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Two-complete stable motivic stems over finite fields

GLEN MATTHEW WILSON

PAUL ARNE ØSTVÆR

Let ` be a prime and q = pν where p is a prime different from ` . We show that
the `-completion of the nth stable homotopy group of spheres is a summand of the
`-completion of the (n, 0) motivic stable homotopy group of spheres over the finite
field with q elements Fq . With this, and assisted by computer calculations, we are
able to explicitly compute the two-complete stable motivic stems πn,0(Fq)∧2 for
0 ≤ n ≤ 18 for all finite fields and π19,0(Fq)∧2 and π20,0(Fq)∧2 when q ≡ 1 mod 4
assuming Morel’s connectivity theorem for Fq holds.

14F42; 16-04, 18G15, 55T15

1 Introduction

The homotopy groups of spheres belong to the most important and puzzling invariants
in topology. See Kochman [28] and the more recent works of Isaksen [26] and Wang
and Xu [51] for amazing computer assisted ways of computing these invariants based
on the Adams spectral sequence. The Adams spectral sequence of topology is a well
studied method to calculate the stable homotopy groups of spheres, see Adams [2] and
Ravenel [40]. With two-primary coefficients, the second page of the Adams spectral
sequence has a description in terms of Ext groups over the mod 2 Steenrod algebra

Es,t
2 = Exts,tA∗(F2,F2)

and converges to the two-complete stable homotopy groups of spheres (πs
n)∧2 . Extensive

computer calculations of these Ext groups have been carried out by Bruner in [8]
and [10]. However, even if one knew completely the answer for the Ext groups in the
Adams spectral sequence, one is still not finished with computing the stable homotopy
groups of spheres. One needs to know in addition the differentials and all the group
extensions hidden in the associated graded of the filtration. Only partial results have
been obtained in spite of an enormous effort.

Given any field k the stable motivic homotopy category SHk over k has the structure
of a triangulated category and encodes both topological information and arithmetic

Published: XX Xxxember 20XX DOI: 10.2140/agt.20XX.XX.1001

http://www.ams.org/mathscinet/search/mscdoc.html?code=14F42,(16-04, 18G15, 55T15)
http://dx.doi.org/10.2140/agt


1002 Glen Matthew Wilson and Paul Arne Østvær

information about k . An application of this framework is Voevodsky’s proof of Milnor’s
conjecture on Galois cohomology [48]. Just as for the stable homotopy category SH ,
it is an interesting and deep problem to compute the stable motivic homotopy groups
of spheres πs,w(k) over k , that is, SHk(Σs,w

1,1), where 1 denotes the motivic sphere
spectrum over k . When k has finite mod 2 cohomological dimension and s ≥ w ≥ 0,
the motivic Adams spectral sequence (MASS) converges to the two-completion of the
stable motivic stems

Ef ,(s,w)
2 = Extf ,(s+f ,w)

A∗∗ (H∗∗,H∗∗) =⇒ (πs,w1)∧2 .

This is a trigraded spectral sequence, where A∗∗ is the bigraded mod 2 motivic Steenrod
algebra (see the work of Hoyois, Kelly and Østvær [22] and Voevodsky [48]), and H∗∗

is the bigraded mod 2 motivic cohomology ring of k . A construction of the motivic
Adams spectral sequence is given in section 5. The calculational challenges are to: (1)
identify the motivic Ext groups, (2) determine the differentials, and (3) reconstruct the
abutment from the filtration quotients.

Based on the MASS, Dugger and Isaksen have carried out calculations of the 2-
complete stable motivic homotopy groups of spheres up to the 34-stem over the complex
numbers [12]. Isaksen has extended this work largely up to the 70-stem [25,26]. We are
led to wonder, how do the stable motivic homotopy groups vary for different base fields?
Morel has given a complete description of the 0-line πn,n(k) in terms of Milnor-Witt
K -theory [34]. The 1 line πn+1,n(k) is determined by Hermitian and Milnor K -theory
groups by the work of Röndigs, Spitzweck and Østvær [41], which generalizes the
partial results obtained by Ormsby and Østvær in [39]. Ormsby has investigated the
case of related invariants over p-adic fields [37] and the rationals [38], and Dugger
and Isaksen have analyzed the case over the real numbers [13]. It is now possible to
perform similar calculations over fields of positive characteristic, thanks to work on the
motivic Steenrod algebra in positive characteristic by Hoyois, Kelly and Østvær [22].
In this paper we use computer assisted motivic Ext group calculations in tandem with
theoretical arguments to determine stable motivic stems πn,0 in weight zero over finite
fields.

We now state our main results. For a prime ` and an abelian group G, we write the
`-completion of G by G∧` .

Theorem 1.1 Let F be an algebraically closed field of positive characteristic p. For
all s ≥ w ≥ 0 or s < w, there are isomorphisms πs,w(F)[p−1] ∼= πs,w(C)[p−1].

Proof When s > w ≥ 0, the groups πs,w(F) and πs,w(C) are torsion by proposition
5.14. The isomorphism πs,w(F)[p−1] ∼= πs,w(C)[p−1] follows when s > w ≥ 0 from
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theorem 1.3 by summing up the `-primary parts. When s = w ≥ 0 the result follows by
Morel’s identification of the 0 line in [34]. If s < w then Morel’s connectivity theorem
implies that both groups are trivial by corollary 2.14.

Let πs
n denote the nth topological stable stem. Over the complex numbers, Levine

showed there is an isomorphism πs
n
∼= πn,0(C) [29, Corollary 2]. We obtain a similar

result over any algebraically closed field of positive characteristic p after inverting p.

Corollary 1.2 Let F be an algebraically closed field of positive characteristic p. For
all n ≥ 0 the homomorphism Lc : (πs

n)[p−1]→ πn,0(F)[p−1] is an isomorphism.

We do not expect Levine’s theorem to hold over a field which is not algebraically closed.
Write Fq for the finite field with q = pν elements where p is a prime and F̃q for the
union of the field extensions Fqi over Fq with i odd. In this paper, we will see how the
groups πn,0(Fq) differ from πs

n using motivic Adams spectral sequence calculations.
Corollary 1.2 allows us to identify differentials in the mod 2 motivic Adams spectral
sequence over a finite field and identify the two-complete groups πn,0(Fq)∧2 in a range.
The analogous calculations with the mod ` motivic Adams spectral sequence for ` an
odd prime are given by Wilson in [52]. The groups take the following form.

Theorem 1.3 If Morel’s connectivity theorem holds for the finite field Fq , then for all
0 ≤ n ≤ 18 there is an isomorphism

πn,0(Fq)[p−1] ∼= (πs
n ⊕ πs

n+1)[p−1].

In particular, the group π4,0(Fq)[p−1] is trivial.

Proof Propositions 7.15 and 7.18 calculate the two-completion of πn,0(Fq) for 0 ≤ n ≤
18. For primes ` 6= 2, the calculations are similar and given by Wilson in [52, §§6–7].
The `-completions of πn,0(Fq) are shown to agree with the `-primary part of πn,0(Fq)
for n > 0 in proposition 5.14. When n = 0, the result follows by Morel’s identification
of π0,0(Fq) with the Grothendieck-Witt ring of Fq , since GW(Fq) ∼= Z⊕Z/2 as shown
by Scharlau in [42, Chapter 2, 3.3].

Remark 1.4 The above theorem depends on Morel’s connectivity theorem to prove
that the motivic Adams spectral sequence converges to the homotopy groups of the
`-completion of the sphere spectrum. The published proof of the theorem by Morel
in [34] holds for infinite fields. A private message from Panin gives a new proof of
Morel’s connectivity theorem which is valid for finite fields. We therefore state our
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results under the assumption that Morel’s connectivity theorem holds for finite fields.
However, our argument for theorem 1.3 goes through with the field Fq replaced by F̃q

where Morel’s connectivity theorem holds by proposition 7.22. The uneasy reader may
replace Fq with F̃q throughout.

In the case of a finite field Fq with q ≡ 3 mod 4, we use the ρ-Bockstein spectral
sequence to identify the additive structure of the E2 page of the MASS. Some hidden
products in the ρ-Bockstein spectral sequence were identified with the help of computer
calculations by Fu and Wilson, which can be found in [16].

It is interesting to note that the pattern πn,0(Fq)∧2 ∼= (πs
n ⊕ πs

n+1)∧2 obtained in theorem
1.3 does not hold in general. We show that if q ≡ 1 mod 4, then

π19,0(Fq)∧2 ∼= (Z/8⊕ Z/2)⊕ Z/4 and π20,0(Fq)∧2 ∼= Z/8⊕ Z/2.

We shall leave open for further investigations the question of whether or not an
isomorphism πn,0(Fq)∧2 ∼= (πs

n ⊕ πs
n+1)∧2 holds when q ≡ 3 mod 4 and n = 19, 20.
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2 The stable motivic homotopy category

We first sketch a construction of the stable motivic homotopy category that will be
convenient for our purposes, and in the process, set our notation. Treatments of stable
motivic homotopy theory can be found in Voevodsky [47], Jardine [27], Hu [23], Dundas,
Röndigs and Østvær [15], Morel [32], Ayoub [4], and the Nordfjordeid lectures [14].
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2.1 The unstable motivic homotopy category

A base scheme S is a Noetherian separated scheme of finite Krull dimension. We write
Sm/S for the category of smooth schemes of finite type over S . A space over S is
a simplicial presheaf on Sm/S . The collection of spaces over S forms the category
Spc(S), where morphisms are natural transformations of functors. We write Spc∗(S)
for the category of pointed spaces.

The first model category structure we endow Spc(S) with is the projective model
structure, see, for example, Blander [5, 1.4], Dundas, Röndigs and Østvær [15, 2.7],
Hirschhorn [19, 11.6.1].

Definition 2.1 A map f : X → Y in Spc(S) is a (global) weak equivalence if for any
U ∈ Sm/S the map f (U) : X(U)→ Y(U) of simplicial sets is a weak equivalence. The
projective fibrations are those maps f : X → Y for which f (U) : X(U) → Y(U) is a
Kan fibration for any U ∈ Sm/S . The projective cofibrations are those maps in Spc(S)
which satisfy the left lifting property for trivial projective fibrations. The projective
model structure on Spc(S) consists of the global weak equivalences, the projective
fibrations and the projective cofibrations.

The category Spc(S) equipped with the projective model structure is cellular, proper and
simplicial; see Blander [5, 1.4]. Furthermore, Spc(S) has the structure of a simplicial
monoidal model category, with product × and internal hom Hom.

The constant presheaf functor c : sSet → Spc(S) associates to a simplicial set A the
presheaf cA defined by cA(U) = A for any U ∈ Sm/S . The functor c is a left Quillen
functor when Spc(S) is equipped with the projective model structure. Its right adjoint
EvS : Spc(S) → sSet satisfies EvS(X) = X(S). One can show that representable
presheaves and constant presheaves in Spc(S) are cofibrant in the projective model
structure.

For a smooth scheme X over S , we write hX for the representable presheaf of simplicial
sets. We will occasionally abuse notation and write X for hX . Although the representable
pre-sheaf functor embeds Sm/S into Spc(S), colimits which exist in Sm/S are not
necessarily preserved in Spc(S). That is, if X = colim Xi in Sm/S , it need not be true
that hX = colim hXi , for example, colim(hA1 ← hGm → hA1) 6= hP1 , as one can check
by applying the Picard group functor. To fix this, one introduces the Nisnevich topology
on Sm/S .

Morel and Voevodsky proved in [35, 3.1.4] that the Nisnevich topology is generated by
covers coming from the elementary distinguished squares. Recall that an elementary

Algebraic & Geometric Topology XX (20XX)



1006 Glen Matthew Wilson and Paul Arne Østvær

distinguished square is a pull-back square in Sm/S

V ′ //

��

X′

f��
V

j // X

for which f is an étale map, j is an open embedding and f−1(X − V) → X − V is
an isomorphism, where these subschemes are given the reduced structure. Hence a
presheaf of sets F on Sm/S is a Nisnevich sheaf if and only if for any elementary
distinguished square the resulting square after applying F is a pull-back square.

Definition 2.2 For a pointed space X and n ≥ 0, the nth simplicial homotopy sheaf
πnX of X is the Nisnevich sheafification of the presheaf U 7→ πn(X (U)).

Write WNis for the class of maps f : X → Y for which f∗ : πnX → πnY is an
isomorphism of Nisnevich sheaves for all n ≥ 0. The Nisnevich local model structure
on Spc∗(S) is the left Bousfield localization of the projective model structure with
respect to WNis .

Definition 2.3 Let WA1 be the class of maps πX : (X × A1)+ → X+ for X ∈ Sm/S .
The motivic model structure on Spc∗(S) is the left Bousfield localization of the projective
model structure with respect to WNis ∪WA1 . We write SpcA

1

∗ (S) for the category of
pointed spaces equipped with the motivic model structure. The pointed motivic
homotopy category HA1

∗ (S) is the homotopy category of SpcA
1

∗ (S).

For pointed spaces X and Y , we write [X ,Y] for the set of maps HA1

∗ (S)(X ,Y). The
nth motivic homotopy sheaf of a pointed space X over S is the sheaf πnX associated
to the presheaf U 7→ [Sn ∧ U+,X ].

