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Alternating sign matrices, extensions and
related cones

Richard A. Brualdi∗

Geir Dahl†

December 1, 2016

Abstract

An alternating sign matrix, or ASM, is a (0,±1)-matrix where the
nonzero entries in each row and column alternate in sign, and where
each row and column sum is 1. We study the convex cone generated by
ASMs of order n, called the ASM cone, as well as several related cones
and polytopes. Some decomposition results are shown, and we find a
minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly
stochastic matrices and a generalization of ASMs are introduced and
various properties are shown. For instance, we give a new short proof
of the linear characterization of the ASM polytope, in fact for a more
general polytope. Finally, we investigate faces of the ASM polytope,
in particular edges associated with permutation matrices.

Key words. Alternating sign matrix, doubly stochastic matrix, decomposi-
tion, cones.
AMS subject classifications. 05B20, 15B48.

1 Introduction

An alternating sign matrix ([20]), or ASM-matrix, is a (0,±1)-matrix where
the nonzero entries in each row and column alternate in sign, and where each
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row and column sum is 1. Let Pn be the set of n× n permutation matrices
and let An be the set of n× n alternating sign matrices. The convex hull of
Pn is the polytope Ωn of doubly stochastic matrices with dim Ωn = (n− 1)2

whose set of extreme points is Pn ([4, 21]). Let Λn be the convex hull of An.
The next result was shown in [3, 20], but we give a short argument for this
fact.

Theorem 1 The set of extreme points of Λn is An.

Proof. Let x ∈ {0,±1}n be an alternating sign vector (a row or column in
an ASM) which is a convex (positive) combination of other alternating sign
vectors x(k)s. In any position where x has a 1, each x(k) also has a 1, and the
same holds for −1. Moreover, there must be a position j where x has 0 and
some x(k) has 1, and therefore some x(p) has a −1. Choosing this position j
closest possible to a position where x, and therefore x(k) and x(p), has a 1, we
get a contradiction to the alternating property. This argument implies that
no ASM can be a convex combination of ASMs different from it.

It is also easy to see that dim Λn = (n−1)2. Note that we have Pn ⊆ An,
and Ωn ⊆ Λn. It is an elementary fact that the maximum number of linearly
independent permutation matrices in Pn equals (n− 1)2 + 1.

ASMs were defined by Mills, Robbins, and Ramsey who conjectured [16]
that the number of n× n ASMs equals

n−1∏
j=0

(3j + 1)!

(n+ j)!
.

This formula was proved in 1996 by Zeilberger [22], and independently
by Kuperberg [14] who showed a bijection between ASMs and configurations
of statistical physics known as square ice. An exposition of the fascinating
origins of ASMs and a history of this conjecture including its connection
with other combinatorial objects can be found in the book [9]. Spencer [19]
showed that the above formula is asymptotic to(

3
√

3

4

)n2

.

Let X be a set in a vector space. We let Cone(X) denote the convex cone
consisting of all nonnegative linear combinations of elements in X. A convex
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cone is called rational if it is generated by a set of rational vectors. X is
called a Hilbert basis provided every integer vector in Cone(X) is expressible
as a nonnegative integer linear combination of the vectors in X. It is proved
in [13] that every pointed1 rational cone is generated by a unique minimal
Hilbert basis. We refer to this unique minimal Hilbert basis of a pointed
rational cone Cone(X) as the H-basis of Cone(X). It is a classical result
of Carathéodory that in a rational cone Cone(X) of dimension d generated
by a finite set X = {x1, x2, . . . , xk} of rational vectors, every vector in the
cone can be expressed as a nonnegative linear combination of d vectors in X.
The integer analogue of Carathéodory’s theorem asks: What is the smallest
integer h(d) such that every integer vector in a pointed rational cone C of
dimension d can be expressed as a nonnegative integer linear combination of
h(d) vectors in the H-basis of C? It is known [11, 10] that

b(7/6)dc ≤ h(d) ≤ 2d− 1. (1)

Let Cone(Pn) and Cone(An) be, respectively, the cones generated by Pn

and An. Then Cone(Pn) ⊆ Cone(An), and both these cones have dimension
(n− 1)2 + 1. Since they are generated by rational matrices, they are rational
cones. Moreover, both cones are pointed since, if A is an ASM, then −A is
not.

The paper is organized as follows. In Section 2 we introduce some cones
containing Cone(An), and establish a so-called signed decomposition of an
ASM in terms of permutation matrices. Moreover, some properties of the
pattern of matrices in the ASM polytope Λn are found. The set of n × n
matrices having all line sums 1 and a related polytope are studied in Section
3, while Section 4 characterizes the sum of signed permutation matrices,
and shows related results. We introduce, in Section 5, a notion generalizing
ASMs based on a majorization concept. In particular, the notion of r-ASM is
studied. We obtain a polyhedral result characterizing the convex hull of such
r-ASMs, and obtain a decomposition result for r-ASMs as sums of ASMs.
From this we determine the H-basis of Cone(An). The final section focuses on
faces of the ASM polytope, in particular on edges of that polytope containing
permutation matrices. Characterizations of such edges are found. Finally,
we introduce and prove some results for a certain combinatorial distance of
ASMs to the set of permutation matrices.

1A cone is pointed provided it contains no line.
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Notation: Let Mm,n (resp. Mn) denote the vector space of all real m× n
(resp. n× n) matrices. The n× n all ones matrix is denoted by Jn (or just
J). A vector x = (x1, x2, . . . , xn) ∈ Rn is called nonnegative if xi ≥ 0 (i ≤ n).
The support of a matrix A = [aij], denoted by supp(A), is the set of positions
(i, j) with aij 6= 0. Let the all ones vector (of suitable dimension) be denoted
by e. For a set S (in a vector space) Span(S) (resp. Cone(S)) denotes the
subspace spanned by S (resp. the (convex) cone spanned by S). Similarly,
Conv(S) denotes the convex hull of S.

2 The ASM cone and related cones and poly-

topes

In this section, after discussing a classical decomposition involving n × n
permutation matrices and the cone they generate, we derive an analogous
decomposition result for n × n ASMs, and discuss the cone and polytope
they generate.

The following classical decomposition result ([6, 7]) will be used later.

Theorem 2 Let A be an n × n nonnegative integral matrix with equal row
and column sums, say equal to k. Then A may be decomposed as the sum of
k permutation matrices.

For a matrix A = [aij] ∈Mn, let Ri(A) =
∑n

j=1 aij and Sj(A) =
∑n

i=1 aij
be the ith row sum and jth column sum, respectively. Define

Ln = {A ∈Mn : R1(A) = · · · = Rn(A) = S1(A) = · · · = Sn(A)}

and
Kn = {A ∈ Ln : A ≥ O}.

Ln consists of the n × n matrices with all row and column sums equal, and
Kn is the subset of nonnegative such matrices.

Lemma 3 (i) Ln is a subspace of Mn and

Ln = Span(Pn) = Cone(Pn ∪ (−Pn)) = Cone(Pn ∪ {−Jn}).

Each integral matrix in Ln may be written as an integral nonnegative linear
combination of matrices in Pn ∪ (−Pn) and in Pn ∪ {−Jn}.
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(ii) Kn is a pointed rational cone and

Kn = Cone(Pn).

Each integral matrix in Kn may be written as an integral nonnegative linear
combination of matrices in Pn.

Proof. Statement (ii) follows from Theorem 2 (which again is shown in
[6]). Ln is clearly a subspace and it contains each permutation matrix and
−Jn, so Cone(Pn ∪ (−Pn)) ⊆ Ln. Let A ∈ Ln. Then A− αJn ≥ O where α
is the minimum of all entries in A and 0. By (ii), A− αJn is a nonnegative
linear combination of permutation matrices. Thus A ∈ Cone(Pn ∪ {−Jn}).
Also observe that Jn may be decomposed as a sum of n permutation matrices
(by Theorem 2). Then property (i) follows from these comments.

Example 1 The following shows a matrix A in L3 and a decomposition of
A:

A =

 −2 −1 −1
0 −2 −2
−2 −1 −1

 =

 0 1 0
1 0 0
0 0 1

+

 0 0 1
1 0 0
0 1 0

+ (−2)

 1 1 1
1 1 1
1 1 1

 .

Theorem 4 Pn is the H-basis of Cone(Pn).

