

Detecting Anomalies in

Underwater Ambient Noise
Using ARMA Models

Yngve Åm

Thesis submitted for the degree of

Master of Science in
Electronics and Computer Technology

60 credits

Department of Physics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

January 2017

 I

Abstract

This thesis explores two alternative methods for detecting anomalies in

underwater ambient noise. Both methods are based on ARMA modeling. The

anomalies in question are unknown sound sources such as ships or biological

organisms that mix with the ambient noise and alter the overall characteristics

of the received acoustic signal. The performance of the two methods is tested on

simulated and real data sets, and is compared to that of an energy detector.

Anomaly detection is done either by successively estimating ARMA

parameters and calculating Mahalanobis distances to a baseline model, or by

computing prediction errors from the model and testing the errors for serial

correlation. Both methods give rise to a chi-squared test statistic.

Results show that the ARMA methods perform better than an energy

detector. The energy detector itself is observed to perform significantly better

when differencing is applied to the signal before mean square values are

calculated.

Of the two ARMA methods, the prediction method is found to be the better

one. It is both able to detect fainter anomalies than the successive estimation

method and is found to have more desirable statistical properties.

The two ARMA methods are viewed as different approaches to feature

extraction in an overall classification framework where the ambient noise

represents the normal class and anomalies such as ships are examples of an

anomaly class.

A supervised method for reducing the dimensionality of the feature space is

proposed that can be seen as a combination of principal component analysis and

linear discriminant analysis. Experiments on simulated and real data sets appear

promising for supervision in general but further study is needed to determine if

the proposed algorithm has any real benefit over regular linear discriminant

analysis.

During the course of the work, a MATLAB program has been developed that

implements all the methods discussed in the thesis. Output figures from the

program are used throughout, and the most important functions are listed in the

Appendix.

 II

 III

Acknowledgements
This work would not have been possible without the help of my two excellent

supervisors. My university supervisor, Andreas Austeng at the Department of

Informatics, helped me set up a 10-credit special curriculum in advanced

statistical signal processing. Discussing this curriculum with him and others from

the Digital Signal Processing and Image Analysis group was an ideal preparation

for my thesis work. Since the outset, he has offered invaluable advice on

methodology and academic writing.

My external supervisor, Lars Ødegaard at the Norwegian Defence Research

Establishment provided the original project proposal for the thesis. His feedback

has encouraged me to keep looking for new ways to improve my solution. As a

researcher in the field of underwater acoustic signal processing, he has given me

several important course corrections along the way which have helped increase

the relevance of my work.

I would like to thank both my supervisors for all their help, as well as their

patience, since this work has been carried out on a part-time basis over a longer

period than what is usual for a master’s thesis.

I would also like to thank my friends and family for their support and

encouragement throughout this period. I am looking forward to spending more

time with you all now that the work is done.

Yngve Åm

Oslo, January 2017

 IV

 V

Contents

1 Introduction .. 1

1.1 Anomaly Detection Using ARMA Models .. 1

1.2 Thesis Outline ... 3

1.3 Notes on Bibliography .. 3

2 Theoretical Background .. 5

2.1 Multivariate Normal Variables ... 5

2.1.1 The Multivariate Normal Distribution 5

2.1.2 Decorrelation by SVD ... 10

2.1.3 Dimensionality Reduction in Classification Problems 12

2.2 ARMA Modeling of Stochastic Processes 14

2.2.1 Stochastic Processes .. 14

2.2.2 The ARMA Model .. 15

2.2.3 Prediction Errors ... 17

2.2.4 Testing for Serial Correlation .. 18

2.2.5 Parameter Estimation ... 20

2.2.6 Order Selection .. 26

2.2.7 Distribution of Estimates .. 27

3 ARMA-Based Anomaly Detection ... 29

3.1 Hypothesis Testing.. 29

3.1.1 Successive Estimation Method .. 29

3.1.2 Prediction Method ... 30

3.1.3 ARMA Estimators .. 31

3.2 Unsupervised Detection .. 32

3.2.1 Overview of Procedure .. 32

3.2.2 Details of Procedure .. 33

3.3 Modeling an Ambient Noise Signal ... 35

3.4 Detecting a Sinusoid in Noise ... 39

3.4.1 Energy Detector .. 40

3.4.2 ARMA-Based Detectors .. 43

3.4.3 Summary of Results .. 48

 VI

3.4.4 Adding Noise to Real Data Sets ... 48

3.5 Dimensionality Reduction ... 49

3.5.1 Analyzing the Feature Space .. 49

3.5.2 Fisher’s Linear Discriminant ... 52

3.5.3 Finding an Orthogonal Component .. 52

3.5.4 Example: Mapping a Data Set from ℝ to ℝ 56

3.5.5 Finding Multiple Orthogonal Components 60

3.6 Supervised Detection .. 67

4 Experiments on Hydrophone Data ... 71

4.1 No Added Noise .. 72

4.1.1 Energy Detector .. 72

4.1.2 Successive Estimation ... 73

4.1.3 Prediction .. 76

4.2 Added Noise .. 78

4.2.1 Energy Detector .. 78

4.2.2 Successive Estimation ... 79

4.2.3 Prediction .. 80

4.3 Adjusting Parameters ... 82

5 Conclusion and Further Work ... 85

5.1 Conclusion ... 85

5.2 Further Work.. 85

List of Abbreviations .. 87

Appendix: MATLAB Code ... 89

Bibliography ... 95

 1

1 Introduction

In passive sonar, underwater microphones, or hydrophones, are used to record

acoustic signals. Unlike active sonar, passive sonar does not rely on emitting

sound waves to its surroundings. This makes it a quiet way of monitoring ocean

activity and detecting objects like ships, submarines or biological organisms.

When passive sonar is used for detection, the processing performed on the

acoustic signal is often designed to look for specific acoustic signatures of known

objects. But when the goal is to detect unknown objects with an unknown

acoustic signature, such an approach is not feasible.

The work documented in this thesis has been carried out in response to a

project proposal written by Lars Âdegaard at the Norwegian Defence Research

Establishment (FFI). In it he suggested that detection of unknown objects could

be done by building a statistical model of the underwater ambient noise, and

performing tests on new data designed to detect deviations from this model. More

specifically, the suggested model was the autoregressive moving average (ARMA)

model, which is a fundamental tool in time series analysis and statistical signal

processing. The project proposal did not say how detection should be performed,

but cited some examples of research in various fields where ARMA models had

been used to detect changes from a normal state.

In this thesis, some possible ways of using ARMA models to detect anomalies

in ambient noise will be examined. Hydrophone data from the Lofoten-Vesterålen

Ocean Observatory (LoVe) has been provided by FFI. This data will be used to

build a model of the ambient noise and to test the detection methods.

1.1 Anomaly Detection Using ARMA Models

When the phrase “anomaly detection” is used in the context of time series

analysis, it often refers to finding individual points in a time series that can be

classified as outliers or anomalies. See for example Louni (2005) and the

references therein. These methods are not particularly interesting in the context

of anomaly detection as it is defined here. The reason is that the acoustic signals

from hydrophones typically consist of thousands of samples per second. So

instead of looking for single samples that do not conform with our model, it is

more desirable to work on whole segments of data and try to find ways of

characterizing the segments that are sensitive to changes in the underlying

system.

In other fields, ARMA models have been used to characterize sensor data

this way. For instance, in the field of structural health monitoring, Gul and

Catbas (2009) estimated AR parameters for segments of accelerometer data and

used statistical analysis of the parameter vectors to find outliers corresponding

to damaged structures. A similar approach was used by Bao et al. (2012) to

detect damages in subsea pipeline systems. Both methods relied on scoring the

 2

parameter vectors by their Mahalanobis distance (see Section 2.1.1) or some

function of this distance.

ARMA models have also received some attention in the field of EEG analysis.

Subasi (2005) investigated AR modeling as an approach to detecting epileptiform

discharges. Similarly, Faust et al. (2007) explored AR modeling in the context of

detecting epileptic and alcoholic states. In both articles, the AR models were

used to obtain estimates of the power spectral density (see Section 2.2.1) of the

underlying process.

The above methods are examples of what will be referred to as detection

through successive estimation. In this approach, segments of data are obtained

by some measurement process and an AR or ARMA model is fitted to each

segment. Detection is done by using some function of the parameter vector to

characterize the state of the underlying system and label it as either normal or

abnormal.

 As explained in Aggarwal (2013, pp. 225–232), another way to detect

anomalies using ARMA models is to first fit a model to data from the normal

state and subsequently compare new data with predictions from this model. This

has for instance been used to detect anomalies in communication networks

(Pincombe, 2005). When such an approach is taken, one can make use of the fact

that the prediction errors, or residuals, of a true ARMA model will be normally

distributed during the normal state of the system. Consequently, one can use the

normal distribution to detect outliers among individual residuals or aggregates

of residuals.

When searching for methods that rely on tests being performed on whole

data segments using a prediction-based approach, I have not been able to find

much literature. For the most part, it seems like prediction is used to detect

individual outlier points in the data.

However, in time series analysis, a common way of checking the validity of a

fitted ARMA model is to perform a hypothesis test on the model residuals called

the Ljung-Box test (Box et al., 2008). This test takes the data that was used to

fit the model and computes the residuals from the model. It then looks for serial

correlations in the residuals to determine if the ARMA model fits the data. It is

not unnatural, then, to ask if a test such as the Ljung-Box test can be used to

look for lack of fit in new data and thus be employed to detect deviations from

a normal state.

The two methods I have chosen to focus on in this thesis, are based on

successive estimation and prediction. The successive estimation method can be

seen as a simplified version of the approach in the structural health monitoring

articles referred to above.

Unlike in those articles, no preprocessing such as normalization will be

performed on the time series data. Additionally, p-values will be calculated

directly from the squared Mahalanobis distance instead of some other function

of the distance that is assumed to be normally distributed.

 3

The prediction method is an adaptation of the Ljung-Box test, where the

only difference is the degrees of freedom used for the distribution of the test

statistic.

1.2 Thesis Outline

Chapter 2 deals with the theory of multivariate normal (MVN) variables and

ARMA modeling of stochastic processes that will be used in Chapter 3 to perform

anomaly detection. Special attention is given to whitening transformations and

prediction errors, as these two concepts are fundamental to the methods

examined in subsequent chapters.

Chapter 3 starts by specifying the hypothesis tests that the detection

methods are based on, and goes on to describe the general approach taken in this

thesis to designing and testing detectors. Next, an ARMA model is built from

hydrophone data and subsequently used to simulate ambient noise in order to

test the performance of the detection methods on sinusoids in noise. Finally, an

algorithm for supervised dimensionality reduction is introduced and

demonstrated on simulated data. The algorithm may very well have been

proposed by others in the past, but since I haven’t found evidence of that in

literature, I introduce it as my own generalization of Fisher’s linear discriminant

(see Section 2.1.3).

In Chapter 4, experiments are conducted on a real hydrophone data set

containing both ambient noise at different wind speeds, ship noise and whale

sounds. As in the previous chapter, the detection methods are compared to each

other and to an energy detector. In some of the experiments, simulated noise is

added to the data set in order to create a more challenging situation for the

detectors and test their performance on fainter anomalies.

1.3 Notes on Bibliography

Much of what is covered in the theory chapter and used throughout the thesis

is material found in typical textbooks in statistical signal processing, time series

analysis and pattern recognition. But readers coming from different fields may

find some topics more obscure than others.

For general theory on statistical signal processing, Scharf (1991) and Hayes

(1999) have been consulted extensively. For theory on spectral estimation, Stoica

and Moses (2005) has been a valuable companion. The latest edition of the classic

work by Box et al. (2008) has been the primary reference for time series analysis.

Duda et al. (2001) has been the principal source for general classification theory

and Aggarwal (2013) for the theory of anomaly detection.

 4

 5

2 Theoretical Background

The following is a summary of the theoretical foundations of the methods

examined in this thesis. The reader is expected to be familiar with the material

covered by a typical undergraduate course in each of the following subjects: linear

algebra, multivariate calculus, univariate statistics and digital signal processing.

For readers who are also familiar with statistical signal processing, time series

analysis and multivariate statistics, this chapter will serve as a review of the

relevant material, as well as provide some motivation for the methods presented

later on.

2.1 Multivariate Normal Variables

In multivariate statistics, the ideas and methods of univariate statistics are

generalized to vectors made up of several random variables. By employing the

language of linear algebra, one is able to represent these generalized methods and

ideas in a compact form, useful both for analysis and software implementation.

Consequently, many general results and techniques from linear algebra can be

readily applied to solve statistical problems. In addition, the geometric

perspective offered by linear algebra notation can sometimes contribute

significantly to our understanding of the problems at hand.

2.1.1 The Multivariate Normal Distribution

A vector 𝐱 = [𝑥 𝑥 ⋯ 𝑥] where all the elements are random variables, is

known as a random vector.1 When all the elements of the vector are normally

distributed, their joint probability distribution is called a multivariate normal

distribution. Like its univariate analog, the MVN distribution is defined by two

parameters – the mean vector and the covariance matrix:

𝐱 ~ 𝑁(𝝁,𝚺)

𝝁 = 𝐸[𝐱] = [𝜇 𝜇 ⋯ 𝜇]

𝚺 = 𝐸[(𝐱 − 𝝁)(𝐱 − 𝝁)] = 𝜎

𝜎 = 𝐸 (𝑥 − 𝜇) 𝑥 − 𝜇

(2.1)

The probability density function (PDF) of the MVN distribution is given by

 𝑓(𝐱) =
1

(2𝜋) / |𝚺| /
exp −

1

2
(𝐱 − 𝝁) 𝚺− (𝐱 − 𝝁) , (2.2)

1 The notation in this thesis does, for the most part, not distinguish between a
random variable and a realization of that variable. Often, upper case letters would
be used for the variable itself while lower case letters would be used for the
realization. But to avoid confusion between random variables and matrices, boldface
capital letters will only be used to denote matrices.

 6

where |𝚺| is the determinant of the covariance matrix. This function assigns a

probability density (a scalar value) to a point 𝐱 in ℝ . For 𝑑 = 1 it reduces to

the familiar PDF of the univariate normal distribution.

The multivariate normal distribution has been widely studied as it is a

convenient way to represent sets of correlated normal random variables. The

treatment here will be limited to properties of the distribution that are needed

for this thesis. More details can be found in Scharf (1991) and Duda et al. (2001).

The quadratic form in the exponent of the PDF is known as the squared

Mahalanobis distance from the point 𝐱 to the distribution mean 𝝁, or simply the

squared Mahalanobis distance of 𝐱:

 𝑟 (𝐱) = (𝐱 − 𝝁) 𝚺− (𝐱 − 𝝁) (2.3)

By substituting this into the equation for the PDF, we see that the density is

just an exponential function of the squared Mahalanobis distance, multiplied by

a constant:

 𝑓(𝐱) = 𝑘𝑒− () (2.4)

It can be shown that the scaling constant 𝑘 ensures that the integral over ℝ is

equal to 1, which is necessary for the function to be a probability density.

The equation 𝑟 = 𝑐, for some constant 𝑐, defines a level curve of constant

density for the PDF. In general, this will be a hyperellipsoid in ℝ , which is a

generalization of the ellipse to higher dimensions. The MVN distribution is

therefore known as an elliptical distribution. The semi-axes 𝒂 of the

hyperellipsoid can be found from the eigenvectors and eigenvalues of the

covariance matrix:

𝚺 = 𝐕𝚲𝐕

𝐕 = [𝐯 𝐯 ⋯ 𝐯]

𝚲 = diag(𝜆 , 𝜆 ,⋯ , 𝜆)

𝒂 = 𝑟 𝜆 𝐯

(2.5)

Figure 2.1 shows the PDF of a two-dimensional MVN distribution as a

surface in three dimensions. An ellipse of constant density is shown below the

surface, along with its two semi-axes. In addition, 400 points have been drawn

from the distribution and plotted in the same plane as the ellipse. The plane has

been shifted down on the z-axis to make it more visible. The parameters of the

distribution are

 𝝁 =
3
2

, 𝚺 =
0.7 0.2
0.2 0.3

. (2.6)

 7

Figure 2.2 shows a similar plot of the multivariate standard normal

distribution, i.e. 𝐱 ~ 𝑁(𝟎, 𝐈), which means that the vector elements are

independent standard normal variables. Note that in this special case, the semi-

axes are equal in length and line up with the coordinate axes. The level curves

then become circles with radius 𝑟 centered at the origin. For higher dimensions,

the hyperellipsoids reduce to hyperspheres in ℝ . The multivariate standard

normal distribution is therefore known as a spherical distribution.

Figure 2.1: A two-dimensional multivariate normal distribution.