There are two circles in the category of pointed spaces: the constant simplicial presheaf
S1 pointed at its 0-simplex and the representable presheaf Gm = A1 \ {0} pointed at 1.
These determine a bigraded family of spheres Si,j = (S1)∧i−j ∧G∧j

m .

Definition 2.4 For a pointed space X over S and natural numbers i and j with i ≥ j,
write πi,jX for the set of maps [Si,j,X].

The category of pointed spaces Spc∗(S) equipped with the induced motivic model
category structure has many good properties which make it amenable to Bousfield
localization. In particular, Spc∗(S) is closed symmetric monoidal, pointed simplicial,
left proper and cellular.
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2.2 The stable Nisnevich local model structure

With the unstable motivic model category in hand, we now construct the stable motivic
model category using the general framework laid out by Hovey in [20].

Let T be a cofibrant replacement of A1/A1 − {0}. Morel and Voevodsky have shown
that T is weak equivalent to S2,1 in SpcA

1

∗ (S) [35, 3.2.15]. The functor T ∧ − on
SpcA

1

∗ (S) is a left Quillen functor, and we may invert it by creating a category of
T -spectra.

Definition 2.5 A T -spectrum X is a sequence of spaces Xn ∈ SpcA
1

∗ (S) equipped with
structure maps σn : T ∧ Xn → Xn+1 . A map of T -spectra f : X → Y is a collection of
maps fn : Xn → Yn which are compatible with the structure maps. We write SptT (S)
for the category of T -spectra of spaces.

To start, the level model category structure on SptT (S) is defined by declaring a map
f : X → Y to be a weak equivalence (respectively fibration) if every map fn : Xn → Yn

is a weak equivalence (respectively fibration) in the motivic model structure on Spc∗(S).
The cofibrations for the level model structure are determined by the left lifting property
for trivial level fibrations.

Definition 2.6 Let X be a T -spectrum. For integers i and j, the (i, j) stable homotopy
sheaf of X , written as πi,jX , is the Nisnevich sheafification of the presheaf U 7→
colimn πi+2n,j+nXn(U). A map f : X → Y is a stable weak equivalence if for all integers
i and j the induced maps f∗ : πi,jX → πi,jY are isomorphisms.

Definition 2.7 The stable model structure on SptT (S) is the model category where
the weak equivalences are the stable weak equivalences and the cofibrations are the
cofibrations in the level model structure. The fibrations are those maps with the right
lifting property with respect to trivial cofibrations. We write SHS for the homotopy
category of SptT (S) equipped with the stable model structure.

The stable model structure on SptT (S) can be realized as a left Bousfield localization of
the level-wise model structure, as defined by Hovey [20, 3.3].

Just as for the category SptS1 of simplicial S1 -spectra, there is not a symmetric monoidal
category structure on SptT (S) which lifts the smash product ∧ in SHS . One remedy is
to use a category of symmetric T -spectra SptΣT (S). The construction of this category is
given by Hovey in [20, 7.7] and Jardine in [27]. It is proven in [20, 9.1] that there is
a zig-zag of Quillen equivalences from SptΣT (S) to SptT (S), hence SHS is equivalent
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to the homotopy category of SptΣT (S) as well. Since Quillen equivalences induce
equivalences of homotopy categories, the category SHS is a symmetric monoidal
triangulated category with shift functor [1] = S1,0 ∧ −.

Definition 2.8 If E is a T -spectrum over S , write πi,jE for SHS(Σi,j
1,E). In the case

where E = 1 and S = Spec(R) for a ring R, we simply write πi,j(R) for SHS(Σi,j
1,1).

In addition to the category of T -spectra, we will find it convenient to work with the
category of (Gm, S1)-bispectra, see Jardine [27] or the Nordfjordeid lectures [14].

Definition 2.9 Consider the simplicial circle S1 as a space over S given by the constant
presheaf. An S1 -spectrum over S is a sequence of spaces Xn ∈ Spc∗(S) equipped with
structure maps σn : S1∧Xn → Xn+1 . A map of S1 -spectra over S is a sequence of maps
fn : Xn → Yn that are compatible with the structure maps. The collection of S1 -spectra
over S with compatible maps between them forms a category SptS1(S).

First equip SptS1(S) with the level model structure with respect to the Nisnevich local
model structure on Spc∗(S). The nth stable homotopy sheaf of an S1 -spectrum E over
S is the Nisnevich sheaf πnE = colimπn+jEj . A map f : E → F of S1 -spectra over S is
a simplicial stable weak equivalence if for all n ∈ Z the induced map f∗ : πnE → πnF
is an isomorphism of sheaves. The stable Nisnevich local model category structure on
SptS1(S) is obtained by localizing at the class of simplicial stable equivalences, as in
definition 2.7.

The motivic stable model category structure on SptS1(S) is obtained from the simplicial
stable model category structure by left Bousfield localization at the class of maps
WA1 = {Σ∞X+ ∧ A1 → Σ∞X+ |X ∈ Sm/S}. Write SptA

1

S1 (S) for the motivic stable
model category LWA1 SptS1(S) and write SHA1

S1 (S) for its homotopy category. The
nth motivic stable homotopy sheaf of an S1 -spectrum E is the Nisnevich sheaf πA

1

n E
associated to the presheaf U 7→ SHA1

S1 (Sn ∧ Σ∞U+,E).

Definition 2.10 In the projective model structure on Spc∗(S), the space Gm pointed at
1 is not cofibrant. We abuse notation and write Gm for a cofibrant replacement of Gm .
A (Gm, S1)-bispectrum over S is a Gm -spectrum of S1 -spectra. We write SptGm,S1(S)
for the category of (Gm, S1)-bispectra over S . Viewing SptGm,S1(S) as the category
of Gm -spectra of S1 -spectra, we first equip SptGm,S1(S) with the level model category
structure with respect to the motivic stable model category structure on SptS1(S). The
motivic stable model category structure on SptGm,S1(S) is the left Bousfield localization
at the class of stable equivalences.
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There are left Quillen functors Σ∞S1 : Spc∗(S) → SptS1(S) and Σ∞Gm
: SptS1(S) →

SptGm,S1(S). Additionally, the category SptGm,S1(S) equipped with the motivic stable
model structure is Quillen equivalent to the stable model category structure on SptT (S);
see the Nordfjordeid lectures [14, page 216].

Definition 2.11 To any spectrum of simplicial sets E ∈ SptS1 we may associate
the constant S1 -spectrum cE over S with value E . That is, cE is the sequence of
spaces cEn with the evident bonding maps. For a simplicial spectrum E , we also
write cE for the (Gm, S1)-bispectrum Σ∞Gm

cE . This defines a left Quillen functor
c : SptS1 → SptGm,S1(B) with right adjoint given by evaluation at S . Compare with
Levine [29, 6.5].

2.3 Base change of stable model categories

Definition 2.12 Let f : R → S be a map of base schemes. Pull-back along f
determines a functor f−1 : Sm/S→ Sm/R which induces Quillen adjunctions (f ∗, f∗) :
SpcA

1

∗ (S)→ SpcA
1

∗ (R) and (f ∗, f∗) : SptT (S)→ SptT (R).

We now discuss some of the properties of base change. A more thorough treatment is
given by Morel in [33, §5]. The map f∗ sends a space X over R to the space X ◦ f−1

over S . The adjoint f ∗ is given by the formula (f ∗Y)(U) = colimU→f−1V Y(V). For a
smooth scheme X over S , a standard calculation shows f ∗X = f−1X . Additionally, if
cA is a constant simplicial presheaf on Sm/S , it follows that f ∗(cA) = cA.

The Quillen adjunction (f ∗, f∗) extends to both the model category of T -spectra and
(Gm, S1)-bispectra by applying the maps f ∗ , and respectively f∗ , term-wise to a given
spectrum. In the case of f ∗ for T -spectra, for instance, the bonding maps of f ∗E are
given by T ∧ f ∗En ∼= f ∗(T ∧ En)→ f ∗(En+1) as f ∗T = T . The same reasoning shows
that the adjunction (f ∗, f∗) extends to (Gm, S1)-bispectra.

Write Q (respectively R) for the cofibrant (respectively fibrant) replacement functor in
SptT (S). The derived functors Lf ∗ and Rf∗ are given by the formulas Lf ∗ = f ∗Q and
Rf∗ = f∗R.

Let f : C → B be a smooth map. The functor f# : Sm/C → Sm/B sends α : X → C
to f ◦ α : X → B and induces a functor f# : SpcA

1

∗ (B) → SpcA
1

∗ (C) by restricting a
presheaf on Sm/B to a presheaf on Sm/C . The functor f ∗ is canonically equivalent to
f# on the level of spaces and spectra.
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2.4 The connectivity theorem

Morel establishes the connectivity of the sphere spectrum over fields F by studying the
effect of Bousfield localization at WA1 of the stable Nisnevich local model category
structure on SptS1(F) (see definition 2.9).

An S1 -spectrum E over S is said to be simplicially k-connected if for any n ≤ k , the
simplicial stable homotopy sheaves πnE are trivial. An S1 -spectrum E is k-connected
if for all n ≤ k the motivic stable homotopy sheaves πA

1

n E are trivial.

Theorem 2.13 (Morel’s connectivity theorem) If E is a simplicially k-connected
S1 -spectrum over an infinite field F , then E is also k-connected.

Morel’s connectivity theorem has been proven when F is an infinite field in [34], but
the argument there does not hold for finite fields. Private correspondence with Panin
gives a new argument to prove Morel’s connectivity theorem for finite fields as well.

The connectivity theorem along with the work of Morel in [32, §5] yield the following.
This also follows from Voevodsky [47, 4.14].

Corollary 2.14 Over a field F where Morel’s connectivity theorem holds, the sphere
spectrum 1 is (−1)-connected. In particular, for all s− w < 0 the groups πs,w(F) are
trivial.

3 Comparison to the stable homotopy category

The following result of Levine is crucial for our calculations [29, Theorem 1].

Theorem 3.1 If S = Spec(C), the functor Lc : SH → SHS is fully faithful.

Proposition 3.2 Let f : R→ S be a map of base schemes. The following diagram of
stable homotopy categories commutes.

SH
Lc
&&

Lc
xx

SHS
Lf ∗ // SHR
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Proof The result follows by establishing f ∗ ◦ c = c on the level of model categories.
For a constant space cA ∈ Spc(S), we have f ∗cA = cA by the calculation

(f ∗cA)(U) = colim
U→f−1V

cA(V) = A

given the formula for f ∗ in section 2.3. As the base change map is extended to T -spectra
by applying f ∗ term-wise, the claim follows.

Proposition 3.3 Let S be a base scheme equipped with a map Spec(C) → S . Then
Lc : SH → SHS is faithful.

Proof For symmetric spectra X and Y , the map Lc : SH(X,Y) → SH(C)(cX, cY)
factors through SHS(cX, cY) by proposition 3.2. Theorem 3.1 implies that the map
Lc : SH(X,Y)→ SHS(cX, cY) must be injective.

Corollary 3.4 Write W(Fp) for the ring of Witt vectors of Fp and K for the fraction
field of W(Fp) (see Serre [43, II §6] for a definition). The map Lc : πs

n → πn,0(W(Fp))
is an injection, because we have maps W(Fp)→ K → C.

4 Motivic cohomology

Spitzweck has constructed a spectrum HZ in SptΣT (S) which represents motivic
cohomology Ha,b(X;Z) defined using Bloch’s cycle complex when S is the Zariski
spectrum of a Dedekind domain [45]. Spitzweck establishes enough nice properties of
HZ so that we may construct the motivic Adams spectral sequence over general base
schemes and establish comparisons between the motivic Adams spectral sequence over
a Hensel local ring in which ` is invertible and its residue field.

4.1 Integral motivic cohomology

Definition 4.1 Over the base scheme Spec(Z), the spectrum HZSpec(Z) is defined by
Spitzweck in [45, 4.27]. For a general base scheme S , we define HZS to be f ∗HZSpec(Z)

where f : S→ Spec(Z) is the unique map.

Let S = Spec(D) for D a Dedekind domain. For X ∈ Sm/S , Spitzweck shows there is a
canonical isomorphism SHS(Σ∞X+,Σ

a,bHZ) ∼= Ha,b(X;Z), where Ha,b(−;Z) denotes
Levine’s motivic cohomology defined using Bloch’s cycle complex [45, 7.19]. The
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isomorphism is functorial with respect to maps in Sm/S . Additionally, if i : {s} → S
is the inclusion of a closed point with residue field k(s), there is a commutative diagram
for X ∈ Sm/S .

SHS(Σ∞X+,Σ
a,bHZ)

∼= //

��

Ha,b(X;Z)

��
SH(k(s))(Li∗Σ∞X+,Σ

a,bHZ)
∼= // Ha,b(Li∗X;Z)

If the residue field k(s) has positive characteristic, there is a canonical isomorphism
of ring spectra Li∗HZS ∼= HZk(s) by Spitzweck [45, 9.16]. For a smooth map of base
schemes f : R → S , there is an isomorphism Lf ∗HZS ∼= HZR , because when f is
smooth we have Lf ∗ = f ∗ , see Morel [33, page 44]. It is then straightforward to see
that f ∗HZS ∼= HZR .