Proof. By Lemma 3 every integral matrix in Cone(Pn) may be written as
an integral nonnegative linear combination of matrices in Pn. Therefore, Pn

is a Hilbert basis of Cone(Pn). Moreover, Pn is a minimal Hilbert basis of
this cone, since no permutation matrix can be expressed as a nonnegative
linear combination of the permutation matrices different from it. Actually,
such a linear combination of at least two matrices will have row sum at least 2
in the first row. As Cone(Pn) is pointed, the minimal Hilbert basis is unique,
and it must therefore be Pn.

A natural question is to find to the H-basis of Cone(An). We study this
question in Section 5.

We now turn to ASMs and prove that any ASM may be “decomposed”
in terms of permutation matrices.

5



Corollary 5 Let A ∈ An. Then there exist distinct permutation matrices
Pi ∈ Pn and λi ∈ {−1, 1} (i ≤ N) for some N such that

A = λ1P1 + λ2P2 + · · ·+ λNPN . (2)

Here N may be chosen so that N ≤ 2n+ 1.

Proof. The first part follows from Lemma 3, but to find N , we repeat the
construction. Let B = A+Jn where Jn is the n×n all ones matrix. Then B
is a nonnegative integral matrix with all row and column sums being n+ 1.
By Theorem 2, B may be written as a sum of n+1 permutation matrices, say
B =

∑n+1
i=1 Pi. Moreover, applying Theorem 2 to Jn, there are n permutation

matrices Pi (i = n+ 2, . . . , 2n+ 1) such that Jn =
∑2n+1

i=n+2 Pi. This gives

A = B − Jn =
n+1∑
i=1

Pi −
2n+1∑
i=n+2

Pi

as desired.

Example 2 Let

A+ J4 =


1

1 −1 1
1 −1 1

1

+ J4 =


1 2 1 1
2 0 2 1
1 2 0 2
1 1 2 1


= 2P1 + P2 + P3 + P4

= 2


1

1
1

1

+


1

1
1

1

+


1

1
1

1

+


1

1
1

1

 .
Now J4 = P1 + P2 + P3 + I so that

A = P1 + P4 − I.
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We call the representation of A in this theorem a signed decomposition.
Note that a matrix having a signed decomposition might not be an ASM. In
fact, Corollary 5 and its proof are valid for any (0,±1)-matrix in which each
row and column sums equals 1. From our results so far we have

Kn = Cone(Pn) ⊆ Cone(An) ⊆ Cone(Pn ∪ {−Jn}) = Ln.

The exact value of N in Corollary 5 may be smaller than 2n+ 1, as Example
2 shows. A smaller value of N , for a given matrix A, may be obtained as
follows. Let A ∈ An. Let k(A) be the maximum number of (−1)’s in a row
or column of A. By the alternating property of an ASM, k(A) + 1 is the
maximum number of +1’s in a row or column of A. Then k(A) equals the
smallest number k of permutation matrices P1, P2, . . . , Pk such that

k(A)∑
i=1

Pi + A ≥ O. (3)

This follows from the fact (see [7]) that a nonnegative integral matrix with
maximum line sum k, may be decomposed into a sum of k subpermutation
matrices.

Corollary 6 For any given ASM A, the smallest N in a signed decomposi-
tion of A is N = 2k(A) + 1, i.e., the maximum number of nonzeros in a row
or column of A.

Proof. We use the same technique as in the proof of Corollary 5. Now,
let B =

∑k(A)
i=1 Pi + A ≥ O, and argue as above. Note that B has all row

and columns sums equal to k(A) + 1, so B may be decomposed as a sum of
k(A) + 1 permutation matrices. That gives the desired signed decomposition
with N = 2k(A)+1 permutation matrices. Since A is an ASM, N also equals
the maximum number of nonzeros in a row or column of A.

Moreover, in A there is a row or column with N = 2k(A) + 1 nonzeros.
Since a permutation matrix, or its negative, contains exactly one nonzero in
any row or column, there must be at least N signed permutation matrices in
a decomposition of A.

In Example 2 we have such a decomposition with kA = 1 (only one
permutation matrix is needed to cover the single −1).

We now turn to the ASM polytope Λn defined to be the convex hull of the
n× n ASMs. The following result was shown in [3, 20].
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Theorem 7 ([3, 20]) Λn equals the set of n × n matrices A = [aij] with all
row and column sums being 1 and satisfying∑q

j=1 aij ≥ 0,
∑n

j=q+1 aij ≥ 0 (1 ≤ q ≤ n, 1 ≤ i ≤ n),∑p
i=1 aij ≥ 0,

∑n
i=p+1 aij ≥ 0 (1 ≤ p ≤ n, 1 ≤ j ≤ n).

(4)

This implies the following result for the ASM cone.

Corollary 8 Cone(An) equals the set of n× n matrices A = [aij] satisfying
A ∈ Ln and the linear inequalities (4).

Proof. Each ASM satisfies the linear inequalities in (4), due to the alternat-
ing structure in each line, and so does every nonnegative linear combination
of these.

Conversely, let A = [aij] ∈ Ln be a nonzero matrix that satisfies (4). Let
α be the common row and column sum in A. If α = 0, then the inequalities
(and induction) shows that A = O. So assume α > 0. Define B = (1/α)A.
Then all row and column sums of B are 1, and it is easy to see that B
satisfies the inequalities defining the ASM polytope (4), so, by Theorem 7,
B is a convex combination of ASMs. But then A = αB is nonnegative
combination of ASMs.

We now consider the patterns of matrices in the ASM polytope Λn. Pat-
terns of ASMs were also considered in [8]. A matrix in Λn will be called a
fractional ASM. (The term “fractional” here is used as in the area of poly-
hedral combinatorics, e.g., fractional matching.)

Let A = [aij] be a fractional ASM. Let the pattern of A be the n × n
(0, 1)-matrix P (A) = [pij] where pij = 0 if aij = 0 and pij = 1 if aij 6= 0.

Note that the polytope Ωn of n×n doubly stochastic matrices is contained
in Λn. We want to find properties of patterns of fractional ASMs. Note that
a fractional ASM may contain an r×s zero submatrix with r+s = n+1; this
is not true for a doubly stochastic matrix (due to König’s minmax theorem).
For example, with n = 3, the ASM 0 1 0

1 −1 1
0 1 0


has a 2× 2 zero submatrix with 2 + 2 = 4.

8

https://www.researchgate.net/publication/1760810_Higher_Spin_Alternating_Sign_Matrices?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==
https://www.researchgate.net/publication/2219365_The_alternating_sign_matrix_polytope?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==


Theorem 9 Let A be an n × n fractional ASM. Then A does not contain
an r × s zero submatrix with consecutive rows or consecutive columns where
r + s = n+ 1.

Proof. Suppose to the contrary that A contains an r × s zero submatrix
with r + s = n+ 1 and, say, consecutive rows. Then the r × n submatrix A′

determined by these r rows k+ 1, k+ 2, . . . , k+ r have a total sum of r. The
matrix A′ has s columns of zeros. The other n−s = r−1 columns of A′ each
have sum between −1 and 1. This is because for each such column, the sum
in rows k+ 1, k+ 2, . . . , k+ r is between 0 and 1, since the sum in rows 1 to
k is at least zero, the sum in rows k + r + 1, . . . , n is at least zero, and the
total sum in the column is 1. It follows that A′ has s columns summing to
zero and n− s = r − 1 columns summing to at most 1. Thus the total sum
of the columns of A′ is at most r − 1, a contradiction since the total sum of
the rows of A′ equals r.

For instance, when n = 3, the condition in Theorem 9 excludes zero rows
(r = 1, s = 3), zero columns (r = 3, s = 1) and zero 2× 2 submatrices with
consecutive rows or columns.

Consider the pattern

P =

 0 1 0
1 0 1
0 1 0

 .
Then P satisfies the condition in Theorem 9, but it is not the pattern of any
fractional ASM (because the pattern of A is less than or equal to P , and line
sums being 1 implies that A = P , but then a column sum is 2). This shows
that the converse of the theorem does not hold, so the patterns of fractional
ASMs satisfy further requirements.

Theorem 10 Let A be a fractional ASM. Then if A has an r × s zero sub-
matrix A1 whose complementary (n−r)× (n−s) submatrix A2 is also a zero
matrix, then r + s = n.