 8

Distribution of the Squared Mahalanobis Distance

To further understand the Mahalanobis distance, we will need to use some

properties of linear transformations of MVN random variables. When such

transformations are formed using a full rank matrix 𝐀 ∈ ℝ , the resulting

variable will be MVN with parameters as given below:

 𝐱 ~ 𝑁(𝝁,𝚺); 𝐲 = 𝐀𝐱 ⇒ 𝐲 ~ 𝑁(𝐀𝝁,𝐀𝚺𝐀) (2.7)

An important feature of the Mahalanobis distance is that it can be seen as

the Euclidian norm of a standard normal random vector (Wicklin, 2012). This

fact allows us to derive the distribution of 𝑟 . Given a matrix 𝐀 = 𝚺− / such

that 𝐀 𝐀 = 𝚺− , the squared Mahalanobis distance becomes

 𝑟 = (𝐱 − 𝝁) 𝐀 𝐀(𝐱 − 𝝁) = ‖𝐀(𝐱 − 𝝁)‖ = ‖𝐳‖ . (2.8)

That 𝐳 is standard normal follows from the properties of linear transformations

given above:

𝐳 = 𝐀(𝐱 − 𝝁)

𝐸[𝐳] = 𝐀𝐸[𝐱 − 𝝁] = 𝐀(𝝁 − 𝝁) = 𝟎

𝐸[𝐳𝐳] = 𝐀𝚺𝐀 = 𝚺− / 𝚺 𝚺− / = 𝐈

⇒ 𝐳 ~ 𝑁(𝟎, 𝐈)

(2.9)

Figure 2.2: The two-dimensional multivariate standard normal distribution.

 9

Since the squared norm of a standard normal vector is just a sum of squared

independent standard normal variables, 𝑟 will be chi-squared distributed with 𝑑

degrees of freedom:

 𝑟 = ‖𝐳‖ = 𝑧
=

⇒ 𝑟 ~ 𝜒 (2.10)

The chi-squared probability density function is given by

 𝑓(𝑥) =
1

Γ(𝐿/2)2 /
𝑥(/)− 𝑒− / ; 𝑥 ≥ 0, (2.11)

where Γ(∙) is the gamma function. The probability of observing a point 𝐱 with

Mahalanobis distance or higher is thus

 𝑃(𝑟 ≥ 𝑐) = 𝑓(𝑥) 𝑑𝑥 = 1 − 𝐹(𝑐), (2.12)

where 𝐹(∙) is the cumulative density function (CDF) of the chi-squared

distribution.

Whitening Transformations

We arrived at the distribution of 𝑟 by assuming that we could find a matrix

𝐀 such that 𝐀 𝐀 = 𝚺− . In fact, there will be an infinite number of matrices 𝐀

that satisfy this condition (Kessy et al., 2016). Such matrices can be used to

transform a normal random vector into a standard normal one. This is often

referred to as a whitening transformation, as it transforms the vector into an

uncorrelated white noise vector (see Section 2.2.1).

Note that since a whitening transformation is easily reversible, no information

is lost when a random vector is decorrelated. It is just a means of representing

the vector in a way that can be useful under certain circumstances. When the

covariance matrix is known, a common choice for 𝐀 is found from the Cholesky

factors of 𝚺:

𝚺 = 𝐋𝐋

𝚺− = (𝐋𝐋)− = (𝐋)− 𝐋− = (𝐋−) 𝐋−

⇒ 𝐀 = 𝐋−

(2.13)

More on Cholesky factorization and its applications in signal processing can be

found in Scharf (1991).

In practice, the covariance matrix is rarely known. However, given

observations drawn from the distribution, we can get an estimate 𝚺 of the true

covariance matrix. Whitening transformations can then be constructed from this

 10

estimate, or directly from the matrix of observations. In the next section, we will

see an example of the latter, where a whitening transformation is constructed

from the singular value decomposition (SVD) of the data matrix.

2.1.2 Decorrelation by SVD

The singular value decomposition of an 𝑁 by 𝑝 matrix 𝐗, where 𝑁 ≥ 𝑝, is a

factorization given by

 𝐗 = 𝐔𝐒𝐕 (2.14)

where 𝐔 and 𝐕 are orthogonal matrices and 𝐒 is a diagonal matrix. The SVD is

widely used in statistics and has many interesting properties not covered here.

Details on the SVD can be found in Scharf (1991).

Given 𝑁 observations of a normal random vector, an unbiased estimator for

the covariance matrix is the sample covariance matrix

 𝚺 =
1

𝑁 − 1
(𝐱 − �̂�)(𝐱 − �̂�)

=

, (2.15)

where

 �̂� =
1

𝑁
𝐱

=

 (2.16)

is the sample mean. If the observations are organized as the rows of a data matrix

 𝐗 =

⎣

⎢
⎢
⎡

𝐱

𝐱
⋮

𝐱 ⎦

⎥
⎥
⎤

∈ ℝ ; 𝑁 > 𝑑 (2.17)

and we form a matrix of repeated sample means,

 𝚳 =

⎣

⎢⎢
⎡
�̂�

�̂�
⋮

�̂� ⎦

⎥⎥
⎤

∈ ℝ , (2.18)

Eq. (2.15) can be rewritten as

𝚺 =

1

𝑁 − 1
(𝐗 − 𝚳) (𝐗 − 𝚳)

𝚺 =
1

𝑁 − 1
𝐗 𝐗

(2.19)

 11

where 𝐗 = 𝐗 − 𝚳 is called the centered data matrix.

Recall that a matrix 𝐀 such that 𝐀 𝐀 = 𝚺− can be used to decorrelate a

normal vector. Start by expressing 𝚺− in terms of the data matrix as

 𝚺− = (𝑁 − 1)(𝐗 𝐗)− . (2.20)

Now, let

 𝐗 = 𝐔𝐒𝐕 (2.21)

be the SVD of the centered data matrix. Then

𝐗 𝐗 = 𝐕𝐒 𝐕

(𝐗 𝐗)− = (𝐕)− 𝐒− 𝐕−

(𝐗 𝐗)− = (𝐕𝐒−)(𝐒− 𝐕),

(2.22)

since 𝐕 = 𝐕− . The inverse sample covariance matrix is thus

 𝚺− = (𝑁 − 1)(𝐕𝐒−)(𝐒− 𝐕) (2.23)

To absorb the factor (𝑁 − 1), form a new diagonal matrix

 𝐃 =
𝐒

√
𝑁 − 1

. (2.24)

and define 𝐀 as

 𝐀 = 𝐃− 𝐕 . (2.25)

Then it follows from (2.23) and (2.25) that

 𝐀 𝐀 = 𝚺− . (2.26)

This means that the linear transformation 𝐲 = 𝐀(𝐱 − �̂�) is an estimate obtained

from data of the “true” whitening transformation 𝐲 = 𝚺− / (𝐱 − 𝝁) that could

be formed if 𝝁 and 𝚺 were known parameters.

Note from (2.22) and (2.5) that 𝐕 is in fact the matrix of eigenvectors of the

sample covariance matrix, while 𝐃 is the diagonal matrix of corresponding

eigenvalues. Another way of obtaining the transformation is therefore to do an

eigenvalue decomposition of 𝚺.

Since the transformation is an estimate, the quality of this estimate depends

on the amount of data used. In particular, it depends on the ratio 𝑁/𝑑. Since we

 12

are essentially estimating 𝑑 + 1 parameters (�̂� and the rows of 𝐀) from 𝑁 data

points (the rows of 𝐗), it is generally desirable to have 𝑁 ≫ 𝑑.

To perform the transformation on all the vectors in a data matrix, define it

in terms of the transpose, so that

 𝐲 = (𝐱 − �̂�) 𝐕𝐃− . (2.27)

This leads to
 𝐘 = (𝐗 − 𝐌)𝐕𝐃− , (2.28)

where 𝐌 is made to have the same number of rows as 𝐗. After the

transformation has been created and 𝐀 = 𝐕𝐃− and �̂� have been stored, it is

therefore a simple task to perform it on another data matrix later on.

An instructive way to view (2.28), is as a coordinate transformation, or

change of basis. Multiplying by 𝐕 effectively represents the data in a coordinate

system where the eigenvectors of 𝚺 are the coordinate axes. Multiplication by

𝐃− then scales the variance along each of these axes to unity.

The ordered structure of 𝐕 and 𝐃 further ensures that the first element of

the transformed vectors will be coordinates along the first eigenvector, and so

on. This means that the 𝑛 first columns of 𝐘 represent normalized coordinates

along the 𝑛 first eigenvectors of 𝚺. By selecting these and removing the rest, we

will have represented the data in terms of 𝑛 vectors or components along which

the spread of the data is the highest. This is known as doing a principal
component analysis (PCA) of the data. It can be understood as projecting the

data onto an 𝑛-dimensional subspace of ℝ spanned by the most descriptive

eigenvectors of 𝚺. More on PCA can be found in Shlen (2003).

2.1.3 Dimensionality Reduction in Classification Problems

In classification theory, the general problem consists of designing a classifier

that turns observations into decisions. The observations come in the form of

random vectors whose elements are called features. These features are the result

of some kind of processing done on raw data. Given a feature vector, the classifier

needs to determine which among a discrete set of classes the vector comes from.

The classes may represent types of real-world objects or something more abstract.

In many situations, the feature vectors from each class can be modeled as

multivariate normal variables.

The success of any classifier depends heavily on the features it uses to

distinguish between classes. Feature selection is therefore an important part of

building a classification system. After some extraction algorithm has been

implemented to produce a set of features from raw data, one cannot simply

assume that they are all equally useful for discriminating between classes. One

might find that some features can be discarded altogether, while others may be

strongly correlated and can be combined into a single feature.

 13

A classical approach to dimensionality reduction in classification is

performing a principal component analysis on the data from one or multiple

classes. This amounts to forming linear combinations of the original features that

represent coordinates along the directions in which the data varies the most. A

problem with PCA in the context of classification is that, while the combination

of features it forms are optimal for describing the data under the assumption of

normality, they may not be the best for discriminating between different classes

(Duda et al., 2001).

Another classical method for dimensionality reduction is known as linear

discriminant analysis (LDA). Here, the focus is on finding linear combinations of

the features that best separate the data from different classes. In the two-class

problem, one seeks to find a vector 𝐰, formed so that when the data is projected

onto it by 𝐰 𝐱, the difference in the sample means is large relative to the

combined sample variance of the classes. In other words, one wants the means

to be far apart and the sum of the variances to be small for the projected data.

This can be expressed by the following criterion:

 𝐽(𝐰) =
[𝐰 (�̂� − �̂�)]

𝐰 𝚺 + 𝚺 𝐰
, (2.29)

where the subscripts refer to the two classes. 𝐽(𝐰) can be understood as a signal-

to-noise ratio (SNR) where the difference in means is measured against the noise

contributed by the combined variance of the two classes. It can be shown that

the vector that maximizes the SNR is given by

 𝐡 = arg max 𝐽(𝐰) = 𝚺 + 𝚺
−

(�̂� − �̂�). (2.30)

This is called Fisher’s linear discriminant (FLD). Details on the derivation of the

discriminant can be found in Duda et al. (2001, pp. 117–121).

The fact that LDA uses labeled data from both classes to form the projection,

makes it a supervised learning technique. If such labeled data is available, it is

generally a good idea to make use of the information it contains when designing

a classifier, even if the goal is just to detect anomalies (Aggarwal, 2013, p. 169).

An advantage of PCA over LDA, however, is the flexibility one has in

choosing the dimension of the lower-dimensional subspace that the data is

projected into. In LDA with two classes one is forced to work in just one

dimension, although this one-dimensional subspace is optimal in the sense just

described.

In this thesis, the general problem of detecting anomalies in underwater

ambient noise is framed as a classification problem with two classes, where

ambient noise represents the normal class and anomalies in the form of ship noise

or biological sounds is grouped together as an anomaly class. The remainder of

this chapter is devoted to the feature extraction approach that will be used to

 14

turn the raw data of sonar time series into useful features for classification –

namely ARMA modeling.

2.2 ARMA Modeling of Stochastic Processes

In the following sections, the general concept of ARMA modeling in time

series analysis and statistical signal processing is introduced. Special attention is

paid to prediction errors and the view of ARMA modeling as a means of

decorrelating a stochastic process. Next, some common algorithms for ARMA

parameter estimation are presented, as well as some ways of selecting the order

of an ARMA model.

2.2.1 Stochastic Processes

An indexed set of random variables is known as a stochastic process. Discrete-

time signals that cannot be explained by a deterministic model, are commonly

modeled as the realization of a stochastic process. Just as there may be an infinite

number of possible realizations of a random variable, a stochastic process may

have an infinite number of possible realizations.

An important property of a stochastic process 𝑥 is its autocorrelation

function (ACF), defined as 𝑟 = 𝐸[𝑥 𝑥]. It is a deterministic function that

describes the degree of correlation between variables of the process at different

points in time.

A discrete-time stochastic process is said to be stationary if all the statistical

properties of the random variables stay the same over time. This is, however, a

very strict requirement. More commonly, the models used to describe discrete-

time signals, or time series, assume only that the process is wide sense stationary
(WSS). A stochastic process is said to be WSS if the mean and variance are

constant and the ACF only depends on the difference 𝑘 = 𝑡 − 𝑙. The last

condition is another way of saying that the correlation between the variables of

the process is not a function of time, but only of how far apart they are in time.

If a WSS process has non-zero mean, it can easily be transformed to a zero-mean

process by simply subtracting the mean. It will therefore be assumed that any

WSS process referred to here has zero mean.

In a similar way that a deterministic signal can be represented in the

frequency domain via the discrete-time Fourier transform (DTFT), the power
spectral density (PSD) or power spectrum provides a frequency domain

representation of a WSS stochastic process. It is defined as the DTFT of the

autocorrelation function:

 𝑃(𝑒) = 𝑟 𝑒−

=−

 (2.31)

The PSD is a continuous, real-valued function of the radian frequency 𝜔 that

describes how the power of the process is distributed across frequencies. Since it

 15

is a density, the total power in a specific frequency band is proportional to the

integral over that band.

A stochastic process whose autocorrelation function is zero for all lags except

lag zero, i.e. 𝑟 = 𝜎 𝛿 , is known as white noise with variance 𝜎 . When the

variables of a white noise process are normally distributed, it is referred to as

Gaussian white noise. Note that if we compute the power spectrum of a white

noise process using Eq. (2.31), it will yield a constant value of 𝜎 for all

frequencies. This means that the power is evenly distributed across all

frequencies.

2.2.2 The ARMA Model

A common way to model WSS processes is the autoregressive moving average
model, where the process 𝑦 is assumed to be governed by the difference equation

𝑎 𝑦 − = 𝑏 𝑢 −

==

; 𝑎 , 𝑏 = 1

𝑢 ~𝑁(0, 𝜎); 𝐸[𝑢 𝑢] = 𝜎 𝛿 − .

(2.32)

Here, {𝑎 } are the autoregressive (AR) coefficients and {𝑏 } are the moving

average (MA) coefficients, while 𝑢 is Gaussian white noise with variance 𝜎 . A

model with 𝑝 AR coefficients and 𝑞 MA coefficients is referred to as ARMA(𝑝, 𝑞).

Eq. (2.32) can be rewritten as

𝑦 = − 𝑎 𝑦 − + 𝑏 𝑢 −

==

+ 𝑢

(2.33)

This shows that each value of 𝑦 is a linear combination of past values of 𝑦 and

𝑢 . Since 𝑢 is assumed to be normally distributed, this implies that 𝑦 will also

be normal, since it is a linear combination of normal random variables.

In (2.33) 𝑦 can be seen as the output of a causal linear shift-invariant filter

with a rational transfer function, where the input is white noise:

 {𝑦 } =
𝐵(𝑧)

𝐴(𝑧)
{𝑢 }, (2.34)

where

𝐵(𝑧) = 1 + 𝑏 𝑧−

=

𝐴(𝑧) = 1 + 𝑎 𝑧−

=

(2.35)

For the ARMA process to be WSS, the filter is required to be stable. This

implies that all the poles and zeros, i.e. the roots of the polynomials defined by

 16

{𝑎 } and {𝑏 }, must lie inside the unit circle in the complex plane. Furthermore,

for the ARMA process to be real-valued, the coefficients are required to be real,

which translates to the system function having 2𝑝 and 2𝑞 complex conjugated

poles and zeros.

Many non-stationary processes encountered in the real world, can still be

found to exhibit WSS behavior in some sense. For instance, given a process where

the mean is changing over time, the difference in values from one point in time

to the next could still be WSS. The autoregressive integrated moving average
(ARIMA) model is a generalization of the ARMA model particularly common in

econometrics, which allows for such processes. It has the form

 𝐶(𝑧){𝑦 } =
𝐵(𝑧)

𝐴(𝑧)
{𝑢 }, (2.36)

where
 𝐶(𝑧) = (1 − 𝑧−) (2.37)

is the dth order difference operator. Typically, 𝑑 is no higher than two (Box et

al., 2008). Intuitively, taking the first difference of {𝑦 } is the same as creating a

new time series {𝑦 − 𝑦 − } where each value is the difference between values of

{𝑦 } at time 𝑡 and 𝑡 − 1. Taking the second difference is the same as taking the

first difference of an already differenced time series, and so on. After differencing,

the signal is treated as the realization of a regular ARMA process.