4.2 Motivic cohomology with coefficients Z/`

For a prime `, write HZ/` for the cofiber of the map `· : HZ → HZ in SHS . The
spectrum HZ/` represents motivic cohomology with Z/` coefficients. For a smooth
scheme X over S , we write H∗∗(X;Z/`) for the motivic cohomology of X with Z/`
coefficients. When S is the Zariski spectrum of a ring R, we write H∗∗(R;Z/`) for
H∗∗(Spec(R);Z/`). We will frequently omit Spec from our notation when the meaning
is clear in other cases as well.

The now resolved Beilinson-Lichtenbaum conjecture allows us to calculate the mod 2
motivic cohomology of a finite field Fq of odd characteristic. In particular, there is an
isomorphism H∗∗(Fq;Z/2) ∼= KM

∗ (Fq)/2[τ ] where τ has bidegree (0, 1) and elements
of KM

n (Fq)/2 have bidegree (n, n). The group KM
1 (Fq)/2 ∼= F×q /F× 2

q is isomorphic
to Z/2. We write u for the non-trivial element of F×q /F× 2

q and ρ for the class of
−1. It is well known that −1 is a square in Fq if and only if q ≡ 1 mod 4. Hence
H∗∗(Fq;Z/2) ∼= Z/2[τ, u]/(u2) and u = ρ if and only if q ≡ 3 mod 4.

The mod 2 Bockstein homomorphism β is the motivic cohomology operation given by
the connecting homomorphism in the long exact sequence of cohomology associated to
the short exact sequence of coefficient groups

0→ Z/2→ Z/4→ Z/2→ 0.

The Bockstein is a cohomology operation of bidegree (1, 0). On the mod 2 motivic
cohomology of a finite field Fq , the Bockstein is determined by β(τ ) = ρ and β(u) = 0
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as it is a derivation. We remark that the Bockstein is trivial on the mod 2 motivic
cohomology of a finite field Fq if and only if q ≡ 1 mod 4.

Proposition 4.2 Let D be a Hensel local ring in which ` is invertible. Write F for
the residue field of D and write π : D → F for the quotient map. Then the map
π∗ : H∗∗(D;Z/`) → H∗∗(F;Z/`) is an isomorphism of Z/`–algebras. Furthermore,
the action of the Bockstein is the same in either case.

Proof The rigidity theorem for motivic cohomology in Geisser [17, 1.2(3)] gives the
isomorphism. The map Lπ∗ gives comparison maps for the long exact sequences
which define the Bockstein over D and F . The rigidity theorem shows the long exact
sequences are isomorphic, so the action of the Bockstein is the same in either case.

4.3 Mod 2 motivic cohomology operations and cooperations

The mod 2 motivic Steenrod algebra over a base scheme S , which we write as A∗∗(S), is
the algebra of bistable mod 2 motivic cohomology operations. A bistable cohomology
operation is a family of operations θ∗∗ : H∗∗(−;Z/2)→ H∗+a,∗+b(−;Z/2) which are
compatible with the suspension isomorphism for both the simplicial circle S1 and the
Tate circle Gm .

When S is the Zariski spectrum of a characteristic 0 field, Voevodsky identified the
structure of this algebra in [49, 50]. Voevodsky’s calculation was extended to hold
where the base is the Zariski spectrum of a field of positive characteristic p 6= 2 by
Hoyois, Kelly and Østvær in [22]. In particular, the algebra A∗∗(S) is generated over
F2 by the Steenrod squaring operations Sqi of bidegree (i, bi/2c) and the operations
given by cup products x∪− where x ∈ H∗∗(S;Z/2). The Steenrod squaring operations
satisfy motivic Adem relations, which are given by Voevodsky in [49, §10] (a minor
modification is needed in the case a + b ≡ 1 mod 2).

We record the structure of the mod 2 dual Steenrod algebra A∗∗(Fq) for a finite field
Fq of characteristic different from 2 in the following proposition.

Proposition 4.3 Let Fq be a finite field of odd characteristic. The mod 2 dual Steenrod
algebra is an associative commutative algebra of the following form.

A∗∗(Fq) ∼= H∗∗(Fq)[τi, ξj | i ≥ 0, j ≥ 1]/(τ 2
i − τξi+1 − ρτi+1 − ρτ0ξi+1)

Here τi has bidegree (2i+1 − 1, 2i − 1) and ξi has bidegree (2i+1 − 2, 2i − 1). Note
that if q ≡ 1 mod 4, the relation for τ 2

i simplifies to τ 2
i = τξi+1 as ρ = 0.
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The structure maps for the Hopf algebroid (H∗∗(Fq),A∗∗(Fq)), which we write simply
as (H∗∗,A∗∗), are as follows.

(a) The left unit ηL : H∗∗ → A∗∗ is given by ηL(x) = x .

(b) The right unit ηR : H∗∗ → A∗∗ is determined as a map of Z/2–algebras
by ηR(ρ) = ρ and ηR(τ ) = τ + ρτ0 . In the case where ρ is trivial, that is,
q ≡ 1 mod 4, the right and left unit agree ηR = ηL .

(c) The augmentation ε : A∗∗ → H∗∗ kills τi and ξi , and for x ∈ H∗∗ , it follows
that ε(x) = x .

(d) The coproduct ∆ : A∗∗ → A∗∗ ⊗H∗∗ A∗∗ is a map of graded Z/2–algebras
determined by ∆(x) = x⊗1 for x ∈ H∗∗ , ∆(τi) = τi⊗1+1⊗τi +

∑i−1
j=0 ξ

2j

i−j⊗τj

and ∆(ξi) = ξi ⊗ 1 + 1⊗ ξi +
∑i−1

j=1 ξ
2j

i−j ⊗ ξj .

(e) The antipode c is a map of Z/2–algebras determined by c(ρ) = ρ, c(τ ) = τ+ρτ0 ,
c(τi) = τi +

∑i−1
j=0 ξ

2j

i−jc(τj) and c(ξi) = ξi +
∑i−1

j=1 ξ
2j

i−jc(ξj).

Proof The calculation can be found in the work of Hoyois, Kelly and Østvær [22] and
Voevodsky [49].

We now investigate the structure of the Hopf algebroid of mod 2 cohomology coopera-
tions over a Dedekind domain.

Definition 4.4 Let D be a Dedekind domain, and let C denote the set of sequences
(ε0, r1, ε1, r2, . . .) with εi ∈ {0, 1}, ri ≥ 0 and only finitely many non-zero terms. The
elements τi ∈ A2i+1−1,2i−1(D) and ξi ∈ A2i+1−2,2i−1(D) are constructed by Spitzweck
in [45, 11.23]. For any sequence I = (ε0, r1, ε1, r2, . . .) in C , write ω(I) for the element
τ ε0

0 ξ
r1
1 · · · and (p(I), q(I)) for the bidegree of the operation ω(I).

Spitzweck calculates in [45, 11.24] that the dual Steenrod algebra is generated by the
elements τi and ξj but does not identify the relations for τ 2

i . We record Spitzweck’s
calculation in the following proposition.

Proposition 4.5 Let D be a Dedekind domain. As an HZ/2 module, there is a weak
equivalence

∨
I∈B Σp(I),q(I)HZ/2→ HZ/2 ∧ HZ/2. The map is given by ω(I) on the

factor Σp(I),q(I)HZ/2.

To obtain the relations for τ 2
i , we find an analog of the result of Voevodsky [49, 6.10]

when D is a Hensel local ring.
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Proposition 4.6 Let D be a Hensel local ring in which 2 is invertible and let F denote
the residue field of D. Then the following isomorphism holds.

H∗∗(Bµ2,Z/2) ∼= H∗∗(D,Z/2)[[u, v]]/(u2 = τv + ρu)

Here v is the class v2 ∈ H2,1(Bµ2) defined by Spitzweck in [45, page 81] and
u ∈ H1,1(Bµ2;Z/2) is the unique class satisfying β̃(u) = v, where β̃ is the integral
Bockstein determined by the coefficient sequence Z→ Z→ Z/2.

Proof The motivic classifying space Bµ2 over D (respectively F ) fits into a triangle
Bµ2+ → (O(−2)P∞)+ → Th(O(−2)) by [49, (6.2)] and [45, (25)]. From this triangle,
we obtain a long exact sequence in mod 2 motivic cohomology [49, (6.3)] and [45, (26)].
The comparison map Lπ∗ : SHD → SHF induces a homomorphism of these long exact
sequences. The rigidity theorem 4.2 and the 5-lemma then show that the comparison
maps are all isomorphisms. As the desired relation holds in the motivic cohomology
of Bµ2 over F and the choices of u and v are compatible with base change, the result
follows.

With this result, the relations τ 2
i = τξi+1 + ρτi+1 + ρτ0ξi+1 in A∗∗(D) follow when

D is a Hensel local ring in which 2 is invertible by the argument given by Voevodsky
in [49, 12.6]. Furthermore, the calculation of Spitzweck in [45, 11.23] shows that the
coproduct ∆ is the same as in proposition 4.3(d). The action of the Steenrod squaring
operations H∗∗(D) and H∗∗(F) agree by the naturality of these cohomology operations,
since these cohomology groups are isomorphic. This shows that the right unit ηR and
the antipode c are given by the formulas in proposition 4.3(b,e).

Remark 4.7 Let D be a Dedekind domain in which 2 is invertible and consider the
map f : Z[1/2] → D. A key observation of Spitzweck in the proof of [45, 11.24] is
that the map Lf ∗ : A∗∗(Z[1/2])→ A∗∗(D) satisfies Lf ∗τi = τi and Lf ∗ξi = ξi for all
i. For a map j : D→ D̃ of Dedekind domains in which 2 is invertible, it follows that
Lj∗τi = τi and Lj∗ξi = ξi for all i.

Proposition 4.8 Let D be a Hensel local ring in which 2 is invertible and let F
denote the residue field of D. Then the comparison map π∗ : A∗∗(D)→ A∗∗(F) is an
isomorphism of Hopf algebroids.

Proof Remark 4.7 shows that the map π∗ : A∗∗(D)→ A∗∗(F) is an isomorphism of
left H∗∗(F) modules. The compatibility of the isomorphism with the coproduct, right
unit and antipode was established above.
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The following definition is taken from Dugger and Isaksen [12, 2.11].

Definition 4.9 A set of bigraded objects X = {x(a,b)} is said to be motivically finite
if for any bigrading (a, b) there are only finitely many objects y(a′,b′) ∈ X for which
a ≥ a′ and 2b − a ≥ 2b′ − a′ . We say a bigraded algebra or module is motivically
finite if it has a generating set which is motivically finite.

To motivate the preceding definition, observe that if H∗∗(X) is a motivically finite
H∗∗(F) module, then H∗∗(X) is a finite dimensional F` vector space in each bidegree.

For a Hensel local ring D, the isomorphism A∗∗(D) ∼= A∗∗(F) of motivically finite
algebras gives an isomorphism of their duals A∗∗(D) ∼= A∗∗(F). See Hoyois, Kelly
and Østvær [22, 5.2] and Spitzweck [45, 11.25] for the proof that the dual of the Hopf
algebroid of cooperations is the Steenrod algebra.

The analogous results of this section hold for mod ` motivic cohomology over a base
field or a Hensel local ring in which ` is invertible for odd primes `. Precise statements
can be found in Wilson [52].

5 Motivic Adams spectral sequence

The motivic Adams spectral sequence over a base scheme S may be defined using the
appropriate notion of an Adams resolution; see Adams [2], Switzer [46], or Ravenel [40]
for treatments in the topological case. We recount the definition for completeness and
establish some basic properties of the motivic Adams spectral sequence under base
change. We follow Dugger and Isaksen [12, §3] for the definition of the motivic Adams
spectral sequence. See also the work of Hu, Kriz and Ormsby [24, §6].

Let p and ` be distinct primes and let q = pν for some integer ν ≥ 1. We will be
interested in the specific case of the motivic Adams spectral sequence over a field and
over a Hensel discrete valuation ring with residue field of characteristic p. We write H
for the spectrum HZ/` over the base scheme S and H∗∗(S) for the motivic cohomology
of S with Z/` coefficients. The spectrum H is a ring spectrum and is cellular in the
sense of Dugger and Isaksen [11] by work of Spitzweck [45, 11.4].

5.1 Construction of the mod ` MASS

Definition 5.1 Consider a spectrum X over the base scheme S and let H denote the
spectrum in the cofibration sequence H → 1 → H → ΣH . The standard H -Adams
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resolution of X is the tower of cofibration sequences Xf +1 → Xf → Wf given by
Xf = H∧f ∧ X and Wf = H ∧ Xf ; compare this with [2, §15].

X0 = X

j0 ''

H ∧ X
i1oo

j1 ((

H ∧ H ∧ X
i2oo · · ·oo

H ∧ X

•

∂0

77

H ∧ H ∧ X

•

∂1

55

Definition 5.2 Let X be a T -spectrum over S and let {Xf ,Wf } be the standard H -
Adams resolution of X . The motivic Adams spectral sequence for X with respect to H
is the spectral sequence determined by the following exact couple.

