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Abstract 

This thesis explores two alternative methods for detecting anomalies in 

underwater ambient noise. Both methods are based on ARMA modeling. The 

anomalies in question are unknown sound sources such as ships or biological 

organisms that mix with the ambient noise and alter the overall characteristics 

of the received acoustic signal. The performance of the two methods is tested on 

simulated and real data sets, and is compared to that of an energy detector. 

Anomaly detection is done either by successively estimating ARMA 

parameters and calculating Mahalanobis distances to a baseline model, or by 

computing prediction errors from the model and testing the errors for serial 

correlation. Both methods give rise to a chi-squared test statistic. 

Results show that the ARMA methods perform better than an energy 

detector. The energy detector itself is observed to perform significantly better 

when differencing is applied to the signal before mean square values are 

calculated.  

Of the two ARMA methods, the prediction method is found to be the better 

one. It is both able to detect fainter anomalies than the successive estimation 

method and is found to have more desirable statistical properties. 

The two ARMA methods are viewed as different approaches to feature 

extraction in an overall classification framework where the ambient noise 

represents the normal class and anomalies such as ships are examples of an 

anomaly class. 

A supervised method for reducing the dimensionality of the feature space is 

proposed that can be seen as a combination of principal component analysis and 

linear discriminant analysis. Experiments on simulated and real data sets appear 

promising for supervision in general but further study is needed to determine if 

the proposed algorithm has any real benefit over regular linear discriminant 

analysis. 

During the course of the work, a MATLAB program has been developed that 

implements all the methods discussed in the thesis. Output figures from the 

program are used throughout, and the most important functions are listed in the 

Appendix.    
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1 Introduction 

In passive sonar, underwater microphones, or hydrophones, are used to record 

acoustic signals. Unlike active sonar, passive sonar does not rely on emitting 

sound waves to its surroundings. This makes it a quiet way of monitoring ocean 

activity and detecting objects like ships, submarines or biological organisms. 

When passive sonar is used for detection, the processing performed on the 

acoustic signal is often designed to look for specific acoustic signatures of known 

objects. But when the goal is to detect unknown objects with an unknown 

acoustic signature, such an approach is not feasible. 

The work documented in this thesis has been carried out in response to a 

project proposal written by Lars Âdegaard at the Norwegian Defence Research 

Establishment (FFI). In it he suggested that detection of unknown objects could 

be done by building a statistical model of the underwater ambient noise, and 

performing tests on new data designed to detect deviations from this model. More 

specifically, the suggested model was the autoregressive moving average (ARMA) 

model, which is a fundamental tool in time series analysis and statistical signal 

processing. The project proposal did not say how detection should be performed, 

but cited some examples of research in various fields where ARMA models had 

been used to detect changes from a normal state. 

In this thesis, some possible ways of using ARMA models to detect anomalies 

in ambient noise will be examined. Hydrophone data from the Lofoten-Vesterålen 

Ocean Observatory (LoVe) has been provided by FFI. This data will be used to 

build a model of the ambient noise and to test the detection methods. 

1.1 Anomaly Detection Using ARMA Models 

When the phrase “anomaly detection” is used in the context of time series 

analysis, it often refers to finding individual points in a time series that can be 

classified as outliers or anomalies. See for example Louni (2005) and the 

references therein. These methods are not particularly interesting in the context 

of anomaly detection as it is defined here. The reason is that the acoustic signals 

from hydrophones typically consist of thousands of samples per second. So 

instead of looking for single samples that do not conform with our model, it is 

more desirable to work on whole segments of data and try to find ways of 

characterizing the segments that are sensitive to changes in the underlying 

system.   

In other fields, ARMA models have been used to characterize sensor data 

this way. For instance, in the field of structural health monitoring, Gul and 

Catbas (2009) estimated AR parameters for segments of accelerometer data and 

used statistical analysis of the parameter vectors to find outliers corresponding 

to damaged structures. A similar approach was used by Bao et al. (2012) to 

detect damages in subsea pipeline systems. Both methods relied on scoring the 
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parameter vectors by their Mahalanobis distance (see Section 2.1.1) or some 

function of this distance. 

ARMA models have also received some attention in the field of EEG analysis. 

Subasi (2005) investigated AR modeling as an approach to detecting epileptiform 

discharges. Similarly, Faust et al. (2007) explored AR modeling in the context of 

detecting epileptic and alcoholic states. In both articles, the AR models were 

used to obtain estimates of the power spectral density (see Section 2.2.1) of the 

underlying process. 

The above methods are examples of what will be referred to as detection 

through successive estimation. In this approach, segments of data are obtained 

by some measurement process and an AR or ARMA model is fitted to each 

segment. Detection is done by using some function of the parameter vector to 

characterize the state of the underlying system and label it as either normal or 

abnormal. 

  As explained in Aggarwal (2013, pp. 225–232), another way to detect 

anomalies using ARMA models is to first fit a model to data from the normal 

state and subsequently compare new data with predictions from this model. This 

has for instance been used to detect anomalies in communication networks 

(Pincombe, 2005). When such an approach is taken, one can make use of the fact 

that the prediction errors, or residuals, of a true ARMA model will be normally 

distributed during the normal state of the system. Consequently, one can use the 

normal distribution to detect outliers among individual residuals or aggregates 

of residuals. 

When searching for methods that rely on tests being performed on whole 

data segments using a prediction-based approach, I have not been able to find 

much literature. For the most part, it seems like prediction is used to detect 

individual outlier points in the data.  

However, in time series analysis, a common way of checking the validity of a 

fitted ARMA model is to perform a hypothesis test on the model residuals called 

the Ljung-Box test (Box et al., 2008). This test takes the data that was used to 

fit the model and computes the residuals from the model. It then looks for serial 

correlations in the residuals to determine if the ARMA model fits the data. It is 

not unnatural, then, to ask if a test such as the Ljung-Box test can be used to 

look for lack of fit in new data and thus be employed to detect deviations from 

a normal state.     

The two methods I have chosen to focus on in this thesis, are based on 

successive estimation and prediction. The successive estimation method can be 

seen as a simplified version of the approach in the structural health monitoring 

articles referred to above.  

Unlike in those articles, no preprocessing such as normalization will be 

performed on the time series data. Additionally, p-values will be calculated 

directly from the squared Mahalanobis distance instead of some other function 

of the distance that is assumed to be normally distributed. 
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The prediction method is an adaptation of the Ljung-Box test, where the 

only difference is the degrees of freedom used for the distribution of the test 

statistic.  

1.2 Thesis Outline 

Chapter 2 deals with the theory of multivariate normal (MVN) variables and 

ARMA modeling of stochastic processes that will be used in Chapter 3 to perform 

anomaly detection. Special attention is given to whitening transformations and 

prediction errors, as these two concepts are fundamental to the methods 

examined in subsequent chapters. 

Chapter 3 starts by specifying the hypothesis tests that the detection 

methods are based on, and goes on to describe the general approach taken in this 

thesis to designing and testing detectors. Next, an ARMA model is built from 

hydrophone data and subsequently used to simulate ambient noise in order to 

test the performance of the detection methods on sinusoids in noise. Finally, an 

algorithm for supervised dimensionality reduction is introduced and 

demonstrated on simulated data. The algorithm may very well have been 

proposed by others in the past, but since I haven’t found evidence of that in 

literature, I introduce it as my own generalization of Fisher’s linear discriminant 

(see Section 2.1.3).  

In Chapter 4, experiments are conducted on a real hydrophone data set 

containing both ambient noise at different wind speeds, ship noise and whale 

sounds. As in the previous chapter, the detection methods are compared to each 

other and to an energy detector. In some of the experiments, simulated noise is 

added to the data set in order to create a more challenging situation for the 

detectors and test their performance on fainter anomalies.  

1.3 Notes on Bibliography 

Much of what is covered in the theory chapter and used throughout the thesis 

is material found in typical textbooks in statistical signal processing, time series 

analysis and pattern recognition. But readers coming from different fields may 

find some topics more obscure than others. 

For general theory on statistical signal processing, Scharf (1991) and Hayes 

(1999) have been consulted extensively. For theory on spectral estimation, Stoica 

and Moses (2005) has been a valuable companion. The latest edition of the classic 

work by Box et al. (2008) has been the primary reference for time series analysis. 

Duda et al. (2001) has been the principal source for general classification theory 

and Aggarwal (2013) for the theory of anomaly detection. 
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2 Theoretical Background 

The following is a summary of the theoretical foundations of the methods 

examined in this thesis. The reader is expected to be familiar with the material 

covered by a typical undergraduate course in each of the following subjects: linear 

algebra, multivariate calculus, univariate statistics and digital signal processing. 

For readers who are also familiar with statistical signal processing, time series 

analysis and multivariate statistics, this chapter will serve as a review of the 

relevant material, as well as provide some motivation for the methods presented 

later on. 

2.1 Multivariate Normal Variables 

In multivariate statistics, the ideas and methods of univariate statistics are 

generalized to vectors made up of several random variables. By employing the 

language of linear algebra, one is able to represent these generalized methods and 

ideas in a compact form, useful both for analysis and software implementation. 

Consequently, many general results and techniques from linear algebra can be 

readily applied to solve statistical problems. In addition, the geometric 

perspective offered by linear algebra notation can sometimes contribute 

significantly to our understanding of the problems at hand. 

2.1.1 The Multivariate Normal Distribution 

A vector 𝐱 = [𝑥  𝑥  ⋯ 𝑥 ]  where all the elements are random variables, is 

known as a random vector.1 When all the elements of the vector are normally 

distributed, their joint probability distribution is called a multivariate normal 

distribution. Like its univariate analog, the MVN distribution is defined by two 

parameters – the mean vector and the covariance matrix: 

 

 

𝐱 ~ 𝑁(𝝁,𝚺) 

𝝁 = 𝐸[𝐱] = [𝜇  𝜇  ⋯ 𝜇 ]  

𝚺 = 𝐸[(𝐱 − 𝝁)(𝐱 − 𝝁) ] = 𝜎  

𝜎 = 𝐸 (𝑥 − 𝜇 ) 𝑥 − 𝜇  

(2.1) 

 

The probability density function (PDF) of the MVN distribution is given by 

 

 𝑓(𝐱) =
1

(2𝜋) / |𝚺| /
exp −

1

2
(𝐱 − 𝝁) 𝚺− (𝐱 − 𝝁) , (2.2) 

                                           
1 The notation in this thesis does, for the most part, not distinguish between a 
random variable and a realization of that variable. Often, upper case letters would 
be used for the variable itself while lower case letters would be used for the 
realization. But to avoid confusion between random variables and matrices, boldface 
capital letters will only be used to denote matrices. 
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where |𝚺| is the determinant of the covariance matrix. This function assigns a 

probability density (a scalar value) to a point 𝐱 in ℝ . For 𝑑 = 1 it reduces to 

the familiar PDF of the univariate normal distribution.  

The multivariate normal distribution has been widely studied as it is a 

convenient way to represent sets of correlated normal random variables. The 

treatment here will be limited to properties of the distribution that are needed 

for this thesis. More details can be found in Scharf (1991) and Duda et al. (2001).  

The quadratic form in the exponent of the PDF is known as the squared 

Mahalanobis distance from the point 𝐱 to the distribution mean 𝝁, or simply the 

squared Mahalanobis distance of 𝐱: 

 
 𝑟 (𝐱) = (𝐱 − 𝝁) 𝚺− (𝐱 − 𝝁) (2.3) 

 

By substituting this into the equation for the PDF, we see that the density is 

just an exponential function of the squared Mahalanobis distance, multiplied by 

a constant: 

 

 𝑓(𝐱) = 𝑘𝑒− ( ) (2.4) 

 

It can be shown that the scaling constant 𝑘 ensures that the integral over ℝ  is 

equal to 1, which is necessary for the function to be a probability density. 

The equation 𝑟 = 𝑐, for some constant 𝑐, defines a level curve of constant 

density for the PDF. In general, this will be a hyperellipsoid in ℝ , which is a 

generalization of the ellipse to higher dimensions. The MVN distribution is 

therefore known as an elliptical distribution. The semi-axes 𝒂  of the 

hyperellipsoid can be found from the eigenvectors and eigenvalues of the 

covariance matrix: 

 

 

𝚺 = 𝐕𝚲𝐕  

𝐕 = [𝐯  𝐯  ⋯ 𝐯 ] 

𝚲 = diag(𝜆 , 𝜆 ,⋯ , 𝜆 ) 

𝒂 = 𝑟 𝜆 𝐯  

(2.5) 

 

Figure 2.1 shows the PDF of a two-dimensional MVN distribution as a 

surface in three dimensions. An ellipse of constant density is shown below the 

surface, along with its two semi-axes. In addition, 400 points have been drawn 

from the distribution and plotted in the same plane as the ellipse. The plane has 

been shifted down on the z-axis to make it more visible. The parameters of the 

distribution are 

 

 𝝁 =
3
2

,    𝚺 =
0.7 0.2
0.2 0.3

. (2.6) 
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Figure 2.2 shows a similar plot of the multivariate standard normal 

distribution, i.e. 𝐱 ~ 𝑁(𝟎, 𝐈), which means that the vector elements are 

independent standard normal variables. Note that in this special case, the semi-

axes are equal in length and line up with the coordinate axes. The level curves 

then become circles with radius 𝑟 centered at the origin. For higher dimensions, 

the hyperellipsoids reduce to hyperspheres in ℝ . The multivariate standard 

normal distribution is therefore known as a spherical distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A two-dimensional multivariate normal distribution. 
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Distribution of the Squared Mahalanobis Distance 

To further understand the Mahalanobis distance, we will need to use some 

properties of linear transformations of MVN random variables. When such 

transformations are formed using a full rank matrix 𝐀 ∈ ℝ , the resulting 

variable will be MVN with parameters as given below: 

 
 𝐱 ~ 𝑁(𝝁,𝚺);  𝐲 = 𝐀𝐱 ⇒ 𝐲 ~ 𝑁(𝐀𝝁,𝐀𝚺𝐀 ) (2.7) 

 

An important feature of the Mahalanobis distance is that it can be seen as 

the Euclidian norm of a standard normal random vector (Wicklin, 2012). This 

fact allows us to derive the distribution of 𝑟 . Given a matrix 𝐀 = 𝚺− /  such 

that 𝐀 𝐀 = 𝚺− , the squared Mahalanobis distance becomes 

 
 𝑟 = (𝐱 − 𝝁) 𝐀 𝐀(𝐱 − 𝝁) = ‖𝐀(𝐱 − 𝝁)‖ = ‖𝐳‖ . (2.8) 

 

That 𝐳 is standard normal follows from the properties of linear transformations 

given above: 

 

 

𝐳 = 𝐀(𝐱 − 𝝁) 

𝐸[𝐳] = 𝐀𝐸[𝐱 − 𝝁] = 𝐀(𝝁 − 𝝁) = 𝟎 

𝐸[𝐳𝐳 ] = 𝐀𝚺𝐀 = 𝚺− / 𝚺 𝚺− / = 𝐈 

⇒ 𝐳 ~ 𝑁(𝟎, 𝐈) 

(2.9) 

Figure 2.2: The two-dimensional multivariate standard normal distribution. 
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Since the squared norm of a standard normal vector is just a sum of squared 

independent standard normal variables, 𝑟  will be chi-squared distributed with 𝑑 

degrees of freedom: 

 

 𝑟 = ‖𝐳‖ = 𝑧
=

⇒ 𝑟 ~ 𝜒  (2.10) 

 

The chi-squared probability density function is given by 

 

 𝑓(𝑥) =
1

Γ(𝐿/2)2 /
𝑥( / )− 𝑒− / ;     𝑥 ≥ 0, (2.11) 

 

where Γ(∙) is the gamma function. The probability of observing a point 𝐱 with 

Mahalanobis distance  or higher is thus 

 

 𝑃(𝑟 ≥ 𝑐) = 𝑓(𝑥) 𝑑𝑥 = 1 − 𝐹(𝑐 ), (2.12) 

 

where 𝐹(∙) is the cumulative density function (CDF) of the chi-squared 

distribution. 

 

Whitening Transformations 

We arrived at the distribution of 𝑟  by assuming that we could find a matrix 

𝐀 such that 𝐀 𝐀 = 𝚺− . In fact, there will be an infinite number of matrices 𝐀 

that satisfy this condition (Kessy et al., 2016). Such matrices can be used to 

transform a normal random vector into a standard normal one. This is often 

referred to as a whitening transformation, as it transforms the vector into an 

uncorrelated white noise vector (see Section 2.2.1).  

Note that since a whitening transformation is easily reversible, no information 

is lost when a random vector is decorrelated. It is just a means of representing 

the vector in a way that can be useful under certain circumstances. When the 

covariance matrix is known, a common choice for 𝐀 is found from the Cholesky 

factors of 𝚺: 

 

 

𝚺 = 𝐋𝐋  

𝚺− = (𝐋𝐋 )− = (𝐋 )− 𝐋− = (𝐋− ) 𝐋−  

⇒ 𝐀 = 𝐋−  

(2.13) 

 

More on Cholesky factorization and its applications in signal processing can be 

found in Scharf (1991).  