It can be shown that passing a stochastic process 𝑥 through a linear shift-

invariant filter results in a process 𝑦 with power spectrum given by

 𝑃 (𝑒) = 𝑃 (𝑒)|𝐻(𝑒)| , (2.38)

where 𝐻(𝑒) is the frequency response of the filter (Hayes, 1996). Since we know

that the power spectrum of the white noise process is just 𝜎 , we can immediately

write down the power spectrum of the ARMA process as

 𝑃(𝑒) = 𝜎
|𝐵(𝑒)|

|𝐴(𝑒)|
. (2.39)

Since the power spectrum is uniquely defined by the set of ARMA parameters

{𝑎 }, {𝑏 } and 𝜎 , estimation of these parameters can be seen as a form of

parametric spectrum estimation.

 17

2.2.3 Prediction Errors

Eq. (2.33) can be rewritten as

 𝑦 = 𝑦̂ | − + 𝑢 , (2.40)

where

 𝑦 ̂ | − = − 𝑎 𝑦 − + 𝑏 𝑢 −
==

 (2.41)

is the predicted value of 𝑦 based on past values of 𝑦 and 𝑢 . This shows that 𝑢

can be seen as a prediction error:

 𝑢 = 𝑦 − 𝑦̂ | − (2.42)

If we knew the ARMA coefficients, as well as the 𝑝 past values of 𝑦 and the 𝑞

past values of 𝑢 , we could compute this error recursively from new samples of

𝑦 :

 𝑢 = 𝑦 + 𝑎 𝑦 − − 𝑏 𝑢 −
==

 (2.43)

Or equivalently, using filter notation:

 {𝑢 } =
𝐴(𝑧)

𝐵(𝑧)
{𝑦 }, (2.44)

where the filter would be initialized with the known previous values of 𝑦 and 𝑢 .

In any practical situation, we have to settle for estimates of the coefficients.

And the white noise input signal is by definition unknown, so we cannot know

its past values. The prediction errors obtained using estimated coefficients and a

filter initialized with zeros (or something else) as past values, will therefore only

be an estimate of the white noise input signal:

 {𝑒 } = {�̂� } =
𝐴(̂𝑧)

𝐵(𝑧)
{𝑦 } (2.45)

This quantity is often referred to as the residuals of the model, especially when

it is computed from the data that was used to estimate the ARMA coefficients.

It can be understood as the part of the data that is “unexplained” by the model.

If the residuals of a model deviate significantly from what would be expected

from a white noise process, it can be taken as a sign that the model is inadequate.

Eq. (2.45) offers an interesting view of ARMA parameter estimation and

subsequent inverse filtering as a means of transforming a WSS process to white

noise. Given a set of 𝑁 samples from the process 𝑦 , we can further view this as

 18

an attempt to transform the normal random vector 𝐲 = [𝑦 𝑦 ⋯ 𝑦] into

a white noise vector 𝐞 = [𝑒 𝑒 ⋯ 𝑒] , where 𝐞 ~ 𝑁(𝟎, 𝜎 𝐈). Note, however,

the differences between this whitening transformation and the one we saw in

Section 2.1.2. There we had many observations of a random vector with relatively

few elements that was assumed to have a MVN distribution. The assumption of

normality then allowed us to estimate a linear transformation taking the vector

to a standard normal distribution. ARMA estimation, on the other hand, uses

only one sample of a random vector 𝐲 with 𝑁 elements to create a recursive and

hence non-linear transformation to a white noise vector 𝐞. The reason this can

work with just one sample is the special covariance structure of 𝐲 caused by it

being from a WSS process, where the autocorrelation is only a function of lag.

Thus, increasing the number of elements in 𝐲 actually just adds more information

about the underlying covariance structure, thereby making it easier to transform

𝐲 into a white noise vector.

2.2.4 Testing for Serial Correlation

Given a time series {𝑥 } sampled from a random process we can define the

sample autocorrelation function as

 𝑟̂ =
1

(𝑁 − 1)�̂�
(𝑥 − 𝜇)̂

−

=

(𝑥 + − 𝜇)̂; 𝑘 ∈ [0, 𝐿], (2.46)

where 𝑁 is the number of samples in the series, 𝜇 ̂is the sample mean and �̂� is

the sample variance. This is a normalized estimator for the ACF, so that 𝑟̂ = 1

regardless of the variance 𝜎 .

If the time series is sampled from a white noise process, and 𝐿 is small relative

to 𝑁 , Box and Pierce (1970) noted that the sample autocorrelation vector (ACV)

𝐫 = [𝑟̂ 𝑟 ̂ ⋯ 𝑟̂] will be asymptotically distributed as multivariate normal

with mean 𝐸[𝐫] = 𝟎 and covariance matrix

 𝐃 = 𝐸[𝐫𝐫] =
1

𝑁(𝑁 + 2)
⎣

⎢
⎡
𝑁 − 1 0 ⋯ 0
0 𝑁 − 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ − ⎦

⎥
⎤

. (2.47)

Given a realization of this vector, we can compute its squared Mahalanobis

distance by

 Β(𝐫) = 𝐫 𝐃− 𝐫, (2.48)

where the inverse of 𝐃 is

 19

 𝐃− = 𝑁(𝑁 + 2)

⎣

⎢
⎢
⎢
⎢
⎢
⎡

1

𝑁 − 1
0 ⋯ 0

0
1

𝑁 − 2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1
− ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (2.49)

Written out as a summation, the distance becomes

 Β(𝐫) = 𝑁(𝑁 + 2)
𝑟̂

𝑁 − 𝑘
=

. (2.50)

This is known as the Ljung-Box (LB) test statistic, and was introduced in Ljung

and Box (1978). It is normally not presented as a distance measure, but this

perspective will prove useful later on when we apply the statistic. It also allows

us to immediately write down the distribution of Β(𝐫), as this has already been

derived in (2.10):

 Β(𝐫) ~ 𝜒 (2.51)

Starting from a null hypothesis that the sampled signal comes from a white

noise process, we can therefore calculate the probability of observing a value 𝛽

or higher of the test statistic from the CDF of the chi-squared distribution:

 𝑃(Β ≥ 𝛽) = 1 − 𝐹(𝛽). (2.52)

This is known as a p-value. Note that the p-value is not the probability that the

signal comes from a white noise process. Like any other hypothesis test, the LB

test only seeks to find evidence against the null hypothesis. If it fails to do so,

that does not prove that the data comes from white noise. However, the more

the signal deviates from white noise, the lower the probability of observing its

value of Β will be, which in turn strengthens our belief that the signal is not
generated by a white noise process.

To express this quantitively, we would define a threshold 𝛼 on the p-values,

and reject the null hypothesis if a p-value falls below this threshold. The

threshold is referred to as the significance level of the hypothesis test. The

significance level may be understood as the probability of committing a type I

error, i.e. the probability of falsely rejecting the null hypothesis.
Ljung and Box introduced their test statistic as a way to evaluate the

goodness of fit of an ARMA model by testing the model residuals for whiteness.

They found, however, that when applied to the residuals of a fitted model and

not an ordinary white noise time series, the chi-squared distribution with 𝐿

degrees of freedom (DOF) did not provide a good fit for the test statistic. To

 20

remedy this, they suggested a modification of the test in which the DOF

parameter is set to 𝐿 − 𝑝 − 𝑞 when the test is applied to the residuals of a fitted

ARMA model.

An intuitive explanation of why the degrees of freedom may need to be

adjusted in such a situation, is that the decorrelation achieved on the data set

used to fit the model, will tend to be better than what can be achieved on an

“unseen” data set. In the extreme case one could imagine fitting an AR(𝑝) model

to a data set containing only 2𝑝 values. If the first half of the data were taken as

previous values of {𝑦 } and we wanted to minimize the prediction errors on the

second half, Eq. (2.43) could be rewritten as

 𝑦 + 𝑎 𝑦 −
=

= 0; 𝑡 ∈ [𝑝 + 1, 2𝑝]. (2.53)

This is a set of 𝑝 linear equations with 𝑝 unknowns that can be solved exactly

for the coefficients {𝑎 }. All the residuals for the second half of the data set

would therefore be zero, and hence uncorrelated. However, the prediction errors

from this model on new data sampled from the same process, might be far from

uncorrelated. This would be an (extreme) case of what is known as overfitting.

Thus, adjusting the DOF parameter can be seen as a way of compensating for

the bias introduced by using the same data to both fit and validate the model.

Generally, though, in situations where plenty of data from the process is

available, it is more natural to use independent data sets for model fitting and

model validation. This is known as out-of-sample validation and is what will be

employed later in this thesis. As we shall see, in such a situation the Ljung-Box

test statistic can be used with 𝐿 degrees of freedom for the chi-squared

distribution.

2.2.5 Parameter Estimation

The techniques for estimating ARMA parameters fall into two broad

categories – iterative and non-iterative methods. Iterative methods are generally

slower but more accurate. This means that they should be preferred in offline

estimation, where there are no particular time-constraints. Non-iterative

methods, on the other hand, are faster but less precise, making them better

candidates for online estimation in real-time systems. In the special case of pure

AR models, iterative methods offer very little improvement over non-iterative

ones, so for such models there is no particular downside to using a fast non-

iterative method both offline and online.

Over the last 60 years or so many different ARMA estimation methods have

been proposed, and no attempt will be made here to give an overview of all of

these. Instead, we will focus on two commonly used approaches – linear least

squares (LS) and maximum likelihood (ML). Linear LS is a non-iterative

approach, while ML is an iterative approach.

 21

Least Squares for AR Models

Given 𝑁 samples from a process assumed to be AR(𝑝), Eq. (2.43) can be written

as

 𝑦 + 𝑎 𝑦 −
=

= 𝑒 ; 𝑡 ∈ [𝑝 + 1,𝑁] (2.54)

where the 𝑝 first values of {𝑦 } are used as previous values of the signal. This set

of equations can be written in matrix form as

⎣

⎢⎢
⎡

𝑦 + 𝑦 ⋯ 𝑦
𝑦 + 𝑦 + ⋯ 𝑦

⋮ ⋮ ⋮
𝑦 𝑦 − ⋯ 𝑦 − ⎦

⎥⎥
⎤

⎣

⎢⎢
⎡

1
𝑎
⋮

𝑎 ⎦

⎥⎥
⎤

=

⎣

⎢⎢
⎡

𝑒 +

𝑒 +

⋮
𝑒 ⎦

⎥⎥
⎤

, (2.55)

or more compactly:

 𝐘𝐚 = 𝐞. (2.56)

If we seek a set of coefficients that minimize the sum of squared prediction errors

in these equations, they can be found as follows. Separate out the first column

of 𝐘 and the coefficients in 𝐚.

[𝐲 𝐗]
1
𝜽

= 𝐞

𝐲 + 𝐗𝜽 = 𝐞

(2.57)

Define the least squares (LS) criterion:

 𝜀 (𝛉) = ‖𝐲 + 𝐗𝜽‖ (2.58)

By equating the gradient of this criterion with zero, one can find the vector 𝜽 ̂

that minimizes it:

 𝜽̂ = arg min 𝜀 (𝜽) = −(𝐗 𝐗)− 𝐗 𝐲, (2.59)

where (𝐗 𝐗)− 𝐗 is called the pseudo-inverse of 𝐗. To obtain an estimate of

the last parameter �̂� , note that 𝐞̂ = 𝐲 − 𝐗𝜽 ̂ is an estimate of the white noise

input signal for 𝑡 ∈ [𝑝 + 1,𝑁]. A natural estimate of the noise variance will

therefore be the mean squared value of 𝐞:̂

 �̂� =
1

𝑁 − 𝑝
𝐲 + 𝐗𝜽̂ (2.60)

 22

In the above formulation of the least squares AR method, 𝑡 is set to run from

𝑝 + 1 to 𝑁 , so that the 𝑝 first values of the data can be used as previous values.

This formulation is known as the covariance method of AR estimation. Another

common formulation is the autocorrelation method, where 𝑡 is set to run from 1

to 𝑁 + 𝑝, and 𝑦 is assumed to be zero for 𝑡 < 1 and 𝑡 > 𝑁 . The matrix

representation then becomes:

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦 0 ⋯ 0

𝑦 𝑦 ⋯ 0

⋮ ⋮ ⋮
𝑦 + 𝑦 ⋯ 𝑦
𝑦 + 𝑦 + ⋯ 𝑦

⋮ ⋮ ⋮
𝑦 𝑦 − ⋯ 𝑦 −

0 𝑦 ⋯ 𝑦 − +

⋮ ⋮ ⋮
0 0 𝑦 𝑦 −

0 0 0 𝑦 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣

⎢⎢
⎡

1
𝑎
⋮

𝑎 ⎦

⎥⎥
⎤

=

⎣

⎢⎢
⎡

𝑒
𝑒
⋮

𝑒 + ⎦

⎥⎥
⎤

. (2.61)

From the matrix 𝐘, a matrix 𝐗 and a vector 𝐲 can be formed in the same way

as for the covariance method, and the parameter estimates will be given by

𝜽̂ = −(𝐗 𝐗)− 𝐗 𝐲

�̂� =
1

𝑁 + 𝑝
𝐲 + 𝐗𝜽̂

(2.62)

Although the two LS methods produce very similar estimates for large 𝑁 ,

there are some differences worth noting. First, it can be shown that estimates

obtained with the autocorrelation method are guaranteed to produce a stable

filter 1/𝐴(̂𝑧). This is not the case for the covariance method, although unstable

estimates rarely occur. Secondly, empirical evidence suggest that the covariance

method is more accurate, perhaps because it does not make any assumptions

about the values of the data outside the interval [1,𝑁] (Stoica and Moses, 2005,

p. 94).

Two-Stage Least Squares for ARMA Models

If the white noise input signal were known, the ARMA parameter estimation

would be quite simple. The idea of the two-stage least squares method given in

Stoica and Moses (2005) is to form an estimate of the input signal using a high-

order AR model, and then replace the true input noise by the estimated input

noise in Eq. (2.43). This is a generalization to full ARMA models of the MA

estimation technique introduced by Durbin (1959). According Hernandes et al.

(2008), Durbin’s method is probably the most commonly used non-iterative MA

estimation technique.

 23

Given an AR(𝐾) model of 𝑦 , the input noise in the two-stage least squares

method is first estimated as

 {𝑒 } = 𝐴(̂𝑧){𝑦 } (2.63)

The model then becomes

𝑦 + 𝑎 𝑦 − − 𝑏 𝑒 −

==

= 𝑒

𝑡 ∈ [𝑚 + 1,𝑁]; 𝑚 = max(𝑝, 𝑞) + 𝐾

(2.64)

This can be written in matrix form as

 𝐳 + 𝐙𝜽 = 𝐞, (2.65)

where

𝐳 = [𝑦 + 𝑦 + ⋯ 𝑦]

𝐞 = [𝑒 + 𝑒 + ⋯ 𝑒]

𝜽 = [𝑎 𝑎 ⋯ 𝑎 𝑏 𝑏 ⋯ 𝑏]

𝐙 =

⎣

⎢⎢
⎡

𝑦 ⋯ 𝑦 − +

𝑦 + ⋯ 𝑦 − +

⋮ ⋮
𝑦 − ⋯ 𝑦 −

−𝑒 ⋯ −𝑒 − +

−𝑒 + ⋯ −𝑒 − +

⋮ ⋮
−𝑒 − ⋯ −𝑒 − ⎦

⎥⎥
⎤

.

(2.66)

The least squares solution is given by the pseudoinverse like for LS AR

estimation:

 𝜽̂ = −(𝐙 𝐙)− 𝐙 𝐳 (2.67)

When is set to zero in the above equations, this is equivalent to Durbin’s
method. As with pure AR estimation, the variance parameter is given by the

mean square value of the prediction errors:

�̂� =

1

𝑁 − 𝑚
𝐳 + 𝐙𝜽̂

(2.68)

A problem with the two-stage LS method is that its accuracy highly depends

on the choice of the parameter 𝐾, and there is no simple way to find the best

value of this parameter (Hernandes et al., 2008). For processes with zeros close

to the unit circle, a high value of 𝐾 is needed to properly decorrelate the process.

One option is to employ some algorithm that first tries to find an optimal choice

for 𝐾, but this may cause an unacceptable increase in complexity for a method

whose main appeal is its simplicity.

 24

Another drawback not mentioned in Stoica and Moses but which can be

observed in experiments, is that the polynomial 𝐵(𝑧) is not guaranteed to be

stable. If the estimate is going to be used to generate prediction errors, an

unstable ARMA filter is useless, since the prediction error process will not be

stationary, and may go off to infinity.

Maximum Likelihood

As we have seen earlier, the prediction error vector 𝐞 = [𝑒 𝑒 ⋯ 𝑒] will

be distributed as

 𝐞 ~ 𝑁(𝟎, 𝜎 𝐈) (2.69)

when it is computed from known past values and the true ARMA coefficients.