⊕π∗∗Xf
i∗ // ⊕π∗∗Xf

j∗vv
⊕π∗∗Wf

∂∗

hh

The E1 term of the motivic Adams spectral sequence is Ef ,(s,w)
1 = πs,wWf . The index f

is called the Adams filtration, s is the stem and w is the motivic weight. The Adams
filtration of π∗∗X is given by Fiπ∗∗X = im(π∗∗Xi → π∗∗X).

Proposition 5.3 Let S denote the category of spectral sequences in the category of
abelian groups. The associated spectral sequence to the standard H -Adams resolution
defines a functor M : SHS → S. Furthermore, the motivic Adams spectral sequence
is natural with respect to base change.

Proof The construction of the standard H -Adams resolution is functorial because
SHS is symmetric monoidal. Given X → X′ we get induced maps of standard H -
Adams resolutions {Xf ,Wf } → {X′f ,W ′f }. As π∗∗(−) is a triangulated functor, we
get an induced map of the associated exact couples and hence of spectral sequences
M(X)→M(X′).

Let f : R → S be a map of base schemes. The claim is that there is a natural
transformation between M : SHS → S and M ◦ Lf ∗ : SHS → SHR → S. Let
X ∈ SHS and let {Xf ,Wf } be the standard HS -Adams resolution of X in SHS . We
may as well assume X is cofibrant, in which case QX = X where Q is the cofibrant
replacement functor. Let {X′f ,W ′f } denote the standard HR -Adams resolution of
Lf ∗X = f ∗X . Observe that {f ∗Xf , f ∗Wf } = {X′f ,W ′f }, since f ∗1 = 1, f ∗HS = HR and
Lf ∗ is a monoidal functor. We therefore have a map {Lf ∗Xf ,Lf ∗Wf } → {X′f ,W ′f }.
Applying Lf ∗ : SHS(Σs,w

1,−) → SHR(Σs,w
1,Lf ∗−) to {Xf ,Wf } gives a map of

exact couples and therefore a map ΦX : MS(X)→MR(Lf ∗X). It is straightforward to
verify that Φ determines a natural transformation.
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Corollary 5.4 For a map of base schemes f : R→ S , there is a map of motivic Adams
spectral sequences Φ : MS(1)→MR(1). The map Φ is furthermore compatible with
the induced map π∗∗(S)→ π∗∗(R).

Definition 5.5 A particularly well behaved family of spectra in SHS are the cellular
spectra in the sense of Dugger and Isaksen [11, 2.10]. A spectrum E ∈ SHS is cellular
if it can be constructed out of the spheres Σ∞Sa,b for any integers a and b by homotopy
colimits. A cellular spectrum is of finite type if for some k it has a cell decomposition
with no cells Sa,b for a− b < k and at most finitely many cells Sa,b for any a and b,
see Hu, Kriz and Ormsby [24, §2].

In the following proposition, Ext is taken in the category of A∗∗–comodules. The
homological algebra of comodules is investigated thoroughly in Adams [2], Switzer [46]
and Ravenel [40].

Proposition 5.6 Suppose X is a cellular spectrum over the base scheme S . The motivic
Adams spectral sequence for X has E2 page given by

Ef ,(s,w)
2

∼= Extf ,(s+f ,w)
A∗∗(S) (H∗∗S,H∗∗X).

with differentials dr : Ef ,(s,w)
r → Ef +r,(s−1,w)

r for r ≥ 2.

Proof Spitzweck proves that H is a cellular spectrum in [45, 11.4]. The argument
given for [12, 7.10] by Dugger and Isaksen then goes through. The cellularity of X
and H is sufficient to ensure that the Künneth theorem holds, which is needed in the
argument.

Corollary 5.7 If X and X′ are cellular spectra over S and X → X′ induces an
isomorphism H∗∗X → H∗∗X′ , then the induced map M(X)→M(X′) is an isomorphism
of spectral sequences from the E2 page onwards.

Corollary 5.8 Let f : R → S be a map of base schemes and consider a cellular
spectrum X over S . Suppose f ∗ : H∗∗(S) → H∗∗(R), f ∗ : A∗∗(S) → A∗∗(R) and
f ∗ : H∗∗X → H∗∗(Lf ∗X) are all isomorphisms. Then MS(X) → MR(Lf ∗X) is an
isomorphism of spectral sequences from the E2 page onwards.

Corollary 5.9 Let D be a Hensel local ring in which ` is invertible and write F for
the residue field of D. Then the comparison map M(D)→M(F) is an isomorphism at
the E2 page.

Proof Propositions 4.2, 4.8 and corollary 5.8 give the result when X = 1.
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5.2 Convergence of the motivic Adams spectral sequence

To simplify the notation, write Ext(R) for ExtA∗∗(R)(H∗∗(R),H∗∗(R)) when working
over the base scheme S = Spec(R). For any abelian group G and any prime `, we
write G(`) for the `-primary part of G and G∧` = lim←−G/`ν for the `-completion of
G. If {Xf ,Wf } is the standard H -Adams resolution of a spectrum X , the H -nilpotent
completion of X is the spectrum X∧H = holimf X/Xf defined by Bousfiled in [6, §5].
The H -nilpotent completion has a tower given by Ci = holimf (Xi/Xf ).

Proposition 5.10 Let S be the Zariski spectrum of a field F with characteristic p 6= `

and let X be a cellular spectrum X over S of finite type (definition 5.5). If either ` > 2
and F has finite mod ` cohomological dimension, or ` = 2 and F[

√
−1] has finite

mod 2 cohomological dimension, the motivic Adams spectral sequence converges to
the homotopy groups of the H -nilpotent completion of X

Ef ,(s,w)
2 ⇒ πs,w(X∧H ).

Furthermore, there is a weak equivalence X∧H ∼= X∧` .

Proof The argument given by Hu, Kriz and Ormsby in [24], which requires Morel’s
connectivity theorem for F , carries over to the positive characteristic case from the
work of Hoyois, Kelly and Østvær [22]. See Ormsby and Østvær [39, 3.1] for the
analogous argument for the motivic Adams-Novikov spectral sequence.

We say a line s = mf + b in the (f , s)-plane is a vanishing line for a bigraded group
Gf ,s if Gf ,s is zero whenever 0 < s < mf + b.

Proposition 5.11 If F is an algebraically closed field of characteristic p 6= `, then a
vanishing line for Ext∗∗(F) ∼= Ext∗∗(W(F)) at the prime ` is s = (2`− 3)f . If Fq is a
finite field of characteristic p 6= `, then a vanishing line for Ext∗∗(Fq) ∼= Ext∗∗(W(Fq))
at the prime ` is s = (2`− 3)f − 1.

Proof A vanishing line exists for Ext(F) ∼= Ext(W(F)) when F is an algebraically
closed fields by comparison with C and the topological case by work of Dugger and
Isaksen [12]. The vanishing line s = f (2`− 3) from topology by Adams [1] is therefore
a vanishing line for Ext(F) ∼= Ext(W(F)).

For a finite field Fq , the line s = f (2` − 3) − 1 is a vanishing line for Ext(Fq) ∼=
Ext(W(Fq)) by the identification of the E2 page of the motivic Adams spectral sequence.
When ` = 2 this is given in proposition 7.1 when q ≡ 1 mod 4 and the calculation of
the ρ-BSS when q ≡ 3 mod 4. For odd `, see Wilson [52].
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We now discuss the convergence of the motivic Adams spectral sequence over the ring
of Witt vectors associated to a finite field or an algebraically closed field. Consult
Serre [43, II §6] for a construction of the ring of Witt vectors associated to a field of
positive characteristic.

Proposition 5.12 Let W(F) be the ring of Witt vectors of a field F that is either a finite
field or an algebraically closed field of characteristic p and let ` be a prime different
from p. The motivic Adams spectral sequence for 1 over W(F) converges to π∗∗(1∧H )
filtered by the Adams filtration, where 1∧H is the H -nilpotent completion of 1.

Proof The convergence MW(F)(1) ⇒ π∗∗(1∧H ) follows by the argument given by
Dugger and Isaksen [12, 7.15] given the vanishing line in the motivic Adams spectral
sequence by proposition 5.11.

Proposition 5.13 Let R and S be base schemes for which the motivic Adams spectral
sequence for 1 converges to π∗∗(1∧H ); see propositions 5.10 and 5.12 for examples. A
map of base schemes f : R→ S yields a comparison map MS(1∧H )→MR(1∧H ) which
is compatible with the induced map

π∗∗(1∧H (S))→ π∗∗(Lf ∗1∧H (S))→ π∗∗(1∧H (R)).

Proof Let {Xf (S),Wf (S)} denote the standard H -Adams resolution of 1 over S . We
now construct a map π∗∗(1∧H (S)) → π∗∗(1∧H (R)). Recall from proposition 5.3 that
f ∗Xf (S) = Xf (R). Since Lf ∗ is a triangulated functor, there are maps Lf ∗(1/Xf (S))→
1/Xf (R) and so a map Lf ∗1∧H (S) → 1

∧
H (R) by the universal property for 1∧H (R) =

holim1/Xf (R). Write Ci(S) for the tower of 1∧H (S) over S defined above (and in
Bousfield [6, §5]). Similar considerations give a map of towers Lf ∗Ci(S) → Ci(R).
Hence MS(1∧H ) → MR(1∧H ) is compatible with the induced map π∗∗(1∧H (S)) →
π∗∗(1∧H (R)).

Proposition 5.14 Let F be a field of characteristic p with finite mod ` cohomological
dimension for all primes ` 6= p and suppose Hs,w(F;Z/`) is a finite dimensional vector
space over F` for all s and w. Furthermore, assume that the mod ` motivic Adams
spectral sequence for 1 over F has a vanishing line, such as when F is a finite field
or an algebraically closed field. Then the `-primary part of πs,w(F) is finite whenever
s > w ≥ 0.

Proof Ananyevsky, Levine and Panin show that the groups πs,w(F) are torsion for
s > w ≥ 0 in [3]. It follows that the group πs,w(F) is the sum of its `-primary subgroups
πs,w(F)(`) . We set out to show that πs,w(F)(`) is finite when ` 6= p.
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The motivic Adams spectral sequence converges to π∗∗(1∧` ) by proposition 5.10 (this
requires Morel’s connectivity theorem). The vanishing line in the motivic Adams
spectral sequence shows that the Adams filtration of πs,w(1∧` ) has finite length, and
as each group Ef ,(s,w)

2 is a finite dimensional F` vector space, we conclude the groups
πs,w(1∧` ) are finite. From the long exact sequence of homotopy groups associated to the
triangle 1∧` →

∏
1/`ν →

∏
1/`ν defining 1

∧
` , we extract the following short exact

sequence of finite groups.

(5–1) 0→ lim←−
1 πs+1,w(1/`ν)→ πs,w(1∧` )→ lim←−πs,w(1/`ν)→ 0

Similarly, from the triangles 1 `ν ·−−→ 1→ 1/`ν we extract the short exact sequences

0→ πs,w(1)/`ν → πs,w(1/`ν)→ `νπs−1,w(1)→ 0,

which form a short exact sequence of towers. The maps in the tower {πs,w(1)/`ν} are
given by the reduction maps πs,w(1)/`ν → πs,w(1)/`ν−1 . Since the tower {πs,w(1)/`ν}
satisfies the Mittag-Leffler condition, we have lim←−

1 πs,w(1)/`ν = 0. The associated
long exact sequence for the inverse limit gives the exact sequence

(5–2) 0→ πs,w(1)∧` → lim←−πs,w(1/`ν)→ lim←− `νπs−1,w(1)→ 0.

The group lim←− `νπs−1,w(1) is the `-adic Tate module of πs−1,w(1), which is torsion-
free. Since lim←−πs,w(1/`ν) is finite by 5–1, the map lim←−πs,w(1/`ν)→ lim←− `νπs−1,w(1)
is trivial. But since the sequence 5–2 is exact, the group lim←− `νπs−1,w(1) is trivial,
πs,w(1)∧` ∼= lim←−πs,w(1/`ν) and πs,w(1)∧` is finite.

Write K(i) for the kernel of the canonical map πs,w(1)∧` → πs,w(1)/`i . The tower
· · ·K(i) ⊆ K(i − 1) ⊆ · · · ⊆ K(1) consists of finite groups and so it must stabilize.
Hence the tower

· · · → πs,w(1)/`ν → πs,w(1)/`ν−1 → · · · → πs,w(1)/`

must also stabilize. There is then some N for which `Nπs,w(1) = `νπs,w(1) for all
ν ≥ N , and so `Nπs,w(1) is `-divisible. From the short exact sequence of towers
`νπs,w(1)→ πs,w(1)→ πs,w(1)/`ν , taking the inverse limit yields the exact sequence

0→ `Nπs,w(1)→ πs,w(1)→ πs,w(1)∧` → 0.

Since πs,w(1)∧` is finite, it is `-primary and there is a short exact sequence

0→ `Nπs,w(1)(`) → πs,w(1)(`) → πs,w(1)∧` → 0.

