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Abstract

This thesis is an empirical study of the affects that Language Features,
provided by Programming Languages on Design Pattern implementa-
tions. The set of Design Patterns is mostly based on the ones described
by first book to document Design Patterns, namely the Gang of Four book
[31]. It examines comparatively two Programming Languages, Java and
Python. In terms of comparing Language Features and Design Pattern
implementations in across the two Programming Languages. The examin-
ation is based on the Programming Languages’ documentation as well as
the literature available with regards to Design Pattern implementations in
these Programming Languages. Such cross language study, has not been
conducted before and thus it is an approach to the topic of Design Patterns
from a novel perspective. The thesis proposes a classification scheme with
regards to Language Features in relation to Design Pattern. In addition
to that it proposes a categorization scheme of Language Features, that im-
plement Design Patterns in Programming Languages. It also assesses the
dependence of Design Patterns on specific Language Features.

This thesis also examines some of the observed effects of Design
Patterns on Programming Languages, by comparative examination of two
languages. It also catalogs related Language Features’ development over
time. Leading to the definition of the relationship between Design Patterns
and Programming Languages as bidirectional. And the theory, explaining
the consequences of changes to either Design Patterns or Programming
Languages.
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Chapter 1

Introduction

This thesis is a comparative study over a subset of the design patterns,
over a selection of Programming Languages. Here, comparisons between
the selected Design Patterns and comparisons between the languages can
be found. The Design Patterns discussed in this thesis are chosen for their
distinct differences or similarities across the languages and relevance to
Design Pattern implementations.

1.1 Motivation

Programming Languages are not all equivalent or equal. If they were then
there would be no point of the existence of more than one Programming
Language. As such they are usually meant to solve particular set of
problems. The idea that Programming Languages are not equal and that
some languages are better at writing programs that solve some problems
than other languages as described in the essay by Paul Graham [64]. Even
though General Purpose Languages aim to be broadly applicable across
domains, solving problems using a particular language might be easier
than using others. That is due to the combination of features, mechanisms,
syntax and programming paradigms that the language provides versus
the ones that other languages provide their users. Thus the user of the
language could leverage these language features to solve the problem.

The above mentioned idea could be traced to the fact that some
languages directly implement some design Patterns, or provide features
that are substitutes for certain design Patterns. Some examples of which
have been discussed in this thesis.

Given the fact that Design Patterns have existed for around 22 years,
since their definition by the GoF book [31], and the fact that Programming
Languages continuously evolve over the years to support their users’
needs, questioning how the Programming Languages affect Design
Pattern and in term interact with each other becomes of interest. The main
focus of this master thesis is the effects of Programming Languages on
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Design Pattern implementations in these languages, trough the Language
Features that the Programming Languages implement. The method of
investigation of choice is in the form of a comparative investigation of
Programming Languages, the Language Features they provide and the
Design Pattern implementations they affect.

1.2 Background and Definitions of Therms

This section clarifies some of the therms used throughout the thesis.
Further detailed theoretical background analysis, can be found in Chapter
2.

1.2.1 Programming Language

It is worth taking the time to clarify what exactly is meant, by Program-
ming Language. Some could think of a Programming Language as of the
Base Language according to the language specification. In other words
as the compiler understands it. Others might understand it as the Full
Language or the Base Language plus all the standard libraries that come
with the said language interpretation. Throughout this thesis Program-
ming Language refers to the Full Language. The Base Language according
to the language specification and the standard library that comes included
in the default or the "De facto" language implementation. Also on the
topic of compilers and interpreters, only the most commonly used, "De
facto" compiler or interpreter is considered. Namely for Python this is the
cpython implementation [22] and documentation [50]for Java this is the
default Oracle implementation [37] and documentation [49]. Also when
writing Java or Python, it should be understood that it is meant, the Full
Implementation of the language and not just the Base Language specifica-
tion.

1.2.2 Language Features

In this thesis, Language Features refer to programming principles,
language features and language mechanisms. In other words anything
that the programming language provides or facilitates that could be
relevant to the implementation of design Patternsin that particular
programming language.

1.2.3 Design Pattern

Design Patterns have been a popular programming concept since 1994,
when the first book on the subject was published by four authors Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides. Titled Design
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Patterns - Elements of Reusable Object-Oriented Software [31] which
initiated the concept of Design Pattern in Software development. The
four authors are commonly referred to as the ”gang of four” or GoF
for short and the book in term as the GoF book [31]. Because, the
concept has existed for so long, it has had it’s fair share of popularity
in many different programming languages. Design Patterns rely on the
object oriented programming concepts. Because, they utilize inheritance,
object composition, aggregation and delegation, as defined in the GoF
book [31]. Thus any discussion and comparison over the Design
Patterns defined in the GoF book [31], would have to be over a set of
Programming Languages, which support Object Oriented Programming
(OOP) paradigm. Otherwise the definition of Design Patterns would
have to be widened to include patterns such as object, inheritance and
other common programming principles, features, mechanisms and parts
of Object Oriented Programming Languages. Thus Design Pattern refers
to the design patterns such as defined in the Gang of Four (GoF) book [31].
Mostly the general use Design Patterns are of interest and not the specific
ones to concurrent programming or distributed programming or any of
the special case Design Pattern variants that stem from the GoF ones.

1.2.4 UML Extension

This thesis contains several UML diagrams, in which the relation of
type association is used to depict that two classes are associated, as
described in the uml-diagrams website [77]. The relationship in question
is demonstrated in Figure 1.1.

ClassA ClassB

Figure 1.1: UML diagram depicting the Association relationship.

1.3 Approach

The thesis is an empirical study of a selection of Design Patterns, over a
selection of Programming Languages, Java and Python. In other words
comparative analysis of Design Patterns over different programming
languages in order to learn something about the interactions between
Design Patterns and Programming Languages.

Examine a set of Languages and a set of Design Patterns, using the
documentation and literature on the topics to logically asses the affects
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of Programming Languages and the Language Features they provide on
Design Pattern implementations.

1.4 Goals

The goal of this thesis is to extract useful or meaningful information about
the interaction between Design Patterns and Programming Languages.
The interaction in terms of the Design Pattern implementations using
facilities provided by the language or Language Features, versus Design
Patterns being implemented as such Language Features. Thus the result
might be better understanding of how the Programming Languages have
changed, historically over time, in terms of the Language Features they
provide, since the first book on Design Patterns, by GoF [31]. The results
might also be used to support or be used against some of the popular
theories proposed over the years regarding design patters. Such as the
proposal that Design Patterns are actually missing language features
[design_vs_feature], discussed in Chapter 2.

1.5 Language Choice Criteria

The first book on the topic of Design Patterns, GoF [31], describes Design
Patterns in both Smalltalk and C++, which are both Object oriented
languages. Thus, much like the the authors of the GoF book [31],
the Programming Language selection is restricted to Object Oriented
Programming (OOP) languages or programming languages supporting
multi paradigm programming in addition to OOP. This choice simplifies
the analysis and comparisons of Design Patterns, and distinctly defines a
the scope of the Design Patterns selection. As such Java and Python are
the two Programming Languages selected for the comparative study and
Chapter 3, discusses the Programming Language selection process and
criteria in further detail.

1.6 Work Done

The work done is in the form of implementing some Design Patterns in the
Programming Languages, based on documentation of the Language Fea-
tures of these languages and based on the literature, documenting Design
Patterns in the Programming Languages of choice. Then comparing the
implementations over the Programming Languages, in attempt to assess
the impact of Language Features on Design Pattern implementations.
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1.7 Relevant Literature

The most relevant literature to the topic, aside from the GoF book [31]
and the Programming Languages’ documentations, are the "Software
Architecture Design Patterns in Java" [42] and "Mastering Python Design
Patterns" [40]. Further discussion on the resources related to the topic can
be found in Chapter 2.

1.8 Outline

The thesis consists of seven chapters and an appendix, separated in two
parts, Introduction and Analysis.

Chapter 1 Provides an overview of the thesis, as well as definitions of
the more commonly used terms throughout the thesis.

Chapter 2 Examines the theoretical background related to the topic, re-
sources overview, related work and relevant related theories.

Chapter 3 Describes the Programming Language selection and process.

Chapter 4 Discusses and describes relevant Language Features of the
Python Programming Language on their own, from the perspective of the
topic and serves as a background for the Evaluation chapter.

Chapter 5 Discusses and describes relevant Language Features of the
Java Programming Language on their own, from the perspective of the
topic and serves as a background for the Evaluation chapter.

Chapter 6 Evaluates the relevant Design Patterns and Language Fea-
tures.

Chapter 7 Conclusion Contains the conclusion of this thesis with regards
to evaluating the effects of Programming Languages on Design Pattern
implementations.

Chapter A Appendix Contains full sample implementations of Design
Patterns and Language Features sample uses, relevant to the topic and
discussed throughout.
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1.9 Results

The result of this thesis is that it confirms that Programming Languages
affect Design Pattern implementations trough the Language Features they
provide. A Language Feature scoring scheme is established in Section 6.7
with regards to Design Pattern implementation impact. A classification
scheme of Language Features that are Design Pattern implementations
is proposed in Section 6.9, where two classes of Language Features are
established, Invisible and Partial implementations of Design Patterns
within the Programming Language. In addition to that as described
in Section 6.8, a theory with regards to the adoption mechanism of
Design Patterns in Programming Languages is proposed. The relationship
between Programming Languages and Design Patterns is defined as
bidirectional (Section 6.10), in to defining the "Ripple Effect Theory"
(Section 6.11).

1.10 Contributions

A few topics for further study are suggested as a result of writing this
thesis, in addition to the classification scheme for Language Features from
Section 6.9, the overview of the landscape of Design Pattern implementa-
tions of Section 6.6 and the scoring scheme, proposed in Section 6.7. The
four topics proposed in the Background Chapter 2: "Examination of ef-
fects of frameworks on Design Patterns implementations and use in Pro-
gramming Languages", "The role of metaprogramming in Design Pattern
implementations", "Programming Paradigm effects on Design Patterns",
"Modeling versus Typing". In addition to that another interesting topic, re-
lated to this thesis is "How Programming Languages affect Anti-patterns".

In addition to the topic suggestions, this thesis contributes to the
theoretical knowledge of Design Patterns in relationship to Programming
Languages, by providing an overview of the Language Features with
relationship to Design Patterns implementations (Section 6.6), proposing
a scoring scheme for Language Features (Section 6.7), classifying the
Language Features of Java and Python (Section 6.9),determining the
relationship between Design Patterns and Programming Languages as
bidirectional (Section 6.10) and by proposing two theories with relation
to Design Patterns and Programming Languages. One explaining the
life cycle of a Design Pattern (Section 6.8) and one explaining the
consequence of the bidirectional relationship between Design Patterns and
Programming Languages (Section 6.10)
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1.11 Conclusion

Within the writing of this thesis, as it has been observed and thus is
a suitable to conclude that the relationship between Design Patterns
and Programming Languages is in-fact bidirectional. That not only do
Programming Languages affect Design Patterns, but the opposite is also
true.
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Chapter 2

Background

This chapter discusses the background for the thesis. In terms of Design
Patterns evaluation scheme and selection, in terms of related to the subject
resources. In addition to that it examines theories related to Design
Patterns and Programming Languages and specifies scope restrictions,
imposed on the topic.

2.1 Resources Overview

There have been many resources, written on the subject of Design Patterns
over the years, since the release of the first book on the subject, GoF
[31]. Most of the books on the subject are specialized in introducing
the topic of Design Patterns to it’s audience in a specific Programming
Language, such as "Software Architecture Design Patterns in Java" [42]
and "Mastering Python Design Patterns" [40]. Other examples include
"JavaScript Patterns" [68] and "Mastering JavaScript Design Patterns" [74],
introducing Design Patterns in JavaScript, as well as "Design Patterns in
C sharp" [51] in C sharp. And these are just a few examples, based on
the Programming Languages, considered as candidates for this thesis in
chapter 3.

In addition to that many more Design Patterns as well as variations of
the original 23 Design Patterns have been documented. As such it could be
said that the subject of Design Patterns in nearly all modern Programming
Languages has been thoroughly documented. The Language Specific
books tend to follow the template of the GoF book [31], by explaining
the Design Pattern, by often using UML diagrams and some simplified
toy example to demonstrate the need (the problem) and consequently a
demonstration of the application of the Design Pattern (the solution to that
problem) in the established context. And whilst there are many resources
either concentrated on describing the original 23 GoF Design Patterns in
a particular language or documenting new Design Pattern, there aren’t
any recent resources comparing Design Patterns implementations across
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multiple Programming Languages. Thus the motivation for this thesis.

2.2 Design Patterns and Language Features Scope

The scope with relation to Language Features of the Programming
Languages, selected for the evaluation and Design Patterns is as depicted
in the Venn diagram in Figure 2.1.

Figure 2.1: Venn diagram of the scope of this master thesis with relation to
Design Patterns and Language Features.

As depicted in Figure 2.1, the most relevant Design Patterns are in the
intersection of the two logical sets of Design Patterns, namely the Design
Patterns affected in some direct way by the Language Features provided
by the Programming Languages under evaluation and the Design Patterns
defined by the GoF book [31].

2.3 Evaluation Criteria

The evaluation of Language Features is with regards to their impact
on Design Pattern implementations in Object Oriented Programming
paradigm (OOP) and to the Design Patterns defined in the GoF book
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[31]. Thus Language Features and Design Pattern implementations
are evaluated with regards to, how the Programming Languages in
question influence the Design Pattern implementations and use in these
Programming Languages. An evaluation criteria or classification is
proposed in Section 6.9 as well as a scoring system in Section 6.7.

2.4 Design Patterns being missing Language
Features

An important recurring and related to the topic theory is the one that
Design Patterns are missing or unimplemented Language Features. It is
relevant to this discussion because if Design Patterns are truly missing
Language Features, then this topic will be "How languages affect their
missing features", which implies a very short and direct answer: "By
ignoring them and not implementing them.".

Strong evidence exists and has been presented that the theory is true.
Peter Norvig found that, 16 of the 23 patterns in Design Patterns were
"invisible or simpler" in dynamic Programming Languages. Where by
"invisible" it is meant that the pattern is integrated in the language to
such degree that it is part of it [27]. But there should be evidence against
the theory as well. Or some kind of reasoning to explain why Design
Patterns still exist even after so many years have passed since the theory
that they are simply missing Language Features was presented. It stands
to logic that if Design Patterns are truly just missing Language Features,
then by now they would be part as standard Language Features of nearly
all modern Programming Languages, such as Java [49], Python [50], C
sharp [15], JavaScript [14] and C++ [69] and many more. But they are not.
In addition to that this theory has reappeared and been documented in
multiple sources [13].

It is possible that language designers simply have a choice of which
more or less standardized features they should include? Maybe the fact
that not all Design Patterns are implemented as features has to do with
the fact that not all Programming Languages are the same. Leading back to
the argument or fact that specific languages are designed to solve specific
set of problems and if not all Design Patterns are required to solve these
problems efficiently then there is little purpose for the language designers
to implement Design Patterns that nobody or a very small subset of the
users will actually use. As implementing Language Features that are not
used is effectively wasting time and energy. As opposed to implementing
Language Features that the users need and will use. In a sense making the
argument that only what is needed is implemented. Because, for example
the Bridge Design Pattern is not a Language Feature that is commonly
used or popular, then it is not implemented as a standard Language
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Feature in Programming Languages, such as Java [49], Python [50], C
sharp [15], JavaScript [14] and C++ [69] and others. In other words if
there is no demand for the Language Feature implementation by the users
of the Programming Language, then the Language Feature probably isn’t
implemented.

And in addition to that including features that a relatively small subset
of users would use in a language could lead to bloating the language
interface with irrelevant features, making it more difficult to learn. For
example the C++ language reference [69] has consistently grown over the
years, up to around 1000 pages.

Thus the argument is that in order for a general programming language
to stay a general programming language and be easy to learn, the language
should not try to tailor itself to every domain specific Design Pattern
and try to provide special tools for it. And rather leave that to the
implementations of libraries and frameworks. Such that the language
does not try to become a Domain Specific Language (DSL) for all domains,
which would inevitably lead to a bloated Programming Language.

As such, it is assumed in this thesis that, while some Design Patterns
may be missing Language Features in some cases, this is not necessarily
true for all Design Patterns. Otherwise Design Patterns would not exist
anymore and this topic wouldn’t exist.

2.5 Related Work

This section contains a list of Language Features or topics that are related
to the topic of this thesis, but either not related closely enough to be
considered in this thesis or that examining the Language Features or topics
in question could potentially be a topic on their own.

2.5.1 Annotations

Annotation is a way for the programmer to specify metadata for use
by the compiler or other tools that deal with inspecting the code.
They are provided by both Java [43] and Python [43]. In Java the
annotations are often used by frameworks, some of which implement
Design Patterns. Examples of that are Dagger framework [23] and the
Spring framework [67], which both provide the Inversion Of Control
Design Pattern and dependency injection. However the Annotations as
a Language Feature, is not directly responsible for implementations of
Design Patterns, but only used to facilitate the implementations. As such
any deeper discussions and examinations of the Language Feature would
lead to examinations of the frameworks and possible comparisons of
frameworks to the Programming Languages. Thus the Language Feature
even though somewhat related to the subject is out of scope of this thesis.
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Because, doing so would derail the topic and possibly be a topic on it’s
own. An example heading of which could be "Examination of effects of
frameworks on Design Patterns implementations and use in Programming
Languages".

2.5.2 Metaprogramming

By "metaprogramming" it is meant the "programming technique in which
computer programs have the ability to treat programs as their data."
[44]. This includes Reflection in Java [76] and metaprogramming in
Python [45]. Metaprogramming as previously mentioned involves the
program treating programs or itself as data. Ability to modify itself.
As such using it for Design Pattern implementations, especially for
example for Structural Design Pattern implementation is unsuitable,
because the point of the Design Pattern, imposing a thought of structure
on the code in an organizational matter would be encapsulated in the
modification of code. Thus resulting in possible obscuring of the said
Design Pattern. Whilst some metaprogramming techniques are used and
discussed in this thesis, in terms of using Meta Classes in Python (Section
4.3 and Section 6.1) to implement Design Patterns, it is not the case that
all metaprogramming is examined or even attempted to be examined
or the relationship between Metaprogramming and Design Pattern in
Programming Languages evaluated. This examination, partly due to the
fact that is not directly related and partly due to the fact that a through
examination or evaluation of the topic is a masters thesis topic on it’s
own, is thus defined as out of scope of this topic. As such it might be
an appropriate topic of it’s own "The role of metaprogramming in Design
Pattern implementations".