Suppose we know the 𝑝 past values of 𝑦 and the 𝑞 past values of 𝑒 . Then we

can derive the Maximum Likelihood (ML) estimate of the ARMA parameters as

follows. Start by writing out the PDF of 𝐞, noting its dependence on the

parameter vector 𝝓 = [𝜎 𝜽] :

𝑓(𝐞|𝝓) =
1

(2𝜋) (𝜎)
exp −

𝐞 𝐞

2𝜎

𝑓(𝐞|𝝓) =
1

(2𝜋) ⁄ (𝜎) ⁄
exp −

‖𝐲 − �̂�(𝜽)‖

2𝜎

(2.70)

where

𝐲 = [𝑦 𝑦 ⋯ 𝑦] and

�̂� = [𝑦 ̂ | 𝑦 ̂ | ⋯ 𝑦̂ | −]
(2.71)

are the two vectors that make up 𝐞. If we see 𝝓 as the dependent variable and

𝐲 as the constant in Eq. (2.70), the resulting function 𝑓(𝝓|𝐲) is known as the

likelihood function of 𝝓, given some realization of 𝐲. Maximizing the likelihood

function is equivalent to maximizing its logarithm, the log-likelihood function:

 ln𝑓(𝝓|𝐲) = −
𝑁

2
ln(2𝜋) −

𝑁

2
ln(𝜎) −

‖𝐲 − �̂�(𝜽)‖

2𝜎
 (2.72)

This leads to the conditional ML estimates in Eq. (2.13). They are referred to as

conditional because they are conditioned on knowledge of the past values of 𝑦

and 𝑒 .

 25

𝝓̂ = argmax ln𝑓(𝝓|𝐲)

𝜽̂ = arg min‖𝐲 − �̂�(𝜽)‖

�̂� =
1

𝑁
𝐲 − �̂� 𝜽̂

(2.73)

Maximizing the conditional likelihood of 𝜽 is thus equivalent to finding a vector

𝜽 ̂that minimizes the sum of squared prediction errors for a given realization of

𝐲.

Deriving the criterion for the unconditional ML ARMA estimate is more

complicated, but it is sufficient to mention here that the unknown previous values

are first estimated using “back-forecasting”, i.e. a model of the time series where

time is running backwards, so that estimating past values becomes a prediction

problem. Then, a similar expression to Eq. (2.73) can be derived involving the

conditional expectation of the error vector and of the back-forecasted previous

values:

 𝜽̂ = argmin‖𝐸[𝐞|𝐲, 𝜽]‖ + 𝐸[𝐚] 𝛀− 𝐸[𝐚] (2.74)

where 𝐚 = [𝑦 ̂ − ⋯ 𝑦̂ 1̂− ⋯ 0̂] is a vector of back-forecasted previous

values, and 𝛀 is the covariance matrix of 𝐚. For details on how the derivation of

this expression and recommendations on how to compute the estimate in

practice, can be found in Box et al. (2008).

In any case, for full ARMA models a linear method of finding the ML estimate

is not possible, since we cannot write the error vector as a linear function of the

parameter vector. Instead, each element of 𝐞 must be computed recursively from

(2.43) for any given vector 𝜽. The problem of finding the ML estimate 𝜽 ̂in the

case of full ARMA models is therefore referred to as a non-linear least squares

problem.

The way to approach the non-linear estimation problem, is to use an iterative

optimization algorithm. Such an algorithm starts with some initial guess for 𝜽,̂

and then computes the criterion function to be minimized. It then uses one of

several ways to find a direction in the parameter space which is likely to improve

the estimate. Next, it updates the estimate by moving the parameter vector a

small step in that direction and computes the criterion function again. It

continues this way until it has a satisfactory value of the criterion, or the

maximum number of iterations has been reached. One common algorithm for

iterative optimization is gradient descent, in which the gradient of the criterion

function is estimated on each iteration, and the step is taken in the opposite

direction of the gradient.

 26

Prediction Error Minimization

A class of methods closely related to maximum likelihood is the prediction error
methods (PEM) used in the field of system identification. There the goal is to

estimate the parameters of a more general class of systems of the form

 {𝑦 } = 𝐺(𝑧){𝑣 } + 𝐻(𝑧){𝑢 }, (2.75)

where 𝑣 is a known input, and 𝑢 is white noise. Generally, one would define a

criterion function of the prediction error and select the parameters of 𝐺(𝑧) and

𝐻(𝑧) that minimize this criterion. A common choice of criterion is the quadratic

norm, like in conditional ML ARMA estimation:

 𝜽̂ = arg min‖𝐲 − �̂�(𝜽)‖ (2.76)

As in ML, the solution is found through iterative optimization. Since the ARMA

model is just a special case of the more general model used in system

identification, i.e. one where the known input 𝑣 is zero, all the parameter

estimation methods developed in the field can be used for ARMA estimation. In

these methods 𝑦 and 𝑢 are often taken to be zero for 𝑡 < 1. This means that

they are not exactly computing the conditional ML ARMA estimate, but the

effect of initial values becomes negligible for high 𝑁 .

In system identification, a lot of work has gone into refining the iterative

optimization algorithms used for parameter estimation. For general treatments,

see Söderström and Stoica (1989) or Ljung (1999).

2.2.6 Order Selection

In time series analysis, there are two common approaches to selecting the

order of an ARMA model. The first is based on visually inspecting estimates of

the autocorrelation function and partial autocorrelation function (PACF) of the

process.

The PACF 𝛼 is defined as the autocorrelation between 𝑦 and 𝑦 + with the

linear dependence on 𝑦 + up to 𝑦 + − removed. The closed form expression for

this is rather complicated and will be omitted here for readability. When

estimating the PACF from data, a fitted AR(𝑘) model is used to estimate 𝛼 .

Details on PACF estimation can be found in Box et al. (2008).

The ACF and PACF of the three model types AR(𝑝), MA(𝑞) and

ARMA(𝑝, 𝑞) have the following properties: The ACF of an AR(𝑝) process decays

gradually, while its PACF has a sharp drop in magnitude after lag 𝑝. In contrast,

the ACF of an MA(𝑞) process has a sharp drop in magnitude after lag 𝑞, while

its PACF decays gradually. For an ARMA(𝑝, 𝑞) process, both functions decay

gradually and other methods are needed to determine 𝑝 and 𝑞.

For a wide sense stationary process, the sample ACF will usually decay fairly

quickly. When this is not the case, and the sample ACF decays very slowly in a

 27

seemingly linear way, it could mean that the process is not WSS. This may be

resolved by differencing the time series (see Section 2.2.2).

If examination of the estimated ACF and PACF shows that neither a pure

AR model nor a pure MA model is sufficient to describe the data, the common

approach to finding the appropriate orders of the ARMA(𝑝, 𝑞) model is to make

use of an information criterion. Such a criterion weighs the computed likelihood

of a given model against the number of parameters in the model, and sometimes

the number of samples from the process. It is defined so that a model is rewarded

for a high likelihood (i.e. a “good fit”) and punished for a high number of

parameters. In other words, it favors simple models with a high likelihood. By

fitting many different models to the data and computing the information

criterion for each of them, we can select the model that gives the lowest value

for the criterion. The information criterion approach is described in more detail

in Stoica and Moses (2005, pp. 387–398).

A common choice of information criterion in ARMA modeling is the Bayesian

information criterion (BIC). The BIC of an ARMA(𝑝, 𝑞) model is defined as

 BIC = −2ln𝑓(𝝓|𝐲) + (𝑝 + 𝑞 + 1)ln𝑁, (2.77)

where ln𝑓(𝝓|𝐲) is the log-likelihood function, as defined in Eq. (2.72) and 𝑁 is

the number of samples from the process.

2.2.7 Distribution of Estimates

When the parameters of an ARMA process are estimated several times from

independent realizations of the process, it is often assumed that the parameter

vector has a multivariate normal distribution. In fact, whenever the Mahalanobis

distance is used to score parameter estimates, such as in Gul and Catbas (2005),

we are essentially assuming that the distribution of the parameter vector can be

described by the mean and the covariance matrix alone, i.e. that it is MVN.

In maximum likelihood estimation, the ARMA parameter vector can be

shown to approach a multivariate normal distribution (Yao and Brockwell,

2006). However, we will not use maximum likelihood estimates in a way that

requires knowledge of their distribution.

For the case of AR coefficients estimated using least squares, a derivation of

the normality of the estimates was given in Mann and Wald (1943). However, it

is unclear to me whether the full parameter vector, with �̂� included, can really

be normally distributed. The simple fact that �̂� cannot be negative, makes this

seem unlikely. Furthermore, Stoica and Moses (2005) do not discuss the

distribution of the estimates obtained by their two-stage least squares ARMA

algorithm. Nevertheless, for now we will assume that the parameter vectors

obtained from least squares estimation can be modeled as MVN variables, or at

least that they are close enough that the Mahalanobis distance is a valid way of

scoring the estimates.

 28

We saw in Section 2.2.4 that by testing the prediction errors of an ARMA

model on new data, we could assess how well the data fitted our model. This was

accomplished by computing the sample autocorrelation vector of the prediction

errors and taking its Mahalanobis distance. Now, if the assumption of normality

holds, we have another way of assessing the fit of new data – namely to model

the estimated parameter vector 𝝓 ̂as MVN and take the Mahalanobis distance

of new estimates obtained from data. These two approaches form the basis of the

detection methods presented in the next chapter.

 29

3 ARMA-Based Anomaly Detection

This chapter will first give the details of the detection methods examined in

this thesis. It then goes on to describe how the experiments on the methods will

be conducted. Next, an ARMA model of underwater ambient noise is built from

hydrophone data. This model is used to simulate ambient noise and test the

detection methods on sinusoids in noise of varying amplitudes. At the end of the

chapter, we will look at how anomalous data can be incorporated into the model

building procedure to influence the detector’s sensitivity towards certain types of

anomalies.

3.1 Hypothesis Testing

Given a segment of hydrophone data, the basic problem of detecting

anomalies can be formulated as a hypothesis test where the two hypotheses in

their most general form are as given below.

𝐻 : The data segment is a realization of ambient noise.

𝐻 : The data segment is not a realization of ambient noise.

If a test statistic can be constructed that has a known probability distribution

under the null hypothesis, then the value of this statistic can be converted to a

p-value. If the p-value for the data segment is lower than some threshold, the

null hypothesis is rejected and the data segment is classified as anomalous.

From the theoretical discussion in the previous chapter, two ways of making

the hypotheses above more specific have emerged. Both are based on modeling

the ambient noise as a realization of an ARMA process, and both give rise to a

chi-squared test statistic.

3.1.1 Successive Estimation Method

In the successive estimation method, the model of the ambient noise is a

distribution model of the ARMA parameter estimates. We have seen that when

parameters are estimated from independent realizations of the same underlying

ARMA process, the parameter vector

 𝝓̂ = �̂� 𝑎̂ ⋯ 𝑎̂ 𝑏̂ ⋯ 𝑏̂ , (3.1)

can often be modeled as a multivariate normal variable, i.e.

 𝝓 ̂~ 𝑁(𝝁,𝚺). (3.2)

 30

The parameters 𝝁 and 𝚺 of this model are not known in advance, but they can

be estimated from data. Given estimates of 𝝁 and 𝚺, the precise hypotheses can

be expressed as below.

𝐻 : The ARMA parameters estimated from the data segment are

drawn from the distribution 𝑁 �̂�,𝚺

𝐻 : The ARMA parameters estimated from the data segment are not

drawn from the distribution 𝑁 �̂�,𝚺

By taking the squared Mahalanobis distance of 𝛟 from the distribution mean,

 𝐷 𝝓̂ = 𝝓̂ − �̂� 𝚺− 𝝓̂ − �̂� , (3.3)

we obtain a test statistic that has a known distribution under the null hypothesis:

 𝐷 𝝓̂ ~ 𝜒 + + under 𝐻 . (3.4)

From 𝐷 𝝓̂ we can calculate the probability of observing 𝝓 ̂or something more

extreme, given that the true distribution is 𝑁 �̂�,𝚺 .

3.1.2 Prediction Method

In the prediction method, an ARMA(𝑝, 𝑞) model is first fitted to ambient

noise data. We have seen that when the estimated parameters are equal to the

true parameters, the resulting prediction errors in Eq. (2.45) of a given data

segment will be a realization of white noise. If the data segment deviates from

what would be expected by our model, this will introduce correlations in the

prediction errors, making them non-white. In Section 2.2.4 we saw that to test

for such correlations, we can calculate the Ljung-Box test statistic Β(𝐫) from

(2.48), where the sample autocorrelation vector 𝐫 = [𝑟̂ 𝑟 ̂ ⋯ 𝑟̂] is found

from the prediction errors {𝑒 } by

 𝑟̂ =
1

(𝑁 − 1)�̂�
(𝑒 − 𝜇̂)

−

=

(𝑒 + − 𝜇̂); 𝑘 ∈ [1,𝐿]. (3.7)

The precise hypotheses being tested by the LB statistic can be expressed as

𝐻 : The true autocorrelation of the prediction errors is zero for all

lags from lag one up to lag 𝐿.

𝐻 : The true autocorrelation of the prediction errors is non-zero for

at least one lag from lag one up to lag 𝐿.

 31

We noted that Β(𝐫) is simply the squared Mahalanobis distance of 𝐫 from the

distribution mean 𝐸[𝐫] = 𝟎, and will hence be chi-squared distributed with 𝐿

degrees of freedom, provided that the null hypothesis is true. That is,

 Β(𝐫) ~ 𝜒 under 𝐻 . (3.9)

Thus, we have made the general hypothesis test more concrete by turning it into

a test for correlation in the prediction errors of a fitted ARMA model. In this

test, we are free to choose the number of lags 𝐿 that will be tested, although it

is recommended to set 𝐿 to at least 20 (Box et al., 2008).

Note that this is only one of several possible hypothesis tests that could have

been performed on the prediction errors. In experiments not included in the final

version of this thesis, I tried performing a t-test on the mean value of the

prediction errors. In those experiments, the ARMA model order had to be set

very high to get a test statistic that fitted well with the t-distribution.

Additionally, the LB test showed better detection performance on the data set

in question. As a consequence, the t-test was not pursued further. However, a

more thorough and systematic comparison of possible prediction error hypothesis

tests would be needed to conclusively say which approach is the best one in

general.

3.1.3 ARMA Estimators

Both the methods above depend on having a reliable way of estimating

ARMA parameters from data. Some common ways of doing this are described in

Section 2.2.5. MATLAB functions implementing each of the estimation methods

there are listed in the Appendix and will be described here briefly.

The function LS_ARMA is an implementation of the least squares estimation

methods. For pure AR estimation, it uses the covariance method, and for full

ARMA models it follows the two-stage least squares approach with 𝐾 set to 20.

Since there are no clear guidelines on how to choose the parameter 𝐾, I estimated

some spectra using different values and found that 20 seemed to give a good fit

with the true spectrum. Since the two-stage method is a fast, non-iterative

algorithm it will be used for the successive estimation method, where new ARMA

estimates are needed for each data segment.

The function ML_ARMA uses functions from MATLAB’s Econometrics

Toolbox to compute the unconditional maximum likelihood estimate of the

ARMA parameters. Since the estimation algorithm is iterative, this function will

be used for the prediction method, where the parameters only need to be

estimated once, and the test statistic is obtained from subsequent inverse

filtering.
PEM_ARMA is an alternative to ML_ARMA that uses functions from MATLAB’s

System Identification Toolbox. It estimates the ARMA parameters by iteratively

minimizing the prediction errors. Experiments have shown that ML_ARMA and

 32

PEM_ARMA produce practically identical results. But PEM_ARMA has been

observed to work somewhat faster. Still, the method is significantly slower than

least squares and will therefore only be used for the prediction method.

3.2 Unsupervised Detection

This section is an outline of how ARMA-based detectors will be constructed

when no prior knowledge of the anomalies is available. This is known in

classification theory as unsupervised detection. In section 3.6 a supervised version

of the methods will be introduced where examples of anomalous data are also

used in constructing the detectors.

The approach has grown out of my own attempts at constructing ARMA-

based detectors in MATLAB using a typical pattern classification framework, as

the one presented in Duda et al. (2001). As such, both this section and Section

3.6 can be seen as an overview of the MATLAB program I have built to run the

various experiments presented later on. The graphical user interface of the

program is shown in Figure A.1 in the Appendix. All the methods discussed in

this chapter correspond to different configurations of the user settings in that

figure.

3.2.1 Overview of Procedure

In both of the detection methods in the previous section, segments of raw

data are transformed into a MVN variable with known or estimated parameters.

This can be seen as a form of feature extraction, where the data segments are

mapped to a low-dimensional space, and the elements, or features, of the random

vectors are believed to contain valuable information about the data segments.

The test statistic is then formed by taking the Mahalanobis distance of the

feature vector. This means that we can view the methods in the same overall

framework for detector design, where the two methods represent alternative

approaches to feature extraction. The word detector should here be taken to

mean a set of specifications such as feature extraction method, ARMA estimator

and model parameters.

The procedure will consist of two stages: training and testing. In the training

stage, a model is fitted to ambient noise data using one of the feature extraction

methods. In the test stage, a data set containing both ambient noise and

examples of anomalies is used to compute the test statistic, and the results are

presented graphically.

Since we plan to calculate p-values from the test statistic, it is important to

verify that it actually follows the assumed distribution under the null hypothesis.

A goodness of fit (GOF) test with the chi-squared distribution is therefore

integrated in the training stage2. This can be seen as a form of model validation.

