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The algebraic connectivity a(G) of a graph G is an important parameter, defined as
the second smallest eigenvalue of the Laplacian matrix of G. If T is a tree, a(T ) is
closely related to the Perron values (spectral radius) of so-called bottleneck matrices
of subtrees of T . In this setting we introduce a new parameter called the combinatorial
Perron value ρc. This value is a lower bound on the Perron value of such subtrees;
typically ρc is a good approximation to ρ. We compute exact values of ρc for certain
special subtrees. Moreover, some results concerning ρc when the tree is modified are
established, and it is shown that, among trees with given distance vector (from the
root), ρc is maximized for caterpillars.
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1. Introduction

Let G = (V,E) be a graph and L(G) its Laplacian matrix, i.e., L(G) = D − A
where A is the adjacency matrix and D the diagonal matrix of vertex degrees.
L(G) is positive semidefinite and singular. The algebraic connectivity a(G) of G
is the second smallest eigenvalue of L(G), and it is denoted by a(G). This is an
important parameter, and its properties have been investigated intensively, see a
brief discussion of some literature below.

In this paper we focus on trees. Let T be a given tree. We study the so-called
bottleneck matrices associated with the Laplacian matrix L(T ). These arise by choos-
ing a vertex v ∈ T and deleting the corresponding row and column of L(T ). The
resulting matrix L is invertible, and its inverse L−1 is a direct sum of smaller ma-
trices Mi associated with the subtrees of T \ {v} (the components). These matrices
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Mi are called bottleneck matrices. The spectral radius of such bottleneck matrices
determine a(G), see [10, 16] and below. The main goal of this paper is to investi-
gate properties of bottleneck matrices, and introduce and study some combinatorial
parameters that give estimates for the spectral radius of bottleneck matrices.

For a general graph G the algebraic connectivity a(G) reflects the connectivity
of G, and a(G) > 0 if and only if G is connected [7]. The importance of this
invariant parameter stems from inequalities that relates the vertex connectivity
(the minimum number of vertices whose removal results in a disconnected graph)
and edge connectivity (the minimum number of edges whose removal results is a
disconnected graph) [9]. Some graphs for which the algebraic connectivity attains
the vertex connectivity are characterized for instance in [12]. Some studies concering
expanders and isoperimetric numbers are related with graphs with large algebraic
connectivity [3, 13]. Moreover, some research on how the algebraic connectivity of
a weighted tree behaves when the tree is perturbed by removing one of its branches
and replacing by another can be found in [11]. For more references concerning
algebraic connectivity, see [1, 4–6, 16].

In [7] Fiedler introduced a remarkable result that describes some of the structure
of the eigenvectors associated with a(G) and allows to classify the trees into two
types, denoted simply Type I and II. In fact, if z is an eigenvector associated with
a(T ), now called a Fiedler vector, then exactly one of the following two cases can
occur:

(i) No entry of z is zero. In this case there is a unique pair of vertices vi and vj
such that they are adjacent and zi > 0, zj < 0. Furthermore, the entries of
z are increasing along any path in T which starts at vi and does not contain
vj , and the entries of z are decreasing along any path in T which starts at vj
and does not contain vi. Such a tree is called a Type II tree, and the vertices
vi and vj are called characteristic vertices.

(ii) At least one entry of z is zero. Then the subgraph of T induced by the set of
vertices corresponding to zeros in z is connected. Moreover, there is a unique
vertex vr such that zr = 0 and vr is adjacent to at least one vertex vs with
zs 6= 0. The entries are either increasing, decreasing or identically zero along
any path T starting at vr. Such a tree is called a Type I tree and the vertex
vr is called characteristic vertex.

The characteristic set of a tree is the set of its characteristic vertices. One can show
that the previous classification is independent of the choice of eigenvector (in case
the eigenspace of a(G) has higher dimension than 1). There is a close connection
between bottleneck matrices and the characterization of Type I and II trees and the
algebraic connectivity ([10]). In fact, T is a Type I tree with characteristic vertex
vr if and only if T has two or more branches at vr for which the spectral radius is
maximum (among the branches); such branches are called Perron branches at vr.
In this case, the algebraic connectivity is the reciprocal of the spectral radius of the
bottleneck matrix of any of its Perron branches. Moreover, T is a Type II tree with
(adjacent) characteristic vertices vi and vj if and only if there exists γ, 0 < γ < 1,
such that ρ(M1 − γJ) = ρ(M2 − (1 − γ)J), where M1 is the bottleneck matrix for
the branch at vj containing vi and M2 is the bottleneck matrix for the branch at vi
containing vj . Let J be the all ones matrix. Then the algebraic connectivity can be
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obtained by

a(G) =
1

ρ(M1 − γJ)
=

1

ρ(M2 − (1− γ)J)
.

These results, and the close connections to bottleneck matrices, motivated the
present study of properties of such matrices. For more on algebraic connectivity
of trees and related results, see [1, 2, 8, 10–12].

A main goal of this paper is to introduce the notion of combinatorial Perron value,
and investigate its properties. The motivation for this new concept lies in the struc-
ture of Fiedler vectors. As mentioned above, and loosely speaking, the components
of a Fieldler vector are increasing (in absolute value) when one moves away from the
characteristic vertex, or vertices. We think of the characteristic vertices as a kind of
“center” of the tree. This seems to suggest that the components of a Fiedler vector
give some kind of measure of distance from the center, and therefore one may ask:

• Can the (combinatorial) distances in the tree be used to approximate the
Fiedler vector, or to approximate the Perron value?

