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Abstract 

Colorectal Cancer (CRC) is one of the leading causes of cancer related deaths in the western 

world, and metastatic progression is the dominating cause of mortality. The primary site of 

CRC metastasis is the liver, followed by the lungs and peritoneal cavity, and prognosis for 

patients with metastatic CRC (mCRC) is poor, with only 10 % five-year survival. Although 

much is known about progression and metastasis of CRC; how primary CRC (pCRC) differs 

from mCRC on the molecular level are incompletely understood. This is important for our 

understanding of the disease, but also could have significant implications with respect to 

detection and treatment of CRC derived liver metastases.  

On numerous occasions microRNAs have been shown to be key elements in cancer 

progression and are candidate biomarkers detectable in blood. However, recent reports on 

mCRC failed to identify microRNA signatures of metastatic progression. To address this, a 

small RNA sequencing approach was used focusing on primary tumors and a set of liver 

metastases. Further, the highly-curated microRNA reference MirGeneDB.org was used to 

ensure that only bona fide microRNAs were studied. 

Although global miRNA expression was not distinguishable between primary tumor and 

colorectal derived liver metastasis, a number of individual miRNAs were significantly 

different between pCRC and mCRC of the liver. Surprisingly, Mir-339-3p and Mir-1247-5p 

were validated in a meta-analysis of published data that hadn’t reported them. Specific 

isoforms (isomiRs) were also found to be differentially expressed. 

This study underlines the importance of using high quality microRNA reference dataset, and 

lays the foundation for more in-depth investigations of miRNA role in this deadly disease. 
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1.1 MicroRNAs 

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in most 

plants and animals. MiRNAs are 20 – 26 nucleotides long molecules that can target 

messenger RNA (mRNA) and inhibit their translation into proteins. Typically, a miRNA 

binds to a mRNA based on the complementarity of a 7-8 nucleotide long, so called “seed” 

sequence, to target sites in the 3p untranslated region of mRNAs. As a result miRNAs 

function as guiding strands for the so called miRNA Induced Silencing Complex  (miRISC), 

allowing it to locate and degrade targeted mRNAs before they get translated into proteins [1]. 

MiRNAs are therefore part of the cells post transcriptional gene regulatory network. 

Biogenesis and function

 

Figure 1.1 miRNA Structure Canonical miRNA biogenesis pathway, defining different stages of processing. 

Pri-miRNA include hairpin stem-loop, as well as 5p- and 3p- primary transcript arms. After drosha cleavage in 

nucleus, pre-miRNA includes the hairpin stem-loop. Pre-miRNA is transported into the cytosol, where dicer 

cleaves off the loop sequence, leaving the hairpin stem. The mature miRNA is incorporated into miRISC 

complex, while miRNA* is degraded. Flatmark et al, 2016 [2] 

In the canonical miRNA biogenesis pathway, a miRNA gene is transcribed by RNA 

polymerase II [3] into a primary miRNA transcript (pri-miRNA). This pri-miRNA contains 

one or more sequential units that can form hairpin structures, the stem of which is made of 

complementary nucleotides which comprise the ~22 nucleotide mature and star miRNA 

sequences. These hairpin structures act as substrates for the RNAse III enzyme Drosha [4], 

which, with the help of its binding partner, DGCR8 [5], cleaves off the stem loop with a 2 
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nucleotide offset, leaving the precursors miRNA (pre-miRNA) stem loop. This pre-miRNA is 

then transported out of the nucleus by Exportin 5 [6]. 

In the cytosol, the enzyme Dicer cleaves the pre-miRNA by removing the loop sequence, 

leaving a double stranded RNA molecule called the miRNA/miRNA* duplex, with a 2-

nucleotide offset at the 3p-ends, [7]. In the canonical miRNA biogenesis pathways, the 

miRNA*, or passenger strand, is degraded, leaving what is now the ~22 nucleotide long 

mature miRNA which exerts biological function. Deep sequencing of miRNAs shows that the 

vast majority of miRNA genes follow this mature/star pattern either expressing the 5p or the 

3p-strand, but some miRNA genes to show similar read counts for both strands (co-mature 

pattern). The mechanism by which one strand is determined over the other is not determined 

[8].  
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Figure 1.2 miRNA Biogenesis Two biogenesis pathways are described, canonical and a non-canonical. 

Canonical pathway has primary transcript, pri-miRNA, cleaved by Drosha, leaving pre-miRNA stem-loop 

structure. Pre-miRNA is exported by Exportin 5 into cytosol, where Dicer cleaves off the loop sequence, leaving 

miRNA/miRNA* duplex. miRNA* is degraded, and miRNA is incorporated into miRISC complex. The 

described non-canonical pathway starts off with a miRNA gene located inside the intron of a coding gene. In 

this case, spliceosome cleavage results in the finished pre-miRNA, no Drosha cleavage required. The remaining 

steps are identical to canonical pathway. Krol et al 2010 [9]. 
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 miRNA induced silencing 

The mature miRNA is then incorporated into miRISC. The mature miRNA guides the 

miRISC complex to mRNA molecules that have complementary sequences on their 3p-UTR. 

Key protein of miRISC is Argonaute, along with various other protein factors. The miRISC 

complex silence gene expression either by destabilizing and degrading mRNA, or by 

repressing ribosomal translation (Figure 1.3) [10]. 

 

 

Figure 1.3 miRNA Induced Silencing With no miRNA silencing, mRNA is abundant and ribosomes free to 

bind and translate. With miRNA silencing, mRNAs are destabilized, and their abundance drops, while 

ribosomes are repressed from translation. Ramalho-Carvalho et al, 2016 [10]. 
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Animal miRNA induced targeting of mRNA typically requires perfect Watson Crick pairing 

in the 5p-end nucleotides 2-7, called the ‘seed’ region [11]. There are three canonical types of 

miRNA target sites. First, the 7mer-A1 (Figure 1.4a), where the miRNA ‘seed’ form Watson 

crick pairing with the corresponding mRNA target site and the target site also having an 

adenine at position 1. Second, the 7mer-m8, the mRNA target site forms (Figure 1.4b) 

Watson crick pairing with the miRNA 2-7 “seed” plus an eight nucleotide. The 8mer site has 

Watson crick pairing for the “seed” and nucleotide 8, and an adenine at mRNA position 1. 

(Figure 1.4c) [11] 

 

 

Figure 1.4 miRNA Targeting (a) 7mer-A1, with adenine in position 1, and Watson Crick pairing for 

nucleotides 2-7. (b) 7mer-m8, with Watson Crick pairing for both 2-7 seed region as well as nucleotide 8. (c) 

8mer site with adenine at position 1 and Watson Crick pairing in both the 2-7 seed, as well as nucleotide 8. 

Bartel 2009 Figure 1 [11]. 
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 Functional role 

MiRNA function as posttranscriptional gene regulators by guiding silencing protein 

complexes to their mRNA targets before those targets get translated into protein. Thus, 

miRNAs form an additional layer in the elaborated gene regulatory repertoire of cells. In 

contrast to other much stronger regulatory mechanisms, they only modulate gene expression. 

Evidence suggests miRNA targeted genes only display about a 2 to 4 fold change in the 

corresponding protein level [12]. Although significant, it’s not enough to switch the gene off 

entirely. Rather, they are suggested to function as dampeners of gene expression, allowing 

cells in different tissues to fine tune their gene expression to suit their specific needs [11, 13]. 

Bartel et al, 2004, made the analogy to rheostats [13], where miRNA infer a resistance to a 

gene in two ways, by the number of miRNAs expressed in the cell, and the number of 

complementary and occupancy sites present on the mRNA. 

 

Figure 1.5 Rheostat model of miRNA ‘resistance’ Expression of miRNA and number of target sites both 

determine the amount of ‘resistance’ imparted by miRNA. A has both high miRNA expression and high 

complementarity and occupancy, imparting high resistance. B and D both also impart high resistance, even 

though B has fewer occupancy sites and D has less miRNA expression. E has low imparted resistance due to 

low miRNA expression and few occupancy sites, while C has no imparted resistance even with abundant 

complementary sites, since no miRNAs are expressed. Bartel et al, 2004 [13]. 
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Figure 1.6 miRNA Regulatory Network (a) a single miRNA may have target sites for multiple mRNA, while 

(b) multiple miRNA may target the same mRNA. Flatmark et al, 2016 [2]. 

Since a single mRNA UTR may have target sites for multiple miRNAs, and conversely, a 

single miRNA may target multiple mRNA, one may suppose there are elaborate miRNA 

mediated regulatory networks which allow precise fine tuning of expression levels not 

possible by the standard, more crude, transcription factors. Furthermore, some RNAs can 

function as miRNA sponges, these are RNA molecules that have abundant miRNA target 

sites and can therefore bind much of the available miRNA in the cell, leaving very few 

available to repress the remainder RNA with those target sites. Such interactions of miRNAs 

with competing endogenous RNAs (ceRNAs) have been proposed as an important new 

mechanism by Salmena et al 2011 [14]. 

Briefly, only a finite number of miRNAs is present and available to repress mRNAs at any 

one time. As such, how many RNAs containing target sites for a given miRNA are present in 

the cell will affect their ability to repress a specific mRNA. In this way, all RNA molecules 

with binding sites for the same miRNA may compete with each other for repression. This 

would allow for a mechanism whereby separate genes may interact with each other, forming 

elaborate competitive endogenous RNA regulatory networks.  

CeRNAs have been shown to be functionally important in muscle cells, where long-

noncoding RNA linc-MD1 acts as ceRNA for miRNA regulating muscle differentiation [15], 

and in prostate cancer [16], glioblastoma [17] and melanoma [18] where ceRNA influence 

the miRNA complement available to regulate PTEN, a tumor suppressor gene. However, 

a b 
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recent studies have started to cast doubt about the overall physiological relevance of such a 

ceRNA, with Denzler et al 2014 [19] and Denzler et al 2016 [20], suggesting the likelihood 

of observing such a ceRNA effect is much lower than originally thought. 

 Evolution 

RNA interference (RNAi) originated early in eukaryotic evolution. Cerutti et al, 2006 [21], 

analyzed key members of the RNAi machinery in five eukaryotic ‘supergroups’, and found 

that all had at least one of Argonaute-, Piwi- or Dicer-like proteins, and one RNA-dependent 

RNA polymerase. On this basis, they suggest that RNA interference was already present in 

the last common ancestor of eukaryotes, likely originating as a defense mechanism against 

transposable elements. This early machinery would already have the capability of transcript 

degradation. Interestingly however, current evidence suggests several separate emergences of 

miRNAs and the miRNA processing machinery in plants and animals [22]. Explanation for 

this seeming conundrum - given the extraordinary level of conservation within higher plants 

and animals - may be that miRNAs became integral for complex organisms in regulating 

multi-cellularity and increased cell- and tissue-complexity of an organism. 

The evolution of complex organisms with multiple cell and tissue types cannot be explained 

by an expansion of the organism’s protein coding gene repertoire. Analyzing the protein 

coding genes of organisms with widely differing number of cell types show that there are 

about 20,000 genes required for animals to form their morphology, regardless of complexity 

[23], and that this genetic “toolbox” fully developed early in the Metazoa [24]. As such, 

increasing complexity of animal morphology and tissue types must be explained through an 

expansion in gene regulatory network. It is not the total number of genes but the spatial and 

temporal activation of those genes which allows for organismal complexity. MiRNAs, 

subsequently, show dramatic increase in gene number and gene families as species evolve 

more diverse cell and tissue types [24], and conversely, devolution, defined as an organisms 

loss of complexity over lineages, show a decrease in miRNA gene number and gene families 

[24].  

In this view, miRNAs would be one of the foundations upon which larger, more complex 

organisms could emerge. The model upon which this works would be as follows. A miRNA 

exerting an evolutionary beneficial regulatory effect on a gene transcript would be preserved 

through evolution. If said miRNA, or the target site(s) on the corresponding gene transcript, 
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where to undergo a mutation that removed mentioned beneficial regulatory effect, it would 

have a negative effect and selected against. Interestingly however, other genes might also 

undergo a mutation in their 3’-UTR, allowing the same miRNA to exert a regulatory effect 

upon them as well. If the regulatory effect was beneficial, the mutation would be conserved 

through evolution. Gradually, increasingly complex miRNA gene regulatory networks would 

emerge as both more miRNA genes arise, and more genes come under their control. 

Conversely, in organisms were tissue complexity is lost, highly elaborate gene regulatory 

networks may no longer be selectively advantageous, and loss if miRNA genes may improve 

fitness. 