2 Goodness of fit is tested with the Kolmogorov-Smirnov test (kstest in MATLAB).

 33

The training set is split into two parts, so that the data used for validation is

independent of the data used to fit the model.

3.2.2 Details of Procedure

Figures 3.1 and 3.2 show an outline of the training and test procedures for

the two feature extraction methods. In the figures, 𝐘 is a data matrix where the

rows are made up of consecutive segments of time series data. The prediction

error matrix 𝐄 has the same dimension as 𝐘.

In the successive estimation method, the rows of 𝚽 are ARMA parameters

estimated from the corresponding rows of 𝐘, while in the prediction method they

are sample autocorrelation vectors computed from the corresponding rows of 𝐄.

For simplification, the ARMA estimation block is shown the same way when it

estimates one parameter vector from an entire data matrix as when it estimates

one parameter vector for each row of a data matrix.

The vectors 𝐝 and 𝐩 produced by the test procedure contain distances and

corresponding p-values for each data segment of the test file. These vectors can

be compared with fixed threshold values to label the segments as either normal

or abnormal.

A number of user settings such as ARMA orders, segment length and

autocorrelation lags, will also need to be specified to properly train and test a

detector with this procedure. The choice of these settings will affect both the

behavior of the test statistic on the validation data and the detector’s
performance on the test data.

If the end goal were to design a detector that worked on streams of time

series data in real-time, such processing would include the same steps as the test

procedure, but instead of getting a whole data matrix as input, the detector

would process the data segments one at a time as they became available. Training

and testing on stored data sets could still be performed offline before deploying

the detector to a real-time system.

 34

Figure 3.1: Overview of the detector training stage and test stage using successive ARMA
estimation for feature extraction.

Figure 3.2: Overview of the detector training stage and test stage using the prediction
method for feature extraction.

 35

3.3 Modeling an Ambient Noise Signal

Before proceeding with experiments on simulated data, we first need to build

a realistic model of the underwater ambient noise. To do this, we will use 10

seconds of hydrophone data from LoVe. The signal is sampled at 22.05 kHz with

a surface wind speed of 18 m/s. A time-domain plot of the signal is shown in

Figure 3.3.

The tools that will be used to build the model are the order selection methods

given in Section 2.2.6 as well as visual inspection of the power spectrum of the

estimated models plotted alongside a non-parametric PSD estimate. Non-

parametric estimation is done here by Welch’s method. This method has not

been covered in the theory chapter, as it will only be used for visualization. More

on Welch estimation can be found in Stoica and Moses (2005).

The hydrophone data set from LoVe was supplied by FFI with instructions

on how to scale power spectral densities to the correct physical units. Throughout

the thesis, the following formula has been applied to the PSD estimates.

 𝑃 (𝑒) [dB re 𝜇Pa /Hz] = 10log 𝑃 (𝑒) + 171, (3.10)

where 𝑃 (𝑒) is the unscaled power spectrum of the audio signal, and 𝑃 (𝑒) is

the scaled power spectrum in proper physical units. Figure 3.4 shows the Welch

PSD estimate of the ambient noise signal converted to decibels using the above

formula.

Figure 3.3: A plot of the 10 seconds of audio data used in this section to build a model of
the ambient noise.

 36

Order selection

The first step in building an ARMA(𝑝, 𝑞) model is to select the model orders

𝑝 and 𝑞. As discussed in Section 2.2.6, this can be done by first inspecting

estimates of the autocorrelation and partial autocorrelation functions of the

signal. Estimates for 30 lags of these functions are shown in Figure 3.5. It is clear

that neither the sample ACF nor the sample PACF drops to zero after a specific

lag, which is indicative of a full ARMA process rather than a pure AR or MA

process. Furthermore, the sample ACF decays very slowly, which is indicative of

process with at least one pole close to unity (Box et al., 2008, pp. 196–197).

A slowly decaying ACF means that we could treat the process as non-

stationary and instead try to model the first difference of the signal as

ARMA(𝑝, 𝑞). The effect of differencing would be to attenuate low frequencies,

since the differencing operator in (2.37) is essentially a high-pass filter. This is

not necessarily a problem when detection of anomalies is the only objective, but

since the goal of this section is to build a realistic model of the signal for

simulation purposes, we will treat the underlying process as wide sense stationary

and avoid differencing.

Figure 3.4: A Welch estimate of the power spectral density of the ambient noise signal.

 37

Since the orders of a full ARMA process cannot be found by simple inspection

of the sample ACF and PACF, another approach is required. As described in

Section 2.2.6, a systematic way of finding the appropriate ARMA orders is to

use an information criterion like the BIC. The function BICorder listed in the

Appendix is adapted from an example on Mathworks.com (2016). It uses

functions from the Econometrics Toolbox to compute the BIC for all

combinations of AR orders from one up to p_max and MA orders from one up

to q_max. It then returns the orders 𝑝 and 𝑞 that produce the lowest value for

the BIC.

When the ambient noise data is fed to BICorder with p_max and q_max
both set to 15, the resulting model is ARMA(11,4). The maximum orders were

chosen so that the function would finish in reasonable time, as the maximum

likelihood estimation done by BICorder can be very time-consuming for high

orders and large amounts of data.

Figure 3.5: Plots of the sample autocorrelation function and sample partial autocorrelation
function of the ambient noise signal.

 38

Parameter estimates

When an ARMA(11,4) model is fitted to the whole time series with

PEM_ARMA, the resulting parameters are as given below.

{𝑎 } = {1.000,−2.152, 0.7093, 1.264,−1.129,

 0.3777,−0.09949, 0.06326,−0.02588,

 −0.02759, 0.04334,−0.02346}

{𝑏 } = {1.000,−0.9117,−1.006, 0.8364, 0.08148}

𝜎 = 1.257 x 10−

(3.11)

These parameters define the model that will be used for simulation in the next

section. The power spectrum of the estimated model is shown alongside the

Welch estimate in Figure 3.6. Figure 3.7 shows the poles and zeros of the

estimated ARMA model.

Figure 3.6: The ARMA PSD estimate and the Welch PSD estimate for the ambient noise
signal.

 39

3.4 Detecting a Sinusoid in Noise

As a simple way of comparing the performance of the ARMA-based detection

methods, we can run simulations of the model obtained in the previous section,

and add sinusoids of varying amplitude to the signal. One minute of simulated

data at a sampling frequency of 22.05 kHz will be generated from the model and

the sinusoids will be added to the second half of the signal. The frequency of the

sinusoids is 100 Hz. The amplitudes are given in decibel according to the

following formula:

 𝜎 [dB re 𝜇Pa] = 10log 𝜎 + 171 (3.12)

where 𝜎 is the mean squared value of the signal. This will also be referred to as

the total power of the signal. When referring to a sinusoid alone, the mean square

value is simply 𝐴 /2, where 𝐴 is the multiplying factor of the sinusoid.

The energy detector mentioned earlier also uses mean square values to detect

changes, but it assumes no prior knowledge of the signal and therefore has to

rely on sample estimates of the total power. If we had a distribution model for

the mean square signal values under ambient noise, we could set up a hypothesis

test with a fixed significance level for the energy detector in the same way as for

the ARMA-based methods. But no attempt has been made here to derive such

a model. Instead, the energy detector will be evaluated by inspecting plots of the

mean square value itself, not p-values. The detection thresholds in these plots

Figure 3.7: A pole-zero plot of the estimated ARMA model.

 40

have simply been adjusted so that they could be suitable for the experiment in

question.

In the experiments, Welch PSD estimates are used to form a spectrogram of

the time series data. A spectrogram consists of PSD estimates stacked together

along the time-axis to provide a graphical representation of how the power

spectrum of a signal changes over time. The segment length of the spectrogram

has been set to 0.5 seconds.

The segment length of the data used by the detectors will be Δ𝑡 = 0.04 s.

This is the same as what will be used in most of the experiments on real data in

Chapter 4. The choice of the value is explained there.

The significance level chosen for the simulations is 10− . This may seem

rather low but with 1/0.04 = 25 p-values generated every second, this threshold

means that we should expect around 25 x 60 x 10− = 0.9 false alarms per hour

of simulated noise data, given that the test statistic actually follows the assumed

distribution.

3.4.1 Energy Detector

As is shown in Figure 3.8, at 90 dB the sinusoid is faintly visible in the

spectrogram. Exactly when this occurs, has been observed to depend on the

segment length used for the spectrogram. The longer the segments, the earlier

the sinusoid becomes visible.

The total power of the signal does not seem to be affected by the 90-dB

sinusoid at all. The mean square values also vary a lot. For a sinusoid to be

detected in this situation, it needs to overcome the variance of these values.

Figure 3.9 shows that this happens at an amplitude of around 118 dB.

Looking at the time series plot, the high variance in the mean square values

appears to be due to power at some very low frequencies causing the signal to

drift away from zero for several seconds at a time. This effect can also be observed

in the plot of the ambient noise signal we used to build the model (Figure 3.3).

An interesting thing happens to the energy detector if we apply first order

differencing to the signal before computing mean square values. This attenuates

the low frequencies causing drift and significantly reduces the variance of the

mean square values, as shown in Figure 3.10. When differencing is applied, the

energy detector seems to be able to handle amplitudes down to about 113 dB, as

shown in Figure 3.11. The threshold in these two figures has to be set differently

since differencing has removed some of the total power of the signal.

It may very well be that differencing or some other form of prefiltering would

have a beneficial effect on the ARMA-based detection methods as well, but this

has not been studied here. In practice, differencing the signal means that the

ambient noise model would become ARIMA(𝑝, 𝑑, 𝑞) instead of ARMA(𝑝, 𝑞).

 41

Figure 3.8: Energy detector tested on a 90-dB sinusoid in noise.

Figure 3.9: Energy detector tested on a 118-dB sinusoid in noise.

 42

Figure 3.10: Energy detector with differencing tested on a 118-dB sinusoid in noise.

Figure 3.11: Energy detector with differencing tested on a 113-dB sinusoid in noise.

 43

3.4.2 ARMA-Based Detectors

For each of the ARMA-based methods, two figures have been created. The

first figure shows the results of the training procedure, i.e. model fitting and

model validation. The second figure shows detector performance in the same way

as was shown for the energy detector.

The training figures contain the following plots: the estimated power

spectrum shown alongside a Welch estimate of the spectrum, a histogram of the

test statistic values under validation shown alongside the chi-squared PDF, and

a pole-zero plot of the estimated ARMA coefficients.

For the prediction method, the number of lags has been set to 20. 10 seconds

of the simulated noise data has been used for model fitting and the remaining 20

seconds for model validation.

The training figures also show the computation time spent by MATLAB in

fitting the model. This time will of course depend on the system MATLAB is

running on3. Additionally, the iterative methods are not deterministic, so that

estimation using two different data sets may take a different amount of time,

even if the model orders and the number of samples are the same. Nevertheless,

computation time is included in the figures to give a rough sense of how fast the

methods are compared to each other.

Successive Estimation Method

When the parameters of an ARMA(11,4) model are successively estimated

using least squares, the resulting test statistic does not quite fit the chi-squared

distribution, as shown in Figure 3.12. If we choose to ignore this lack of fit and

proceed to calculate p-values for the test data, several of the p-values are very

low, even for the part of the signal that has no added sinusoid (Figure 3.13). In

other words, the lack of fit increases the risk of false alarms.

As mentioned in Section 2.2.7, the assumption of normality may not be

warranted for the parameter vector obtained from the two-stage least squares

estimator. In general, when we observe a test statistic that does not fit well with

the theoretical distribution, it could mean that some of the underlying

assumptions are wrong.

However, experiments have shown that pure AR models tend to produce test

statistics with a better fit. If we change the model to AR(7), for instance, the

results are as shown in Figures 3.14 and 3.15. When the amplitude of the sinusoid

3 The system used here is a desktop computer with the following specifications:

i7-6700 CPU
16 GB RAM
500 GB SSD
64-bit Windows 10 Home

Parallelization on four cores has also been employed wherever possible.

 44

is increased to around 110 dB, the successive estimation method is able to detect

it using an AR(7) model (Figure 3.16).

Experiments not shown here have further indicated that the test statistic for

the successive estimation method will be more sensitive to the introduction of a

sinusoid when the model order is higher, e.g. AR(20). But then the statistic fits

poorly with the chi-squared distribution, which causes more misclassifications as

with the ARMA(11,4) model.

A way around this problem could be to use another distribution model for

the test statistic. Specifically, experiments have indicated that the generalized

extreme value distribution can be used in place of the chi-squared distribution

to obtain more well-behaved p-values under the null hypothesis. But this will

not be pursued here. Instead, we will restrict our attention to models whose test

statistic fits well with the chi-squared distribution.

Figure 3.12: Training results for an ARMA(11,4) successive estimation detector.

 45

Figure 3.13: p-values for the successive estimation method using an ARMA(11,4) model of
the ambient noise. The amplitude of the sinusoid is 90 dB.

Figure 3.14: Training results for an AR(7) successive estimation detector.

 46

Figure 3.15: p-values for the successive estimation method using an AR(7) model of the
ambient noise. The amplitude of the sinusoid is 90 dB.

Figure 3.16: p-values for the successive estimation method using an AR(7) model of the
ambient noise. The amplitude of the sinusoid is 110 dB.

 47

Prediction method

The prediction method has not been observed to exhibit the same problems

with lack of fit. As shown in Figure 3.17, the test statistic fits well with the chi-

squared distribution with 20 degrees of freedom. In experiments not shown here,

it has been observed to fit well for higher and lower number of lags as well.

Detection of the sinusoid does not seem to be affected greatly by how many lags

are chosen, so only 20 lags will be shown here and used in most of the experiments

on real data as well. When the amplitude of the sinusoid is set to around 98 dB,

the prediction method is able to reliably detect it (Figure 3.18).

Figure 3.17: Training results for an ARMA(11,4) prediction-based detector.

 48

3.4.3 Summary of Results

In the experiments above we have seen that a 100 Hz sinusoid can be detected

by the examined methods at the following amplitudes:

Prediction method: 98 dB

Successive estimation method: 110 dB

Energy detector with differencing: 113 dB

Energy detector without differencing: 118 dB

An AR(7) model was used in place of the ARMA(11,4) model for successive

estimation, as it produced a test statistic that fitted better with the chi-squared

distribution – a necessary condition for obtaining reliable p-values.

3.4.4 Adding Noise to Real Data Sets

In simulated experiments, we are able to control the power of the anomalous

signal. But when dealing with real data sets containing both ambient noise and

anomalies mixed in, we don’t have the same control over the relative power of

the ambient noise and the anomalies. Consequently, it is harder on real data sets

to evaluate detector performance on fainter anomalies.

We have already seen that that the ARMA-based methods can outperform

an energy detector on simulated data. But in order to properly test this on the

real data sets, some adjustments will be necessary. The modification that will be

Figure 3.18: p-values for the prediction method using an ARMA(11,4) model of the ambient
noise and 20 autocorrelation lags. The amplitude of the sinusoid is 98 dB.

 49

done in the experiments in the next chapter consists of adding simulated noise

to real hydrophone signals. This makes it possible to effectively increase the gain

of the ambient noise, and thereby lower the signal-to-noise ratio (SNR). In

practice, the same effect could of course be achieved by adding real data at

different amplitudes to simulated noise with a constant amplitude, but we will

not alter the real data, and instead just change the amplitude of the simulated

noise.

3.5 Dimensionality Reduction

Because I observed that test statistics from successive estimation with high-

order models were quite sensitive to changes in the noise but fitted poorly with

the chi-squared distribution, I started to examine ways of fitting a high-order

model and subsequently reducing its dimension in the hope that the resulting

test statistic would provide a better fit, while retaining the sensitivity to changes

of the higher-order model.

This led me to develop an algorithm which uses data both from ambient noise

and examples of anomalies to reduce the dimension of the feature space. As such,

it is a supervised approach to anomaly detection. The general algorithm is given

in Section 3.5.5. Leading up to that, the ideas behind it will first be presented

step by step in a less general way.

As Aggarwal (2013) explains in his chapter on supervised anomaly detection,

the introduction of anomalous data in the training process, can be used to form

a model of the normal class that is more sensitive to certain kinds of anomalies.

In the context of ocean monitoring, this could be very useful since it means that

we could potentially tune a detector to be more sensitive to a general class of

anomalies such as submarines or whales, without having to look for specific

acoustic signatures.

3.5.1 Analyzing the Feature Space

When the Mahalanobis distance is used to characterize a feature vector, all

the features are assumed to be equally important for describing the underlying

raw data. As discussed in Section 2.1.3, this is a strong assumption to make

without doing any analysis of the feature space. In the same section, two classical

approaches to reducing the dimension of the feature space were introduced,

namely principal component analysis and linear discriminant analysis.

Both PCA and LDA seek to summarize the most useful information

contained in the feature vector in a lower-dimensional space. The two methods

differ in how “useful information” is defined, and in the dimension of the subspace

that the feature vector is mapped to. In PCA, an -dimensional subspace is

created that retains the most of the variability of the feature vector, and the

dimension can be chosen freely. In LDA, supervised learning is used to find a

one-dimensional subspace that provides optimal separation between feature

vectors from two different classes.