In practice, the covariance matrix is rarely known. However, given 

observations drawn from the distribution, we can get an estimate 𝚺 of the true 

covariance matrix. Whitening transformations can then be constructed from this 
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estimate, or directly from the matrix of observations. In the next section, we will 

see an example of the latter, where a whitening transformation is constructed 

from the singular value decomposition (SVD) of the data matrix.  

2.1.2 Decorrelation by SVD 

The singular value decomposition of an 𝑁  by 𝑝 matrix 𝐗, where 𝑁 ≥ 𝑝, is a 

factorization given by 

 
 𝐗 = 𝐔𝐒𝐕  (2.14) 

 

where 𝐔 and 𝐕 are orthogonal matrices and 𝐒 is a diagonal matrix. The SVD is 

widely used in statistics and has many interesting properties not covered here. 

Details on the SVD can be found in Scharf (1991). 

Given 𝑁  observations of a normal random vector, an unbiased estimator for 

the covariance matrix is the sample covariance matrix 

 

 𝚺 =
1

𝑁 − 1
(𝐱 − �̂�)(𝐱 − �̂�)

=

, (2.15) 

where 

 �̂� =
1

𝑁
𝐱

=

 (2.16) 

 

is the sample mean. If the observations are organized as the rows of a data matrix  

 

 𝐗 =

⎣

⎢
⎢
⎡

𝐱

𝐱
⋮

𝐱 ⎦

⎥
⎥
⎤

∈ ℝ ;    𝑁 > 𝑑 (2.17) 

 
and we form a matrix of repeated sample means,   

 

 𝚳 =

⎣

⎢⎢
⎡
�̂�

�̂�
⋮

�̂� ⎦

⎥⎥
⎤

∈ ℝ , (2.18) 

 

Eq. (2.15) can be rewritten as 

 

 
𝚺 =

1

𝑁 − 1
(𝐗 − 𝚳) (𝐗 − 𝚳) 

𝚺 =
1

𝑁 − 1
𝐗 𝐗  

(2.19) 
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where 𝐗 = 𝐗 − 𝚳 is called the centered data matrix.  

Recall that a matrix 𝐀 such that 𝐀 𝐀 = 𝚺−  can be used to decorrelate a 

normal vector. Start by expressing 𝚺−  in terms of the data matrix as 

 
 𝚺− = (𝑁 − 1)(𝐗 𝐗 )− . (2.20) 

 

Now, let  

 
 𝐗 = 𝐔𝐒𝐕  (2.21) 

 

be the SVD of the centered data matrix. Then 

 

 

𝐗 𝐗 = 𝐕𝐒 𝐕  

(𝐗 𝐗 )− = (𝐕 )− 𝐒− 𝐕−  

(𝐗 𝐗 )− = (𝐕𝐒− )(𝐒− 𝐕 ), 

(2.22) 

 

since 𝐕 = 𝐕− . The inverse sample covariance matrix is thus 

 
 𝚺− = (𝑁 − 1)(𝐕𝐒− )(𝐒− 𝐕 ) (2.23) 

 

To absorb the factor (𝑁 − 1), form a new diagonal matrix 

 

 𝐃 =
𝐒

√
𝑁 − 1

. (2.24) 

and define 𝐀 as 

 
 𝐀 = 𝐃− 𝐕 . (2.25) 

 

Then it follows from (2.23) and (2.25) that 

 
 𝐀 𝐀 = 𝚺− . (2.26) 

 

This means that the linear transformation 𝐲 = 𝐀(𝐱 − �̂�) is an estimate obtained 

from data of the “true” whitening transformation 𝐲 = 𝚺− / (𝐱 − 𝝁) that could 

be formed if 𝝁 and 𝚺 were known parameters.  

Note from (2.22) and (2.5) that 𝐕 is in fact the matrix of eigenvectors of the 

sample covariance matrix, while 𝐃  is the diagonal matrix of corresponding 

eigenvalues. Another way of obtaining the transformation is therefore to do an 

eigenvalue decomposition of 𝚺. 

Since the transformation is an estimate, the quality of this estimate depends 

on the amount of data used. In particular, it depends on the ratio 𝑁/𝑑. Since we 
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are essentially estimating 𝑑 + 1 parameters (�̂� and the rows of 𝐀) from 𝑁  data 

points (the rows of 𝐗), it is generally desirable to have 𝑁 ≫ 𝑑. 

To perform the transformation on all the vectors in a data matrix, define it 

in terms of the transpose, so that 

 
 𝐲 = (𝐱 − �̂�) 𝐕𝐃− . (2.27) 

This leads to 
 𝐘 = (𝐗 − 𝐌)𝐕𝐃− , (2.28) 

 

where 𝐌 is made to have the same number of rows as 𝐗. After the 

transformation has been created and 𝐀 = 𝐕𝐃−  and �̂� have been stored, it is 

therefore a simple task to perform it on another data matrix later on. 

An instructive way to view (2.28), is as a coordinate transformation, or 

change of basis. Multiplying by 𝐕 effectively represents the data in a coordinate 

system where the eigenvectors of 𝚺 are the coordinate axes. Multiplication by 

𝐃−  then scales the variance along each of these axes to unity.  

The ordered structure of 𝐕 and 𝐃 further ensures that the first element of 

the transformed vectors will be coordinates along the first eigenvector, and so 

on. This means that the 𝑛 first columns of 𝐘 represent normalized coordinates 

along the 𝑛 first eigenvectors of 𝚺. By selecting these and removing the rest, we 

will have represented the data in terms of 𝑛 vectors or components along which 

the spread of the data is the highest. This is known as doing a principal 
component analysis (PCA) of the data. It can be understood as projecting the 

data onto an 𝑛-dimensional subspace of ℝ  spanned by the most descriptive 

eigenvectors of 𝚺. More on PCA can be found in Shlen (2003).   

2.1.3 Dimensionality Reduction in Classification Problems 

In classification theory, the general problem consists of designing a classifier 

that turns observations into decisions. The observations come in the form of 

random vectors whose elements are called features. These features are the result 

of some kind of processing done on raw data. Given a feature vector, the classifier 

needs to determine which among a discrete set of classes the vector comes from. 

The classes may represent types of real-world objects or something more abstract. 

In many situations, the feature vectors from each class can be modeled as 

multivariate normal variables. 

The success of any classifier depends heavily on the features it uses to 

distinguish between classes. Feature selection is therefore an important part of 

building a classification system. After some extraction algorithm has been 

implemented to produce a set of features from raw data, one cannot simply 

assume that they are all equally useful for discriminating between classes. One 

might find that some features can be discarded altogether, while others may be 

strongly correlated and can be combined into a single feature. 
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A classical approach to dimensionality reduction in classification is 

performing a principal component analysis on the data from one or multiple 

classes. This amounts to forming linear combinations of the original features that 

represent coordinates along the directions in which the data varies the most. A 

problem with PCA in the context of classification is that, while the combination 

of features it forms are optimal for describing the data under the assumption of 

normality, they may not be the best for discriminating between different classes 

(Duda et al., 2001). 

Another classical method for dimensionality reduction is known as linear 

discriminant analysis (LDA). Here, the focus is on finding linear combinations of 

the features that best separate the data from different classes. In the two-class 

problem, one seeks to find a vector 𝐰, formed so that when the data is projected 

onto it by 𝐰 𝐱, the difference in the sample means is large relative to the 

combined sample variance of the classes. In other words, one wants the means 

to be far apart and the sum of the variances to be small for the projected data. 

This can be expressed by the following criterion:  

 

 𝐽(𝐰) =
[𝐰 (�̂� − �̂� )]

𝐰 𝚺 + 𝚺 𝐰
, (2.29) 

 

where the subscripts refer to the two classes. 𝐽(𝐰) can be understood as a signal-

to-noise ratio (SNR) where the difference in means is measured against the noise 

contributed by the combined variance of the two classes. It can be shown that 

the vector that maximizes the SNR is given by 

 

 𝐡 = arg max 𝐽(𝐰) = 𝚺 + 𝚺
−

(�̂� − �̂� ). (2.30) 

 

This is called Fisher’s linear discriminant (FLD). Details on the derivation of the 

discriminant can be found in Duda et al. (2001, pp. 117–121). 

The fact that LDA uses labeled data from both classes to form the projection, 

makes it a supervised learning technique. If such labeled data is available, it is 

generally a good idea to make use of the information it contains when designing 

a classifier, even if the goal is just to detect anomalies (Aggarwal, 2013, p. 169). 

An advantage of PCA over LDA, however, is the flexibility one has in 

choosing the dimension of the lower-dimensional subspace that the data is 

projected into. In LDA with two classes one is forced to work in just one 

dimension, although this one-dimensional subspace is optimal in the sense just 

described. 

In this thesis, the general problem of detecting anomalies in underwater 

ambient noise is framed as a classification problem with two classes, where 

ambient noise represents the normal class and anomalies in the form of ship noise 

or biological sounds is grouped together as an anomaly class. The remainder of 

this chapter is devoted to the feature extraction approach that will be used to 
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turn the raw data of sonar time series into useful features for classification – 

namely ARMA modeling. 

2.2 ARMA Modeling of Stochastic Processes 

In the following sections, the general concept of ARMA modeling in time 

series analysis and statistical signal processing is introduced. Special attention is 

paid to prediction errors and the view of ARMA modeling as a means of 

decorrelating a stochastic process. Next, some common algorithms for ARMA 

parameter estimation are presented, as well as some ways of selecting the order 

of an ARMA model. 

2.2.1 Stochastic Processes 

An indexed set of random variables is known as a stochastic process. Discrete-

time signals that cannot be explained by a deterministic model, are commonly 

modeled as the realization of a stochastic process. Just as there may be an infinite 

number of possible realizations of a random variable, a stochastic process may 

have an infinite number of possible realizations. 

An important property of a stochastic process 𝑥  is its autocorrelation 

function (ACF), defined as 𝑟 = 𝐸[𝑥 𝑥 ]. It is a deterministic function that 

describes the degree of correlation between variables of the process at different 

points in time. 

A discrete-time stochastic process is said to be stationary if all the statistical 

properties of the random variables stay the same over time. This is, however, a 

very strict requirement. More commonly, the models used to describe discrete-

time signals, or time series, assume only that the process is wide sense stationary 
(WSS). A stochastic process is said to be WSS if the mean and variance are 

constant and the ACF only depends on the difference 𝑘 = 𝑡 − 𝑙. The last 

condition is another way of saying that the correlation between the variables of 

the process is not a function of time, but only of how far apart they are in time. 

If a WSS process has non-zero mean, it can easily be transformed to a zero-mean 

process by simply subtracting the mean. It will therefore be assumed that any 

WSS process referred to here has zero mean. 

In a similar way that a deterministic signal can be represented in the 

frequency domain via the discrete-time Fourier transform (DTFT), the power 
spectral density (PSD) or power spectrum provides a frequency domain 

representation of a WSS stochastic process. It is defined as the DTFT of the 

autocorrelation function: 

 

 𝑃(𝑒 ) = 𝑟 𝑒−

=−

 (2.31) 

 

The PSD is a continuous, real-valued function of the radian frequency 𝜔 that 

describes how the power of the process is distributed across frequencies. Since it 
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is a density, the total power in a specific frequency band is proportional to the 

integral over that band. 

A stochastic process whose autocorrelation function is zero for all lags except 

lag zero, i.e. 𝑟 = 𝜎 𝛿 , is known as white noise with variance 𝜎 . When the 

variables of a white noise process are normally distributed, it is referred to as 

Gaussian white noise. Note that if we compute the power spectrum of a white 

noise process using Eq. (2.31), it will yield a constant value of 𝜎  for all 

frequencies. This means that the power is evenly distributed across all 

frequencies. 

2.2.2 The ARMA Model  

A common way to model WSS processes is the autoregressive moving average 
model, where the process 𝑦  is assumed to be governed by the difference equation   

 

 
𝑎 𝑦 − = 𝑏 𝑢 −

==

;      𝑎 , 𝑏 = 1 

𝑢 ~𝑁(0, 𝜎 );       𝐸[𝑢 𝑢 ] = 𝜎 𝛿 − . 

(2.32) 

 

Here, {𝑎 } are the autoregressive (AR) coefficients and {𝑏 } are the moving 

average (MA) coefficients, while 𝑢  is Gaussian white noise with variance 𝜎 . A 

model with 𝑝 AR coefficients and 𝑞 MA coefficients is referred to as ARMA(𝑝, 𝑞). 

Eq. (2.32) can be rewritten as 

 

 
𝑦 = − 𝑎 𝑦 − + 𝑏 𝑢 −

==

+ 𝑢  

 

(2.33) 

This shows that each value of 𝑦  is a linear combination of past values of 𝑦  and 

𝑢 . Since 𝑢  is assumed to be normally distributed, this implies that 𝑦  will also 

be normal, since it is a linear combination of normal random variables.  

In (2.33) 𝑦  can be seen as the output of a causal linear shift-invariant filter 

with a rational transfer function, where the input is white noise: 

 

 {𝑦 } =
𝐵(𝑧)

𝐴(𝑧)
{𝑢 }, (2.34) 

where 

 

𝐵(𝑧) = 1 + 𝑏 𝑧−

=

 

𝐴(𝑧) = 1 + 𝑎 𝑧−

=

 

(2.35) 

 

For the ARMA process to be WSS, the filter is required to be stable. This 

implies that all the poles and zeros, i.e. the roots of the polynomials defined by 
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{𝑎 } and {𝑏 }, must lie inside the unit circle in the complex plane. Furthermore, 

for the ARMA process to be real-valued, the coefficients are required to be real, 

which translates to the system function having 2𝑝 and 2𝑞 complex conjugated 

poles and zeros. 

Many non-stationary processes encountered in the real world, can still be 

found to exhibit WSS behavior in some sense. For instance, given a process where 

the mean is changing over time, the difference in values from one point in time 

to the next could still be WSS. The autoregressive integrated moving average 
(ARIMA) model is a generalization of the ARMA model particularly common in 

econometrics, which allows for such processes. It has the form 

 

 𝐶(𝑧){𝑦 } =
𝐵(𝑧)

𝐴(𝑧)
{𝑢 }, (2.36) 

where 
 𝐶(𝑧) = (1 − 𝑧− )  (2.37) 

 

is the dth order difference operator. Typically, 𝑑 is no higher than two (Box et 

al., 2008). Intuitively, taking the first difference of {𝑦 } is the same as creating a 

new time series {𝑦 − 𝑦 − } where each value is the difference between values of 

{𝑦 } at time 𝑡 and 𝑡 − 1. Taking the second difference is the same as taking the 

first difference of an already differenced time series, and so on. After differencing, 

the signal is treated as the realization of a regular ARMA process. 

It can be shown that passing a stochastic process 𝑥  through a linear shift-

invariant filter results in a process 𝑦  with power spectrum given by 

 
 𝑃 (𝑒 ) = 𝑃 (𝑒 )|𝐻(𝑒 )| , (2.38) 

 

where 𝐻(𝑒 ) is the frequency response of the filter (Hayes, 1996). Since we know 

that the power spectrum of the white noise process is just 𝜎 , we can immediately 

write down the power spectrum of the ARMA process as 

 

 𝑃(𝑒 ) = 𝜎
|𝐵(𝑒 )|

|𝐴(𝑒 )|
. (2.39) 

 

Since the power spectrum is uniquely defined by the set of ARMA parameters 

{𝑎 }, {𝑏 } and 𝜎 , estimation of these parameters can be seen as a form of 

parametric spectrum estimation. 
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2.2.3 Prediction Errors 

Eq. (2.33) can be rewritten as 

 

 𝑦 = 𝑦̂ | − + 𝑢 , (2.40) 

where 

 𝑦 ̂ | − = − 𝑎 𝑦 − + 𝑏 𝑢 −
==

 (2.41) 

 

is the predicted value of 𝑦  based on past values of 𝑦  and 𝑢 . This shows that 𝑢  

can be seen as a prediction error: 

 

 𝑢 = 𝑦 − 𝑦̂ | −  (2.42) 

 

If we knew the ARMA coefficients, as well as the 𝑝 past values of 𝑦  and the 𝑞 

past values of 𝑢 , we could compute this error recursively from new samples of 

𝑦 : 

 

 𝑢 = 𝑦 + 𝑎 𝑦 − − 𝑏 𝑢 −
==

 (2.43) 

 

Or equivalently, using filter notation: 
 

 {𝑢 } =
𝐴(𝑧)

𝐵(𝑧)
{𝑦 }, (2.44) 

 

where the filter would be initialized with the known previous values of 𝑦  and 𝑢 . 

In any practical situation, we have to settle for estimates of the coefficients. 