The group `Nπs,w(1)(`) must be zero. Suppose for a contradiction that it is non-zero.
Then `Nπs,w(1)(`) must contain Z/`∞ as a summand, which shows the `-adic Tate
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module of πs,w(1) is non-zero—a contradiction.

We now identify the groups πs,s(1∧` ) for s ≥ 0.

Proposition 5.15 Let F be a finite field or an algebraically closed field of characteristic
p 6= `. When s = w ≥ 0 or s < w, the motivic Adams spectral sequence of 1 over F
converges to the `-completion of πs,w(F).

Proof If s < w, the convergence follows from Morel’s connectivity theorem. When
s = w ≥ 0, proposition 5.10 implies that at bidegree (s,w) the motivic Adams spectral
sequence converges to the group πs,w(1∧` ). Since πs−1,s(1) = 0 by Morel’s connectivity
theorem, the short exact sequence (see, for example, Hu, Kriz, Ormsby [24, (2)])

0→ Ext(Z/`∞, πs,s(1))→ πs,s(1∧` )→ Hom(Z/`∞, πs−1,s(1))→ 0

gives an isomorphism Ext(Z/`∞, πs,s(1)) ∼= πs,s(1∧` ). In [34, 1.25], Morel has
calculated π0,0(F) ∼= GW(F) and πs,s(F) ∼= W(F) for s > 0 where W(F) is the Witt
group of the field F . For the fields under consideration, GW(F) and W(F) is a finitely
generated abelian group. But for any finitely generated abelian group A, there is an
isomorphism Ext(Z/`∞,A) ∼= A∧` , given in Bousfield and Kan [7, Chapter VI§2.1],
which concludes the proof.

6 Stable stems over an algebraically closed field

Let F be an algebraically closed field of positive characteristic p. We write W = W(F)
for the ring of Witt vectors of F , K = K(F) for the field of fractions of W and K = K(F)
for the algebraic closure of K . Note that K is a field of characteristic 0. The previous
sections have set us up with enough machinery to compare the motivic Adams spectral
sequences at a prime ` 6= p over the associated base schemes Spec(F), Spec(W) and
Spec(K). We will often write the ring instead of the Zariski spectrum of the ring in
our notation. For any Dedekind domain R, we write Ext(R) for the trigraded ring
ExtA∗∗(R)(H∗∗(R),H∗∗(R)).

Proposition 6.1 Let F be an algebraically closed field of positive characteristic p, and
let ` be a prime different from p. The E2 page of the mod ` motivic Adams spectral
sequence for 1 over W , the ring of Witt vectors of F , is given by

Ef ,(s,w)
2 (W) ∼= Extf ,(s+f ,w)(W) ∼= Extf ,(s+f ,w)(F).
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Proof Since W is a Hensel local ring with residue field F , proposition 5.9 applies.

Proposition 6.2 Let F be an algebraically closed field of characteristic p. The
homomorphism f : W → K induces isomorphisms of graded rings f ∗ : H∗∗(W) →
H∗∗(K) and f ∗ : A∗∗(W)→ A∗∗(K).

Proof It suffices to establish isomorphisms for motivic cohomology, as H∗∗(S) ∼=
H−∗,−∗(S). Since H∗∗(W) ∼= H∗∗(Fp), we have H∗∗(W) ∼= F`[τ ] where τ ∈ H0,1(W) ∼=
µ`(W). We also have H∗∗(K) ∼= F`[τ ]. To identify the ring map f ∗ : H∗∗(W)→ H∗∗(R)
it suffices to identify the value of f ∗(τ ). The homomorphism f ∗ : H0,1(W)→ H0,1(K)
may be identified with µ`(W) → µ`(K), which is an isomorphism. Hence f ∗ :
H∗∗(W) → H∗∗(K) is an isomorphism. The argument given for proposition 4.8
establishes that j∗ : A∗∗(W)→ A∗∗(K) is an isomorphism.

Corollary 6.3 Let F be an algebraically closed field of characteristic p. The homo-
morphisms W → K and W → F induce isomorphisms of motivic Adams spectral
sequences for 1 from the E2 page onwards. In particular, Ext(F) ∼= Ext(W) ∼= Ext(K).

Lemma 6.4 Let f : k→ K be an extension of algebraically closed fields of character-
istic 0. For all s and w ≥ 0, base change induces an isomorphism πs,w(k)→ πs,w(K).

Proof Let ` be a prime. The maps f ∗ : H∗∗(k)→ H∗∗(K) and f ∗ : A∗∗(k)→ A∗∗(K)
are isomorphisms, hence the induced map of cobar complexes f ∗ : C∗(k)→ C∗(K) is
an isomorphism. It follows that the map Mk(1)→MK(1) is an isomorphism from the
E2 page onwards. The homomorphism Lf ∗ : π∗∗(1∧H (k))→ π∗∗(1∧H (K)) is therefore an
isomorphism since it is compatible with the map of spectral sequences. Propositions
5.14 and 5.15 identify πs,w(1∧H ) with πs,w(1)∧` for all s ≥ w ≥ 0 over both k and K .
By the work of Ananyevsky, Levine and Panin [3], the groups πs,w(k) and πs,w(K) are
torsion for s > w ≥ 0 and so they are the sum of their `-primary parts. This establishes
the result for s > w ≥ 0. When s = w ≥ 0, the result follows by proposition 5.15 and
Morel’s identification of the groups πn,n(F). If s < w, the connectivity theorem applies
and gives the isomorphism.

Corollary 6.5 Let K be an algebraically closed field of characteristic 0. For any
n ≥ 0, the map Lc : πs

n → πn,0(K) is an isomorphism.

Proof The statement is true when K = C by Levine’s theorem. The previous
proposition extends the result to an arbitrary algebraically closed field of characteristic
0.

Algebraic & Geometric Topology XX (20XX)



1024 Glen Matthew Wilson and Paul Arne Østvær

Theorem 6.6 Let F be an algebraically closed field of characteristic p and let ` be
a prime different from p. Then there is an isomorphism πs,w(F)∧` ∼= πs,w(C)∧` for all
s ≥ w ≥ 0.

Proof Consider the homomorphisms F ← W → K . The induced maps on the motivic
Adams spectral sequence are compatible with the maps of homotopy groups

π∗∗(1∧H (F))← π∗∗(1∧H (W))→ π∗∗(1∧H (K))

By corollary 6.3, the maps MF(1)←MW(1)→MK(1) are isomorphisms at the E2

page, and so there are isomorphisms π∗∗(1∧H (F)) ∼= π∗∗(1∧H (W)) ∼= π∗∗(1∧H (K)). For
s ≥ w ≥ 0, propositions 5.14 and 5.15 give isomorphisms πs,w(1∧H (F)) ∼= πs,w(F)∧` and
πs,w(1∧H (K)) ∼= πs,w(K)∧` . The result now follows from lemma 6.4.

Corollary 6.7 Let F be an algebraically closed field of characteristic p and let ` be a
prime different from p. The homomorphism Lc : (πs

n)∧` → πn,0(F)∧` is an isomorphism
for all n ≥ 0.

Proof The previous theorem yields the following diagram for all n ≥ 0.

(πs
n)∧`

∼=
Lc

&&
Lc
��

Lc

xx
πn,0(F)∧` πn,0(1∧H (W))

∼= //
∼=oo πn,0(K)∧`

The map Lc : (πs
n)∧` → πn,0(K)∧` is an isomorphism by corollary 6.5, and so all of the

maps in the above diagram are isomorphisms.

Corollary 6.8 For a finite field Fq with characteristic p 6= `, the group (πs
n)∧` is a

summand of πn,0(Fq)∧` for n ≥ 0.

Proof The map Lc : πs
n → πn,0(Fp) factors through πn,0(Fq). Passing to the `-

completion, corollary 6.7 implies the composition (πs
n)∧` → πn,0(Fq)∧` → πn,0(Fp)∧` is

an isomorphism. Hence the result.

7 The motivic Adams spectral sequence for finite fields

We now analyze the two-complete stable stems π̂∗∗(Fq) = π∗∗(Fq)∧2 when q is odd.
The results of the previous section allow us to identify the nth topological two-complete
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stable stem π̂s
n = (πs

n)∧2 as a summand of π̂n,0(Fq). With this, we are able to analyze
the MASS for Fq in a range. We remind the reader that these results assume Morel’s
connectivity theorem hold for Fq , or the results hold without qualification for the fields
F̃q . For the remainder of this section, write H for the mod 2 motivic cohomology
spectrum.

7.1 The E2 page of MASS over Fq when q ≡ 1 mod 4

We will make frequent use of the calculation H∗∗(Fq;Z/2) ∼= Z/2[τ, u]/(u2) which
was given in section 4. Recall τ and u are in bidegree (0, 1) and (1, 1) respectively.

Proposition 7.1 The E2 page of the mod 2 motivic Adams spectral sequence for the
sphere spectrum over Fq with q ≡ 1 mod 4 is the trigraded algebra

E2 ∼= Ext(Fq) ∼= F2[τ, u]/(u2)⊗F2[τ ] Ext(Fp).

We abuse notation and write τ and u for their duals. Hence in the above, τ and u are
of degree (0,−1) and (−1,−1) respectively.

Proof Consult Dugger and Isaksen [12, 3.5] for a similar argument. Recall from
proposition 4.3 that A∗∗(Fq) ∼= A∗∗(Fp)⊗F2[τ ]F2[τ, u]/(u2) and H∗∗(Fq) ∼= H∗∗(Fp)⊗
F2[τ, u]/(u2). Since F2[τ, u]/(u2) is flat as a module over F2[τ ], a free resolution
H∗∗(Fp) ← P• by A∗∗(Fp) modules determines a free resolution H∗∗(Fq) ← P• ⊗
F2[τ, u]/(u2). It is necessary here that Sq1(τ ) = 0 for P• ⊗ F2[τ, u]/(u2) to be a
resolution of A∗∗(Fq) modules. The canonical map

HomA∗∗(Fp)(−,H
∗∗(Fp))⊗ F2[τ, u]/(u2)→ HomA∗∗(Fq)(−⊗ F2[τ, u]/(u2),H∗∗(Fq))

is a natural isomorphism, since a generating set for a module M over A∗∗(Fp) is also a
generating set for M ⊗ F2[τ, u]/(u2) over A∗∗(Fq) by proposition 4.3. We conclude
that Ext(Fp)⊗ F2[τ, u]/(u2) ∼= Ext(Fq).

By the previous proposition, the irreducible elements of Ext(C) are also irreducible
elements of Ext(Fq) when q ≡ 1 mod 4. The only additional irreducible element in
Ext(Fq) is the class u. The irreducible elements of Ext(Fq) up to stem s = 21 can
be found in table 1. These were obtained by consulting Isaksen [26, Table 8] and
independently verified by computer calculation by Fu and Wilson [16].

We now investigate the motivic May spectral sequence over the finite field Fq when
q ≡ 1 mod 4. We will find it useful for calculating Massey products in the MASS.
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Elt. Filtr. (f , s,w)
u (0,−1,−1)
τ (0, 0,−1)
h0 (1, 0, 0)
h1 (1, 1, 1)
h2 (1, 3, 2)
h3 (1, 7, 4)

Elt. Filtr. (f , s,w)
c0 (3, 8, 5)
Ph1 (5, 9, 5)
Ph2 (5, 11, 6)
d0 (4, 14, 8)
h4 (1, 15, 8)
Pc0 (7, 16, 9)

Elt. Filtr. (f , s,w)
e0 (4, 17, 10)
P2h1 (9, 17, 9)
f0 (4, 18, 10)
P2h2 (9, 19, 10)
c1 (3, 19, 11)
[τg] (4, 20, 11)

Table 1: The irreducible elements of Ext(Fq) with q ≡ 1 mod 4 in stem s ≤ 21

Definition 7.2 Write J for the cokernel of the map ηL : H∗∗ → A∗∗ in the category of
bigraded F2 vector spaces and consider the increasing filtration of A∗∗ given by

FnA∗∗ = ker(A∗∗
∆n

−−→ A⊗n+1
∗∗ → J⊗n+1).

This filtration on A∗∗ induces a filtration on the cobar complex (C, d) defined by
Ravenel in [40, A1.2.11]. The filtration of the cobar complex is compatible leads to a
spectral sequence [40, A1.3.9] called the motivic May spectral sequence.

Following the work of Dugger and Isaksen [12, §5], we are able to identify the structure
of the motivic May spectral sequence over a finite field Fq when q ≡ 1 mod 4.

Proposition 7.3 The associated graded Hopf algebroid E0A∗∗ to the filtration F∗A∗∗
of the motivic dual Steenrod algebra over a finite field Fq when q ≡ 1 mod 4 is the
exterior algebra over H∗∗(Fq) ∼= F2[τ, u]/(u2)

E0A∗∗ ∼= EH∗∗(Fq)(τi, ξ
2k

j | i ≥ 0, j ≥ 1, k ≥ 0).

If each generator ζi of E0Atop
∗ is is assigned the weight of τi−1 for i ≥ 1 and ζ2j

i is
assigned the weight of ξ2j−1

i for j ≥ 1, there is an isomorphism of trigraded algebras

E0A∗∗ ∼= F2[τ, u]/(u2)⊗F2 E0A∗

where A∗ denotes the topological dual Steenrod algebra, which was studied by Milnor
in [31].