This idea and question lead to the main concept of this paper. For a rooted tree T ,
with root vertex r, we define the combinatorial Perron value of T by

ρc(T ) =

∑
i σ

2
i∑

i d
2
i

where di is the number of vertices in the unique path from r to vertex i in T , and σi
is the sum of those dj for which the vertex i is contained in the path between r and
vertex j. We show how ρc(T ) relates to the bottleneck matrix of the tree and the
so-called path matrix, and establish several of its properties. In particular, we show
that ρc(T ), and a related value, both provide good approximations of the Perron
value of the tree (branch). Moreover, we show how ρc(T ) is affected by certain
modifications of the tree, and prove that ρc(T ) is maximized for caterpillars, when
distances are fixed. An interesting (future) application of this new concept is to find
approximate characteristic sets of trees (see type (i) and (ii) above) by replacing
the Perron values of branches by the corresponding combinatorial Perron values.
This, and other possible further work is mentioned as concluding remarks in the
final section.

The remaining paper is organized as follows. Section 2 treats bottleneck and path
matrices, shows relationships, and prepares for the introduction of ρc(T ). Section
3 defines ρc(T ), gives alternative expressions, and proves the exact value of ρc(T )
for certain classes of trees. Section 4 shows that ρc(T ) is a lower bound of the
corresponding Perron value, and also establishes other interesting bounds, along
with numerical examples illustrating the quality of these bounds. A connection
to the discrete Poisson problem is also discussed. Section 5 presents a result on
majorization and Section 6 contains results on how the combinatorial Perron value
is affected by certain modifications of the tree. The extremal property of caterpillars,
mentioned above, is also shown in that section. Finally, some suggestions for further
work are indicated.

Notation. The incidence vector of a set S ⊆ U is a vector v whose entries are
labeled with the members of U , that is, vu = 1 if u ∈ S, and vu = 0 otherwise. For
a matrix A = [aij ] define σ(A) =

∑
i,j aij , and let the i’th row sum of A be denoted
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by Ri(A).

2. Bottleneck and path matrices

Let T̄ be a given tree. Following ([4, 11]) a branch T in T̄ is a component subtree
of T̄ \ {r̄} where r̄ is some vertex in T̄ . Let r be the (unique) vertex in T which is
adjacent to r̄ in T̄ . We call r̄ and r the external root and the (internal) root of T ,
respectively. Note that r̄ 6∈ T . Note that in [11] one calls r̄ the root of the branch T .
Let n be the number of vertices of a branch T with internal root r. For each vertex
j in T let Pj denote the (unique) rj-path in T . The bottleneck matrix M = [mij ] of
T is the n × n matrix where mij is the number of common vertices in the ri-path
Pi and the rj-path Pj . The Perron value of T is defined as the Perron value of M ,
i.e., the spectral radius ρ(M) of M .

Another view on the bottleneck matrix M of T is presented next. For simplicity
we denote its vertices by 1, 2, . . . , n. We define the path matrix N , or NT , of T as
the n × n (0, 1)-matrix whose rows and columns correspond to the vertices in T ,
and where column j of N is the incidence vector of the path Pj for j ≤ n, i.e., it
contains ones in rows corresponding to vertices in Pj , and zeros otherwise. The path
matrix N depends on the ordering of the vertices (but the same ordering is used for
rows and columns). We use a breadth-first ordering of the vertices: first the root r,
then its neighbors, then each of their neighbors etc. The number of vertices in Pj
is denoted by dj we call it the distance of vertex j; this is the number of edges in
the unique path between the external root r̄ and j in the tree T̄ . If the underlying
tree T needs to be indicated, we write dj = d(T, j). The vector d = (d1, d2, . . . , dn)
is the distance vector of T . Then we have the following result.

Lemma 2.1 The path matrix N is upper triangular with ones in the first row and on
the diagonal. The column sum vector of N is the distance vector d = (d1, d2, . . . , dn)
and it satisfies 1 = d1 < d2 ≤ d3 ≤ · · · ≤ dn. Finally, N and the bottleneck matrix
M are related by

M = NTN. (1)

In particular, N is invertible and M is positive definite.

Proof. The first statement follows from the discussion above and the fact that
we use breadth-first ordering of vertices. Moreover, the (i, j)’th entry of NTN is
the inner product of the incidence vector of Pi and Pj and it therefore equals that
number of common vertices, i.e., mij . As M = NTN , and the columns of N are
linearly independent, M is positive semidefinite.

We see from (1) that the bottleneck matrix M has the Cholesky factorization
M = V V T where V = NT . We remark (altough this will not be used here) that M
is a completely positive matrix (as N is nonnegative) and, moreover, that the path
matrix N is totally unimodular, i.e., that each square submatrix has determinant
0 or ±1. The distance vector d = (d1, d2, . . . , dn) of T will be central in this paper.
Vertices in T are denoted by 1, 2, . . . , n or v1, v2, . . . , vn.