2.5.3 Programming Paradigm Affects on Design Pattern
Implementations

Programming Paradigms are related to Programming Languages in terms
of which paradigm the languages provide the users of these languages
support for. Whilst the interaction between Programming Paradigms and
Design Patterns implementations in the Programming Languages as a
result of the paradigms supported by the languages is relevant and is
examined to some degree in this thesis (Section 6.3 and Section 4.5), a fully
fledged examination of that interaction is out of scope of the thesis. It
could potentially be a good masters thesis topic on it’s own in the field.
A suggested title could be "Programming Paradigm effects on Design
Patterns".
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2.5.4 Serialization Techniques

The State and Memento Design Pattern’s could potentially be implemen-
ted using the Serializable Java Language Feature or in Python the pickle
Language Feature [1]. However based on the fact that these Language
Features are not straight implementations and the Design Patterns are not
strongly related to the the Language Features, it was decided that imple-
menting the Memento and State Design Patterns using these Language
Features would be in effect misusing them. It will be misusing them, be-
cause the Language Features in question are meant to serialize objects to
disk and not simply to make snapshots of their state. Thus not contribut-
ing constructively to the topic of discussion. As such these implementa-
tions are defined out of scope of this discussion.

2.5.5 Modeling vs Typing As Topic Suggestion

This section found that interfaces in Java affect pretty much every
Design Pattern implementation. It also discussed the differences between
Interfaces and Abstract Classes in Java in relation to the fact that
Python does not have direct replacement for Java Interfaces, but has an
implementation of Abstract Classes, called Abstract Base Classes (ABC’s).
The Interfaces in Java are more geared towards defining Types, whilst
inheritance with Abstract Classes augmenting it towards Modeling in an
Object Oriented Programming context. Thus a potential discussion on the
topic could lead to potentially interesting results. However a full fledged
discussion and examination of that topic is out of scope of this thesis, as it
could potentially in addition to requiring a thorough investigation, require
case studies to back up any claims made in that investigation with real
world data. As such, it could potentially be a suitable masters thesis topic
on it’s own. Maybe called "Modeling versus Typing".

2.6 Summary

This chapter discussed the related to the subject resources that are
available. In addition to that it defined a few related topics as out of scope
of the thesis and related to the topic theories.

Overall, there are plenty resources available, which describe Design
Patterns in a particular Programming Language. However, most restrict
the discussion to only one Programming Language (such as in Java [42] or
Python [40]) and the ones that describe Design Patterns in more than one
Programming Language (such as the Sourcemaking website [26]) do not
actually analyze or make efforts to compare the implementations.
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Part II

Analysis
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This part of the thesis contains the analysis and comparisons of
languages, language features, mechanisms, programming concepts and
anything else relevant to the implementation of a design pattern.
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Chapter 3

Programming Languages and
Design Patterns

This chapter explains the Programming Languages selection criteria, This
chapter describes the process used to select programming languages for
this thesis. Because, the pool of existing Programming Languages is
potentially quite large, some selection rules must be established to govern
the selection process. As an example of the potential size of selection
pool of languages, "The Big List of 256 Programming Languages"[70]
lists 256 programming languages, based on TIOBE [75] and GitHub
alone. Obviously this is not a definitive list of all existing Programming
Languages, but it gives an idea of the landscape and the need of clearly
defined selection criteria.

3.1 Criteria

The first requirement for the candidate Programming Languages is that,
Object Oriented Programming paradigm (OOP) is supported within the
Programming Language of choice. This requirement is necessary, due to
the fact that the Design Patterns in question (the 23 described in the Gang
of Four book [31]) rely heavily on the use of OOP. In addition to that,
without support for OOP the Design Patterns would be more difficult to
compare.

The second requirement is that, the Programming Language of choice
is among the more popular ones, at least in the recent years. The reasoning
behind that requirement is simple. The more popular a Programming
Language is the more it is used. Thus the more used Programming
Language is potentially better kept to date than a niche Programming
Language and it has had more development iterations. Because of that,
a more popular Programming Language is more likely to truthfully reflect
effects of Programming Languages on Design Patterns, than a no longer
used or updated Programming Language.
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And third and last requirement is that the language brings something
different to the discussion and comparison. This could be by either
supporting more than one programming paradigm or maybe by providing
different Language Features to the language users. There is no point in
examining two very similar or almost the same Programming Languages
and ignoring the dissimilar ones from the selection pool. As this would
not only lead to comparisons of poor quality and contrast, but it would
possibly lead to false conclusions.

3.2 Selection

As mentioned before the selection pool for Programming Languages is
potentially large, as such a shorter selection or short-list of at most 10
or so to choose from must be established. And from that short list a
selection of two or three Programming Languages must be made. The
process of selecting a set of Programming Languages, based on the criteria
described in the previous subsection is based on using online rankings of
the most popular Programming Languages. Three rankings were used,
The Spectrum IEEE magazine website [16], TIOBE Software website [75]
and the RedMonk Programming language rankings online [66]. [16], [75],
[66]

Thus, based on these rankings and the established from Section 3.1,
selection criteria, the selection of Programming Languages was narrowed
down to two, Java and Python. Other Programming Languages such as
JavaScript and C sharp were considered, but ultimately the selection was
narrowed to two, additionally due to time constraints.

3.2.1 Java

Java is an Object Oriented Programming Language and it’s syntax is
heavily influenced by C++ [73]. It is among the top ten languages by
popularity according to the previously mentioned ranking sites [16], [75],
[66]. In addition to that it is heavily used in the courses in the University
of Oslo. This makes it a perfect choice for the purposes of this thesis.

3.2.2 Python

Python is also among the ten most popular languages in the previously
mentioned rankings [16], [75], [66]. It was chosen due to it’s contrast
to Java. Whilst Java is OOP language, Python supports both OOP and
Functional programming (FP) [30]. In addition to that Python is primarily
an interpreted Programming Language, which could potentially lead to
more differences between the languages based on their typical use case
scenario.
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3.2.3 Other Candidates

There are three other languages that were considered and part of the
including in the comparison. They were also in the top ten most popular
languages rankings [75], [16], [66]. They are C sharp [15], JavaScript [14]
and C++ [69].

Java, C sharp and C++ are fairly similar and there is little point in
including multiple similar languages, thus only one of them had to be
selected. As previously mentioned that is Java, so C sharp and C++ are
dropped from the selection.

JavaScript is definitely an interesting candidate for the Programming
Language comparison. Whilst there are similarities between Java and
JavaScript in terms of syntax and libraries, the two languages differ in
design and use. JavaScript is a muti-paradigm language, supporting both
Object oriented programming and functional programming, whilst Java
is Object oriented one. JavaScript is primarily used in web development
for client side scripting, though since the introduction of Node.js (the
JavaScript run-time-environment [28]) it is possible to use JavaScript for
server side scripting as well. Unfortunately due to time constraints it was
decided that two languages are more than enough for a comparison. Thus
JavaScript had to be dropped from the comparison list as well.

3.3 Summary

Java and Python are the two Programming Languages, selected for
examination in this thesis. Both support the Object Oriented Programming
paradigm (OOP) and whilst there are many other viable candidates
[70], the choice had to be restricted to only two. As such these two
Programming Languages are used for the comparative study in this thesis.
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Chapter 4

Python

This chapter examines a selection of relevant to the topic Language
Features provided by the Python programming language and it’s standard
library, in the standard cpython implementation [22]. This chapter also
briefly describes the process of introducing new Language Features to the
language and the history of the relevant Python Language Features.

4.1 Python Enhancement Proposals

Python Enhancement Proposals (PEP) [52] is a mechanism for the Python
community to propose and select Language Features to include in future
iterations of the Python language. Roughly the process is such: First a
PEP is written, then possibly redacted and re-written until a consensus is
reached. Then the enhancement is implemented.

The list of Python PEPs can be found at [52] and there are three
types of PEPs, "Standard track", which are descriptions of new features,
"Informational", which describe particular design issue and "Proces",
describing a process surrounding Python. The relevant to the purposes
of this topic PEPs will mostly be the "Standard Track" PEPs. More
information about the PEPs can be found in pep-001 [53], which serves
as a guideline document.

4.2 Python Magic Methods

Magic method is a term that refers to a class of methods provided by
Python, that facilitate specialized functionality to the user. Their names
are always preceded and followed by two underscores, for example
__init__(). And they support all object oriented functionality that
Python provides. Magic methods are not well documented, by the python
documentations, in a sense that one could not browse all magic methods,
rather their definitions are spread over the documentation. An attempt to
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succinctly list and document all magic methods has been made by quite
a few websites and blogs. One of them is the "Guide to Python’s Magic
Methods" by Rafe Kettler [12]. Another example of magic method use is
when one decorates a class or a function with an object, that implements
the __call__(). By having that magic method, the object effectively is
considered to be a function by the Python interpreter, due to the dynamic
typing.

They are of importance, since many of the examples in this thesis
depend on implementing these methods in order to work.

For example by providing __call__() an implementation that uses
decorators, can use a class to decorate another class. This does qualify
as an alternative implementation. And thus, some magic methods affect
Design Patterns by providing an alternative implementation route. More
details on how the decorators and __call__() function interact can be
found in Section 4.5.

Magic methods are simply a different mechanism compared to Java,
that facilitates the same functionality. Example of that is the __iter__()
function, which is supposed to return an instance of the iterator. In
Java the collection would have to implement the Iterable interface. But,
Python doesn’t have interfaces and has duck typing, where if the Object
implements __iter__() it is of type Iterable. Their impact on Design
Pattern implementations, however seems to be minimal.

4.3 Metaclasses

According to Guido van Rossum’s blog, The History of Python [72],
Metaclasses were first available in Python since version 1.5, 1998. This
makes them a relatively old Language Feature of the language, since an
early iteration of the Language Feature was part of nearly the first version
of the programming language. As such there doesn’t seem to be a PEP
corresponding to the original concept of Metaclasses. However a PEP,
describing the changes to Metaclasses in Python version 3 is available,
called "PEP 3115 – Metaclasses in Python 3000" [56].

According to the Python documentation, in Python everything is an
Object [7]. That means that, classes are objects, even that modules are ob-
jects. Because, classes are objects, their class in term is an object as well. In
Python one can define these "classes of a class" and they are called Meta-
class. It is somewhat self explanatory from the name, since it is called a
Metaclass.
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metaclassclassinstance
instance of instance of

Figure 4.1: Diagram of metaclasses in Python

Thus a Metaclass is the class of the class [79], as depicted in figure 4.1.
In addition to that the default Meta Class of classes is type, also dubbed
as the type() Built-in function [2]. Type, according to the documentation
is a special function or object and it’s own class, tasked with constructing
new types, and as stated by the documentation equivalent to using the
class statement[2]. Thus it is the function responsible for creating classes
in Python, but it can also be used instead of the class keyword to dynam-
ically construct classes. This function is also linked to the "Type Objects" in
the language, since it is used to access the type of a given object [8]. Figure
4.2 and Figure 4.3 depict use of the type() function versus the equivalent
Python syntax.

1 MyClass = type(’MyClass’, (), {})

2 # Where, the result is:

3 # >>> MyClass

4 # <class ’__main__.MyClass’>

Figure 4.2: A demonstration
using Metaclasses to construct
classes in Python

1 class MyClass():

2 pass

3 # Where, the result is:

4 # >>> MyClass

5 # <class ’__main__.MyClass’>

Figure 4.3: A demonstration of
the equivalent Python syntax to
using Metaclasses in Python

4.3.1 Use

Figure 4.4, depicts the typical syntax of Metaclasses in Python. In it, a class
"MetaClass" is defined and used as a Metaclass by another class "MyC-
lass".

1 class MetaClass(type):

2 pass

3

4 class MyClass(metaclass=MetaClass):

5 pass

Figure 4.4: A demonstration of the Metaclass syntax in Python
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4.3.2 Using Metaclasses to Implement Design Patterns

Metaclasses are mostly useful in the Design Pattern context, to control
the creation of classes. As such their usefulness in terms of implement-
ing Design Patterns is limited to Creational Design Patterns. In particular,
a typical and popular example is that of using meataclasses to implement
the Singleton Design Pattern, where the metaclass holds a list of instances
and only creates one, amending the list accordingly. This is demonstrated
in figure 4.5.

1 class Singleton(type):

2 _instances = {}

3

4 def __call__(cls, *args, **kwargs):
5 if cls not in Singleton._instances:

6 Singleton._instances[cls] = super(Singleton , cls).__call__(*args, **kwargs)
7 return Singleton._instances[cls]

8

9 class MyClass(object, metaclass=Singleton):

10 def __init__(self, name):

11 self.name = name

Figure 4.5: An implementation of the Singleton design pattern using
metaclasses in Python

In figure 4.5, a Metaclass called Singleton is defined. This meta-
class extends the type metaclass and contains a dictionary _instances,
in which all instances of the metaclass objects are registered upon cre-
ation. Notice that instances are only entered if the _instances does
not contain an instance of the class. So, normally the __call__()
method in the Metaclass would be executed, before the __init__()
method in the class that has that Metaclass as metaclass. Thus
in effect intercepting the call to __init__() and only completing
the call super(Singleton, cls).__call__(*args, **kwargs)
to the super.__init__() if it satisfies the Singleton condition. This is
better demonstrated in the more complete example, that can be found in
Appendix A.1. The example in Appendix A.1 also demonstrates that the
method works when multiple classes have the same Singleton Metaclass,
meaning that cls not in Singleton._instance evaluates to True
for different classes with the same Metaclass, inside the Metaclass.
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4.3.3 Summary

Overall Metaclasses seem to be a useful feature that has a noticable impact
on how design patterns are implemented. In addition to that, the type
class is an implementation of a design pattern.

4.4 Abstract Base Classes

Abstract Base Classes in Python, is a Language Feature, provided by the
abc.py module [20] are, as the name suggests abstract classes intended to
be used as base classes for other classes, by using inheritance. They were
first introduced in 2007 and available in Python version 3, according to
"PEP 3119 – Introducing Abstract Base Classes" [57].

In Python the abc module provides a class and a The important part
is that, while inheriting from the appropriate ABC is encouraged, by
potentially providing "default implementations for certain functionality
to an improved ability to distinguish between mappings and sequences."
[57], but not enforced by the Python language. Thus in a way it is a
Language Feature that remains backwards compatible.

4.4.1 Use

Abstract Base Classes are used, by either using them as metaclasses for
the custom user-defined classes or by extending from them. Both meth-
ods yield equivalent result, as demonstrated in Figure 4.6 and Figure 4.7.

1 class C(metaclass=ABCMeta):

2 @abstractmethod

3 def c():

4 pass

5

6 class D(C):

7 def c():

8 pass

Figure 4.6: Using the metaclass in
Python

1 class C(ABC):

2 @abstractmethod

3 def c():

4 pass

5

6 class D(C):

7 def c():

8 pass

Figure 4.7: Using a Metaclass, by
extending it in Python

Implementation wise, Abstract Base Classes are soft-implemented
in the Python language, as it can be seen from the Cpython imple-
mentation [20]. The annotation @abstractmethodthat is in fact part
of the heart or core of the implementation detail, simply sets a flag
__isabstractmethod__ to true. Thus upon object creation of this class,
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a check is made if all abstract methods are implemented and if not, as Fig-
ure 4.8 shows an exception is raised.

1 #Traceback (most recent call last):

2 # File "<stdin>", line 1, in <module>

3 #TypeError: Can’t instantiate abstract class D with abstract methods c

Figure 4.8: Exception thrown, when the subclass has not implemented all
abstract methods and tries to create new objects in Python

Abstract Base classes are centered around the @abstractmethod,
without defining at least one @abstractmethod, the Abstract Base Class
has nothing else that stops the user from instantiating objects from the
class. This has to do with the fact that they are, as previously mentioned,
"soft-implemented",

1 class E(metaclass=ABCMeta):

2 pass

3 #>>> e = E() # is completely legal and ok with the interpreter

Figure 4.9: Example of instantiating empty Abstract Base Class Python

As Figure 4.9 demonstrates, instantiating a class that has ABCMeta
as metaclass, but no methods defined as @abstractmethod results in
no error. It is arguable how useful it would be to have an empty
abstract method, but the fact is that substantiation of an abstract method
is possible. Which in other languages such as Java is not the case.

4.4.2 Summary

Overall, the Language Feature Abstract Base Classes in Python, is not fully
part of the language, but rather implemented as an extension. When used
in practice, the Language Feature is useful for and defining Base classes
with abstract methods that have to be implemented. In other words it
can be used to define something similar to interface or type, in terms
a specification that has to be followed. In the Python documentation
and design documents it is referred to as a method to check if an object
conforms to a "Protocol" [57]. It is loosely related to Design Patterns, in
terms of possibly being used as an alternative means of defining a specific
interface. This discussion can be found in Section 6.1.
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4.5 Decorators

The decorator Language Feature that Python provides is thought to be, by
some, an implementation of the Decorator Design Pattern, based on it’s
name. However further investigation, reveals that this is not exactly the
case, as this section would demonstrate and explain. This feature was first
introduced in Python version 2.4, according to "PEP 318 - Decorators for
Functions and Methods" [59]. And subsequently enhanced to additionally
be able to decorate classes in Python version 3.0, according to "PEP 3129 –
Class Decorators" [58].

4.5.1 Description and Example Use

As presented in the Python documentation [63], in Python decorators are a
"syntax that allows us to more conveniently alter functions and methods".
Other sources such as [24] compare python decorators with macros and
even claim that the feature could be used to implement the decorator
pattern. Though as I will show later I disagree with the practicality of
that statement.

One of the best descriptions of decorators available describes decorat-
ors as "providing a simple syntax for calling higher-order functions."[61].
It presents the feature in its context, namely oriented towards the use of
the language in a functionally oriented programming manner.

That description suits the feature the best because it is primarily
meant to be a functional programming feature from the start of it’s
implementation as described in the Python wiki on decorators[63]. And
as it will become evident by the end of this section.

The decorators that python provides use Java like annotation syntax,
the decorator is listed before the definition of a function or a class
and preceded by an @. They can be used to decorate any object that
implements the __call__ function. Thus both classes and functions can
be decorated. Also multiple decorators may be used on the same function
or class, in which case the order of decoration goes from the closest defined
to the function or class up towards the last. Decorators, behind the scenes
serve as syntactic sugar for what can be called function or method re-
assignment. As mentioned in the decorator’s PEP [60], that is according to
their design.

