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Abstract. Nuclear level densities and γ-ray strength functions of 56,57Fe have been

extracted from proton-γ coincidences. The level densities are compared to previous

experimental data, both from particle-evaporation spectra and 3He-induced reactions.

The low-energy enhancement in the γ-ray strength functions, first discovered in

(3He,3He′γ)57Fe and (3He,αγ)56Fe data, is confirmed with the experiments reported

here. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole

nature.

The high statistics and the excellent energy resolution of the large-volume

LaBr3(Ce) detectors allowed for a thorough analysis of the γ-ray strength function

as a function of excitation energy. Strong fluctuations were found for the direct decay

to the ground band, while the decay into the quasi-continuum shows a more uniform

behavior. There is no indication of any significant excitation-energy dependence in the

γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
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1. Introduction

One of the long-standing experimental and theoretical challenges within nuclear physics

is the determination of the nucleus’ available quantum levels and the decay properties

of these levels in the excitation-energy region between the ground state and up to

the particle threshold(s). In this intermediate excitation-energy region, often called

the quasicontinuum, the nuclear level density (NLD) and the average, reduced γ-decay

probability, i.e. the γ-strength function (γSF), shed light on the dynamic behavior of the

nucleus. Apart from providing information on basic nuclear properties, these quantities

are also indispensable input for calculations of, e.g., neutron-capture cross sections.

These cross sections are of great importance for applications such as the astrophysical

heavy-element nucleosynthesis [1, 2] and modeling of next-generation nuclear power

plants [3, 4].

Amongst a handful of experimental techniques, the Oslo method [5] has been

established as one of the promising approaches to obtain experimental information on

the NLD and γSF. The advantage of the Oslo method compared to other techniques

is that both these quantities can be extracted from one and the same experiment,

utilizing typically a charged-particle reaction to record particle-γ coincidences, in which

the structural shape of the NLD and the γSF can be determined. By measuring the

energy of the outgoing charged particle, the initial excitation energy of the residual

nucleus is determined. The γ rays de-exciting this initial excitation energy are recorded

in coincidence, thus obtaining γ spectra as function of initial excitation-energy.

In 2004, an unexpected enhancement of the γSF for low transition energies (Eγ . 3

MeV) was discovered in the iron isotopes 56,57Fe [6]. This feature was not predicted

by any theoretically derived γSFs. In the following years, this upbend was found

in many medium-mass nuclei, including 43−45Sc [7, 8], 60Ni [9], 73,74Ge [10], and Mo

isotopes [11, 12, 13]. To date, the heaviest nuclei where the upbend has been seen are
138,139La [14] and 151,153Sm [15]. The upbend was experimentally shown to be of dipole

nature in 56Fe [16]. Moreover, it has been demonstrated [17] that such a low-energy

enhancement in the γSF could significantly increase radiative neutron-capture rates of

relevance for the r-process – if found to be present in very neutron-rich nuclei.

In 2012, the upbend was independently confirmed in 95Mo [12] using a different

technique. This triggered theoretical investigations of the origin of this phenomenon.

Within the thermal-continuum quasiparticle random-phase approximation (TCQRPA),

the upbend was explained as due to E1 transitions caused by thermal single-

quasiparticle excitations in the continuum [18], with its strength depending on the

nuclear temperature. On the other hand, shell-model calculations [19, 20] show a

strong increase in B(M1) strength for low-energy M1 transitions. At present, 60Ni

is the only case where experimental data favor a magnetic character of the upbend [9].

More experimental information is needed in order to determine whether the upbend is

dominantly of magnetic or electric character, or a mixture of both.

In this work, we present NLDs and γSFs of 56,57Fe extracted from (p,p′γ)
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coincidences. We analyze systematic errors in the normalization procedure and compare

our results to available data in the literature. For the first time, we present angular

distributions of the upbend in 57Fe, as well as γSFs as function of excitation energy to

investigate the so-called generalized Brink-Axel hypothesis for 56,57Fe. This hypothesis

has up to now only been validated for the heavy nucleus 238Np [21].

This article is organized as follows. In section 2, we give experimental details and

the main steps of the Oslo-method analysis. In section 3, the NLDs and γSFs are

shown and the normalization uncertainties are discussed. Further, in section 4 angular

distributions are presented for 57Fe, while section 5 deals with γSFs as function of

excitation energy and implications for the generalized Brink-Axel hypothesis. Finally,

a summary and outlook are given in section 6.

2. Experimental details and data analysis

The experiments were performed at the Oslo Cyclotron Laboratory (OCL). A 16-MeV

proton beam with intensity of ≈ 0.5 nA impinginged on self-supporting targets of 99.9%

enriched 56Fe and 92.4% enriched 57Fe. Both targets had mass thickness of ≈ 2 mg/cm2.

Accumulating times were ≈ 85h and ≈ 92h for 56,57Fe, respectively.

