B. Andreianov and K. Sbihi. Well-posedness of general boundary-value problems for scalar conservation laws.

Trans. Amer. Math. Soc., 367(6):3763–3806, 2015.
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[9] R. Bürger, A. Garćıa, K. H. Karlsen, and J. D. Towers. A family of numerical schemes for kinematic flows
with discontinuous flux. J. Engrg. Math., 60:387–425, 2008.

[10] R. Bürger and M. Kunik. A critical look at the kinematic-wave theory for sedimentation-consolidation processes

in closed vessels. Math. Models Methods Appl. Sci., 24:1257–1273, 2001.
[11] M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comp.,

34(149):1–21, 1980.
[12] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathe-

matics. CRC Press, Boca Raton, FL, 1992.

[13] S. Evje and K. H. Karlsen. Monotone difference approximations of BV solutions to degenerate convection-

diffusion equations. SIAM J. Numer. Anal., 37(6):1838–1860 (electronic), 2000.
[14] M. K. Gazibo. Degenerate parabolic equation with zero flux boundary condition and its approximations.

Preprint available at http://hal.archives-ouvertes.fr/hal-00855746.
[15] A. Harten, J. Hyman, and P. Lax. On finite-difference approximations and entropy conditions for shocks.

Comm. Pure Appl. Math., XXIX:297–322, 1976.

[16] M. Hilliges and W. Weidlich. A phenomenological model for dynamic traffic flow in networks. Transp. Res. B,

29: 407–431, 1995.
[17] H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152 of Applied Mathe-

matical Sciences. Springer-Verlag, New York, 2002.



MONOTONE SCHEMES FOR ZERO FLUX BOUNDARY CONDITIONS 21

[18] K. H. Karlsen, K.-A. Lie, and N. H. Risebro. A front tracking method for conservation laws with boundary
conditions. In Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), pages 493–502.
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