Usually decorators contain wrapper functions, because the wrapper
functions’ arguments are the decorated object’s arguments. In other words
without defining and returning an inner wrapper function one cannot
forward the arguments to the original object and thus limits the use of
the decorator to only be used to decorate objects without arguments.
The general idea behind Python decorators is the following: Define an
object (function or class) to be used as a decorator. Inside that, define
a wrapper, that is returned at the end of __call__, or the end of the
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function. The arguments to the wrapper would be the arguments to
the original function.Inside the wrapper, before executing the decorated
function one could execute other code. One could also execute other
code after running the decorated function, by running it after explicitly
executing the decorated function with the arguments of the wrapper. Also
if the wrapped object is a class one should return the instance.

The following two figures demonstrate a typical use case and syntax of
Python decorators. Where, on the left, in figure 4.10 a function is used to
decorate another. And on the right, in figure 4.11 side of it the same result
accomplished with re-assigning the function reference.

1 @decorator1

2 def func():

3 pass

Figure 4.10: Python decorators

1 def func():

2 pass

3 func = f1(arg)(f2(func))

Figure 4.11: Function assignment

A more detailed and functioning example of a function being used to
decorate another is available in A.2. And the re-assignment equivalent is
available in A.3.

As previously mentioned any object that provides an implementation
to __call__() is legible for both being a decorator and for being decor-
ated. Thus both functions and classes can be used to decorate or can be
decorated.Table 4.1 shows the possible permutations.

function decorating a function class decorating a function
function decorating a class class decorating a class

Table 4.1: Combinations of possible Python decorators usage

Technically, if an object implements __call__() it could be con-
sidered a function, due to the duck typing of Python. Thus weather one
uses a class or a function, both are treated as the same thing, namely an
object that implements __call__(). Using a class, from Object Oriented
Programming (OOP) perspective, could provide more power and flexib-
ility to the user, as it allows the user to leverage the advantages of OOP,
encapsulating subroutines in functions, object variables...etc. Even though
one could technically decorate a class, as demonstrated in figure A.4, only
the __init__() function of that class is actually decorated.

When using a class for a decorator (A.5 and A.6), __init__() would
be called to initialize it, with the decorated object as an argument. And
__call__() would be called, when the decorated object (function or
classes method) is called, and it’s arguments would be the arguments to
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the function or classes method. The resulting behaviour is the same as if a
function is decorating another. A.6

Decorators can also accept arguments, just like functions. As demon-
strated in A.7.

4.5.2 Decorators versus Decorator Design Pattern

As it should be obvious by now Python’s decorators are are different from
the Decorator Design Pattern.

The Decorator Design Pattern (if implemented using composition or
inheritance) effectively re-uses the class/object that it decorates. Thus
the original decorated object could be reused, decorated by different
decorators, on their own or on top of each other. One also could define
multiple decorators to the same class or object. And the important part is
that the original class is still accessible and usable.

On the other hand Python decorators accomplish the reverse. One
defines a decorator that can be reused to decorate multiple classes or
functions. However the decorated functions can either be decorated by
a single decorator or multiple decorators. Thus the decoration is not in
the same sense as the Decorator Design Pattern. One possible solution to
that is to un-decorate the function and re-decorate it afterwards, using the
undecorate package, [78].

In addition to that as demonstrated in the previous subsection,
decorating a class in python involves editing the original definition of the
function or class. Which is not what the Decorator Design Pattern does.

Thus the Decorator feature of Python, whilst useful in implementing
some Design Patterns is not applicable as to the implementation of the
Decorator Design Pattern.

The issue with Python decorators is that they replace the reference to
the original class or function with the decorated one. This is possible, be-
cause of the first class citizen status of functions in Python. And that is
what Python decorators as a Language Feature distill, replacing the ori-
ginal reference with the one of the decorator. Also this is the main dif-
ference between decorators and the Decorator Design Pattern. That Py-
thon decorators are syntactic sugar of a special use-case implementation
of the Design Pattern, where the original reference is not needed and thus
replaced. Figure A.8 demonstrates what the Decorator Design Pattern
would look like in Python for functions. The important difference is de-
picted in 4.13.

Thus in conclusion it could be said, based on all of the above examples
and the feature’s behaviour, that Python decorators cannot be considered
an implementation of the Decorator Design Pattern. They only happen to
be named the same, but differ in the functionality that they provide.
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1 decorated = decorator(original)

2 decorated(5)

Figure 4.12: Decorator Design
Pattern using python

1 original = decorator(original)

Figure 4.13: Python Decorators
function assignment

4.5.3 Use of Decorators to Implement Design Patterns

As previously described, the re-assignment behaviour of Python decorat-
ors limits their use for Design Pattern implementations. As the resultant
changes are be permanent.

Thus, and as previously described, due to the fact that the original ref-
erences to the decorated object are replaced by the decorator, implement-
ing the Decorator Design Pattern using Python decorators, is not appro-
priate. Despite the claim made in Mastering Python Design Patterns that
it is the approach to use [40]. The result of using Python decorators to
implement the Decorator Design Pattern would also require editing the
original class definitions in order to decorate the functions provided by
the original class.

Because, decorators replace the reference of the class or function they
decorate, implementing the Singleton Design Pattern is probably the most
straight forward and direct use of decorators. The permanent changes to
the class, in order to make sure that only one instance is ever created are
desired. In that sense the undecorate python package becomes a weak
point of the implementation. Because the user can undecorate or in other
words remove the decorator that makes sure that only one instance is
allowed.

The implementation can be found in figure A.21. For simplicity the ex-
ample implementation uses a function to decorate the classes that will be
singletons. Decorating a class, decorates the __init__() method of that
class, thus in the decorator one could create a dictionary of the instances
and maintain only one instance in the dictionary, returning it instead of
creating a new instance, when called.

The positive about using Python decorators to implement the Singleton
Design Pattern is that the decorator can be reused, once the decorator
has been defined. Also it is visually distinct and clear, by the statement
"@singleton" above the class definition. x

4.5.4 Summary

Despite the fact that Python decorators are specialized form of the
Decorator Design Pattern, with limited application with regards to other
Design Pattern implementations, they can still be useful. However their
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1 def singleton(class_):

2 instances = {}

3

4 def getinstance(*args, **kwargs):
5 if class_ not in instances:

6 instances[class_] = class_(*args, **kwargs)
7 return instances[class_]

8 return getinstance

Figure 4.14: Python decorator definition for singleton implementation

use is limited, and they cannot be used effectively to implement the
Decorator Design Pattern. But they could be used to implement the
Singleton Design Pattern to a satisfactory result.

4.6 Iterator

Python provides the Iterator Design Pattern, as a Language Feature, first
released in Python version 2.1, according to "PEP 234 – Iterators" [54].
Python provides implementations of the Iterator Design Pattern in the
form of providing a set of types as part of the Builtin types [9]. Thus
defining the standard operations according to the Design Pattern. The
types in question are Iterator and Iterable. Note, Iterable is actually
referred to as Container in the documentation, however, for clarity and
simplicity it is referred to as Iterator henceforth.

4.6.1 Implementation Details

By having the Iterator Design Pattern defined as a composition of
types, Python clearly defines the interface of iteration that users can
implement in their collections or containers. In addition to that all of the
default collections and containers implement the Iterator Design Pattern,
according to the Python documentation [9].

The above-mentioned types are implemented as Abstract Base Classes
(ABC’s) behind the scenes [19], where the Iterator type corresponds to the
Iterator ABC and the container.__iter__() is actually defined in the
Iterable ABC. A summary of the methods that a class should implement in
order to be considered an Iterator or Iterable by Python is shown in figure
4.2.
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Iterator Iterable
iterator.__iter__() iterable.__iter__()
iterator__next__()

Table 4.2: Iterator and Iterable types summary

Iterators do not, however, implement all of the methods defined
by the Iterator Design Pattern. Instead of providing a method
iterator.__hasNext__() that returns true, if the iterator has more
elements to iterate, the iterator.__next__() raises an StopIteration
exception. This could potentially be the weak point of the implementa-
tion, as exceptions as the name suggests are meant to be raised in excep-
tional situations. And usually there are costs involved with raising an
exception, with regards to creating the exception objects, with the neces-
sary information. One would expect that using an exception would be
slower than an if-else statements block. However as shown by blog posts
[41] [32], that examine the topic of "performance comparisons between ex-
ceptions and if statements" in further detail, the decision isn’t as simple.
In other words, whilst it could be a concern, in practice the difference
in performance is probably negligible, since it has been implemented as
such since version Python version 2.1. Instead here an exception is raised
upon reaching the end of an iteration. The other methods in the figure are
container.__iter__(), which returns an iterator object for this con-
tainer, iterator.__iter__(), which returns itself.

The Iterator implementation was first proposed in 2001 [55], and is
available for Python version 2.1.

4.6.2 Why use Python Iterators

The main reasons for implementing iterator using the provided build-
in types are: First, by doing so, the implementation is following a well
defined standard, thus the user implementation is easier to understand
and use by others, since the interface is pre-defined and well known. The
second reason for using the build-in types is that all of the for-loops in
Python actually use the iterator types for their iteration. Thus again the
collections or containers would be easier to iterate, thus easier to use.
Figure 4.15 compares the for-loop use versus using the underlying iterator.
It is obvious from the figure that using the for-loops to iterate collections
requires many statements less from the user, thus being less error prone
and more compact.

Overall the feature is a useful implementation of the Iterator Design
Pattern, albeit a bit modified to use exceptions to signal when the iterator
is exhausted. In addition to that the for-loops provide excellent integration
of the Design Pattern into the language.
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1 for(element in collection):

2 #do something with element

3 pass

1 iterator = collection.__iter__()

2 while True:

3 try:

4 element = iterator.__next__()

5 # do something with the element

6 except StopIteration:

7 break;

Figure 4.15: Comparison of iterator use to for-loop in Python

4.7 Summary

Overall, Python Iterators are fairly well integrated in the Programming
Language and consistently used throughout the language by the for each
loops for iterating over objects. In addition to that as Section 4.6.2, thanks
to the way that Iterators are implemented, the user of the language is
incentivized to follow the template as defined by the Language Feature
for the user-defined collections as well. Thus defining a certain standard,
which leads to better consistency throughout the Programming Language
and the code written by the users of that language. Which in term could
lead to less error prone code and more readability of the code, because of
the consistency.

4.8 Object Copying

Python provides object copying out of the box for the users. The feature
seems to have first been available in Python version 1.0 (1995-01-10),
evident from the language implementation source file history [21].

4.8.1 Description and Example Use

As explained by the Python documentation [10], Python provides two
ways of copying or cloning an object. They are by calling either
the copy() or the deepcopy() method of copy in the standard
library. The copy() returns what is called a shallow copy, whilst the
other, deepcopy() returns a deep copy of the object. As previously
mentioned a shallow copy is one that does not include copies of other
objects referenced by that object, whilst the deep copy makes deep
copies of the referenced by the current object objects. Providing user
defined implementations of these methods is done by defining the
__copy__() and __deepcopy__()methods inside the class that should
have a different than standard behaviour on copy and on deepcopy. In
principle implementing these methods does not mean that the object that
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implements them actually overrides the methods in the super, since they
are not actually defined in the super-class, but the standard library instead.
So in order to actually copy an object, one has to import copy from the
standard library. A simple example of the Language Feature in practice
can be found in figure 4.16.

1 import copy

2

3 newCopy = copy.copy(oldObject)

Figure 4.16: A demonstration of object copying in Python

However, due to the fact that these functions are in a library means
that modifying their behaviour could be problematic for the user in the
case that the user would like to user the default behaviour, but also build
on it and contain it inside either the __copy__() or __deepcopy__()
methods. In this case one could use getattr() [3] and setattr() [4] to
modify the attributes of the object. A demonstration of that can be found
in figure 4.17, where the copy from the Python library is used to make a
copy of the object inside the overridden copy method, without creating an
infinite recursion loop, by removing the __copy__() attribute from the
object, before calling the copy method.

1 def __copy__(self):

2 # remove method to make a copy, while inside method:

3 copyMethod = getattr(type(self), "__copy__", None)

4 setattr(type(self), "__copy__", None)

5

6 result = copy.copy(self)

7

8 # reassign the method

9 setattr(type(self), "__copy__", copyMethod)

10

11 # make special copy operations

12 result.machine = copy.copy(self.machine)

13

14 # return the copy to client

15 return result

Figure 4.17: A demonstration of overriding the copy method in Python

An example use case, where one would like to create a copy of some
referenced by the object of interest objects, but not all, can be found in
figure 4.18.
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Figure 4.18: Cloneable example overview

Figure 4.18, depicts the object relationships in the example. In short,
Assume that a system for tracking students and their personal computers,
machines, in a department exists. Thus, the department would exist for
many students, but each student should have their own machine. A
full implementation of the use-case solution in Python can be found in
Appendix A.10. The clone function has already been presented, in figure
4.17, where the machine is copied, whilst the department is left as a
reference to the same object as the original of the copy.

4.8.2 Problems With the Language Feature

As discussed in Eric Bartley Jul’s phd "Object mobility in a distributed
object-oriented system" [39] there exists the so called "Copying the World
problem", when doing a deep copy of objects. In a sense, if the
deepcopy() function is recursively ran on all references inside an object,
then it is bound to return a copy of the entire system aka. the world. If
on the other hand the function implementation does not copy all objects
referenced by the one that is deep copied, even if the objects in question
are part of the Python environment, then the function is not a true "deep
copy". In other words, "If a deep copy is to be provided by default,
then how does the default implementation know where the desired by
the user deep copy conceptually stop? Also do the system objects get
deep copied, when a deep copy is called on a user defined object ? If
so why ? If not then why again? What is a reasonable behaviour in
this case could entirely depend on the user use-case and interpretation.
Thus, a "reasonable" or "sane" deepcopy implementation, could possibly
not exist at all. As such providing a default implementation of deep copy,
is bound to be sub optimal for some cases, based on the user’s use-case
and interpretation. And thus the question of whether it is worth providing
such implementation, given the circumstances has to be raised.

In Python, as evident by the documentation [10], it has been decided
that providing a default implementation of deep copy, is worth investing
time in. That implementation presumably does not copy system objects,
based on the documentation pages, "This module does not copy types
like module, method, stack trace, stack frame, file, socket, window,
array, or any similar types. It does “copy” functions and classes
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(shallow and deeply), by returning the original object unchanged; this
is compatible with the way these are treated by the pickle module."
[10] . As such the language provides the functionality in that form as
a default implementation, with the ability of the users to override the
implementation with their own customized one.

4.8.3 Summary

The copy Language Feature is provided in Python as a module that the
user has to import in order to use. This detachment of the Language
Feature from the Programming Language is a drawback, with regards to
the ease of use from user perspective. And whilst it can be argued that
implementing a module is simple and easy to do, it is not the same as
having the copy functions available by default. Despite some challenges
on a conceptual level, as discussed in this Section, the Language Feature,
with it’s default implementations are usable and presumably utilized by
the Programming Language users.

4.9 Summary

Overall from the Language Features discussed, it was found that,
Metaclasses 4.3, Abstract Base Classes 4.4, Decorators 4.5 and Object
Copying 4.8 can be used to implement Design Patterns, whilst Iterators
4.6 are an implementation of a Design Pattern within the language. In
addition to that Abstract Base Classes 4.4 are actually implementation of
the Abstract Parent Class, as found in Section 6.1. Whilst using Object
Copying 4.8, to implement the Prototype Design Pattern is discussed
in Section 6.5. Magic Methods 4.2 on the other hand, were discussed,
due to the functionality that they provide. This chapter discussed
some of the more directly related to Design Pattern implementations
Language Features provided in the Python Programming Language on
their own merits. Showing how they are used and briefly assessing their
implementations.
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Chapter 5

Java

This chapter examines a selection of relevant to the topic Language
Features provided by the Java programming language on their own,
evaluating these Language Features from the perspective of the thesis
topic.

5.1 Cloneable

Java provides a Language Feature called cloning or Cloneable and this
Language Feature has been available in the Java programming language
since version 1, according to the documentation [17]. In order for the
language user to implement cloning as specified by the language, the
classes that would support cloning should override clone() method,
the class Object provides the which the users are supposed to override.
In addition to that Cloneable is an interface, without any method
definitions. Which the user is expected to implement in combination to
overriding the Object.clone() method. If the class doesn’t override
the clone() method, but the user of the class or object calls it, the
CloneNotSupportedException will be thrown, as per specification
[17],[46]. So, in other words the empty interface implementation is to
signify that the user provides an implementation of the clone() method
and nothing else.

Should have Cloneable contained clone() method or not ? One would
expect that if one has to implement an interface, that then this interface
would contain some methods definitions. This is simply included in the
definition of the word interface as per this context. In fact the mismatch
that one has to implement an empty interface and override a method from
Object has caused many of the language users to question the decision.
I would speculate that Object.clone() has to be overridden and the
overriding method has to call super.clone(), because Object and any
other potential hierarchical parents could potentially have special require-
ments as to how cloning of the object has to be done properly.
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1 @Override

2 protected Object clone() throws CloneNotSupportedException {

3 Object output = super.clone();

4 return output;

5 }

Figure 5.1: Java overriding clone method

The Java documentation specifies that, with regards to the
Object.clone() method there are three requirements. First that the
cloned object will have different memory address (reference), second that
the cloned class will match the original’s class and third that the result
of comparing the cloned and original using .equals() method returns
true. Of these only the first is guaranteed, whilst the other are not. The
Object.equals() according to documentation compares the value of
obj a vs obj b, true if equal, false otherwise. According to the document-
ation one should also override .hashCode if overriding the .equals, which
could lead to the speculative conclusion that in order to compare instances
of Object quickly Object.equals() uses it’s hashCode comparison. Which
in term could be based on discretely building a hash based on the class
definition. For example an instance of String could hash the contents of
the string and compare the hash instead of each and every element of the
string, as an optimization. And thus the reasons for the Object.clone()
method being part of the super class of virtually any class in Java becomes
clear. By doing so one allows calls to be propagated upwards the hierarch-
ical chain of inheritance, by calling super.clone() inside the overrid-
den method, so that the parents have a chance to handle cloning of the
classes properly, on their own, whilst the extending classes can additively
modify the way that clones of the particular class are made. In addition to
that, another reason to override the parent method and to only make shal-
low clones by default is that, this way the class implementer can decide
which attributes need to be cloned and which don’t. Thus opening the
possibility for a hybrid or custom solutions versus being able to choose
from deep clone and shallow clone. Thus this solution of having shallow
clones by default is better than the one proposed in the criticism of the java
implementation, that states "It is the desired behavior in most the cases.
We want a clone which is independent of original and making changes
in clone should not affect original."[11]. Having deep clones by default,
means allocating potentially much more memory than the user potentially
needs, by creating deep clones of objects that the user doesn’t need, just
so the user can throw them away after. Thus having the more basic imple-
mentation as default and making it extendable to the more complex one is
the better choice, because it works for all out of the box and can be exten-
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ded for a more specialized use. An example of a hybrid implementation
can be found in Appendix A, figure A.12 to A.15. Where, in the example
there is a Student, which has a Machine and is part of a Department. Now
every student has a Machine that belongs to that Student, but many stu-
dents belong to a Department or in other words share a Department. Thus
when cloning Student, Machine is also cloned, whilst Department is kept
as a reference.