Example 1 Consider the tree (branch) T with n = 6 in Figure 1 where r is the
(internal) root; the external root r̄ is also indicated. The vertices are numbered using
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T

r

v1

v2 v3

v6v4 v5

Figure 1. The tree T in Example 1.

breadth-first-ordering, and d = (d1, d2, . . . , d6) = (1, 2, 2, 3, 3, 3). The path matrix is

N =



1 1 1 1 1 1

0 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

For instance, column 4 is the incidence vector of the path P4 = v1, v2, v4.

Two special classes of trees are of particular interest: paths and stars. The star
Sn, with root r = v1, has edges v1vi (2 ≤ i ≤ n) and its path matrix N = NSn

is

NSn
=

[
1 eT

0 In−1

]
,

where e is the all ones vector and In−1 the identity matrix of order n − 1. The
distance vector is d = (1, 2, 2, . . . , 2). Similarly, when T is a path Pn = v1, v2, . . . , vn
with root r = v1, the path matrix N = NPn

is

NPn
= Un,

where Un is the n×n (0, 1)-matrix with ones in its upper triangular part (including
the diagonal). The distance vector is d = (1, 2, 3, . . . , n). These two special trees are
extreme in the sense that the path matrix N has the minimum number of ones in
the case of stars, and the maximum number of ones in the case of paths.

3. Combinatorial Perron values

Let again T be a rooted tree. We use the notation introduced in Section 2. Moreover,
let ρ(M) or ρ(T ) denote the Perron value (maximum eigenvalue) of the bottleneck
matrix M of T .

We now introduce a new concept which is central in this work. Define

ρc(N) =
‖Nd‖2

‖d‖2
=
dTNTNd

dTd
(2)
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which we call the combinatorial Perron value of T . Our discussion below will show
that the combinatorial Perron value is a good approximation to the Perron value
ρ(M) of M . This also means that the distance vector d is a good starting point for
finding the Perron vector (the eigenvector corresponding to the eigenvalue ρ(M)).
Thus the distance vector captures much of the information carried by the Perron
vector.

The tree T and its path matrix NT are identified, so we sometimes write ρc(T )
for ρc(N), and if different trees are considered we write NT for the path matrix of
T . This is a graph invariant, i.e., reordering of vertices does not affect the value of
ρc(N), and, moreover, ρc(N) only depends on N (or T and r), because the distance
vector d is the column sum vector of N , i.e., d = NT e where e is the all ones vector.
Thus, ρc(N) is the Rayleigh quotient of the bottleneck matrix M evaluated in the
distance vector d. This immediately implies that ρc(T ) is a lower bound on the
Perron value ρ(M); more on this below.

For vertices i and j, if Pj contains Pi, then we write j � i; this means that j is
“below” or after i, seen from the root. This defines a partial order on the vertex set
V . As M = NTN = [mij ], we obtain some alternative expressions for ρc(T ) (where
the summation is from 1 to n):

ρc(N) =

∑
i d

3
i + 2

∑
i<jmijdidj∑

i d
2
i

=

∑
i σ

2
i∑

i d
2
i

(3)

where σi =
∑

j�i dj . In fact, dTNTNd = dTMd =
∑

i d
3
i + 2

∑
i<jmijdidj as M is

symmetric and mii = di (i ≤ n). Moreover, the ith row of the path matrix N is the
incidence vector of the set {j : j � i}, so ‖Nd‖2 =

∑
i(
∑

j�i dj)
2 =

∑
i σ

2
i .

For the extreme cases when the tree T is a star or a path it is possible to obtain
an explicit expression for the combinatorial Perron value. For a path this expression
is a quadratic polynomial in n.

Proposition 3.1 Let Pn and Sn denote the path and the star with n vertices,
respectively. Then

ρc(Pn) = (2n2 + 2n+ 1)/5,

ρc(Sn) = n+ 3n−3
4n−3 .

(4)

Proof. We obtain for the path Pn

‖Nd‖2 =
∑n

i=1 σ
2
vi

=
∑n

i=1 (
∑n

k=i k)2

= (4n5 + 10n4 + 10n3 + 5n2 + n)/30.

Moreover, d = (1, 2, . . . , n), ‖d‖2 = n(2n + 1)(n + 1)/6 and by dividing these ex-
pressions we obtain

ρc(Pn) =
‖Nd‖2

‖d‖2
= (2n2 + 2n+ 1)/5.

For the star Sn, d = (1, 2, 2, . . . , 2), so ‖d‖2 = 4n − 3 and ‖Nd‖2 = 4n2 − 3 and
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therefore ρc(Sn) = n+ (3n− 3)/(4n− 3).

The Perron value of a path Pn (i.e., the Perron value of its bottleneck matrix) is
known, see [2], and it is given by

ρ(Pn) =
1

2
(1− cos(

π

2n+ 1
))−1.

This is derived from the general connection between the Perron values of branches of
a tree and the algebraic connectivity of the tree, see [10]. In fact, an odd path is a tree
of Type I, where the middle vertex has two Perron branches, and their bottleneck
matrix has spectral radius equal to the inverse of the algebraic connectivity. Using
the same approach one may compute the Perron value of the bottleneck matrix of
a star Sn, see [2], and it is

ρ(Sn) = (1/2)(n+ 1 +
√
n2 + 2n− 3).