 

Figure 1.7 miRNA and Tissue Complexity Plot of acquisition of mRNA genes (left) and miRNA genes (right) 

through increasingly complex animal lineages. Branches indicate gene acquisition; lineages going up have more 

genes, lineages going downward have fewer. Scale bars correspond to 10 genes. The miRNA complements 

rapidly increase from demosponges to cnidarians and bilaterians, after which the complement remains more or 

less flat. MiRNA complement, meanwhile, see extensive gains in the bilaterian lineage compared to the 

cnidarian. Increasingly complex species see increasing miRNA complement. Xenoturbella and Acoela groups 

have undergone simplifications in their morphology and complexity, and see a drop in their miRNA 

complement. Erwin et al, 2011 [24]. 
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 Annotation and nomenclature 

The advent of next generation sequencing has resulted in a dramatic increase in the reported 

miRNA. MiRBase, the current repository for annotated miRNA[25], contains 1881 human 

miRNA entries. MiRBase is not a curated database, and it has long been suspected that a 

large proportion of entries are false annotations [26-28]. Fromm et al 2015 [29] set out to 

ascertain the validity of the human miRNA complement in miRBase by establishing a set of 

criteria to define miRNAs, then compare all human entries in miRBase against those criteria. 

They established that miRNAs have 20-26 nt long reads expressed form both stem loop arms, 

these must have 2 nt offset, 5p homogeneity, the two arms must have 16 nt complementarity 

or more, and the loop sequence must be 8 nt in length or more. Figure 1.8 illustrates these 

criteria when applied to six putative miRBase “miRNAs” testing their validity. 
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Figure 1.8 miRNA Annotation Applying a consistent set of miRNA annotation criteria to six putative 

miRBase miRNAs. Both (a) and (b) fulfill annotation criteria, with (a) having a clear 5p expression preference, 

while (b) appear to be a co-mature. (c) does not have any expression of the 3p arm, while (d) is noncanonical 

with the mature miRNA making up the loop sequence. (e) and (f) are rejected due to not fulfilling the annotation 

criteria. Fromm et al, 2015 [29] 
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Applying these criteria to all entries in miRBase, Fromm et al, 2015 [29] showed that less 

than two thirds off all human entries fulfilled criteria (Figure 1.9). As a result, a new curated 

open access miRNA gene database, MirGeneDB (http://mirgenedb.org) was established to 

provide the research community with a repository of high quality, correctly annotated 

miRNAs. 

 

 

 

Figure 1.9 Rejected miRNA MirGeneDB Pie chart of miRNA that fulfill criteria set out by Fromm et al, 2016 

[29]. Less than one third of all 1881 miRNAs in miRBase fulfilled annotation criteria. Fromm et al, 2015 [29]. 

 

Additionally, a revised nomenclature system was implemented. The conventional miRNA 

naming was introduced by Ambros et al 2003 [30] by naming each miRNA with the prefix 

“miR”, followed by a number based upon the sequential order in which the miRNA was 

discovered. Identical miRNA has identical names, with very similar sequences given a 

number or letter suffix, to distinguish between them. Their coding genes are named similarly, 

except using italics and capital letters in the conventional manner. 

This naming system does not take into account what evolutionary relationship between 

miRNAs. This is of huge importance for the vast numbers of miRNAs described not only for 

humans. Therefore, to arrive at a system where orthologous and paralogous miRNAs can be 

http://mirgenedb.org/
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identified based on their name; a revised nomenclature system was implemented. To avoid 

confusion, existing gene names were used were possible, and where miRNA genes were 

shown to be homologous, their names were merged. To distinguish the new nomenclature 

system from the old, gene names start with uppercase Mir-, and miRNA families use whole 

capital MIR-. MiRNA families contain only genes that are not paralogous to miRNAs outside 

that family. Paralogous genes within a family are annotated with a P followed by a number, 

starting with the first member of the family. In cases where a second duplication event has 

occurred, the P letter and number designation is followed by a letter indicating sequence of 

duplication. Lastly, all orthologues in all species are given the same name, to avoid confusion 

when comparing miRNA between species.  

Needless to say, using a database as reference where more than two thirds of annotated 

miRNAs are false annotations would at best be a waste of time. At worst false conclusions 

might be drawn. Therefore, this study used the curated MirGeneDB as reference. 
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 IsomiRs 

IsomiRs, defined as variants of the canonical miRNA, have been shown to be real, 

physiologically active participants in the cells gene regulatory machinery [31]. IsomiRs may 

be polymorphic, their sequence containing mismatches compared to canonical miRNA. They 

may also be elongated or truncated at their 5p or 3p. Elongated isomiRs can have both 

canonical additions, identical to the pre-miRNA sequence, or non-canonical, where the 

additions differ from the pre-miRNA. By far the most common are 3p isomiRs [32-35] Some 

studies suggest isomiRs are dynamically and actively regulated by cells [32, 34]. Koppers-

Lalic et al 2014 [36] showed that 3p uridylated isomiRs are more abundant in exosomes, 

while 3p adenylated isomiRs are more abundant in cytosol of cells. IsomiR modification have 

been reported to influence the stability of the miRNA as well as Argonaute loading [31] 

 

Figure 1.10 IsomiR Definition IsomiRs may be polymorphic, with distinct nucleotides (purple) compared to 

template strand (blue). IsomiRs may be 5p and 3p truncated, or 5p and 3p elongated, with either non-templated 

(green) or templated (orange) additions. Neilsen et al, 2012 [31]. 

  



29 
 

 Sequential and structural motifs 

An unresolved question regarding miRNA biogenesis is how Drosha selects and cleaves 

hairpin sequences from transcribed miRNA genes, but avoids the remainder of transcripts 

containing hairpins. Estimates suggests upwards of 11 million regions of the genome may 

form hairpin structures if transcribed [37]. Drosha cleavage of all such transcribed, non-

miRNA sequences would not only be a waste of energy for the cell, but could also lead to 

transcriptional abnormalities. Auyeung et al 2013 [38, 39] suggested sequential motifs in pri-

miRNA stem loop as one mechanism by which such a selection mechanism might work. The 

sequential motifs UG 14 nucleotides upstream of Drosha cut in the 5p-prime lower stem, 

UGUG in the loop sequence, and CNNC motifs at position 16, 17, or 18 in the 3p-prime 

lower stem (Figure 1.11), where shown to enhance processing of mutated variants of the 

miRNAs miR-16, miR-30 and miR-125.  

 

 

 

 

Figure 1.11 miRNA Structural Motifs Illustrates the location of the different motifs in the pri-miRNA hairpin 

structure. Changed after Fromm 2016 [40]  

Presumably, these sequential motifs enhance binding affinity of Drosha and its interacting 

partner DGCR8 to the pri-miRNA stem, although Kwon et al 2016 where unable to find any 
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residues that would closely associate with these nucleotides after unraveling the 3D structure 

of Drosha [5]. An additional structural motif has been suggested by Fang et al, 2015 [41]. 

They propose a key component of miRNAs is a stem of double stranded RNA at 35 +- 1 

bases, stretching from the pri-miRNA basal stem region where upstream and downstream 

single stranded RNA fuse to form double stranded RNA, to the loop region (Figure 1.11). 

According to this model, Drosha would cut at position 13, counting from the upstream basal 

region, and position 11, from the downstream basal region. This implies that the upstream 

UG motif at position 14 upstream of Drosha cut site would lie right at the spot where single 

stranded RNA is fused to form double stranded RNA. They then propose a mismatch motif at 

position 7-8-9 for both upstream and downstream strands, where position 7 and 9 form 

Watson crick pairs, while position 9 are mismatching. This was again shown to enhance 

Drosha processing in mutated variants of miR-16, miR-30 and miR-125. (Figure 1.11) 

Previous studies (Kwon et al, 2016 Auyeung et al 2013, Fang et al, 2015, Nguyen et al 2015, 

[5, 38, 39, 41]) have used experimental approach for motif discovery and verification, but a 

comprehensive verification in a large dataset of curated miRNA genes has yet to be 

accomplished. 
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1.2 Cancer 

Cancer is a multitude of diseases related by the fact they all involve uncontrolled cell growth 

and proliferation. As multicellular organisms are made up of tissues with trillions of cells, 

strict control of cell growth and division is essential. Cells have a plethora of checks and 

balances to ensure none of them escapes this controlled environment; however, mutations and 

chromosomal alterations mean eventually there is still a small probability some cells manage 

to circumvent them and reach tumorous growth and proliferation. The danger this poses to 

the patient depends on where in the body the tumor originates, at what time the tumor is 

discovered and the specific genetic alterations unique to that individual tumor.   

There are a plethora of obstacles preventing a cell from reaching the cancerous stage. 

Hanahan and Weinberg therefore suggested a series of hallmarks common to cancerous 

tumors, first in 2000 [42], then refined later in 2011 [43].  

 

Figure 1.12 Hallmarks of cancer proposed by Hanahan et al 2011. Hanahan et al 2011 [43] 

One is ensuring sustained proliferative signaling. Cells require a steady input of growth factor 

ligands before they can divide and proliferate. In healthy tissue, these growth signals are 

strictly controlled. Cancers circumvent this in a number of ways. One of them is secretion of 

their own growth ligands, leading to autocrine growth stimulus and tissue independence. 

Alternatively, secretion of signaling molecules to nearby healthy cells may trigger them to 
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secrete stimulatory molecules [44, 45]. Additional strategies involve increasing the number or 

altering the structure of growth signaling cell surface receptors, increasing response to the 

same stimulus. Alterations in signaling molecules downstream of the cell surface receptor 

may also provide growth signaling independence, leaving the growth signal permanently 

switched on. 

The flip side is that cancer cells must also avoid growth suppressors, another hallmark. Cells 

have multiple tumor suppressor genes whose function is to detect and prevent uncontrolled 

tumor growth. Two prominent examples are retinoblastoma-associated gene, RB, and TP53. 

RB is involved in cell cycle regulation, where it controls passing through the R point in the 

G1 cell cycle phase. In its hypophosphorylated state, RB binds to transcription factor E2F, 

inactivating it. Hyperphosphorylated, RB is unable to bind to E2F, allowing E2F to induce 

transcription of genes driving the cell cycle through G1 to S phase. [46, 47] Loss of function 

mutation in both RB alleles is thus advantageous for cancerous cells. TP53 meanwhile, play 

key role in cellular response to various cellular stresses, including DNA damage. TP53 

integrates input from various stress sensors, deciding if cell cycle is allowed to continue or 

must come to a halt. Alternately if damage is too high, TP53 may commit the cell to 

apoptosis. Other hallmarks include activation of the cells telomerase genes to initiate 

replicative immortality. Due to the genome replication process inability to replicate 

chromosomal ends, each successive cell replication shortens the chromosome slightly. After a 

finite number of replications, the cell is no longer able to replicate. In adult individuals, only 

stem cells have active telomerases which extends the chromosomal ends back to their original 

ends. Cancerous cells must therefore reactivate their telomerases if they are going to continue 

to proliferate. 

First reported involvement of miRNAs in cancer progression was reported by the Croce 

laboratory in 2002 [48]. Since then, miRNAs have been shown to be involved in all cancer 

hallmarks [49]. An interesting concept, as alluded to in the discussion on miRNA evolution, 

is the importance of miRNA in maintaining organismal complexity. As was shown, 

organisms increase their miRNA complement along with an increase in their complexity, 

while devolution, species evolving into less complex organisms, such as parasites, lose 

miRNA genes [50, 51]. In a sense, cancer-cells could be seen as cellular attempts at escaping 

the confines of complex, multicellular organisms, and becoming more akin to their ancient, 

less complex and single celled predecessors. One might therefore suppose cancers would also 
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see a drop in their miRNA complement. Some earlier studies have indeed suggested this to be 

the case, where Lu et al, 2005 [52], reported a general downregulation of miRNA in cancers.  
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 Metastasis 

Metastasis is the process by which cells of a primary tumor disseminates form its site of 

origin and spreads through the body to colonize other organs. Accomplishing this task 

requires that a tumor cell acquires the ability to disseminate from tissue of origin, survive in 

circulation, escape the blood vessels at a distant site, then survival and growth to form 

colonies at distant sites [53]. Many cancer types exhibit specificity in the locations they 

metastasize, where, according to Stephen Paget’s 1889 ‘seed and soil’ hypothesis [54], 

factors in the cancer cell ‘seed’ and the distant organ environment ‘soil’ determine likelihood 

of metastasis. Anatomical and physiological parameters also factor into where cancers 

metastasize [53]. The direction of blood flow from the primary tumor determines the first 

organ reached by circulating tumor cells, CTCs, where their circulation may be arrested by 

the smaller capillaries of the organ. The local structure of capillary walls in distant organs 

also plays an important role in CTCs ability to extravasate, or leave the blood stream. Liver 

capillary walls, for instance, consists of thin, fenestrated endothelium [55], where gaps allow 

CTCs to pass through. Lung capillary walls, by contrast, consist of tight endothelium. Several 

genes however, have been identified that allow extravasation of cancer cells even through 

lung capillaries [55, 56]. 