Figure 5.2: Cloneable example overview

But then why have the Cloneable interface ? Most likely to adhere
to the established uniform or standardized way of providing design pat-
tern implementations. This becomes more obvious when one examines
the Iterator, Iterable, Obeservable and other interfaces that Java provides.
They are all provided as interfaces that the user’s classes should imple-
ment in order to provide this functionality. In other words the interfaces
has become a standardized way of communicating that the functionality
is implemented or used by the user side code.

5.1.1 Summary

What in reality is provided by this Language Feature in Java, is a
default implementation of object copying, making shallow copies of
objects. Which the users could override easily. However in order
for the users of the Programming Language to make use of even the
default implementation, the classes of the objects to be copied have
to implement the Cloneable interface. This is a drawback of the
implementation, potentially making the Language Feature more difficult
to use. On the other hand, the objects that would presumably be copied
explicitly state that are "Cloneable", by implementing that interface and
references to these objects could be of the type "Cloneable", which could
lead to decoupling of potential implementations. So, even though the
implementation comes with a drawback it has a positive side to it.
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5.2 Iterator

Java provides implementations of the Iterator Design Pattern in the form
of providing a set of interfaces. This Language Feature has been available
since Java version 1.5, according to the Java documentation pages [34].
And by providing this set of interfaces it effectively is defining the
standard operations according to the Design Pattern. The interfaces in
question are Iterator, Enumeration and Iterable.

5.2.1 Interfaces

The idea behind providing the interfaces is as follows: The provided
by Java collections implement the Collection interface or interfaces that
inherit the methods from the Collection interface, which in tern inherits
it’s methods from the Iterable interface. In other words, the interface that
the default collections provided by the language is exposed to the users of
the language, such that they could implement that interface. This leads to
a consistent naming and use not only inside the implementations provided
by the language, but the ones that the users x define. In addition to that

5.2.2 Elements of the Implementation

Technically speaking the Enumeration interface is an implementation
of the Iterator pattern. It has been available since Java 1.0 (released
1996) [29] and it does define all methods defined by the Iterator Design
Pattern. Albeit named slightly differently, Instead of next() the function
is called nextElement(), and instead of hasNext() the function is named
hasMoreElements(). However the Enumeration interface, even though
available from the very start, is still available for backwards compatibility
reasons and new implementations should use the Iterator interface
instead, as mentioned in the documentation of the interface [29].

Instead Java provides an interface called Iterator, that is intended for
universal iteration and in it’s current form, has been available since Java
5 (or version 1.5, released in 2004), according to the Iterable interface
documentation [34].

Table 5.1 compares the Iterator interface to the Enumerator interface.

Enumerator Iterator
boolean hasMoreElements() boolean hasNext()
E next Element() E next()

default void remove()

Table 5.1: Iterator versus Enumerator summary
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Just as described by the Design Pattern, in the GoF book[31], there are
two entities involved in the Iterator implementation. In the pattern de-
scription these are Aggregate and Iterator, in Java they are Iterable[34] and
Iterator[36]. Where the aggregate is the collection, whilst the iterator the
object responsible for the iteration. In Java the "Aggregate" is the Iterable
interface, or one of it’s sub-interfaces such as Collection, List, Set, Sorted-
Set, and so forth.

Iterator Iterable
default void forEachRemaining(...) default void forEach(...)
boolean hasNext() Iterator<T> iterator()
E next() default Spliterator<T> spliterator()
default void remove()

Table 5.2: Iterator and Iterable interfaces summary

5.2.3 Use

Figure A.11 demonstrates an implementation of the interfaces, by the
classes CustomCollection and CustomIterator. CustomItearator doesn’t
support remove operations and it throws UnsupportedOperationExcep-
tion to communicate that fact to the user. Typically a custom collection
would implement either Collection or some of it’s sub-interfaces, such as
List, Set, Map and others. However for the sake of the simplicity and not
to clutter the class interface with unnecessary methods, the example im-
plements the Iterable directly.

The fact that the example class implements the Iterable interface means
that, users that would like to iterate over the CustomCollection can use the
well defined methods to do so. In addition to that one could use the for-
each loop [71]. An example of it’s use versus the equivalent code snippet
required to iterate over the collection in a while loop is available in figures:
5.3 5.4.

1 Iterator iter = collection.iterator();

2 while (iter.hasNext()) {

3 Object element = iter.next();

4 // do something with the element

5 }

Figure 5.3: Iterator use

1 for (Object element : collection) {

2 // do something with the element

3 }

Figure 5.4: Equivalent for each
loop
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5.2.4 Summary

As demonstrated, the use of a for-each loop simplifies the iteration process
significantly and it is available for any class implementing the Iterable
interface and returning an object implementing the Iterator interface.
This in combination with the fact that the interfaces are pre-defined and
standardized, and unified for use is the benefit of using the provided by
Java interfaces. And in combination with the fact that the pre-defined in
Java collections all implement these interfaces is the benefit of the Java’s
implementation of the Iterator Design Pattern.

5.3 Observer

Ever since Java version 1.0 (released in 1994), Java has provided imple-
mentation of the Observer Design Pattern. That is according to the docu-
mentation of the Language Feature [48] [47].

Java provides implementations of the Observer Design Pattern in the
form of providing an interface [48] and a class Observable [47], thus
defining the standard operations according to the Design Pattern. The
interface in question is Observer and the class, Observable.

By providing a class for Observable, Java provides a default imple-
mentation, that in most cases would be sufficient, thus increasing code
reuse and reducing code duplication.

Whilst the Observer Design Pattern, as defined in GoF [31], specifies
the actors of the Observer Design Pattern to be Subject and Observer, Java
renames the Subject to Observable [47][48][42]. In addition to that, Java
renames the methods of the design pattern participants, adds a few new
ones and defines additional methods to the Observable interface. A com-
parison between the class interfaces of Observable and Subject can be seen
in table 5.3.

Subject Observable
Attach(Observer) addObserver(Observer)
Detach(Observer) deleteObserver(Observer)
Notify() notifyObservers()

deleteObservers()
countObservers()
hasChanged()
clearChanged()
setChanged()

Table 5.3: Subject versus Observable class summary

As table 5.3 demonstrates, Java renames the Attach, Detach and Notify
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methods to addObserver(), deleteObserver() and notifyObservers().
And also provides additional convenience methods. They are, deleteObservers(),
which removes all observers from the registered to the Observable Observ-
ers, countObservers(), which returns the number of registered with
the Observable Observers and hasChanged(), which returns weather
the observable has changed. In addition to that it defines two protected
methods, clearChanged(), to clear the changed flag of the Observable
and setChanged(), to flag the Observable as changed.

Observer design pattern Java Observer
Update() update(Observable ob, Object o)

Table 5.4: Observer comparison table

And table 5.4 shows the Java Observer interface versus the Observer
class, as defined by the Observer design pattern. From the table
it can be seen that in Java, when the Observer is updated by the
update(Observer ob, Object o) function, it receives a reference to
the Observable that updated it. This is important, because if an Observer
subscribes to or is added to more than one Observables, then it could
differentiate on update in terms of which Observable is the cause of the
update.

5.3.1 Use

The way the Java implementation of the Observer Design Pattern is
used, is by either using the Observable class or extending it and by
implementing the Observer interface in the user-defined, custom Observer
classes. A full example can be found in Figure A.16 and A.17.

5.4 Summary

Overall from the Language Features discussed, it was found that, Java
provides implementations to two GoF [31] Design Patterns. The Iterator
Design Pattern is implemented in the form of a Language Feature in Java
(Section 5.2) and Observer Design Pattern, implemented as the Observable
Language Feature, Section 5.3. Whilst in addition to that Java provides
Language Feature related to Object Duplication (Section 5.1), which as
discussed in relation to Design Pattern implementations in Section 6.5.

This chapter discussed some of the directly related to Design Pattern
implementations Language Features provided in the Java Programming
Language on their own merits. Showing how they are used and
briefly assessing their implementations. Whilst Chapter 6 contains other
Language Features, examined in comparison to Python and in relation to
Design Patterns implementations.
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Chapter 6

Evaluation

This chapter evaluates the impact of Language Features provided by
Programming Languages on Design Pattern implementations in these
languages. It does so by comparing equivalent or approximately similar
Language Features across the two Programming Languages, Java and
Python.

Whilst the previous chapters go more in depth in the Language
Features provided by the languages, here the evaluation is in terms of
comparison across languages, over Language Features.

6.1 Basic Design Patterns

One of the books on the topic of design patterns in Java, Software
Architecture Design Patterns in Java [42], describes and categorizes a few
extra design patterns, that are relevant to this topic. They are categorized
as Basic Design patterns. Basic, probably due to the fact that in Java,
many of the Design Pattern implementations tend to rely on these Design
Patterns, as shown in Section 6.6. This Section examines implementations
of these Design Patterns in Java and Python and to what degree the said
Design Patterns are implementable in the said language, in relation to the
provided by the language Language Features.

6.1.1 Overview of Basic Design Patterns Versus Language
Features

The Design Patterns versus what Language Feature they either correspond
to or rely on in Java, versus in Python is depicted in table 6.1. Note that
not all of the Basic Design Patterns described in the book are actually dis-
cussed here, only the ones that are relevant to the topic.
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Basic Design Pattern Java Language Feature Python Language Feature
Interface interfaces Abstract Base Class
Abstract Parent Class abstract classes Abstract Base Class
Accessor Methods member access control property
Private Methods member access control naming convention

Table 6.1: Summary of relevant Basic Design Patterns in Java

These patterns are not necessarily unique to Java and can be imple-
mented in any programming language in principle. As such they will be
examined in both the context of Java and Python in this Section. Arguably,
more in the context of Python, because the Java design patterns book [42]
specifies and thoroughly discusses them in Java.

As it can be seen from Figure 6.1, most Java Language Features, have
corresponding to them Python Language Features, which the Design
Patterns either correspond to or heavily rely on. All these are discussed
in the subsequent subsections.

6.1.2 Interface

The Interface Design Pattern is the typical way to use interfaces in Java.
Interfaces are used to define a type or interface of a class type, or for the
providers. That specific interface is often equated to making a contract
between the implementation classes and the user classes, where that
contract, in the form of an interface, guarantees that the implementations
provide the promised interface and the user classes agree to use that
interface. Thus the clients of the providers or interfaces know a type which
is common to all providers and only specifies the relevant interface of the
type.
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<<interface>>

Provider

+method1()

+method2()

+method3()

ProviderImplementation

+method1

+method2

+method3

ProviderImplmentation2

+method1

+method2

+method3

Figure 6.1: UML diagram of the Interface Design Pattern, and the Java
implementation

Figure 6.2, demonstrates the definition and implementation of an in-
terface in Java.
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1 public interface Provider {

2 void method1();

3 void method2();

4 void method3();

5 }

6

7 public class ProviderImplmentation1 implements Provider {

8

9 @Override

10 public void method1() {

11 System.out.println("method1");

12 }

13

14 @Override

15 public void method2() {

16 System.out.println("method2");

17 }

18

19 @Override

20 public void method3() {

21 System.out.println("method3");

22 }

Figure 6.2: Java Interface definition

The fully fledged Java implementation demonstrated in Appendix
A.18, however the essence of the pattern use is, that the client would
define the type of the variables referencing the Providers and any potential
method arguments that are Providers as the interface and not a concrete
class, whilst the implementations could be passed as an argument or set
with setter methods. Alternatively the client or user classes could decide
which particular implementation to use. An example of that is when us-
ing most of the provided Java collections, such as List, Map, Set. The user
classes are free to choose, say the ArrayList implementation of the inter-
face List, or HashSet implementation of the Set interface or HashMap im-
plementation of the Map interface. So that in essence the pattern is casting
the reference to an object to the interface, as demonstrated in Figure 6.3:
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1 Provider provider = ProviderImplementation1();

2 provider.method1();

3 provider.method2();

4 provider.method3();

Figure 6.3: Java Interface use

In Python, on the other hand, interfaces do not exist. Thus in
principle implementing this pattern explicitly, exactly as specified is
impossible. However, the types in Python are governed by the duck-
typing mechanism, where if a certain object implements all of the methods
of a certain type, then it is deemed to be of that type.

Thus the Interface design pattern could be implemented either impli-
citly, by implementing all the required methods according to some spe-
cifications or documentation. Or by substituting interface implementation
with class inheritance. Or even by using Python’s Abstract Base Classes
and extending (realizing) them in concrete classes instead of implement-
ing an interface.

In principle all of these solutions are valid substitutes for the interface
Language Feature in Python, however neither is a exactly matching sub-
stitute and in all of the three cases the implementer has to accept a certain
sacrifice. In the implicit case the implementer sacrifices the clarity of expli-
citly defined interfaces in the code and the fact that they would likely be
defined elsewhere, either in a specification document or documentation.
Figure 6.4 depicts this implementation.
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ProviderImplementation

+method1

+method2

+method3

ProviderImplmentation2

+method1

+method2

+method3

Documentation, specifying the methods:

+method1

+method2

+method3

ImplicitImplicit

Figure 6.4: UML diagram of the Interface Design Pattern in Python, using
duck typing.

The complete implementation in terms of code of the Interface Design
Pattern, that uses the duck typing in Python is demonstrated in Appendix
A.19. It can easily be seen how this "implicit" specification of the formal
interface is an imperfect solution to the problem. First off, the user
has to read potentially separate documentation defining the interface.
This means that the implementer has to keep up to update one more
documentation or design document. In particular, it is a problem that the
documentation is very separate from the implementation and the two can
easily drift apart.

The second substitute relies on inheritance. Whilst in Java, using up
the only super class slot for a class would potentially be ill-advised from
extensibility standpoint, Python supports multiple inheritance. So the cost
of this implementation is that it will result in an additional super class. Po-
tentially increasing the complexity of the data model.
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Provider

+method1()

+method2()

+method3()

ProviderImplementation

+method1

+method2

+method3

ProviderImplmentation2

+method1

+method2

+method3

Figure 6.5: UML diagram of the Interface Design Pattern in Python, using
inheritance.

In the case of inheritance, the parent class definition could implement
the methods to throw an NotImplementedError exception. This would
communicate to the user that One should extend the class and provide his
own implementations.

1 class Provider:

2

3 def method1(self):

4 raise NotImplementedError

5

6 def method2(self):

7 raise NotImplementedError

8

9 def method3(self):

10 raise NotImplementedError

Figure 6.6: Interface Provider using NotImplementedError in Python

But does not stop the user from instantiating the class. One could also
raise an NotImplementedError in the super class and override it in the
sub class. Raising an exception from the __init__() method of the Pro-
vider could possibly solve the problem of instantiating the Provider, how-
ever, it could potentially cause problems with multi inheritance and other

55



sub-classes. So this method has to be used with care. It could look some-
thing like demonstrated in Figure 6.7.

1 class Provider:

2

3 def __init__(self):

4 raise NotImplementedError

Figure 6.7: Interface Provider using NotImplementedError for init in
Python

One more problem with raising NotImplementedError exceptions
is that the sub-classes are not forced to provide implementation of the
methods, that raise the exceptions. And unless there is documentation
or the implementer sees the definition of the class it is not immediately
apparent which methods should be overridden. So again, just as with
the previous solution there is an issue of communicating the intent clearly
and directly. And the final problem with this solution, in the case that
the __init__() does not raise an NotImplementedErroris that, inside
the unimplemented methods, raising a NotImplementedError is done
after the user calls them. Thus it is not a preventative solution, less directly
obvious and clear to the user and it could go unnoticed, if, for example,
the method is not used.

The third method of substituting Java interfaces in Python is by us-
ing the standard Python abc module, which as discussed in Section 4.4
provides the Abstract Base Classes like functionality to the Python users.
Even though the Abstract Base Classes are meant to be equivalent to ab-
stract classes, they could be used to substitute Java’s interfaces in Python.
Again it will depend on inheritance and it does add as such it does add
complexity to the hierarchy of models in the system.
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1 from abc import ABC, abstractmethod

2

3 class Provider(ABC):

4

5 @abstractmethod

6 def method1(self):

7 pass

8

9 @abstractmehtod

10 def method2(self):

11 pass

12

13 @abstractmethod

14 def method3(self):

15 pass

Figure 6.8: Interface implementation using the abc module in Python

The benefits of using the abc module are that by decorating the
unimplemented methods with the abstractmethod decorators, the sub
classes are expected to implement these methods. In addition to that an
exception is thrown (as demonstrated in Section 4.4), if the sub-class has
not overridden the abstractmethod methods and the user attempts to
create instances of that class. This is an improvement over the previous
solution, where the user could create instances of the sub-class that has
not provided implementations to the "stub" methods that just raise an
exception. So the user is provided feedback that there is something
incomplete about the implementation earlier. However, in Java this error
is detected and the user is informed as soon as the compiler goes over
the class definition. And that happens during compilation. Python,
on the other hand, usually is interpreted, so the equivalent behaviour,
could have been to raise an exception when the interpreter reads the class
definition. However whether this error is severe enough to thwart the
interpretation of the script is debatable. As it is Java manages to detect
and communicate to the user sooner that the user defined sub-class has
not implemented an abstract method during compilation versus Python’s
on class instantiating.

It is important to point out that all Python implementations share the
same Client implementation. Due to the fact that Python is a dynamic
programming language, the type of the argument to the Client method,
useProvider(p) is never checked. An example client implementation
is defined in Figure 6.9, where the Provider instance is supplied as an argu-
ment to the Client class, using the function useProvider(provider).
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1 class Client:

2

3 def useProvider(self, provider):

4 self.provider = provider

5 provider.method1()

6 provider.method2()

7 provider.method3()

Figure 6.9: Interface client implementation in Python

There are other ways in which the Provider instance supplied to the
Client, such as an argument for the __init__() method or alternatively
the Clients could know of the ConcreteProviders and pick the preferred
implementation. This is all use-case specific.