Proof. After permutations,

A =

[
Or,s A1,2

A2,1 On−r,n−s

]

9



where A1,2 is r × (n − s) and A21 is (n − r) × s. Since all row and column
sums of A equal 1, we have r = n− s.

Note that Theorem 10 holds provided only that A is a real matrix with all
row and column sums equal to 1. Theorem 9 uses the alternating property
in that consecutive elements in a row or column always sum to a number
between −1 and 1.

3 Signed doubly stochastic matrices

Motivated by our discussion of the polytope generated by n × n ASMs, we
investigate in this section, the affine set of doubly stochastic matrices with
the restriction of nonnegativity of entries removed.

Let P±n be the set of n× n signed permutation matrices (so permutation
matrices where some 1’s may be replaced with −1’s). Then every n×n ASM
is an integral nonnegative linear combination of n × n signed permutation
matrices. This follows from Corollary 5 since we can just use permutation
matrices and their negatives (a negative of a permutation matrix is a signed
permutation matrix). For instance

1

1 −1 1

1 −1 1

1

 =


1

1

1

1

+


−1

−1

−1

−1

+


1

1

1

1

 .

In a signed decomposition of an ASM one uses permutation matrices and
their negatives, and Corollary 6 gives the minimum number required in such
a decomposition. A natural question is therefore if fewer matrices are needed
when one allows signed permutation matrices, and this is answered in the
negative in the following corollary.

Corollary 11 For any given ASM A, the smallest number of signed permu-
tation matrices with sum A is N = 2k(A) + 1.

Proof. Corollary 6 shows that there exists a decomposion of A with N =
2k(A) + 1 signed permutation matrices (actually permutation matrices or
their negatives). Moreover, in A there is a row or column with N = 2k(A)+1
nonzeros. Since a signed permutation matrix contains exactly one nonzero

10



in any row or column, there must be at least N signed permutation matrices
in a decomposition of A.

We define an n × n real matrix to be (±)-doubly stochastic provided
all row and column sums equal 1, and we let Ω±n denote the set of all such
matrices. Ω±n is an affine set and

Ω±n = {A ∈ Ln : A = [aij],
n∑

j=1

a1j = 1}.

Using that a real matrix may be written as a difference between two non-
negative matrices, we shall find properties of Ω±n by investigating the closely
related set

Ω̂±n = {(A1, A2) ∈Mn ×Mn : A1, A2 ≥ O, A1 − A2 ∈ Ω±n }

where the patterns of A1 and A2 are disjoint (no common 1’s). If a ∈ R,
define a+ = max{a, 0} and a− = max{−a, 0}. So, a = a+−a−. For a matrix
A = [aij], define A+ = [a+

ij] and A− = [a−ij] and, therefore, A = A+ − A−. If

A ∈ Ω±n , then (A+, A−) ∈ Ω̂±n . It is clear that Ω̂±n is a pointed polyhedron
which is unbounded.

LetDn denote the directed graph with vertices u1, u2, . . . , un and v1, v2, . . . ,
vn and directed arcs (ui, vj) and (its backward arc) (vj, ui) for 1 ≤ i, j ≤ n;
this graph is very similar to the notion of complete flow grid in [20], see Sec-
tion 6. Let I = {u1, u2, . . . , un}, J = {v1, v2, . . . , vn} and V = I ∪ J . We let
Kn,n be the corresponding complete bipartite graph, obtained by replacing
the arcs (ui, vj) and (vj, ui) by an undirected edge uivj (1 ≤ i, j ≤ n). Let
T be a spanning tree in Kn,n, and let E(T ) denote its edge set. Consider an
edge e = uivj ∈ E(T ). If e is removed from T , the subgraph T \ {e} consists
of two disjoint trees (subtrees of T ), and we let V I

e (resp. V J
e ) be the vertex

set of the subtree containing ui (resp. vj). Define a matrix A = A(T ) = [aij]
by

aij = |J ∩ V J
e | − |I ∩ V J

e |

for each (i, j) with uivj ∈ E(T ), and aij = 0 otherwise. (We also have
aij = |I ∩ V I

e | − |J ∩ V I
e |.) Note that if the edge uivj is a leaf, so either V I

e

or V J
e consists of a single vertex, then aij = 1. We say that e = uivj ∈ E(T )

is balanced (for T ) if |J ∩ V J
e | = |I ∩ V J

e |, so aij = 0.
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Theorem 12 Let T be a spanning tree in Kn,n, and let A = A(T ). Then

(A+, A−) is an extreme point of Ω̂±n . Moreover, any extreme point of Ω̂±n
corresponds to some spanning tree in this way.

Proof. Let (B,C) be an extreme point of Ω̂±n and define A = B − C. Let
A = [aij], B = [bij] and C = [cij]. Then

1 =
∑n

j=1 aij =
∑n

j=1 bij −
∑n

j=1 cij (i ≤ n),

1 =
∑n

i=1 aij =
∑n

i=1 bij −
∑n

i=1 cij (j ≤ n).
(5)

These equations show that (B,C) is a nonnegative flow in the digraph Dn

where bij is the flow along the arc (ui, vj) and cij is the flow along the back-
ward arc (vj, ui). The divergence (net flow out) in vertex ui is 1, and the
divergence in vertex vj is −1; so vertices in I are supply vertices and those
in J are demand vertices. From network flow theory (see [1]) we know that
extreme points of the set of nonnegative flows with given divergence, corre-
spond to spanning trees in Dn, such that the flow is zero in all arcs outside
the spanning tree. Now, a (directed) spanning tree in Dn contains at most
one of the two arcs (ui, vj) and (vj, ui) (otherwise there is a cycle). This
means that spanning trees in Dn correspond to (undirected) spanning trees
in Kn,n. So, let T be a spanning tree in Kn,n. It only remains to verify that
the matrix A = A(T ), as defined above, is such that (A+, A−) is the tree
solution corresponding to the directed spanning tree associated with T . But,
this tree solution is unique as the coefficient matrix associated with this tree
is an invertible matrix of order 2n − 1. This matrix is obtained from the
coefficient matrix of size 2n × 2n2 in (5) by deleting one equation (which is
redundant) and only using the columns corresponding to the selected 2n− 1
arcs in the tree. Therefore it is sufficient to verify that A = A(T ) with
B = A+ and C = A− satisfies (5). Let i ≤ n. Then

n∑
j=1

aij =
∑

j:uivj∈E(T )

aij

=
∑

j:uivj∈E(T )

(|J ∩ V J
e | − |I ∩ V J

e |)

=
∑

j:uivj∈E(T )

|J ∩ V J
e | −

∑
j:vivj∈E(T )

|I ∩ V J
e |

= n− (n− 1) = 1
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u1

u2

u3

u4

u5

u6

u7

v1

v2

v3

v4

v5

v6

v7

A(T ) =



1 1 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 −1 0 2 0 0
0 0 1 0 0 0 0
0 0 0 1 −1 1 0
0 0 0 0 0 0 1


Figure 1: A spanning tree T and the matrix A(T ).

A similar calculation shows that
∑n

i=1 aij = 1. This completes the proof.

Example 3 Let n = 7. Figure 1 shows a spanning tree T and the associated
matrix A(T ). The edge u6v7 is balanced, so a67 = 0.

Remark: The set of n× n (±)-doubly stochastic matrices with entries
between −1 and 1, is a bounded polyhedron, and therefore a polytope, say
K±1

n . All extreme points of K±1
n are integral, so the extreme points are all

(0,±1)-matrices with line sums 1. The integrality follows from the fact that
the vertex-edge incidence matrix of a bipartite graph is totally unimodular
(see [18]). Thus Theorem 12 implies that any (±)-doubly stochastic ma-
trix may be written as a convex combination of matrices A(T ) for certain
spanning trees T in Kn,n.

We now study the patterns of (±)-doubly stochastic matrices. Let A =
[aij] be an n× n (0, 1)-matrix and assume that A has term rank n. Without
loss of generality we may assume that In ≤ A and that

A =


A1 A1,2 · · · A1,k

O A2 · · · A2,k
...

...
. . .