The charged ejectiles were measured with the Silicon Ring particle-detector system

(SiRi) [22] and the γ rays with the CACTUS array [23]. The SiRi system consists of

eight ∆E − E telescopes. Each telescope is composed of a 130-µm thick front detector

segmented into eight strips (angular resolution of ∆θ ' 2◦), and a 1550-µm thick back

detector. In total, SiRi has 64 individual detectors and a solid-angle coverage of ≈ 6%.

For these experiments, SiRi was placed in forward angles with respect to the beam

direction, covering 40− 54◦. From the measured energy of the ejectiles and the reaction

kinematics, the excitation energy of the residual nucleus is deduced.

In this experiment, the CACTUS array contained 22 collimated 5 in. × 5 in.

NaI(Tl) detectors and six collimated 3.5 in. × 8 in. LaBr3(Ce) detectors from the

Milan HECTOR+ array [24, 25]. The NaI detectors were placed on the CACTUS

frame with six different angles θ with respect to the beam direction (37.4, 63.4, 79.3,

100.7, 116.6, and 142.6 degrees), while the LaBr3 crystals covered four angles (63.4,

79.3, 100.7, and 116.6 degrees). The γ-energy thresholds were ≈ 400 keV and ≈ 800

keV for the NaI and LaBr3 detectors, respectively. Particle-γ coincidences were recorded

event-by-event, with the overlap of the ∆E and E detectors of SiRi as mastergate for the

analog electronics. In total, after background subtraction, about 65 million coincidences

were obtained for the NaI detectors and about 12 million coincidences for the LaBr3
detectors with the 56Fe target. Correspondingly, for 57Fe, about 15 million and 2.1

million coincidences were recorded for the NaI and LaBr3 detectors, respectively.

In figure 1, the proton spectrum of SiRi in coincidence with γ rays from the present

experiment is compared to the α spectrum from the previous experiment reported in

Ref. [6]. The significant improvement in energy resolution is clear; the proton spectra

have a full width at half maximum (FWHM) of ≈ 90 keV compared to the α spectra
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where FWHM ≈ 500 keV.

The proton-γ coincidence matrices for the NaI and LaBr3 detectors are displayed in

figure 2. The superior energy resolution for the LaBr3 spectra relative to the NaI ones

is evident, as well as diagonals for which the excitation energy E equals the γ energy

Eγ corresponding to decay to the ground state. Other diagonals are also clearly visible,

for example the direct decay to the first-excited 2+ state in 56Fe.

It is also very interesting to note the ”triangles” in the 57Fe matrix where the γ

intensity suddenly drops, see for example at Eγ ≈ E ≈ 8.5 MeV in figure 2c,d. One

would naively think that the γ intensity would be significantly reduced as soon as the

neutron separation energy Sn is reached; however, this is well above Sn = 7.646 MeV.

This feature is explained by considering the average spin 〈J〉 populated at high excitation

energies. From γ transitions in coincindence with protons, we identify the decay from

the 6+ level at E = 3.39 MeV in 56Fe as well as other levels with spins 2, 3, 4, 5 [16].

Levels with these spins will be hindered in decaying through s-wave neutron emission

to the 0+ ground state in 56Fe. This hindrance is studied in detail for 95Mo and applied

in a novel technique to determine spins in [26].

In order to obtain the correct γ-energy distribution for each excitation-energy

bin, the signals from the NaI and LaBr3 detectors must be corrected for the detector

response. We applied the unfolding technique described in [27], which is an iterative

procedure using a strong smoothing of the Compton part of the spectrum. In order to

construct response functions for the NaI and LaBr3 detectors, we used in-beam measured
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Figure 1. (Color online) Proton spectra (black histogram, this work) and α spectra [6]

(thick cyan line, scaled with a factor of 70) in coincidence with γ rays measured with

the CACTUS NaI detectors for 56Fe. Energy bins are 31 keV/channel for protons and

123 keV/channel for αs. The first excited levels are marked with their spin/parity.
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Figure 2. (Color online) γ-ray energy versus excitation energy before unfolding for

(a) 56Fe, NaI detectors; (b) 56Fe, LaBr3 detectors; (c) 57Fe, NaI detectors; (d) 57Fe,

LaBr3 detectors. Energy bins are 14 keV/channel.

transitions from 56Fe, 28Si, 13C, and 16O [28]. Moreover, we made use of a subtraction

technique [29] to extract the distribution of primary γ rays for each excitation-energy

bin. This distribution contains information on the NLD and the γSF as deduced from

Fermi’s Golden Rule [30, 31]:

λ =
2π

~
| 〈f |H ′|i〉 |2ρf , (1)

where λ is the decay rate between initial state i and final state f , H ′ is the transition

operator and ρf is the density of final states. Similarly, the distribution of primary γ rays

as function of E depends on the level density at Ef = E − Eγ and the γ-transmission

coefficient T for the γ transition with energy Eγ. The γ-transmission coefficient is

directly proportional to the γSF. Our ansatz is [5]:

P (Eγ, E) ∝ ρ(Ef )T (Eγ), (2)

where P (Eγ, E) is the matrix of primary γ rays, representing relative intensities or

branching ratios for a given transition energy Eγ at a given initial excitation energy E.
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Figure 3. (Color online) Distribution of primary γ rays energy versus excitation

energy for (a) 56Fe, NaI detectors; (b) 56Fe, LaBr3 detectors; (c) 57Fe, NaI detectors;

(d) 57Fe, LaBr3 detectors. Energy bins are 124 keV/channel for 56Fe and 120

keV/channel for 57Fe. Note the different energy scales for the lower and upper panels.