 50

The feature space typically has too many dimensions to be visualized, but by

dividing it into two-dimensional subspaces, one can get an idea of how data from

different classes is distributed for various features.4 The subspaces will then

consist of pairs of features. The features that make up a pair do not need to be

related in any particular way. Grouping them together is simply an efficient way

of visualizing many features at once.

As an example, when we fitted an ARMA(11,4) model to simulated noise

using the successive estimation method in the previous section, the matrix 𝚽

contained a set of points in ℝ , one point for each segment of the signal. Now,

assume we let a 118-dB sinusoid in simulated noise represent an example of the

type of anomaly we wanted to be able to detect. We could then generate

estimates for this signal and produce another matrix 𝚽′, also made up of points

in ℝ . The data from both matrices could then be represented graphically in

two-dimensional plots where each axis corresponds to a feature. Figure 3.19

shows what such plots would look like. The first feature 𝜎 has been given a

separate subplot because its scale is quite different from the ARMA coefficients

that make up the other features.

As a way of scoring the features, the SNR criterion used to derive Fisher’s
linear discriminant has been computed for each feature in the model. Eq. (2.29)

for the criterion can be rewritten as

 𝐽(𝐰) =
(𝜇̂ − 𝜇̂)

�̂� + �̂�
, (3.13)

where 𝜇̂ and �̂� represent the sample mean and sample variance of the data for

the two classes after it has been projected onto 𝐰 (Duda et al., 2001). Since the

directions we are examining are just the coordinate axes of the feature space,

projecting simply means selecting one of the columns of the matrices 𝚽 and 𝚽′.

The SNR value shown in the figures is SNR (𝜙) = 10log 𝐽(𝜙).

When the features are viewed individually this way, the estimate of the white

noise standard deviation 𝜎, is the one that best discriminates between the two

classes. It is important to note, however, that this plot does not give much

information about the correlations that exist between features. Since the

Mahalanobis distance also takes correlation into account, features that have a

negative SNR may still contribute useful information if the correlation between

them is significantly different for the two classes. Nevertheless, 𝜎 is the feature

that is the most different for the two classes, and if we had to use only one

feature to distinguish between them, 𝜎 would be the natural choice.

4 For the rest of this section, “data” will refer to sets of feature vectors or points in
feature space, not the raw data that the feature vectors seek to describe.

 51

Figure 3.19: Visualization of the feature space of an estimation based detector that uses an
ARMA(11,4) model. Each axis represents a parameter of the model. The blue points are
estimates of the ambient noise, while the brown points are estimates of an 18-dB sinusoid in
noise. In the one-dimensional plots, the points have been drawn on separate lines for ease of
visualization.

Figure 3.20: Signal-to-noise ratios of each parameter in the ARMA(11,4) model, computed
from Fisher’s criterion in Eq. (3.13).

 52

3.5.2 Fisher’s Linear Discriminant

Even though 𝜎 has the highest SNR among the features in the above example,

its axis is not necessarily the direction which has the highest SNR of all directions

in the feature space. This direction is given by Fisher’s linear discriminant:

 𝐡 = 𝚺 + 𝚺
−

�̂� − �̂� (3.14)

When FLD is computed for the data set in this example, it yields a vector

with an SNR of 10.4 dB. We cannot visualize this vector, but one way to

understand it better is to calculate the angles between the vector and the

coordinate axes. The general expression for the angle between two vectors in ℝ

is

 𝜃 = cos− 𝐱 𝐲

‖𝐱‖‖𝐲‖
. (3.15)

When this is calculated for FLD and all the coordinate axes, the angle with the

first axis is only 0.060 degrees while all the other angles are around 90 degrees.

This means that FLD for this example is almost in the same direction as the 𝜎-

axis and consequently almost orthogonal to all the other axes. But a small

adjustment away from the 𝜎-axis has resulted in an increase in SNR of 9.5 dB.

The increased SNR means that the discriminant has absorbed some of the

information present in the other features.

3.5.3 Finding an Orthogonal Component

Having found Fisher’s linear discriminant in ℝ , we might be satisfied and

start using that vector to discriminate between classes on new data. However,

we could also ask if there is any more information left in the feature space that

is not captured by FLD. More precisely: Are there directions that are orthogonal

to Fisher’s linear discriminant but still have a positive SNR? If we found one

such vector, we could construct a two-dimensional subspace spanned by it and

FLD that would capture more useful information than what FLD could possibly

do alone.

To answer the above question, we first need a way of examining the directions

that are orthogonal to FLD. This can be accomplished by employing the theory

of projections from linear algebra. Scharf (1991) has been used in the following

as a reference for this theory.

Since we are only interested in directions, not magnitudes, of the vectors, we

can start by scaling FLD so that ‖𝐡‖ = 1. This simplifies some of the expressions

to follow. Now, form the projection matrix

 𝐏 = 𝐡𝐡 . (3.16)

 53

When a vector 𝝓 is multiplied by this matrix, it is projected into the one-

dimensional subspace spanned by 𝐡:

 𝐏 𝝓 = (𝐡 𝝓)𝐡 (3.17)

Furthermore, it is known that any vector in ℝ can be decomposed into two

orthogonal components. That is, the vector 𝝓 can be written as

 𝝓 = 𝐏 𝝓 + 𝐏 𝝓, (3.18)

where
 𝐏 = 𝐀(𝐀 𝐀)− 𝐀 (3.19)

is a projection onto the space 〈𝐀〉 that is orthogonal to 𝐡. In other words, there

exists a matrix 𝐀 whose columns are basis vectors for the orthogonal space, so

that 𝐀 𝐡 = 𝟎.

Eq. (3.18) can be written as

 𝝓 = (𝐏 + 𝐏)𝝓, (3.20)

which implies that
 𝐏 + 𝐏 = 𝐈. (3.21)

So, from 𝐡 we can form a projection that maps any vector in ℝ to the space

that is orthogonal to 𝐡 by simply rearranging (3.21):

 𝐏 = 𝐈 − 𝐏 . (3.22)

Now the entire data set can be projected into the orthogonal subspace by

𝚽 = 𝚽𝐏

𝚽 = 𝚽 𝐏
(3.23)

Remember that we wanted to find a direction in this subspace whose SNR is

positive – if such a direction indeed exists. Surely, the most interesting direction

to look for is the one that maximizes Fisher’s criterion for the projected data set.

However, we cannot compute Fisher’s linear discriminant directly from (3.14)

since that requires estimates of the covariance matrices, and the projected data

is currently made up of vectors in ℝ that lie in a subspace with 𝑑 − 1 dimensions.

As a consequence, the covariance matrices are not full rank and cannot be

inverted. To find FLD for the projected data set, we must therefore first represent

it in ℝ − .

To accomplish this, we can proceed by finding a set of 𝑑 − 1 basis vectors for

〈𝐀〉 in ℝ and then do a coordinate transformation so that these vectors become

the new coordinate axes. First, let

 54

 𝚽 − 𝐌 = 𝐔𝐒𝐕 (3.24)

be the singular value decomposition of the centered projected data from the

normal class. Here, 𝐌 is a matrix of repeated sample means (see Section 2.1.2).

Since the rank of 𝚽 is 𝑑 − 1, the last singular value in 𝐒 will be zero, and

the corresponding eigenvector in 𝐕 will be in the direction of Fisher’s linear

discriminant. This means that the vectors {𝐯 , 𝐯 ,⋯ , 𝐯 − } are a basis for the

orthogonal subspace 〈𝐀〉.

Next, form the reduced, full rank matrices

𝐕 = [𝐯 𝐯 ⋯ 𝐯 −]

𝐒 = diag(𝑠 , 𝑠 ,⋯ , 𝑠 −)
(3.25)

and the scaled diagonal matrix

 𝐃 =
𝐒

√
𝑁 − 1

, (3.26)

where 𝑁 is the number of rows in 𝚽. Then perform a whitening transformation

similar to the one given in Eq. (2.28) on the whole data set:

𝚿 = (𝚽 − 𝐌)𝐕 𝐃−

𝚿 = (𝚽 − 𝐌)𝐕 𝐃−

(3.27)

The matrices 𝚿 and 𝚿 have 𝑑 − 1 columns representing coordinates along the

basis vectors {𝐯 } of 〈𝐀〉. Incidentally, since we also chose to scale by 𝐃− , the

vectors in 𝚿 will be standard normal. That is,

�̂� = 𝟎

𝚺 =
1

𝑁 − 1
𝚿 𝚿 = 𝐈

(3.28)

Note that only data from the normal class was used to create the transformation,

but data from both classes is transformed to the new coordinate system. The

reason for this is that the underlying assumption of the whitening transformation

is that the data is MVN. In our general model, this can only be assumed for the

normal class and not for the pooled data from both classes.

After the data has been transformed to the new coordinate system, we can

compute Fisher’s linear discriminant in 〈𝐀〉 as

 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.29)

 55

This vector is, however, still a point in the new coordinate system. If we want to

use it along with the other linear discriminant to construct a two-dimensional

subspace of ℝ , we first need to represent it in the original coordinate system by

reversing the whitening transformation:

 𝐡 = 𝐕𝐃
𝐡

0
+ �̂� , (3.30)

where

 𝐃 =
𝐒

√
𝑁 − 1

. (3.31)

The vector 𝐡 is now a vector in ℝ that is orthogonal to Fisher’s linear

discriminant. Furthermore, of all the orthogonal directions, the direction of 𝐡 is

the one maximizes the SNR criterion for the data set.

If we called FLD 𝐡 and scaled 𝐡 so that its norm was also one, we could

join the two vectors together in a matrix

 𝐇 = [𝐡 𝐡], (3.32)

and form the projection
 𝐏 = 𝐇𝐇 , (3.33)

which would be a mapping into a two-dimensional subspace of ℝ providing, in

some sense, optimal separation of the data from the two classes. Projecting a

vector 𝝓 this way can be written out as

 𝐏 𝝓 = (𝐡 𝝓)𝐡 + (𝐡 𝝓)𝐡 , (3.34)

which highlights the fact that the {𝐡 } are basis vectors of the subspace. This

means that we can represent the vector 𝝓 in ℝ by simply extracting the

coordinates (𝐡 𝝓) for each of the two axes. The resulting transformation is then

 𝒯: ℝ → ℝ : 𝐱 = 𝐇 𝝓. (3.35)

If 𝝓 is assumed to be MVN, then 𝐱 will be distributed as

 𝐱 ~ 𝑁 𝐇 𝝁 ,𝐇 𝚺 𝐇 , (3.36)

which follows from the properties of linear transformations of MVN variables

given in (2.7). When the transformation in (3.35) is performed on a data matrix,

it becomes

 𝒯: ℝ → ℝ : 𝐗 = 𝚽𝐇. (3.37)

 56

After transforming the data, we can use Mahalanobis distances in ℝ to classify

new data in the same way as was done in ℝ before the transformation.

3.5.4 Example: Mapping a Data Set from ℝ to ℝ

To get a more intuitive understanding of what is going on in the above

procedure, we can try to visualize it on a 3-dimensional data set. For simplicity,

the data will be generated by drawing points from two Gaussian distributions.

The parameters of the first distribution are given by

 𝝁 =
−3.0
−4.0
1.0

, 𝚺 =
1.2 0.3 −0.4
0.3 1.5 0.2

−0.4 0.2 2.0

. (3.38)

This will represent the normal class. The parameter of the second distribution,

representing the anomaly class, are

 𝝁′ =
3.0
4.0
5.0

, 𝚺′ =
2.0 −0.4 0.2

−0.4 1.0 0.3
−0.2 0.3 1.5

. (3.39)

From each of these distributions, 5000 points have been drawn and organized as

rows of the data matrices 𝚽 and 𝚽′.

Figure 3.21 shows the data set plotted as points in ℝ along with the subspace

〈𝐡 〉 spanned by FLD and the subspace 〈𝐀〉 orthogonal to FLD. We see that in

three dimensions, 〈𝐀〉 becomes a plane. The direction of 𝐡 seems to make sense

since it is roughly the direction 𝝁 − 𝝁, pointing from one mean to the other.

In Figure 3.22 the data has been projected onto the plane 〈𝐀〉 and the

direction of 𝐡 has been found as the direction that maximizes the SNR criterion

in the subspace. We can imagine that the vector has been rotated around in the

plane until the SNR is at its highest.

Figure 3.23 shows the original data set and the subspace 〈𝐇〉 spanned by 𝐡

and 𝐡 , while figure 3.24 shows the data set projected into 〈𝐇〉. The data points

are still points in three dimensions even though they are in a subspace. But by

doing a coordinate transformation they can be represented in two dimensions, as

shown in figure 3.25.

It is clear that the SNR is much better for 𝐡 than 𝐡 . But 𝐡 is still positive,

which means it contains some information not captured by 𝐡 . To create an

alternative but suboptimal representation of the data set we could find a vector

𝐡 that is orthogonal to both 𝐡 and 𝐡 . That is, a vector that satisfies

 𝐇 𝐡 = 𝟎. (3.40)

Geometrically, this is the normal vector to the plane spanned by 𝐡 and 𝐡 . It

can be found from an eigenvalue decomposition of 𝐇 .

 57

The result of representing the data by means of 𝐡 and 𝐡 is shown in Figure

3.26. It is clear that projecting the data onto 𝐡 would cause the data from the

two classes to be mixed together almost completely, as evidenced by the negative

SNR. An explanation for this is that the first two directions have been formed

in a way that maximizes our ability to classify the projected data. Consequently,

less useful information for classification becomes available for the last direction.

This could perhaps be viewed as entropy, or lack of information, being forced

into the last orthogonal direction.

Figure 3.21: Two Gaussian clusters representing sets of feature vectors from two different
classes. The green line is the subspace spanned by Fisher’s linear discriminant. The blue
plane is the subspace orthogonal to FLD.

 58

Figure 3.22: When all the feature vectors are projected into the orthogonal subspace, the
direction of the blue line is the one that maximizes the SNR criterion and provides the best
separation of the two classes in the orthogonal subspace.

Figure 3.23: The feature vectors from the two classes shown with the subspace constructed
from the two orthogonal components.

 59

Figure 3.24: The feature vectors from the two classes projected into the constructed subspace.

Figure 3.25: The projected feature vectors from the two classes represented in two
dimensions.

 60

3.5.5 Finding Multiple Orthogonal Components

When working in a high-dimensional feature space, there is no need to stop

after two orthogonal components have been found from the procedure described

in the previous section. The method can fairly easily be generalized to find 𝑛

orthogonal components in ℝ , where 𝑛 ≤ 𝑑. We just have to make sure that each

new component is not only orthogonal to the preceding one, but to all previous

components. That means that the projection matrix used to find the 𝑖th

component 𝐡 , must be formed as

 𝐏 = 𝐈 − 𝐇 𝐇 , (3.41)

where
 𝐇 = [𝐡 𝐡 ⋯ 𝐡 −]. (3.42)

We can then project the data as before, and rotate a vector around in the

orthogonal subspace until Fisher’s criterion is maximized. Afterwards, we can

represent the vector in ℝ as 𝐡 and move on to the next component.

Each component found this way will necessarily have a lower SNR than the

preceding one. To see why this is the case, note that the directions we are

searching through to find 𝐡 are only a subset of the directions we have already

searched through to find 𝐡 − . So, 𝐡 will be found by looking at the entire space,

and will thus be Fisher’s linear discriminant. 𝐡 will then be formed by only

considering the directions that are orthogonal to 𝐡 , and so on.

Figure 3.26: An example of a worse mapping where the feature vectors from the two classes
are not well separated.

 61

The fact that we end up with a set of ordered orthogonal components that

can be used to represent the data in a lower-dimensional space, means that the

procedure has a lot in common with PCA. The big difference is, of course, that

the components are found by iteratively maximizing Fisher’s SNR criterion under

an orthogonality constraint, while in PCA it is the variance of the projected data

that is maximized under an orthogonality constraint.

In the general version of the algorithm given below, one modification will be

introduced that serves to simplify some of the steps. It consists of creating a

whitening transformation based on data from the normal class and performing it

on data from both classes before proceeding to find the components. This

effectively represents the whole data set in a coordinate system where the

distribution of the normal class is standard normal.

An advantage of the whitening transformation is that any time the data from

the normal class is projected into a new subspace, the mean vector remains zero,

which means it doesn’t have to be recalculated on each iteration. The symmetry

of the spherical distribution further ensures that the variance along any vector

in the subspace is equal to one, which means we don’t have to scale by the

singular values when moving in and out of the subspace. The initial whitening

transformation is done using the SVD in steps 1 – 3 below. If the true mean and

covariance matrix is known in advance, the transformation can instead be done

by factoring the covariance matrix, as in (2.13).

Algorithm for finding 𝒏 orthogonal components

1. Take the SVD of the data from the normal class:

 𝚽 − 𝐌 = 𝐔𝐒𝐕 , (3.43)

where the rows of 𝐌 are all equal to �̂� , i.e. the sample mean of 𝝓.

2. Form the diagonal matrix

 𝐃 =
𝐒

√
𝑁 − 1

, (3.44)

where 𝑁 is the number of rows in the data matrix 𝚽.