In conclusion, the Interface Design Pattern is easily implemented in
Java, because it provides the Language Features that it relies on. In
Python on the other hand, the third proposed substitute implementation is
arguably the closest Python equivalent to Java interfaces and consequently
implementing the Interface Design Pattern in Python. Whilst not a perfect
fit, substituting interface implementation for class extension works. And
using the decorators, metaclass and class provided by the abc Python
module works to communicate the expected interface implementation,
though with some oversights as previously discussed.

6.1.3 Abstract Parent Class

Abstract Parent Class is a design pattern similar to Interface design pattern
[42], however it is meant to overcome the shortcoming of interfaces that
interfaces did not (at the time), in Java, allow the interface writer to specify
a default implementation for the methods in the interface. Thus leading
to the redundancy of code. Having the same default method implement-
ations repeated over and over again in a project’s code-base. However
the expense of using abstract classes to define essentially interfaces with
default method implementations, is that in Java multi inheritance is not
supported. Which means that extending an abstract parent class is taking
up the one and only possible parent of that class with interface definition
with default methods and variables. The positive side is that the variables
do not have to be static and final. And that the abstract class could provide
utility methods. Figure 6.10 depicts the UML representation of the Design
Pattern, as defined in the Java Design Patterns book [42].
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AbstractClass

+abstractMethod

ConcreteSubClass1

+abstractMehtod()

ConcreteSubClass2

+abstractMethod()

Figure 6.10: UML diagram of the Abstract Parent Class Design Pattern

The Abstract Parent Class Design Pattern in Java is implemented using
abstract classes. Figure 6.11 demonstrates the implementation of the Ab-
stract Parent Class in Java:

1 public abstract class AbstractClass {

2

3 public String variable1 = "AbsClassVar";

4

5 public abstract void abstractMethod();

6

7 public void method2() {

8 System.out.println("method2");

9 }

10 }

11

12 public class ConcreteSubClass1 extends AbstractClass {

13

14 @Override

15 public void abstractMethod() {

16 System.out.println("abstractMethod");

17 }

18 }

Figure 6.11: An example implementation of the Abstract Parent Class
Design Pattern in Java

Abstract classes in Java have the following key characteristics: The
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abstract parent class cannot be instantiated. Any class that extends the
abstract class has to either be an abstract class or implement all of the
abstract methods. In addition to that if an abstract class implements an
interface it does not necessarily have to implement all methods of that
said interface, but it’s sub-classes have to provide implementations if the
abstract class doesn’t.

Python’s module abc, provides support for abstract methods in the
language. It is described in detail Section 4.4 and it is used to implement
the Abstract Parent Class in Python, as demonstrated in Figure 6.12.

1 from abc import ABC, abstractmethod

2

3 class AbstractClass(ABC):

4

5 @abstractmethod

6 def abstractMethod(self):

7 pass

8

9 class ConcreteSubCLass1(AbstractClass):

10

11 def abstractMethod(self):

12 print("abstractMethod")

Figure 6.12: An example implementation of the Abstract Parent Class
Design Pattern in Python

Section 6.1.2 already discussed using Abstract Base Classes in Python
as substitutes for the interface Language Feature in Java to implement the
Interface Design Pattern. The Abstract Base Classes are arguably closer
substitute for abstract classes from Java, than the interfaces, as the name
suggests. The main question is are they a direct equivalent to the Java
abstract classes. And the answer is partially yes, with minor differences,
as already described in Section 4.4.

Based on that the Abstract Parent Class is overall quite similarly
implemented in both Java and Python, so Figure 6.10, depicts the
implementation of both of them, by using the corresponding Language
Feature. Abstract classes for Java and Abstract Parent Classes for Python.
Arguably, as the name suggests the Python Language Feature has been
conceived with the same purpose as the Abstract Parent Class Design
Pattern, namely to be used as an abstract parent for OOP modeling.
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6.1.4 Interface Compared to Abstract Parent Class

Because the two Design Patterns, Interface and Abstract Parent Class are
quite similar, it is worth comparing the Language Features they rely on
in the two Programming Languages. This subsection evaluates the two
Design Patterns and the Language Features.

Whilst using abstract classes to implement the Interface Design Pattern
is indeed silly in Java, given the fact that a specific Language Feature
exists, exactly for that purpose, doing the opposite is not inconceivable,
due to changes to interfaces introduced in Java 8.

Default methods, introduced in Java 8, help bridge the gap between
interfaces and abstract classes in Java. What the Language Feature entails
is the ability to provide implementations to the methods within an inter-
face in Java, by using the default keyword before the method definition.
As such this makes interfaces more flexible and potentially cuts back on
code repetition and redundancy. An example of the feature is depicted in
Figure 6.13.

1 interface SomeInterface {

2 default public void method1() {

3 System.out.println("default implementation of method1");

4 }

5 }

Figure 6.13: An example implementation using default methods in Java

This Language Feature became available after the description of the
Interface Design Pattern and Abstract Parent Class were published in the
"Software Architecture Design Patterns in Java" [42]. As such it possibly
provides alternative venue of implementing the Abstract Parent Class, de-
pending on the use-case, by using interfaces and default method imple-
mentations. In principle, it puts interfaces closer to abstract classes, due to
it’s functionality. Table 6.2 depicts the differences between interfaces and
abstract classes in Java, in light of the new functionality introduced in Java
8.

Interface Abstract Class
cannot define constructor can define constructor
only final static variables any variables
default methods non-abstract methods
abstract methods abstract methods

Table 6.2: Interfaces compared to Abstract Classes in Java
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As it can be seen from table 6.2, the major difference between interfaces
and abstract classes in Java is that abstract classes can define non-static and
non-final variables, as well as defining a constructor. The interesting fact
is that, if the user chooses to use interfaces instead of abstract classes for
the implementation, then the user is effectively substituting inheritance
for interface extension. This is even more important, because of the fact
that Java does not support multi inheritance. However the down side
of substituting abstract classes with interfaces is the limitations on the
implementation. All of the variables have to be static and final and the
interface cannot initialize variables during run-time in a constructor as an
abstract class could. This in my opinion is a significant limitation, because
in my experience a lot of implementations of the Abstract Parent Class
utilize the class not only to define the abstract methods and non-abstract
ones, but also variables that could potentially be used in the non-abstract
methods, or even used by the sub-classes of the Parent.

As such the new interfaces are a nice improvement of the Language
Feature in terms of allowing the users more flexibility. In other words
the language has adapted to provide better tools or Language Features
to it’s users, such that implementing a specific design pattern (Interfaces)
is preferred over another (Abstract Parent Class) in certain situations.
However interfaces are not a complete substitute of the abstract classes.
And even though in some cases the Abstract Parent Class Design Pattern
theoretically could be implemented using interfaces as substitutes for
abstract classes, it would only be a small subset, due to the limitations
of the Language Feature. In addition to that, in larger systems with
many implementations of the Abstract Parent Class Design Pattern,
implementing some, by using interfaces whilst others, using abstract
classes would lead to inconsistencies of the implementation and potential
confusion for the users of the said implementations. Thus doing so, would
potentially degrade the implementation and negatively impact it.

Abstract Base Classes on the other hand, can be used for implementing
both the Interface and the Abstract Parent Class. Arguably, the Language
Feature is closest to being an implementation of the Abstract Parent Class.
And the Interface Design Pattern could be thought of as less applicable
due to the duck-typing of Python. On the other hand as already explained
in 6.1.2 a definition of type interface in code is beneficial and thus using
the Abstract Base Classes of Python to do so is preferred. Thus, whilst Java
has a Language Features roughly corresponding to each Design Pattern
(Interface and Abstract Base Class), in Python Abstract Base Classes seem
like the most appropriate Language Feature that implements both Design
Patterns.

The fact is that these two Design Patterns, Interface and Abstract Parent
Class solve two different problems. The Abstract Base Class, most often
used for use-case modelling, to provide a base, with meaningful default
implementations of methods and contain meaningful shared variables for
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it’s sub-classes. Whilst the Interface, used to define abstract specification
of the interface of a specific class of classes or simpler said Type. Without
specifying any default method implementations or any shared variables.
As such the Java 8 extension of it’s interfaces in terms of the ability to
provide default implementations for the methods of interfaces is substan-
tially less useful, when put into this context. First off, any variable defin-
itions inside interfaces in Java, have to be static and final. Thus, these
variables are in reality constants and as such can never change. In addi-
tion to that, interfaces cannot have constructors defined. This leads to the
fact any default method implementations only have access to constants
and reduces the possible spectrum of useful implementations of these de-
fault methods. Thus the default methods implementations would be so
restricted, that they would be hardly useful, aside from not requiring im-
plementation, when the interface is implemented by a class. Due to these
differences in implementation of the Design Pattern in Java in particular,
it is common to see the two Design Patterns used in conjunction with each
other. Figure 6.14, depicts an uml representation of this particular config-
uration of use, where an interface is defined and this interface is imple-
mented by an Abstract Base Class, of which actual implementation classes
are sub-classes.
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ConcreteSubClass1

+abstractMehtod()

ConcreteSubClass2

+abstractMethod()
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Interface
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Figure 6.14: UML diagram of Interfaces used in conjunction with Abstract
Parent Classes in Java.

As such the user could reference the interface and in effect not know
anything about the implementation of that interface, aside from the fact
that it is guaranteed. And the sub classes of the abstract class implicitly
implement that interface, because their super class does so. And in
addition to that the sub-classes of the abstract class are provided with
some, where necessary, default method implementations. In addition to
which the abstract parent class provides common variable definitions and
potentially default values and initialization, depending on the use-case
and implementation. In python on the other hand, as described earlier,
Language Feature that implements the Interface Design Pattern does not
exist. As such the above described collaboration between the two Design
Pattern is not possible in the same way it is in Java. At best one Abstract
Base Class is used to define the interface, effectively implementing the
Interface Design Pattern, whilst another is a sub-class of that, effectively
implements the Abstract Parent Class, using Abstract Base Classes. This
is a very clear example of Design Patterns implementation and use within
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the Programming Language, being affected by the Language Features that
the Programming Language provide.

6.1.5 Accessor Methods and Private Methods

This Section discusses the rest of the relevant Basic Design Patterns, in
both Java and Python, as described [42]. The particular Design Patterns in
question are the Accessor Methods and Private Methods Design Patterns.
Both the Accessor Methods and the Private Methods rely on member
access control in Java. Namely the keywords: public, protected, private
and no modifier, as specified in the Java documentation [18].

An implementation of Private Methods can be found below, in Figure
6.15. The implementation, as depicted by Figure 6.15 is trivial, simply us-
ing the Language Feature.

1 public class SomeClass {

2

3 private void privateMethod(){

4 System.out.println("PrivateMethod");

5 }

6 }

Figure 6.15: An example implementation of Private Methods in Java

On the other hand Accessor Methods requires a bit more of the imple-
menter, but still quite little, as depicted in Figure 6.16.

1 public class SomeClass {

2

3 private int var1 = 0;

4

5 public void setVar1(int var1) {

6 this.var1 = var1;

7 }

8

9 public int getVar1() {

10 return this.var1;

11 }

12 }

Figure 6.16: An example implementation of Accessor Methods in Java
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The two requirements of the Accessor Methods in Java, that the
implementation usually has to satisfy are: The naming convention,
accessor methods are normally named set and get, followed by variable
or attribute name that they set or get. In fact often these methods are called
setters and getters. And the variable also should preferably be restricted
in terms of access from the outside using the Java member access control
[18]. So, either defined as private or protected. Aside from these two,
the pattern implementation is straight forward.

Unfortunately in Python every member of all objects is publicly ac-
cessible by design and there is no way of restricting access to object or
class members. There is however a convention of appending one or two
underscores before and after an internal method or variable name, such
as for example: __init__(). By following this convention the user of
the class, upon seeing the name of the method or variable, is informed
that the variables are internal and should not be altered and that the meth-
ods are special or internal and should normally not be called directly from
the user code. Thus, an equivalent implementation of the Private Meth-
ods Design Pattern is arguably impossible in Python. At best the methods
that are private could follow the above mentioned convention, but there
is no way to actually enforce the member access control and the methods
will be visible to all and callable by all, as it is demonstrated in Figure 6.17.
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1 class ContainingClass(object):

2

3 def __privateMethod1__(self):

4 print("__privateMethd1__ called")

5

6 # Output:

7 # >>> c = ContainingClass()

8 # >>> dir(c)

9 # [’__class__’, ’__delattr__’, ’__dict__’, ’__dir__’,

10 #’__doc__’, ’__eq__’, ’__format__’, ’__ge__’,

11 #’__getattribute__’, ’__gt__’, ’__hash__’, ’__init__’,

12 #’__le__’, ’__lt__’, ’__module__’, ’__ne__’, ’__new__’,

13 #’__privateMethod1__’, ’__reduce__’, ’__reduce_ex__’,

14 #’__repr__’, ’__setattr__’, ’__sizeof__’, ’__str__’,

15 #’__subclasshook__’, ’__weakref__’]

16

17 # >>> getattr(c, ’__privateMethod1__’)

18 #<bound method ContainingClass.__privateMethod1__ of

19 #<__main__.ContainingClass object at 0x7f2c6b7df4e0 >>

Figure 6.17: An example implementation of the Private Method Design
Pattern in Python

As demonstrated in Figure 6.17, the method is accessible from outside
of the class and instance of the class and visible, using the built-in
function dir() [5]. In addition to that one could use the built-in function
getattr(object, name) [3] to get a specific attribute and even use the
built-in function setattr [4] to assign another function in it’s place, thus
altering the object run-time. Thus the Private Methods Design Pattern,
whilst not impossible to implement using convention is impossible to
enforce, due to the fact that Python does not provide equivalent to the
Java member access control Language Feature to it’s users.

Accessor Methods Design Pattern [42], if attempted to be implemented
in the same manner as in Java, but in Python, has a similar issue to Private
Methods, but with the variables that the accessors are supposed to wrap.
Because the variable that the Accessor Methods are supposed to expose to
the world to modify in a controlled manner is already public, without any
real way to enforce access to them other than following a convention. In
addition to that, it is more typical and wider accepted in Python to dir-
ectly access variables, rather than to deal with accessor methods [62]. The
property built-in function and decorator as per Python documentation [6]
is precisely meant to solve the issue with defining user controlled access to
variables. The use of property to implement Accessor Methods Design
Pattern is demonstrated in Figure 6.18.
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1 class Class(object):

2

3 def __init__(self, var1 = 3):

4 self.var1 = var1

5

6 def set_var1(self, value):

7 if(value > 0):

8 self._var1 = value

9

10 def get_var1(self):

11 return self._var1

12

13 var1 = property(get_var1, set_var1)

14

15 # Output:

16 # >>> C = Class(1)

17 # >>> dir(c)

18 # [’__class__’, ’__delattr__’, ’__dict__’, ’__dir__’, ’__doc__’,

19 # ’__eq__’, ’__format__’, ’__ge__’, ’__getattribute__’, ’__gt__’,

20 # ’__hash__’, ’__init__’, ’__le__’, ’__lt__’, ’__module__’, ’__ne__’,

21 # ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’,

22 # ’__sizeof__’, ’__str__’, ’__subclasshook__’, ’__weakref__’, ’_var1’,

23 # ’get_var1’, ’set_var1’, ’var1’]

24 # >>> c.var1 = −5
25 # >>> c.var1

26 # 1

27 # >>> c.var1 = 4

28 # >>> c.var1

29 # 4

30 # >>> property(c.get_var1 , c.set_var1)

31 # <property object at 0x7fca32b07b88 >

Figure 6.18: An example implementation of the Accessor Methods Design
Pattern using property in Python

As it can be seen in Figure 6.18, The property built-in function is the
best possible way to implement the Accessor Methods Design Pattern in
Python. Because, as demonstrated in Figure 6.18, var1 is not actually the
variable that holds the value, rather it is the result of the property func-
tion call, a property object with a getter, setter, deleter and a document
methods. And these methods are automatically called, according to the
situation. An example of a more interesting typical use-case of Accessor
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Methods in python is depicted in Figure 6.19.

1 class Class(object):

2

3 def __init__(self, var1 = 3):

4 self._var1 = var1

5

6 def get_var1(self):

7 return self._var1

8

9 var1 = property(get_var1)

10

11 # Output:

12 #>>> c.var1 = 5

13 #Traceback (most recent call last):

14 # File "<stdin>", line 1, in <module>

15 #AttributeError: can’t set attribute

Figure 6.19: An example of how the implementation of the Accessor
Methods Design Pattern using property in Python would restrict access
to variables

Why does the call c.var1 = 5 in Figure 6.19 fail ? Because, first of
all, the var1 that the user is assigning a value to isn’t actually the variable
that holds the value. The variable that actually holds the value of interest
is named _var1, as seen in line 4 and 7 in Figure 6.19. So, somehow the
call to the built-in property function, maps the assignment to var1 to the
getter provided in the property(getter, setter, deleter, doc)
call. And likewise for the setter, deleter and the documentation for
the property. However on the other hand, var1 is clearly listed in
the dir(c) call result in Figure 6.18. Thus however this is technically
implemented the end result for the user is the definition of a var1,
which acts as an interaction end-point for the user, instead of the actual
variable _var1. Thus resulting in an adequate implementation of the
Accessor Methods Design Pattern, in Python, which does not technically
support the same Language Feature for manipulating members access of
objects and classes. Yes the original variable, _var1 is still accessible
from the outside of the object and class and there is still no way to
enforce no access to it. However, if Pythonic conventions with regards to
naming schemes are followed, (as they usually are in most languages and
most languages have their own conventions), then the Accessor Methods
Design Pattern implementation is adequate to the Design Pattern initial
intent, to control access to object variables trough accessor methods. It
has been affected though, quite heavily, in a sense that without using the
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property Language Feature and the variable naming convention, the
implementation suffers from potential obscurity with regards to which
variables should not be modified from outside the object as well as being
less typical or accepted implementation (less Pythonic) within the Python
programming language.

6.1.6 Conclusion

It could be argued that the Basic Design Patterns are nothing but
descriptions of use of the language provided features. However, it also be
argued that these design patterns are a consequence of well implemented
Language Features that influenced or are one of the main causes of the
Design Pattern existence, since they are heavily reliant on the discussed
in this chapter Language Features. On the other hand, Python does not
provide implementations of the Basic Design Patterns, such as Interface
or Private Methods. And the implementation of these Design Patterns is
not quite straight forward as discussed in this Section. In-fact, as it was
found, the Interfaces and Abstract Parent Class, used in conjunction with
each other could lead to a difficult situation, since the same Language
Feature could be used to implement both Design Patterns. As such Java,
provides the better medium, trough it’s Language Features, to use these
two Design Patterns in conjunction to each other in a productive manner.
Accessor Methods, on the other hand as discussed in Section 6.1.5,
whilst adequately applicable to Java, are more invisibly and naturally
implemented with regards to ease of use and adaptability in Python.