The primary γ-ray matrices P (Eγ, E) for 56,57Fe are shown in figure 3. They are

normalized for each excitation-energy bin so that
∑

Eγ
P (Eγ, E) = 1. This means that

the probability for γ decay from a given bin is 1, and that the intensity of a given γ-ray

energy reflects the branching ratio for that particular transition energy.

These matrices are used as input for the extraction of the NLD and γSF for the

four data sets. The expression in equation 2 is valid for statistical decay, i.e. where

the decay is independent of the formation of the compound state [34]. This is fulfilled

at rather high excitation energies where the initial NLD is high, typically above ≈ 2∆

where the pair-gap parameter ∆ ≈ 12A−1/2 [34]. Note that T is a function only of Eγ
and not E or Ef , in accordance with the generalized Brink-Axel hypothesis [32, 33].

This will be discussed in detail in section 5.

The functional form of the NLD and γSF is determined through a least-χ2 fit to the

P (Eγ, E) matrices as described in [5]. The 3D landscapes as shown in figure 3 are used

simultaneously in the fit. The sum of all primary transitions for each E bin is normalized

to unity. As the P (Eγ, E) matrices contain many more data points (”pixels”) than the

free parameters (the vector elements of ρ(Ef ) and T (Eγ)), the solution is uniquely
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determined and the fit routine converges fast, typically within 10-20 iterations.

Some considerations need to be made before extracting the NLD and γSF from

the data. First, a low-energy limit for the excitation energy is applied to avoid the

discrete region at low E, for which the condition of a compound-nucleus decay is

highly questionable. Further, an upper limit Emax must be given, which typically

corresponds to Sn, as neutrons are not measured or discriminated in the present

experimental setup. Finally, a low-energy limit on the γ energy, Eγ,low, is determined to

exclude eventual higher-generation transitions not properly subtracted in the primary-

distribution extraction, as discussed in detail in [35]. The chosen energy limits for

the extraction procedure are: Eγ,low = 2.1 MeV, Emin = 6.6 MeV, and Emax = 11.3

MeV for 56Fe; correspondingly, Eγ,low = 1.4 MeV, Emin = 5.0 MeV, and Emax = 8.2

MeV for 57Fe. The neutron separation energies Sn are 11.197 MeV and 7.646 MeV for
56,57Fe, respectively. The reason why we are able to put Emax higher than Sn in the

case of 57Fe, is that the first-excited state in 56Fe is at 847 keV, allowing in principle

for Emax = (7.65 + 0.85) MeV = 8.5 MeV as we are requiring proton-γ coincidences.

Similarly, for 57Fe, the upper limit is ≈ 100 keV above Sn.

To test the quality of the fit, which is based on all primary spectra included in the

extraction procedure, we take the obtained ρ(Ef ) and T (Eγ) functions and use them to

generate primary γ spectra to be compared with the input spectra bin by bin. This is

shown in figure 4. Error bars in the primary spectra reflect statistical uncertainties, and

systematic uncertainties stemming from the unfolding procedure and the extraction of

the primary γ rays [5].

As can be seen from figures 4–7, the overall agreement between the data and

the calculated primary spectra is very good. It should be noted that Porter-Thomas

fluctuations [36] of the decay strengths are not taken into account. These fluctuations

are expected to be large when the final level density ρf is low. This is clearly visible

e.g. in the decay to the first-excited level in 56Fe, see figure 4a and the peak at Eγ ≈ 6.5

MeV, where data points are several standard deviations off the calculated ρ×T . Here,

there is only one final level and the relative decay strength is seen to fluctuate strongly

for different initial excitation energies.

3. Level density and γ strength

3.1. Normalization

As only the functional form of the NLD and γSF can be deduced from the primary γ

spectra, the slope and absolute normalization must be determined from auxiliary data.

It is shown in [5] that any solution ρ̃f and T̃ will give an equally good χ2 fit to the

primary-γ data through the transformations

ρ(E − Eγ) = A exp[α(E − Eγ)] ρ̃(E − Eγ), (3)

T (Eγ) = B exp(αEγ)T̃ (Eγ), (4)
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Figure 4. (Color online) Comparison of experimental primary γ spectra for 56Fe (black

points, NaI detectors) with the calculated ones (blue histogram) from the extracted ρ

and T functions for a set of initial excitation-energy bins as indicated in the panels.

Energy bins are 124 keV/channel.
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Figure 5. (Color online) Same as figure 4 for 56Fe, using data from the LaBr3
detectors.

where the parameters A, B, are the absolute normalization of the NLD and the γ-

transmission coefficient, respectively, and α is the common slope parameter.