Proof Since u ∈ F0A∗∗(Fq) and A∗∗(Fq) ∼= F2[τ, u]/(u2) ⊗F2[τ ] A∗∗(C), there are
isomorphisms FnA∗∗(Fq) ∼= FnA∗∗(C) ⊗F2[τ ] F2[τ, u]/(u2). Over C, there is an
isomorphism

E0A∗∗(C) ∼= F2[τ ]⊗F2 E0A∗

which follows by dualizing the result of Dugger and Isaksen in [12, 5.2(a)]. The result
now follows as F2[τ ]→ F2[τ, u]/(u2) is flat.
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Proposition 7.4 The E2 page of the motivic May spectral sequence over a finite field
Fq with q ≡ 1 mod 4 is given by

Em,f ,s,w
2 = Extf ,(s+f ,w,m)

E0A∗∗(Fq) (H∗∗(Fq),H∗∗(Fq))

∼= F2[τ, u]/(u2)⊗F2[τ ] Extf ,(s+f ,w,m)
E0A∗∗(C) (H∗∗(C),H∗∗(C))

where f is the Adams filtration (or homological degree), s is the stem, w is the
motivic weight and m is the May filtration. The differential dr changes grading as
dr : Em,f ,s,w

r → Em+r−1,f +1,s−1,w
r . The motivic May spectral sequence converges to

ExtA∗∗(H∗∗,H∗∗).

To be consistent with the work of Dugger and Isaksen [12, 26], we write the grading of
an element in the May spectral sequence in the form (m, f , s,w).

Proof The E2 page of the motivic May spectral sequence is identified by Ravenel
in [40, A1.3.9] in terms of the derived functors of the cotensor product H∗∗�A∗∗−.
In this case, the natural isomorphism HomA∗∗(H∗∗,−) ∼= H∗∗�A∗∗− identifies the
cotor groups with the ext groups in the statement of the proposition. The second
isomorphism follows formally from the result over C established by Dugger and Isaksen
in [12, 5.2(b)] by the flatness of F2[τ, u]/(u2) over F2[τ ].

A description of the motivic May spectral sequence E2 page over C is given by Dugger
and Isaksen in [12, §5] up to the 36 stem, from which one obtains a description of the
motivic May spectral sequence E2 page over Fq when q ≡ 1 mod 4 using the previous
proposition. One must simply add u to the list of generators of the E2 page given
in [12, Table 1] and the relation u2 = 0.

7.2 The E2 page of MASS over Fq when q ≡ 3 mod 4

For a finite field Fq with q ≡ 3 mod 4, the E2 page of the MASS can be identified in a
range using the ρ-Bockstein spectral sequence (ρ-BSS) which was introduced by Hill
in [18]. Here ρ = [−1] is the non-zero class in H1,1(Fq) ∼= F×q /2, since −1 is not a
square in F×q . We briefly describe the construction of the ρ-BSS and refer the reader to
Dugger and Isaksen [13] or Ormsby [37, 38] for more details.

Let C be the cobar construction corresponding to the Hopf algebroid

(F2[τ, ρ]/(ρ2),A∗∗(Fq)).
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The filtration of C given by 0 ⊆ ρC ⊆ C determines a spectral sequence, which in this
case is just the long exact sequence associated to the short exact sequence of complexes

0→ ρC → C → C/ρC → 0.

Note that ρC and C/ρC are both isomorphic to the cobar construction over C. Hence
we have the following long exact sequence.

· · · ρExti,(∗,∗)(C) // Exti,(∗,∗)(Fq) // Exti,(∗,∗)(C)
d1 // ρExti+1,(∗,∗)(C) · · ·

In spectral sequence notation, the E1 page is given by

Eε,f ,(s,w)
1

∼=


Extf ,(s,w)(C) if ε = 0

ρExtf ,(s+1,w+1)(C) if ε = 1

0 otherwise

with differential d1 : Eε,f ,(s,w)
1 → Eε+1,f +1,(s−1,w)

1 . The differential d1 satisfies the
Leibniz rule, so it suffices to identify the differential on irreducible elements. We
identify all differentials up to the 20 stem by hand in the following proposition; these
calculations have been verified by computer calculations.

Proposition 7.5 In the ρ-BSS for Fq with q ≡ 3 mod 4, every irreducible element
x of Ext(C) in stem s ≤ 19 other than τ has d1(x) = 0. Also, d1(τ ) = ρh0 and
d1([τg]) = ρh2e0 . Here [τg] is the irreducible element of Ext(C) in stem 20, weight
11 and filtration 4.

Proof The differential d1 vanishes on all irreducible classes in Ext(C) up to stem
20 for degree reasons except for possibly τ , f0 and [τg]. The class τ cannot survive
the ρ-BSS, since if it did, it would contribute a nonzero element to Ext0,0,−1(Fq) ∼=
Hom0,−1

A (H∗∗,H∗∗) which is trivial. We conclude d1(τ ) = ρh0 , because this is the only
possible nonzero value for d1(τ ).

The two possibilities for d1(f0) are 0 and ρh1e0 . Since h1f0 = 0 in Ext(C), we must
have d1(h1f0) = h1d1(f0) = 0; hence d1(f0) is annihilated by h1 . But as ρh1e0 is not
annihilated by h1 , we must have d1(f0) = 0.

The only possible nonzero value for d1([τg]) is ρh2e0 . From the relation h0[τg] =

τh2e0 , we calculate d1(τh2e0) = ρh0h2e0 and d1(h0[τg]) = h0d1([τg]). Hence
h0d1([τg]) = h0ρh2e0 , from which the result follows.

Example 7.6 Since d1(h1) = 0, we conclude d1(τh1) = ρh0h1 = 0, as h0h1 vanishes
in Ext(C). Hence there is a class [τh1] ∈ Ext1,(1,0)(Fq) which is irreducible.
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With this analysis of the ρ-BSS for Fq with q ≡ 3 mod 4, the structure of Ext(Fq) as a
graded abelian group up to stem 21 follows immediately and we may further identify
all irreducible elements in this range. The results of this proposition were verified by
computer calculation by Fu and Wilson [16].

Proposition 7.7 When q ≡ 3 mod 4, the irreducible elements of Ext(Fq) up to stem
s = 21 are given in table 2.

Elt. Filtr. (f , s,w)
ρ (0,−1,−1)
[ρτ ] (0,−1,−2)
[τ 2] (0, 0,−2)
h0 (1, 0, 0)
h1 (1, 1, 1)
[τh1] (1, 1, 0)
h2 (1, 3, 2)
[τh2

2] (2, 6, 3)
h3 (1, 7, 4)
[τh3

0h3] (4, 7, 3)
c0 (3, 8, 5)

Elt. Filtr. (f , s,w)
[τc0] (3, 8, 4)
Ph1 (5, 9, 5)
[τPh1] (5, 9, 4)
Ph2 (5, 11, 6)
[τh0h2

3] (3, 14, 7)
d0 (4, 14, 8)
[τh2

0d0] (6, 14, 7)
h4 (1, 15, 8)
[τh7

0h4] (8, 15, 7)
Pc0 (7, 16, 9)

Elt. Filtr. (f , s,w)
[τPc0] (7, 16, 8)
e0 (4, 17, 10)
P2h1 (9, 17, 9)
[τP2h1] (9, 17, 8)
f0 (4, 18, 10)
P2h2 (9, 19, 10)
c1 (3, 19, 11)
[τc1] (3, 19, 10)
[ρτg] (4, 19, 10)
[τ 2g] (4, 20, 10)

Table 2: The irreducible elements of Ext(Fq) with q ≡ 3 mod 4 in stem s ≤ 21

Proof The structure of Ext(Fq) as an abelian group follows directly from the ρ-BSS and
the differentials calculated in proposition 7.5. We now explain why the tabulated elements
comprise all of the irreducible elements in this range. If y ∈ H∗∗(ρC) ∼= ρExt(C), then
we may write y = ρ ·x with x ∈ H∗∗(C/ρC) ∼= Ext(C). So long as x 6= 1 and d1(x) = 0,
the element y is reducible. By proposition 7.5 we conclude the only irreducible elements
arising from ρExt(C) in this range are ρ, [ρτ ] and [ρτg].

Now consider an element x of H∗∗(C/ρC) ∼= Ext(C) which survives the ρ-BSS, that
is, d1(x) = 0. Then x is irreducible in Ext(Fq) if and only if for any factorization
x = a ·b in Ext(C) with d1(a) = d1(b) = 0 it follows a = 1 or b = 1. This observation
identifies all of the remaining irreducible elements in Ext(Fq) in the range s ≤ 21.

Remark 7.8 Although proposition 7.7 lists all of the irreducible elements in Ext(Fq)
when q ≡ 3 mod 4 in a range, there are hidden products in the ρ-BSS. For example, the
product [τh2

2] · h1 = ρc0 is hidden in the ρ-BSS. We obtained this product by computer
calculation, however the arguments by Dugger and Isaksen in [13, 6.2] can be used to
obtain some products by hand.
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7.3 The Adams spectral sequence for HZ[p−1]

We begin with the motivic Adams spectral sequence for X = HZ[p−1] over a finite field
Fq of characteristic p, as defined in 5.2. In propositions 7.10 and 7.11 we identify the
differentials for MFq(HZ[p−1]) which converges to π∗∗(HZ[p−1]∧2 ) ∼= H∗∗(Fq;Z)∧2 .
We accomplish this by working backwards from our knowledge of the target group
H∗∗(Fq;Z)∧2 which is isomorphic to H∗et(Fq;Z2(∗)) as a consequence of the Beilinson-
Lichtenbaum conjecture. Soulé’s calculation of H∗et(Fq;Z2(∗)) in [44, IV.2] then
gives

πs,w(HZ[p−1]) ∼=


Z` if s = w = 0

Z/(qw − 1)∧2 if s = −1,w ≥ 1

0 otherwise.

Although the spectrum HZ[p−1] is cellular by the Hopkins-Morel theorem proven by
Hoyois [21, §8.1], it is unclear if it is finite type. Instead of relying on proposition 5.10
for convergence, we establish a weak equivalence of the H -nilpotent completion of
HZ[p−1] with HZ∧2 .

Lemma 7.9 Let Fq be a finite field of characteristic p 6= 2. The H -nilpotent
completion of HZ[p−1] is weak equivalent to HZ∧2 .

Proof We will show that the tower HZ/2← HZ/22 ← HZ/23 ← · · · under HZ[p−1]
is an H -nilpotent resolution under HZ[p−1] (defined by Bousfield in [6, 5.6]). It will
then follow that the homotopy limit of this tower is weak equivalent to the H -nilpotent
completion of HZ[p−1]; that is, HZ∧2 ∼= HZ[p−1]∧H by the observations of Dugger and
Isaksen in [12, §7.7] which shows Bousfield’s result [6, 5.8] holds in the motivic stable
homotopy category.

The spectrum HZ[p−1] is the homotopy colimit of the diagram HZ p·−→ HZ p·−→ · · · .
From the triangle HZ 2ν ·−−→ HZ → HZ/2ν , we obtain a triangle HZ[p−1] 2ν ·−−→
HZ[p−1] → HZ/2ν after inverting p since p 6= 2 and HZ/2ν

p·−→ HZ/2ν is a
homotopy equivalence. Consider the following cofibration sequence of towers.

HZ[p−1]
= ��

HZ[p−1]2·oo

2·��

HZ[p−1]2·oo

22·��

· · ·oo

HZ[p−1]

��

HZ[p−1]=oo

��

HZ[p−1]=oo

��

· · ·oo

pt HZ/2oo HZ/22oo · · ·oo
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It is clear that HZ/2ν is H -nilpotent for all ν ≥ 1. For any H -nilpotent spectrum N
we show that the induced map colimν SHFq(HZ/2ν ,N)→ SHFq(HZ[p−1],N) is an
isomorphism following the proof of Bousfield [6, 5.7]. This isomorphism holds if and
only if

colim{SHFq(HZ[ 1
p ],N) 2·−→ SHFq(HZ[ 1

p ],N)} ∼= SHFq(HZ[ 1
p ],N)[ 1

2 ]

vanishes for all H -nilpotent N . This follows by an inductive proof with the following
filtration of the H -nilpotent spectra given in [6, 3.8]. Take C0 to be the collection of
spectra H ∧ X for X any spectrum, and let Cm+1 be the collection of the spectra N for
which either N is a retract of an element of Cm or there is a triangle X → N → Z with
X and Z in Cm .

If N = H ∧ X , it is clear that SHFq(HZ[p−1],N) 2−→ SHFq(HZ[p−1],N) is the zero
map, which establishes the base case. If the claim holds for N in filtration Cm , the claim
holds for N in filtration Cm+1 by a standard argument. The claim now follows.

Proposition 7.10 The mod 2 motivic Adams spectral sequence for X = HZ[p−1] over
Fq when q ≡ 1 mod 4 has E1 page given by

E1 ∼= F2[τ, u, h0]/(u2)

where h0 ∈ E1,(0,0)
1 .