All of the above-discussed Design Patterns show that the program-
ming language, with the Language Features that they provide, can and do
significantly affect the Design Pattern implementations in said languages,
due to the fact that these Design Patterns are very basic in nature and often
used by other Design Pattern implementations.

6.2 Decorator

The Decorator Design Pattern, as defined by GoF [31] and as implemented
in Java, can be found in Figure 6.20. In principle the Decorator Design Pat-
tern is supposed to either using inheritance override the decorated meth-
ods or using composition to implement the same interface or abstract class
(if either of these is provided by the Programming Language in question)
to decorate the original class’s methods. However, in Python decorators
are a bit different.
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<<interface>>

Decorated

+operation()

DecoratedImplementation

+operation()

Decorator

+operation()

User

Figure 6.20: Extended UML diagram of the Decorator design pattern

As explained in Section 4.5, the Python’s implementation of decorators
work primarily on functions. Thus the only relevant to Object Oriented
Programming case is when one would like to decorate the constructor of
a class, since that is what the result of attempting to decorate a class with
a function or another class in Python.

Due to the fact that everything in Python is an object, the Python’s
implementation of decorators could be represented as it is in Figure 6.21.
Where an instance of the decorating class is returned, which is an object,
that implements __call__() or a function, which as well is an object.
Thus the DecoratingClass’s instance could be a function object as well as
an instance of a class and the instance of the DecoratedClass is always a
function object. The decorating object returns another wrapper object (or a
function), that in terms is the one executed when normally the constructor
of the original (decorated) class would be. And the decorating object re-
turns the result of the original (decorated) class’s constructor. This whole
process is invisible to the user of the class. As the instance returned is of
the decorated class and the user cannot directly discern that the original
class’s constructor has been decorated, since it executes as normal. How-
ever, in addition to the normal behaviour of the original class, the decor-
ator could execute custom operations before and after the original class’s
constructor is executed.
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DecoratedClass

+__init__()

DecoratingClass

+preDecoratee()

+postDecoratee()

User

Transparently

Figure 6.21: UML diagram of Python’s implementation of the Decorator
design pattern

6.2.1 Conclusion

The Python implementation of the Decorator Design Pattern, could be
thought of a special case implementation of the Design Pattern, that is
primarily meant to be used in functional programming context. Because
using a class to decorate a class or a function does not seem to offer that
much more than using a function, aside from the ability to abstract sub-
operations in functions and hold data in the object of the class or even
as class variables. Also because, in order to use a class as a decorator,
the class would have to be of the "type" function, by implementing
__call__(), such that the result of the call: callable(obj) is True.
Also because when decorating a class, in reality only the __init__()
method is decorated. And all this is possible because of the dynamic
typing in Python in combination with the Decorator Python Language
Feature implementation.

6.3 Iterators

This Section draws comparisons between the languages’ implementations
and evaluates of how the languages affect the implementations of the
Iterator pattern, in terms of what they provide to the language users.

Whilst Iterators are technically provided, the language user still has
to implement classes in a specific way in order for iteration with it’s
language integration to work. Thus the languages facilitate easier Design
Patternimplementation at the cost of users following the pattern as
described by the languages.
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Both Java and Python, provide their own interpretation of the Iterator
Design Patternas the interface of Iterators in the language. An UML dia-
gram of the Iterator Design Pattern as defined by the GoF [31] can be found
in Figure 6.22.

Collection

+createIterator()

+size()

+append(item)

+remove(item)

+...()

Iterator

+first()

+next()

+isDone()

+currentItem()

Client

ConcreteCollection ConcreteCollectionIterator

Figure 6.22: UML diagram of the Iterator design pattern

<<interface>>

Iterator

+forEachRemaining()

+hasNext()

+next()

+remove()

<<interface>>

Iterable

+forEach()

+iterator(): Iterator

+spliterator()

Collection

+forEach()

+iterator(): Iterator

+spliterator()

CollectionIterator

+forEachRemaining()

+hasNext()

+next()

+remove()

Client

Figure 6.23: UML diagram of Java’s implementation of the Iterator design
pattern

Both Java and Python have imposed a change on the terminology with
regards to the elements of the Iterator Design Pattern. Namely instead
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of using "Aggregate" they use Iterable. The renaming is a good thing
because Iterable caries more meaning and context than Aggregate, one
clearly can understand that the object in question can be iterated on and
that the interface/object is related to iterators.

Because, the release of Java 8, users can use the so called "passive"
also known as "internal" iterators in the form of the .forEach() method,
described to greater extend in the excellent article in JavaWorld [35]. By
providing lambdas and the .forEach() method, to some degree Java
facilitates functional programming in the Programming Language. As
such the functional programming variant of the Iterator Design Pattern,
namely internal Iterator, is possible to be utilized. Python on the other
hand, does not directly support this in specialized syntax and the user is
expected to use the for loop syntax or alternatively use the map functions.

CustomCollection

+__iter__()

CustomCollectionIterator

+__iter__()

+__next__()

<<Abstract Base Class>>

Iterable

+__iter__()

<<Abstract Base Class>>

Iterator

+__iter__()

+__next__()

Client

Implicit
Implicit

Figure 6.24: UML diagram of Python’s implementation of the Iterator
design pattern

As previously mentioned the Python’s implementation of the Iterator
Design Pattern does not include the __hasNext__() method and the
__next__() throws an exception when the iterator has been exhausted.
Because, the user’s of the language have a good incentive to follow the
interface defied by the language, as demonstrated in Section 4.6, then
they would typically not implement a hasNext() method either. Thus the
language has affected the implementation of the Iterator Design Pattern,
by specifying an alternative simplified one and providing an incentive for
the users to the users to implement it as such, by providing better language
integration of the implementations.

However the choice of using exceptions instead of implementing the
hasNext() function is problematic. First off all, it is contrary to the
intended use of exceptions. The end of an iteration is not an exceptional
state at all. Rather more of an inevitability, due to the fact that computer
memory is finite.
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Another drawback of using exceptions to signify the end of the
iteration is that in principle throwing an exception, to signify the end
of an iteration, is in theory more computationally expensive [25], when
compared to a function call and boolean check, as explained in Section 4.6.

6.3.1 Conclusion

The new lambda functions in Java and the forEach() methods are ex-
ample of the Programming Language enabling the users of the language,
by providing a feature that allows the functional programming oriented
variant of a Design Pattern to be used. This is another example of the
Programming Language evolving, by providing lambda functions and as
a result of it’s evolution affecting a Design Pattern in terms of enabling
the use an alternative variant of that Design Pattern. Both Java and Py-
thon provide similar enhanced for loops, which in both Programming Lan-
guages depend on the iterators Language Features. This is an example of
a Design Pattern implementation, that is deeply ingrained into the Pro-
gramming Language, such that other related Language Features that the
Programming Language provides, such as the enhanced for loops, depend
on the Language Feature that is an implementation of the Iterator Design
Pattern.

6.4 Observer

As described in chapter 5.3, Java implements the Observer design pattern,
since version 1.0, released in 1994. Python on the other hand does not
implement the Observer design pattern and has left the users of the
language to implement it themselves, from scratch.

Figure 6.25 depicts the Observer design pattern as defined by the GoF
book [31].
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+Detach(Observer)

+Notify()

ConcreteSubject

+

+GetState()

+SetState()

Observer

+Update()

ConcreteObserver

+Update()

observers

subject

Figure 6.25: UML diagram of the Observer Design Pattern

Figure 6.26 depicts an UML representation the Observer design pattern
implementation in Java.

Observable

+addObserver(Observer)

+deleteObserver(Observer)

+notifyObservers()

+countObservers(): int

+deleteObservers()

+hasChanged(): boolean

#clearChanged()

#setChanged()

<<interface>>

Observer

+update(Observable,Object)

observers

observableCustomObservable ObserverImplementation1

+update(Observable,Object)

observable

ObserverImplementation2

+update(Observable,Object)

Uses a custom Observable.

Uses Java’s Observable.

Figure 6.26: UML diagram of the Observer Design Pattern in Java
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As it can be seen from Figure 6.25 and 6.26, the Java implementation
follows closely the Observer design pattern definition. The differences
are as described in Section 5.3 mostly cosmetic renaming of methods
and the fact that instead of the ConcreteObserver inheriting from the
class Observer, in Java the ConcreteObserver implements the interface
Observer. Overall this is the only major affect that Java has on the
Observer design pattern implementation in the programming language.
Python, on the other hand does not implement the Observer design
pattern. However a typical implementation could mirror the GoF [31]
definition closely, using inheritance just as the Design Pattern defines. In
addition to that the Python implementation could define Abstract Base
Class for the Observer implementation, as described in Section 6.1.2.
However, that implementation would be inspired by Java and the fact that
Abstract Base Classes, as shown in Section 6.1.2 are a possible substitute
for interfaces, since Python lacks that Language Feature. Thus such
implementation in Python is possible, but unlikely.

6.4.1 Conclusion

Java implements the Observer Design Pattern as a Language Feature,
whilst Python does not. In principle, due to the popularity of the Reactive
X frameworks in both languages, which provide implementations for
Observers and Subjects it is hard to assess whether

6.5 Object Duplication

Object duplication, replication, copying or even cloning are all synonym-
ous words that could be used to refer to the same concept in object oriented
programming. Namely the concept of creating a duplicate or a copy of an
existing object in memory, resulting in two objects with the same data.
Many Programming Languages provide means of duplicating objects in
their standard libraries, examples of that are Java and Python. Both Pro-
gramming Languages implement their own interpretation of object du-
plication. The implementations differ from one another, as they are in two
different programming languages, probably influenced by the standard-
ized ways that these programming languages implement Language Fea-
tures. Also probably influenced by the community surrounding these pro-
gramming languages.

6.5.1 Copy Method and Copy Constructor

At a conceptual level, there are two typical ways of implementing object
duplication. In the form of a copy method or in the form of a copy
constructor, such as in C++ [69]. In principle, a constructor in Object
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Oriented Programming is a method, just a special one, that is tasked
with initializing or constructing an object of the given class and returning
a reference to it. In the first case, a method would be defined, called
clone() or copy() or even deepcopy(). This method, when called
on a reference of an object would return a separate instance of the class,
which is a duplicate of the object. In the second case, the case of a copy
constructor, one would call the method class with a reference to an object
of the class. Then that constructor would return a separate instance of the
class which is a duplicate of the object. Both Python and Java support
the first method out of the box and the user is free to implement the copy
constructor if desired.

6.5.2 Shallow and Deep Copy

In addition to that as previously discussed there are two basic ways to
duplicate an object. The first is to return a shallow copy, where references
to other objects in the original are references to the same objects in the
duplicate. And the second method is called deep copying, where the
references to other object in the original are copies of these objects in
the duplicate. In both languages, the user can implement a custom
duplication solution by overriding the provided by the Programming
Language methods. One reason for implementing a custom solution could
be that the particular use case requires a hybrid between deep and shallow
copy scheme that must be custom to the models of the system.

6.5.3 Use of Object Duplication for Design Pattern Imple-
mentation

Why is Object duplication a relevant concept to the topic? In short,
because it can be used to implement the Prototype design pattern. By
using Object Duplication, the user does not have to re-implement the
copying parts of the code for the most part and in the most general case
where only a shallow copy is necessary.

Thus it can be said that it is an implementation of the design pattern in
practice, event though in theory the Prototype design pattern and Object
Duplication are different, but related concepts. They are related, because
they specify similar behaviour, namely using one object as a template to
create copies of that object. Figure 6.27 shows the Prototype Design Pat-
tern, as defined in the GoF book [31].
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Client

+Operation()

Prototype

+clone()

ConcretePrototype1

+clone()

ConcretePrototype2

+clone()

Figure 6.27: UML diagram of the Prototype Design Pattern

Cloneable, in Java, in practice is the implementation or the imple-
mentation of the Programming Language’s interpretation of the Prototype
Design Pattern. As described in Section 5.1, it requires the user to both
override the clone() method from Object and implement the Cloneable
interface.

Object

+clone()

<<interface>>

Cloneable

+clone()

ClientClass

+clone()

Figure 6.28: UML diagram of object duplication in Java

UserClass

+__copy__()

+__deepcoppy__()

copy(object)

deepcopy(object)

<<Lib>>

Figure 6.29: UML diagram of the copy methods in Python
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The Java implementation of object duplication as depicted in Figure
6.28 differs from the Prototype Design Pattern by only the fact that any
class that overrides the clone() method has to implement the empty
Cloneable interface. Aside from that difference, as it can be seen from the
Figures 6.28 and 6.27 it is very similar to the Prototype Design Pattern. In
that it uses inheritance to override the method defined in the super-class,
just like the pattern defines.

The Python implementation, as depicted in Figure 6.29, differs from
the from the Prototype Design Pattern quite a bit more on the other hand.
First, the copy methods are defined inside the standard library module
copy. Second the methods or functions are stand-alone, meaning they are
not part of an object called copy, but part of the module copy. And they
receive a reference to the object to copy, rather than have no arguments
as the Prototype Design Pattern and the Java implementation define. In
addition to that they look into the attributes defined by the object to copy,
to determine weather either of the __copy__() or __deepcopy__()
methods are defined. And if the object to be copied implements these
methods, the object implementations are used instead. This approach is
quite different from the inheritance and method overriding one, that is
specified by the Prototype Design Pattern and in the Java implementation.
Instead of inheritance it uses composition in a functional programming
context. Nevertheless the structural difference in the implementation, it
could still be said that

6.5.4 Conclusion

Due to these similarities and differences between both implementations
provided by Java and Python, versus the Prototype Design Pattern, as
described by the GoF [31]. It could be argued that the Programming
Languages implements the Prototype Design Pattern, if not in theory, then
in practice. Because, if one were to try to implement the Prototype Design
Pattern in these languages, the base for the pattern is already implemented
and available. And if parts of the Design Pattern are missing one could
argue that the implementation provided by the language is as interpreted
or as chosen to be implemented by the Programming Language. And
this would be how the Programming Languages affect the Design Pattern
implementation in said Programming Languages.

6.6 Language Features Overview

This Section summarizes the Language Features used in the implementa-
tions of Design Pattern’s.

A somewhat interesting and useful view could be assembling a
timeline of related to Design Patterns, Language Features.As such there
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are plenty of sources stating the version release history of the languages
considered in this thesis. For Python for example the Guido van Rossum’s
blog [65], as well as the Wikipedia article [33] on the subject, provide a
table of the Python versions and release dates. For Java on the other hand,
the Java Papers blog, by Joe [38], as well as the Wikipedia article on the
subject [33], provide a table of the Java versions and release dates.

Based on these and the findings presented so far in this thesis, a
timeline of the discussed and related to the Design Patterns Language
Features in both Java and Python can be composed as depicted in table 6.3
and table 6.4. Of which, table 6.3 depicts the introduction of the relevant
Language Features to Design Pattern implementations over the course of
version releases and time in Java and the equivalent Python table is by it’s
side, table 6.4.

Language Feature Java Release
Interface JDK 1.0 1996
Abstract Class JDK 1.0 1996
Cloneable JDK 1.0 1996
Observer JDK 1.0 1996
Iterator JDK 5 2005
Default Functions JDK 8 2014

Table 6.3: Overview table of rel-
evant Java Language Feature re-
leases.

Language Feature Python Release
Object Copying 1.0 1994
Magic Methods 1.0 1994
Metaclass 1.5 1998
Iterator 2.1 2001
Decorator 2.4 2004
Decorator 2.4 2004
ABC v3 2007

Table 6.4: Overview table of rel-
evant Python Language Feature
releases.

Table 6.5, on the other hand, summarizes the Design Pattern imple-
mentations and what they rely on as described in the GoF book [31]. By
listing this summary information, it is not meant to categorize Composi-
tion, Inheritance, Aggregation and Delegation as Language Features. But,
rather to make possible the comparison of what Language Features pos-
sibly substitute for them, when discussing the Language Features, in ad-
dition to having a clearer overview of the Design Patterns.
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Design Pattern Description
Factory Method composition
Abstract Factory composition
Builder composition
Prototype composition
Singleton composition
Adapter inheritance
Bridge delegation
Decorator composition / inheritance
Composite
Facade aggregation
Flyweight aggregation
Proxy aggregation
Chain of Responsibility delegation
Command aggregation
Interpreter
Iterator
Mediator delegation
Memento
Observer
State delegation
Strategy delegation
Template Method
Visitor delegation

Table 6.5: Overview of language mechanism versus Design Pattern

Table 6.6 summarizes the Language Features that Design Pattern im-
plementations in the given language depend on. Based on both the find-
ings of this thesis and the documentation and books that are referenced by
it. By listing the Language Features and Design Pattern in that way it is
not meant that, the implementations have to use the particular Language
Feature. It is not an absolute requirement to do so in order to have an
adequate Design Pattern implementation. But, rather that since the Lan-
guage Feature is provided by the said programming language and aids
the implementation in that particular language in some way, it might as
well be used for the implementation, rather than not.
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Design Patterns versus Language Features:
Design Pattern Java Python
Interface Interface Abstract Base Class
Private Method Member Access Control
Accessor Methods Member Access Control Property
Factory Method Interface
Abstract Factory Abstract Class, Interface
Builder Interface
Prototype Clonable Interface Copy

Deepcopy
Singleton Static Methods Metaclass

Abstract Base Class
Decorator

Adapter Interface
Bridge Abstract Class, Interface
Decorator Interface
Composite Interface
Facade
Flyweight Interface
Proxy Interface
Chain of Resp. Abstract Class
Command Interface
Interpreter Interface

Abstract Class
Iterator Java implementation Python implementation

(Iterable, Iterator Interfaces) (Abstract Base Class)
Mediator Interface
Memento
Observer Java implementation

(Interface)
State Interface
Strategy Abstract Class, Interface
Template Method Abstract Class, Interface
Visitor Interface

Table 6.6: Design patterns versus what Language Features they depend
on.