For the NLD, the parameters A and α are found by fitting our data to known
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Figure 6. (Color online) Same as figure 4 for 57Fe measured with NaI detectors.

Energy bins are 120 keV/channel.
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Figure 7. (Color online) Same as figure 4 for 57Fe using data from the LaBr3 detectors.

levels from the literature [37] at low excitation energy and to neutron-resonance spacing

data from [38] at Sn. The discrete levels are binned with the same bin width as

our experimental data. For 56Fe, there is no information from neutron-resonance

experiments as 55Fe is unstable. For this case, we have estimated the NLD at Sn from

systematics in the following way:
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(i) To estimate the lower-limit NLD, we calculate the total level density from the s-

wave neutron resonance spacing D0 for Fe isotopes where this value is available

from [38] according to the expression

ρ(Sn) =
2σ2

D0

· 1

(Jt + 1) exp [−(Jt + 1)2/2σ2] + Jt exp [−J2
t /2σ

2]
, (5)

assuming equally many positive- and negative-parity states. Here, Jt is the ground-

state spin of the target nucleus in the neutron-resonance experiment and σ is the

spin cutoff parameter. We make use of the phenomenological spin cutoff parameter

suggested in [40]:

σ2(E) = 0.391A0.675(E − 0.5Pa′)0.312. (6)

Here, A is the mass number and Pa′ is the deuteron pairing energy as defined in [40].

This approach gives a low value for the spin cutoff parameter and thus a low limit

for the level density. Further, we calculate ρ(Sn) from the global systematics [40]

directly. By taking the χ2 fit of the semi-experimental ρ(Sn) with the values from

systematics in the same fashion as done for 89Y in [39], one obtains an estimate

for the 56Fe ρlow(Sn). All parameters are given in table 1. This normalization is

referred to as norm-1 in the folowing.

(ii) To estimate the upper-limit NLD, we apply the same procedure as in (i) but with

the spin cutoff parameter given by the rigid-body moment of inertia approach as

parameterized in [41]:

σ2(E) = 0.0146A5/31 +
√

1 + 4a(E − E1)

2a
. (7)

Here, a is the level-density parameter and E1 is the excitation-energy backshift

determined from global systematics of [41]. All parameters are given in table 2.

We refer to this normalization as norm-2.

For 57Fe, we use the D0 value given in [38] and estimate ρ(Sn) using equation 5,

again with spin cutoff parameters both from [40] and [41]. Consistent with the approach

for 56Fe, the lower limit is obtained with the spin cutoff parameter in equation 6, and

the upper limit with the one in equation 7, also including the uncertainties in D0. All

parameters are listed in table 1 and 2.

As our data reach up to Emax −Eγ,low, we must interpolate between the estimated

ρ(Sn) and our upper data points. This is done using the constant-temperature formula

of Ericson [42, 43]:

ρCT (E) =
1

T
exp

E − E0

T
. (8)

The applied parameters T and E0 are given in table 3 for the various normalization

options, giving the best fit to our data in the regions E = 8.2−9.2 MeV and E = 6.2−6.6

MeV for 56,57Fe, respectively. The normalized level densities are shown in figure 8.

With the normalized NLDs at hand, and assuming equal parity [44], we normalize

the γ-ray transmission coefficient T to the average, total radiative width 〈Γγ0〉 taken
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Table 1. Neutron resonance parameters D0 and 〈Γγ0〉 from [38], and spin cutoff

parameters from global systematics of [40]; Af is the final nucleus following neutron

capture, Jt is the ground-state spin of the target nucleus, Sn is the neutron-separation

energy, D0 is the s-wave level spacing [38], σ is the spin-cutoff parameter from

equation (6), Pa′ is the deuteron shift as defined in [40], and ρ(Sn) is the total level

density calculated from equation 5. Finally, ρsyst is the total level density at Sn as

predicted from the global systematics of [40]. †Estimated from systematics.

Af Jt Sn D0 σ(Sn) Pa′ ρ(Sn) ρsyst(Sn) 〈Γγ0〉
(MeV) (keV) (MeV) (103 MeV−1) (103 MeV−1) (meV)

55Fe 0 9.298 20.5(14) 3.41 0.463 1.19(9) 1.28 1600(700)
56Fe 3/2 11.197 3.36(124)† 3.47 2.905 2.18(59)† 2.94 1900(600)†

57Fe 0 9.298 25.4(22) 3.35 0.211 0.926(80) 1.14 920(410)
58Fe 1/2 10.044 7.05(70) 3.44 2.874 1.81(18) 3.49 1850(500)
59Fe 0 6.581 21.6(26) 3.30 0.470 1.06(13) 1.01 1130(110)

Table 2. Neutron resonance parameters D0 from [38], and spin cutoff parameters

from global systematics of [41]; Af is the final nucleus following neutron capture, Jt is

the ground-state spin of the target nucleus, Sn is the neutron-separation energy, σ is

the spin-cutoff parameter from equation (7), D0 is the s-wave level spacing [38], a and

E1 are the level density parameter and energy shift from [41], and ρ(Sn) is the total

level density calculated from equation 5. Finally, ρsyst is the total level density at Sn
as predicted from the global systematics of [41]. †Estimated from systematics.