Example 2 In Figure 2 we compare the Perron value ρ(T ) and the combinatorial
Perron value ρc(T ), when T is a star or a path for some values of n = |V |. Note
that ρc is very close to the Perron value. This is also our general experience from
extensive computational experiments, we return to this later.

n = 4 n = 5 n = 6 n = 7 n = 9
ρ(Sn) 4.7913 5.8284 6.8541 7.873 9.8990
ρc(Sn) 4.6923 5.7059 6.7143 7.72 9.7272

ρ(Pn) 8.2909 12.3435 17.2069 22.8808 36.6604
ρc(Pn) 8.2 12.2 17 22.6 36.2

Figure 2. Perron value and ρc for stars and paths

Figure 3 shows the relative difference of Perron and combinatorial Perron values
for paths, i.e., 100(ρ(Pn)−ρc(Pn))/ρ(Pn)%, for different values of n. So, we see that
this relative difference is about 1.3% for n at least 10.

A tree T having at most one vertex of degree greater than two is called a gen-
eralized star, or a star-like tree. We call this vertex the central vertex. Both stars
and paths are special cases of a generalized star. We restrict the attention to the
generalized star with p paths, each of length k, and where the internal root is the
central vertex. This tree is denoted by Sp,k. So, k = 1 corresponds to a star, and
p = 1 corresponds to a single path. The next result computes ρc(Sp,k). Similarly,
one may compute the combinatorial Perron value of all generalized stars, but the
expressions become more complicated, so we omit this here.

Proposition 3.2 The combinatorial Perron value of the generalized star Sp,k is
given by

ρc(Sp,k) =
p(ηk−ξ2k)+(pξk−p+1)2

pk(2k+1)(k+1)/6−p+1
(5)

where ηk = (4k5 + 10k4 + 10k3 + 5k2 + k)/30 and ξk = k(k + 1)/2.

Proof. The distance vector of Sp,k is d = (1, 2, . . . , 2, 3, . . . , 3, . . . , k, . . . , k) where
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Figure 3. Relative difference, ρ and ρc for paths.

the number i appears p times (2 ≤ i ≤ k). So

‖d‖2 = p
∑k

j=1 j
2 − (p− 1)

= pk(2k + 1)(k + 1)/6− p+ 1.

Next, let NPk
and d be the path matrix and the distance vector in Pk, so by the

calculations in Proposition 3.1, ‖NPk
d(Pk, ·)‖2 = (4k5 + 10k4 + 10k3 + 5k2 + k)/30.

Then, by comparing Sp,k to p paths Pk we get

‖NSp,k
d‖2 = pηk − pξ2

k + σ2
1

= p(ηk − ξ2
k) + (pξk − p+ 1)2.

The expression for ρc(Sp,k) follows from this.

4. Perron value bounds

Let Si = {j : j � i} and Ri(N) = |Si| (i ≤ n). So, Ri(N) is the number of vertices
below vi, and also the ith row sum in the path matrix N . Define βi =

∑
j:vi�vj rj .
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Let K = NNT . Then the (i, j)th entry of K is |Si ∩ Sj |. Recall that σ(A) denotes
the sum of all entries in a matrix A. Then

ρc(N) =
σ(K2)

σ(K)
. (6)

In fact, as d = NT e, one gets ‖Nd‖2 = dTNTNd = eTNNTNNT e = eTK2e =
σ(K2). Similarly, dTd = eTKe = σ(K), and (6) follows.

A very simple and rough upper bound on ρc(N) is σ(N), the number of ones in
N , as shown next.

Proposition 4.1

ρc(N) ≤
n∑
j=1

dj = σ(N). (7)

Proof. From the Cauchy-Schwarz inequality we obtain

‖Nd‖2 =
n∑
i=1

(rowi(N) · d)2 ≤
n∑
i=1

‖rowi(N)‖2‖d‖2

where rowi(N) denotes the ith row of N . But as N = [aij ] is a (0, 1)-matrix

n∑
i=1

‖rowi(N)‖2 =

n∑
i=1

n∑
j=1

a2
ij =

n∑
i=1

n∑
j=1

aij =

n∑
j=1

n∑
i=1

aij = σ(N) =

n∑
j=1

dj .

Therefore

ρc(N) =
‖Nd‖2

‖d‖2
≤ σ(N)‖d‖2

‖d‖2
= σ(N).

Using similar techniques one may find a better upper bound on ρc(N), as a convex
combination of the numbers βj (j ≤ n): ρc(N) ≤ (

∑
j βjd

2
j )/(

∑
j d

2
j ). This is done

using the Cauchy-Schwarz inequality for the subvector dSi
of d corresponding to

the support Si in each row of N . The simple bound σ(N) =
∑

i di in (7) contains
combinatorial information, the sum of the distances. We should say that bounds on
ρc(N) are not of computational interest, since it is easy to compute ρc(N) anyway.