3. Transform the data from both classes.

𝐖 = (𝚽 − 𝐌)𝐕𝐃−

𝐖 = (𝚽 − 𝐌)𝐕𝐃−
(3.45)

4. Find the first component (FLD)

 62

 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.46)

5. Scale the component so that ‖𝐡 ‖ = 1.

6. Initialize 𝐇 as an empty matrix

 𝐇 = [] (3.47)

Repeat the following steps for 𝑖 = 2, 3,⋯ , 𝑛.

7. Update 𝐇

 𝐇 = [𝐇 − 𝐡 −] (3.48)

8. Form the projection matrix

 𝐏 = 𝐈 − 𝐇 𝐇 (3.49)

9. Project the data into the orthogonal subspace 〈𝐀〉.

𝐖 = 𝐖𝐏

𝐖 = 𝐖 𝐏
(3.50)

10. Take the SVD of the projected data from the normal class.

 𝐖 = 𝛀𝚲𝚼 (3.51)

11. Form the reduced matrix

 𝚼 = [𝜸 𝜸 ⋯ 𝜸 − +]. (3.52)

12. Represent the projected data from the second class in ℝ − + .

 𝚿 = 𝐖 𝚼 (3.53)

13. Find Fisher’s linear discriminant in the new coordinate system.

 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.54)

14. Represent 𝐡 in ℝ as

 𝐡 = 𝚼
𝐡

𝟎
. (3.55)

 63

15. Scale the component so that ‖𝐡 ‖ = 1.

When the loop is complete, the matrix 𝐇 = [𝐡 𝐡 ⋯ 𝐡] is returned

along with �̂� and the matrices 𝐕 and 𝐃 that were used for the initial whitening

transformation. New feature vectors can then be mapped to ℝ with the

transformation

 𝒯 : ℝ → ℝ : 𝐱 = 𝐇 𝐃− 𝐕 (𝝓 − �̂�), (3.56)

which for a data matrix becomes

 𝒯 : ℝ → ℝ :𝐗 = (𝚽 − 𝐌)𝐕𝐃− 𝐇 . (3.57)

We are, of course, free to create a matrix 𝐓 = 𝐕𝐃− 𝐇 and just use that for

future transformations instead of keeping the three individual matrices.

In the algorithm above, the data is first mapped to a coordinate system in

which the normal class has a spherical distribution. Multiplication by 𝐇 then

rotates the data while simultaneously reducing its dimension. It is possible to get

back to the original coordinate system by reversing the whitening transformation,

but if the goal is to calculate Mahalanobis distances this would be unnecessary.

The reason is that the distribution of the mapped data is multivariate standard

normal, and as we have seen, this reduces Mahalanobis distances to Euclidian

distances. So, if we stay in the new coordinate system, we don’t need a covariance

matrix or a mean vector to calculate the Mahalanobis distance. We can simply

take the Euclidian norm of the transformed vector 𝐱.

One might wonder why the covariance matrix of the transformed vector is

still the identity after multiplication by 𝐇 . This follows from the fact that 𝐇

is orthogonal, and from the properties of linear transformations of MVN variables

in Eq. (2.7):

 𝐸[𝐱𝐱] = 𝐇 𝐈 𝐇 = 𝐈 (3.58)

Even though the algorithm can be stopped after 𝑛 components have been

found, it is usually more practical to set 𝑛 = 𝑑 and find the whole set of

components that span ℝ . With a little extra bookkeeping, one can also return

the SNR of each component. It is possible, then, to do some analysis before

deciding how many components to use. For instance, one could elect to use only

components that have an SNR above some threshold (like zero). Having all the

components available also makes it easier to run tests using different numbers of

components on the same test data. The function findBasis listed in the

Appendix is an implementation of the above algorithm that finds the whole set

of basis vectors and also returns the SNR of each component.

 64

Returning to the Simulated Example

At the beginning of this section on dimensionality reduction, we examined

the feature space of an ARMA(11,4) model fitted to simulated ambient noise.

We saw that the SNR of the different features varied a lot, with the first feature

𝜎 being the best for discriminating between the two classes.

Now, if the general algorithm for finding orthogonal components is applied

to the data from that example, the results are as shown in Figures 3.27 and 3.28.

There we clearly see how the components are ordered according to their SNR.

Interestingly, there are now two components with a quite high SNR. In the next

chapter, examples will be given where the two signals have less in common and

even more components have a positive SNR.

Recall from Section 3.4.2 that validation of the ARMA(11,4) based detector

produced a poor fit with the chi-squared distribution, resulting in unstable p-

values under the null hypothesis. When we test this detector on the 118-dB

sinusoid, the result is as shown in Figure 3.29. Even the lack of fit produces

several false alarms, the detector clearly reacts to the introduction of the loud

sinusoid.

Now, if we instead build a detector using only the first component, i.e.

Fisher’s linear discriminant, the GOF actually goes up to 0.39. When this

detector is tested on the same file, the result is as shown in Figure 3.30. Two

things are evident from the figure. Firstly, although there are still a few false

alarms, the p-values are more well-behaved under the null hypothesis than before

the mapping. Secondly, the p-values remain consistently low after the sinusoid is

introduced.

If we decided to use two instead of one component, the result is as shown in

Figure 3.31. This appears to increase the variance of the p-values somewhat but

they are still consistently low for the second half of the signal. It is not clear from

this example that adding another component has any benefit. In fact, it happens

to produce one more false alarm than for just one component.

I have not conducted any systematic experiments to determine whether

adding more components is beneficial in general. One way to test this, would be

to introduce several examples of the same type of anomaly, e.g. different types

of ship, in the training stage, and see if using more than one component in the

test stage would improve the detectors ability on unseen anomalies of the same

kind.

 65

In the above example, the sinusoid used in detector training is the same as

the one used to test the detector, but the ambient noise is generated from

independent simulations of the same ARMA process. Nevertheless, the test does

not show how the detector would react to other types of anomalies, such as

sinusoids at different amplitudes. In the next chapter, we will see some examples

of this when the detectors are tested on real hydrophone signals. Before

proceeding, we will briefly return to the detector design procedure from Section

3.2 to see how supervised reduction of dimensionality can be incorporated there.

Figure 3.27: The feature space of the ARMA(11,4) example after the mapping has been
applied.

Figure 3.28: The SNR of all the components after the mapping has been applied.

 66

Figure 3.29: p-values calculated from Mahalanobis distances in the original feature space of
the ARMA(11,4) model. The low GOF, as observed in Figure 3.12, causes unstable p-values
under the null hypothesis.

Figure 3.30: p-values calculated from distances along the first component, FLD. Training with
this detector produced a GOF p-value of 0.39.

 67

3.6 Supervised Detection

The dimensionality reduction algorithm in the previous section is a way of

allowing the model of the normal state to be made more sensitive to certain types

of anomalies. If examples of anomalies of specific interest are available, they can

be fed to the reduction algorithm which then learns a linear transformation that

makes the detector respond more to those types of anomalies. Whether there is

any real benefit to using more components than just Fisher’s linear discriminant

in this setting, is unclear. Further work is necessary to determine the usefulness

of the general algorithm.

Nevertheless, supervised reduction of dimensionality can be incorporated in

the detector design approach outlined in Section 3.2. As shown in Figures 3.32

and 3.33, the algorithm for finding the orthogonal components is now part of the

training procedure. The transformation matrix obtained can then be stored and

used to map new feature vectors.

Figure 3.31: p-values calculated from Mahalanobis distances in the two-dimensional space
spanned by the two components with the highest SNR. Training of this detector produced a
GOF p-value of 0.43.

 68

Figure 3.32: Overview of the detector training stage and test stage using the successive
estimation method and supervised dimensionality reduction.

 69

Figure 3.33: Overview of the detector training stage and test stage using the prediction
method and supervised dimensionality reduction.

 70

 71

4 Experiments on Hydrophone Data

On the following pages, the methods described in the previous chapter will

be tested on a data set provided by FFI. The data set consists of an 83 seconds

long audio file made up of four different signals following each other. All the

signals are 22.05 kHz hydrophone recordings from LoVe. The first signal is

ambient noise recorded at 3 m/s wind speed. The second consists of the 10

seconds of 18 m/s ambient noise modeled in Section 3.3, plus five more seconds

or so of the same noise. The third is ship noise, and the fourth is ambient noise

at unknown wind speed interspersed with whale sounds.

The two detection methods will be tested in both their unsupervised and

supervised form as laid out in Sections 3.2 and 3.6. The data that will be used

to train the detectors is the 10 first seconds of the 18 m/s wind noise signal, as

in Section 3.3. The remainder of the signal has been reserved for model validation.

In the supervised case, the ship noise will be taken as the example of

anomalous data. This signal is around 13 seconds long. Only the first half will be

used for training the detector, so that when we go through the test file, the

second part of that signal will consist of unseen data.

The segment length chosen for most of the experiments is 0.04 seconds,

meaning that each data segment consists of only 882 samples. This is probably

a much higher temporal resolution than what is necessary in any practical

situation for detecting ships and other sound sources in the ocean. In such a

situation, one might prefer to only update the p-values once every second or so.

The segment length has been chosen this way because of the limited amount

of data available for the experiments. Since successive estimation requires

estimates of the mean and covariance matrix for the parameter vector, we need

to obtain a fair number of samples of this vector during training. Checking the

goodness of fit of the test statistic also requires more than just a few samples of

the statistic.

In order to create more challenging situations for the detectors, simulated

ambient noise of varying amplitudes will be added to the training data and the

test data in some of the experiments. The model used for simulation is the one

given in (3.11). The amplitude of the noise will be given in relation to the 18 m/s

wind noise, so that a noise gain of K dB means that the added noise increases

the total power of that signal by K dB.

The noise added to the training data and the test data will come from

independent simulations of the ARMA model. But the random number generator

is initialized in the same way for each experiment so that the added noise for

different gains are scaled versions of the same simulated signals.

 72

4.1 No Added Noise

4.1.1 Energy Detector

We start by running an energy detector on the unaltered test file. As shown

in Figure 4.1, even though the detector is sensitive to the anomalies, it clearly

varies a lot even in the areas where we are assuming that the signal is stationary.

In Section 3.4.1 we saw that differencing the signal before computing mean square

values produced more stable values. When the same is done here, the result is as

shown in Figure 4.2. Clearly, the differenced version of the detector is much more

stable. It will therefore be used for comparing the energy detector with the

ARMA-based methods in the next experiment.

Figure 4.1: Energy detector tested on the sample file.

 73

4.1.2 Successive Estimation

Since the simulation experiments showed that successive estimation produced

a more well-behaved test statistic with a pure AR model than a full ARMA

model, an AR(7) model will also be used to test the method on the real data set.

Figure 4.3 shows that the p-values produced by the method are extremely

low for the ship noise and the whale sounds. Interestingly, the p-values for the

other ambient noise signal at 3 m/s wind speed are also extremely low. This

should perhaps not come as a surprise, since the detector is trained for very

different weather conditions. From the point of view of the detector, another

ambient noise signal may be just as “different” as a ship noise signal if it fits

poorly with the trained model.

Figure 4.2: Energy detector tested on a differenced version of the sample file.

 74

When an AR(20) model is fitted using successive estimation and we run the

algorithm in 3.5.5, it produces seven orthogonal directions in the feature space

that have a positive SNR. The effect of projecting feature vectors into the space

spanned by the six first of these is shown in Figure 4.5. While the ship noise has

approximately the same p-values as before, the p-values for the other signals are

not as extreme as in the unsupervised case. This shows that the detector has

been made more sensitive to the ship noise relative to the other signals. The

effect becomes even more evident if we project onto only the first component, i.e.

Fisher’s linear discriminant, as shown in Figure 4.6.

Figure 4.3: p-values for the successive estimation method using an AR(7) model.

Figure 4.4: Orthogonal components obtained for the successive estimation method using an
AR(20) model.

 75

Figure 4.5: p-values for the successive estimation method after projecting onto the first six
components.

Figure 4.6: p-values for the successive estimation method after projecting onto only one
component.

 76

4.1.3 Prediction

As with successive estimation, the prediction method also produces extremely

low p-values for both the other ambient noise signal and the whale sounds (Figure

4.7). The dimension of the feature space is 20 here, which is the number of

autocorrelation lags being tested. By running the same algorithm as above, we

can reduce the dimension from 20 to six by selecting the six first components

shown in Figure 4.8. The result of projecting into this six-dimensional subspace

is shown in Figure 4.9. Projecting onto only the first component has been done

in Figure 4.10. As in the previous experiment, the detector becomes more

sensitive to the ship noise relative to the 3 m/s wind noise and the whale sounds

when supervision is used, and this is especially evident when using just Fisher’s
linear discriminant.

Figure 4.7: p-values for the prediction method using 20 autocorrelation lags.

Figure 4.8: Orthogonal components obtained for the prediction method with 20
autocorrelation lags.

 77

Figure 4.9: p-values for the prediction method after projecting onto the first six components.

Figure 4.10: p-values for the prediction method after projecting onto only one component.

 78

4.2 Added Noise

It is evident from the previous experiments that the signals in the test file

are so different from each other that both the energy detector (with differencing)

and the two ARMA methods have no problems distinguishing between them. In

order to create a situation where the signals are more similar, a substantial

amount of simulated ambient noise will now be added.

4.2.1 Energy Detector

Figure 4.11 shows how the energy detector performs when the noise gain is

set to 12 dB and mean square values are calculated from the differenced signal.

The detector still reacts to some of the anomalies, but it is hard to judge from

the plot how well it could work in practice.

When experiments have been conducted with different amounts of added

noise, the energy detector has been observed to gradually deteriorate from what

is shown in Figure 4.2 to what is shown in the Figure 4.11. Since we don’t have

a distribution model for the mean square values, we cannot convert them to p-

values and draw a significance level threshold like for the ARMA-based methods.

Consequently, it is hard to say exactly when the detector becomes unusable, or

to conclusively say that it is better or worse than some other method. Still, a

noise gain of about 12 dB in this setting seems to be too much for the energy

detector to reliably handle.

Figure 4.11: Energy detector with differencing tested at 12 dB noise gain.

 79

4.2.2 Successive Estimation

When an AR(7) model is fitted to the training data with added noise using

successive estimation, the performance of the detector on the test file is as shown

in Figure 4.12. Here, most of the whale sounds are detected at the chosen

significance level, but the ship noise is not. Nor is the ship noise visible in the

spectrogram. The reader may need to consult one of the figures where no noise

has been added to see where the various anomalies occur.

Now, if we fit an AR(20) model and try to reduce the dimension, it turns out

that only the first component has a positive SNR. Projecting onto this component

causes the ship to be detected, although only for the first part of the ship noise

signal, not the unseen part (Figure 4.14). So, even though the whale sounds can

still be detected, successive estimation struggles with the ship noise in this

experiment.

Figure 4.12: p-values for the successive estimation method using an AR(7) model.

 80

4.2.3 Prediction

The prediction method shows better performance in the unsupervised case

(Figure 4.15), although some of the whale sounds at the end are not detected.

As in the case of successive estimation, only one useful component is found from

reducing the dimension. When the autocorrelation vectors are projected onto this

component, the result is as shown in Figure 4.17. The detector is now more

sensitive to the ship noise. Incidentally, one more whale sound is also detected

after the projection.

Figure 4.13: p-values for the successive estimation method after projecting onto the first
component.

 81

Figure 4.14: p-values for the prediction method using 20 autocorrelation lags.

Figure 4.15: p-values for the prediction method after projecting onto the first component.

 82

4.3 Adjusting Parameters

So far, we have kept the segment length constant at 0.04 seconds for all the

methods, and the number of autocorrelation lags for the prediction method has

been 20. As prediction seems to be the most promising of the methods, this

section will briefly demonstrate the effect of adjusting the parameters of the

prediction method.

In Figure 4.18 the ambient noise gain has been increased to 21 dB. The p-

values obtained using the same settings as in the previous experiments appear to

respond very little to the whale sounds, which are now almost completely buried

in simulated noise.

When the segment length is increased to 0.4 seconds, however, Figure 4.19

shows that two of the whale sounds are detected. These two are also the ones

that are the most visible in the spectrogram.

Since we now have more data for each estimated autocorrelation vector, we

can increase the number lags as well. Figure 4.20 shows what happens when this

value is set to 300. Apparently, one more whale sound is now detected.

So, in this example at least, increasing the segment length and the number

of lags were both helpful in detecting faint sound sources buried in noise. The

appropriate values of the two parameters will probably depend on what kind of

anomalies we want to detect.

This experiment demonstrates a major advantage of the prediction method

over the successive estimation method. The fact that the MVN parameters of the

autocorrelation vector are known a priori, means that we can increase both the

amount of data used to estimate the vector and the number of elements in the

vector – without needing any more data to get the MVN parameters.

If we wanted to do successive estimation with 10 times longer segments, we

would need 10 times as much raw data to obtain the same number of samples

for MVN parameter estimation. And the successive estimation analog to using

300 lags is fitting AR(300) models to each segment and attempting to estimate

the covariance matrix of the resulting parameter vector, which hardly seems

realistic.