Af Jt Sn D0 σ(Sn) a E1 ρ(Sn) ρsyst(Sn)

(MeV) (keV) (1/MeV) (MeV) (103 MeV−1) (103 MeV−1)
55Fe 0 9.298 20.5(14) 4.02 5.817 -0.524 1.62(11) 2.00
56Fe 3/2 11.197 3.30+0.9

−0.6
† 4.05 6.196 0.942 2.87(68)† 4.22

57Fe 0 9.298 25.4(22) 3.83 6.581 -0.523 1.20(10) 1.62
58Fe 1/2 10.044 7.05(70) 3.93 6.936 0.942 2.32(23) 4.66
59Fe 0 6.581 21.6(26) 3.70 7.297 -0.424 1.32(16) 1.38

Table 3. Parameters for the constant-temperature interpolation for the different

normalization options. Both parameters T and E0 are given in MeV.

Norm-1 Norm-2

Nucleus Lower Middle Upper Lower Middle Upper

T E0 T E0 T E0 T E0 T E0 T E0
56Fe 1.41 0.320 1.40 −0.034 1.38 −0.169 1.40 −0.070 1.35 0.045 1.30 0.232
57Fe 1.32 −1.618 1.30 −1.575 1.29 −1.601 1.31 −1.882 1.29 −1.829 1.28 −1.848

from [38] (see table 1) according to [44]

〈Γγ0(Sn, Jt ± 1/2, πt)〉 =
B

4πρ(Sn, Jt ± 1/2, πt)

∫ Sn

Eγ=0

dEγT (Eγ)

× ρ(Sn − Eγ)
1∑

J=−1

g(Sn − Eγ, Jt ± 1/2 + J), (9)

where Jt and πt are the spin and parity of the target nucleus in the (n, γ) reaction and



Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe 12

0 2 4 6 8 10

)
1

 (
E

) 
(M

e
V

ρ 

1

10

210

310
 NaI 

 
3

 LaBr
 Lower/upper 
 Discrete levels 
 CT interpolation 

) 
n

(Sρ 

Fe, norm1
56

 (a) 

Excitation energy E (MeV)
0 1 2 3 4 5 6 7 8

)
1

 (
E

) 
(M

e
V

ρ

1

10

210

310
Fe, norm1

57
 (c) 

0 2 4 6 8 10

1

10

2

3

Fe, norm2
56

 (b) 

Excitation energy E (MeV)
0 1 2 3 4 5 6 7 8

1

10

2

3
Fe, norm2

57
 (d) 

Figure 8. (Color online) Normalized level densities for (a) 56Fe, norm-1, (b) 56Fe,

norm-2, (c) 57Fe, norm-1, and (d) 57Fe, norm-2.

ρ(Sn−Eγ) is the experimental NLD. Note that the experimental transmission coefficient

in principle includes all types of electromagnetic transitions: TE1 + TM1 + TE2 + ...;

however, dipole transitions are found to be dominant for decay in the quasicontinuum

(e.g., [16, 45]). The sum in equation 9 runs over all final states with spins Jt± 1/2 + J ,

where J = −1, 0, 1 from considering the spins reached after one primary dipole transition

with energy Eγ (see also equation 3.1 in [45]). Note that the factor 1/ρ(Sn, Jt± 1/2, πt)

equals the neutron resonance spacing D0. From the normalized transmission coefficient,

the γSF is determined by

f(Eγ) =
T (Eγ)

2πE3
γ

. (10)

Again, 56Fe lacks neutron resonance data and we have therefore estimated 〈Γγ0〉
from a linear fit to the values of the other Fe isotopes taken from [38], see table 1. The

normalized γSFs for the different normalization options for the level densities are shown

in figure 9. The error band includes uncertainties in D0, spin cutoff parameters, and

〈Γγ0〉. We see that the γSFs have a distinct U-like shape, independent on the choice of

normalization. There is a characteristic increase in strength at low transition energies,
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Figure 9. (Color online) Normalized γSFs for (a) 56Fe, norm-1, (b) 56Fe, norm-2, (c)
57Fe, norm-1, and (d) 57Fe,norm-2.

which is very similar in shape and magnitude to recent predictions from large-scale

shell-model calculations [20].

At the highest γ-ray energies, we observe a drop in strength, which could be due to

the reaction populating spins at high excitation energies that on average are higher than

the (close-to) ground-state spin(s), and/or a small overlap with the wave functions for

the initial and final levels. In particular, for 56Fe, only 1− and 1+ levels contribute to the

dipole strength to the ground state. For lower transition energies, a broad range of levels

is available as the final level density is much higher. One should therefore note that

the upper data points (Eγ > 9.5 and 7.2 MeV for 56,57Fe, respectively) do not represent

a general, averaged γSF in the quasicontinuum. The rather peculiar behavior of these

data points indicate a possible (strong) dependence on the initial and final level(s), as

well as significant Porter-Thomas fluctuations. This will be further investigated and

discussed in section 5.
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Figure 10. (Color online) Comparison of NLDs from different reactions for (a) 56Fe

and (b) 57Fe. Previous data taken from [6, 46, 47, 48, 49].