We now introduce an interesting bound for the Perron value ρ(T ). This bound
is easily computed from the parameters, and has an interpretation in terms of the
discrete Poisson problem, as briefly discussed next. The bottleneck matrix M sat-
isfies (see [10, 16]) M = L−1 where L is obtained from the Laplacian matrix of T
by adding 1 in position (1, 1); this corresponds to the root r̄ (which is not a part
of T ). Associated with L we have the discrete Poisson problem Lu = f where f is
the given data (parameter), f ∈ Rn. The Poisson problem is one of basic equations
in partial differential equations ([17]). By using the standard approach of discretiz-
ing the domain of the (unknown) function u, the continuous Laplace operator is
replaced by the discrete Laplace operator, and this corresponds to the Laplacian
matrix, with modifications based on the boundary of the region. In our setting the

9
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“boundary” of the tree T consists only of the external root r̄. Thus, the matrix L
also equals the Laplacian matrix of the larger tree T̄ after deleting the row and
column corresponding to r̄. This modification makes the matrix L invertible, so the
solution u of the discrete Poisson problem Lu = f is therefore unique. Now, let d as
usual be the distance vector of T . Consider the discrete Poisson problem with data
d, i.e.,

Lu = d. (8)

The unique solution will be denoted by u∗(d), and may be computed from the
bottleneck matrix as u∗(d) = L−1d = Md = N tNd. Define

π(N) =
‖u∗(d)‖
‖d‖

=
‖Md‖
‖d‖

. (9)

Thus, π(N) measures the size of the solution of the Poisson problem relative to
the data, where the data is the distance vector d. The component u∗(d)v of u∗(d)
corresponding to vertex v is

∑
u∈Pv

σu (where σu =
∑

w�u dw); this may be regarded
as the length/weight of the path Pv, using vertex weights σu. In fact, the measure
π(N) has a close connection to the combinatorial Perron value and also to the
Perron value.

Define, for the bottleneck matrix M = [mij ], its `1 matrix norm ‖M‖1 =
maxi

∑
jmij . The following result relates several of the parameters discussed, and

provide lower and upper bounds on the Perron value ρ(M) of the bottleneck matrix
M .

Theorem 4.2 Let T be a tree and M = [mij ] its bottleneck matrix. Then

ρc(N) ≤ π(N) ≤ ρ(M) ≤ ‖M‖1. (10)

Proof. Since u∗(d) = N tNd we obtain from the Cauchy-Schwarz inequality

ρc(N) = ‖Nd‖2/‖d‖2

= dtN tNd/‖d‖2

= dtu∗(d)/‖d‖2

≤ ‖d‖‖u∗(d)‖/‖d‖2

= ‖u∗(d)‖/‖d‖
= π(N).

Next

π(N) = ‖u∗(d)‖/‖d‖ = ‖Md‖/‖d‖ ≤ sup
x 6=O
‖Mx‖/‖x‖ = ρ(M).

Finally, any matrix norm gives an upper bound for the spectral radius, and therefore

ρ(M) ≤ ‖M‖1 = max
i

∑
j

mij .

10
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n ρc(N) π(N) ρ(M) Err. ‖M‖1
∑

v dv

10 21.4 21.6 21.9 1.4 26 32

20 36.4 37.0 37.8 2.1 47 73

30 54.0 55.0 56.2 2.1 69 110

50 88.6 90.5 93.4 3.1 118 234

100 125.6 129.2 133.2 3.0 174 410

150 287.7 294.6 304.0 3.1 397 898

Figure 4. Random trees, comparison of bounds in Theorem 4.2.

The importance of Theorem 4.2 is that one obtains easily computable bounds on
the Perron value, and, moreover, that these bounds are obtained from the distances
in the tree T . Moreover, one may consider the distance vector d as an approximation
to the Perron vector. The quality of the bounds of Theorem 4.2 are suggested by
the result of generating some random trees, see the table in Figure 4. Each row
corresponds to a random tree, and n is the number of vertices. The bounds ρc(N)
and π(N) and the Perron value ρ(M) are given (with one decimal). The relative
error, Err = 100 · (ρ(M) − π(N))/ρ(M)%, is also indicated, as well as the rough
upper bound

∑
v dv on ρc(N). Extensive testing confirms that these lower bounds

are very good.

Corollary 4.3 For any tree T the following inequalities hold

ρc(N) ≤ π(N) ≤ ρ(M) ≤ n(n+ 1)/2. (11)

Proof. Theorem 4.2 gives ρc(N) ≤ π(N) ≤ ρ(M) ≤ ‖M‖1 so we only need to
show

‖M‖1 ≤ n(n+ 1)/2.

Let i be such that
∑

jmij = ‖M‖1, where mij = |Pi ∩Pj |. Then vertex i must be a
pendant vertex, otherwise there is an adjacent vertex l with dl = di + 1, and then
|Pl ∩ Pj | ≥ |Pi ∩ Pj | = mij for each j, and with strict inequality holds for l (and
other vertices below l, not that when i = j = l, mll = mii + 1). This contradicts the
choice of i, so we conclude that i is a pendant vertex. Let k = di. Therefore

‖M‖1 =
∑

jmij

=
∑

s∈Pi
mis +

∑
s 6∈Pi

mis

≤ (1 + 2 + · · ·+ k) + (n− k)(k − 1)

= (1/2)k(k + 1) + (n− k)(k − 1)

= nk − n− (1/2)k2 + (3/2)k.

Simple analysis shows that final expression, viewed as a quadratic polynomial in k
is increasing in k, and it is maximized for k = n (clearly, k ≤ n must hold). We
conclude that ‖M‖1 ≤ (1/2)n(n+ 1) as desired.