The molecular biology underlying the complex morphological and phenotypic developments 

driving these processes has only recently starting to be understood [43, 57, 58]. A key 

component is Epithelial Mesenchymal Transition, EMT, whereby immobile and polar 

epithelial cells alter their morphology to motile and nonpolar mesenchymal cells, allowing 

them to escape the epithelial layer to the underlying mesenchymal layer [59, 60]. 

Characteristic of EMT is the loss of E-cadherin and γ-cadherin, while acquiring expression of 

N-cadherin [61]. EMT plays a key role during embryonic development and is an elaborate 

process requiring change in expression levels of a myriad of genes. Orchestrating this process 

are a plethora of transcription factors, including SNAIL, ZEB1, ZEB2 and E47, which 

directly suppress E-cadherin by repressing its promoter.  

MiRNAs have been shown to play a role in EMT by targeting EMT regulating transcription 

factors. MiR-200, a family of miRNAs, has been shown to target ZEB1 and ZEB2 [62-64]. 

The miR-200 regulatory network therefore act as repressors of EMT and metastasis, with 

both clinical and cell line samples showing a correlation between miR-200 levels and the 

expression of E-cadherin [63, 64], as well as the level of primary tumor dissemination in the 
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presence of miR-200 overexpression [65]. Other miRNA regulating EMT include miR-9, 

which promote metastasis by directly target E-cadherin coding mRNA, as well as Leukemia 

Inhibitory Factor Receptor, LIFR, which suppress metastasis by again targeting YAP, a 

metastasis promoting gene. Further miR-148a suppresses EMT by targeting Met and Snail, 

two proteins involved in E-cadherin expression [66], while miR-29c has been shown to 

stimulate EMT by targeting of PTP4A and GNA13, respective members of the 

ERK/GSK3β/β-catenin and AKT/GSK3β/β-catenin pathways [67]. The p53 induced miR-34a 

has been shown to target transcription factor SNAIL, with suppression of miR-34a 

upregulating SNAIL and stimulating invasion and migration. Conversely, increased miR-34a 

expression downregulates SNAIL and represses invasion and migration [68]. MiR-363 and 

miR-335 have also been shown to repress EMT by targeting of Sox4, a gene involved in 

embryonic development [69-71].  

MiRNA have also been shown to play roles in other parts of metastasis biology. Mir-21 

drives invasion and metastasis by targeting programmed cell death 4, PDCD4, a tumor and 

invasion suppressor gene, as well as tumor suppressor gene tropomyosin, TPM1, and Maspin, 

also involved in invasion and metastasis [72, 73]. MiR-182 has been shown to be involved in 

metastasis by targeting transcription factor FOXO3 and microphthalmia associated 

transcription factor MITF. MiR-30b and miR-30d are drivers of metastasis by repressing 

GALNT1 and GALNT2, both suppressors of migration and invasion [74]. An interesting case 

are the miRNAs miR-551a and miR-483, which prevent invading tumor cell survival at 

distant site by targeting the gene creatine kinase brain-type (CKB) [75]. CKB is exploited by 

tumor cells to help survive in the hypoxic tumor environment by phosphorylating creatine to 

phosphocreatine, used by the cell to replenish its ATP supply. 
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 Colorectal Cancer 

Colorectal Cancer (CRC) is the second most prevalent cancer in the western world, with a 

reported 447.000 new cases in Europe in 2012, and a reported 215.000 deaths [76]. The main 

cause of death is metastasis in the liver, as well as metastatic spread to lungs and peritoneal 

cavity [77, 78]. Early detection is a key factor in reducing patient mortality. Colorectal cancer 

progression is divided into four stages. If the cancer is detected during stage II or earlier, an 

operation has a 90 % chance of curing the patient of the disease [79] If the cancer is first 

detected at stage IV, at which point the tumor has started to progress through the colon wall 

and disseminate through blood and lymphatic system, the five-year survival rate is 10 % [79]. 

As with other cancers, heterogenous underlying genetic disorders cause colorectal cancer, 

with common risk factors including lack of physical activity, old age, diet, obesity and 

smoking [80]. 

 

Figure 1.12 Stages of progression of colorectal cancer. If detected by stage II, patients have 90 % likelihood 

of survival [79]. By stage IV, the tumor has progressed through the colon wall, tumor cells disseminate into 

blood and lymph vessels, and metastasis to distant sites. Source: National Cancer Institute 

Typical molecular pathways of CRC development include chromosomal instability, CIN, 

microsatellite instability, MSI, and CpG island methylator phenotype, CIMP. Of these, about 

65-70 % of CRC patients have CIN [81], which leads to an increase or decrease in both the 

number of chromosomes as well as alterations in the chromosome structure. By deleting a 

region of the chromosome, the cell can disable tumor suppressor genes, such as APC, a key 

component of the Wnt signaling pathway, SMAD4, which is part of the TGFβ pathway, and 



37 
 

p53, a key tumor suppressor gene checking for DNA damage and numerous other stress 

signals.  

MSI occurs due to loss of function of mismatch repair genes. The cell is therefore no longer 

able to repair mismatching base pairs, leading to likely mutations in oncogenes and tumor 

suppressor genes. Mismatch repair deficiency may be identified by observing abnormalities 

in repetitive elements of the genome. In the absence of mismatch repair genes, any erroneous 

insertions by DNA polymerase will not be corrected, leading to frame shift mutations. If this 

occur in coding region of genes, the protein may will seize functioning.  

Lastly, CIMP is caused by methylation of so called CpG sites in promoter regions. At CpG 

dinucleotides, which is shorthand for 5p-C-phosphate-G-3p, the cytosine can be methylated, 

forming 5-methylcytosine. If the methylation occurs inside a gene promoter region, that gene 

is silenced since the transcription factors are no longer able to locate the promoter. Thus, 

CpG island methylation may promote cancer in one of two ways, hypomethylation, 

abnormally low methylation levels which may increase expression of oncogenes, and 

hypermethylation, abnormally high methylation levels, which may silence tumor suppressor 

genes.  

In a recent study, Guinney et al, 2015 [82], attempted to obtain a consensus view of 

molecular subtypes of colorectal cancer. They observed preexisting classification systems, 

and after computational analysis derived at four consensus molecular subtypes, or CMSs, for 

colorectal cancer. CMS1, or MSI immune, make up 14 % of CRCs, and are characterized by 

MSI, CIMP, BRAF mutations and immune infiltration, and patients experience worse survival 

rate after relapse. CMS2, or Canonical, make up 37 % of CRCs, and are characterized by 

high Somatic Copy Number Alterations, or SCNA, as well as WNT and MYC activation. 

CMS3, or Metabolic, make up 13 % of CRCs, and have mixed MSI status, low SCMA and 

CIMP status, as well as KRAS mutations and metabolic deregulation. CMS4, or 

Mesenchymal, make up 23 %, and has high SCNA status, and characterized by stromal 

infiltration, TGF-β activation, angiogenesis and worse patient relapse-free survival. 
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1.3 MiRNA as biomarkers 

MiRNAs have been proposed as biomarkers in cancer. Key miRNA properties make them 

potentially well suited as biomarkers. MiRNA can be released from the cells that produced 

them, and are stable in blood and tissue, allowing detection in samples that have been stored 

over longer periods of time [83]. Methods for detection and quantification are readily 

available. Furthermore, miRNAs are tissue specific [84, 85], and have been shown to play a 

role in all hallmarks of cancer [49, 86]. 

Clinical biomarkers can be classified in several ways [87]. One is based on how they are 

measured, for instance, if they are measured intracellularly or extracellularly. Extracellular 

biomarkers can further be divided into their level of invasiveness, from invasive, minimally 

invasive, and non-invasive. Biomarkers extracted from blood and urine samples would, for 

instance, be examples of non-invasive extracellular biomarkers. Prostate Specific Antigen, 

PSA is a non-invasive extracellular biomarker used as a predictor of prostate cancer [88]. 

Meanwhile, estrogen and hormone receptor levels [89], and mutations in BRCA1/2[90], are 

biomarkers for breast cancer, but require invasive tissue sampling. Ease of sampling and non-

invasiveness are key characteristics to good biomarkers. The stability in of miRNAs in 

circulation, and the fact that cells can secrete miRNA into the blood stream, make them 

potentially well suited as biomarkers.  

However, as is outlined in Flatmark et al 2016 [2], challenges still abound. A clinical study, 

after identifying six promising miRNAs involved in colorectal cancer and investigating their 

expression level in a cohort of 200 stage I-III patients, found few associations between 

miRNA expression level and the pathological state of patients [91, 92]. Another study found 

that colorectal cancers did display a clear miRNA expression profile distinct from healthy 

colon tissue [92], however as of now there are no miRNA colorectal cancer biomarker is in 

clinical use [87].  

Flatmark et al, 2016 [2], describes several possible explanations. As miRNAs involvement in 

cancer was only discovered in 2002 [48], and their biology is still being unraveled, it is 

hardly surprising progress has been less than originally hoped. However, several 

compounding issues complicate the matter. For instance, although miRNA expression is able 

to distinguish tissue types, not all miRNAs are necessarily tissue specific. MiRNA expression 
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often has considerable overlap between tissues, with only moderate fold changes for some 

miRNA.  

Secondly, as described earlier, a miRNA may have target sites on multiple genes, and what 

role a miRNA play in one tissue may entirely different in another tissue type, depending on 

the circumstances; this is essentially the presence of how many putative targets in the light of 

miRNA molecules. The biology of miRNAs is therefore highly complex. To be an effective 

biomarker however, moderate fold changes are not enough. There must be a large fold 

change between the disease state and the normal state, and this difference must be consistent. 

Thirdly, much of the miRNA literature has contradictory results: the same miRNAs might be 

reported as upregulated and downregulated in the same tissue by different studies. This is 

likely due to different experimental methods used for detection. Microarray and qRT-PCR 

are reliant upon correct annotation in the reference database used. As described earlier, 

miRNA research currently suffers from a plethora of misannotated miRNAs, a problem that 

is only recently being addressed [29]. Additionally there are limitations when profiling 

known probes rather than discovery of new molecule. Some of these problems should be 

rectified by moving to next generation sequencing for profiling, however, studies have found 

these platforms have problems with reproducibility [93-95]. Efforts are however being made 

to standardize small RNA workflows to provide more reliable biomarker signatures [96]. 
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1.4 Goals 

Metastatic progression from colorectal cancer to primary organs is a dominating cause of 

cancer related deaths in the western world. And although our knowledge of this process has 

greatly expanded in the last decades, molecular differences between primary and metastatic 

colorectal cancer are poorly understood. MiRNAs are candidate biomarkers and key players 

in cancer progression with demonstrated changes of expression in different cancers. Only few 

studies have explored miRNA involvement in mCRC, with a recent a study failing to find 

differentially expressed miRNAs in pCRC and CLM [98]. Furthermore, studies by miRNA 

biology have been plagued by reliance on miRBase, a non-curated database where as much as 

two thirds of human entries have been shown to be false annotations [30]. 

This study therefore set out to investigate miRNA expression in pCRC and CLM, using a 

small RNA sequencing approach focused on liver metastases and adjacent tissue. Using the 

highly-curated miRNA database MirGeneDB.org as reference ensured only bona fide 

miRNA were observed. The identification of signature miRNAs could lay the foundation for 

future, more in-depth investigations of the role miRNA play in metastatic progression and 

possibly lead to development of biomarkers 
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2 Materials and methods 
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2.1 Clinical studies 

This study obtained samples from both the Oslo Colorectal liver Metastasis, COMET, study 

and the Locally Advanced Rectal Cancer and exfoliated peritoneal tumor cells, LARC-EX, 

study. The COMET study was a randomized controlled study of laparoscopic versus open 

liver resection for patients undergoing surgery for CLM. Its overall outcome was to observe 

patient perioperative morbidity, 5 – year survival, recurrence pattern, inflammatory response, 

pain level and overall patient health. Secondary objective includes generating a biobank of 

CLM, versus normal liver, nLi, for each patient, with signed consensus form, to be used in 

downstream molecular analysis [97]. Tissue samples were snap frozen in liquid nitrogen, and 

stored at -80°C. Molecular analysis on DNA, RNA and protein was performed. In addition, 

tumor tissue was made available for the purpose of tissue microarrays. The study included a 

comprehensive list of clinical patient information, allowing correlation to molecular 

biological analysis with disease outcome. More than 200 paired CLM and nLi samples where 

gathered and stored in a biobank. Tissue samples from CLM and nLi where extracted and 

used in this study. 

The LARC-EX study is an ongoing study, with the goal of observing exfoliated peritoneal 

tumor cells derived from LARC. The study set out to explore the possibility of CRC cells 

escaping into the peritoneal cavity during tumor growth or during surgical intervention. 

Kristensen et al, 2008 [98], observed that 19 out of 237 patients with LARC had tumor cells 

in the peritoneal cavity. This finding correlated with poor patient survival. The LARC-EX 

study follows up on this finding, whereby patients with LARC patients undergo lavage, or 

washing of the peritoneal cavity with fluid, before and after surgery, and analysis is 

performed to ascertain tumor cell exfoliation effect on tumor recurrence and patient outcome. 