As it can be seen from the table 6.6, most design pattern implement-
ations in Java depend on using the interfaces to define a precise concise
contract with the user, an interface definition in other words. The blank
Java Design Patterns are not affected by any specific Language Features
that the language provides. The Design Patterns implementations in Py-
thon on the other hand, where the Java versions use Interfaces or Abstract
Classes, could very easily be implemented using Abstract Base Classes
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as substitutes for the Interface or Abstract Class, as demonstrated in Sec-
tions 6.1.2 and 6.1.3. Most of the Java entries in this table are based on
the "Software Architecture Design Patterns in Java" [42]. And the Python
ones, roughly on "Mastering Python Design Patterns" [40] as well as the
findings from the previous chapters.

Another fact of importance is that the provided Design Patterns im-
plementations in Java, which also depend on the interfaces, since they are
interface definitions, whilst the internal to the language implementations
are classes adhering to these interfaces. And in Python the feature imple-
mentations rely on Abstract Base Classes to define their interfaces to the
users of the language and Language Features.

6.7 Results and comparisons graphs

Based on the impact of the Language Feature on Design Pattern imple-
mentations, one could compose a scoring and consequently categorization
scheme. Where the provided by the two programming languages in ques-
tion (Python and Java) Language Features of interest are evaluated with
regards to: First if the feature implements a Design Pattern, the imple-
mentation. And second if the feature helps facilitate implementation or
affects the implementation of design Patterns.

Table 6.7 depicts an overview of the Language Features and their score.
This thesis defines a scoring scheme for Language Features, in relation to
Design Pattern implementations as the following scoring criteria: To be
part of the table the Language Feature has to be relevant to Design Pattern
implementations. A two stars score "**" to Language Features, that Design
Pattern and provided to the users, default implementations use it as well.
A three star score "***" to Language Features, that affect more than one
Design Pattern implementation, including a highly related Design Pattern.
A five star score "*****" to Language Features, that impact most design pat-
terns implementations.
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Language Feature score

Python

Abstract Base Class *****
Property ***
Copy, Deepcopy ****
Decorators ***
Iterator **
Metaclasses ****

Java

Interface *****
Abstract Class *****
Member Access Control ***
Iterator **
Cloneable **
Observer **

Table 6.7: Programming language features, examined in relation to Design
Patterns.

As depicted in table 6.7, Interfaces in Java as well as Abstract Classes
score highest, as they potentially affect most if not all Design Pattern
implementations in the language. Also as seen from table 6.6. Similar to
that, as the equivalent of Abstract Classes in Java, Abstract Base Classes of
Python also achieve the top score. These three Language Features deserve
the top score, because of their universal applicability to all Design Pattern
implementations. Further down the list in Python are Copy, Deepcopy
and Metaclasses, with four stars.

6.8 Life Cycle of a Design Pattern

This Section proposes and describes and proposes a theory of what the
life cycle of Design Patterns is in relation to Programming Language Lan-
guage Features. That theory is based on observations made while writing
and compiling information for this thesis. Along with being inspired by
the work of Peter Novrig [27] with regard to Design Patterns and Pro-
gramming Language Language Features analysis in Dynamic Languages.
Figure 6.30 graphically depicts the possible ways in witch Design Patterns
could potentially over time evolve in relation to Programming Languages.
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Figure 6.30: Design Pattern adoption path

In short, the theory regarding the life of a Design Pattern attempts
to capture the potential evolution of Design Pattern. And it could be
described as follows. Naturally a Design Pattern is extracted, abstracted
solution to a specific type of problem, distilled after potentially multiple
sightings. Thus, this abstraction becomes a Design Pattern. Just as it was
done with the first 23 Design Patterns, described in GoF [31]. From there,
the Design Pattern could be implemented as a library or a framework or
even directly implemented as a Language Feature in a said Programming
Language. Examples of that are the previously discussed in this thesis
Language Features. The abstractions in libraries or frameworks in term,
could be incorporated into a Programming Language. If the framework or
library in question is popular enough and easy enough to be incorporated.

6.9 Classification of Language Features

This Section proposes a classification scheme for Language Features in
relation to Design Patterns, inspired by the classification, described in
Peter Norvig’s examination of Design Patterns in Dynamic Programming
Languages [27]. In particular page 7 of his presentation, where the Design
Pattern implementations are graded in terms of "Level of implementation
of a Pattern" one of three categories: "Invisible" - So much part of the
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programming language that it is indistinguishable , "Informal" - Referred
to by name but must be implemented from scratch and "Formal" - have to
be implemented by user.

Whilst these tree categories work for the discussion in question, they
are not as precise as they could be with relation to this thesis. And their
naming scheme, whilst fine for the discussion they belong to, isn’t quite
suited or applicable to the discussion in this thesis. As such, defining
a new classification,still inspired by that classification, but based on the
current context is in order.

6.9.1 Classification

Table 6.8 demonstrates the three classes or states of features.

Language Feature

Python

Invisible Decorators
Invisible Property
Invisible Metaclasses
Partial Abstract Base Class
Partial Copy, Deepcopy
Partial Iterator

Java

Invisible Interface
Invisible Abstract Class
Invisible Member Access Control
Partial Iterator
Partial Cloneable
Partial Observer

Table 6.8: Programming Language features, classification in relation to
Design Patterns.

There are two classes in the new classification: Invisible and Partial.
An Unimplemented classification doesn’t make sense, since if a Language
Feature isn’t implemented then it doesn’t exist.

6.9.2 Invisible

Invisible - The similar to as described by Peter Norvig [27]. Language
Features that are ready to use out of the box for the user. The following
Language Features are classified as Invisible:

Member Access control (section 6.1.5), in Java the keywords, used to
control access to members of classes (and packages for that matter) are
private, public and protected. To any programmer that is familiar
with the language is also familiar with them. The abstract keyword as
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well. It represents a concept that is part of the language. As well as the
interface, it represents defining an Interface, just like class defines a
class.

In Python, the Language Features that belong to this category are
Metaclass (section 4.3), which are part of the language as well and are
specified by using the metaclass=x in the class definition. Decorators
(section 4.5) and Iterator (section 4.6) as well. Using the Java annotations
symbol and placement, but to decorate functions and classes for example
@abstractclass is consistent with the rest of the language. Property
(section 6.1.5), present in the form of both a function and a decorator is
also very consistent and ready to use out of the box.

All of these Language Features belong to the classification as Invisible,
because they are highly integrated in the language, in other words they
are indistinguishable part of the language, often as usable keywords by
the user and the user does not have to include or import any modules or
packages. They are there.

6.9.3 Partial

Partial - Meaning the Language Feature implementation is complete, but
the users have to put in effort in terms of implementation to make custom
cases work or in some cases to even to use the Language Feature. Thus
potentially requiring knowledge of other concepts outside of the language,
such as Design Patterns.

In Java these are the Clonable (section 5.1), Iterator (section 5.2)
and Observer (section 5.3). In order for the user to use them in user-
defined classes, the appropriate package has to be imported, and the user-
defined classes have to implement the appropriate interfaces or extend the
appropriate classes.

In Python the belonging to this category Language Features are
Abstract Base Class (section 4.4), Copy and Deepcopy (section 4.8) .
Again in order for the user to use them in user-defined classes, the
appropriate module has to be imported, and thus the user gains access
to the appropriate class or function definition, in order to use or extend in
the user code.

All of these Language Features belong to the classification as Partial,
because, whilst they are part of the language standard libraries or
language, they are not part of it by default. The user has to import a
module and then be able to use them.

6.9.4 Summary

So in a sense it could be said that this classification to some degree cor-
responds to evaluating weather the Language Feature in question is part
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of the Language Specification or the Standard Libraries and the Language
Specification and the implementation of the compiler/interpreter.

6.10 Bidirectional Relationship

The fact is that the Design Patterns do not exist in vacuum, neither
do Programming Languages and that there are interactions between the
two. In addition to that, both change over time (as described in Section
6.6), influenced by factors such as the users, the programmers using the
Programming Languages, the projects these languages are used on and
problems they solve. Likewise the Design Patterns are adapted to the
Programming Languages and problem domains and new Design Patterns
or variations of existing ones defined. Such as the Proxy Design Pattern
and it’s variations, such as Remote Proxy and Virtual Proxy as described
in "Software Architecture Design Patterns in Java" [42].

Based on the findings of this chapter, it can be concluded that the
interaction or relationship between Programming Languages and Design
Patterns is in-fact a bidirectional one. Thus, instead of the relationship
between the two, being simply one way, either Programming Languages
affecting Design Pattern implementations or Design Patterns inspiring
Language Feature implementations in Programming Languages it in-fact
could be that both of these cases are true.

6.11 The Ripple Effect Theory

As already established in Section 6.10, the relationship between Program-
ming Languages and Design Patterns is a bidirectional. This leads to the
consequence that a change in Language Features implemented by a Pro-
gramming Language could lead to changes in Design Pattern implement-
ations in this language. This is because, the new or changed Language
Feature might affect how the Design Patterns are implemented, by pos-
sibly either making it easier to implement certain Design Patterns or mak-
ing the implementations of certain Design Patterns by the user’s obsolete,
in case of the Language Feature being a direct implementation. For ex-
ample Python Abstract Base Classes (Section 4.4) are an implementation
of the Abstract Parent Class, as discussed in Section 6.1. In addition to
that they could be used to implement the Interface Design Pattern. Thus
as shown in Section 6.6, if used to implement the Interface Design Pattern,
then nearly all Design Pattern implementations could benefit from using
Abstract Base Classes to define their interfaces in a more explicit manner.
Thus they are likely to be used by the users of the Python language in
Design Pattern implementations.
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And thus the ripple effect, where change to one could potentially
lead to changes to the other. If a new Language Feature that is related
to Design Pattern implementations is implemented in a Programming
Language, then it could lead to changes in the way other Design Patterns
are implemented in the language.

A more concrete example, from Section 6.1 is if Python suddenly
provided equivalent to Java interfaces. Then the interface Design Pattern
would have a dedicated implementation in the form of a Language
Feature. But that Language Feature would then be available to the
implementations of Design Patterns in the language. And as found in
Section 6.6 and in particular as detailed in Figure 6.6, interfaces in Java
affect many Design Pattern implementations, so the assumption that the
implementation of a similar feature in Python would have a similar effect
is not far fetched. An example of changes in Design Patterns affecting
is not difficult to come up with either. As discussed in Sections 6.6 and
in this thesis in general some Design Patterns have been implemented
as Language Features in Programming Languages, such as Iterators and
Observer. Thus the idea that, if a new highly popular and deemed by the
Programming Language users Design Pattern is described, then it might
be implemented as a Language Feature, is not far fetched either.

Based on this, the "Ripple Effect Theory", describes an eventual con-
sequence of the interaction between Design Patterns and Programming
Languages.

6.12 Summary

This chapter examined comparatively the relevant to Design Patterns im-
plementations Language Features in both Java and Python. Where rel-
evant comparing the Language Features to the Design Patterns, to which
they correspond. As well as evaluating the effects of Language Features on
the Design Pattern’s implementations. In addition to that, with regards to
some Design Pattern’s, which are highly coupled to Language Features in
one Programming Language, substitute Language Features were sugges-
ted and the consequent Design Pattern implementations across the two
Programming Languages, Java and Python compared. Example of that is
Section 6.1

On a more theoretical level, this Chapter provided a theory with re-
gards to the way Design Patterns possibly affect Programming Languages
and their Language Features, called "The lifecycle of a Design Pattern"
Section 6.8, based on the observations made in this thesis. It also defined
the relationship between Programming Languages and Design Patterns
as bidirectional (Section 6.10) and proposed a theory to explain the con-
sequences of that relationship, called the "Ripple Effect Theory", in Section
6.11.
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And it established a timeline of the relevant Language Features
provided by the Programming Languages in Section 6.6, based on the
Language Features examined in the thesis.

In addition to that, as a result of the discussions with regards to
Language Features provided by the Programming Languages, it proposed
a categorization scheme for the Programming Languages’ Language
Features, with respect to the Design Patterns they relate to.
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Chapter 7

Conclusion

Implementing a Design Pattern in a particular language depends on what
features that programming language provides to it’s user. Thus program-
ming languages’ effect on Design Patterns is the programming languages’
effect on the resultant implementation. In terms of the direct method of
effect, the programming languages’ effect is determined by what features
the programming languages provide and what programming paradigms
they support. That is assuming that the Design Pattern implementer is
familiar with the feature in question and uses it to implement the Design
Pattern. That is logically so, because the provided features and supported
programming paradigms are what the user of the language directly uses.

Asking the question "How do programming languages affect Design
Patterns", implies examining the effect of the Programming Languages on
Design Pattern implementations in the respective language. Furthermore
asking that question also implies examining the affect of the Language
Features provided by languages on these Design Patterns implementa-
tions, in the context of Object Oriented Programming. Thus the topic
"How do programming languages affect Design Patterns" can be expan-
ded in more concrete terms to "How do Language Features provided by
Programming Languages affect Design Patterns’ implementations in these
respective languages?".

The answer to that is that the Language Features in question could
directly implement a Design Pattern or provide functionality that helps
the implementation of the Design Pattern in the language.

If the Design Pattern is provided as a Language Feature, then
the Programming Language affects the implementation of the Design
Pattern in question directly, as demonstrated in Chapter 6. Concrete
examples of which are the implementations of the Interface, Abstract
Parent Class, Iterator and Observer Design Patterns in Java as well
as the implementation of the Abstract Parent Class and Iterator in
Python. Where as Chapter 6 discusses, the language’s in question
affect the implementations in terms of what methods they implement,
in some cases more than specified by the Design Pattern, such as the
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Java implementation of Iterators. In other cases less, such as in the
case of Python Iterators. In addition to that both are examples of the
Programming Language directly affecting the naming conventions of
methods, classes and interfaces.

If the Language Feature on the other hand is not a direct implementa-
tion of Design Pattern, it could affect potential implementations of Design
Patterns in the language significantly, as again, demonstrated further de-
tail in Chapter 6. Some examples of that are the Python copy and Java
Cloneable Language Features, that make implementing the Prototype
Design Pattern much easier. And example of negative affect is the fact
that since Python does not provide direct implementation of the Interface
Design Pattern, thus the user’s of the language are not likely to use both
Interface and Abstract Parent Class, as described in Section 6.1.4. Another
one is the fact that in Python all members of the objects and classes are
always public, thus making the implementation of the Accessor Methods
and Private Methods Design Patterns difficult to implement, as described
in Section 6.1.

Thus the Language Features that Programming Languages provide
could directly implement a Design Pattern, affect a Design Pattern
implementation by aiding it or by hindering it.

As a conclusion it could be said that not only do not only do
Programming Languages affect Design Pattern implementations, trough
the set of Language Features they provide, but the Design Patterns in term
affect Language Features. Meaning that the relationship is bidirectional,
as described in Section 6.10. In addition to that a sort of ripple effect,
as described in Section 6.11 possibly could occur when changes to
Programming Languages occur onto Design Pattern implementations.
And vice versa.
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Appendix A

Language Features

In this appendix you will find code samples demonstrating Language
Features and Design Patterns in the two Programming Languages.

A.0.1 Python Metaclass

Listing A.1: Singleton implementation using Metaclassses in Python
1 #!/usr/bin/python

2

3 # Singleton using metaclass:

4 # Seems to work just fine.

5 # simply remember to use __call__ instead of __init__ in meta

6

7 class Singleton(type):

8 _instances = {}

9

10 def __call__(cls, *args, **kwargs):
11 print("call method")

12 if cls not in Singleton._instances:

13 Singleton._instances[cls] = super(Singleton , cls).__call__(*args, **kwargs)
14 return Singleton._instances[cls]

15

16 class MyClass(object, metaclass=Singleton):

17

18 def __init__(self, name):

19 print("init method")

20 self.name = name

21

22 class MyClass2(object, metaclass=Singleton):

23 def __init__(self, name):

24 print("init method")

25 self.name = name
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26

27 ##Simple demo of the singleton:

28 m = MyClass(’aa’)

29 k = MyClass(’bb’)

30 a = MyClass2(’a2’)

31 b = MyClass2(’b2’)

32 print(k == m)

33 print(m is k)

34 print(type(k))

35 print(type(m))

36 print(k.name)

37 print(m.name)

38 print(a.name)

39 print(b.name)

40 print(type(a))

41 print(type(b))

42 print(a is m)

43

44 # Output:

45 # init method

46 # call method

47 # call method

48 # call method

49 # call method

50 # True

51 # True

52 # <class ’__main__.MyClass’>

53 # <class ’__main__.MyClass’>

54 # aa

55 # aa

56 # a2

57 # a2

58 # <class ’__main__.MyClass2’>

59 # <class ’__main__.MyClass2’>

60 # False

A.0.2 Python Decorators

Listing A.2: Function decorating another
1 #!/usr/bin/python

2 # An example use of the Pyhton decorator feature:

3

4 def decorator(function):
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5 def wrapper(*args, **kwargs):
6 print("inside decorator: pre−decorated")
7 retvalue = function(*args, **kwargs)
8 print("inside decorator: post−decorated , return value = ", retvalue)
9 return retvalue

10 return wrapper

11

12 @decorator

13 def original() :

14 print("inside original function")

15

16 #if __name__ == "__main__":

17 original()

18

19 # Output sample:

20 # inside decorator: pre−decorated
21 # inside original function

22 # inside decorator: post−decorated , return value = None

Listing A.3: Python decorator equivalent
1 #!/usr/bin/python

2 # An example of what decorators in Python are equivalent to:

3

4 def decorator(object):

5 def wrapper():

6 print("inside decorator")

7 return object()

8 return wrapper

9

10

11 def original() :

12 print("inside original function")

13

14 if __name__ == "__main__":

15 original = decorator(original)

16 original()

17

18 # Output sample:

19 # inside decorator

20 # inside original function

Listing A.4: Function decorating a class
1 #!/usr/bin/python

2 # An example of function being used to decorate a class:
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3

4 def decorator(class_):

5 def wrapper(*args, **kwargs):
6 print("inside decorator , pre−decorated")
7 instance = class_(*args, **kwargs)
8 print("inside decorator , post−decorated")
9 return instance

10 return wrapper

11

12 @decorator

13 class OriginalClass():

14

15 def __init__(self):

16 print("inside __init__()")

17

18 def test(self):

19 print("a test funcion")

20

21 a = OriginalClass()

22 print(type(a))

23 a.test()

24

25 # Output:

26 # inside decorator , pre−decorated
27 # inside __init__()

28 # inside decorator , post−decorated
29 # <class ’__main__.OriginalClass’>

30 # a test funcion

Listing A.5: Class decorating a function

1 #!/usr/bin/python

2

3 class my_decorator(object):

4

5 def __init__ (self, f):

6 print("inside decorator.__init__()")

7 self.f = f

8

9 def __call__(self, *args, **kwargs):
10 print("inside decorator.__call__(), pre−decorated")
11 returnValue = self.f(*args, **kwargs)
12 print("post−function")
13 return returnValue

14
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15 @my_decorator

16 def function():

17 print("inside function")

18

19 function()

20

21 # Output:

22 # inside decorator.__init__()

23 # inside decorator.__call__(), pre−decorated
24 # inside function

25 # post−function

Listing A.6: Class decorating a class

1 #!/usr/bin/python

2

3 class decorator(object):

4

5 def __init__(self, other, *args, **kwargs):
6 print("inside decorator.__init__()")

7 self.other = other

8

9

10 def __call__(self, *args, **kwargs):
11 classattr=self.other

12 print("inside decorator.__call__(), pre−decorated")
13 instance = self.other(*args, **kwargs)
14 print("inside decorator.__call__(), post−decorated")
15 return instance

16

17 @decorator

18 class Test():

19

20 def __init__(self):

21 print("inside Test.__init__()")

22

23 def test(self):

24 print("test func");

25

26 t = Test()

27 print(type(t))

28 t.test()

29

30 # Output:

31 # inside decorator.__init__()
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32 # inside decorator.__call__(), pre−decorated
33 # inside Test.__init__()

34 # inside decorator.__call__(), post−decorated
35 # <class ’__main__.Test’>

36 # test func

Listing A.7: Python decorator with arguments

1 #!/usr/bin/python

2 # A quick demo of decorators with arguments.