11



December 31, 2016 Linear and Multilinear Algebra algT

5. Caterpillars and a majorization result

A caterpillar C is a tree C = C(n1, n2, . . . , nk) consisting of a path P =
v1, v2, . . . , vk, for some k, and, for each i ≤ k, ni ≥ 0 additional vertices attached
to vi. We require nk = 0 (otherwise we could redefine). The path Pk is called the

central path, and v1 is the internal root of this tree. So C has n = k +
∑k

i=1 ni
vertices. Stars and paths are special cases of a caterpillar. Let NC be the n×n path
matrix of a caterpillar C, and let d be its distance vector, so 1 = d1 < d2 ≤ · · · ≤ dn.
Then the jth column of NC consists of dj − 1 leading ones in addition to a 1 in row
j (on the diagonal of NC).

For any tree T with distance vector d, it is easy to see that there is a unique (up
to relabeling) caterpillar C with the same distance vector d, and we let Cd denote
this caterpillar.

The following theorem gives a connection to majorization and shows that the
path matrices of caterpillars are extreme in a certain sense. We use �maj to denote
the majorization order ([14]), so we write x �maj y, for vectors x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) whenever
∑k

j=1 x[j] ≤
∑k

j=1 x[j] (k < n) and
∑n

j=1 xj =∑n
j=1 yj . Here x[j] denotes the jth largest component in x. Recall that the row sum

corresponding to vertex i in the path matrix N is |{j : j � i}|. Recall that the i’th
row sum of a matrix A is denoted by Ri(A), and we let R(A) denote the vector with
these numbers as components.

Theorem 5.1 Let T be a tree with n vertices. Then the following majorization
holds

R(NT ) �maj R(NCd
).

In particular,

n∑
i=1

Ri(NT )2 ≤
n∑
i=1

Ri(NCd
)2.

Proof. Let the distance vector of T be d = (d1, d2, . . . , dn), and let R(NT ) =
(rT1 , r

T
2 , . . . , r

T
n ), R(NCd

) = (rC1 , r
C
2 , . . . , r

C
n ) . Clearly

n∑
i=1

rCi =
n∑
i=1

di =
n∑
i=1

rTi .

Let k < n and choose i1, . . . , ik such that rTit = rT[t]; the t’th largest component in

12
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R(NT ), for t ≤ k. Let N = [aij ] be the path matrix of T . Then∑k
t=1 r

T
[t] =

∑k
t=1 r

T
it

=
∑k

t=1

∑n
j=1 aitj

=
∑k

t=1(1 +
∑n

j=it+1 aitj)

= k +
∑k

t=1

∑n
j=it+1 aitj

= k +
∑n

j=1

∑
t:t≤k,it<j aitj

≤ k +
∑n

j=1 min{k, dj − 1}
=
∑k

i=1 r
C
i .

This shows the desired majorization. Moreover, this implies that
∑n

i=1 g(rTi ) ≤∑n
i=1 g(rCi ) for each convex function g : R → R. In fact, by a well-known theorem

due to Hardy, Littlewood and Pólya (see Theorem B.2 in Chapter 2 of [14]) the
majorization implies that there exists a doubly stochastic matrix A = [aij ] (that
is, a square matrix with nonnegative entries and all rows and column sums equal
to one) such that R(NT ) = AR(NCd

). Combining this with the convexity of g
(Jensen’s inequality) gives∑

i

g(rTi ) =
∑
i

g(
∑
j

aijr
C
j ) ≤

∑
i

∑
j

aijg(rCj ) =
∑
j

g(rCj )
∑
i

aij =
∑
j

g(rCj ).

as
∑

i aij = 1 for each j. Applying this for g(x) = x2 we get the final inequality.

6. Tree modifications and the combinatorial Perron value

We study how certain different operations on trees influence the combinatorial Per-
ron value.

A natural operation is to extend the tree by adding a vertex and connecting to
some existing vertex. In general, this operation does not decrease the Perron value
ρ(T ), as the maximal eigenvalue of a principal submatrix of a nonnegative matrix A
cannot exceed the maximal eigenvalue of A ([15]). Surprisingly, for the combinatorial
Perron value ρc(T ), this is not true: there are examples where adding an edge leads
to smaller value on ρc(T ). This has been observed in our computational experiments
for randomly generated trees, although this seems to occur very seldom, and indicate
a kind of “irregularity” of the combinatorial Perron value.

However, under a certain, rather weak, condition we can show that ρc increases
when an edge is added.

Theorem 6.1 Let T be a tree and w ∈ V (T ), and let T ′ be the tree obtained from
T by adding a vertex w′ and the edge ww′. Let k = d(T,w) + 1 and assume that

(2/k)
∑
v∈Pw

σv + k > ‖MT ‖1 (12)

where Pw is the path between the root and w in T . Then ρc(T
′) > ρc(T ).