Tissue samples from primary Colorectal Cancer, pCRC, normal Colorectum, nCR, and 

Peritoneal Cavity, PC, where gathered and stored at -80°C. pCRC and nCR samples where 

extracted and used in this study. 

In addition, next generation sequencing data from previous studies were also obtained and 

used for validation and comparison purposes, or to supplement our data when sample size 

was small. Schee et al, 2013 [92] characterized a miRNA expression profile between nCR 

and pCRC, by deep sequencing a large cohort of 88 pCRC samples. The study found a 

consistent miRNA expression profile in the pCRC distinct from nCR. In addition, Neerincx et 

al, 2015 [99], made a differential expression analysis of pCRC versus CLM. Samples 
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included paired nCR and CLM, with samples from multiple metastatic sites, including liver, 

lung, ovarian and peritoneal tissues. Their study did not attempt to distinguish different 

metastatic sites, and where not able to make a distinction, neither globally nor on the 

individual gene level, between miRNA expression in pCRC and metastatic CRC. Röhr et al, 

2013 [100], sequenced paired pCRC, mCRC and nCR from 8 patients, 6 of which were liver 

and 2 were lymph node metastasis. 
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2.2 RNA isolation and quality control 

To isolate total RNA from patient samples, Qiagen Allprep DNA/RNA/miRNA universal kit 

was used, which permits simultaneous isolation of genomic RNA and total RNA from one 

sample. This maximizes yields since one doesn’t have to split the samples for separate 

isolation procedures. In this case, genomic DNA and total RNA was purified from tissues 

stored at -80oC without stabilizing agent. No tissue sample was larger than 30 mg. Tissue 

samples where stabilized in 600 μl Buffer RLT Plus, added one 5 mm diameter stainless, 

RNAse free steel bead and subsequently homogenized using TissueLyser LT for 2 x 4 min at 

40 Hz. The homogenized lysate was transferred into AllPrep DNA Mini spin columns and 

centrifuged for 30 s at full speed. The spin column containing genomic DNA was stored at 

4oC. Flow through containing total RNA was 80 μl Proteinase K and 35 μl 100% ethanol, and 

incubated for 10 min. Another 750 μl 100% ethanol was added and 700 μl of this mix was 

transferred to an RNeasy Mini spin column, centrifuged at full speed until all residual ethanol 

had passed through. The flow-through was discarded. 500 μl Buffer RPE was added to the 

column, centrifuged 15 s, then 80 μl DNase I incubation mix was added to the spin column, 

and incubated for 15 min. In the next step 500 μl Buffer FRN was added and centrifuged for 

15 s. As the flow-through contained small RNAs, it was reapplied to the spin column, 

centrifuged for 15 s, then discarded. 500 μl Buffer RPE was added to the RNAeasy Mini spin 

column, and centrifuged for 15 s, then 500 μl 100 % ethanol was spun through the column, to 

wash the spin column membrane. Purified total RNA was then eluted in 30 μl RNase free 

water. 

To measure total RNA concentration and check for contaminants, ThermoFisher NanoDrop 

Spectrophotometer was used. Estimating presence of proteins or phenols is accomplished by 

looking at ratio of 260 nm to 280 nm absorbance. Nucleic acids absorb at 260 nm, while 

proteins absorb at 280 nm. For RNA, a ratio above 2.0 is generally said to be pure, if the ratio 

is considerably lower, the sample may contain protein or phenols. Additionally, a 260 nm to 

230 nm absorbance ratio below 2.0 indicates the presence of organic compounds that absorbs 

at 230 nm.  

When analyzing RNA, an important consideration is the degree of degradation. Most RNA 

molecules are unstable, and will rapidly degrade when stored at room temperature. To 

determine the level of RNA degradation in the samples, Agilent Technologies Bioanalyzer 

RNA 6000 Nano kit for microcapillary electrophoresis was used. This kit allows analysis of 



45 
 

12 samples per chip, requires a volume of 1 μl and has a quantitative range of 25 – 500 ng / 

μl. Bioanalyzer function by the same principle as gel electrophoresis, whereby a current is 

applied over a porous gel, allowing charged molecules to pass through it at a rate based on 

their molecular weight. Bioanalyzer offers higher sensitivity and specificity than traditional 

gel electrophoresis. Ribosomal RNA makes up > 80 % of total RNA and typically have a 

28S:18S ratio of 2:1. Therefore, one can make the assumption that 28S:18S ratio of around 

2:1 represent samples with low degree of degradation, whereas if the ratio is considerably 

lower, the sample has significant degree of degradation. The degree of degradation may be 

quantified by a RNA Integrity Number, RIN, where 1 is worst and 10 is best. Although the 

importance of total RNA degradation for miRNA sequencing is controversial [101], high 

quality RNA is still important so as to avoid sequencing of degradation fragments. 
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2.3 NGS Library preparation and sequencing 

NGS library was prepared using the TruSeq Small RNA Library Prep protocol. Optimal input 

for this protocol is 1 μg of total RNA in 5 μl of nuclease free water. The procedure is as 

follows. The first step is ligating adapters to the 3p and 5p ends of all RNA molecules in the 

sample. The adaptors are necessary for two reasons, firstly to hybridize complementary 

primers for the reverse transcription step. Secondly, after transformation to cDNA, they 

hybridize with flowcell oligos before the bridge amplification step during sequencing.   

First 1 μl 3p RNA adapter is mixed with 1 μg total RNA in 5 μl nuclease free water, to a total 

volume 6 μl, and incubated at 70oC for 2 min. To this 2 μl Ligation buffer 1 μl RNase 

inhibitor and 1 μl T4 RNA Ligase 2, for a total volume of 10 μl are added respectively. The 

mix is incubated at 28oC for 1 hour. After incubation, 1 μl Stop Solution is added, and 

incubation continued at 28oC for 15 min. Secondly, 5p-adapter ligation mix was prepared by 

adding 1.1 μl per sample of 5pprime adapter, incubating at 70oC for 2 min, adding 1.1 μl per 

sample 10 mM ATP and 1.1 μl per sample T4 RNA Ligase. Of this mix 3 μl was added to the 

3p-adapter mixture, for a total volume of 14 μl, and incubated at 28 μl for 1 hour. 

 

Figure 2.1 TrueSeq small RNA sample preparation TruSeq® Small RNA Sample Preparation Guide 

Illumina 
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The second step is generating cDNA constructs form the RNA fragments ligated with 3p and 

5p adapters. By using primers that anneal to the adapter ends, this process selectively 

amplifies fragments containing 3p- and 5p-adapters. For each sample, 6 μl of the prepared 

adapter ligated RNA library and 1 μl RNA RT Primer is added to a new 200 μl PCR tube, 

and incubated at 70oC for 2 min. To this mix is added 2 μl 5X First Strand Buffer, 0.5 μl 12.5 

mM dNTP mix, 1 μl 100 mM DTT, 1 μl RNase Inhibitor and SuperScript II Reverse 

Transcriptase, for a total volume of 12.5 μl. The reverse transcription mix is incubated at 

50oC for 1 hour. 

After conversion to cDNA comes the library amplification step using PCR. To each library is 

added 8.5 μl Ultrapure Water, 25 μl PCR Mix, 2 μl RNA PCR Primer and 2 μl RNA PCR 

Primer Index, for a total volume of 50 μl. This mix is placed on a thermal cycler with the 

following program: 

- Preheated at 100oC 

- 98oC for 30 s 

- 11 cycles with: 

o 98oC for 10 s 

o 60oC for 30 s 

o 72oC for 15 s 

- 72oC for 10 min 

- Hold at 4oC 

To observe if library preparation was successful, each library was run through an Agilent 

Bioanalyzer High Sensitivity DNA Assay Chip. A successful library preparation will show 

up as a distinct peak at length ~22 bp plus adapter sequences. 

Successfully prepared libraries were then sequenced using Illumina HiSeq 2500 High 

Throughput Sequencer. These sequencers function on the principle of sequencing by 

synthesis. The prepared library template sequences are applied to an Illumina HiSeq Flow 

Cell, on the surface of which are oligonucleotides that hybridize with the templates adapter 

sequences, causing them to attach to the flow cell surface. Modified nucleotides containing 

fluorescent terminator caps and DNA polymerase is then added to the flow cell. DNA 

polymerase will add these capped terminators to the template sequences, but because of the 

cap, only one nucleotide is added each round. Each nucleotide has its own distinct fluorescent 



48 
 

color, and a camera identifies the added nucleotide. At the end of the round, the cap is 

removed, and another nucleotide is added. Computer software, in a process called base 

calling, is able to identify and keep track of all nucleotides in the library. All template strands 

are stored as ‘reads’. 

One problem with this approach is that the fluorescent light from a single nucleotide is too 

weak to be detected by a camera. Therefore, before sequencing by synthesis, each DNA 

template must go through a process called bridge amplification, where each individual 

template is amplified into clusters of thousands of identical sequences in close proximity to 

each other. Therefore, the surface of the flow cell is littered with clusters of DNA templates 

which light up with a distinct color detectable by a camera. This, however, leads to its own 

problem, since it depends on all template strands in a cluster being in phase, where they all 

add the same nucleotide at the same time. If a cluster gets out of sync, the signal deteriorates, 

and reliability of base calling decline. Every read output by the Illumina sequencer contains 

information of both the read sequence and the quality of each base in the read. 
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2.4 Preprocessing and read mapping 

For each library, the Illumina sequencer outputs a FASTQ file, containing four lines for every 

read. The first line is the read ID, second line is the read sequence, third line is redundant 

while the fourth line contains the Phred quality score for its respective base in line two. A 

Phred quality score goes from 1 to 40, where a score of 30 indicates 1 in 1,000 probability 

that the base is called wrong, or 99.9 % accuracy of the base call. A score of 40 indicates 1 in 

10,000 probability that the base is called wrong, or 99.99 % accuracy of the base call.  

 

Figure 2.2 FASTQ format First line is read ID, second line is read sequence, third is redundant while fourth 

line contain quality information for each base call. 

The first step in preprocessing is to remove 3p-adapter sequences from all reads. The 

sequencing by synthesis step starts sequencing in the 5p-end of the actual template strand, 

and continues into the 3p-adapter sequence. Therefore, one must remove these from all the 

sequences in the FASTQ file. In this case, fastx_clipper from fastx-toolkit was used to 

remove the adapter sequence. The second step is quality trimming, where 

fastq_quality_trimmer was used to remove reads with an average Phred score less than 33. 

When this is done, the quality information in the FASTQ file is no longer needed, so the 

FASTQ file was converted to FASTA format, where only read ID and sequence is annotated. 

After this, all reads shorter than 19 or larger than 26 bp was removed. 

 

Figure 2.3 Removing 3p adapter sequence 

Once the preprocessing step is complete, one has a FASTA file for each sample, which 

contain only those reads where the adapter has been removed, whose base calling accuracy 

was sufficiently high, and length after adapter trimming between 19 and 26 base pairs. The 
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next step is mapping the reads against a reference sequence. Since in this case only miRNAs 

where of interest, the reads where mapped against pri-miRNA sequences with 30 nucleotides 

5p- and 3p- derived from MirGeneDB [29], the curated database of miRNA genes. NGS read 

mapping software goes through each read in the FASTA file and checks if there is a match in 

the genome. Parameters can be set to determine the maximum numbers of mismatches in the 

first X bases, and what happens in case a single read matches multiple times. In this case, the 

read aligner bowtie (version 1.0.0) (1) was used, and parameters set to allow 0 mismatches in 

the first 18 nucleotides of the read, and in cases where a read maps to multiple loci, the read 

is mapped to each loci. 

 

Figure 2.4 summarizeOverlaps Union parameter was chosen. http://www-

huber.embl.de/users/anders/HTSeq/doc/count.html 

Bowtie outputs a SAM file, or Sequence Alignment/Map Format, containing coordinates for 

each read, indicating where they mapped against the reference sequence. The SAM file also 

contains information about location and number of mismatches. The information stored in a 

SAM file can then be used to generate a count matrix. The SAM file coordinates is compared 

against annotated coordinates of genes of interest stored in a GFF, or General Feature Format, 

file. If the coordinates of a read overlap the annotated coordinates of a gene, the count 

number of said gene is increased by one. In this case, the summarizeOverlaps method from 

Bioconductor was used to count miRNA genes, using a GFF file derived from annotated 
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mature miRNA genes in MirGeneDB. SummarizeOverlaps offer several counting modes, in 

this case, the Union mode was selected whereby a gene is counted assuming any part of a 

read overlaps the gene. The derived count matrix contains columns for each sample and rows 

for each miRNA gene, with integers for the number of reads corresponding to a mature 

miRNA gene in each sample. Notably, miRNA with identical mature sequences will receive 

the same number of counts. The count matrix is the starting point for all remaining 

downstream analysis.  
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2.5 Sample distances and hierarchical clustering 

To assess how samples compare to one another and if miRNA expression is able to 

distinguish between tissue types, hierarchical clustering analysis was performed. Clustering 

algorithms estimate distance between samples based on multidimensional gene counts data. 