3

4 class dec_with_args(object):

5

6 def __init__(self, arg1, arg2, arg3):

7 print("Inside __init__()")

8 self.arg1 = arg1

9 self.arg2 = arg2

10 self.arg3 = arg3

11

12 def __call__(self, f):

13 print("Inside __call__()")

14 def wrapped_f(*args, **kwargs):
15 print("Inside wrapped_f(), pre−decorated")
16 print("dec args: ", self.arg1, self.arg2, self.arg3)

17 f(*args, **kwargs)
18 print("Post decorated")

19 return wrapped_f

20

21 @dec_with_args("hello", "world", 42)

22 def sayHello(a1, a2, a3, a4):

23 print("sayHello: ", a1, a2, a3, a4)

24

25 sayHello("say", "hello", "argument", "list")

26

27 sayHello("a", "b", "c", "d")

28

29 # Output:

30 # Inside __init__()

31 # Inside __call__()

32 # Inside wrapped_f(), pre−decorated
33 # dec args: hello world 42

34 # sayHello: say hello argument list

35 # Post decorated

36 # Inside wrapped_f(), pre−decorated
37 # dec args: hello world 42
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38 # sayHello: a b c d

39 # Post decorated

40

41 # Comments:

42 # The arguments that one passes to the decorator @ are passed to the __init__ method

Listing A.8: Implementation of the decorator design pattern on functions
in Python

1 #!/usr/bin/python

2 # A more realistic implementation of the Decorator design pattern using Python:

3

4 def decorator(decoratee):

5 def wrapper(*args, **kwargs):
6 print("pre−decoratee")
7 returnVal = decoratee(*args, **kwargs)
8 print("post−decoratee")
9 return returnVal

10 return wrapper

11

12 def original(arg):

13 print("inside original func, arg=", arg)

14

15 decorated = decorator(original)

16 decorated(5)

17

18 # Output

19 # pre−decoratee
20 # inside original func, arg= 5

21 # post−decoratee

Listing A.9: Implementation of the iterator design pattern using the
Python iterators

1 #!/usr/bin/python

2 # A demonstration of a custom iterable/container/collection implementing the iterator design

pattern as defined by Python.

3

4 class MyCollection(object):

5

6 def __init__(self, start, stop):

7 self.start = start

8 self.stop = stop

9 self.current = start

10

11 def __iter__(self):
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12 ’’’As per the Iterable type definition , returns an iterator object that knows how to iterate this iterable.’’’

13 return MyIterator(self)

14

15 def nextElement(self):

16 ’’’A custom logic next item function.’’’

17 if self.current < self.stop:

18 self.current = self.current + 1

19 return True

20 else :

21 return False

22

23 def getCurrent(self):

24 return self.current

25

26 class MyIterator(object):

27

28 def __init__(self, colletion):

29 self.collection = collection

30

31 def __iter__(self):

32 ’’’As per the Iterator type definition iterators should return themselves’’’

33 return self

34

35 def __next__(self):

36 ’’’As per the Iterator type definition , a method to get the next item of the collection’’’

37 if(collection.nextElement()):

38 return collection.getCurrent()

39 else :

40 raise StopIteration

41

42

43 collection = MyCollection(1,6)

44

45 print("Iterating over items:")

46 for item in collection:

47 print(item, " ")

48

49 # Output:

50 # Iterating over items:

51 # 2

52 # 3

53 # 4

54 # 5

55 # 6
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A.0.3 Python Copy

Listing A.10: Example custom implementation of the copy methods in
Python

1 #!/usr/bin/python

2 # An example use−case of how a custom __copy__() can be implemented:
3 import copy

4

5 class Department(object):

6

7 def __init__(self, name):

8 self.name = name

9

10 class Machine(object):

11

12 def __init__(self, name):

13 self.name = name

14

15 class Student(object):

16

17 def __init__(self, name, department , machine):

18 self.name = name

19 self.department = department

20 self.machine = machine

21

22 def __copy__(self):

23 # remove method to make a copy, while inside method:

24 copyMethod = getattr(type(self), "__copy__", None)

25 setattr(type(self), "__copy__", None)

26

27 result = copy.copy(self)

28

29 # reassign the method

30 setattr(type(self), "__copy__", copyMethod)

31

32 # make special copy operations

33 result.machine = copy.copy(self.machine)

34

35 # return the copy to client

36 return result

37

38 department = Department("department1")

39 machine = Machine("machine1")

40 student = Student("student1", department , machine)
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41

42 student2 = copy.copy(student)

43 student2.name ="student2"

44 student2.machine.name = "machine2"

45

46 print("Student1 : ", student.name, " ", student.department.name, " ", student.machine.name )

47 print("Student2 : ", student2.name, " ", student2.department.name, " ", student2.machine.name )

48

49 # Output:

50 # Student1 : student1 department1 machine1

51 # Student2 : student2 department1 machine2

A.0.4 Java Iterator

Listing A.11: Example use of Java Iterators
1

2 import java.util.Iterator;

3 import java.util.NoSuchElementException;

4

5 /**
6 * An example collection implementing Iterable and returning a custom iterator that knows how to iterate it.
7 */
8 public class CustomCollection implements Iterable <Integer> {

9 private int start;

10 private int end;

11

12 CustomCollection(int start, int end) {

13 this.start = start;

14 this.end = end;

15 }

16

17 @Override

18 public Iterator iterator() {

19 return new CustomIterator(this);

20 }

21

22 public int getStart() {

23 return start;

24 }

25

26 /**
27 * THe iterator implmentation:
28 */
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29 private class CustomIterator implements Iterator <Integer> {

30 private int current;

31

32 CustomIterator(CustomCollection collection) {

33 current = collection.getStart();

34 }

35

36 @Override

37 public boolean hasNext() {

38 return this.current < end;

39 }

40

41 @Override

42 public Integer next() {

43 if (this.hasNext()) {

44 int curr = current;

45 current++;

46 return curr;

47 }

48 throw new NoSuchElementException();

49 }

50

51 @Override

52 public void remove() {

53 throw new UnsupportedOperationException();

54 }

55 }

56

57 public static void main(String[] args) {

58 CustomCollection collection = new CustomCollection(1, 10);

59

60 System.out.println("Using a while statement to iterate:");

61 // Without using the syntactic sugar:

62 Iterator <Integer> it = collection.iterator();

63 while (it.hasNext()) {

64 int cur = it.next();

65 System.out.println("cur=" + cur);

66 }

67

68 System.out.println("Using the enhanced forloop:");

69 // Using the enhanced forloop:

70 for (Integer cur : collection) {

71 System.out.println("cur=" + cur);

72 }

73 }
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74 }

75

76

77 // Output sample:

78 // Using a while statement to iterate:

79 // cur=1

80 // cur=2

81 // cur=3

82 // cur=4

83 // cur=5

84 // cur=6

85 // cur=7

86 // cur=8

87 // cur=9

88 // Using the enhanced forloop:

89 // cur=1

90 // cur=2

91 // cur=3

92 // cur=4

93 // cur=5

94 // cur=6

95 // cur=7

96 // cur=8

97 // cur=9

A.0.5 Java Cloneable

Listing A.12: Java Cloneable example Student class
1 package sample.design.patterns;

2

3 public class Student implements Cloneable {

4

5 private String name;

6 private Department department;

7 private Machine machine;

8

9 public Student(String name, Department dept, Machine machine) {

10 this.name = name;

11 this.department = dept;

12 this.machine = machine;

13 }

14

15 @Override
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16 protected Object clone() throws CloneNotSupportedException {

17 Student output = (Student) super.clone();

18 output.setMachine((Machine) machine.clone());

19 return output;

20 }

21

22 public String getName() {

23 return name;

24 }

25

26 public Machine getMachine() {

27 return machine;

28 }

29

30 public void setName(String name) {

31 this.name = name;

32 }

33

34 public void setMachine(Machine machine) {

35 this.machine = machine;

36 }

37 }

Listing A.13: Java Cloneable example Machine class

1 package sample.design.patterns;

2

3 public class Machine implements Cloneable {

4

5 private String name;

6

7 public Machine(String name) {

8 this.name = name;

9 }

10

11 @Override

12 protected Object clone() throws CloneNotSupportedException {

13 return super.clone();

14 }

15

16 public String getName() {

17 return name;

18 }

19

20 public void setName(String name) {
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21 this.name = name;

22 }

23 }

Listing A.14: Java Cloneable example Department class
1 package sample.design.patterns;

2

3 public class Department implements Cloneable {

4

5 private String name;

6

7 public Department(String name) {

8 this.name = name;

9 }

10

11 @Override

12 protected Department clone() throws CloneNotSupportedException {

13 return (Department) super.clone();

14 }

15 }

Listing A.15: Java Cloneable example Main class
1 package sample.design.patterns;

2

3 public class Main {

4 public static void main(String[] args) throws CloneNotSupportedException {

5 Department department = new Department("Human Resources");

6 Machine machine = new Machine("Student1’s pc");

7 Student original = new Student("Student1", department , machine);

8 Student cloned = null; //Lets create a clone of original object

9 try {

10 cloned = (Student) original.clone();

11 } catch (CloneNotSupportedException e) {

12 System.out.println("Clone isn’t supported");

13 e.printStackTrace();

14 }

15 System.out.println("Testing cloning:");

16 //Whilst there is only one department , each student should have his own pc:

17 cloned.getMachine().setName("A different machine");

18 System.out.println(original.getMachine().getName());

19 System.out.println(cloned.getMachine().getName());

20 /*Output:
21 esting cloning:

22 Student1’s pc
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23 A different machine

24 Id’s:

25 Original id: 1

26 Cloned id: 2*/
27 }

28 }

A.0.6 Java Observable

Listing A.16: Java Observable example Observer class
1 package sample.design.patterns;

2

3 import java.util.Observable;

4

5 public class ObservableDemo extends Observable {

6

7 @Override

8 public void notifyObservers() {

9 //For the purpouse of demonstrating observables easier, flag as chenged, before notifying:

10 super.setChanged();

11 super.notifyObservers();

12 }

13 }

Listing A.17: Java Observablee example Observable class
1 package sample.design.patterns;

2

3 import java.util.Observable;

4 import java.util.Observer;

5

6 public class ObserverDemo implements Observer {

7

8 @Override

9 public void update(Observable observable , Object o) {

10 System.out.println("Observer updated");

11 }

12

13 public static void main(String[] args) {

14 Observer observer = new ObserverDemo();

15 Observable observable = new ObservableDemo();

16

17 System.out.println("adding Observer to observable:");

18 //register the obesrver for updates...
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19 // The observer could register itself as well.

20 observable.addObserver(observer);

21 System.out.println("Nr of observers : " + observable.countObservers());

22

23 System.out.println("Notifying all observables");

24 //assume another thread or object calls this:

25 observable.notifyObservers();

26 /* Output:
27 adding Observer to observable:

28 Nr of observers : 1

29 Notifying all observables

30 Observer updated */
31 }

32 }

A.0.7 Interfaces

Listing A.18: Java Interfaces example
1 package sample.design.patterns;

2

3 public interface Provider {

4 void method1();

5

6 void method2();

7

8 void method3();

9 }

10

11 class ProviderImplementation1 implements Provider {

12

13 @Override

14 public void method1() {

15 System.out.println("ProviderImplementation1.method1()");

16 }

17

18 @Override

19 public void method2() {

20 System.out.println("ProviderImplementation1.method2()");

21 }

22

23 @Override

24 public void method3() {

25 System.out.println("ProviderImplementation1.method3()");
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26 }

27 }

28

29 class Providerimplementation2 implements Provider {

30

31 @Override

32 public void method1() {

33 System.out.println("ProviderImplementation2.method1()");

34 }

35

36 @Override

37 public void method2() {

38 System.out.println("ProviderImplementation2.method2()");

39 }

40

41 @Override

42 public void method3() {

43 System.out.println("ProviderImplementation2.method3()");

44 }

45 }

46

47 class Client {

48 Provider provider;

49

50 public void useProvider(Provider provider) {

51 this.provider = provider;

52 provider.method1();

53 provider.method2();

54 provider.method3();

55 }

56 }

Listing A.19: Python implicit Interfaces example

1 #!/usr/bin/python

2 # A demonstration of the Interface Design Pattern implementation that uses duck typing.

3

4 # The implicit type definition is here, in the documentation:

5 # Provider:

6 # + method1()

7 # + method2()

8 # + method3()

9

10 class ProviderImplementation1:

11 def method1(self):
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12 print("ProviderImplementation1.method1()")

13

14 def method2(self):

15 print("ProviderImplementation1.method2()")

16

17 def method3(self):

18 print("ProviderImplementation1.method3()")

19

20

21 class ProviderImplementation2:

22 def method1(self):

23 print("ProviderImplementation2.method1()")

24

25 def method2(self):

26 print("ProviderImplementation2.method2()")

27

28 def method3(self):

29 print("ProviderImplementation2.method3()")

30

31 class Client:

32

33 def useProvider(self, provider):

34 self.provider = provider

35 provider.method1()

36 provider.method2()

37 provider.method3()

38

39 # # Just as a proof, the output of :

40 # p1 = ProviderImplementation1()

41 # p2 = ProviderImplementation2()

42

43 # c = Client()

44

45 # c.useProvider(p1)

46 # c.useProvider(p2)

47

48 # results in :

49 # ProviderImplementation1.method1()

50 # ProviderImplementation1.method2()

51 # ProviderImplementation1.method3()

52 # ProviderImplementation2.method1()

53 # ProviderImplementation2.method2()

54 # ProviderImplementation2.method3()
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Listing A.20: Python explicit Interfaces example

1 #!/usr/bin/python

2 # A demonstration of the Interface Design Pattern implementation that uses inheritance.

3

4 # The type definition is here, as a class definition , with all methods raising a NotImplementederror :

5 class Provider:

6

7 def method1(self):

8 raise NotImplementedError

9

10 def method2(self):

11 raise NotImplementedError

12

13 def method3(self):

14 raise NotImplementedError

15

16 # The first implementer:

17 class ProviderImplementation1(Provider):

18

19 def method1(self):

20 print("ProviderImplementation1.method1()")

21

22 def method2(self):

23 print("ProviderImplementation1.method2()")

24

25 def method3(self):

26 print("ProviderImplementation1.method3()")

27

28 # The second implementer:

29 class ProviderImplementation2(Provider):

30

31 def method1(self):

32 print("ProviderImplementation2.method1()")

33

34 def method2(self):

35 print("ProviderImplementation2.method2()")

36

37 def method3(self):

38 print("ProviderImplementation2.method3()")

39

40 class Client:

41

42 def useProvider(self, provider):

43 self.provider = provider
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44 provider.method1()

45 provider.method2()

46 provider.method3()

47

48

49 # # Just as a proof, the output of :

50 # p1 = ProviderImplementation1()

51 # p2 = ProviderImplementation2()

52

53 # c = Client()

54

55 # c.useProvider(p1)

56 # c.useProvider(p2)

57

58 # # results in :

59

60 # ProviderImplementation1.method1()

61 # ProviderImplementation1.method2()

62 # ProviderImplementation1.method3()

63 # ProviderImplementation2.method1()

64 # ProviderImplementation2.method2()

65 # ProviderImplementation2.method3()

Listing A.21: Implementation of Singleton design pattern in Python using
the decorator feature.

1 #!/usr/bin/python

2

3 # Singleton implementation using decorators.

4 # Despite the voiced concerns it seems to be working.

5 # According to python (when calling the type() funciton) the type of the singleton class is a class.

6

7 # The pro’s listed are however valid.

8 # Using decorators to decorate a class into being a singleton seems quite natural.

9

10 # It also is a behaviour that cannot be overridden by subclassing.

11

12 # Decorator functions and classes could be undecorated using the undecorate package.

13 # _original(), −> __wrapped__ ? −> undecorated() package. !!
14 # https://stackoverflow.com/questions/1166118/how−to−strip−decorators−from−a−function−in−python
15 # However one could utilize the ._original() to call the undecorated funciton.

16

17

18

19 def singleton(class_):
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20 instances = {}

21

22 def getinstance(*args, **kwargs):
23 if class_ not in instances:

24 instances[class_] = class_(*args, **kwargs)
25 return instances[class_]

26 return getinstance

27

28 @singleton

29 class MyClass:

30 def __init__(self, *args, **kwargs):
31 self.name = "Decorated singleton object’s variable"

32

33 def putMessage(self):

34 print("Decorated singleton object’s method");

35

36

37 class ObjTest:

38 def __init__(self, *args, **kwargs):
39 self.name = "Object’s variable"

40

41 def putMessage(self):

42 print("Object’s method");

43

44 # Tests:

45 #if __name__ == "__main__":

46 m = MyClass()

47 k = MyClass()

48 print(type(m))

49 print(type(k))

50 print(m == k)

51 print(m is k)

52 m.putMessage()

53

54 o = ObjTest()

55 print(type(o))

56 o.putMessage()

57

58 # Output:

59 # <class ’__main__.MyClass’>

60 # <class ’__main__.MyClass’>

61 # True

62 # True

63 # Decorated singleton object’s method

64 # <class ’__main__.ObjTest’>
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65 # Object’s method
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