Proof. Let σv = σ(T, v) for each vertex v ∈ V (T ), and let n = |V |. The new

13
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tree T ′ has n + 1 vertices, V (T ′) = V (T ) ∪ {w′} and d(T ′, w′) = k. Note that
σ(T ′, v) = σ(T, v) + k for v ∈ Pw and σ(T ′, v) = σ(T, v) for v ∈ V (T ) \ Pw. So

ρc(T
′) =

∑
v∈V σ

2
v + ∆∑

v∈V d
2
v + k2

(13)

where

∆ =
∑

v∈V (T ′)(σ(T ′, v))2 −
∑

v∈V σ
2
v

= k2 +
∑

v∈Pw

(
(σ(T ′, v))2 − σ2

v

)
= k2 +

∑
v∈Pw

(
(σv + k)2 − σ2

v

)
= k2 +

∑
v∈Pw

k(2σv + k)

= k2 + 2k
∑

v∈Pw
σv +

∑
v∈Pw

k2

= 2k
∑

v∈Pw
σv + k3

as Pw contains k − 1 vertices. Moreover∑
v∈V σ

2
v∑

v∈V d
2
v

= ρc(T ) ≤ ‖MT ‖1 < (2/k)
∑
v∈Pw

σv + k

where the first inequality is due to Theorem 4.2 and the second is by assumption.
Observe the following simple fact, for positive real numbers a1, a2, b1, b2, that if
a1/b1 < a2/b2, then a1/b1 < (a1 + a2)/(b1 + b2). We apply this observation with
a1 =

∑
v∈V σ

2
v , b1 =

∑
v∈V d

2
v, a2 = ∆ and b2 = k2. Then ρc(T ) = a1/b1 < a2/b2 =

(2/k)
∑

v∈Pw
σv + k as just shown. Therefore

ρc(T ) < (a1 + a2)/(b1 + b2) = ρc(T
′)

as desired.

It seems complicated to obtain closed expressions for ρc(T ) for trees other than
generalized stars. However, the rational function of d in the definition of ρc(T )
opens up for another kind of analysis, which may be called a “marginal asymptotic
analysis”. We give one such result, and it should be clear how to produce similar
results.

Let T be an arbitrary tree with internal root r and n vertices. Let v ∈ V (T ) and
define T (v;m) as the tree obtained from T by adding m new vertices and attaching
each of these to v. Define

ρ∞c (T, v) = lim
m→∞

ρc(T (v;m))

n+m
.

Since n + m is the number of vertices of T (v;m), ρ∞c (T, v) gives the asymptotic
value of ρc(T (v;m)), scaled by the number of vertices, when m tends to infinity.
This number gives information on the effect of appending several vertices at vertex
v.

14
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Theorem 6.2 Let T (v;m) be as above. Then

ρ∞c (T, v) = dv. (14)

Proof. Let k = dv + 1. Also, let V be the vertex set of T , and d = (d1, d2, . . . , dn)
its distance vector. Then ρc(T (v;m)) may be written as follows

mk2 +
∑

w∈Pv
(σw +mk)2 +

∑
w 6∈Pv

σ2
w

mk2 +
∑

v d
2
v

=
k2 +

∑
w∈Pv

(σw+mk)2

m +
∑

w 6∈Pv

σ2
w

m

k2 +
∑

v
d2v
m

Note that the denominator here tends to k2 as m→∞. Moreover,

limm→∞(1/(m+ n))
(
k2 +

∑
w∈Pv

(σw+mk)2

m +
∑

w 6∈Pv

σ2
w

m

)
=
∑

w∈Pv
limm→∞

(σw+mk)2

m(m+n)

=
∑

w∈Pv
limm→∞

(σw/m+k)2

1+n/m

=
∑

w∈Pv
k2

= |Pv| · k2.

Therefore we get the limit

ρ∞c (T, v) = lim
m→∞

ρc(T (v;m))

n+m
=
|Pv| · k2

k2
= |Pv| = dv.

From this theorem, for m large, we obtain the approximation

ρc(T (v;m)) ≈ (n+m)dv

where n+m = |V (T (v;m)|.
We now turn to the coalescence of two trees. Let T0 and T1 be rooted trees with

disjoint vertex sets. Let v be a vertex in T0, and let v1 denote the internal root in T1.
Let T0⊕vT1 be the coalescence of T0 and T1 with respect to v, i.e., T0⊕vT1 is the tree
obtained by the union of T0 and T1 where the internal root v1 of T1 is identified with
v. Note that |V (T0⊕v T1)| = |V (T0)|+ |V (T1)|− 1. An example of this construction
is shown in Figure 5. We obtain different such trees depending on the choice of the
connecting vertex v. Recall that the distance in a tree T from its root to a vertex
v is sometimes indicated by d(T, v). Similarly, we write σ(T, v) =

∑
w�v d(T,w)

where the partial order refers to T . Let k = d(T0, v) and define

δT1
=

∑
w∈V (T1)\{v1}

d(T1, w) + (k − 1)(|V (T1)| − 1)

which only depends on T1 and k. We let V = V (T0 ⊕v T1).

Theorem 6.3 Let T0 and T1 be as above and let p and q be distinct vertices in T0

with d(T0, p) = d(T0, q) = k for some k, i.e., p and q have the same distance from
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the root. Then

ρc(T0 ⊕p T1) = ρc(T0 ⊕q T1) +
∆∑
v∈V d

2
v

(15)

where ∆ = 2δT1

(∑
v∈Pp\Pq

σ(T0, v)−
∑

v∈Pq\Pp
σ(T0, v)

)
. In particular,

ρc(T0 ⊕p T1) > ρc(T0 ⊕q T1)

if and only if
∑

v∈Pp\Pq
σ(T0, v) >

∑
v∈Pq\Pp

σ(T0, v).