...
O O · · · Ak


where A1, A2, . . . , Ak are fully indecomposable matrices. Define a graph G =
G(A) with vertex set {1, 2, . . . , k} with an edge between i and j if and only
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if Aij 6= O. This graph is not connected if and only if A is a nontrivial direct
sum, in which case we have two smaller matrices to consider in place of A.
So we may assume that G is connected. Thus if P and Q are permutation
matrices such that

PAQ =

[
X1 X1,2

O X2

]
(6)

where X1 and X2 are square non-vacuous matrices, then X1,2 by the con-
nectivity assumption cannot be a zero matrix. If whenever (6) holds, then
X1,2 contains at least two 1’s, and we say that A is 2-connected. In fact,
this is equivalent to the graph G being 2-connected, that is, connected and
no bridge (an edge whose removal disconnects the graph), equivalently, G is
connected and every edge is in a cycle.

Since each Ai is fully indecomposable, there exists a (nonnegative) doubly
stochastic matrix Si whose pattern is Ai.

Theorem 13 Assume that A is 2-connected. Then there exists a (±)-doubly
stochastic matrix with nonzero pattern A which is nonnegative in the positions
of all of the diagonal blocks Ai.

Proof. For each i, let Si be a (nonnegative) doubly stochastic matrix whose
pattern is Ai. Thus⊕k

i=1Si is a (nonnegative) doubly stochastic matrix. Since
Ai is fully indecomposable, the bipartite graph of Si has the property that
there is a chain of positive entries between any pair of its vertices (alternate
vertical and horizontal steps).

If some Aij with i 6= j contains two 1’s in the same column, in its rows
p and q, then using the chain between p and q and alternating ε (as small
as needed) and −ε, we can obtain a (±)-doubly stochastic matrix where we
keep the pattern of Si and retain its nonnegativity, and also get nonzeros in
the positions of these two 1’s. We do a similar construction if the two 1’s are
in the same row. Finally if there are two 1’s in Aij but in different rows and
columns, we use a chain in Ai and a chain in Aj and again get nonzeros in the
positions of the 1’s, retaining the double stochasticity and the nonnegativity
of the diagonal blocks (by appropriate choice of ε’s).

Now we have only deal with at most one entry in each of the Aij. But,
with the same procedure, using the fact that each edge of G belongs to a
cycle and the chains in each of the bipartite graphs of the Si, we get a (±)-
doubly stochastic matrix which is nonnegative in the positions of Ai and has
the pattern of A.
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4 Signed permutation matrices and associ-

ated polytope

In this section we continue our investigations of the previous section by im-
posing a boundedness condition which reduces our affine set to a polytope.

Let Π±1 be the convex hull of the n×n signed permutation matrices (i.e.,
of the so-called hyperoctahedral group). Recall that a square (0, 1)-matrix
is a subpermutation matrix provided it has at most one 1 in each row and
column, and that a square nonnegative matrix is doubly substochastic (DSS)
provided all row and column sums are at most 1. For a real matrix A = [aij],
let |A| = [|aij|]. Then A is generalized doubly substochastic (GDSS) provided
|A| is doubly substochastic. The following theorem is known ([17]), but for
completeness we give a proof here.

Theorem 14 Π±1 is the set of n× n GDSS matrices.

Proof. First an n × n nonnegative matrix A is DSS if and only if it is in
the convex hull of the subpermutation matrices (of ranks 0, 1, 2, . . . , n): One
way is trivial. Now assume that A is DSS. Then

B =

[
A D1

D2 AT

]
,

where D1 (resp. D2) is the diagonal matrix of 1 minus the row sums (resp.
column sums) of A, is doubly stochastic. So B is a convex combination of
permutation matrices. Therefore A is a convex combination of subpermuta-
tion matrices.

Now let A = [aij] be a GDSS matrix so that |A| is a convex combination
of subpermutation matrices. A subpermutation matrix is an average of two
signed permutation matrices (complete to a permutation matrix using 1’s
and complete to a signed permutation matrix using −1’s). So |A| is a convex
combination of a set X of signed permutation matrices. For each entry aij of
A that is negative, change the (i, j)-entry of each P ∈ X to its negative (so
0 stays as 0). Then A becomes a convex combination of signed permutation
matrices.

Note that for real variables x1, x2, . . . , xn the inequality
∑n

j=1 |xj| ≤ 1 is
equivalent to the system of inequalities

∑n
j=1 sjxj ≤ 1 for all sj ∈ {−1, 1}

(j ≤ n). Using this in combination with Theorem 14 one obtains a charac-
terization of Π±1 in terms of linear inequalities.
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The cone generated by the n × n signed permutation matrices is all of
Mn. To see this, let A = [aij] be any n× n real matrix with r = max{|aij| :
1 ≤ i, j ≤ n}. Then (1/(rn))A is GDSS, so it is a convex combination of
signed permutation matrices. Thus A is a nonnegative linear combination of
signed permutation matrices, that is, the cone generated by the n×n signed
permutation matrices is Mn.

Suppose we now only consider nonnegative integral matrices. For instance

A =

 1 1 1
0 0 0
0 0 0

 .
Then (1/3)A is DSS and is a convex combination of six signed permutation
matrices, in fact, their average (decompose J2,3 into three subpermutation
matrices Q1, Q2, Q3 of rank 2, and extend each and their negatives to 3× 3
signed permutation matrices using 1’s in row 1). This gives 2A as a nonneg-
ative integral linear combination of six signed permutation matrices. But A
cannot be expressed as a nonnegative integral linear combination of signed
permutation matrices; see the next theorem.

Theorem 15 An n× n integral matrix A is the sum of signed permutation
matrices (that is, a nonnegative integral linear combination of signed permu-
tation matrices) if and only if all row and column sums are even or all are
odd.

Proof. Since adding a signed permutation matrix either increases or de-
creases a row sum (resp. column sum) by 1, if A is the sum of signed
permutation matrices then all row and column sums have the same parity.

Now assume that all row and column sums of A have the same parity.
By adding a multiple of Jn if necessary (since −Jn is the sum of signed
permutation matrices all of whose nonzeros equal −1), we can assume that
A is nonnegative. Also by adding In if necessary (since −In is a signed
permutation matrix), we can also assume that all row and column sums of
A are even.

Now let the row sum and column sum vectors of A be the vectors R =
(r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) of positive even integers. Let

p = max{r1, r2, . . . , rn, s1, s2, . . . , sn},
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an even integer. Define

R′ = (p− r1, p− r2, . . . , p− rn) and S = (p− s1, p− s2, . . . , p− sn).

Then R′ and S ′ are nonnegative, even integer vectors with the same sum of
components. Let

R′′ = (1/2)R′ and S ′′ = (1/2)S ′.

There exists a nonnegative integral matrix B = [bij] with row sum vector R′′

and column sum vector S ′′. The matrix C = A+ 2B = [cij] is a nonnegative
integral matrix with row and column sum vector equal to (p, p, . . . , p), and
hence C is the sum of p permutation matrices,

C =

p∑
l=1

Ql.

Now C is obtained from A by increasing each entry aij by a nonnegative even
integer. Of the cij permutation matrices Ql that contain a 1 in position (i, j)
change bij of those 1’s to −1’s. We do this independently for each position
(i, j). The result is that each Ql has become a signed permutation matrix Q′l
and

A =

p∑
l=1

Q′l.

Example 4 Let

A =

[
2 0
0 0

]
.

Then A is a sum of signed permutation matrices

A =

[
1 0
0 1

]
+

[
1 0
0 −1

]
,

but A is not the sum of ±(permutation matrices).

If A is an n × n integral matrix with all row and column sums even or
all odd, then the proof of Theorem 2 provides an algorithm to write A as a
nonnegative linear combination of signed permutation matrices:
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As in the proof construct the matrix B (easy algorithm) to obtain the
matrix C = A + 2B with constant p row and column sums. Then use
Birkhoff’s algorithm (as described in [5]) to express C as a nonnegative linear
combination of permutation matrices:

C =
t∑

i=1

Qi =
k∑

j=1

djPj (integral dj > 0),

where k ≤ (n − 1)2 + 1. Now proceed as in the proof of the theorem,
changing some of the 1’s in the Qi to −1’s. This expresses A as a sum of
signed permutation matrices and so as a positive integral linear combination
of signed permutation matrices.

5 Sum majorization and r-ASMs

We now introduce a generalization of ASMs which relates to the notion of
majorization. Based on this we will prove a decomposition result involving
sums of ASMs, and further use this to determine the H-basis of the ASM
cone.