In this case, Euclidean distance and complete-linkage parameters were chosen, grouping 

samples based on similarity of the furthest sample pair. Agglomerative clustering then 

produce a dendrogram, successively grouping samples together, starting with the most similar 

samples, then segmenting the data with gradually larger groups of increasingly distant 

similarity.  

An important source of bias in RNAseq data is the increase in variance of highly expressed 

genes compared to lower expressed genes. Since only those genes with significant variance 

across the mean will actually influence clustering outcome, highly expressed genes would 

infer an outsized influence in untransformed data. To account for this, data was normalized 

by DESeq2 estimated sizeFactors and log2 transformed. 

Four clustering diagrams where made. First comparing nCR and nLi samples, secondly 

comparing pCRC and nCR, next CLM an nLi were compared and finally pCRC and CLM. 
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2.6 Differential expression analysis 

DESeq2 was used to analyze differentially expressed miRNA between tissue types [102]. In 

brief, DESeq2 models gene-wise differential expression between sample groups as follows. 

As input, DESeq2 takes raw, non-transformed counts. First, within-group variation in gene 

expression is estimated. DESeq2 makes the assumption that genes with similar mean 

expression also have similar variance. Dispersion is first independently estimated for each 

individual gene, represented by black dots in Figure 2.5. Then, a fitted curve is made from 

this individual gene data, providing an expected dispersion value per mean expression rate. 

The gene-wise estimated dispersion is then shrunk to more closely resemble the fitted curve, 

to give the final dispersion (arrows). Using this method, genes far below the fitted curve are 

given a substantial increase in dispersion, lowering the statistical power of the potential 

differential expression of said gene, thus lowering the probability of false positives. On the 

flip side, genes with dispersion far above the fitted curve are not shrunk, as these may be 

outliers. Shrinking the dispersion estimate would therefore increase the risk of a false 

positive, and the original gene-wise dispersion estimate is used instead. Such genes are in 

Figure 2.5 shown as a black dot surrounded by a circle. 

 

Figure 2.5 DESeq2 shrinkage of dispersion. Black dots are gene-wise dispersions, line shows the fitted curve 

while arrows show shrunken estimates. Circles around dots represent gene-wise dispersions that did not undergo 

shrinkage. [102] 
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Another issue with HTS data is that genes with low count means see stronger variance in 

LFC as compared to genes with higher mean counts. As explained in the DESeq2 paper Love 

et al, 2016 [102], this is caused by using counts of discrete values. Low count numbers are 

inherently noisier than high count numbers. Therefore, DESeq2 reduces the LFC towards 

zero in cases where there is little information regarding the gene, either due to high 

dispersion, low counts, or few degrees of freedom. This means it’s possible for genes with 

similar mean expression but different dispersions receiving different degrees of reduction in 

fold change, preserving LFC in genes with little dispersion while reducing LFC for genes 

with high dispersion. Net result is decreasing risk of both false positives and false negatives. 

It is these shrunken LFC values which are used in further downstream tests. 

Each gene then undergoes a Wald test, and then independent filtering to address the multiple 

testing problem. This is important as with a sufficiently large samples size, negligible LFCs 

will eventually be detected a significant. This results in an adjusted p-value as an estimation 

of significance. In the case of large sample sizes, a threshold is also set so that only genes 

showing sufficient difference to be biologically significant are considered. 

 Target prediction 

TargetScan was used to estimate targets for miRNA of interest. TargetScan scans through 

known RNA molecules checking for sites matching the canonical 7mer-A1, 7mer-m8 or 

8mer sites targeted by miRNA, as shown in Figure 1.4. Target sites containing mismatches 

are also considered if they contain 3p pairing. Sites are ranked according to their estimated 

targeting efficacy, and conservation of those targets. [103] 
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2.7 IsomiRs 

Generating a count matrix as described above, by counting a miRNA gene if any part of a 

mapped read overlaps the genes annotated loci, will inevitably loose some of the information 

the sequencer provides. NGS data contain information on both mismatches and 5p- or 3p- 

elongations and truncations. To account for this lost information, a new count matrix of 

isomiRs was created. IsomiRs were defined as all fragments mapping to MirGeneDB 

annotated human pri-miRNA sequences, excluding reads identical to canonical miRNA. 

Bowtie parameters were set to allow 3 mismatches anywhere along the read. A count matrix 

was made from all samples prepared in this study, along with 3 nCR and 6 pCRC samples 

from Schee et al 2013 [92], for a total of 33 samples. Only fragments found in at least 50 % 

of samples were added to the count matrix. Finally, differential expression analysis was 

performed as described above, using DESeq2.  
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2.8 Sequential motifs 

Sequential and structural motifs were defined as follows. Basal UG motif consists of uracil 

followed by cytosine positioned 14 nucleotides upstream of Drosha 5p-arm cut site. Apical 

UGU/GUG motif consists of either a UGU or a GUG sequence at position 1, 2 or 3 after 

Dicer 5p cut site. Flanking CNNC stem motif consist of a cytosine followed by two random 

nucleotides, then followed by cytosine, at either position 16, 17, or 18 downstream of Drosha 

3p-arm cut site. For the Mismatched GHG motif, the miRNA stem was defined as 35 (±1) 

nucleotides long, counting from bottom of hairpin stem, ending at Dicer 5p cut site, see 

Figure 2.6. Mismatched GHG motif resides at position 7-8-9, defined as Watson Crick 

pairing at position 7 and 9, and a wobble, or non-pairing, at position 8. To verify these motifs, 

pri-miRNA sequences for every gene annotated in MirGeneDB was used. Each pri-miRNA 

sequence had 30 nucleotides from their genomic loci added to 5p and 3p ends. For basal UG 

motif, flanking CNNC motif and apical UGU/GUG motif, the number of miRNA with the 

respective motifs were counted at each position. For mismatched GHG motif, pri-miRNA 

sequence was folded using RNAfold (Lorenz et al, 2011 [104]), and the number of miRNA 

genes with mismatched GHG motifs at each location in the lower hairpin stem was counted. 

 

 

Figure 2.6 Defining pri-miRNA Sequential and Structural Motifs Basal UG motif starting at -14 nucleotides 

form Drosha 5p cut site. Flanking CNNC motif starting at either 16, 17 or 18 downstream of Drosha 3p cut site. 

Apical UGU/GUG motif at position 1 after Dicer 5p cut site. Mismatched GHG motif at position 7-8-9 in lower 

stem, consisting of Watson Crick pairing at position 7 and 9, and mismatch, or wobble, at position 8. Fang et al, 

2015 [41]. 
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3 Results 
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3.1 RNA extraction 

RNA extraction and quality assessment using Bioanalyzer and Nanodrop showed a general 

trend of poor RIN values in nLi and CLM samples. Typically, only samples with RIN above 

8.0 are used for sequencing, but in order to obtain sufficient material this threshold was 

lowered to 5.0. Previous studies have shown high quality NGS libraries can be generated 

even with lower quality RIN samples [101]. By The cause of disparaging RIN values may be 

due to differences in the tissue samples themselves. During the sample gathering stage, no 

sample was left at room temperature for more than 30 minutes. Studies have shown dramatic 

drops in RIN quality does not occur until 60 minutes [105]. In remaining preparatory steps, 

samples were at stored at -80°C and kept at dry ice using best practices procedures for 

handling RNA. 

In the end, 9 paired nLi and CLM COMET samples and 3 paired nCR and pCRC, for a total 

of 24 samples, were found to be of sufficient quality for sequencing. 

Returned sequencing data showed significant differences in total number of reads between 

samples. Total reads ranged from more than 25 million to less than 3 million reads, with an 

average of 9.5 million reads. This may present a problem in downstream analysis, since some 

steps, including clustering analysis, requires normalized counts. Widely disparaging total 

read numbers may induce a bias in the results after normalization. After adapter trimming and 

quality control, an average of 89 % of total reads remained, while after removing reads longer 

than 26 bp, an average of 53 % of total reads remained. Of the processed reads, an average of 

86 % mapped to MirGeneDB.  
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Sample  

Name 

Tissue RIN 260/ 

280 

260/ 

230 

Conc.  

(µg/µl) 

Initial  

Reads 

After  

Clipping 

Quality  

Filtering 

Reads 

< 26 bp 

Unique Unique  
MirGeneDB 

Mapped  
MirGeneDB 

Reads > 
26 bp 

mapped 

COMET 0003M liver metastasis 6,3 1,9 2,1 194 19518920 99 % 91 % 64 % 172527 16467 60 % 93 % 

COMET 0003N liver normal 7,2 1,9 1,6 211 3661520 99 % 87 % 60 % 59717 8161 52 % 88 % 

COMET 0011M liver metastasis 8,2 2,0 2,1 197 4120967 99 % 92 % 75 % 56375 8420 70 % 94 % 

COMET 0011N liver normal 6,4 1,9 2,2 198 5901934 99 % 89 % 67 % 73657 9321 62 % 92 % 

COMET 0014M liver metastasis 5,0 2,0 2,2 198 4881422 99 % 90 % 57 % 77506 8507 50 % 87 % 

COMET 0014N liver normal 8,6 1,9 1,4 211 2280732 98 % 84 % 47 % 50305 5589 37 % 80 % 

COMET 0016M liver metastasis 8,3 2,0 2,0 198 3607069 99 % 85 % 49 % 84350 7718 37 % 76 % 

COMET 0016N liver normal 8,5 1,9 1,4 203 3002514 99 % 88 % 57 % 62931 6522 49 % 86 % 

COMET 0026M liver metastasis 6,7 1,9 2,3 199 12822692 99 % 88 % 65 % 130104 11819 57 % 88 % 

COMET 0026N liver normal 6,7 2,0 1,6 199 2292168 98 % 90 % 50 % 39897 5595 44 % 87 % 

COMET 0027M liver metastasis 7,2 1,9 2,1 203 16528813 99 % 90 % 44 % 146162 13515 39 % 89 % 

COMET 0027N liver normal 7,2 2,0 1,7 197 5514267 99 % 93 % 31 % 56216 6599 27 % 87 % 

COMET 0028M liver metastasis 6,1 1,9 2,0 208 10599617 99 % 87 % 56 % 146909 11299 47 % 84 % 

COMET 0028N liver normal 6,4 2,0 1,9 204 4145103 99 % 90 % 53 % 58600 7284 47 % 89 % 

COMET 0035M liver metastasis 6,1 1,9 2,2 209 12440004 99 % 87 % 67 % 154124 13069 58 % 87 % 

COMET 0035N liver normal 6,0 1,8 2,1 200 23619240 99 % 95 % 11 % 96972 7712 9 % 79 % 

COMET 0059M liver metastasis 7,0 2,0 2,0 215 15186554 99 % 85 % 57 % 216221 12069 46 % 81 % 

COMET 0059N liver normal 6,9 2,0 2,2 194 4272569 99 % 89 % 43 % 55844 6969 38 % 88 % 

LARC EX 115T rectum tumor 6,5 2,0 1,89 198 17554448 99 % 83 % 38 % 439527 10383 23 % 61 % 

LARC EX 115N rectum normal 5,0 2,0 2,1 200 8021418 99 % 90 % 47 % 132400 9701 39 % 81 % 

LARC EX 138T rectum tumor 9,2 2,0 1,81 197 8588650 99 % 90 % 52 % 109505 10411 46 % 88 % 

LARC EX 138N rectum normal 5,0 1,7 2,1 198 9282185 99 % 93 % 71 % 80670 10764 66 % 93 % 

LARC EX 154T rectum tumor 5,0 2,0 2,0 201 12482692 99 % 92 % 50 % 130036 10949 44 % 89 % 

LARC EX 154N rectum normal 5,0 2,0 2,0 214 18760603 99 % 93 % 58 % 235570 12232 50 % 86 % 

 AVERAGE 7 2 2 202 9545254 99 % 89 % 53 % 117113 9331 46 % 86 % 

Table 3.1 Result of RNA extraction and sequencing 
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3.2 NGS-results 

 

Figure 3.1 Density Plots Density plots of miRNA expression of a randomly chosen gene across 24 samples. 

Plot of raw counts, Log2 (n + 1) transformed counts and Variance Stabilizing Transformation counts. 

         counts                    log2 (n + 1)                            VST 

 

Figure 3.2 MeanSdPlot Plot of per-gene standard deviation versus rank of mean expression across all 24 

samples. Plot of raw counts, log2 (n + 1) transformed counts and Variance Stabilizing Transformation counts. 