Proof. To simplify notation, define Tp = T0 ⊕p T1 and Tq = T0 ⊕q T1, and let
V be the vertex set of Tp and Tq with the natural identification of vertices. Since
d(T0, p) = d(T0, q), it follows that the distances (from the internal root) are the same
in Tp and Tq, i.e., the distance functions d(Tp, ·) and d(Tq, ·) coincide. In particular,
for each v ∈ V (T1),

d(Tp, v) = d(Tq, v) = k + d(T1, v)− 1

as d(T1, v1) = 1 where v1 is the internal root in T1. Therefore∑
v∈V (T1)\{v1}

d(Tp, v) =
∑

v∈V (T1)\{v1}

(k + d(T1, v)− 1) = δT1
.

Now, σ(Tp, v) = σ(Tq, v) for all v 6∈ Pp∆Pq := (Pp \Pq)∪ (Pq \Pp), as for such v, the
subtrees {w : w � v} are the same in Tp and Tq. Moreover, σ(Tp, v) = σ(T0, v)+δT1

=
σ(Tq, v) + δT1

for all v ∈ Pp \ Pq, and σ(Tp, v) = σ(T0, v) = σ(Tq, v) − δT1
for all

v ∈ Pq \ Pp.
By summing over all v ∈ V we get∑

v∈V σ(Tp, v)2 −
∑

v∈V σ(Tq, v)2

=
∑

v∈Pp∆Pq
(σ(Tp, v)2 − σ(Tq, v)2)

=
∑

v∈Pp∆Pq
(σ(Tp, v)− σ(Tq, v))(σ(Tp, v) + σ(Tq, v))

=
∑

v∈Pp\Pq
δT1

(2σ(T0, v) + δT1
) +

∑
v∈Pq\Pp

(−δT1
)(2σ(T0, v) + δT1

)

= 2δT1

∑
v∈Pp\Pq

σ(T0, v)− 2δT1

∑
v∈Pq\Pp

σ(T0, v)

+δ2
T1

(|Pp \ Pq| − |Pq \ Pp|)

= 2δT1

(∑
v∈Pp\Pq

σ(T0, v)−
∑

v∈Pq\Pp
σ(T0, v)

)
= ∆

as |Pp \ Pq| = |Pq \ Pp| because d(T0, p) = d(T0, q). The theorem now follows.

Based on the previous theorem we may define a useful operation on a tree (using
the same notation as in the theorem). A switching is to replace the tree T0⊕p T1 by
the tree T0 ⊕q T1. Loosely speaking, this corresponds to “moving” the subtree T1

from a vertex p to a vertex q. In particular, a switching preserves all distances from
the root, and the change in ρc is described in Theorem 6.3.
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T0 r

v

T1

T0 ⊕v T1 r

v

Figure 5. The tree T0 ⊕v T1

The next result uses such switchings to maximize ρc for a given distance vector.
Let Dn denote the set of all distance vectors of rooted trees with n vertices, i.e., all
vectors d = (d1, d2, . . . , dn) with

1 = d1, 2 = d2 = . . . = di2 , 3 = di2+1 = . . . = di3 = · · ·

where 1 = i1 < i2 < i3 < · · · and ik = n for some k. For a given d ∈ Dn, let Cd
denote the (unique) caterpillar having distance vector d.

T :
r̄

vt vs

T ′:
r̄

vt vs

T ′′: r̄

Figure 6. Proof of Theorem 6.4 and Cd with d = (1, 2, 2, 2, 3, 3, 3, 4, 4, 5).

Theorem 6.4 Let d ∈ Dn. The maximum of ρc(T ) over all rooted trees with
distance vector d is attained for the caterpillar Cd, and no other tree attains this
maximum.

Proof. Suppose that T is not a caterpillar. We organize the tree T in k ≥ 1 levels,
where level s consists of vertices j with dj = s. The only vertex at level 1 is v1, the
internal root. Let vs and vt be two vertices at level 2 both being adjacent to at least
one vertex at level 3. Then two possible operations can be done:

(1) “moving” all vertices at level 3 from vs to vt, and
(2) the opposite, that is, “moving” all vertices from vt over to vs.

Both possibilities satisfy the condition of Theorem 6.3 and therefore must increase
ρc(T ). Then, choose the switching to vertex vs. As long as there are at least 2
vertices at level 2 as described above we continue this procedure. After that, only
one vertex at level 2 has adjacent vertices at level 3. Therefore we have a caterpillar
from the root r down to the level 2 considering all vertices except those that are
adjacent to vertices at level 4, if any. Then, if there are vertices adjacent to vertices
at level 4, consider again two vertices at level 3 and do the same procedure until we
get a caterpillar Cd with the same distance vector d as T .
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The construction in the proof of Theorem 6.4 is illustrated in Figure 6 for a
particular tree.

One may also consider the problem of minimizing ρc for a given distance vector.
This seems more difficult: the reverse of the operation used for maximization may
be used to reduce ρc, but this does not directly lead to a global minimizer.

Concluding remarks. We mention some interesting further questions to study
in this area; some work along these lines is in progress. As mentioned in the Intro-
duction, and given that ρc(T ) approximates the Perron value of the branch well, it
seems natural to use ρc(T ) for studying algebraic connectivity and approximation
of the characteristic set of a tree. Another interesting topic is if upper bounds on
the Perron value, better than ‖M‖1, may be found by distance-based techniques
similar to what we used here. Finally, is would be good to establish further results
on how the combinatorial Perron value reflects certain properties of trees.

Acknowledgment. The authors wish to thank two referees for very useful com-
ments that improved the paper significantly, and for suggestions for further work.
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