Let B = [bij] be an n × n nonnegative matrix. We say that an n × n
matrix A = [aij] is sum-majorized by B if

0 ≤
∑j

j′=1 aij′ ≤ bij (1 ≤ i, j ≤ n),

0 ≤
∑i

i′=1 ai′j ≤ bij (1 ≤ i, j ≤ n),∑n
j=1 aij = bin (1 ≤ i ≤ n),∑n
i=1 aij = bnj (1 ≤ j ≤ n).

(7)

In particular, if B = J (the all ones matrix), we see that an integral matrix
A is sum-majorized by J if and only if A is an ASM. Moreover, by Theorem
7 [3, 20]) a real matrix is sum-majorized by J if and only if it is in Λn.

Another interesting special case is when B = rJ for a positive integer r.
We call an integral matrix A an r-ASM provided that A is sum-majorized
by rJ . Actually, this notion was studied in [3] under another name, namely
higher spin ASMs. It follows that the convex hull of the r-ASMs is the
convex hull of the set of matrices obtained from ASMs by multiplying by r.
To see this, observe that if A is in the convex hull of r-ASMs, then (1/r)A
is in the convex hull of ASMs and so is a convex combination of ASMs; thus

18

https://www.researchgate.net/publication/268824849_Notes_on_the_Birkhoff_Algorithm_for_Doubly_Stochastic_Matrices?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==
https://www.researchgate.net/publication/1760810_Higher_Spin_Alternating_Sign_Matrices?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==
https://www.researchgate.net/publication/1760810_Higher_Spin_Alternating_Sign_Matrices?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==
https://www.researchgate.net/publication/2219365_The_alternating_sign_matrix_polytope?el=1_x_8&enrichId=rgreq-cf4b9a777532482a8b68e9288ead288f-XXX&enrichSource=Y292ZXJQYWdlOzMxMTY3MTE5MDtBUzo0Mzk4MjQxNTE3ODEzNzZAMTQ4MTg3MzY1NzIzOQ==


multiplying by r we see that A is a convex combination of r times ASMs. So
the extreme points are nothing other than r times the ASMs. For instance,
the 2-ASM

A =

 1 1 0

0 1 1

1 0 1


is not an extreme point of the convex hull of 2-ASMs, since A is the convex
combination

A = (1/2)

 2 0 0

0 2 0

0 0 2

+ (1/2)

 0 2 0

0 0 2

2 0 0

 .
We now return to a matrix B as above and shall study the convex hull

of all integral matrices A that are sum-majorized by B.
Let D = (V,E) denote the directed graph with vertices vij (1 ≤ i, j ≤ n)

and arcs (vij, vi+1,j) and (vij, vi,j+1) for all i, j (where indices are defined).
Thus, the vertices correspond to the positions of an n × n matrix, and arcs
from a position go to the neighbor below or to the right.

Theorem 16 Let B = [bij] be an n×n nonnegative matrix. The convex hull
of all integral matrices that are sum-majorized by B equals the set of real
matrices A = [aij] satisfying the linear system in (7).

Proof. Let P∗ ⊆ Mn be the polyhedron consisting of all real matrices
A = [aij] satisfying the linear system in (7). For A = [aij] define Σ(A) as the
matrix S = [sij] where

sij =
∑

1≤i′≤i, 1≤j′≤j

ai′j′ (1 ≤ i, j ≤ n).

Then the map T : A → Σ(A) is an isomorphism, and therefore P∗ and its
image

Σ(P∗) = {Σ(A) : A ∈ P∗}

are isomorphic. Let A = [aij] and S = [sij] = T (A). Then A = T−1(S) is
given by

aij = sij + si−1,j−1 − si−1,j − si,j−1 (1 ≤ i, j ≤ n)

19



where we define s0j = 0 (1 ≤ j ≤ n) and si0 = 0 (1 ≤ i ≤ n). Moreover∑i
i′=1 ai′j = sij − si,j−1 (1 ≤ i, j ≤ n),∑j
j′=1 aij′ = sij − si−1,j (1 ≤ i, j ≤ n),∑
1≤i′≤i,1≤j≤n ai′j = sin (1 ≤ i ≤ n),∑
1≤i≤n,1≤j′≤j aij′ = snj (1 ≤ j ≤ n).

(8)

Note that this isomorphism T and its inverse T−1 preserve integrality, that
is, an integral matrix is mapped by T and T−1 into an integral matrix.

Now, we claim that Σ(P∗) is the set of matrices S = [sij] satisfying

0 ≤ sij − si,j−1 ≤ bij (1 ≤ i, j ≤ n),

0 ≤ sij − si−1,j ≤ bij (1 ≤ i, j ≤ n),

sin =
∑i

i′=1 bi′n (1 ≤ i ≤ n),

snj =
∑j

j′=1 bnj′ (1 ≤ j ≤ n).

(9)

If fact, if A satisfies (7), then, due to (8), S = Σ(A) satisfies (9). Conversely,
assume S = [sij] satisfies (9) and let A = T−1(S). Then A = [aij] satisfies
T (A) = S, so due to (8), A satisfies (7), as claimed.

The coefficient matrix in (9) is totally unimodular. To see this, note that
the first two constraints define the arc-vertex incidence matrix of the directed
graph D introduced above. Moreover, all the constants (right hand sides) in
the system are integers, as B is integral. A standard result from polyhedral
theory (see [18]) then implies that Σ(P∗) is an integral polyhedron, so all
extreme points are integral. From the properties of the isomorphism, P∗ is
integral, and this shows the theorem.

The proof above shows a connection between sum-majorization and net-
work flow potentials in the digraph D. Note that Theorem 7, originally shown
in [3, 20], is obtained as a corollary of Theorem 16; just let B = J . Thus, we
have a short proof via total unimodularity of the linear characterization of
the ASM polytope. As the proof shows, one can obtain an even more general
integrality result, where the given matrix B is replaced by a pair (B,C) of
matrices, one for partial row sum constraints and one for partial column sum
constraints. The partial sum matrix Σ(A) used in the proof of Theorem 16 is
called a corner-sum matrix in [3] and it is there used to investigate properties
of r-ASMs, which they called higher spin ASMs.
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We now show that the polyhedral cone spanned by r-ASMs has the integer
decomposition property. This result is an ASM analogue to Theorem 1 for
permutation matrices.

Theorem 17 Let A be a square matrix and r a positive integer. Then A is
an r-ASM if and only if there exist ASMs A1, A2, . . . , Ar such that

A = A1 + A2 + · · ·+ Ar.

Proof. We use the construction (and notation) given in the proof of The-
orem 16, with the matrix B = rJ .

Assume A is an r-ASM. Let S = [sij] = Σ(A) = T (A). Then S is
an integral matrix and satisfies (9). Note that S is nonnegative, as S is
nondecreasing in every row and column, and s0j = 0 (1 ≤ j ≤ n), si0 = 0
(1 ≤ i ≤ n). Define Qr as the set of nonnegative matrices satisfying (9).
Note that

Qr = rQ1 = {rC : C ∈ Q1}.

Qr is a polyhedron defined by a totally unimodular coefficent matrix, as
explained in the proof of Theorem 16. So, S is an integral matrix in Qr. We
may now apply a general result of Baum and Trotter, see Theorem 19.4 in
[18], saying that if x is an integral vector satisfying x ≥ O, Mx ≤ rb, where
M is a totally unimodular matrix, b is a nonnegative integral vector and r
a positive integer, then there are integral vectors x1, x2, . . . , xr ∈ {x ≥ O :
Mx ≤ b} with x = x1 + x2 + · · · + xr. So, in our situation, this theorem
shows the existence of r integral nonnegative matrices S1, S2, . . . , Sr ∈ Q1

such that
S = S1 + S2 + · · ·+ Sr.

Define Ai = T−1(Si) (i ≤ r). Since Si ∈ Q1, by Theorem 16, Ai is an ASM
(i ≤ r). And, finally,

A = T−1(S) = T−1(
r∑

i=1

Si) =
r∑

i=1

T−1(Si) =
r∑

i=1

Ai

which is the desired decomposition of A.
The converse statement, that the sum of r ASMs is an r-ASM, follows

directly from the definition.