 

Density plots of a randomly chosen miRNA gene in the 24 samples indicate that raw counts 

have a leftward skewed distribution with a significant tail of more extreme values. Both Log2 

transformation and Variance Stabilizing Transformed data appear to remove these more 

extreme values, as well as the leftward skewed distribution.  
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Figure 3.3 Counts per Sample Barplot of pre- and post-normalized counts for all 24 samples. Pre-normalized 

counts are summation of raw counts for all genes in each sample, while post-normalized counts is Log2 (n + 1), 

where counts have been normalized on DESeq2 sample estimated Size Factors, before transformation. 

 

Plots of per-gene standard deviation versus rank of mean expression (Figure 3.2) show a 

huge degree of heteroscedasticity in raw counts, where standard deviation rise dramatically 

among highly expressed genes. This would introduce a bias for data exploratory analysis, 

where highly expressed genes would infer an undue influence on the result. Interestingly, 

both the Log2 transformation and the variance stabilizing transformed data appear equally 

effective at removing this heteroscedasticity. This is at odds with previously published 

literature suggesting a Log2 transformation itself will induce a standard deviation peak at 

lower mean counts, see Love et al, 2014 [102]. Since no such difference was apparent in our 

data, the simple Log2 transformed data was chosen for downstream data exploratory analysis.  
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The heterogeneity observed in total read numbers between samples was still present in total 

count numbers shown in Figure 3.3. Post-Normalized Log2 (n + 1) counts are more 

homogenous. 
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3.3 Clustering and sample distance 

 nCR and nLi are distinct from each other 

 

Figure 3.4 Clustering nCR vs nLi Clustering of log2-transformed miRNA expression levels between normal 

colorectum and normal liver. MiRNA expression is size-factor normalized and log2 transformed, clustering 

based on Euclidean distance and complete-linkage. Sample distance represented by top dendrogram, longer 

horizontal line between two samples mean longer distance. Samples include 9 nLi and 3 nCR from this study, 

and 3 nCR from Schee et al, 2013 [92]. 

Clustering of normal colorectum and normal liver reveals a clear separation, indicating a 

distinct global miRNA expression profile in each tissue.  
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 pCRC is distinct from nCR 

 

Figure 3.5 Clustering nCR vs pCRC Clustering of log2-transformed miRNA expression levels between 

normal colorectum and primary tumor. MiRNA expression is size-factor normalized and log2 transformed, 

clustering based on Euclidean distance and complete-linkage. Sample distance represented by top dendrogram, 

longer horizontal line between two samples mean longer distance. Samples include 3 nCR and 3 pCRC from 

this study, as well as 3 nCR and 3 randomly chosen pCRC from Schee et al, 2013 

 

Clustering of normal colorectum and primary tumor showed complete separation, indicating a 

distinct global miRNA expression profile in each tissue. pCRC samples from both studies do 

not separate, while nCR samples separate into two groups from their respective studies.  
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 CLM is distinct from nLi 

 

 

Figure 3.6 Clustering nLi vs CLM Clustering of log2-transformed miRNA expression levels between nLi and 

pCRC. MiRNA expression is size-factor normalized and log2 transformed, clustering based on Euclidean 

distance and complete-linkage. Sample distance represented by top dendrogram, longer horizontal line between 

two samples mean longer distance. All 18 samples derived from this study. 

 

Complete separation is observed between normal liver and liver metastasis, indicating a 

distinct global miRNA expression profile in each tissue.  
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 No distinction of pCRC and CLM 

 

Figure 3.7 Clustering pCRC vs mCRC Clustering of log2-transformed miRNA expression levels between 

pCRC and nCRC. MiRNA expression is size-factor normalized and log2 transformed, clustering based on 

Euclidean distance and complete-linkage. Sample distance represented by top dendrogram, longer horizontal 

line between two samples mean longer distance. 12 samples are from this study, as well as six randomly chosen 

primary tumor samples from Schee et al, 2013 

 

Clustering of primary colorectal cancer tissue and colorectal derived liver metastasis tissue is 

not able to separate them into two distinct groups, while clustering of colorectal derived liver 

metastasis and normal liver tissue separate into two distinct groups. This would indicate 

global miRNA expression profile in liver metastasis predominantly resemble the primary 

tumors. Global miRNA expression may therefore not dramatically alter as tumor cells 

metastasize.  
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3.4 Differential expression 

 Venn downregulated signature miRNA 

 

nCR vs 

pCRC 

nCR vs pCRC 

nCR vs nLi 
pCRC vs 

CLM 

pCRC vs CLM 

nCR vs nLi 
nCR vs pCRC 

pCRC vs CLM All 
nCR vs nLi 

Mir-10-P3b Mir-338-P1 Mir-7-P2 Mir-146-P1 None Mir-10-P1b Mir-92-P3 

Mir-148-P3 Mir-133-P2 Mir-7-P1    Mir-96-P2 

Mir-378 Mir-92-P4 Mir-146-P2    Mir-196-P2 

Mir-15-P1c Mir-133-P3 Mir-7-P3    Mir-221-P2 

Mir-26-P2 Mir-490     Mir-10-P1a 

Mir-26-P1 Mir-145     Mir-196-P1 

Mir-10-P3c Mir-15-P2c     Mir-221-P1 

Mir-574 Mir-133-P1     Mir-8-P2b 

Mir-10-P3a Mir-143     Mir-155 

Mir-28-P1      Mir-203 

 

Figure 3.8 Venn Diagram of downregulated signature miRNA. Table show top 10 significance level of 

downregulated signature miRNA 
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 Venn upregulated miRNA 

 

nCR vs 
pCRC 

nCR vs pCRC 

nCR vs nLi 
pCRC vs 

CLM 

pCRC vs CLM 

nCR vs nLi 
nCR vs pCRC 
pCRC vs CLM All 

nCR vs nLi 

Mir-17-P2a Mir-15-P1d Mir-150 Mir-10-P3b None None Mir-30-P2b 

Mir-224 Mir-92-P1b Mir-10-P3a Mir-423   Mir-154-P23 

Mir-17-P2b Mir-148-P1 Mir-1247 Mir-335   Mir-345 

Mir-96-P2 Mir-92-P1a Mir-339 Mir-10-P3c   Mir-885 

Mir-135-P3      Mir-122 

Mir-29-P2a      Mir-455 

Mir-19-P2b      Mir-130-P1b 

Mir-21      Mir-197 

Mir-17-P4      Mir-941-P2 

Mir-17-P1a      Mir-455 

 

Figure 3.9 Venn diagram of upregulated signature miRNA. Table show top 10 significance level of 

downregulated signature miRNA 

 

Figure 3.8 and figure 3.9 show the differentially expressed miRNAs represented in a Venn 

diagram. Signature miRNAs where split into downregulated and upregulated, so one can 

distinguish cases where a miRNA was upregulated in one tissue type and downregulated in 

another. Due to the method by which samples were obtained, both pCRC samples and CLM 

samples contain contaminating cells from their respective surrounding normal tissues. As 

such, differential expression of pCRC and CLM will contain a lot of noise actually caused by 

the difference in miRNA expression between normal colorectum tissue and normal liver 

tissue. In the volcano plot of pCRC versus CLM (Figure 3.11), signature miRNA found both 

in nCR versus CLM where colored blue, while those only found in pCRC versus CLM where 
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labeled red. Additionally, due to the method used to map sequencing reads to MirGeneDB, 

miRNA with identical mature sequence will all receive the same number of counts. Thus, in 

some cases, multiple miRNA will have identical counts and identical differential expression. 

Some of the signature miRNA must therefore be regarded as the same miRNA. 
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 Volcano plot nCR versus nLi 

 

Figure 3.10 Volcano Plot nCR vs nLi Plot of -log10 padj against LFC of nCR vs nLi. Signature miRNA (red) 

have more than one LFC, padj < 0.05 and one group > 100 RPM. Only top 10 significance level miRNA are 

highlighted. 

 

↓ miRNA in nCR vs nLi ↑ miRNA in nCR vs nLi 

Hsa-Mir-221-P1_3p  Hsa-Mir-885_5p  

Hsa-Mir-8-P1b_3p  Hsa-Mir-483_3p  

Hsa-Mir-196-P3_5p  Hsa-Mir-483_5p  

Hsa-Mir-10-P1a_5p  Hsa-Mir-22-P1_3p  

Hsa-Mir-145_5p  Hsa-Mir-148-P1_3p  

Hsa-Mir-8-P1a_3p  Hsa-Mir-122_5p  

Hsa-Mir-8-P2b_3p  Hsa-Mir-193-P1b_3p  

Hsa-Mir-196-P2_5p  Hsa-Mir-10-P2b_5p  

Hsa-Mir-196-P1_5p  Hsa-Mir-455_3p  

Hsa-Mir-10-P1b_5p  Hsa-Mir-455_5p  
Table 3.2 Signature miRNA in nCR vs nLi. Only top 10 significance level signature miRNA are shown. 
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 Volcano plot pCRC versus CLM 

 

Figure 3.11 Volcano Plot pCRC vs CLM Plot of negative log 10 adjusted p-value against Log2 fold change. 

Signature miRNA are highlighted, representing miRNA with Log2 fold change above 1 or below -1, adjusted p-

value > 0.05 (doted lines), and where at least one group is above 100 reads per million. Numbers below miRNA 

ID represents reads per million for each group. (a) Normal Colorectum versus Colorectal Cancer, higher 

foldchange represents higher expression in CRC. (b) Normal Colorectum versus Normal Liver, higher fold 

change represents expression in Normal Liver. (c) Primary Colorectal Cancer versus Colorectal derived Liver 

Metastasis, higher fold change represents higher expression in metastasis. (d) Normal Liver versus Metastasis, 

higher fold change represents higher expression in Normal Liver versus Metastasis. 

↓ miRNA in pCRC vs CLM ↑ miRNA in pCRC vs CML 

Hsa-Mir-146-P1_5p Mir146-P1_5p Hsa-Mir-335_5p 

Hsa-Mir-146-P2_5p Hsa-Mir-1247_5p 

Hsa-Mir-7-P1/2/3_5p Hsa-Mir-339_3p 

 Hsa-Mir-10-P3b_5p 

 Hsa-Mir-10-P3c_5p 

 Hsa-Mir-150_5p 

 Hsa-Mir-423_5p 

 Hsa-Mir-10-P3a_5p 
Table 3.3 Differentially Expressed miRNAs in pCRC vs CLM 
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Figure 3.10 and 3.11 show the result of differential expression analysis. Represented as a 

volcano plot, the -Log10 (padj) is plotted against LFC. The higher up the y-axis, the lower 

the adjusted p-value and the higher the fold change, the further to the left or right along the y-

axis. Since genes with low fold change also tend to have higher p-values (less significant), 

these will reside in the bottom center of the plot. Genes with higher fold change will typically 

have lower p-values, and therefore reside in the upper right or left. Net result is a plot shaped 

like a volcano, with lowly differentiated genes in the bottom center, highly differentiated 

genes in upper left or right. Signature miRNA are therefore defined as having a LFC > 1 or < 

-1, and an padj < 0.05. Additionally, a requirement was set that at least one of the groups 

must have more than 100 reads per million. This cutoff was set to prevent lowly expressed 

genes drowning out the signal of differentially expressed miRNAs. If a miRNA gene has a 

mean count of 1 in one group and a mean count of 20 in another group, a substantial net 20-

fold change. In biological turns, however, the numbers are so small as to be likely 

insignificant. By implementing a 100 RPM cutoff, only genes with significant expression is 

considered. A total of 11 microRNA genes was found to be differentially expressed between 

pCRC and CLM, including Hsa-Mir-335_5p, Hsa-Mir-1247, Hsa-Mir-146-P1_5p, Hsa-Mir-

339_3p, Hsa-Mir-10-P3b/c_3p, Hsa-Mir-146-P2_5p, Hsa-Mir-7-P1/2/3_5p, Hsa-Mir-150_5p, 

Hsa-Mir-10-P1b_5p, Hsa-Mir-423_5p and Hsa-Mir-10-P3a_5p.  

To control for how many of these were caused by different miRNA expression profiles in 

normal colorectum and normal liver, signature miRNA of the two differential expression 

analyses were compared. In Figure 3.11, signature miRNA found to be differentially 

expressed in both normal tissues and malignant tissues were colored blue, while signature 

miRNA exclusively found in malignant tissues were colored red. This left four upregulated 

miRNAs, Hsa-Mir-1247_5p, Hsa-Mir-339_3p, Hsa-Mir-150_5p, Has-Mir-10-P3a_5p, and 

two downregulated miRNAs, Has-Mir-146-P2_5p, Hsa-Mir-7-P1/2/3_5p. 