 83

Figure 4.16: p-values for the prediction method using 20 autocorrelation lags and a segment
length of 0.04 seconds.

Figure 4.17: p-values for the prediction method using 20 autocorrelation lags and a segment
length of 0.4 seconds.

 84

Figure 4.18: p-values for the prediction method using 300 autocorrelation lags and a segment
length of 0.4 seconds.

 85

5 Conclusion and Further Work

5.1 Conclusion

Tests on simulated and real data sets have indicated that the selected ARMA

methods are better suited for detecting anomalies in underwater ambient noise

than a simple energy detector. It was pointed out, however, that precise

comparison with this detector cannot be made without having a distribution

model for the mean square values the detector is based on. An attempt at

building such a model was not made. The energy detector itself was found to

produce significantly more stable values when differencing was applied to the

signal before calculating mean square values. But even then, the ARMA methods

showed better performance.

Of the two ARMA methods, the prediction method was found to be better

than the successive estimation method in three ways. Firstly, its test statistic

tended to fit better with the chi-squared distribution under the null hypothesis

of ambient noise. This produced more reliable p-values and fewer false alarms.

Secondly, it was able to detect fainter anomalies than the successive estimation

method. Thirdly, our a priori knowledge of the MVN parameters of the sample

autocorrelation vector meant that we could freely increase the length of the data

segments without needing more data for training. It was demonstrated that both

increasing the segment length and the degrees of freedom, i.e. the number of

autocorrelation lags, were potential ways of improving detector performance for

the prediction method.

Experiments with supervised dimensionality reduction indicated that this

could be a useful way of building detectors that are more sensitive to certain

kinds of anomalies without having to look for specific acoustic signatures. The

proposed generalization of Fisher’s linear discriminant allowed us to freely choose

the subspace dimension and hence the degrees of freedom of the resulting test

statistic, but it was unclear if this offered any practical benefit over just using

FLD on its own.

5.2 Further Work

When the test statistic of the successive estimation method was observed to

fit poorly with the chi-squared distribution, we had to resort to a fairly low-order

AR model to get reliable p-values. This may have caused the detector to be less

sensitive to changes in the process than it could otherwise have been using a full

ARMA model. It would therefore be interesting to examine some other non-

iterative ARMA estimation methods and see if any of them produced a test

statistic with a better fit. For instance, the algorithm proposed by Hernandes et

al. (2008) appears to be more accurate than the two-stage least squares method

used here, which could perhaps affect the distribution of the test statistic in a

positive way.

 86

Even though the Ljung-Box test was found to work well for anomaly

detection, it is by no means the only test that can be performed on the prediction

errors of an ARMA model. As a continuation of the work done here, it could be

useful to explore some other possible hypothesis tests and compare their

performance. For instance, the Breusch-Godfrey test is another way of testing

for serial correlation that could potentially be used instead of the Ljung-Box test

(Breusch, 1978).

Since first order differencing was shown to improve the energy detector, it

would be interesting to see if this could improve the ARMA-based methods as

well. Some initial experiments have indicated that the performance is roughly

the same, but I have not tested this systematically.

The tests done on the dimensionality reduction algorithm were not sufficient

to determine if it offered any improvement over FLD. To properly test this, we

would need to feed the algorithm examples of data from a general class of

anomalies, such as ships or submarines, and then test detector performance on

unseen data from the same class with one or more components. If it turns out

that adding more components is beneficial, then the algorithm could perhaps be

useful for detecting anomalies in other types of data as well, such as images.

A limitation of all the methods discussed here is that they need to be trained

for certain conditions such as wind speeds, and will not work well if those

conditions change too much. This problem can either be tackled by fitting several

models for different weather conditions and allowing the detector to switch

between models, or we could try to build a detector that continuously updates

its model to the changing conditions. A challenge in this regard would be to

distinguish between true anomalies and natural changes in ambient noise, so that

only the right kind of changes are incorporated into the updated model.

 87

List of Abbreviations

ACF autocorrelation function

ACV autocorrelation vector

AR autoregressive

ARIMA autoregressive integrated moving average

ARMA autoregressive moving average

BIC Bayesian information criterion

CDF cumulative density function

DOF degrees of freedom

DTFT discrete-time Fourier transform

FFI Forsvarets forskningsinstitutt,

Norwegian Defence Research Establishment

FLD Fisher’s linear discriminant

GOF goodness of fit

GUI graphical user interface

LB Ljung-Box

LDA linear discriminant analysis

LoVe Lofoten-Vesterålen Ocean Observatory

LS least squares

MA moving average

ML maximum likelihood

MVN multivariate normal

PACF partial autocorrelation function

PCA principal component analysis

PDF probability density function

PEM prediction error method

PSD power spectral density

SNR signal-to-noise ratio

SVD singular value decomposition

WSS wide sense stationary

 88

 89

Appendix: MATLAB Code

On the following pages, all the functions referred to in the thesis are listed.

Most of the code for the thesis has been written so that it can be accessed from

the user interface shown in Figure A.1. On the left side are settings related to

the detector itself; on the right side are settings for graphical representations.

When a detector has been trained and tested with the desired settings and input

data, it can be saved as a MATLAB object to be retrieved later on or adapted

to run on another system.

Much of the code is found inside the class definition file for the detector

object, and the settings on the left side of the GUI are properties of this object.

The class definition file itself will not be listed here, as it mostly deals with

organizing the data and moving matrices around between different functions, as

outlined in Sections 3.2 and 3.6.

Figure A.1: Graphical user interface for the MATLAB program used to conduct the
experiments in this thesis.

 90

ARMA Estimation

function [a, b, s] = ML_ARMA(y, p, q)

% Computes the unconditional maximum likelihood estimate of the

% coefficients a and b, and the input noise standard deviation s, in the

% ARMA(p,q) model of the signal y. Requires the Econometrics Toolbox.

 mdl = arima(p, 0, q);

 estMdl = estimate(mdl, y, 'print', false);

 a = cell2mat(estMdl.AR)';

 b = cell2mat(estMdl.MA)';

 s = sqrt(estMdl.Variance);

 a = [1;-a];

 b = [1;b];

end

function [a, b, s] = LS_AR(y, p, method)

% Computes the least squares estimate of the coefficients a and the input

% noise standard deviation s in the AR(p) model of the signal y. The method

% used is either the autocorrelation method or the covariance method.

 y = y(:);

 N = length(y);

 switch method

 case 'acorr'

 Y = convmtx(y,p+1);

 case 'covar'

 Y = convmtx(y,p+1);

 Y = Y(p+1:N,:);

 otherwise

 disp('Method not recognized');

 end

 yp = Y(:,1);

 X = Y(:,2:p+1);

 theta = -(X\yp);

 a = [1;theta];

 b = 1;

 err = X*theta + yp;

 s = sqrt(mean(err.^2));

end

 91

function [a, b, s] = LS_ARMA(y, p, q)

% Computes the two-stage least squares estimate of the coefficients a and

% b, and the input noise standard deviation s, of the ARMA(p,q) model of

% the signal y.

 y = y(:);

 N = length(y);

 if q == 0

 [a, b, s] = LS_AR(y, p, 'covar');

 else

 K = floor(N/10);

 if K > 20

 K = 20;

 end

 aK = LS_AR(y, K, 'covar');

 e_hat = filter(aK,1,y);

 m = max(p,q) + K;

 Y = convmtx(y,p+1);

 Y = Y(m+1:N,:);

 E = convmtx(-e_hat,q+1);

 E = E(m+1:N,:);

 z = Y(:,1);

 Y = Y(:,2:end);

 E = E(:,2:end);

 Z = [Y E];

 theta = -(Z\z);

 e = Z*theta + z;

 s_sq = (e'*e)/(N-m);

 s = sqrt(s_sq);

 a = [1;theta(1:p)];

 b = [1;theta(p+1:end)];

 end

end

 92

function [a, b, s] = PEM_ARMA(y, p, q)

% Computes the prediction error method estimate of the coefficients a and

% b, and the input noise standard deviation s, in the ARMA(p,q) model of the

% signal y. Requires the System Identification Toolbox.

 data = iddata(y, [], 1);

 sys = armax(data, [p q]);

 a = sys.A';

 s = sqrt(sys.NoiseVariance);

 b = sys.C';

end

Order Selection

function [p, q, BICmin] = BICorder(y, p_max, q_max)

% Adapted from Mathworks example:

% https://se.mathworks.com/help/econ/choose-arma-lags.html?s_tid=gn_loc_drop

% [Acessed 15 Jan. 2017].

% Computes the Bayesian information criterion for all combinations of ARMA

% model orders from 1 to p_max and 1 to q_max. Then selects the model

% orders for which the criterion is minimized. Requires the Econometric

% Toolbox and the Parallel Computing Toolbox. To remove parallelization,

% exchange "parfor" in line 15 with "for".

 N = length(y);

 LOGL = zeros(p_max,q_max);

 PQ = zeros(p_max,q_max);

 parfor p = 1 : p_max

 for q = 1 : q_max

 mdl = arima(p, 0, q);

 [~, ~, logL] = estimate(mdl, y, 'print', false);

 LOGL(p,q) = logL;

 PQ(p,q) = p+q;

 end

 end

 LOGL = reshape(LOGL,p_max*q_max,1);

 PQ = reshape(PQ,p_max*q_max,1);

 [~, bic] = aicbic(LOGL, PQ, N);

 BIC = reshape(bic,p_max,q_max);

 [BICmin,I] = min(BIC(:));

 [p,q] = ind2sub(size(BIC),I);

end

 93

Dimensionality Reduction

function [H, m, D, Vout, W, Ws, SNR] = findBasis(PHI, PHIs, method, n)

% Finds a set of orthogonal basis vectors that span R^d, where d is the

% number of columns in PHI and PHIs. The basis vectors are orderered

% according to how well the points in PHI and PHIs are separated when

% projected onto the vector. The rows of PHI are assumed to be multivariate

% normal.

%

% Output arguments

% H: An othogonal matrix containing the basis vectors along its columns

% m: The mean vector of the points in PHI

% D: A diagonal matrix used for scaling variances

% Vout: An orthogonal matrix used for whitening along with D and m

% W: The whitened version of the input matrix PHI

% Ws: PHIs represented in the coordinate system of W

% SNR: The SNR of each basis vector

 [N,d] = size(PHI);

 Ns = size(PHIs,1);

 if strcmp(method, 'prediction')

 V = eye(d);

 D = sqrt(rCovMat(n, d));

 m = zeros(1,d);

 M = zeros(N,d);

 Ms = zeros(Ns,d);

 else

 m = mean(PHI);

 M = repmat(m, [N 1]);

 Ms = repmat(m, [Ns 1]);

 [~, S, V] = svd(PHI - M, 'econ');

 D = S/sqrt(N-1);

 end

 W = (PHI-M)*V/D;

 Ws = (PHIs-Ms)*V/D;

 ms = mean(Ws)';

 I = eye(d);

 SIGMA = cov(Ws);

 hi = (I+SIGMA)\ms;

 hprev = hi/norm(hi);

 Hprev = [];

 94

 Vout = V;

 SNR = zeros(d,1);

 df = hprev;

 SNR(1) = ((df'*ms)^2)/(df'*(I+SIGMA)*df);

 for i = 2 : d

 Hi = [Hprev hprev];

 PA = eye(d) - Hi*Hi';

 WA = W*PA;

 WAs = Ws*PA;

 [~,~,V] = svd(WA,'econ');

 Vr = V(:,1:d-i+1);

 PSIs = WAs*Vr;

 ms = mean(PSIs)';

 I = eye(d-i+1);

 SIGMA = cov(PSIs);

 df = (I+SIGMA)\ms;

 SNR(i) = ((df'*ms)^2)/(df'*(I+SIGMA)*df);

 hi = V*[df;zeros(i-1,1)];

 hprev = hi/norm(hi);

 Hprev = Hi;

 end

 H = [Hprev hprev];

 SNR = 10*log10(SNR);

 W = W*H;

 Ws = Ws*H;

end

function D = rCovMat(N, L)

% Forms the covariance matrix D of the normalized sample autocorrelation

% vectors, as computed by the MATLAB function autocorr.

% N is the number of samples used by autocorr. L is the number of lags.

 k = (1:L)';

 a = N - k;

 D = diag(a)/(N*(N+2));

end

 95

Bibliography

Aggarwal, C. (2013). Outlier Analysis. 1st ed. [ebook] New York: Springer.

Available at: http://link.springer.com/book/10.1007%2F978-1-4614-6396-2

[Accessed 11 Jan. 2017].

Breusch, T. (1978). Testing for Autocorrelation in Dynamic Linear Models.

Australian Economic Papers, 17(31), pp. 334–355.

Bao, C., Hao, H. and Li, Z. (2012). Integrated ARMA model method for damage

detection of subsea pipeline system. Engineering Structures, [online] Volume

48(2013), pp. 176–192. Available at:

http://www.sciencedirect.com/science/article/pii/S0141029612005111

[Accessed 14 Jan. 2017].

Box, G., Jenkins, G. and Reinsel, G. (2008). Time Series Analysis: Forecasting

and Control. 4th ed. Hoboken, New Jersey: Wiley.

Box, G. and Pierce, D. (1970). Distribution of Residual Autocorrelations in

Autoregressive-Integrated Moving Average Time Series Models. Journal of
the American Statistical Association, 65(332), pp. 1509–1526.

Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification. 2nd ed. New

York: Wiley.

Durbin, J. (1959). Efficient Estimation of Parameters in Moving-Average Models.

Biometrika, 46(3/4), pp. 306–316.

Faust, O., Acharya, R., Allen, A. and Lin, C. (2007). Analysis of EEG signals

during epileptic and alcoholic states using AR modeling techniques. IRBM,

[online] Volume 29(2008), pp. 44–52. Available at:

http://www.sciencedirect.com/science/article/pii/S1297956207001209

[Accessed 14 Jan. 2017].

Fisher, R. (1938). The Statistical Utilization of Multiple Measurements. Annals
of Eugenics, 8(4), pp. 376–386.

Gul, M. and Catbas, F. (2009). Statistical pattern recognition for Structural

Health Monitoring using time series modeling: Theory and experimental

verifications. Mechanical Systems and Signal Processing, 23(7), pp. 2192–
2204.

 96

Hayes, M. (1996). Statistical Digital Signal Processing and Modeling. New York:

Wiley.

Hernandes, M., Stoica, P. and Rojas, M. (2008). ARMA Parameter Estimation:

Revisiting a Cepstrum-Based Method. IEEE International Conference on
Acoustics, Speech and Signal Processing, [online] pp. 3685–3688. Available

at: http://ieeexplore.ieee.org/document/4518452/ [Accessed 11 Jan. 2017].

Kessy, A., Lewin, A. and Strimmer, K. (2016). Optimal whitening and

decorrelation. [online] Cornell University. Available at:

https://arxiv.org/abs/1512.00809 [Accessed 15 Jan. 2017].

Ljung, G. and Box, G. (1978). On a Measure of Lack of Fit in Time Series

Models. Biometrika, 65(2), pp. 297–303.

Ljung, L. (1999). System Identification: Theory for The User. 2nd ed. Upper

Saddle River, New Jersey: Prentice Hall.

Louni, H. (2005). Outlier Detection in ARMA Models. Journal of Time Series

Analysis, 29(6), pp. 1057–1065.

Mann, H. and Wald, A. (1943). On the Statistical Treatment of Linear Stochastic

Difference Equations. Econometrica, 11(3/4), pp. 173–220.

Mathworks.com, (2016). Choose ARMA Lags Using BIC. [online] Available at:

https://se.mathworks.com/help/econ/choose-arma-

lags.html?s_tid=gn_loc_drop [Accessed 17 Jan. 2017].

Pincombe, B. (2005). Anomaly Detection in Time Series of Graphs using ARMA
Processes. [online] ASOR. Available at:

http://www.asor.org.au/publication/files/dec2005/Bra-paper.pdf

[Accessed 14 Jan. 2017].

Scharf, L. (1991). Statistical Signal Processing: Detection, Estimation and Time

Series Analysis. Reading, Massachusetts: Addison-Wesley.

Shlen, J. (2003). A Tutorial on Principal Component Analysis. [online] Cornell

University. Available at: https://arxiv.org/abs/1404.1100 [Accessed 15 Jan.

2017].

Söderström, T. and Stoica, P. (1989). System Identification. New York: Prentice

Hall.

 97

Subasi, A. (2005). Selection of optimal AR spectral estimation method for EEG

signals using Cramer–Rao bound. Computers in Biology and Medicine,
[online] Volume 37(2007), pp. 183–194. Available at:

http://www.sciencedirect.com/science/article/pii/S0010482506000023

[Accessed 14 Jan. 2017].

Stoica, P. and Moses, R. (2005). Spectral Analysis of Signals. Upper Saddle

River, New Jersey: Prentice Hall.

Wicklin, R. (2012). What is Mahalanobis distance? [online] Available at:

http://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-

distance.html [Accessed 15 Jan. 2017].

Yao, Q. and Brockwell, P. (2006). Gaussian Maximum Likelihood Estimation

For ARMA Models I: Time Series. Journal of Time Series Analysis, 27(6),

pp. 857–875.