3.2. Comparison with other data

There exist data on the NLDs of 56,57Fe from previous experiments at the OCL [6],

using the 3He-induced reactions 57Fe(3He,αγ)56Fe and 57Fe(3He,3He′γ)57Fe. Moreover,

level densities have also been inferred from particle-evaporation spectra of the reactions
55Mn(d,n)56Fe [46], 59Co(p,α)56Fe [47], 58Fe(3He,α)57Fe [48], and 60Ni(n,α)57Fe [49].

Figure 10 shows the comparison of the present data and previous results. We find

that the overall agreement is very good, although there are some differences betweeen

the data sets. For 56Fe, the absolute normalization is rather uncertain due to the lack of

neutron-resonance data as discussed before; however, there is a significant boost in the

number of levels at E ≈ 6 MeV for all data sets relative to the known, discrete levels.

For 57Fe, a similar increase is taking place at E ≈ 4 MeV.

For the γSF, there are to our knowledge no other data available for 56,57Fe neither

below nor above the neutron separation energy, except for the previous 3He-induced

reactions [6]. We have therefore compared our data to photoneutron (γ, n) cross sections

of 55Mn and 59Co [50]. The photoneutron cross section σγn is converted to γ strength

by the relation [51]

f(Eγ) =
1

3π2~2c2
σ(γ,n)(Eγ)

Eγ
. (11)

The result is shown in figure 11, where we have compared with our normalizations for

norm-1 and norm-2. We observe a very good agreement with the previous 3He-induced

data below Sn, as well as with the (γ, n) data.
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Figure 11. (Color online) Comparison of γSFs from different reactions for (a) 56Fe

and (b) 56Fe. Photonuclear data taken from [50]. For 56Fe, the present work provides

the γSF for 2.1 ≤ Eγ ≤ 11.3 MeV, while data from [6] cover 1.0 ≤ Eγ ≤ 10.3 MeV.

Correspondingly, for 57Fe, the present work covers the range 1.4 ≤ Eγ ≤ 8.2 MeV, and

data from [6] 1.0 ≤ Eγ ≤ 7.6 MeV. The photonuclear data [50] are for Eγ > 10.2 MeV.

4. Angular distributions, 57Fe

In [16], it was shown that the low-energy upbend in 56Fe is dominated by dipole

transitions. Here, we apply the same type of analysis for the so-far unexplored 57Fe

upbend.

We use the various angles θ for which the NaI detectors are placed and extract

angular distributions by sorting the data into (Eγ, E) matrices according to θ of the

NaI detectors relative to the beam direction. As the LaBr3 detectors were placed at

only four angles, and had a rather high Eγ threshold, these were not used for this

analysis. From the intensities as a function of angle, we can fit angular-distribution

functions of the form [52, 53]

W (θ) = A0 + A2P2(cos θ) + A4P4(cos θ), (12)

where Pk(cos θ) is a Legendre polynomial of degree k, and we have

P2(cos θ) =
1

2

[
3(cos θ)2 − 1

]
, (13)

P4(cos θ) =
1

8

[
35(cos θ)4 − 30(cos θ)2 + 3

]
. (14)

The normalized angular-distribution coefficients are given by ak = QkαkAk/A0,

where Qk ≈ 1 is the geometrical attenuation coefficient due to the finite size of the γ

detectors, and αk is the attenuation due to partial alignment of the nuclei relative

to the beam direction. We estimate uncertainties in the intensities according to
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σerr
tot = σerr

stat + σerr
syst. The statistical errors are given by

√
N where N is the number

of counts, and the systematic errors are deduced from the relative change in N for each

symmetric pair of angles (37.4◦,142.6◦), (63.4◦,116.6◦), and (79.3◦,100.7◦).

In the case of a fully aligned state with respect to the beam direction (αk = 1), the

amax
k coefficients are given by [53]

amax
k (JiLL

′Jf ) =
Bk

1 + δ2
[
Fk(JfLLJi) + 2δFk(JfLL

′Ji) + δ2Fk(JfL
′L′Ji)

]
.(15)

Here, Ji, Jf are the spins of the initial and final level, L,L′ are transition multipolarities,

δ is the mixing ratio between the multipolarities defined according to [54]:

δ =
〈Jf ||E(L+ 1)||Ji〉
〈Jf ||M(L)||Ji〉

. (16)

Here, E(L + 1) is the electric transition operator for multipolarity L + 1, and M(L) is

the magnetic transition operator for multipolarity L. Further, the Bk, Fk coefficients

are defined in [53], where also values for the product BkFk are tabulated.