And the white noise input signal is by definition unknown, so we cannot know 

its past values. The prediction errors obtained using estimated coefficients and a 

filter initialized with zeros (or something else) as past values, will therefore only 

be an estimate of the white noise input signal: 

 

 {𝑒 } = {�̂� } =
𝐴(̂𝑧)

𝐵(𝑧)
{𝑦 } (2.45) 

 

This quantity is often referred to as the residuals of the model, especially when 

it is computed from the data that was used to estimate the ARMA coefficients. 

It can be understood as the part of the data that is “unexplained” by the model. 

If the residuals of a model deviate significantly from what would be expected 

from a white noise process, it can be taken as a sign that the model is inadequate. 

Eq. (2.45) offers an interesting view of ARMA parameter estimation and 

subsequent inverse filtering as a means of transforming a WSS process to white 

noise. Given a set of 𝑁  samples from the process 𝑦 , we can further view this as 
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an attempt to transform the normal random vector 𝐲 = [𝑦 𝑦 ⋯ 𝑦 ]  into 

a white noise vector 𝐞 = [𝑒 𝑒 ⋯ 𝑒 ] , where 𝐞 ~ 𝑁(𝟎, 𝜎 𝐈). Note, however, 

the differences between this whitening transformation and the one we saw in 

Section 2.1.2. There we had many observations of a random vector with relatively 

few elements that was assumed to have a MVN distribution. The assumption of 

normality then allowed us to estimate a linear transformation taking the vector 

to a standard normal distribution. ARMA estimation, on the other hand, uses 

only one sample of a random vector 𝐲 with 𝑁  elements to create a recursive and 

hence non-linear transformation to a white noise vector 𝐞. The reason this can 

work with just one sample is the special covariance structure of 𝐲 caused by it 

being from a WSS process, where the autocorrelation is only a function of lag. 

Thus, increasing the number of elements in 𝐲 actually just adds more information 

about the underlying covariance structure, thereby making it easier to transform 

𝐲 into a white noise vector. 

2.2.4 Testing for Serial Correlation 

Given a time series {𝑥 } sampled from a random process we can define the 

sample autocorrelation function as 

 

 𝑟̂ =
1

(𝑁 − 1)�̂�
(𝑥 − 𝜇)̂

−

=

(𝑥 + − 𝜇)̂;    𝑘 ∈ [0, 𝐿], (2.46) 

 

where 𝑁  is the number of samples in the series, 𝜇 ̂is the sample mean and �̂�  is 

the sample variance. This is a normalized estimator for the ACF, so that 𝑟̂ = 1 

regardless of the variance 𝜎 . 

If the time series is sampled from a white noise process, and 𝐿 is small relative 

to 𝑁 , Box and Pierce (1970) noted that the sample autocorrelation vector (ACV) 

𝐫 = [𝑟̂ 𝑟 ̂ ⋯ 𝑟̂ ]  will be asymptotically distributed as multivariate normal 

with mean 𝐸[𝐫] = 𝟎 and covariance matrix 

 

 𝐃 = 𝐸[𝐫𝐫 ] =
1

𝑁(𝑁 + 2)
⎣

⎢
⎡
𝑁 − 1 0 ⋯ 0
0 𝑁 − 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ − ⎦

⎥
⎤

. (2.47) 

 

Given a realization of this vector, we can compute its squared Mahalanobis 

distance by 

 
 Β(𝐫) = 𝐫 𝐃− 𝐫, (2.48) 

where the inverse of 𝐃 is 
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 𝐃− = 𝑁(𝑁 + 2)

⎣

⎢
⎢
⎢
⎢
⎢
⎡

1

𝑁 − 1
0 ⋯ 0

0
1

𝑁 − 2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1
− ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (2.49) 

 
Written out as a summation, the distance becomes 

 

 Β(𝐫) = 𝑁(𝑁 + 2)
𝑟̂

𝑁 − 𝑘
=

. (2.50) 

 

This is known as the Ljung-Box (LB) test statistic, and was introduced in Ljung 

and Box (1978). It is normally not presented as a distance measure, but this 

perspective will prove useful later on when we apply the statistic. It also allows 

us to immediately write down the distribution of Β(𝐫), as this has already been 

derived in (2.10): 

 
 Β(𝐫) ~ 𝜒  (2.51) 

 

Starting from a null hypothesis that the sampled signal comes from a white 

noise process, we can therefore calculate the probability of observing a value 𝛽 

or higher of the test statistic from the CDF of the chi-squared distribution: 

 
 𝑃(Β ≥ 𝛽) = 1 − 𝐹(𝛽). (2.52) 

 

This is known as a p-value. Note that the p-value is not the probability that the 

signal comes from a white noise process. Like any other hypothesis test, the LB 

test only seeks to find evidence against the null hypothesis. If it fails to do so, 

that does not prove that the data comes from white noise. However, the more 

the signal deviates from white noise, the lower the probability of observing its 

value of Β will be, which in turn strengthens our belief that the signal is not 
generated by a white noise process.  

To express this quantitively, we would define a threshold 𝛼 on the p-values, 

and reject the null hypothesis if a p-value falls below this threshold. The 

threshold is referred to as the significance level of the hypothesis test. The 

significance level may be understood as the probability of committing a type I 

error, i.e. the probability of falsely rejecting the null hypothesis. 
Ljung and Box introduced their test statistic as a way to evaluate the 

goodness of fit of an ARMA model by testing the model residuals for whiteness. 

They found, however, that when applied to the residuals of a fitted model and 

not an ordinary white noise time series, the chi-squared distribution with 𝐿 

degrees of freedom (DOF) did not provide a good fit for the test statistic. To 
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remedy this, they suggested a modification of the test in which the DOF 

parameter is set to 𝐿 − 𝑝 − 𝑞 when the test is applied to the residuals of a fitted 

ARMA model.  

An intuitive explanation of why the degrees of freedom may need to be 

adjusted in such a situation, is that the decorrelation achieved on the data set 

used to fit the model, will tend to be better than what can be achieved on an 

“unseen” data set. In the extreme case one could imagine fitting an AR(𝑝) model 

to a data set containing only 2𝑝 values. If the first half of the data were taken as 

previous values of {𝑦 } and we wanted to minimize the prediction errors on the 

second half, Eq. (2.43) could be rewritten as 

 

 𝑦 + 𝑎 𝑦 −
=

= 0;  𝑡 ∈ [𝑝 + 1, 2𝑝]. (2.53) 

 

This is a set of 𝑝 linear equations with 𝑝 unknowns that can be solved exactly 

for the coefficients {𝑎 }. All the residuals for the second half of the data set 

would therefore be zero, and hence uncorrelated. However, the prediction errors 

from this model on new data sampled from the same process, might be far from 

uncorrelated. This would be an (extreme) case of what is known as overfitting. 

Thus, adjusting the DOF parameter can be seen as a way of compensating for 

the bias introduced by using the same data to both fit and validate the model.  

Generally, though, in situations where plenty of data from the process is 

available, it is more natural to use independent data sets for model fitting and 

model validation. This is known as out-of-sample validation and is what will be 

employed later in this thesis. As we shall see, in such a situation the Ljung-Box 

test statistic can be used with 𝐿 degrees of freedom for the chi-squared 

distribution. 

2.2.5 Parameter Estimation 

The techniques for estimating ARMA parameters fall into two broad 

categories – iterative and non-iterative methods. Iterative methods are generally 

slower but more accurate. This means that they should be preferred in offline 

estimation, where there are no particular time-constraints. Non-iterative 

methods, on the other hand, are faster but less precise, making them better 

candidates for online estimation in real-time systems. In the special case of pure 

AR models, iterative methods offer very little improvement over non-iterative 

ones, so for such models there is no particular downside to using a fast non-

iterative method both offline and online. 

Over the last 60 years or so many different ARMA estimation methods have 

been proposed, and no attempt will be made here to give an overview of all of 

these. Instead, we will focus on two commonly used approaches – linear least 

squares (LS) and maximum likelihood (ML). Linear LS is a non-iterative 

approach, while ML is an iterative approach.  
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Least Squares for AR Models 

Given 𝑁  samples from a process assumed to be AR(𝑝), Eq. (2.43) can be written 

as  

 

 𝑦 + 𝑎 𝑦 −
=

= 𝑒 ;  𝑡 ∈ [𝑝 + 1,𝑁] (2.54) 

 

where the 𝑝 first values of {𝑦 } are used as previous values of the signal. This set 

of equations can be written in matrix form as    

 

 

⎣

⎢⎢
⎡

𝑦 + 𝑦 ⋯ 𝑦
𝑦 + 𝑦 + ⋯ 𝑦

⋮ ⋮ ⋮
𝑦 𝑦 − ⋯ 𝑦 − ⎦

⎥⎥
⎤

⎣

⎢⎢
⎡

1
𝑎
⋮

𝑎 ⎦

⎥⎥
⎤

=

⎣

⎢⎢
⎡

𝑒 +

𝑒 +

⋮
𝑒 ⎦

⎥⎥
⎤

, (2.55) 

 

or more compactly: 

 
 𝐘𝐚 = 𝐞. (2.56) 

 

If we seek a set of coefficients that minimize the sum of squared prediction errors 

in these equations, they can be found as follows. Separate out the first column 

of 𝐘 and the coefficients in 𝐚. 

 

 

[𝐲 𝐗]
1
𝜽

= 𝐞 

𝐲 + 𝐗𝜽 = 𝐞 

 

(2.57) 

Define the least squares (LS) criterion: 

 
 𝜀 (𝛉) = ‖𝐲 + 𝐗𝜽‖  (2.58) 

 

By equating the gradient of this criterion with zero, one can find the vector 𝜽 ̂

that minimizes it: 

 

 𝜽̂ = arg min 𝜀 (𝜽) = −(𝐗 𝐗)− 𝐗 𝐲, (2.59) 

 

where (𝐗 𝐗)− 𝐗  is called the pseudo-inverse of 𝐗. To obtain an estimate of 

the last parameter �̂� , note that 𝐞̂ = 𝐲 − 𝐗𝜽 ̂ is an estimate of the white noise 

input signal for 𝑡 ∈ [𝑝 + 1,𝑁]. A natural estimate of the noise variance will 

therefore be the mean squared value of 𝐞:̂ 

 

 �̂� =
1

𝑁 − 𝑝
𝐲 + 𝐗𝜽̂  (2.60) 

  



 

 

 22

In the above formulation of the least squares AR method, 𝑡 is set to run from 

𝑝 + 1 to 𝑁 , so that the 𝑝 first values of the data can be used as previous values. 

This formulation is known as the covariance method of AR estimation. Another 

common formulation is the autocorrelation method, where 𝑡 is set to run from 1 

to 𝑁 + 𝑝, and 𝑦  is assumed to be zero for 𝑡 < 1 and 𝑡 > 𝑁 . The matrix 

representation then becomes: 

 

 

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦 0 ⋯ 0

𝑦 𝑦 ⋯ 0

⋮ ⋮ ⋮
𝑦 + 𝑦 ⋯ 𝑦
𝑦 + 𝑦 + ⋯ 𝑦

⋮ ⋮ ⋮
𝑦 𝑦 − ⋯ 𝑦 −

0 𝑦 ⋯ 𝑦 − +

⋮ ⋮ ⋮
0 0 𝑦 𝑦 −

0 0 0 𝑦 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣

⎢⎢
⎡

1
𝑎
⋮

𝑎 ⎦

⎥⎥
⎤

=

⎣

⎢⎢
⎡

𝑒
𝑒
⋮

𝑒 + ⎦

⎥⎥
⎤

. (2.61) 

 

From the matrix 𝐘, a matrix 𝐗 and a vector 𝐲 can be formed in the same way 

as for the covariance method, and the parameter estimates will be given by 

 

 
𝜽̂ = −(𝐗 𝐗)− 𝐗 𝐲 

�̂� =
1

𝑁 + 𝑝
𝐲 + 𝐗𝜽̂  

(2.62) 

 

Although the two LS methods produce very similar estimates for large 𝑁 , 

there are some differences worth noting. First, it can be shown that estimates 

obtained with the autocorrelation method are guaranteed to produce a stable 

filter 1/𝐴(̂𝑧). This is not the case for the covariance method, although unstable 

estimates rarely occur. Secondly, empirical evidence suggest that the covariance 

method is more accurate, perhaps because it does not make any assumptions 

about the values of the data outside the interval [1,𝑁] (Stoica and Moses, 2005, 

p. 94). 

 
Two-Stage Least Squares for ARMA Models 

If the white noise input signal were known, the ARMA parameter estimation 

would be quite simple. The idea of the two-stage least squares method given in 

Stoica and Moses (2005) is to form an estimate of the input signal using a high-

order AR model, and then replace the true input noise by the estimated input 

noise in Eq. (2.43). This is a generalization to full ARMA models of the MA 

estimation technique introduced by Durbin (1959). According Hernandes et al. 

(2008), Durbin’s method is probably the most commonly used non-iterative MA 

estimation technique.  
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Given an AR(𝐾) model of 𝑦 , the input noise in the two-stage least squares 

method is first estimated as 

 

 {𝑒 } = 𝐴(̂𝑧){𝑦 } (2.63) 

 

The model then becomes 

 

 
𝑦 + 𝑎 𝑦 − − 𝑏 𝑒 −

==

= 𝑒   

𝑡 ∈ [𝑚 + 1,𝑁];  𝑚 = max(𝑝, 𝑞) + 𝐾 

(2.64) 

 

This can be written in matrix form as 

 
 𝐳 + 𝐙𝜽 = 𝐞, (2.65) 

where 

 

𝐳 = [𝑦 + 𝑦 + ⋯ 𝑦 ]  

𝐞 = [𝑒 + 𝑒 + ⋯ 𝑒 ]  

𝜽 = [𝑎 𝑎 ⋯ 𝑎 𝑏 𝑏 ⋯ 𝑏 ]  

𝐙 =

⎣

⎢⎢
⎡

𝑦 ⋯ 𝑦 − +

𝑦 + ⋯ 𝑦 − +

⋮ ⋮
𝑦 − ⋯ 𝑦 −

−𝑒 ⋯ −𝑒 − +

−𝑒 + ⋯ −𝑒 − +

⋮ ⋮
−𝑒 − ⋯ −𝑒 − ⎦

⎥⎥
⎤

. 

(2.66) 

 

The least squares solution is given by the pseudoinverse like for LS AR 

estimation: 

 
 𝜽̂ = −(𝐙 𝐙)− 𝐙 𝐳 (2.67) 

 

When  is set to zero in the above equations, this is equivalent to Durbin’s 
method. As with pure AR estimation, the variance parameter is given by the 

mean square value of the prediction errors:  

 

 
�̂� =

1

𝑁 − 𝑚
𝐳 + 𝐙𝜽̂  

 
(2.68) 

A problem with the two-stage LS method is that its accuracy highly depends 

on the choice of the parameter 𝐾, and there is no simple way to find the best 

value of this parameter (Hernandes et al., 2008). For processes with zeros close 

to the unit circle, a high value of 𝐾 is needed to properly decorrelate the process. 

One option is to employ some algorithm that first tries to find an optimal choice 

for 𝐾, but this may cause an unacceptable increase in complexity for a method 

whose main appeal is its simplicity. 
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Another drawback not mentioned in Stoica and Moses but which can be 

observed in experiments, is that the polynomial 𝐵(𝑧) is not guaranteed to be 

stable. If the estimate is going to be used to generate prediction errors, an 

unstable ARMA filter is useless, since the prediction error process will not be 

stationary, and may go off to infinity.  

   

Maximum Likelihood 

As we have seen earlier, the prediction error vector 𝐞 = [𝑒 𝑒 ⋯ 𝑒 ]  will 

be distributed as  

 
 𝐞 ~ 𝑁(𝟎, 𝜎 𝐈) (2.69) 

 

when it is computed from known past values and the true ARMA coefficients. 

Suppose we know the 𝑝 past values of 𝑦  and the 𝑞 past values of 𝑒 . Then we 

can derive the Maximum Likelihood (ML) estimate of the ARMA parameters as 

follows. Start by writing out the PDF of 𝐞, noting its dependence on the 

parameter vector 𝝓 = [𝜎 𝜽 ] : 

 

 

𝑓(𝐞|𝝓) =
1

(2𝜋) (𝜎 )
exp −

𝐞 𝐞

2𝜎
 

𝑓(𝐞|𝝓) =
1

(2𝜋) ⁄ (𝜎 ) ⁄
exp −

‖𝐲 − �̂�(𝜽)‖

2𝜎
 

 

(2.70) 

where 

 

 
𝐲 = [𝑦 𝑦 ⋯ 𝑦 ]   and 

�̂� = [𝑦 ̂ | 𝑦 ̂ | ⋯ 𝑦̂ | − ]  
(2.71) 

 

are the two vectors that make up 𝐞. If we see 𝝓 as the dependent variable and 

𝐲 as the constant in Eq. (2.70), the resulting function 𝑓(𝝓|𝐲) is known as the 

likelihood function of 𝝓, given some realization of 𝐲. Maximizing the likelihood 

function is equivalent to maximizing its logarithm, the log-likelihood function: 

      

 ln𝑓(𝝓|𝐲) = −
𝑁

2
ln(2𝜋) −

𝑁

2
ln(𝜎 ) −

‖𝐲 − �̂�(𝜽)‖

2𝜎
 (2.72) 

 

This leads to the conditional ML estimates in Eq. (2.13). They are referred to as 

conditional because they are conditioned on knowledge of the past values of 𝑦  

and 𝑒 . 
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𝝓̂ = argmax ln𝑓(𝝓|𝐲) 

𝜽̂ = arg min‖𝐲 − �̂�(𝜽)‖  

�̂� =
1

𝑁
𝐲 − �̂� 𝜽̂  

(2.73) 

 

Maximizing the conditional likelihood of 𝜽 is thus equivalent to finding a vector 

𝜽 ̂that minimizes the sum of squared prediction errors for a given realization of 

𝐲. 