Write ν2 for the 2-adic valuation and ε(q) for ν2(q− 1). For all r ≥ 1 the differentials
dr vanish on uτ j and hj

0 . If r < ε(q) + ν2(j) the differentials drτ
j vanish and we have

dε(q)+ν2(j)τ
j = uτ j−1hε(q)+ν2(j)

0 .

In particular, the differential d1 is trivial, so E2 ∼= E1 .

Proof We build the following H∗∗ -Adams resolution of HZ[p−1] utilizing the triangles
constructed in 7.9.

(7–1) HZ[p−1]

j0 &&

HZ[p−1]2·oo

j1 &&

HZ[p−1]2·oo · · ·oo

H

•

∂0

88

H

•

∂1

88

The spectrum HZ[p−1] is cellular, so the motivic Adams spectral sequence for X =

HZ[p−1] converges to π∗∗(HZ[p−1]∧H ) by proposition 5.10. Lemma 7.9 shows that
π∗∗(HZ[p−1]∧H ) ∼= π∗∗(HZ∧2 ), so the spectral sequence converges

Ef ,(s,w)
2 ⇒ H−s,−w(Fq;Z)∧2 .
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The groups Hs,w(Fq;Z)∧2 are isomorphic to Hs
et(Fq;Z2(w)) which were calculated by

Soulé in [44, IV.2]. If q ≡ 1 mod 4

(7–2) H−s,−w(Fq;Z)∧2 ∼=


Z` if s = w = 0

Z/(qw − 1)∧2 if s = −1,w ≥ 1

0 otherwise.

Note that ν2(qw − 1) = ε(q) + ν2(w) for all natural numbers w. The formulas for the
differentials on τ j are the only choice to give H∗∗(Fq;Z)∧2 as the E∞ term.

Proposition 7.11 The mod 2 motivic Adams spectral sequence for X = HZ[p−1] over
Fq when q ≡ 3 mod 4 has E1 page given by

E1 ∼= F2[τ, ρ, h0]/(ρ2)

where h0 ∈ E1,(0,0)
1 .

For all r ≥ 1 the differentials dr vanish on ρτ j and hj
0 . For odd natural numbers j,

we calculate d1(τ j) = ρτ j−1h0 . Write λ(q) for ν2(q2 − 1). If r < λ(q) + ν2(n) the
differentials drτ

2n vanish and

dλ(q)+ν2(n)τ
2n = ρτ 2n−1hλ(q)+ν2(n)

0 .

Proof The proof of the previous proposition goes through, except the target groups
H−s,−w(Fq;Z)∧2 force different differentials in the spectral sequence when q ≡ 3 mod 4.
Soulé’s calculation in equation 7–2 shows the order of H1,1(Fq;Z)∧2 is ν2(q− 1) = 1,
so we conclude d1(τ ) = ρh0 . As we have ν2(q2j − 1) = λ(q) + ν2(j) for all natural
numbers j, the claimed formulas for the differentials on τ 2n hold.

Corollary 7.12 In the MASS of 1 over a finite field Fq with q ≡ 1 mod 4, the
differentials dr(τ j) vanish when r < ε(q) + ν2(j) and

dε(q)+ν2(j)τ
j = uτ j−1hε(q)+ν2(j)

0 .

In the MASS of 1 over a finite field Fq with q ≡ 3 mod 4, the differentials dr([τ 2]n)
vanish when r < λ(q) + ν2(n) and

dλ(q)+ν2(n)[τ 2]n = [ρτ ][τ 2]n−1hλ(q)+ν2(n)
0 .

Proof The unit map 1→ HZ[p−1] induces a map of motivic Adams spectral sequences
M(1)→M(HZ[p−1]). On the E2 page, observe that when q ≡ 1 mod 4 the classes
τ and u map to τ and u respectively. When q ≡ 3 mod 4, the classes [τ 2], ρ, [ρτ ]
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map to [τ 2], ρ, [ρτ ] respectively. The identification of the differentials in the MASS
for HZ[p−1] in propositions 7.10 and 7.11 then force the differentials stated in the
corollary.

Example 7.13 When q ≡ 3 mod 4, the Massey product 〈ρ, ρ, h0〉 in the mod 2 motivic
Adams spectral sequence for HZ[p−1] is ρτ . Since we have ρ2 = 0 and d1(τ ) = ρh0 ,
it follows that 0 + ρτ is in the Massey product. It is straightforward to verify that the
indeterminacy is trivial.

7.4 Stable stems over Fq

We now begin an analysis of the differentials in the MASS to identify the two-complete
stable stems over Fq . To assist the reader with the computations presented below, figure
1 and figure 3 display E2 page charts of the MASS over Fq . Further charts can be found
in the work of Fu and Wilson [16]. Throughout this section, Fq is a finite field with q
elements where q is odd, and we write Ĝ for the two-completion of an abelian group G.

Corollary 6.8 shows that π̂s
n is a summand of π̂n,0(Fq) for all n ≥ 0. We will soon see

that for small values of n ≥ 0 we have π̂n,0(Fq) ∼= π̂s
n ⊕ π̂s

n+1 . However this pattern
fails when n = 19 and q ≡ 1 mod 4.

Lemma 7.14 For a finite field Fq with q odd, there is an isomorphism π0,0(Fq) ∼=
πs

0 ⊕ πs
1 .

Proof The stem π0,0(Fq) is isomorphic to the Grothendieck-Witt group GW(Fq) by
Morel [32]. The isomorphism GW(Fq) ∼= Z ⊕ Z/2 was established by Scharlau
in [42, Chapter 2, 3.3]. Recall that πs

0
∼= Z and πs

1
∼= Z/2. Hence we conclude

π0,0(Fq) ∼= πs
0 ⊕ πs

1 .

Morel’s calculation of π0,0(Fq) shows that 2 = (1− ε) + ρη , hence multiplication by
2 in π∗∗(Fq) is detected in the mod 2 motivic Adams spectral sequence by the class
h0 + ρh1 in Ext(Fq). This is needed to solve the extension problems when passing from
the Adams spectral sequence E∞ page to the stable stems.

Proposition 7.15 When q ≡ 1 mod 4 and 0 ≤ n ≤ 18, there is an isomorphism
π̂n,0(Fq) ∼= π̂s

n ⊕ π̂s
n+1 .
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Proof Lemma 7.14 takes care of the case when n = 0. We now focus on 0 < n ≤ 18
where the mod 2 MASS over Fq converges to the groups π̂n,0(Fq) by propositions 5.10
and 5.14.

The irreducible elements of Ext(Fq) in this range are given in table 1. All differentials
dr for r ≥ 2 vanish on h0, h1, h3, c0,Ph1, d0,Pc0,P2h1 for degree reasons. As
π̂3,0(Fq) must contain π̂s

3
∼= Z/8 as a summand by proposition 6.8, we conclude

d2(τ 2h2) = τ 2d2(h2) = 0. The only possible non-zero value for d2(h2) is uh3
1 . If

d2(h2) = uh3
1 , then d2(τ 2h2) = uτ 2h3

1 would be non-zero by the product structure of
Ext(Fq) in proposition 7.1—a contradiction. Hence d2(h2) = 0.

The non-zero Massey product Ph2 = 〈h3, h4
0, h2〉 has no indeterminacy, because

h3E4,(3,2)
2 + E4,(7,4)

2 h2 = 0. Since π̂s
11
∼= Z/8 is a summand of π̂11,0 , the differential

d2(Ph2) must vanish. The non-zero Massey product P2h2 = 〈h3, h4
0, h2〉 has no

indeterminacy, because h3E8,(11,6)
2 +E4,(7,4)

2 Ph2 = 0. Since d2(Ph2) = 0, the topological
result of Moss [36, 1(ii)] implies d2(P2h2) = 0.

The comparison map M(Fq) → M(Fp) shows that d2(h4) and d3(h0h4) must be
non-zero, as these differentials are non-zero in M(Fp) by corollary 6.3 and calculations
of Isaksen [26, Table 8] over C. The only possible choice for d2(h4) is h0h2

3 , but
d3(h0h4) is either h0d0 or h0d0 + uh1d0 . In order to have π̂s

14
∼= Z/2 ⊕ Z/2 as a

summand of π̂14,0 , we must have d3(h0h4) = h0d0 . A similar argument establishes
d2(e0) = h2

1d0 and d2(f0) = h2
0e0 . Note that d4(h3

0h4) = 0 for degree reasons.

The elements in weight 0 are all of the form τ jx or uτ j−1x where x is not a multiple
of τ and of weight j. The differentials of the elements in weight 0 are now readily
identified by using the Leibniz rule from corollary 7.12. Since π̂s

n is a summand of
π̂n,0(Fq) for all n ≥ 0, we see that there are no hidden 2-extensions for 0 < n ≤ 18.

In the proof of the following proposition, we provide some technical details in a smaller
font for the convenience of the reader. We follow the convention of Dugger and
Isaksen [12] and write the grading of an element in the motivic May spectral sequence
as (m, s, f ,w) where m is the May filtration, s is the stem, f is the Adams filtration and
w is the motivic weight. However, we continue to write the grading in the MASS as
(f , (s,w)).

Proposition 7.16 When q ≡ 1 mod 4, there are isomorphisms π̂19,0(Fq) ∼= (Z/8 ⊕
Z/2) ⊕ Z/4 and π̂20,0(Fq) ∼= Z/8 ⊕ Z/2. In particular, when q ≡ 1 mod 8 we find
d2([τg]) is trivial, and when q ≡ 5 mod 8 we calculate d2([τg]) = uh0h2e0 .
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Proof When q ≡ 1 mod 4, it is possible that d2([τg]) is uh0h2e0 . We analyze this
differential using Massey products obtained from the May spectral sequence. We show
that 〈τ, h4

1, h4〉 = {[τg]} in the E2 page of the MASS using Massey products in the
May spectral sequence and the May convergence theorem in Isaksen [26, 2.2.1].

At the E4 page of the May spectral sequence we calculate d4(b2
21) = h4

1h4 and
d4(0) = τh4

1 , as τh4
1 = 0; hence [τg] = τb2

21 ∈ 〈τ, h4
1, h4〉 in the May spectral sequence.

There are no crossing differentials, so the May convergence shows [τg] ∈ 〈τ, h4
1, h4〉 in

the MASS.
Details: In this case, we must check if there are crossing differentials dt for t ≥ 5. To see E∗,5,3,34 = 0
over Fq , we check E∗,5,3,34 = 0 and E∗,6,3,44 = 0 over C using the chart in [12, Appendix C]. All that is in
(∗, 5, 3, 3) is h1b20 , but this does not survive to E4 . And nothing is in (∗, 6, 3, 4) even at the E2 page.

To see E∗,20,4,12
5 is trivial over Fq , observe that all that is in E∗,20,4,12

4 over C is b2
21 , which does not

survive to the E5 page. The group E∗,21,4,13
4 over C is trivial. A potential contribution from h0h3

3 or

h0h2
2h4 is ruled out by weight reasons, and because they do not survive to the E4 page from the differentials

d2(h0(1)) and d2(h0b22) .

The indeterminacy τE4,(20,12)
2 + E3,(5,3)

2 h4 in the MASS is trivial, so we conclude
〈τ, h4

1, h4〉 = {[τg]}.

We now identify d2([τg]) using the following formula due to Moss [36, 1(i)].

(7–3) d2(〈τ, h4
1, h4〉) ⊆ 〈d2(τ ), h4

1, h4〉+ 〈τ, 0, h4〉+ 〈τ, h4
1, h0h2

3〉

The Massey product 〈τ, 0, h4〉 contains 0 and has no indeterminacy.

Details: Here 0 = d2(h4
1) is in grading E6,(3,4)

2 , so the indeterminacy is τE6,(19,12)
3 +E5,(4,3)

3 h4. The degree

of h2
1e0 is 6, (19, 12), but it does not survive to the E3 page. The group E5,(4,3)

3 is trivial by checking the

E2 page.

To calculate 〈τ, h4
1, h0h2

3〉 we again use the May spectral sequence and the May conver-
gence theorem. We calculate this Massey product at the E2 page using d2(h2b20) = τh4

1
and h4

1h0h2
3 = 0 and see that 0 ∈ 〈τ, h4

1, h0h2
3〉. There are no crossing differentials, so 0

is in this Massey product in the MASS.

Details: Note that a01 = h1b20 is in degree (5, 5, 3, 3) and a12 is in degree (8, 19, 6, 12). Then for a01

crossing differentials occur in (?, 5, 3, 3) which is trivial from the fourth page on. For a12 crossing diffs

occur in degree (m′, 19, 6, 12) with m′ ≥ 8. The only thing in this filtration, stem and weight is h2
1e0

which has May filtration 10. But note that both h2
1 and e0 are permanent cycles, so that h2

1e0 is as well. So

there are no crossing differentials in this case.