First, we investigate known transitions in 57Fe, such as the 692-keV γ ray decaying

from the level at 706 keV, where Ji = 5/2− and Jf = 3/2−, and the transition is known

to be of M1 + E2 type with a mixing ratio δ = −0.465 [55]. We get

amax
2 =

1

1 + 0.4652
[B2F2(3/2, 1, 1, 5/2) + 2 · (−0.465) ·B2F2(3/2, 1, 2, 5/2)

+ 0.4652B2F2(3/2, 2, 2, 5/2)].

From [53] we have B2F2(3/2, 1, 1, 5/2) = −0.400, B2F2(3/2, 1, 2, 5/2) = 1.014, and

B2F2(3/2, 2, 2, 5/2) = 0.204, giving amax
2 = −1.068. For amax

4 , we find

amax
4 =

1

1 + 0.4652
[0.4652B4F4(3/2, 2, 2, 5/2)];

with B4F4(3/2, 2, 2, 5/2) = 0.653, we get amax
4 = 0.116. Similarly, we get for an

E2 transition with Ji = 9/2, Jf = 5/2 and no mixing (δ = 0), amax
2 = 0.476 and

amax
4 = −0.286. In figure 12 we show the angular distributions of known transitions in

57Fe, and how they compare with the theoretical amax
k values. All numbers are given

in table 4. The comparison with the experimentally extracted a2 coefficients and the

theoretical maximum values for the known transitions shown in figure 12a,b, indicates

an attenuation αk ≈ 0.6− 0.75.

The behavior of the Eγ = 1261 keV non-stretched‡M1+E2 transition is somewhat

puzzling, as [55] gives a rather large mixing parameter of −0.35 (see figure 12c). The

shape of our data indicates a stronger contribution from the non-stretched M1 part,

although we do have a very large uncertainty in the a4 parameter. Nevertheless,

assuming a pure M1 transition, one finds amax
2 = 0.400, which is close to the

experimental value of 0.35(7).

For the upbend, we have fitted equation 12 to the primary spectra for the range

E = 5.4 − 7.6 MeV and Eγ = 1.4 − 3.6 MeV with a2 and a4 as free parameters,

‡ Transitions are called stretched for a maximum change in the angular momentum of the nuclear

states, and non-stretched if the change is less than the maximum allowed for the given multipolarity.
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Figure 12. (Color online) Angular distributions for (a)–(c) single transitions and (d)

the upbend region from primary transitions in 57Fe.

obtaining a2 = 0.11(6) and a4 = −0.06(6) (see figure 12d). The uncertainty in a4 is very

large, but its value is small, indicating that contributions from stretched E2 transitions

are not dominant. Moreover, we have made a fit of the data to the sum of Legendre

polynomials for Ji = 3/2− 11/2, with a weighting coefficient for the stretched and the

non-stretched part. Here, we obtain 78(16) and 34(10)% for the non-stretched and the

stretched transitions, respectively. Note that possible contributions from other spins and

E2 transitions could modify these numbers, which should only be taken as a qualitative

guidance. That said, the same trend was found in 〈B(M1)〉 values from shell-model

calculations of 57Fe [20], where non-stretched M1 transitions contributed most to the

low-energy enhancement. On the other hand, stretched M1 transitions dominated both

experimentally [16] and theoretically [20] in the case of 56Fe.

Table 4. Angular-distribution coefficients of transitions measured in the present

experiment. The theoretical amax
k coefficients for complete alignment are taken from

Ref. [53].

E Eγ Ii → If XL δ amax
2 a2 amax

4 a4
(keV) (keV)

706 692 5/2− → 3/2− M1 + E2 −0.465 −1.068 −0.80(20) 0.12 −0.11(11)

1627 1261 3/2− → 3/2− M1 + E2 −0.35 −0.127 0.35(7) 0.00 −0.04(18)

1990 1283 9/2− → 5/2− E2 − 0.476 0.28(23) −0.29 −0.20(20)
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Figure 13. Extracted a2 and a4 coefficients from independent fits of 300-keV

excitation-energy cuts in the 57Fe primary matrices for the six CACTUS angles.

To further study the angular-distribution coefficients for the upbend in 57Fe in more

detail, we make individual fits of equation 12 to eight 300-keV wide excitation-energy

cuts in the primary γ-ray matrix in the range E = 5.4− 7.6 MeV, Eγ = 1.4− 3.6 MeV.

The resulting a2 and a4 coefficients are shown in figure 13. We obtain a2 = 0.10(3) and

a4 = −0.05(3), in excellent agreement with the simultaneous fit to the whole region as

shown in figure 12d. Hence, we conclude that the upbend structure in 57Fe is also very

likely to be caused by dipole transitions, but for this case the non-stretched transitions

seem to dominate.

5. Generalized Brink-Axel hypothesis: γSF as function of excitation energy

As the LaBr3 detectors have excellent energy resolution and efficiency for high-energy

γ rays, we make use of the technique described in [11, 21, 56] to extract the γSF as

function of excitation energy.