Deriving the criterion for the unconditional ML ARMA estimate is more 

complicated, but it is sufficient to mention here that the unknown previous values 

are first estimated using “back-forecasting”, i.e. a model of the time series where 

time is running backwards, so that estimating past values becomes a prediction 

problem. Then, a similar expression to Eq. (2.73) can be derived involving the 

conditional expectation of the error vector and of the back-forecasted previous 

values: 

 

 𝜽̂ = argmin‖𝐸[𝐞|𝐲, 𝜽]‖ + 𝐸[𝐚] 𝛀− 𝐸[𝐚] (2.74) 

 

where 𝐚 = [𝑦 ̂ − ⋯ 𝑦̂ 1̂− ⋯ 0̂]  is a vector of back-forecasted previous 

values, and 𝛀 is the covariance matrix of 𝐚. For details on how the derivation of 

this expression and recommendations on how to compute the estimate in 

practice, can be found in Box et al. (2008). 

In any case, for full ARMA models a linear method of finding the ML estimate 

is not possible, since we cannot write the error vector as a linear function of the 

parameter vector. Instead, each element of 𝐞 must be computed recursively from 

(2.43) for any given vector 𝜽. The problem of finding the ML estimate 𝜽 ̂in the 

case of full ARMA models is therefore referred to as a non-linear least squares 

problem. 

The way to approach the non-linear estimation problem, is to use an iterative 

optimization algorithm. Such an algorithm starts with some initial guess for 𝜽,̂ 

and then computes the criterion function to be minimized. It then uses one of 

several ways to find a direction in the parameter space which is likely to improve 

the estimate. Next, it updates the estimate by moving the parameter vector a 

small step in that direction and computes the criterion function again. It 

continues this way until it has a satisfactory value of the criterion, or the 

maximum number of iterations has been reached. One common algorithm for 

iterative optimization is gradient descent, in which the gradient of the criterion 

function is estimated on each iteration, and the step is taken in the opposite 

direction of the gradient.  
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Prediction Error Minimization 

A class of methods closely related to maximum likelihood is the prediction error 
methods (PEM) used in the field of system identification. There the goal is to 

estimate the parameters of a more general class of systems of the form 

 
 {𝑦 } = 𝐺(𝑧){𝑣 } + 𝐻(𝑧){𝑢 }, (2.75) 

 

where 𝑣  is a known input, and 𝑢  is white noise. Generally, one would define a 

criterion function of the prediction error and select the parameters of 𝐺(𝑧) and 

𝐻(𝑧) that minimize this criterion. A common choice of criterion is the quadratic 

norm, like in conditional ML ARMA estimation: 

 

 𝜽̂ = arg min‖𝐲 − �̂�(𝜽)‖  (2.76) 

 

As in ML, the solution is found through iterative optimization. Since the ARMA 

model is just a special case of the more general model used in system 

identification, i.e. one where the known input 𝑣  is zero, all the parameter 

estimation methods developed in the field can be used for ARMA estimation. In 

these methods 𝑦  and 𝑢  are often taken to be zero for 𝑡 < 1. This means that 

they are not exactly computing the conditional ML ARMA estimate, but the 

effect of initial values becomes negligible for high 𝑁 . 

In system identification, a lot of work has gone into refining the iterative 

optimization algorithms used for parameter estimation. For general treatments, 

see Söderström and Stoica (1989) or Ljung (1999).   

2.2.6 Order Selection 

In time series analysis, there are two common approaches to selecting the 

order of an ARMA model. The first is based on visually inspecting estimates of 

the autocorrelation function and partial autocorrelation function (PACF) of the 

process.  

The PACF 𝛼  is defined as the autocorrelation between 𝑦  and 𝑦 +  with the 

linear dependence on 𝑦 +  up to 𝑦 + −  removed. The closed form expression for 

this is rather complicated and will be omitted here for readability. When 

estimating the PACF from data, a fitted AR(𝑘) model is used to estimate 𝛼 . 

Details on PACF estimation can be found in Box et al. (2008).  

The ACF and PACF of the three model types AR(𝑝), MA(𝑞) and 

ARMA(𝑝, 𝑞) have the following properties: The ACF of an AR(𝑝) process decays 

gradually, while its PACF has a sharp drop in magnitude after lag 𝑝. In contrast, 

the ACF of an MA(𝑞) process has a sharp drop in magnitude after lag 𝑞, while 

its PACF decays gradually. For an ARMA(𝑝, 𝑞) process, both functions decay 

gradually and other methods are needed to determine 𝑝 and 𝑞. 

For a wide sense stationary process, the sample ACF will usually decay fairly 

quickly. When this is not the case, and the sample ACF decays very slowly in a 
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seemingly linear way, it could mean that the process is not WSS. This may be 

resolved by differencing the time series (see Section 2.2.2). 

If examination of the estimated ACF and PACF shows that neither a pure 

AR model nor a pure MA model is sufficient to describe the data, the common 

approach to finding the appropriate orders of the ARMA(𝑝, 𝑞) model is to make 

use of an information criterion. Such a criterion weighs the computed likelihood 

of a given model against the number of parameters in the model, and sometimes 

the number of samples from the process. It is defined so that a model is rewarded 

for a high likelihood (i.e. a “good fit”) and punished for a high number of 

parameters. In other words, it favors simple models with a high likelihood. By 

fitting many different models to the data and computing the information 

criterion for each of them, we can select the model that gives the lowest value 

for the criterion. The information criterion approach is described in more detail 

in Stoica and Moses (2005, pp. 387–398). 

A common choice of information criterion in ARMA modeling is the Bayesian 

information criterion (BIC). The BIC of an ARMA(𝑝, 𝑞) model is defined as 

 
 BIC = −2ln𝑓(𝝓|𝐲) + (𝑝 + 𝑞 + 1)ln𝑁, (2.77) 

 

where ln𝑓(𝝓|𝐲) is the log-likelihood function, as defined in Eq. (2.72) and 𝑁  is 

the number of samples from the process.   

2.2.7 Distribution of Estimates 

When the parameters of an ARMA process are estimated several times from 

independent realizations of the process, it is often assumed that the parameter 

vector has a multivariate normal distribution. In fact, whenever the Mahalanobis 

distance is used to score parameter estimates, such as in Gul and Catbas (2005), 

we are essentially assuming that the distribution of the parameter vector can be 

described by the mean and the covariance matrix alone, i.e. that it is MVN. 

In maximum likelihood estimation, the ARMA parameter vector can be 

shown to approach a multivariate normal distribution (Yao and Brockwell, 

2006). However, we will not use maximum likelihood estimates in a way that 

requires knowledge of their distribution.  

For the case of AR coefficients estimated using least squares, a derivation of 

the normality of the estimates was given in Mann and Wald (1943). However, it 

is unclear to me whether the full parameter vector, with �̂� included, can really 

be normally distributed. The simple fact that �̂� cannot be negative, makes this 

seem unlikely. Furthermore, Stoica and Moses (2005) do not discuss the 

distribution of the estimates obtained by their two-stage least squares ARMA 

algorithm. Nevertheless, for now we will assume that the parameter vectors 

obtained from least squares estimation can be modeled as MVN variables, or at 

least that they are close enough that the Mahalanobis distance is a valid way of 

scoring the estimates.   
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We saw in Section 2.2.4 that by testing the prediction errors of an ARMA 

model on new data, we could assess how well the data fitted our model. This was 

accomplished by computing the sample autocorrelation vector of the prediction 

errors and taking its Mahalanobis distance. Now, if the assumption of normality 

holds, we have another way of assessing the fit of new data – namely to model 

the estimated parameter vector 𝝓 ̂as MVN and take the Mahalanobis distance 

of new estimates obtained from data. These two approaches form the basis of the 

detection methods presented in the next chapter. 
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3 ARMA-Based Anomaly Detection 

This chapter will first give the details of the detection methods examined in 

this thesis. It then goes on to describe how the experiments on the methods will 

be conducted. Next, an ARMA model of underwater ambient noise is built from 

hydrophone data. This model is used to simulate ambient noise and test the 

detection methods on sinusoids in noise of varying amplitudes. At the end of the 

chapter, we will look at how anomalous data can be incorporated into the model 

building procedure to influence the detector’s sensitivity towards certain types of 

anomalies.  

3.1 Hypothesis Testing 

Given a segment of hydrophone data, the basic problem of detecting 

anomalies can be formulated as a hypothesis test where the two hypotheses in 

their most general form are as given below. 

 

 
𝐻 : The data segment is a realization of ambient noise. 

𝐻 : The data segment is not a realization of ambient noise. 

 

If a test statistic can be constructed that has a known probability distribution 

under the null hypothesis, then the value of this statistic can be converted to a 

p-value. If the p-value for the data segment is lower than some threshold, the 

null hypothesis is rejected and the data segment is classified as anomalous. 

From the theoretical discussion in the previous chapter, two ways of making 

the hypotheses above more specific have emerged. Both are based on modeling 

the ambient noise as a realization of an ARMA process, and both give rise to a 

chi-squared test statistic. 

3.1.1 Successive Estimation Method 

In the successive estimation method, the model of the ambient noise is a 

distribution model of the ARMA parameter estimates. We have seen that when 

parameters are estimated from independent realizations of the same underlying 

ARMA process, the parameter vector  

 

 𝝓̂ = �̂� 𝑎̂ ⋯ 𝑎̂ 𝑏̂ ⋯ 𝑏̂ , (3.1) 

 

can often be modeled as a multivariate normal variable, i.e. 

 
 𝝓 ̂~ 𝑁(𝝁,𝚺).  (3.2) 
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The parameters 𝝁 and 𝚺 of this model are not known in advance, but they can 

be estimated from data. Given estimates of 𝝁 and 𝚺, the precise hypotheses can 

be expressed as below. 

 

 

𝐻 : The ARMA parameters estimated from the data segment are 

drawn from the distribution 𝑁 �̂�,𝚺  

𝐻 : The ARMA parameters estimated from the data segment are not 

drawn from the distribution 𝑁 �̂�,𝚺  

 

By taking the squared Mahalanobis distance of 𝛟 from the distribution mean, 

 

 𝐷 𝝓̂ = 𝝓̂ − �̂� 𝚺− 𝝓̂ − �̂� , (3.3) 

 

we obtain a test statistic that has a known distribution under the null hypothesis:  

 

 𝐷 𝝓̂  ~ 𝜒 + +  under 𝐻 . (3.4) 

 

From 𝐷 𝝓̂  we can calculate the probability of observing 𝝓 ̂or something more 

extreme, given that the true distribution is 𝑁 �̂�,𝚺 . 

3.1.2 Prediction Method 

In the prediction method, an ARMA(𝑝, 𝑞) model is first fitted to ambient 

noise data. We have seen that when the estimated parameters are equal to the 

true parameters, the resulting prediction errors in Eq. (2.45) of a given data 

segment will be a realization of white noise. If the data segment deviates from 

what would be expected by our model, this will introduce correlations in the 

prediction errors, making them non-white. In Section 2.2.4 we saw that to test 

for such correlations, we can calculate the Ljung-Box test statistic Β(𝐫) from 

(2.48), where the sample autocorrelation vector 𝐫 = [𝑟̂ 𝑟 ̂ ⋯ 𝑟̂ ]  is found 

from the prediction errors {𝑒 } by 

 

 𝑟̂ =
1

(𝑁 − 1)�̂�
(𝑒 − 𝜇̂ )

−

=

(𝑒 + − 𝜇̂ );    𝑘 ∈ [1,𝐿]. (3.7) 

 

The precise hypotheses being tested by the LB statistic can be expressed as 

 

 

𝐻 : The true autocorrelation of the prediction errors is zero for all 

lags from lag one up to lag 𝐿. 

𝐻 : The true autocorrelation of the prediction errors is non-zero for 

at least one lag from lag one up to lag 𝐿. 
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We noted that Β(𝐫) is simply the squared Mahalanobis distance of 𝐫 from the 

distribution mean 𝐸[𝐫] = 𝟎, and will hence be chi-squared distributed with 𝐿 

degrees of freedom, provided that the null hypothesis is true. That is, 

 
 Β(𝐫) ~ 𝜒  under 𝐻 .  (3.9) 

 

Thus, we have made the general hypothesis test more concrete by turning it into 

a test for correlation in the prediction errors of a fitted ARMA model. In this 

test, we are free to choose the number of lags 𝐿 that will be tested, although it 

is recommended to set 𝐿 to at least 20 (Box et al., 2008). 

Note that this is only one of several possible hypothesis tests that could have 

been performed on the prediction errors. In experiments not included in the final 

version of this thesis, I tried performing a t-test on the mean value of the 

prediction errors. In those experiments, the ARMA model order had to be set 

very high to get a test statistic that fitted well with the t-distribution. 

Additionally, the LB test showed better detection performance on the data set 

in question. As a consequence, the t-test was not pursued further. However, a 

more thorough and systematic comparison of possible prediction error hypothesis 

tests would be needed to conclusively say which approach is the best one in 

general.  

3.1.3 ARMA Estimators 

Both the methods above depend on having a reliable way of estimating 

ARMA parameters from data. Some common ways of doing this are described in 

Section 2.2.5. MATLAB functions implementing each of the estimation methods 

there are listed in the Appendix and will be described here briefly. 

The function LS_ARMA is an implementation of the least squares estimation 

methods. For pure AR estimation, it uses the covariance method, and for full 

ARMA models it follows the two-stage least squares approach with 𝐾 set to 20. 

Since there are no clear guidelines on how to choose the parameter 𝐾, I estimated 

some spectra using different values and found that 20 seemed to give a good fit 

with the true spectrum. Since the two-stage method is a fast, non-iterative 

algorithm it will be used for the successive estimation method, where new ARMA 

estimates are needed for each data segment. 

The function ML_ARMA uses functions from MATLAB’s Econometrics 

Toolbox to compute the unconditional maximum likelihood estimate of the 

ARMA parameters. Since the estimation algorithm is iterative, this function will 

be used for the prediction method, where the parameters only need to be 

estimated once, and the test statistic is obtained from subsequent inverse 

filtering. 
PEM_ARMA is an alternative to ML_ARMA that uses functions from MATLAB’s 

System Identification Toolbox. It estimates the ARMA parameters by iteratively 

minimizing the prediction errors. Experiments have shown that ML_ARMA and 
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PEM_ARMA produce practically identical results. But PEM_ARMA has been 

observed to work somewhat faster. Still, the method is significantly slower than 

least squares and will therefore only be used for the prediction method. 

3.2 Unsupervised Detection 

This section is an outline of how ARMA-based detectors will be constructed 

when no prior knowledge of the anomalies is available. This is known in 

classification theory as unsupervised detection. In section 3.6 a supervised version 

of the methods will be introduced where examples of anomalous data are also 

used in constructing the detectors.  

The approach has grown out of my own attempts at constructing ARMA-

based detectors in MATLAB using a typical pattern classification framework, as 

the one presented in Duda et al. (2001). As such, both this section and Section 

3.6 can be seen as an overview of the MATLAB program I have built to run the 

various experiments presented later on. The graphical user interface of the 

program is shown in Figure A.1 in the Appendix. All the methods discussed in 

this chapter correspond to different configurations of the user settings in that 

figure. 

3.2.1 Overview of Procedure  

In both of the detection methods in the previous section, segments of raw 

data are transformed into a MVN variable with known or estimated parameters. 

This can be seen as a form of feature extraction, where the data segments are 

mapped to a low-dimensional space, and the elements, or features, of the random 

vectors are believed to contain valuable information about the data segments. 

The test statistic is then formed by taking the Mahalanobis distance of the 

feature vector. This means that we can view the methods in the same overall 

framework for detector design, where the two methods represent alternative 

approaches to feature extraction. The word detector should here be taken to 

mean a set of specifications such as feature extraction method, ARMA estimator 

and model parameters. 

The procedure will consist of two stages: training and testing. In the training 

stage, a model is fitted to ambient noise data using one of the feature extraction 

methods. In the test stage, a data set containing both ambient noise and 

examples of anomalies is used to compute the test statistic, and the results are 

presented graphically.  