 

↓ miRNA in pCRC vs CLM ↑ miRNA in pCRC vs CML 

Hsa-Mir-146-P1_5p Mir146-P1_5p Hsa-Mir-335_5p 

Hsa-Mir-146-P2_5p Hsa-Mir-1247_5p 

Hsa-Mir-7-P1/2/3_5p Hsa-Mir-339_3p 

 Hsa-Mir-150_5p 

 Hsa-Mir-10-P3a_5p 
Table 3.4 miRNA Differentially Expressed for pCRC vs CLM and Controlled for Normal Tissue 

 



73 
 

 Validation in Neerincx and Röhr 

Expression levels for the six signature miRNAs in pCRC vs CLM were compared against NGS data form 

Neerincx et al, 2015 [99] and Röhr et al, 2013 [100]. Previous studies [93-95] have shown that NGS 

data itself may suffer from replication issues. It is therefore necessary to validate findings, either 

experimentally, for instance using qRT-PCR, or by comparing data from similar studies. Boxplots of 

RPM in pCRC and CLM for each of the six signature miRNAs were made for current study, Neerincx 

and Röhr.  
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Figure 3.12 Boxplot of signature miRNA Comparison of RPM values for 6 signature miRNA in pCRC and 

CLM in samples from this study, Neerincx 2015 and Röhr 2013. 

 

Comparing expression levels in Neerincx and Röhr, only 2 miRNA, Hsa-Mir-339_3p and 

Hsa-Mir-1247_5p, appear to show the same pattern of upregulation in CLM compared to the 

pCRC. Thus, 2 signature miRNA out of the original 11 were both differentially expressed in 

pCRC vs CLM and also showing same expression pattern in Neerincx et al 2015 [99] and 

Röhr et al, 2013 [100].  
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↓ miRNA in pCRC vs CLM ↑ miRNA in pCRC vs CML 

 Hsa-Mir-1247_5p 

 Hsa-Mir-339_3p 

 

Table 3.5 Signature miRNA Controlled for Normal Tissues and Showing Same Expression Pattern in 

Neerincx et al 2015 and Röhr et al 2013. 

 

 

Hsa-Mir-1247_5p RPM Hsa-Mir-339_3p RPM 

CLM:  226.52 CLM:  128.66 

pCRC: 51.67 pCRC: 64.83 

Brain:  3.35 Heart: 46.99 

Lung: 106.65 Spleen: 0.38 

Kidney: 29.65 Brain: 84 

Liver: 3.28 Lung: 7.1 

  Blood: 12.23 

  Kidney: 2.31 

  Liver: 14.76 
Table 3.6 RPM in tissues. Tissues other than CLM and pCRC derived from previously published literature 

listed at MirGeneDB.org 

 

Hsa-Mir-1247 has 226.52 RPM while Hsa-Mir-339_3p has 128.65 RPM in CLM.  Hsa-Mir-

339_3p has 12.23 RPM in in serum, while Hsa-Mir-1247 has not yet been detected in serum. 
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3.5 Target prediction 

Tables 3.7 and 3.9 show the top 10 TargetScan predicted target sites for Hsa-Mir-1247_5p 

and Hsa-Mir-339_3p.  

Ortholog of 

target gene 

Gene name Total 

sites 

8mer 

sites 

7mer-

m8 

sites 

7mer-

A1 

sites 

6mer 

sites 

Representative 

miRNA 

HIST2H2AA3 
histone cluster 2, 

H2aa3  
3 2 1 0 0 hsa-miR-1247-5p 

CDC14B cell division cycle 14B  5 4 0 1 0 hsa-miR-1247-5p 

AL162389.1 
Uncharacterized 

protein   
5 0 5 0 0 hsa-miR-1247-5p 

FAM20C 

family with sequence 

similarity 20, member 

C  

2 2 0 0 0 hsa-miR-1247-5p 

DVL1 
dishevelled segment 

polarity protein 1  
2 2 0 0 0 hsa-miR-1247-5p 

KIF26A 
kinesin family member 

26A  
2 2 0 0 0 hsa-miR-1247-5p 

HPR 
haptoglobin-related 

protein  
1 1 0 0 0 hsa-miR-1247-5p 

MBD3 
methyl-CpG binding 

domain protein 3  
2 1 1 0 2 hsa-miR-1247-5p 

TNFRSF18 

tumor necrosis factor 

receptor superfamily, 

member 18  

1 1 0 0 0 hsa-miR-1247-5p 

THEM6 
thioesterase 

superfamily member 6  
2 1 1 0 0 hsa-miR-1247-5p 

 

Table 3.7 Top 10 Hsa-Mir-1247_5p target sites predicted by TargetScan 
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Ortholog of 

target gene 
Gene name 

Total 

sites 

8mer 

sites 

7mer-

m8 

sites 

7mer-

A1 

sites 

6mer 

sites 

Representative 

miRNA 

CCDC77 
coiled-coil domain 

containing 77  
2 2 0 0 0 hsa-miR-339-3p 

TUBB tubulin, beta class I  1 1 0 0 0 hsa-miR-339-3p 

AP001631.10  1 1 0 0 0 hsa-miR-339-3p 

FAM19A2 

family with sequence 

similarity 19 (chemokine 

(C-C motif)-like), 

member A2  

1 1 0 0 0 hsa-miR-339-3p 

C15orf37 
chromosome 15 open 

reading frame 37  
1 1 0 0 0 hsa-miR-339-3p 

GPRC5C 

G protein-coupled 

receptor, family C, group 

5, member C  

1 1 0 0 0 hsa-miR-339-3p 

FAM222A 
family with sequence 

similarity 222, member A  
2 1 1 0 0 hsa-miR-339-3p 

ASCL5 
achaete-scute complex 

homolog 5 (Drosophila)  
2 1 1 0 0 hsa-miR-339-3p 

NDUFS7 

NADH dehydrogenase 

(ubiquinone) Fe-S protein 

7, 20kDa (NADH-

coenzyme Q reductase)  

1 1 0 0 6 hsa-miR-339-3p 

ATP6V0A4 
ATPase, H+ transporting, 

lysosomal V0 subunit a4  
1 1 0 0 0 hsa-miR-339-3p 

 

Table 3.8 Top 10 Hsa-Mir-339_3p target sites predicted by TargetScan 

Target sites were detected using TargetScan web interface [103] were top 10 cumulative 

weighted context++ score genes for both miRNA is listed in table 3.7 and table 3.8. Such 

target predictions may be used as a starting point for further downstream analysis of the 

biological role these two miRNAs play in metastasis.  
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3.6 IsomiRs 

Table 3.9 and 3.10 list signature isomiRs in pCRC vs CLM. 

 Table isomiRs downregulated in CLM 

MirGeneDB BLAST ↓ IsomiRs in pCRC vs CLM IsomiR-TYPE 

 

Hsa-Let-7-P5 or P10_5p 

 

TGAGGCAGTAGATTGTATAGTT 

 

seed-mismatch 

 

Hsa-Let-7-P7_5p 

 

TGAGGCAGTAGGTTGTATAGTT 

 

seed-mismatch 

 

Hsa-Mir-192-P2_5p 

 

ATGACCTATGAATTGACAGACAA 

 

elongated 

 

Hsa-Mir-103-P3_3p 

 

1GCAGCATTGTACAGGGCTA11 

 

5p and 3p truncated 

 

Hsa-Mir-143_3p 

 

TGAGATGAAGCACTGTAGCC 

 

mismatch 

 

Hsa-Mir-30-P1b_5p 

 

TGTAAACATCCTTGACTGGAAGCG 

 

Non-canonical elongation 

 

Hsa-Mir-192-P2_5p   

 

ATGACCTATGAATTGACAGACT 

 

mismatch 

 

Hsa-Mir-92-P1b_3p 

 

TATTGCACTTGTCCCGGCCTGCA 

 

mismatch 

 

Hsa-Mir-30-P1c_5p 

 

TGTAAACATCCCCGACTGGAAGCG 

 

mismatch 

 

Hsa-Mir-192-P1_5p 

 

CTCACCTATGAATTGACAGCC 

 

seed-mismatch 

 

Hsa-Mir-30-P1c_5p 

 

TGTAAACATCCCCGACTGGAAGCA 

 

Non-canonical elongation 

 

Hsa-Mir-146-P1_5p 

 

TGAGAACTGAATTCCATGGGTTGT 

 

Non-canonical elongation 

 

Hsa-Mir-143_3p 

 

1GGAGATGAAGCACTGTAGCT1 

 

5p and 3p truncated 

 

Hsa-Mir-192-P1_5p 

 

GTGACCTATGAATTGACAGCC 

 

mismatch 

 

Hsa-Mir-17-P3a_5p 

 

TAAAGTGCTTATAGTGCAGGTAGA 

 

Non-canonical elongation 

Table 3.9 Top 15 IsomiRs Downregulated in CLM IsomiR sequences were BLASTed against MirGeneDB, 

selecting miRNA with highest score.  
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 Table isomiRs upregulated in CLM 

MirGeneDB BLAST ↑ IsomiRs in pCRC vs CLM IsomiR-TYPE 

 

Hsa-Mir-1247_5p   

 

ACCCGTCCCGTTCGTCCCCGGAT 

 

Non-canonical elongation 

 

Hsa-Mir-26-P1 or P2_5p 

 

TTCAAGTAATCCAGGATAGGCAT 

 

mismatch, Non-canonical 

elongation 

 

Hsa-Mir-26-P1 or P2_5p 

 

TTCAAGTAATCCAGGATAGGCAA 

 

mismatch, Non-canonical 

elongation 

 

Hsa-Mir-181-P1a or P1b_5p 

 

AACATTCAACGCTGTCGGT11111 

 

truncated 

 

Hsa-Mir-26-P1 or P2_5p 

 

TTCAAGTAATCCAGGATAGGC1 

 

truncated 

 

Hsa-Mir-181-P1a or  P1b_5p 

 

AACATTCAACGCTGTCGGTG1111 

 

truncated 

 

Hsa-Mir-199-P2_5p* 

 

CCCAGTGTTCAGACTACCTGTTCT 

 

Non-canonical elongation 

 

Hsa-Let-7-P2_5p 

 

TGAGGTAGGAGGTTGTATAGTTA 

 

Non-canonical elongation 

 

Hsa-Mir-8-P1b_3p 

 

TAACACTGTCTGGTAAAGAT111 

 

truncated 

 

Hsa-Mir-150_5p 

 

TCTCCCAACCCTTGTACCAGTGT 

 

Non-canonical elongation 

 

Hsa-Mir-127_3p 

 

TCGGATCCGTCTGAGCTTGGCTTT 

 

Non-canonical elongation 

 

Hsa-Mir-361_3p 

 

TCCCCCAGGTGTGATTCTGATT111 

 

truncated 

 

Hsa-Mir-8-P1b_3p 

 

TAACACTGTCTGGTAAAGAAA 

 

mismatch, truncated 

 

Hsa-Mir-10-P3a_5p 

 

TCCCTGAGACCCTTTAACCTGTGG 

 

mismatch 

 

Hsa-Let-7-P2_5p 

 

TGAGGTAGGAGGTTGTATAGTTT 

 

Non-canonical elongation 

Table 3.10 Top 15 IsomiRs Upregulated in CLM IsomiR sequences were BLASTed against MirGeneDB, 

selecting miRNA with highest score.  
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IsomiRs were defined as fragments mapped to MirGeneDB annotated pri-miRNA, and not 

identical to canonical miRNA. Only fragments present in at least 50 % of samples were 

counted. Signature isomiRs were defined as isomiRs LFC > 1 or < -1, p-adjusted value > 

0.05. At least one of the groups must have > 100 RPM of said isomiR, and neither group may 

have a mean expression of 0 counts. 

Interestingly, one of the isomiRs upregulated in CLM is a non-canonical 3p elongated version 

of Hsa-Mir-1247_5p, one of the signature miRNA in pCRC vs CLM, with a uracil addition at 

the 3p. IsomiRs of Hsa-Let-7-P5/10_5p, Hsa-Let-7-P7_5p and Hsa-Mir-192-P1_5p contain a 

mismatch in the seed region, while isomiRs of Hsa-Mir-103-P3_3p, Hsa-Mir-143_3p show 

5p-truncation in the seed. All isomiRs with alterations in the seed region are downregulated 

in CLM. No isomiR among top 15 upregulated and downregulated show 5p elongation, while 

a majority of isomiRs have 3p elongations or truncations. Of the 3p elongations, additional 

nucleotides can both be canonical, containing the same nucleotide as the pri-miRNA at that 

position, or they can be noncanonical, with a mismatch on the pri-miRNA for that position. 
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3.7 Sequential motifs 

The number of human miRNA in MirGeneDB with Basal UG motif, Apical UGU/GUG 

motif and Flanking CNNC motif are shown in Figure 3.13. Out of 523 human miRNA, only 

23 miRNA genes contained all three motifs, 322 contained Flanking CNNC motif, 119 

contained Basal UG motif, 140 contained UGU/GUG motifs, and 122 miRNA genes 

contained no motif. 