We start with the primary γ-ray matrix P (Eγ, E) obtained in section 2. We will

now make the assumption that the NLD is the one determined in section 3, but the

transmission coefficient T is now allowed to be dependent on both excitation energy

and γ-ray energy, T (Eγ, E). As ρ(Ef ) is known, we can in principle determine T (Eγ, E)

for each excitation-energy bin just by dividing the primary γ matrix with the NLD:

T (Eγ, E) ∼ P (Eγ, E)/ρ(Ef ), using our ansatz in equation 2. Specifically, we have

ρ(E − Eγ)T (Eγ, E) = N(E)P (Eγ, E), (17)

where N(E) is a normalization factor in units MeV−1, depending only on the initial

excitation energy.

Now, this game can be played in two ways:
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Figure 14. (Color online) Extracted γSFs as function of initial excitation energy for
56Fe. Bins are 248 keV/channel for E and 124 keV/channel for Eγ .

(a) We investigate T as function of initial excitation energy through the relation

T (Eγ, E) = N(E)
P (Eγ, E)

ρ(E − Eγ)
. (18)

We determine N(E) by

N(E) =

∫ E
0
T (Eγ)ρ(E − Eγ) dEγ∫ E
0
P (Eγ, E) dEγ

. (19)

Note that T (Eγ) is the normalized transmission coefficient from section 3. However,

it will not influence the shape of the extracted T (Eγ, E) as it acts as a constant after

integrating over all Eγ. Hence, it only serves to provide an approximate absolute

normalization of T (Eγ, E).

(b) We can also find T as function of final excitation energy by

T (Eγ, Ef ) = N(Eγ + Ef )
P (Eγ, Ef + Eγ)

ρ(Ef )
, (20)

where we keep in mind that Ef + Eγ = E. Again, we assume that T (Eγ) gives a

good estimate of the absolute value and we can approximate the normalization for
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Figure 15. (Color online) Extracted γSFs as function of initial excitation energy for
57Fe. Bins are 480 keV/channel for E and 120 keV/channel for Eγ .

a given final excitation energy Ef and for a specific Eγ fulfilling E = Ef + Eγ by

N(Eγ + Ef ) =

∫ Ef+Eγ
0

T (E ′γ)ρ(Ef ) dE ′γ∫ Ef+Eγ
0

P (E ′γ, Ef + E ′γ) dE ′γ
. (21)

The γSF as function of excitation energy is then easily calculated from the transmission

coefficient by use of equation 10. The results are shown for 56,57Fe in figures 14 and 15,

respectively.

We observe that the decay strength to the ground state increases as function of both

E and Eγ, which is fully consistent with the γSF determined previously in section 3 and

the expected influence of the tail from the GDR. Moreover, we find that the γSF varies

with initial excitation energy, but that the general shape is preserved: there is always

an upbend at low Eγ and a rather flat distribution of strength in the middle Eγ region,

before it again increases for high Eγ.

To investigate the fluctuations, following [56], we compare the average γSF for all

initial excitation energies with the γSF obtained for a specific excitation-energy bin.

We find that the fluctuations relative to the average γSF can be large, more than 100%

for some γ-ray energies and E. Also, the fluctuations are in some cases significantly

larger than the error bars. Therefore, it seems that although the overall shape of the
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Figure 16. Extracted γSF for the 56Fe ground state as Ef (black points) and for

E = 10.9 MeV.

γSF is indeed preserved in agreement with the generalized Brink-Axel hypothesis, the

γSF for a specific transition energy and excitation energy could have a large deviation,

in particular when the excitation-energy bin is narrow and containing rather few levels.

Finally, we also investigate the γSF for a specific final excitation energy. We have

chosen the ground state in 56Fe and the ground-state band (1/2−, 3/2−, 5/2−) in 57Fe.

The γSF for this Ef is then compared to a typical γSF at a high initial E, see figures 16

and 17. Again, we observe that the general trend is preserved, although significant

deviations are present, for example for the 56Fe strength at Eγ ≈ 9.7 MeV. This is

interpreted to be caused by Porter-Thomas fluctuations, which are expected to be large

when the final and/or the initial NLD is low [21].

6. Summary and outlook

In this work, we have presented data on 56,57Fe from (p, p′γ) reactions, measuring the γ

rays both with NaI and LaBr3 crystals. From the sets of particle-γ coincidences, we have

extracted NLDs and γSFs for these nuclei. We find that our present results compare

well with previous measurements.

We have measured angular distributions for 57Fe, and we get coefficients in

agreement with a dominance of non-stretched dipoles for the upbend, in agreement

with recent shell-model calculations. Moreover, we have investigated the excitation-

energy dependence of the γSF. The data show that the general trends are preserved, i.e.
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Figure 17. Extracted γSF for the 57Fe ground-state band, Ef = 0.0 − 0.25 MeV

(black points) and for Ei = 7.3 MeV.

the upbend and an enhanced decay strength for high-energy transitions, in accordance

with the Brink-Axel hypothesis. However, we also encounter large fluctuations, which

seem to be due to strong Porter-Thomas fluctuations caused by the low level density in

these light nuclei.
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