Since we plan to calculate p-values from the test statistic, it is important to 

verify that it actually follows the assumed distribution under the null hypothesis. 

A goodness of fit (GOF) test with the chi-squared distribution is therefore 

integrated in the training stage2. This can be seen as a form of model validation. 

                                           
2 Goodness of fit is tested with the Kolmogorov-Smirnov test (kstest in MATLAB). 
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The training set is split into two parts, so that the data used for validation is 

independent of the data used to fit the model. 

3.2.2 Details of Procedure 

Figures 3.1 and 3.2 show an outline of the training and test procedures for 

the two feature extraction methods. In the figures, 𝐘 is a data matrix where the 

rows are made up of consecutive segments of time series data. The prediction 

error matrix 𝐄 has the same dimension as 𝐘. 

In the successive estimation method, the rows of 𝚽 are ARMA parameters 

estimated from the corresponding rows of 𝐘, while in the prediction method they 

are sample autocorrelation vectors computed from the corresponding rows of 𝐄. 

For simplification, the ARMA estimation block is shown the same way when it 

estimates one parameter vector from an entire data matrix as when it estimates 

one parameter vector for each row of a data matrix. 

The vectors 𝐝 and 𝐩 produced by the test procedure contain distances and 

corresponding p-values for each data segment of the test file. These vectors can 

be compared with fixed threshold values to label the segments as either normal 

or abnormal. 

A number of user settings such as ARMA orders, segment length and 

autocorrelation lags, will also need to be specified to properly train and test a 

detector with this procedure. The choice of these settings will affect both the 

behavior of the test statistic on the validation data and the detector’s 
performance on the test data. 

If the end goal were to design a detector that worked on streams of time 

series data in real-time, such processing would include the same steps as the test 

procedure, but instead of getting a whole data matrix as input, the detector 

would process the data segments one at a time as they became available. Training 

and testing on stored data sets could still be performed offline before deploying 

the detector to a real-time system. 
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Figure 3.1: Overview of the detector training stage and test stage using successive ARMA 
estimation for feature extraction. 

Figure 3.2: Overview of the detector training stage and test stage using the prediction 
method for feature extraction. 
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3.3 Modeling an Ambient Noise Signal 

Before proceeding with experiments on simulated data, we first need to build 

a realistic model of the underwater ambient noise. To do this, we will use 10 

seconds of hydrophone data from LoVe. The signal is sampled at 22.05 kHz with 

a surface wind speed of 18 m/s. A time-domain plot of the signal is shown in 

Figure 3.3.  

The tools that will be used to build the model are the order selection methods 

given in Section 2.2.6 as well as visual inspection of the power spectrum of the 

estimated models plotted alongside a non-parametric PSD estimate. Non-

parametric estimation is done here by Welch’s method. This method has not 

been covered in the theory chapter, as it will only be used for visualization. More 

on Welch estimation can be found in Stoica and Moses (2005).  

The hydrophone data set from LoVe was supplied by FFI with instructions 

on how to scale power spectral densities to the correct physical units. Throughout 

the thesis, the following formula has been applied to the PSD estimates. 

 
 𝑃 (𝑒 ) [dB re 𝜇Pa /Hz] = 10log 𝑃 (𝑒 ) + 171, (3.10) 

 

where 𝑃 (𝑒 ) is the unscaled power spectrum of the audio signal, and 𝑃 (𝑒 ) is 

the scaled power spectrum in proper physical units. Figure 3.4 shows the Welch 

PSD estimate of the ambient noise signal converted to decibels using the above 

formula. 

 

 

 

 

 

 

 

 

 

Figure 3.3: A plot of the 10 seconds of audio data used in this section to build a model of 
the ambient noise. 
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Order selection 

The first step in building an ARMA(𝑝, 𝑞) model is to select the model orders 

𝑝 and 𝑞. As discussed in Section 2.2.6, this can be done by first inspecting 

estimates of the autocorrelation and partial autocorrelation functions of the 

signal. Estimates for 30 lags of these functions are shown in Figure 3.5. It is clear 

that neither the sample ACF nor the sample PACF drops to zero after a specific 

lag, which is indicative of a full ARMA process rather than a pure AR or MA 

process. Furthermore, the sample ACF decays very slowly, which is indicative of 

process with at least one pole close to unity (Box et al., 2008, pp. 196–197). 

A slowly decaying ACF means that we could treat the process as non-

stationary and instead try to model the first difference of the signal as 

ARMA(𝑝, 𝑞). The effect of differencing would be to attenuate low frequencies, 

since the differencing operator in (2.37) is essentially a high-pass filter. This is 

not necessarily a problem when detection of anomalies is the only objective, but 

since the goal of this section is to build a realistic model of the signal for 

simulation purposes, we will treat the underlying process as wide sense stationary 

and avoid differencing.  

 

 

 

 

 

 

Figure 3.4: A Welch estimate of the power spectral density of the ambient noise signal. 



 

 

 37

 

 

 

Since the orders of a full ARMA process cannot be found by simple inspection 

of the sample ACF and PACF, another approach is required. As described in 

Section 2.2.6, a systematic way of finding the appropriate ARMA orders is to 

use an information criterion like the BIC. The function BICorder listed in the 

Appendix is adapted from an example on Mathworks.com (2016). It uses 

functions from the Econometrics Toolbox to compute the BIC for all 

combinations of AR orders from one up to p_max and MA orders from one up 

to q_max. It then returns the orders 𝑝 and 𝑞 that produce the lowest value for 

the BIC.  

When the ambient noise data is fed to BICorder with p_max and q_max 
both set to 15, the resulting model is ARMA(11,4). The maximum orders were 

chosen so that the function would finish in reasonable time, as the maximum 

likelihood estimation done by BICorder can be very time-consuming for high 

orders and large amounts of data. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Plots of the sample autocorrelation function and sample partial autocorrelation 
function of the ambient noise signal.  
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Parameter estimates 

When an ARMA(11,4) model is fitted to the whole time series with 

PEM_ARMA, the resulting parameters are as given below. 

 

 

{𝑎 } = {1.000,−2.152, 0.7093, 1.264,−1.129, 

           0.3777,−0.09949, 0.06326,−0.02588, 

          −0.02759, 0.04334,−0.02346} 

{𝑏 } = {1.000,−0.9117,−1.006, 0.8364, 0.08148} 

𝜎 = 1.257 x 10−  

(3.11) 

 

These parameters define the model that will be used for simulation in the next 

section. The power spectrum of the estimated model is shown alongside the 

Welch estimate in Figure 3.6. Figure 3.7 shows the poles and zeros of the 

estimated ARMA model. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The ARMA PSD estimate and the Welch PSD estimate for the ambient noise 
signal. 
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3.4 Detecting a Sinusoid in Noise 

As a simple way of comparing the performance of the ARMA-based detection 

methods, we can run simulations of the model obtained in the previous section, 

and add sinusoids of varying amplitude to the signal. One minute of simulated 

data at a sampling frequency of 22.05 kHz will be generated from the model and 

the sinusoids will be added to the second half of the signal. The frequency of the 

sinusoids is 100 Hz. The amplitudes are given in decibel according to the 

following formula: 

 
 𝜎  [dB re 𝜇Pa ] = 10log 𝜎 + 171 (3.12) 

 

where 𝜎  is the mean squared value of the signal. This will also be referred to as 

the total power of the signal. When referring to a sinusoid alone, the mean square 

value is simply 𝐴 /2, where 𝐴 is the multiplying factor of the sinusoid.  

The energy detector mentioned earlier also uses mean square values to detect 

changes, but it assumes no prior knowledge of the signal and therefore has to 

rely on sample estimates of the total power. If we had a distribution model for 

the mean square signal values under ambient noise, we could set up a hypothesis 

test with a fixed significance level for the energy detector in the same way as for 

the ARMA-based methods. But no attempt has been made here to derive such 

a model. Instead, the energy detector will be evaluated by inspecting plots of the 

mean square value itself, not p-values. The detection thresholds in these plots 

Figure 3.7: A pole-zero plot of the estimated ARMA model. 
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have simply been adjusted so that they could be suitable for the experiment in 

question.  

In the experiments, Welch PSD estimates are used to form a spectrogram of 

the time series data. A spectrogram consists of PSD estimates stacked together 

along the time-axis to provide a graphical representation of how the power 

spectrum of a signal changes over time. The segment length of the spectrogram 

has been set to 0.5 seconds.  

The segment length of the data used by the detectors will be Δ𝑡 = 0.04 s. 

This is the same as what will be used in most of the experiments on real data in 

Chapter 4. The choice of the value is explained there. 

The significance level chosen for the simulations is 10− . This may seem 

rather low but with 1/0.04 = 25 p-values generated every second, this threshold 

means that we should expect around 25 x 60  x 10− = 0.9 false alarms per hour 

of simulated noise data, given that the test statistic actually follows the assumed 

distribution. 

3.4.1 Energy Detector 

As is shown in Figure 3.8, at 90 dB the sinusoid is faintly visible in the 

spectrogram. Exactly when this occurs, has been observed to depend on the 

segment length used for the spectrogram. The longer the segments, the earlier 

the sinusoid becomes visible.  

The total power of the signal does not seem to be affected by the 90-dB 

sinusoid at all. The mean square values also vary a lot. For a sinusoid to be 

detected in this situation, it needs to overcome the variance of these values. 

Figure 3.9 shows that this happens at an amplitude of around 118 dB. 

Looking at the time series plot, the high variance in the mean square values 

appears to be due to power at some very low frequencies causing the signal to 

drift away from zero for several seconds at a time. This effect can also be observed 

in the plot of the ambient noise signal we used to build the model (Figure 3.3). 

An interesting thing happens to the energy detector if we apply first order 

differencing to the signal before computing mean square values. This attenuates 

the low frequencies causing drift and significantly reduces the variance of the 

mean square values, as shown in Figure 3.10. When differencing is applied, the 

energy detector seems to be able to handle amplitudes down to about 113 dB, as 

shown in Figure 3.11. The threshold in these two figures has to be set differently 

since differencing has removed some of the total power of the signal.  

It may very well be that differencing or some other form of prefiltering would 

have a beneficial effect on the ARMA-based detection methods as well, but this 

has not been studied here. In practice, differencing the signal means that the 

ambient noise model would become ARIMA(𝑝, 𝑑, 𝑞) instead of ARMA(𝑝, 𝑞). 
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Figure 3.8: Energy detector tested on a 90-dB sinusoid in noise.  

Figure 3.9: Energy detector tested on a 118-dB sinusoid in noise. 
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Figure 3.10: Energy detector with differencing tested on a 118-dB sinusoid in noise. 

Figure 3.11: Energy detector with differencing tested on a 113-dB sinusoid in noise. 
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3.4.2 ARMA-Based Detectors 

For each of the ARMA-based methods, two figures have been created. The 

first figure shows the results of the training procedure, i.e. model fitting and 

model validation. The second figure shows detector performance in the same way 

as was shown for the energy detector.  

The training figures contain the following plots: the estimated power 

spectrum shown alongside a Welch estimate of the spectrum, a histogram of the 

test statistic values under validation shown alongside the chi-squared PDF, and 

a pole-zero plot of the estimated ARMA coefficients.  

For the prediction method, the number of lags has been set to 20. 10 seconds 

of the simulated noise data has been used for model fitting and the remaining 20 

seconds for model validation. 

The training figures also show the computation time spent by MATLAB in 

fitting the model. This time will of course depend on the system MATLAB is 

running on3. Additionally, the iterative methods are not deterministic, so that 

estimation using two different data sets may take a different amount of time, 

even if the model orders and the number of samples are the same. Nevertheless, 

computation time is included in the figures to give a rough sense of how fast the 

methods are compared to each other. 

 

Successive Estimation Method 

When the parameters of an ARMA(11,4) model are successively estimated 

using least squares, the resulting test statistic does not quite fit the chi-squared 

distribution, as shown in Figure 3.12. If we choose to ignore this lack of fit and 

proceed to calculate p-values for the test data, several of the p-values are very 

low, even for the part of the signal that has no added sinusoid (Figure 3.13). In 

other words, the lack of fit increases the risk of false alarms. 

As mentioned in Section 2.2.7, the assumption of normality may not be 

warranted for the parameter vector obtained from the two-stage least squares 

estimator. In general, when we observe a test statistic that does not fit well with 

the theoretical distribution, it could mean that some of the underlying 

assumptions are wrong. 

However, experiments have shown that pure AR models tend to produce test 

statistics with a better fit. If we change the model to AR(7), for instance, the 

results are as shown in Figures 3.14 and 3.15. When the amplitude of the sinusoid 

                                           
3 The system used here is a desktop computer with the following specifications: 
  

i7-6700 CPU 
16 GB RAM 
500 GB SSD 
64-bit Windows 10 Home 

 
Parallelization on four cores has also been employed wherever possible. 
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is increased to around 110 dB, the successive estimation method is able to detect 

it using an AR(7) model (Figure 3.16). 

Experiments not shown here have further indicated that the test statistic for 

the successive estimation method will be more sensitive to the introduction of a 

sinusoid when the model order is higher, e.g. AR(20). But then the statistic fits 

poorly with the chi-squared distribution, which causes more misclassifications as 

with the ARMA(11,4) model.  

A way around this problem could be to use another distribution model for 

the test statistic. Specifically, experiments have indicated that the generalized 

extreme value distribution can be used in place of the chi-squared distribution 

to obtain more well-behaved p-values under the null hypothesis. But this will 

not be pursued here. Instead, we will restrict our attention to models whose test 

statistic fits well with the chi-squared distribution.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Training results for an ARMA(11,4) successive estimation detector. 
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Figure 3.13: p-values for the successive estimation method using an ARMA(11,4) model of 
the ambient noise. The amplitude of the sinusoid is 90 dB. 

Figure 3.14: Training results for an AR(7) successive estimation detector.  
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Figure 3.15: p-values for the successive estimation method using an AR(7) model of the 
ambient noise. The amplitude of the sinusoid is 90 dB.   

Figure 3.16: p-values for the successive estimation method using an AR(7) model of the 
ambient noise. The amplitude of the sinusoid is 110 dB. 
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Prediction method 

The prediction method has not been observed to exhibit the same problems 

with lack of fit. As shown in Figure 3.17, the test statistic fits well with the chi-

squared distribution with 20 degrees of freedom. In experiments not shown here, 

it has been observed to fit well for higher and lower number of lags as well. 

Detection of the sinusoid does not seem to be affected greatly by how many lags 

are chosen, so only 20 lags will be shown here and used in most of the experiments 

on real data as well. When the amplitude of the sinusoid is set to around 98 dB, 

the prediction method is able to reliably detect it (Figure 3.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Training results for an ARMA(11,4) prediction-based detector. 



 

 

 48

 

 

3.4.3 Summary of Results 

In the experiments above we have seen that a 100 Hz sinusoid can be detected 

by the examined methods at the following amplitudes: 

 

Prediction method:    98 dB 

Successive estimation method:   110 dB 

Energy detector with differencing:  113 dB 

Energy detector without differencing:  118 dB 

 

An AR(7) model was used in place of the ARMA(11,4) model for successive 

estimation, as it produced a test statistic that fitted better with the chi-squared 

distribution – a necessary condition for obtaining reliable p-values. 

3.4.4 Adding Noise to Real Data Sets 

In simulated experiments, we are able to control the power of the anomalous 

signal. But when dealing with real data sets containing both ambient noise and 

anomalies mixed in, we don’t have the same control over the relative power of 

the ambient noise and the anomalies. Consequently, it is harder on real data sets 

to evaluate detector performance on fainter anomalies. 

We have already seen that that the ARMA-based methods can outperform 

an energy detector on simulated data. But in order to properly test this on the 

real data sets, some adjustments will be necessary. The modification that will be 

Figure 3.18: p-values for the prediction method using an ARMA(11,4) model of the ambient 
noise and 20 autocorrelation lags. The amplitude of the sinusoid is 98 dB. 
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done in the experiments in the next chapter consists of adding simulated noise 

to real hydrophone signals. This makes it possible to effectively increase the gain 

of the ambient noise, and thereby lower the signal-to-noise ratio (SNR). In 

practice, the same effect could of course be achieved by adding real data at 

different amplitudes to simulated noise with a constant amplitude, but we will 

not alter the real data, and instead just change the amplitude of the simulated 

noise.  

3.5 Dimensionality Reduction 

Because I observed that test statistics from successive estimation with high-

order models were quite sensitive to changes in the noise but fitted poorly with 

the chi-squared distribution, I started to examine ways of fitting a high-order 

model and subsequently reducing its dimension in the hope that the resulting 

test statistic would provide a better fit, while retaining the sensitivity to changes 

of the higher-order model. 

This led me to develop an algorithm which uses data both from ambient noise 

and examples of anomalies to reduce the dimension of the feature space. As such, 

it is a supervised approach to anomaly detection. The general algorithm is given 

in Section 3.5.5. Leading up to that, the ideas behind it will first be presented 

step by step in a less general way. 