We now return to the question of a H-basis for the ASM cone.
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Theorem 18 An is the H-basis of Cone(An).

Proof. Let A be an integral matrix in Cone(An). Then A must be an r-
ASM, for some positive integer r. In fact, let A =

∑N
j=1 λjAj where the λj’s

are nonnegative and each Aj is an ASM. Now, each Aj satisfies the linear

system (7) for B = J , and then A =
∑N

j=1 λjAj satisfies (7) for B = rJ

where r =
∑N

j=1 λj. This number r must be an integer, as the common line

sum of A is
∑N

j=1 λj = r and A is integral. So A is an r-ASM. By Theorem
17, A may be written as the sum of r ASMs. Thus, every integral matrix in
Cone(An) may be written as an integral nonnegative linear combination of
matrices in An. Therefore, An is a Hilbert basis of Cone(An).

Moreover, An is a minimal Hilbert basis of this cone, since no ASM can be
expressed as a integer nonnegative linear combination of the ASMs different
from it. Actually, such a linear combination of at least two matrices will have
row sum at least 2 in the first row. As Cone(An) is pointed, the minimal
Hilbert basis is unique, and it must therefore be An.

Since An is the H-basis of Cone(An) and the dimension of Λn is (n− 1)2,
it follows from (1) that every integer matrix in Cone(An) can be written as
a positive integer linear combination of at most 2(n− 1)2 − 1 ASMs.

6 Faces of the ASM polytope

In [20] one establishes a bijection between the set An of n×n ASMs and the
set Fn of so-called simple flow grids of order n. Moreover, faces of the ASM
polytope Λn may be described using this notion. In this section we discuss
this and study edges of Λn and a certain distance concept.

The complete flow grid Cn is a digraph with vertices

{(i, j) : 0 ≤ i ≤ n+1, 0 ≤ j ≤ n+1}\{(0, 0), (0, n+1), (n+1, 0), (n+1, n+1)}.

So there are n2+4n vertices, of which n2 are internal (those with 1 ≤ i, j ≤ n,
in a square formation) and 4n are boundary vertices. The edges of Cn consist
of all edges in both directions between internal vertices (that are adjacent in
the grid, horizontally or vertically) and an edge from a vertex on the border
of the square of internal vertices to the obvious boundary vertex.

Given A ∈ An, the mentioned correspondence is: The vertex (position)
corresponding to each 1 of A is a source, and so has an edge from it to each
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of the neighboring vertices. The vertex (position) corresponding to each −1
of A is a sink, and so has an edge to it from each of the neighboring vertices.
This determines the simple flow grid corresponding to A in that, to construct
the remaining edges connecting neighboring vertices one continues the edges
from each source until one either hits a sink or a boundary vertex. Note that,
in a simple flow grid, there are four edges incident to each internal vertex:
either four edges directed inward (when that entry is −1), four edges directed
outward (when that entry is 1), or two horizontal edges pointing in the same
direction and two vertical edges pointing in the same direction (when that
entry is 0). In particular, both the inward degree and the outward degree of
a vertex are even numbers and their sum is 4.

For example, if

A =


1

1 −1 1
1 −1 1

1

 ,

Figure 2: The simple flow grid of A (some missing arrows).

then we initially get the graph in Figure 2. Now continue arrows until one
hits a boundary vertex. In this example, the −1’s are surrounded by 1’s, so
there are no arrows into the sinks that have to be continued “backwards”.

Note that in case the ASM A is actually a permutation matrix, then
the corresponding simple flow grid is a union of n directed 4-path stars (four
directed paths emanating from a vertex of various lengths) centered at each
vertex corresponding to a 1, with no edges in common.

An n× n elementary flow grid is a subgraph of Cn whose edge set is the
union of the edge sets of simple flow grids (so they are determined by a subset
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X ⊆ An of n × n ASMs). It is shown in [20] that the face lattice of An is
isomorphic to the lattice of all n×n elementary flow grids; in particular, faces
of the n× n ASM-polytope Λn are in one-to-one correspondence with n× n
elementary flow grids. Moreover, it is possible to determine the dimension of
a face of Λn (see [20]); it is in terms of doubly directed regions (here doubly
directed means an edge in both directions between a pair of vertices) of an
elementary flow grid. For a set X of n × n ASMs let G(X ) be the graph
obtained from the elementary flow grid associated with X by replacing a
pair of bidirected edges by an undirected edge, and removing the remaining
edges. G(X ) is clearly planar, and we now prove the following connectivity
result.

Theorem 19 Let X be a set of at least two n×n ASMs. Then each connected
component of G(X ) is 2-connected, or equivalently, every edge is contained
in a cycle. Therefore, G(X ) determines connected plane regions bounded by
closed curves (cycles).

Proof. Consider a doubly directed edge. We can assume without loss of
generality that this doubly directed edge is horizontal joining vertices (p, k)
and (p, k+ 1). Thus there is a simple flow grid, an ASM A = [aij] in X , with
an edge (p, k) → (p, k + 1) and another simple flow grid, an ASM B = [bij]
in X with an edge (p, k + 1) → (p, k). Then it follows that apk = 0 or 1
and bpk = 0 or − 1. There are four possible combinations and each such
combination yields another doubly directed edge at (p, k):

(i) apk = 0 and bpk = 0: a doubly directed edge joining vertices (p, k − 1)
and (p, k).

(ii) apk = 1 and bpk = 1: a doubly directed edge joining vertices (p, k − 1)
and (p, k).

(iii) apk = 0 and bpk = −1: a doubly directed edge joining vertices (p, k)
and either (p− 1, k) or (p+ 1, k).

(iv) apk = 1 and bpk = 0: a doubly directed edge joining vertices (p, k) and
either (p− 1, k) or (p+ 1, k).

Thus there exists another doubly directed edge at (p, k).

Let X be a set of at least two n×n ASMs. Then the dimension of the face
of Λn that corresponds to the elementary flow grid of X , is the number of
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plane-connected regions determined by the cycles of G(X ), but not counting
the unbounded region outside the edges. More precisely, each such region is
bounded by the edges of a cycle C, and any two points in the region may
be connected by a curve which does not cross any of the edges or vertices
of C. In particular, the edges of Λn (one-dimensional faces) correspond to
elementary flow grids with exactly one cycle of doubly directed edges.

Now, consider two distinct permutation matrices P = [pij] and Q = [qij]
of order n. Let P ⊕2 Q be the mod 2 sum of P and Q; this matrix has a 1 in
position (i, j) if and only if exactly one of pij and qij is 1 (i, j ≤ n). Each row
and column of P ⊕2Q is either the zero vector or it contains two ones. These
ones form disjoint cycles in the bipartite graph Kn,n, and we also call these
cycles in P ⊕2Q. In fact, the cycles in P ⊕2Q correspond to the permutation
cycles of P relative to Q, that is, the permutation cycles of PQ−1 of length
more than 1. Assume that there exist i1 < i < i2 and j1 < j < j2 such that
P ⊕2 Q contains a 1 in all the positions (i, j1), (i, j2), (i1, j), (i2, j). Then,
pij = qij = 0, and we say that (i, j) is a crossing of P ⊕2 Q. With this
terminology we obtain the following result on certain edges of Λn.

Theorem 20 Let P,Q ∈ Pn. Then P and Q form an edge of the n×n ASM
polytope Λn if and only if P ⊕2 Q has a unique cycle and no crossing.

Proof. Consider the elementary flow grid corresponding to X = {P,Q}.
For every line (row or column) where the 1 in P and the 1 in Q are in
different positions, i.e., P ⊕2 Q contains two ones, there are doubly directed
edges on the path between these two positions in the elementary flow grid.
Then G(X ) contains vertices corresponding to all positions between two 1s
in the same line of P ⊕2 Q, and edges of paths between such pairs of 1s. It
is clear that each vertex of G(X ) has degree 2 or 4.

Assume that P and Q form an edge of Λn. Then G(X ) contains exactly
one cycle, and this implies that P ⊕2 Q has at most one cycle. Moreover,
if P ⊕2 Q has a crossing, then the graph G(X ) has at least one vertex of
degree 4. Then G(X ) has at least two cycles, and so does the flow grid; a
contradiction. So P ⊕2 Q has no crossing.

Conversely, assume that P ⊕2Q has a unique cycle and no crossing. Then
G(X ) is a cycle (plus isolated vertices) so it determines only one bounded
plane-connected region and therefore P and Q form an edge of Λn.