The indeterminacy for 〈τ, h4
1, h0h2

3〉 in the MASS is τE6,(19,12)
2 + E3,(5,3)

2 h0h2
3 which

is trivial. The group E6,(19,12)
2 is generated by h2

1e0 which is annihilated by τ while
E3,(5,3)

2 is trivial.
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We now handle the Massey product 〈d2(τ ), h4
1, h4〉 which depends on the base field. Let

us suppose that q ≡ 1 mod 8 so that d2(τ ) = 0 by corollary 7.12. If a12 is in the E1 page
of the MASS with d1(a12) = h4

1h4 , then the Massey product contains 0 ·h4 + 0 ·a12 = 0.
It is straightforward to check that the indeterminacy 0 · E4,(20,12)

2 + E5,(4,3)
2 · h4 is trivial.

We conclude d2([τg]) = 0 when q ≡ 1 mod 8.

When q ≡ 5 mod 8, corollary 7.12 establishes d2(τ ) = uh2
0 . We identify the Massey

product 〈uh2
0, h

4
1, h4〉 using the May spectral sequence and the May convergence theorem.

At the E4 page of the May spectral sequence we have d4(b2
21) = h4

1h4 and uh2
0h4

1 = 0.
Hence uh2

0b2
21 + 0h4 = uh0b21h2h0(1) = uh0h2e0 is in the Massey product under

consideration. It is straightforward to verify that there are no crossing differentials in
this case.

Details: As a01 = 0 in E9,4,5,3
4 and a12 = b2

12 , we must check two conditions: (1) whenever m′ ≥ 9 and

m′ − 5 < t that dt is trivial on Em′,4,5,3
t , and (2) whenever m′ ≥ 8Âand m′ − 4 < t that dt is trivial on

Em′,20,4,12
t . Condition (1) is easily verified as E∗,4,5,34 = 0 over C and E∗,5,5,44 = 0 over C as well. We

conclude E∗,4,5,34 = 0 over Fq as only these two groups can contribute to this graded piece. We remark

that uh5
1 does not contribute any terms, since to get the weight correct one needs to multiply by τ which

annihilates the element. For condition (2), we will check that for all t ≥ 6 the differentials vanish on

E(∗,20,4,12)
t . This graded piece contains b2

21 at the E4 page, but it does not survive to E5 = E6 . The only

other possible elements in this group arise from elements in E∗,21,4,13
t over C which we have seen is trivial

at the E4 page. This verifies the hypotheses of May’s convergence theorem.

The indeterminacy of 〈uh2
0, h

4
1, h4〉 in the MASS is uh2

0E4,(20,12)
2 + E5,(4,3)

2 h4 which
is trivial. Thus the May convergence theorem shows the Massey product is exactly
{uh0h2e0} and we conclude d2([τg]) = uh0h2e0 if q ≡ 5 mod 8.

We now analyze the differentials in the MASS in the 19 and 20 stem. Since [τg] has
weight 11, the class τ 11[τg] is in E4,(20,0) . If q ≡ 1 mod 8, we calculate d2(τ 11[τg]) =

τ 11uh0h2e0 = uτ 10h2
0[τg]. If q ≡ 5 mod 8, then d2(τ 11[τg]) = uτ 10h2

0[τg]. This
resolves all differentials in the 19 and 20 stem, so the calculation of the 19 stem follows.

As π̂s
20
∼= Z/8 must be a summand of π̂20,0(Fq), we conclude there is a hidden extension

from uτ 11h2
2h4 = uτ 11h3

3 to τ 12h2e0 . The calculation of the 20-stem now follows.

Remark 7.17 Note that over Fq with q ≡ 5 mod 8 the map Lc{g} is detected by
uτ 11h3

3 which is in Adams filtration 3. But over Fq , Lc{g} is in Adams filtration 4.

Proposition 7.18 When q ≡ 3 mod 4 and 0 ≤ n ≤ 18, there is an isomorphism
π̂n,0(Fq) ∼= π̂s

n ⊕ π̂s
n+1 .
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Proof The case n = 0 is resolved by lemma 7.14, so we now consider 0 < n ≤ 18,
where we may use the motivic Adams spectral sequence as in proposition 7.15.

The differentials dr for r ≥ 2 vanish on the following generators for degree reasons:
[ρτ ], ρ, h0 , h1 , h3 , [τh2

2], [τc0], [τPh1], d0 , [τPc0], [τP2h1]. Since π̂s
1
∼= Z/2 is a

summand of π̂1,0(Fq), we must have dr([τh1]) = 0 for all r ≥ 2. Since π̂s
3
∼= Z/8 is a

summand of π̂3,0(Fq), we must have d2(h2) = 0. An argument similar to that given
for proposition 7.15 establishes d2(h4) = h0h2

3 , d2(e0) = h2
1d0 and d2(f0) = h2

0e0 by
comparison to M(Fq). Also, we determine dr([τc1]) = 0 for r ≥ 2 by comparing with
M(Fq), as the class [τc1] must be a permanent cycle.

The one exceptional case is d3(h0h4). Here we must have d3(h0h4) = h0d0 + ρh1d0 in
order for π̂s

14 = Z/2⊕ Z/2 to be a summand of π̂14,0(Fq).

The elements in weight 0 are all of the form [τ 2]ix or [ρτ ][τ 2]i−1x where x is not a
multiple of τ 2 and weight 2i, or of the form ρ[τ 2]ix if x is not a multiple of τ 2 and of
weight 2i+1. The differentials of the elements in weight 0 are now determined by using
the Leibniz rule. Since λ(q) = ν2(q2 − 1) ≥ 3, we have d2(τ 2) = 0. This is sufficient
to ensure that for elements x in stem s ≤ 19 there are no non-trivial differentials of the
form dr([τ 2]ix) = ρτ 2i−1hr

0x when [τ 2]ix has weight 0. This resolves all differentials
in weight 0 for stems s ≤ 19 and there are no hidden 2-extensions in this range. Hence
for 0 < n ≤ 18 there is an isomorphism π̂n,0(Fq) ∼= π̂s

n ⊕ π̂s
n+1 .

Remark 7.19 When q ≡ 3 mod 4, it is unclear whether d2([τ 2g]) = [ρτg] or
d2([τ 2g]) = 0. This is all that obstructs the identification of the stems π̂19,0(Fq) and
π̂20,0(Fq) in this case.

7.5 Base change for finite fields

Proposition 7.20 Let q = pν where p is an odd prime. For a field extension
f : Fq → Fqi with i odd, the induced map Lf ∗ : H∗∗(Fq) → H∗∗(Fqi) and Lf ∗ :
A∗∗(Fq)→ A∗∗(Fqi) are isomorphisms.

Proof The claim follows by checking on étale cohomology. The map on cohomology is
determined by H1

et(Fq;µ2)→ H1
et(Fqi ;µ2) which is just the induced map F×q /2→ F×qi/2.

So long as i is odd, this map is an isomorphism.

Corollary 7.21 For q = pν with p an odd prime, the induced map M(Fq)→M(Fqi)
is an isomorphism of spectral sequences whenever i is odd.
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Proposition 7.22 Let q = pν with p an odd prime. Let F̃q denote the union of the
field extensions Fqi over Fq with i odd. The field extension f : Fq → F̃q induces
isomorphisms Lf ∗ : H∗∗(Fq)→ H∗∗(F̃q) and Lf ∗ : A∗∗(Fq)→ A∗∗(F̃q). Hence the
map M(Fq)→M(F̃q) is an isomorphism of spectral sequences.

Proof This follows by a colimit argument using proposition 7.20.

Corollary 7.23 For any integers s and w ≥ 0, there is an isomorphism π̂s,w(Fq) ∼=
π̂s,w(F̃q).

Proposition 7.24 Let q = pν with p an odd prime. For a field extension f : Fq → Fqi

with i even, the map f ∗ : H1,∗(Fq)→ H1,∗(Fqj) is trivial and f ∗ : H0,∗(Fq)→ H0,∗(Fqj)
is injective.

Proof The map is determined by Lf ∗ : H1,1(Fq)→ H1,1(Fqi) which is just the map
F×q /2 → F×qi/2. However, any non-square x ∈ F×q will be a square in F×qi when i is
even.

Corollary 7.25 Let q = pν with p an odd prime. For a field extension f : Fq → Fqi

with i even, the induced map M(Fq)→M(Fqi) kills the class u (respectively ρ and
[ρτ ]) and all of their multiples at the E2 page.

Proof The induced map of cobar complexes is determined from proposition 7.24 and
shows the classes u (respectively ρ and [ρτ ]) are killed under base change.

8 Implementation of motivic Ext group calculations

The computer calculations used in this paper were done with the program available
from Fu and Wilson [16] at https://github.com/glenwilson/MassProg. The
program is written in python and calculates Ext(F) when F is C, R or Fq by producing
a minimal resolution of H∗∗(F) by A∗∗(F) modules in a range. With this complex in
hand, the program then produces its dual and calculates cohomology in each degree.

To calculate a free resolution of H∗∗(F) of A∗∗(F) modules, we first need the program
to efficiently perform calculations in A∗∗(F). The mod 2 motivic Steenrod algebra is
generated by the squaring operations Sqi and the cup products α ∪ − for α ∈ H∗∗(F).
These generators satisfy Adem relations, which are recorded in [22, 5.1] by Hoyois,
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Kelly and Østvær in [22, 5.1] and [49, 10.2] by Voevodsky. Additionally, one needs
the commutation relations Sq2i τ = τ Sq2i +τρ Sq2i−1 for i > 0 and Sq2i+1 τ =

τ Sq2i+1 +ρSq2i +ρ2 Sq2i−1 for i ≥ 0 which are obtained from the Cartan formula.
With these relations, the program can calculate the canonical form of any element of
A∗∗ , that is, as a sum of monomials α · SqI where α ∈ H∗∗(F) and I is an admissible
sequence.

With the algebra of A∗∗(F) available to the program, it then proceeds to calculate
a minimal resolution of H∗∗(F) by A∗∗(F) modules. This is where a great deal of
computational effort is spent. To clarify what a minimal resolution is in practice, let ≺
denote the order on Z×Z given by (m1, n1) ≺ (m2, n2) if and only if m1 +n1 < m2 +n2 ,
or m1 + n1 = m2 + n2 and n1 < n2 . The reader is encouraged to compare this definition
with the definition of McCleary in [30, Definition 9.3] and consult Bruner [9] for detailed
calculations of a minimal resolution for the Adams spectral sequence of topology.

Definition 8.1 A resolution of H∗∗(F) by A∗∗(F) modules H∗∗(F)← P• is a minimal
resolution if the following conditions are satisfied.

(1) Each module Pi is equipped with ordered basis {hi(j)} such that if j ≤ k then
deg hi(j) � deg hi(k).

(2) im(hi(k)) /∈ im(〈hi(j) | j < k〉)
(3) deg hi(k) is minimal with respect to degree in the order ≺ over all elements in

Pi−1 \ im(〈hi(j) | j < k〉).

The computer program calculates the first n maps and modules in a minimal resolution
up to bidegree (2n, n). With this, it then calculates the dual of the resolution by applying
the functor HomA∗∗(F)(−,H∗∗(F)) to the resolution P• . With the cochain complex
HomA∗∗(F)(P•,H∗∗(F)) in hand, the program calculates cohomology in each degree,
that is, Extf ,(s+f ,w)(Fq).

Because the program calculates an explicit resolution of H∗∗(F), the products of elements
in Ext(F) can be obtained from the composition product, see McCleary [30, 9.5].

9 Charts

The weight 0 part of the E2 page of the mod 2 MASS over Fq is depicted in figures 1
and 3 according to the case q ≡ 1 mod 4 or q ≡ 3 mod 4. The weight 0 part of the
E∞ page of the mod 2 MASS over Fq can be found in figures 2 and 4.
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In each chart, a circular or square dot in grading (s, f ) represents a generator of the F2

vector space in the graded piece of the spectral sequence. The square dots are used
to indicate that the given element is divisible by u, ρ, or ρτ , depending on the case.
Circular dots denote elements which are not divisible by u, ρ, or ρτ . In the chart 4, there
is an oval dot which corresponds to the class with representative τ 8ρh1d0 ≡ τ 8h0d0 , as
the class ρh1d0 + h0d0 is killed.

We indicate the product of a given class by h0 with a solid, vertical line. In the case
q ≡ 3 mod 4, multiplication by ρh1 plays an important role, so non-zero products
by ρh1 are indicated by dashed vertical lines. In particular, when q ≡ 3 mod 4,
multiplication by 2 in π̂∗∗(Fq) is detected by multiplication by h0 + ρh1 . The lines
of slope 1 indicate multiplication by τh1 or [τh1] depending on the case. We caution
the reader that the product structure displayed in this chart was obtained by computer
calculation and not all products were established by hand in this paper. For example,
the products in the 8-stem by h0 are hidden in the May spectral sequence.

Dotted lines are used in two separate instances in these charts. The first use is in figure
2, where dotted lines indicate hidden extensions by h0 and τh1 . The other instance is
in figure 4 to indicate an unknown d2 differential.

Additional charts can be found in the work of Fu and Wilson [16].
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Figure 1: E2 page of MASS for Fq with q ≡ 1 mod 4, weight 0
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Figure 2: E∞ page of MASS for Fq with q ≡ 1 mod 4, weight 0
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Figure 3: E2 page of MASS for Fq with q ≡ 3 mod 4, weight 0
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Figure 4: E∞ page of MASS for Fq with q ≡ 3 mod 4, weight 0
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