As Aggarwal (2013) explains in his chapter on supervised anomaly detection, 

the introduction of anomalous data in the training process, can be used to form 

a model of the normal class that is more sensitive to certain kinds of anomalies. 

In the context of ocean monitoring, this could be very useful since it means that 

we could potentially tune a detector to be more sensitive to a general class of 

anomalies such as submarines or whales, without having to look for specific 

acoustic signatures. 

3.5.1 Analyzing the Feature Space 

When the Mahalanobis distance is used to characterize a feature vector, all 

the features are assumed to be equally important for describing the underlying 

raw data. As discussed in Section 2.1.3, this is a strong assumption to make 

without doing any analysis of the feature space. In the same section, two classical 

approaches to reducing the dimension of the feature space were introduced, 

namely principal component analysis and linear discriminant analysis. 

Both PCA and LDA seek to summarize the most useful information 

contained in the feature vector in a lower-dimensional space. The two methods 

differ in how “useful information” is defined, and in the dimension of the subspace 

that the feature vector is mapped to. In PCA, an -dimensional subspace is 

created that retains the most of the variability of the feature vector, and the 

dimension  can be chosen freely. In LDA, supervised learning is used to find a 

one-dimensional subspace that provides optimal separation between feature 

vectors from two different classes. 
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The feature space typically has too many dimensions to be visualized, but by 

dividing it into two-dimensional subspaces, one can get an idea of how data from 

different classes is distributed for various features.4 The subspaces will then 

consist of pairs of features. The features that make up a pair do not need to be 

related in any particular way. Grouping them together is simply an efficient way 

of visualizing many features at once. 

As an example, when we fitted an ARMA(11,4) model to simulated noise 

using the successive estimation method in the previous section, the matrix 𝚽 

contained a set of points in ℝ , one point for each segment of the signal. Now, 

assume we let a 118-dB sinusoid in simulated noise represent an example of the 

type of anomaly we wanted to be able to detect. We could then generate 

estimates for this signal and produce another matrix 𝚽′, also made up of points 

in ℝ . The data from both matrices could then be represented graphically in 

two-dimensional plots where each axis corresponds to a feature. Figure 3.19 

shows what such plots would look like. The first feature 𝜎 has been given a 

separate subplot because its scale is quite different from the ARMA coefficients 

that make up the other features.   

As a way of scoring the features, the SNR criterion used to derive Fisher’s 
linear discriminant has been computed for each feature in the model. Eq. (2.29) 

for the criterion can be rewritten as  

 

 𝐽(𝐰) =
(𝜇̂ − 𝜇̂ )

�̂� + �̂�
, (3.13) 

 

where 𝜇̂  and �̂�  represent the sample mean and sample variance of the data for 

the two classes after it has been projected onto 𝐰 (Duda et al., 2001). Since the 

directions we are examining are just the coordinate axes of the feature space, 

projecting simply means selecting one of the columns of the matrices 𝚽 and 𝚽′. 

The SNR value shown in the figures is SNR (𝜙 ) = 10log 𝐽(𝜙 ). 

When the features are viewed individually this way, the estimate of the white 

noise standard deviation 𝜎, is the one that best discriminates between the two 

classes. It is important to note, however, that this plot does not give much 

information about the correlations that exist between features. Since the 

Mahalanobis distance also takes correlation into account, features that have a 

negative SNR may still contribute useful information if the correlation between 

them is significantly different for the two classes. Nevertheless, 𝜎 is the feature 

that is the most different for the two classes, and if we had to use only one 

feature to distinguish between them, 𝜎 would be the natural choice. 

 

 

 

                                           
4 For the rest of this section, “data” will refer to sets of feature vectors or points in 
feature space, not the raw data that the feature vectors seek to describe. 
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Figure 3.19: Visualization of the feature space of an estimation based detector that uses an 
ARMA(11,4) model. Each axis represents a parameter of the model. The blue points are 
estimates of the ambient noise, while the brown points are estimates of an 18-dB sinusoid in 
noise. In the one-dimensional plots, the points have been drawn on separate lines for ease of 
visualization. 

Figure 3.20: Signal-to-noise ratios of each parameter in the ARMA(11,4) model, computed 
from Fisher’s criterion in Eq. (3.13). 



 

 

 52

3.5.2 Fisher’s Linear Discriminant 

Even though 𝜎 has the highest SNR among the features in the above example, 

its axis is not necessarily the direction which has the highest SNR of all directions 

in the feature space. This direction is given by Fisher’s linear discriminant: 

 

 𝐡 = 𝚺 + 𝚺
−

�̂� − �̂�  (3.14) 

 

When FLD is computed for the data set in this example, it yields a vector 

with an SNR of 10.4 dB. We cannot visualize this vector, but one way to 

understand it better is to calculate the angles between the vector and the 

coordinate axes. The general expression for the angle between two vectors in ℝ  

is 

 𝜃 = cos− 𝐱 𝐲

‖𝐱‖‖𝐲‖
. (3.15) 

 

When this is calculated for FLD and all the coordinate axes, the angle with the 

first axis is only 0.060 degrees while all the other angles are around 90 degrees. 

This means that FLD for this example is almost in the same direction as the 𝜎-

axis and consequently almost orthogonal to all the other axes. But a small 

adjustment away from the 𝜎-axis has resulted in an increase in SNR of 9.5 dB. 

The increased SNR means that the discriminant has absorbed some of the 

information present in the other features. 

3.5.3 Finding an Orthogonal Component 

Having found Fisher’s linear discriminant in ℝ , we might be satisfied and 

start using that vector to discriminate between classes on new data. However, 

we could also ask if there is any more information left in the feature space that 

is not captured by FLD. More precisely: Are there directions that are orthogonal 

to Fisher’s linear discriminant but still have a positive SNR? If we found one 

such vector, we could construct a two-dimensional subspace spanned by it and 

FLD that would capture more useful information than what FLD could possibly 

do alone. 

To answer the above question, we first need a way of examining the directions 

that are orthogonal to FLD. This can be accomplished by employing the theory 

of projections from linear algebra. Scharf (1991) has been used in the following 

as a reference for this theory.  

Since we are only interested in directions, not magnitudes, of the vectors, we 

can start by scaling FLD so that ‖𝐡‖ = 1. This simplifies some of the expressions 

to follow. Now, form the projection matrix 

 
 𝐏 = 𝐡𝐡 . (3.16) 
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When a vector 𝝓 is multiplied by this matrix, it is projected into the one-

dimensional subspace spanned by 𝐡: 

 
 𝐏 𝝓 = (𝐡 𝝓)𝐡 (3.17) 

 

Furthermore, it is known that any vector in ℝ  can be decomposed into two 

orthogonal components. That is, the vector 𝝓 can be written as 

 
 𝝓 = 𝐏 𝝓 + 𝐏 𝝓, (3.18) 

where 
 𝐏 = 𝐀(𝐀 𝐀)− 𝐀  (3.19) 

 

is a projection onto the space 〈𝐀〉 that is orthogonal to 𝐡. In other words, there 

exists a matrix 𝐀 whose columns are basis vectors for the orthogonal space, so 

that 𝐀 𝐡 = 𝟎.  

Eq. (3.18) can be written as 

 
 𝝓 = (𝐏 + 𝐏 )𝝓, (3.20) 

which implies that 
 𝐏 + 𝐏 = 𝐈. (3.21) 

 

So, from 𝐡 we can form a projection that maps any vector in ℝ  to the space 

that is orthogonal to 𝐡 by simply rearranging (3.21): 

 
 𝐏 = 𝐈 − 𝐏 . (3.22) 

 

Now the entire data set can be projected into the orthogonal subspace by 

 

 
𝚽 = 𝚽𝐏  

𝚽 = 𝚽 𝐏  
(3.23) 

 

Remember that we wanted to find a direction in this subspace whose SNR is 

positive – if such a direction indeed exists. Surely, the most interesting direction 

to look for is the one that maximizes Fisher’s criterion for the projected data set. 

However, we cannot compute Fisher’s linear discriminant directly from (3.14) 

since that requires estimates of the covariance matrices, and the projected data 

is currently made up of vectors in ℝ  that lie in a subspace with 𝑑 − 1 dimensions. 

As a consequence, the covariance matrices are not full rank and cannot be 

inverted. To find FLD for the projected data set, we must therefore first represent 

it in ℝ − .  

To accomplish this, we can proceed by finding a set of 𝑑 − 1 basis vectors for 

〈𝐀〉 in ℝ  and then do a coordinate transformation so that these vectors become 

the new coordinate axes. First, let  
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 𝚽 − 𝐌 = 𝐔𝐒𝐕  (3.24) 

 

be the singular value decomposition of the centered projected data from the 

normal class. Here, 𝐌 is a matrix of repeated sample means (see Section 2.1.2).  

Since the rank of 𝚽  is 𝑑 − 1, the last singular value in 𝐒 will be zero, and 

the corresponding eigenvector in 𝐕 will be in the direction of Fisher’s linear 

discriminant. This means that the vectors {𝐯 , 𝐯 ,⋯ , 𝐯 − } are a basis for the 

orthogonal subspace 〈𝐀〉.  

Next, form the reduced, full rank matrices 

 

 
𝐕 = [𝐯 𝐯 ⋯ 𝐯 − ] 

𝐒 = diag(𝑠 , 𝑠 ,⋯ , 𝑠 − ) 
(3.25) 

 

and the scaled diagonal matrix 

 

 𝐃 =
𝐒

√
𝑁 − 1

, (3.26) 

 

where 𝑁  is the number of rows in 𝚽. Then perform a whitening transformation 

similar to the one given in Eq. (2.28) on the whole data set: 

 

 

𝚿 = (𝚽 − 𝐌)𝐕 𝐃−  

𝚿 = (𝚽 − 𝐌)𝐕 𝐃−  

 

(3.27) 

The matrices 𝚿 and 𝚿  have 𝑑 − 1 columns representing coordinates along the 

basis vectors {𝐯 } of 〈𝐀〉. Incidentally, since we also chose to scale by 𝐃− , the 

vectors in 𝚿 will be standard normal. That is, 

 

 

�̂� = 𝟎 

𝚺 =
1

𝑁 − 1
𝚿 𝚿 = 𝐈 

(3.28) 

 

Note that only data from the normal class was used to create the transformation, 

but data from both classes is transformed to the new coordinate system. The 

reason for this is that the underlying assumption of the whitening transformation 

is that the data is MVN. In our general model, this can only be assumed for the 

normal class and not for the pooled data from both classes. 

After the data has been transformed to the new coordinate system, we can 

compute Fisher’s linear discriminant in 〈𝐀〉 as 

 

 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.29) 
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This vector is, however, still a point in the new coordinate system. If we want to 

use it along with the other linear discriminant to construct a two-dimensional 

subspace of ℝ , we first need to represent it in the original coordinate system by 

reversing the whitening transformation: 

 

 𝐡 = 𝐕𝐃
𝐡

0
+ �̂� , (3.30) 

where 

 𝐃 =
𝐒

√
𝑁 − 1

. (3.31) 

 

The vector 𝐡  is now a vector in ℝ  that is orthogonal to Fisher’s linear 

discriminant. Furthermore, of all the orthogonal directions, the direction of 𝐡  is 

the one maximizes the SNR criterion for the data set. 

If we called FLD 𝐡  and scaled 𝐡  so that its norm was also one, we could 

join the two vectors together in a matrix 

 
 𝐇 = [𝐡 𝐡 ], (3.32) 

and form the projection 
 𝐏 = 𝐇𝐇 , (3.33) 

 

which would be a mapping into a two-dimensional subspace of ℝ  providing, in 

some sense, optimal separation of the data from the two classes. Projecting a 

vector 𝝓 this way can be written out as 

 
 𝐏 𝝓 = (𝐡 𝝓)𝐡 + (𝐡 𝝓)𝐡 , (3.34) 

 

which highlights the fact that the {𝐡 } are basis vectors of the subspace. This 

means that we can represent the vector 𝝓 in ℝ  by simply extracting the 

coordinates (𝐡 𝝓) for each of the two axes. The resulting transformation is then 

 
 𝒯: ℝ → ℝ : 𝐱 = 𝐇 𝝓. (3.35) 

 

If 𝝓 is assumed to be MVN, then 𝐱 will be distributed as 

 
 𝐱 ~ 𝑁 𝐇 𝝁 ,𝐇 𝚺 𝐇 , (3.36) 

 

which follows from the properties of linear transformations of MVN variables 

given in (2.7). When the transformation in (3.35) is performed on a data matrix, 

it becomes 

 
 𝒯: ℝ → ℝ : 𝐗 = 𝚽𝐇. (3.37) 
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After transforming the data, we can use Mahalanobis distances in ℝ  to classify 

new data in the same way as was done in ℝ  before the transformation. 

3.5.4 Example: Mapping a Data Set from ℝ  to ℝ  

To get a more intuitive understanding of what is going on in the above 

procedure, we can try to visualize it on a 3-dimensional data set. For simplicity, 

the data will be generated by drawing points from two Gaussian distributions. 

The parameters of the first distribution are given by 

 

 𝝁 =
−3.0
−4.0
1.0

,    𝚺 =
1.2 0.3 −0.4
0.3 1.5 0.2

−0.4 0.2 2.0

. (3.38) 

 

This will represent the normal class. The parameter of the second distribution, 

representing the anomaly class, are 

 

 𝝁′ =
3.0
4.0
5.0

,    𝚺′ =
2.0 −0.4 0.2

−0.4 1.0 0.3
−0.2 0.3 1.5

. (3.39) 

 

From each of these distributions, 5000 points have been drawn and organized as 

rows of the data matrices 𝚽 and 𝚽′. 

Figure 3.21 shows the data set plotted as points in ℝ  along with the subspace 

〈𝐡 〉 spanned by FLD and the subspace 〈𝐀〉 orthogonal to FLD. We see that in 

three dimensions, 〈𝐀〉 becomes a plane. The direction of 𝐡  seems to make sense 

since it is roughly the direction 𝝁 −  𝝁, pointing from one mean to the other. 

In Figure 3.22 the data has been projected onto the plane 〈𝐀〉 and the 

direction of 𝐡  has been found as the direction that maximizes the SNR criterion 

in the subspace. We can imagine that the vector has been rotated around in the 

plane until the SNR is at its highest. 

Figure 3.23 shows the original data set and the subspace 〈𝐇〉 spanned by 𝐡  

and 𝐡 , while figure 3.24 shows the data set projected into 〈𝐇〉. The data points 

are still points in three dimensions even though they are in a subspace. But by 

doing a coordinate transformation they can be represented in two dimensions, as 

shown in figure 3.25. 

It is clear that the SNR is much better for 𝐡  than 𝐡 . But 𝐡  is still positive, 

which means it contains some information not captured by 𝐡 . To create an 

alternative but suboptimal representation of the data set we could find a vector 

𝐡  that is orthogonal to both 𝐡 and 𝐡 . That is, a vector that satisfies 

 
 𝐇 𝐡 = 𝟎. (3.40) 

 

Geometrically, this is the normal vector to the plane spanned by 𝐡  and 𝐡 . It 

can be found from an eigenvalue decomposition of 𝐇 .  
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The result of representing the data by means of 𝐡  and 𝐡  is shown in Figure 

3.26. It is clear that projecting the data onto 𝐡  would cause the data from the 

two classes to be mixed together almost completely, as evidenced by the negative 

SNR. An explanation for this is that the first two directions have been formed 

in a way that maximizes our ability to classify the projected data. Consequently, 

less useful information for classification becomes available for the last direction. 

This could perhaps be viewed as entropy, or lack of information, being forced 

into the last orthogonal direction. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Two Gaussian clusters representing sets of feature vectors from two different 
classes. The green line is the subspace spanned by Fisher’s linear discriminant. The blue 
plane is the subspace orthogonal to FLD.  
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Figure 3.22: When all the feature vectors are projected into the orthogonal subspace, the 
direction of the blue line is the one that maximizes the SNR criterion and provides the best 
separation of the two classes in the orthogonal subspace. 

Figure 3.23: The feature vectors from the two classes shown with the subspace constructed 
from the two orthogonal components.  



 

 

 59

 

 

 

 

 

 

 

Figure 3.24: The feature vectors from the two classes projected into the constructed subspace. 

Figure 3.25: The projected feature vectors from the two classes represented in two 
dimensions. 
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3.5.5 Finding Multiple Orthogonal Components 

When working in a high-dimensional feature space, there is no need to stop 

after two orthogonal components have been found from the procedure described 

in the previous section. The method can fairly easily be generalized to find 𝑛 

orthogonal components in ℝ , where 𝑛 ≤ 𝑑. We just have to make sure that each 

new component is not only orthogonal to the preceding one, but to all previous 

components. That means that the projection matrix used to find the 𝑖th 

component 𝐡 , must be formed as 

 
 𝐏 = 𝐈 − 𝐇 𝐇 , (3.41) 

where  
 𝐇 = [𝐡 𝐡 ⋯ 𝐡 − ]. (3.42) 

 

We can then project the data as before, and rotate a vector around in the 

orthogonal subspace until Fisher’s criterion is maximized. Afterwards, we can 

represent the vector in ℝ  as 𝐡  and move on to the next component. 