Note that this theorem shows that there is a stronger condition for two
permutation matrices to form an edge of the ASM polytope Λn than what
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is the case for the doubly stochastic polytope Ωn. Recall that in Ωn one-
dimensional faces correspond to pairs of permutation matrices P,Q such
that PQ−1 is a permutation matrix with exactly one cycle of length > 1. We
refer to [6] for a treatment of faces, and edges, of Ωn and to [12] for edges of
an interesting subpolytope.

Example 5 Let

P =


1

1
1

1

 and Q =


1

1
1

1

 .
Here P ⊕2 Q has a unique cycle. The union of their corresponding simple
flow grids is an elementary flow grid whose graph G({P,Q}) has two cycles,
see Figure 3. Moreover there is a crossing in (2, 2), so P and Q do not form

Figure 3: G({P,Q}).

an edge of Λn. Actually, the face corresponding to the elementary flow grid
has dimension 2. For example, the ASM

1
1 −1 1

1
1


is an extreme point of this two-dimensional face. Note, however, that P and
Q form an edge of the polytope Ω4.

If P and Q are two permutation matrices of order n, then the graph
G({P,Q}) is obtained by drawing horizontal and vertical lines between 1’s
of P and Q in the same row or column. In Example 5 the 1’s of P and Q
correspond to the corners of the diagram presented.

From the discussion above of the results of [20] we have the following
characterization of edges of Λn.
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Theorem 21 ([20]) Let A,B ∈ An. Then A and B form an edge of the
n × n ASM polytope Λn if and only if G({A,B}) consists of a unique cycle
(and isolated vertices).

Example 6 Let n = 6. Let A1 be the identity matrix, and A2 be the
permutation matrix obtained from A1 by interchanging row 2 and 5. Then
the graph G({A1, A2}) is shown in Figure 4. There is only one bounded
connected region, so the dimension of the face is 1, and therefore A1 and A2

form an edge of Λ6.

Figure 4: The graph G({A1, A2}).
.

Next, let A3 be the permutation matrix obtained from A2 by interchang-
ing row 3 and 4. The graph G({A1, A2, A3}) is shown in Figure 5. There are
two bounded connected regions, so the dimension of the face is 2.

Figure 5: The graph G({A1, A2, A3}).
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Example 7 Let

A =


1

1 −1 1
1 −1 1

1

 and P1 =


1

1
1

1

 .
The graph G({A,P1}) is shown in Figure 6.

Figure 6: The graph G({A,P1}).

There are three bounded connected regions so by Theorem 21, A and P1 do
not form an edge of Λn. On the other hand, if

P2 =


1

1
1

1

 ,
then G({A,P2}) is the graph shown in Figure 7.

Figure 7: The graph G({A,P2}).

Here there is only one bounded connected region, so A and P2 form an edge
of Λn.

Let P and Q be n × n permutation matrices. Let a be the number of
cycles of length > 1 of P relative to Q (the number of permutation cycles
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of PQ−1). The dimension of the smallest face 〈P,Q〉Ωn of Ωn containing P
and Q equals a, and the face is a hypercube of dimension a whose vertices
correspond to the subsets of the cycles (2 choices for each cycle) so 2a vertices.

Now consider the smallest face 〈P,Q〉Λn of Λn containing P and Q. For
i ≤ n, let j1(i) ≤ j2(i) denote the columns in which P and Q (in some order)
contain a 1 in row i. Similarly, for j ≤ n, let i1(j) ≤ i2(j) denote the rows in
which P and Q contain a 1 in column j. Define Z1 as the set of (i, j) where
i ≤ n and either j < j1(i) or j > j2(i). Similarly, let Z2 be the set of (i, j)
where j ≤ n and either i < i1(j) or i > i2(j). Finally, define

ZP,Q = Z1 ∪ Z2 and EP,Q = {1, 2, . . . , n}2 \ ZP,Q,

and let XP,Q be the (0, 1)-matrix with support EP,Q. For instance, from P
and Q in Example 5, we get

XP,Q =


0 1 0 1
1 1 1 0
1 1 0 0
0 0 1 1

 .
Let CP,Q denote the set of positions (i, j) such that (i, j) is a crossing of
P ⊕2 Q.

Proposition 22 Let P and Q be n× n permutation matrices. Then

EP,Q = supp(P ) ∪ supp(Q) ∪ CP,Q.

Proof. From the definition of EP,Q one sees that (i, j) ∈ EP,Q if and only if

i1(j) ≤ i ≤ i2(j) and j1(i) ≤ j ≤ j2(i).

If all these four inequalities are strict, (i, j) is a crossing of P ⊕2 Q, so
(i, j) ∈ CP,Q. Otherwise, when at least one inequality holds with equality,
either P or Q has a 1 in position (i, j). This gives the result.

In general, for a polyhedron H, defined by a system of linear inequalities,
one calls an inequality in the system an implicit equality if each point in H
satisfies the inequality with equality ([18]).
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Theorem 23 Let P and Q be n×n permutation matrices. The face 〈P,Q〉Λn

of Λn consists of all real n× n matrices A = [aij] satisfying∑q
j=j1(i) aij ≥ 0,

∑j2(i)
j=q+1 aij ≥ 0 (j1(i) ≤ q ≤ j2(i), 1 ≤ i ≤ n),∑p

i=i1(j) aij ≥ 0,
∑i2(j)

i=p+1 aij ≥ 0 (i1(j) ≤ p ≤ i2(j), 1 ≤ j ≤ n),∑j2(i)
j=j1(i) aij = 1 (1 ≤ i ≤ n),∑i2(j)
i=i1(j) aij = 1 (1 ≤ j ≤ n),

aij = 0 ((i, j) ∈ ZP,Q).

(10)

The only implicit equalities in the system (10) are the equations in the three
last lines of (10), and the dimension of 〈P,Q〉Λn is

(n− 1)2 − |ZP,Q|+ t− 1

where t is the number of cycles of P relative to Q (that is, of PQ−1). In
particular, an ASM lies in the face 〈P,Q〉Λn if and only if all its nonzeros
are in the set EP,Q, and such matrices are the vertices of 〈P,Q〉Λn.

Proof. Let P = [pij] and Q = [qij]. 〈P,Q〉Λn is a face of Λn, and, by The-
orem 7, Λn is characterized by the system (4) of linear inequalities, plus the
linear equations saying that each row and column sum is 1. By polyhedral
theory (see chapter 8 of [18]), any face of a polyhedron H is obtained by
replacing some of the linear inequalities defining H by corresponding equali-
ties. In our setting, we obtain the desired face by finding those inequalities in
(4) that hold with equality for both P and Q. In fact, the inequalities in (4)
that hold with equality for both P and Q hold with equality for all matrices
in the face 〈P,Q〉Λn , for otherwise we could find a smaller face containing
P and Q (by putting such an inequality to equality). Clearly, an inequality
which holds only for one of P and Q can not be put to equality.

Let i ≤ n. For each j < j1(i),

j∑
j′=1

pij′ = 0 and

j∑
j′=1

qij′ = 0.

Therefore, for each i ≤ n, both P and Q satisfy the equations aij = 0 for
j < j1(i), and, by similar arguments, aij = 0 for j > j2(i). Similarly, for each
j ≤ n, both P and Q satisfy aij = 0 for i < i1(j) or i > i2(j). This implies
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that P and Q satisfy (10), so each matrix A in the face 〈P,Q〉Λn must also
satisfy (10).

Finally, consider the remaining inequalities in (4), i.e., those that are
different from those discussed in the previous paragraph. First, let i ≤ n,
and consider

(∗)
q∑

j=1

aij ≥ 0

for some q with j1(i) ≤ q ≤ j2(i). If q = j2(i), this inequality is redundant,
as, by the discussion above, every matrix in 〈P,Q〉Λn satisfies

∑q
j=1 aij =

1. If q < j2(i), then exactly one of P and Q satisfies inequality (∗) with
equality because, say, pij1(i) = 1 and qij2(i) = 1, then

∑q
j=1 pij = 1 while∑q

j=1 qij = 0. So, the face 〈P,Q〉Λn is not contained in the hyperplane given
by
∑q

j=1 aij ≥ 0. Similar arguments also show that 〈P,Q〉Λn is not contained
in the hyperplane given by any of the other remaining inequalities in (4). This
shows that the only implicit equalities in the system (10) are those stated in
the theorem. Now, the dimension of a polyhedron equals the dimension of
the underlying space minus the rank of the coefficient matrix of the implicit
equalities.