Each component found this way will necessarily have a lower SNR than the 

preceding one. To see why this is the case, note that the directions we are 

searching through to find 𝐡  are only a subset of the directions we have already 

searched through to find 𝐡 − . So, 𝐡  will be found by looking at the entire space, 

and will thus be Fisher’s linear discriminant. 𝐡  will then be formed by only 

considering the directions that are orthogonal to 𝐡 , and so on.  

Figure 3.26: An example of a worse mapping where the feature vectors from the two classes 
are not well separated. 



 

 

 61

The fact that we end up with a set of ordered orthogonal components that 

can be used to represent the data in a lower-dimensional space, means that the 

procedure has a lot in common with PCA. The big difference is, of course, that 

the components are found by iteratively maximizing Fisher’s SNR criterion under 

an orthogonality constraint, while in PCA it is the variance of the projected data 

that is maximized under an orthogonality constraint. 

In the general version of the algorithm given below, one modification will be 

introduced that serves to simplify some of the steps. It consists of creating a 

whitening transformation based on data from the normal class and performing it 

on data from both classes before proceeding to find the components. This 

effectively represents the whole data set in a coordinate system where the 

distribution of the normal class is standard normal. 

An advantage of the whitening transformation is that any time the data from 

the normal class is projected into a new subspace, the mean vector remains zero, 

which means it doesn’t have to be recalculated on each iteration. The symmetry 

of the spherical distribution further ensures that the variance along any vector 

in the subspace is equal to one, which means we don’t have to scale by the 

singular values when moving in and out of the subspace. The initial whitening 

transformation is done using the SVD in steps 1 – 3 below. If the true mean and 

covariance matrix is known in advance, the transformation can instead be done 

by factoring the covariance matrix, as in (2.13). 

 

Algorithm for finding 𝒏 orthogonal components 

 

1. Take the SVD of the data from the normal class: 

 
 𝚽 − 𝐌 = 𝐔𝐒𝐕 , (3.43) 

 

where the rows of 𝐌 are all equal to �̂� , i.e. the sample mean of 𝝓. 
 

2. Form the diagonal matrix 

 

 𝐃 =
𝐒

√
𝑁 − 1

, (3.44) 

  

where 𝑁  is the number of rows in the data matrix 𝚽. 

 

3. Transform the data from both classes. 

 

 
𝐖 = (𝚽 − 𝐌)𝐕𝐃−  

𝐖 = (𝚽 − 𝐌)𝐕𝐃−  
(3.45) 

 

4. Find the first component (FLD) 
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 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.46) 

 

5. Scale the component so that ‖𝐡 ‖ = 1. 

 

6. Initialize 𝐇  as an empty matrix 

 
 𝐇 = [  ] (3.47) 

 

Repeat the following steps for 𝑖 = 2, 3,⋯ , 𝑛. 

 

7. Update 𝐇  

 
 𝐇 = [𝐇 − 𝐡 − ] (3.48) 

 

8. Form the projection matrix 

 
 𝐏 = 𝐈 − 𝐇 𝐇  (3.49) 

 

9. Project the data into the orthogonal subspace 〈𝐀〉. 

 

 
𝐖 = 𝐖𝐏  

𝐖 = 𝐖 𝐏  
(3.50) 

 

10. Take the SVD of the projected data from the normal class. 

 
 𝐖 = 𝛀𝚲𝚼  (3.51) 

 
11. Form the reduced matrix 

 
 𝚼 = [𝜸 𝜸 ⋯ 𝜸 − + ]. (3.52) 

 
12. Represent the projected data from the second class in ℝ − + . 

 
 𝚿 = 𝐖 𝚼  (3.53) 

 

13. Find Fisher’s linear discriminant in the new coordinate system.  

 

 𝐡 = 𝐈 + 𝚺
−

�̂� . (3.54) 

 

14. Represent 𝐡  in ℝ  as 

 

 𝐡 = 𝚼
𝐡

𝟎
. (3.55) 
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15. Scale the component so that ‖𝐡 ‖ = 1.  

 

When the loop is complete, the matrix 𝐇 = [𝐡 𝐡 ⋯ 𝐡 ] is returned 

along with �̂� and the matrices 𝐕 and 𝐃 that were used for the initial whitening 

transformation. New feature vectors can then be mapped to ℝ  with the 

transformation 

 
 𝒯 : ℝ → ℝ : 𝐱 = 𝐇 𝐃− 𝐕 (𝝓 − �̂�), (3.56) 

 

which for a data matrix becomes 

 
 𝒯 : ℝ → ℝ :𝐗 = (𝚽 − 𝐌)𝐕𝐃− 𝐇 . (3.57) 

 

We are, of course, free to create a matrix 𝐓 = 𝐕𝐃− 𝐇  and just use that for 

future transformations instead of keeping the three individual matrices. 

In the algorithm above, the data is first mapped to a coordinate system in 

which the normal class has a spherical distribution. Multiplication by 𝐇  then 

rotates the data while simultaneously reducing its dimension. It is possible to get 

back to the original coordinate system by reversing the whitening transformation, 

but if the goal is to calculate Mahalanobis distances this would be unnecessary. 

The reason is that the distribution of the mapped data is multivariate standard 

normal, and as we have seen, this reduces Mahalanobis distances to Euclidian 

distances. So, if we stay in the new coordinate system, we don’t need a covariance 

matrix or a mean vector to calculate the Mahalanobis distance. We can simply 

take the Euclidian norm of the transformed vector 𝐱. 

One might wonder why the covariance matrix of the transformed vector is 

still the identity after multiplication by 𝐇 . This follows from the fact that 𝐇  

is orthogonal, and from the properties of linear transformations of MVN variables 

in Eq. (2.7):  

 
 𝐸[𝐱𝐱 ] = 𝐇 𝐈 𝐇 = 𝐈  (3.58) 

 

Even though the algorithm can be stopped after 𝑛 components have been 

found, it is usually more practical to set 𝑛 = 𝑑 and find the whole set of 

components that span ℝ . With a little extra bookkeeping, one can also return 

the SNR of each component. It is possible, then, to do some analysis before 

deciding how many components to use. For instance, one could elect to use only 

components that have an SNR above some threshold (like zero). Having all the 

components available also makes it easier to run tests using different numbers of 

components on the same test data. The function findBasis listed in the 

Appendix is an implementation of the above algorithm that finds the whole set 

of basis vectors and also returns the SNR of each component.  
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Returning to the Simulated Example 

At the beginning of this section on dimensionality reduction, we examined 

the feature space of an ARMA(11,4) model fitted to simulated ambient noise. 

We saw that the SNR of the different features varied a lot, with the first feature 

𝜎 being the best for discriminating between the two classes. 

Now, if the general algorithm for finding orthogonal components is applied 

to the data from that example, the results are as shown in Figures 3.27 and 3.28. 

There we clearly see how the components are ordered according to their SNR. 

Interestingly, there are now two components with a quite high SNR. In the next 

chapter, examples will be given where the two signals have less in common and 

even more components have a positive SNR. 

Recall from Section 3.4.2 that validation of the ARMA(11,4) based detector 

produced a poor fit with the chi-squared distribution, resulting in unstable p-

values under the null hypothesis. When we test this detector on the 118-dB 

sinusoid, the result is as shown in Figure 3.29. Even the lack of fit produces 

several false alarms, the detector clearly reacts to the introduction of the loud 

sinusoid.  

Now, if we instead build a detector using only the first component, i.e. 

Fisher’s linear discriminant, the GOF actually goes up to 0.39. When this 

detector is tested on the same file, the result is as shown in Figure 3.30. Two 

things are evident from the figure. Firstly, although there are still a few false 

alarms, the p-values are more well-behaved under the null hypothesis than before 

the mapping. Secondly, the p-values remain consistently low after the sinusoid is 

introduced. 

If we decided to use two instead of one component, the result is as shown in 

Figure 3.31. This appears to increase the variance of the p-values somewhat but 

they are still consistently low for the second half of the signal. It is not clear from 

this example that adding another component has any benefit. In fact, it happens 

to produce one more false alarm than for just one component. 

I have not conducted any systematic experiments to determine whether 

adding more components is beneficial in general. One way to test this, would be 

to introduce several examples of the same type of anomaly, e.g. different types 

of ship, in the training stage, and see if using more than one component in the 

test stage would improve the detectors ability on unseen anomalies of the same 

kind. 
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In the above example, the sinusoid used in detector training is the same as 

the one used to test the detector, but the ambient noise is generated from 

independent simulations of the same ARMA process. Nevertheless, the test does 

not show how the detector would react to other types of anomalies, such as 

sinusoids at different amplitudes. In the next chapter, we will see some examples 

of this when the detectors are tested on real hydrophone signals. Before 

proceeding, we will briefly return to the detector design procedure from Section 

3.2 to see how supervised reduction of dimensionality can be incorporated there.     

 

 

 

 

 

 

Figure 3.27: The feature space of the ARMA(11,4) example after the mapping has been 
applied. 

Figure 3.28: The SNR of all the components after the mapping has been applied. 
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Figure 3.29: p-values calculated from Mahalanobis distances in the original feature space of 
the ARMA(11,4) model. The low GOF, as observed in Figure 3.12, causes unstable p-values 
under the null hypothesis. 

Figure 3.30: p-values calculated from distances along the first component, FLD. Training with 
this detector produced a GOF p-value of 0.39.  
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3.6 Supervised Detection 

The dimensionality reduction algorithm in the previous section is a way of 

allowing the model of the normal state to be made more sensitive to certain types 

of anomalies. If examples of anomalies of specific interest are available, they can 

be fed to the reduction algorithm which then learns a linear transformation that 

makes the detector respond more to those types of anomalies. Whether there is 

any real benefit to using more components than just Fisher’s linear discriminant 

in this setting, is unclear. Further work is necessary to determine the usefulness 

of the general algorithm. 

Nevertheless, supervised reduction of dimensionality can be incorporated in 

the detector design approach outlined in Section 3.2. As shown in Figures 3.32 

and 3.33, the algorithm for finding the orthogonal components is now part of the 

training procedure. The transformation matrix obtained can then be stored and 

used to map new feature vectors.    

Figure 3.31: p-values calculated from Mahalanobis distances in the two-dimensional space 
spanned by the two components with the highest SNR. Training of this detector produced a 
GOF p-value of 0.43. 
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Figure 3.32: Overview of the detector training stage and test stage using the successive 
estimation method and supervised dimensionality reduction. 
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Figure 3.33: Overview of the detector training stage and test stage using the prediction 
method and supervised dimensionality reduction. 
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4 Experiments on Hydrophone Data 

On the following pages, the methods described in the previous chapter will 

be tested on a data set provided by FFI. The data set consists of an 83 seconds 

long audio file made up of four different signals following each other. All the 

signals are 22.05 kHz hydrophone recordings from LoVe. The first signal is 

ambient noise recorded at 3 m/s wind speed. The second consists of the 10 

seconds of 18 m/s ambient noise modeled in Section 3.3, plus five more seconds 

or so of the same noise. The third is ship noise, and the fourth is ambient noise 

at unknown wind speed interspersed with whale sounds. 

The two detection methods will be tested in both their unsupervised and 

supervised form as laid out in Sections 3.2 and 3.6. The data that will be used 

to train the detectors is the 10 first seconds of the 18 m/s wind noise signal, as 

in Section 3.3. The remainder of the signal has been reserved for model validation.  

In the supervised case, the ship noise will be taken as the example of 

anomalous data. This signal is around 13 seconds long. Only the first half will be 

used for training the detector, so that when we go through the test file, the 

second part of that signal will consist of unseen data.  

The segment length chosen for most of the experiments is 0.04 seconds, 

meaning that each data segment consists of only 882 samples. This is probably 

a much higher temporal resolution than what is necessary in any practical 

situation for detecting ships and other sound sources in the ocean. In such a 

situation, one might prefer to only update the p-values once every second or so. 

The segment length has been chosen this way because of the limited amount 

of data available for the experiments. Since successive estimation requires 

estimates of the mean and covariance matrix for the parameter vector, we need 

to obtain a fair number of samples of this vector during training. Checking the 

goodness of fit of the test statistic also requires more than just a few samples of 

the statistic.  

In order to create more challenging situations for the detectors, simulated 

ambient noise of varying amplitudes will be added to the training data and the 

test data in some of the experiments. The model used for simulation is the one 

given in (3.11). The amplitude of the noise will be given in relation to the 18 m/s 

wind noise, so that a noise gain of K dB means that the added noise increases 

the total power of that signal by K dB.  

The noise added to the training data and the test data will come from 

independent simulations of the ARMA model. But the random number generator 

is initialized in the same way for each experiment so that the added noise for 

different gains are scaled versions of the same simulated signals. 
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4.1 No Added Noise 

4.1.1 Energy Detector 

We start by running an energy detector on the unaltered test file. As shown 

in Figure 4.1, even though the detector is sensitive to the anomalies, it clearly 

varies a lot even in the areas where we are assuming that the signal is stationary. 

In Section 3.4.1 we saw that differencing the signal before computing mean square 

values produced more stable values. When the same is done here, the result is as 

shown in Figure 4.2. Clearly, the differenced version of the detector is much more 

stable. It will therefore be used for comparing the energy detector with the 

ARMA-based methods in the next experiment. 

 

 

 

 

 

 

Figure 4.1: Energy detector tested on the sample file. 
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4.1.2 Successive Estimation 

Since the simulation experiments showed that successive estimation produced 

a more well-behaved test statistic with a pure AR model than a full ARMA 

model, an AR(7) model will also be used to test the method on the real data set. 

Figure 4.3 shows that the p-values produced by the method are extremely 

low for the ship noise and the whale sounds. Interestingly, the p-values for the 

other ambient noise signal at 3 m/s wind speed are also extremely low. This 

should perhaps not come as a surprise, since the detector is trained for very 

different weather conditions. From the point of view of the detector, another 

ambient noise signal may be just as “different” as a ship noise signal if it fits 

poorly with the trained model.     

Figure 4.2: Energy detector tested on a differenced version of the sample file. 
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When an AR(20) model is fitted using successive estimation and we run the 

algorithm in 3.5.5, it produces seven orthogonal directions in the feature space 

that have a positive SNR. The effect of projecting feature vectors into the space 

spanned by the six first of these is shown in Figure 4.5. While the ship noise has 

approximately the same p-values as before, the p-values for the other signals are 

not as extreme as in the unsupervised case. This shows that the detector has 

been made more sensitive to the ship noise relative to the other signals. The 

effect becomes even more evident if we project onto only the first component, i.e. 

Fisher’s linear discriminant, as shown in Figure 4.6. 

 

 

 

 

 

 

Figure 4.3: p-values for the successive estimation method using an AR(7) model.  

Figure 4.4: Orthogonal components obtained for the successive estimation method using an 
AR(20) model. 
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Figure 4.5: p-values for the successive estimation method after projecting onto the first six 
components. 

Figure 4.6: p-values for the successive estimation method after projecting onto only one 
component. 
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4.1.3 Prediction 

As with successive estimation, the prediction method also produces extremely 

low p-values for both the other ambient noise signal and the whale sounds (Figure 

4.7). The dimension of the feature space is 20 here, which is the number of 

autocorrelation lags being tested. By running the same algorithm as above, we 

can reduce the dimension from 20 to six by selecting the six first components 

shown in Figure 4.8. The result of projecting into this six-dimensional subspace 

is shown in Figure 4.9. Projecting onto only the first component has been done 

in Figure 4.10. As in the previous experiment, the detector becomes more 

sensitive to the ship noise relative to the 3 m/s wind noise and the whale sounds 

when supervision is used, and this is especially evident when using just Fisher’s 
linear discriminant. 

 

 

 

 

 

Figure 4.7: p-values for the prediction method using 20 autocorrelation lags.  

Figure 4.8: Orthogonal components obtained for the prediction method with 20 
autocorrelation lags. 
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Figure 4.9: p-values for the prediction method after projecting onto the first six components. 

Figure 4.10: p-values for the prediction method after projecting onto only one component. 
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4.2 Added Noise 

It is evident from the previous experiments that the signals in the test file 

are so different from each other that both the energy detector (with differencing) 

and the two ARMA methods have no problems distinguishing between them. In 

order to create a situation where the signals are more similar, a substantial 

amount of simulated ambient noise will now be added. 

4.2.1 Energy Detector 

Figure 4.11 shows how the energy detector performs when the noise gain is 

set to 12 dB and mean square values are calculated from the differenced signal. 

The detector still reacts to some of the anomalies, but it is hard to judge from 

the plot how well it could work in practice. 

When experiments have been conducted with different amounts of added 

noise, the energy detector has been observed to gradually deteriorate from what 

is shown in Figure 4.2 to what is shown in the Figure 4.11. Since we don’t have 

a distribution model for the mean square values, we cannot convert them to p-

values and draw a significance level threshold like for the ARMA-based methods. 

Consequently, it is hard to say exactly when the detector becomes unusable, or 

to conclusively say that it is better or worse than some other method. Still, a 

noise gain of about 12 dB in this setting seems to be too much for the energy 

detector to reliably handle.   

 

 

 

 

Figure 4.11: Energy detector with differencing tested at 12 dB noise gain. 
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4.2.2 Successive Estimation 

When an AR(7) model is fitted to the training data with added noise using 

successive estimation, the performance of the detector on the test file is as shown 

in Figure 4.12. Here, most of the whale sounds are detected at the chosen 

significance level, but the ship noise is not. Nor is the ship noise visible in the 

spectrogram. The reader may need to consult one of the figures where no noise 

has been added to see where the various anomalies occur. 

Now, if we fit an AR(20) model and try to reduce the dimension, it turns out 

that only the first component has a positive SNR. Projecting onto this component 

causes the ship to be detected, although only for the first part of the ship noise 

signal, not the unseen part (Figure 4.14). So, even though the whale sounds can 

still be detected, successive estimation struggles with the ship noise in this 

experiment. 

 

 

 

 

Figure 4.12: p-values for the successive estimation method using an AR(7) model. 
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4.2.3 Prediction 

The prediction method shows better performance in the unsupervised case 

(Figure 4.15), although some of the whale sounds at the end are not detected. 

As in the case of successive estimation, only one useful component is found from 

reducing the dimension. When the autocorrelation vectors are projected onto this 

component, the result is as shown in Figure 4.17. The detector is now more 

sensitive to the ship noise. Incidentally, one more whale sound is also detected 

after the projection.   

 

Figure 4.13: p-values for the successive estimation method after projecting onto the first 
component. 
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Figure 4.14: p-values for the prediction method using 20 autocorrelation lags. 

Figure 4.15: p-values for the prediction method after projecting onto the first component. 
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4.3 Adjusting Parameters 

So far, we have kept the segment length constant at 0.04 seconds for all the 

methods, and the number of autocorrelation lags for the prediction method has 

been 20. As prediction seems to be the most promising of the methods, this 

section will briefly demonstrate the effect of adjusting the parameters of the 

prediction method. 

In Figure 4.18 the ambient noise gain has been increased to 21 dB. The p-

values obtained using the same settings as in the previous experiments appear to 

respond very little to the whale sounds, which are now almost completely buried 

in simulated noise. 

When the segment length is increased to 0.4 seconds, however, Figure 4.19 

shows that two of the whale sounds are detected. These two are also the ones 

that are the most visible in the spectrogram. 

Since we now have more data for each estimated autocorrelation vector, we 

can increase the number lags as well. Figure 4.20 shows what happens when this 

value is set to 300. Apparently, one more whale sound is now detected.  

So, in this example at least, increasing the segment length and the number 

of lags were both helpful in detecting faint sound sources buried in noise. The 

appropriate values of the two parameters will probably depend on what kind of 

anomalies we want to detect. 

This experiment demonstrates a major advantage of the prediction method 

over the successive estimation method. The fact that the MVN parameters of the 

autocorrelation vector are known a priori, means that we can increase both the 

amount of data used to estimate the vector and the number of elements in the 

vector – without needing any more data to get the MVN parameters.  

If we wanted to do successive estimation with 10 times longer segments, we 

would need 10 times as much raw data to obtain the same number of samples 

for MVN parameter estimation. And the successive estimation analog to using 

300 lags is fitting AR(300) models to each segment and attempting to estimate 

the covariance matrix of the resulting parameter vector, which hardly seems 

realistic.  



 

 

 83

 

 

 

 

 

 

 

 

Figure 4.16: p-values for the prediction method using 20 autocorrelation lags and a segment 
length of 0.04 seconds. 

Figure 4.17: p-values for the prediction method using 20 autocorrelation lags and a segment 
length of 0.4 seconds. 



 

 

 84

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: p-values for the prediction method using 300 autocorrelation lags and a segment 
length of 0.4 seconds. 
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5 Conclusion and Further Work 

5.1 Conclusion 

Tests on simulated and real data sets have indicated that the selected ARMA 

methods are better suited for detecting anomalies in underwater ambient noise 

than a simple energy detector. It was pointed out, however, that precise 

comparison with this detector cannot be made without having a distribution 

model for the mean square values the detector is based on. An attempt at 

building such a model was not made. The energy detector itself was found to 

produce significantly more stable values when differencing was applied to the 

signal before calculating mean square values. But even then, the ARMA methods 

showed better performance. 

Of the two ARMA methods, the prediction method was found to be better 

than the successive estimation method in three ways. Firstly, its test statistic 

tended to fit better with the chi-squared distribution under the null hypothesis 

of ambient noise. This produced more reliable p-values and fewer false alarms. 

Secondly, it was able to detect fainter anomalies than the successive estimation 

method. Thirdly, our a priori knowledge of the MVN parameters of the sample 

autocorrelation vector meant that we could freely increase the length of the data 

segments without needing more data for training. It was demonstrated that both 

increasing the segment length and the degrees of freedom, i.e. the number of 

autocorrelation lags, were potential ways of improving detector performance for 

the prediction method. 

Experiments with supervised dimensionality reduction indicated that this 

could be a useful way of building detectors that are more sensitive to certain 

kinds of anomalies without having to look for specific acoustic signatures. The 

proposed generalization of Fisher’s linear discriminant allowed us to freely choose 

the subspace dimension and hence the degrees of freedom of the resulting test 

statistic, but it was unclear if this offered any practical benefit over just using 

FLD on its own. 

5.2 Further Work 

When the test statistic of the successive estimation method was observed to 

fit poorly with the chi-squared distribution, we had to resort to a fairly low-order 

AR model to get reliable p-values. This may have caused the detector to be less 

sensitive to changes in the process than it could otherwise have been using a full 

ARMA model. It would therefore be interesting to examine some other non-

iterative ARMA estimation methods and see if any of them produced a test 

statistic with a better fit. For instance, the algorithm proposed by Hernandes et 

al. (2008) appears to be more accurate than the two-stage least squares method 

used here, which could perhaps affect the distribution of the test statistic in a 

positive way.  
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Even though the Ljung-Box test was found to work well for anomaly 

detection, it is by no means the only test that can be performed on the prediction 

errors of an ARMA model. As a continuation of the work done here, it could be 

useful to explore some other possible hypothesis tests and compare their 

performance. For instance, the Breusch-Godfrey test is another way of testing 

for serial correlation that could potentially be used instead of the Ljung-Box test 

(Breusch, 1978). 

Since first order differencing was shown to improve the energy detector, it 

would be interesting to see if this could improve the ARMA-based methods as 

well. Some initial experiments have indicated that the performance is roughly 

the same, but I have not tested this systematically. 

The tests done on the dimensionality reduction algorithm were not sufficient 

to determine if it offered any improvement over FLD. To properly test this, we 

would need to feed the algorithm examples of data from a general class of 

anomalies, such as ships or submarines, and then test detector performance on 

unseen data from the same class with one or more components. If it turns out 

that adding more components is beneficial, then the algorithm could perhaps be 

useful for detecting anomalies in other types of data as well, such as images. 

A limitation of all the methods discussed here is that they need to be trained 

for certain conditions such as wind speeds, and will not work well if those 

conditions change too much. This problem can either be tackled by fitting several 

models for different weather conditions and allowing the detector to switch 

between models, or we could try to build a detector that continuously updates 

its model to the changing conditions. A challenge in this regard would be to 

distinguish between true anomalies and natural changes in ambient noise, so that 

only the right kind of changes are incorporated into the updated model.  
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List of Abbreviations 

 

ACF autocorrelation function 

ACV autocorrelation vector 

AR  autoregressive 

ARIMA autoregressive integrated moving average 

ARMA autoregressive moving average 

BIC  Bayesian information criterion 

CDF cumulative density function 

DOF degrees of freedom 

DTFT discrete-time Fourier transform 

FFI  Forsvarets forskningsinstitutt,  

Norwegian Defence Research Establishment 

FLD Fisher’s linear discriminant 

GOF goodness of fit 

GUI graphical user interface  

LB  Ljung-Box 

LDA linear discriminant analysis 

LoVe Lofoten-Vesterålen Ocean Observatory 

LS  least squares 

MA  moving average 

ML  maximum likelihood 

MVN multivariate normal 

PACF partial autocorrelation function 

PCA principal component analysis 

PDF probability density function 

PEM prediction error method 

PSD power spectral density 

SNR signal-to-noise ratio 

SVD singular value decomposition 

WSS wide sense stationary 
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Appendix: MATLAB Code 

On the following pages, all the functions referred to in the thesis are listed. 

Most of the code for the thesis has been written so that it can be accessed from 

the user interface shown in Figure A.1. On the left side are settings related to 

the detector itself; on the right side are settings for graphical representations. 

When a detector has been trained and tested with the desired settings and input 

data, it can be saved as a MATLAB object to be retrieved later on or adapted 

to run on another system.  

Much of the code is found inside the class definition file for the detector 

object, and the settings on the left side of the GUI are properties of this object. 

The class definition file itself will not be listed here, as it mostly deals with 

organizing the data and moving matrices around between different functions, as 

outlined in Sections 3.2 and 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Graphical user interface for the MATLAB program used to conduct the 
experiments in this thesis. 
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ARMA Estimation 

 
function [ a, b, s ] = ML_ARMA( y, p, q ) 

% Computes the unconditional maximum likelihood estimate of the 

% coefficients a and b, and the input noise standard deviation s, in the 

% ARMA(p,q) model of the signal y. Requires the Econometrics Toolbox. 

 

        mdl = arima( p, 0, q ); 

        estMdl = estimate( mdl, y, 'print', false ); 

 

        a = cell2mat(estMdl.AR)'; 

        b = cell2mat(estMdl.MA)'; 

        s = sqrt(estMdl.Variance); 

        a = [1;-a]; 

        b = [1;b]; 

 

end 

 
function [ a, b, s ] = LS_AR( y, p, method ) 

% Computes the least squares estimate of the coefficients a and the input 

% noise standard deviation s in the AR(p) model of the signal y. The method 

% used is either the autocorrelation method or the covariance method. 

 

    y = y(:); 

    N = length(y); 

 

    switch method 

        case 'acorr' 

            Y = convmtx(y,p+1); 

        case 'covar' 

            Y = convmtx(y,p+1); 

            Y = Y(p+1:N,:); 

        otherwise 

            disp('Method not recognized'); 

    end 

 

        yp = Y(:,1); 

        X = Y(:,2:p+1); 

        theta = -(X\yp); 

        a = [1;theta]; 

        b = 1; 

        err = X*theta + yp; 

        s = sqrt(mean(err.^2)); 

 

end 
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function [ a, b, s ] = LS_ARMA( y, p, q ) 

% Computes the two-stage least squares estimate of the coefficients a and 

% b, and the input noise standard deviation s, of the ARMA(p,q) model of 

% the signal y. 

 

    y = y(:); 

    N = length(y); 

 

    if q == 0 

        [a, b, s] = LS_AR( y, p, 'covar' ); 

    else 

        K = floor(N/10); 

        if K > 20 

            K = 20; 

        end 

 

        aK = LS_AR( y, K, 'covar' ); 

        e_hat = filter(aK,1,y); 

        m = max(p,q) + K; 

 

        Y = convmtx(y,p+1); 

        Y = Y(m+1:N,:); 

        E = convmtx(-e_hat,q+1); 

        E = E(m+1:N,:); 

 

        z = Y(:,1); 

        Y = Y(:,2:end); 

        E = E(:,2:end); 

        Z = [Y E]; 

        theta = -(Z\z); 

        e = Z*theta + z; 

        s_sq = (e'*e)/(N-m); 

        s = sqrt(s_sq); 

        a = [1;theta(1:p)]; 

        b = [1;theta(p+1:end)]; 

 

    end 

 

end 
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function [ a, b, s ] = PEM_ARMA( y, p, q ) 

% Computes the prediction error method estimate of the coefficients a and 

% b, and the input noise standard deviation s, in the ARMA(p,q) model of the 

% signal y. Requires the System Identification Toolbox. 

 

    data = iddata( y, [], 1 ); 

    sys = armax( data, [p q] ); 

 

    a = sys.A'; 

    s = sqrt(sys.NoiseVariance); 

    b = sys.C'; 

 

end 

 

Order Selection 

 
function [ p, q, BICmin ] = BICorder( y, p_max, q_max ) 

% Adapted from Mathworks example: 

% https://se.mathworks.com/help/econ/choose-arma-lags.html?s_tid=gn_loc_drop 

% [Acessed 15 Jan. 2017]. 

% Computes the Bayesian information criterion for all combinations of ARMA 

% model orders from 1 to p_max and 1 to q_max. Then selects the model 

% orders for which the criterion is minimized. Requires the Econometric 

% Toolbox and the Parallel Computing Toolbox. To remove parallelization, 

% exchange "parfor" in line 15 with "for". 

 

    N = length(y); 

    LOGL = zeros(p_max,q_max); 

    PQ = zeros(p_max,q_max); 

 

    parfor p = 1 : p_max 

        for q = 1 : q_max 

            mdl = arima( p, 0, q ); 

            [ ~, ~, logL ] = estimate( mdl, y, 'print', false ); 

            LOGL(p,q) = logL; 

            PQ(p,q) = p+q; 

        end 

    end 

 

    LOGL = reshape(LOGL,p_max*q_max,1); 

    PQ = reshape(PQ,p_max*q_max,1); 

 

    [ ~, bic ] = aicbic( LOGL, PQ, N ); 

 

    BIC = reshape(bic,p_max,q_max); 

    [BICmin,I] = min(BIC(:)); 

    [p,q] = ind2sub(size(BIC),I); 

 

end 
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Dimensionality Reduction 

 
function [ H, m, D, Vout, W, Ws, SNR ] = findBasis( PHI, PHIs, method, n ) 

% Finds a set of orthogonal basis vectors that span R^d, where d is the 

% number of columns in PHI and PHIs. The basis vectors are orderered 

% according to how well the points in PHI and PHIs are separated when 

% projected onto the vector. The rows of PHI are assumed to be multivariate 

% normal. 

% 

% Output arguments 

% H: An othogonal matrix containing the basis vectors along its columns 

% m: The mean vector of the points in PHI 

% D: A diagonal matrix used for scaling variances 

% Vout: An orthogonal matrix used for whitening along with D and m 

% W: The whitened version of the input matrix PHI 

% Ws: PHIs represented in the coordinate system of W 

% SNR: The SNR of each basis vector 

 

    [N,d] = size(PHI); 

    Ns = size(PHIs,1); 

 

    if strcmp( method, 'prediction' ) 

 

        V = eye(d); 

        D = sqrt( rCovMat( n, d ) ); 

        m = zeros(1,d); 

        M = zeros(N,d); 

        Ms = zeros(Ns,d); 

 

    else 

 

        m = mean(PHI); 

        M = repmat( m, [N 1] ); 

        Ms = repmat( m, [Ns 1] ); 

 

        [ ~, S, V ] = svd( PHI - M, 'econ' ); 

        D = S/sqrt(N-1); 

 

    end 

 

    W = (PHI-M)*V/D; 

    Ws = (PHIs-Ms)*V/D; 

 

    ms = mean(Ws)'; 

    I = eye(d); 

    SIGMA = cov(Ws); 

 

    hi = (I+SIGMA)\ms; 

    hprev = hi/norm(hi); 

 

    Hprev = []; 
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    Vout = V; 

    SNR = zeros(d,1); 

 

    df = hprev; 

    SNR(1) = ((df'*ms)^2)/(df'*(I+SIGMA)*df); 

 

    for i = 2 : d 

        Hi = [Hprev hprev]; 

        PA = eye(d) - Hi*Hi'; 

        WA = W*PA; 

        WAs = Ws*PA; 

        [~,~,V] = svd(WA,'econ'); 

        Vr = V(:,1:d-i+1); 

        PSIs = WAs*Vr; 

        ms = mean(PSIs)'; 

        I = eye(d-i+1); 

        SIGMA = cov(PSIs); 

        df = (I+SIGMA)\ms; 

        SNR(i) = ((df'*ms)^2)/(df'*(I+SIGMA)*df); 

        hi = V*[df;zeros(i-1,1)]; 

        hprev = hi/norm(hi); 

        Hprev = Hi; 

    end 

 

    H = [Hprev hprev]; 

    SNR = 10*log10(SNR); 

    W = W*H; 

    Ws = Ws*H; 

 

end 

 

 
function D = rCovMat( N, L ) 

% Forms the covariance matrix D of the normalized sample autocorrelation 

% vectors, as computed by the MATLAB function autocorr. 

% N is the number of samples used by autocorr. L is the number of lags. 

 

    k = (1:L)'; 

    a = N - k; 

    D = diag(a)/(N*(N+2)); 

 

end 
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