To compute this rank, note that one can assume that P and Q have no
common 1’s since they add nothing. One can regard the coefficient matrix
as the vertex-edge incidence matrix of a graph with 2n vertices (correspond-
ing to the equations summing to 1) and |EP,Q| edges (corresponding to the
entries of EP,Q. Then the rank is 2n− c where c is the number of connected
components of the graph. The number of connected components is the num-
ber t of cycles of P relative to Q (that is, of PQ−1). Thus the dimension of
the face 〈P,Q〉Λn is

|EP,Q| − (2n− c) = n2 − |ZP,Q| − 2n+ t = (n− 1)2 − |ZP,Q|+ (t− 1).

By the previous paragraph, the ASMs in the face 〈P,Q〉Λn are precisely the
ASMs that satisfy (10), or equivalently, the ASMs with all nonzeros in the
positions in EP,Q. All ASMs are extreme points of Λn, so the last statement
is due to Minkowski’s theorem; a bounded polyhedron is the convex hull of
its vertices (extreme points).

In Example 5, as mentioned above, |ZP,Q| = 7, so the dimension of the
corresponding face is 32 − 7 = 2 as we saw before.

Using the notation above, we say that a position (i, j) 6∈ ZP,Q is fixed if
i1(j) = i2(j) or j1(i) = j2(i); otherwise (i, j) is called non-fixed. If position
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(i, j) is fixed, then each matrix A = [aij] ∈ 〈P,Q〉Λn satisfies aij = 1; this
follows from Theorem 23. Concerning the non-fixed positions, we have the
following result.

Corollary 24 Let P and Q be n × n permutation matrices. For each non-
fixed position (i, j) there exists an ASM in the face 〈P,Q〉Λn with a nonzero
in position (i, j).

Proof. If not, each ASM A = [aij] in the face would satisfy aij = 0 and
this contradicts the statement concering the implicit equalities in Theorem
23.

Example 8 Consider two 9× 9 permutation matrices with 1’s specified by
a’s and b’s, respectively:

a b
a b

a b

b a
b a

b a

a b
a b

a b


.

The shaded areas below give the crossings:

a b
a b

a b

b a
b a

b a

a b
a b

a b


.

Thus, the set EP,Q consists of the shaded positions in the following matrix,
and any ASM in the face 〈P,Q〉Λn has its nonzeros only in such positions.
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


.

Let P andQ be distinct permutation matrices of order n. Due to Theorem
23, any permutation matrix R all of whose 1’s are in EP,Q belongs to the face
〈P,Q〉Λn from which it follows that the number of permutation matrices in
this face equals the permanent of EP,Q.

In Example 6 the three permutation matrices have no pairwise crossings.
This implies that the face of Λ6 they determine not only has dimension 2 but
the only ASMs in the face are permutation matrices. This argument holds
in general, so we have the following result.

Corollary 25 If permutation matrices P1, P2, . . . , Pr have no pairwise cross-
ings, then the face they determine in Λn is the same as the face they determine
in Ωn.

We now consider the final topic of this paper. For two n × n ASMs, let
d(A,B) be the distance between A and B in the 1-skeleton of Λn (the graph
with vertex set An and an edge between A1 and A2 whenever these two ASMs
form an edge of Λn). Thus d(A,B) equals the minimum number of edges of
a path connecting A and B in the 1-skeleton of Λn. Also define the distance
to the set of permutation matrices as follows

dPn(A) = min{d(A,P ) : P ∈ Pn} (A ∈ An).

So, dPn(A) = 0 if and only if A is a permutation matrix. For the ASM A in
Example 7 we have dPn(A) = 1 as d(A,P2) = 1.

Theorem 26 Let A be an n × n ASM, and let σneg(A) be the number of
(−1)’s in A. Then

dPn(A) ≤ σneg(A).
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Proof. If σneg(A) = 0, then A = [aij] is a permutation matrix and the
result is clear, so assume σneg(A) ≥ 1. We shall construct an ASM B which
is adjacent to A, so d(A,B) = 1, and satisfies σneg(B) = σneg(A)− 1.

Choose a position (i1, j1) with ai1j1 = −1 and such that there is no
(i, j) 6= (i1, j1) with i ≥ i1, j ≥ j1, and aij = −1. Then there is a unique
i2 > i1 with ai2j1 = 1. Moreover, ai2j = 0 for each j > j1 (by the ASM
property and since no such entry can be −1). Similarly, there is a unique
j2 > j1 with ai1j2 = 1. Then aij2 = 0 for each i > i1. In particular, ai2j2 = 0.

Let B = [bij] be obtained from A by defining

bi1j1 = bi2j1 = bi1j2 = 0, bi2j2 = 1,

and bij = aij for all other (i, j). Then B is an ASM. In fact, in row i1 we
removed the last two nonzeros, so this row is still alternating and has sum
1. In row i2 we just moved the last nonzero, a 1, from column j1 to column
j2 > j1, so this row is still alternating and has sum 1. Similar arguments are
valid for columns j1 and j2. No other rows or columns are changed, so this
shows that B is an ASM. We also have σneg(B) = σneg(A)−1. Moreover, the
graph G(A,B) contains a single cycle, corresponding to the rectangle given
by the four vertices (i1, j1), (i2, j1), (i1, j2), (i2, j2). Therefore, by Theorem
21, A and B are adjacent.

Clearly, we may repeat this process, now applied to B, and eventually,
after σneg(A) steps we reach a permutation matrix. It follows that dPn(A) ≤
σneg(A).

We next improve the bound in Theorem 26. For 1 ≤ i, j ≤ n define
Iij = {(i′, j′) : i ≤ i′ ≤ n, j ≤ j′ ≤ n} \ {(i, j)}, which is the rectangle of
position below and to the right of (i, j), except (i, j) itself. Let A = [aij] be
an n× n (0,±1)-matrix A. Define

W (A) = {(i, j) : aij = −1, ai′j′ ≥ 0 ((i′, j′) ∈ Iij)}.

Let A+ be the matrix obtained from A by changing the entry in each position
(i, j) ∈ W (A) from −1 to 0. Then σneg(A

+) = σneg(A) − |W (A)|. We
construct a sequence of matrices, starting with A and using this operation
until we have a nonnegative matrix:

A0 = A, A1 = A+
0 , A2 = A+

1 , . . . , Ak = A+
k−1 ≥ O

This number k is uniquely determined by A, and we define κ(A) = k. If A
is nonnegative, we let κ(A) = 0.
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Theorem 27 Let A be an n× n ASM. Then

dPn(A) ≤ κ(A).

Proof. We use the same construction as in the proof of Theorem 26, with
the following modifications. Let B be obtained from A as follows: for each
(i, j) ∈ W (A) replace the submatrix corresponding to Iij by the zero ma-
trix, and, finally, let bnn = 1. Then B is an ASM, and d(A,B) = 1, be-
cause G(A,B) contains the single cycle corresponding to the boundary of
∪(i,j)∈W (A)Iij.

Then we repeat the process for smaller matrix obtained from B by delet-
ing the last row and column. This gives the desired inequality.

As the referee pointed out the construction used in the proof of Theorems
26 and 27 is similar to the construction of the pseudo-key of an ASM and
the key of an ASM as given in [2] and [15].

We remark that completely similar results to Theorem 27 may be obtained
by symmetry. In Theorem 27 we considered modifications using sets Iij
defined by lower-right positions. But a similar construction works for lower-
left, upper-right and upper-left index sets, or even for a combination of these
methods.

Example 9 Let n ≥ 3 and let An be the n× n ASM with (−1) in positions
(2, n− 1), (3, n− 2), . . ., (n − 1, 2), and 1’s in the adjacent positions, while
there are zeros elsewhere. For instance, the matrix A in Example 7 equals
A4.

Then we see that W (An) contains all the positions of the (−1)’s in A, so
κ(A) = 1. So, by Theorem 27, dPn(An) = 1.

Acknowledgment. The authors wish to thank a referee for very useful
comments, and for pointing out a connection to [2, 15].
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