 

Figure 3.13 Number of miRNA in MirGeneDB with pri-miRNA motifs (a) Venn diagram of miRNAs in 

MirGeneDB with the three motifs. (b) Barplot of total number of miRNAs in MirGeneDB with motifs, legend 

show percentage found in MirGeneDB and Auyeung et al, 2013 [38]. (c) Barplot of miRNAs with UG-, UGU- 

and CNNC- motifs at their respective positions in the 5p-stem, loop sequence, or 3p-stem, respectively. 

Positions are counted from Drosha cut site for UG- and CNNC-motifs, and DICER cut site for UGU-loop motif. 

Figure 3.13 (b) show percentage comparison of miRNA with motif in MirGeneDB, and the 

number of miRNA reported by Auyeung et al 2013 [38], with a much smaller dataset. Both 

datasets give comparable results.  

For the mismatch GHG motif, folded pri-miRNA sequences were used to observe the 

secondary structure motif. Results are shown as a bar plot in figure 3.14. For all human 

MirGeneDB annotated genes, there is a clear signal for mismatch GHG motif at lower stem 

position 7. A bar plot of human miRNA genes used by Fang et al 2015 is also shown, and the 

signal at position 7 is also present. Therefore, the findings of Fang et al, 2015 is validated 

with the much larger MirGeneDB data set. Interestingly, a sharp drop in number of motifs is 

observed upstream of position 0 in MirGeneDB. Upstream of position 0 are single stranded 

RNA, so mismatching GHG motif is not possible. The ones still present likely noise caused 

by RNAfold algorithm and random chance. 
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Figure 3.14 Bar Plot of Human MirGeneDB annotated miRNA genes with mismatch GHG motif. Top bar 

plot represents mismatch GHG motif in all MirGeneDB annotated genes, while bottom bar plot are mismatch 

GHG motifs of genes used in Fang et al 2013 [41]. Positions are labeled so position 1 is where single stranded 

RNA forms the double stranded miRNA hairpin stem. A position is counted if said position, plus the two 

downstream nucleotides, fulfill criteria. For example, position 7 would have mismatch GHG motif at position 7-

8-9. Significance represent expectation value (number of motifs expected by random chance) multiplied by 2 

standard deviations.  
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Signature miRNA with Structure Motifs 

Hsa-Mir-1247 

 

CNNC at 3p (+17) 

Mismatch GHG (7-8-9) 

Hsa-Mir-339 

 

UGU in Loop 

CNNC at 3p (+17) 

Mismatch GHG (7-8-9) 

 

Table 3.11 Motifs in Signature miRNA Shown is secondary structure of pri-miRNA and any respective 

sequence and structural motifs. 

Checking for motifs in identified signature miRNA showed that Hsa-Mir-1247 contained 

Flanking CNNC motif at position 17 downstream Drosha 3p cut site, and a mismatch GHG 

motif at position 7-8-9 in lower stem. Hsa-Mir-339 contained apical UGU/GUG motif in the 

loop sequence, flanking CNNC motif at position 17 downstream Drosha 3p cut site, and a 

mismatch GHG at position 7-8-9 in lower stem. 
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Signature isomiRs with Structure Motifs 

 

CNNC at 3p (+17) 

Mismatch GHG (7-8-9) 

Apical UGU Loop Motif 

Addition 

 

Table 3.12 Motifs in Signature isomiRs Shown is secondary structure of pri-miRNA and any respective 

sequence and structural motifs they have. Sequence substitution by isomiR marked with red underscore. 

One of the signature isomiRs upregulated in CLM was a 3p uridylated isomiR of Hsa-Mir-

1247_5p. Interestingly, the added nucleotide is uracil. If this substitution is present in the pri-

miRNA, the miRNA would gain an Apical UGU Loop motif. 
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4 Discussion 

Metastatic spread to liver, along with lung and peritoneum, is the main cause of death in 

colorectal cancer patients. As such, a thorough investigation of the underlying biology of this 

deadly disease is warranted. MiRNAs have been shown to play key role in all hallmarks of 

cancer, including colorectal cancer and metastasis, hence substantial effort should be put in 

place to elucidate their biological involvement in the disease. 

Previous studies [99] failed to differentiate miRNA expression levels between pCRC and 

metastatic tissue, neither at the global expression level, nor individual miRNA gene level. 

Here, we also failed to distinguish miRNA expression at the global level, indicating CLM 

cells have a broadly similar miRNA expression profile as their progenitor pCRC cells. 

However, 6 individual miRNA genes where found to be differentially expressed in pCRC vs 

CLM. Two of these, Hsa-Mir-1247 and Hsa-Mir-339 also showed the same pattern of 

differential expression in Neernicx [99] and Röhr [100]. Explanation of the disparaging 

results may reside in different study designs. Neerincx and Röhr both looked at miRNA 

expression from multiple metastatic sites, while this study only looked at metastasis to liver. 

It is possible different metastatic sites have differing miRNA expression profiles. Assigning 

them to one single group may therefore obscure a site-specific signal. Indeed, when looking 

exclusively at Neerincx and Röhr Metastatic samples, the two miRNA do show the same 

pattern of upregulation in Metastasis compared to primary tumor.  

For biomarker potential, an important question is whether miRNA is detectable in serum of 

healthy individuals. MirGeneDB.org shows that previous publications report Hsa-Mir-

1247_5p is not at all expressed in serum samples, while Hsa-Mir-339_3p has an expression 

of 12.23 RPM in serum samples. As such, even if CLM tissue secretes Hsa-Mir-339_3p to 

serum, it may not be detectable due to high noise to signal ratio. Meanwhile, Hsa-Mir-

1247_5p is, based on current literature, not present in serum of normal individuals. Therefore, 

noise to signal ratio should be less off an issue. 

IsomiRs were also found to be differentially expressed between the pCRC and CLM. The 

vast majority of top 15 up- and downregulated isomiRs showed 3p elongations and 

truncations, while 6 isomiRs had mismatches or truncations in their seed region. 

Interestingly, a 3p uridylated isomiR of Hsa-Mir-1247_5p was detected and found to be the 

most significantly upregulated signature isomiR in CLM. As shown in Koppers-Lalic et al 
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2014 [36], 3p uridylated isoforms are enriched in in exosomes, while adenylated isoforms are 

overrepresented in the cytosol of cells. Previously reported Hsa-Mir-1247_5p isomiRs listed 

in MirGeneDB.org show 3p uridylation and adenylation to be by far the most common 

substitution. We propose a hypothesis where CML tissue 3p uridylate Hsa-Mir-1247 for 

excretion in exosomes. 

Alternatively, if isomiR uridylation was a consequence of genomic substitution, Hsa-Mir-

1247 pri-miRNA would gain an Apical UGU/GUG Loop Motif, which according to Auyeung 

et al, 2013 [38] and Nguyen et al, 2015 [39] enhance processing efficiency. We hypothesize a 

possible mechanism of upregulation by gain of function mutation in the genomic loci of Hsa-

Mir-1247, where a gain of Apical UGU/GUG loop motif enhance processing and expression 

levels. Regardless, a consistently CLM 3p uridylated Hsa-Mir-1247_5p may enhance 

detection properties in serum, as non-canonical isomiRs may be less likely to be hidden by 

the cells normally expressed miRNA. 

Sequential motifs were successfully validated in MirGeneDB, were percentage of miRNA 

with motifs stayed consistent in our much larger dataset when compared to dataset used by 

Auyeung et al [38]. Lower stem GHG structural motifs also showed a clear signal in both 

datasets at the 7-8-9 site proposed by Fang et al 2015 [41]. Notably however, although a 

strong signal, the majority of miRNA did not have lower stem structural motif. Any one 

motif was found only in about a fifth of all miRNA, except the Flanking CNNC motif found 

in two thirds of miRNA. 122 miRNAs did not have any sequential motif at all. As such, 

although clearly a feature of miRNA processing, either these motifs are not essential, rather 

acting as enhancer of miRNA processing than a requirement. Alternatively, these motifs are 

only part of the picture, with more miRNA structural features yet to be discovered. 

Sequencing performed in this study forms the foundation for future investigations into the 

role miRNA play in colorectal derived liver metastasis. Firstly, although outside the scope of 

this study, an experimental approach using qRT-PCR to validate expression of the two 

miRNAs, including isomiRs, is required. More patient samples should also be sequenced, to 

improve statistical power.  

Another notable weakness is the method by which normal adjacent tissue was controlled for. 

Here, any signature miRNA in nCR vs nLi were removed among signature miRNA in pCRC 

vs CLM, regardless of differences in LFC or significance levels. This could, for example, 
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obscure miRNAs with large LFC in pCRC vs CLM, but only modest LFC in nCR vs nLi. 

Also of note is the question of whether normal tissue really is normal, as a cancer patients 

‘normal’ tissue have also undergone alterations. 

Future outlook should therefore be investigating new approaches to control for normal 

adjacent tissues, by also taking into account the actual size difference in both LFC and 

significance of signature miRNA showing the same expression pattern in both malignant and 

normal tissues. Furthermore, small RNA sequencing of colorectal derived lung and PC 

metastasis samples should be accomplished. If lung and PC metastasis samples display the 

same signature miRNA, yet these are not found in their respective normal adjacent tissues, it 

would indicate these are in fact differences between pCRC and the metastasis, not normal 

adjacent tissues. Our research group is already in the process of sequencing and analysis of 

colorectal derived lung and PC metastasis. 

Additionally, sequencing and validation with qRT-PCR of patient serum samples with known 

clinicopathological parameters would be very interesting to validate the found signature 

miRNAs. The Janus Serum Bank at the Norwegian cancer registry, Oslo, contains serum 

samples of more than three hundred thousand individuals, of those several developed 

colorectal cancer and metastases. This serum bank therefore represents an important local 

opportunity to follow up on our findings.  

Furthermore, an effort should be made to study variability in genomic loci of signature 

miRNAs and especially the isomiRs identified in this study. We saw some significant 

variability that could only partially be explained by post transcriptionally modifications 

(truncations and additions) and in fact could be based on mutations. A mechanism of miRNA 

dysregulation of miRNAs in cancer induced by gain and loss of sequential motifs is an 

interesting hypothesis for future research. 



88 
 

References 

 

1. Pasquinelli, A.E., MicroRNAs and their targets: recognition, regulation and an emerging 
reciprocal relationship. Nat Rev Genet, 2012. 13(4): p. 271-82. 

2. Flatmark, K., E. Hoye, and B. Fromm, microRNAs as cancer biomarkers. Scand J Clin Lab 
Invest Suppl, 2016. 245: p. S80-3. 

3. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004. 23(20): 
p. 4051-60. 

4. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 
425(6956): p. 415-9. 

5. Kwon, S.C., et al., Structure of Human DROSHA. Cell, 2016. 164(1-2): p. 81-90. 
6. Bohnsack, M.T., Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates 

nuclear export of pre-miRNAs. Rna, 2004. 10(2): p. 185-191. 
7. Hutvagner, G.M., J.;Pasquinelli, A.E.;Balint, E.;Tuschl, T.;Zamore,P.D., A Cellular Function for 

the RNA-Interface Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science, 
2001. 

8. Ameres, S.L. and P.D. Zamore, Diversifying microRNA sequence and function. Nat Rev Mol 
Cell Biol, 2013. 14(8): p. 475-88. 

9. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, 
function and decay. Nat Rev Genet, 2010. 11(9): p. 597-610. 

10. Ramalho-Carvalho, J., et al., Deciphering the function of non-coding RNAs in prostate cancer. 
Cancer Metastasis Rev, 2016. 35(2): p. 235-62. 

11. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 
215-33. 

12. Baek, D., et al., The impact of microRNAs on protein output. Nature, 2008. 455(7209): p. 64-
71. 

13. Bartel, D.P. and C.Z. Chen, Micromanagers of gene expression: the potentially widespread 
influence of metazoan microRNAs. Nat Rev Genet, 2004. 5(5): p. 396-400. 

14. Salmena, L., et al., A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 
2011. 146(3): p. 353-8. 

15. Cesana, M., et al., A long noncoding RNA controls muscle differentiation by functioning as a 
competing endogenous RNA. Cell, 2011. 147(2): p. 358-69. 

16. Tay, Y., et al., Coding-independent regulation of the tumor suppressor PTEN by competing 
endogenous mRNAs. Cell, 2011. 147(2): p. 344-57. 

17. Sumazin, P., et al., An extensive microRNA-mediated network of RNA-RNA interactions 
regulates established oncogenic pathways in glioblastoma. Cell, 2011. 147(2): p. 370-81. 

18. Karreth, F.A., et al., In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic 
BRAF-induced mouse model of melanoma. Cell, 2011. 147(2): p. 382-95. 

19. Denzler, R., et al., Assessing the ceRNA hypothesis with quantitative measurements of miRNA 
and target abundance. Mol Cell, 2014. 54(5): p. 766-76. 

20. Denzler, R., et al., Impact of MicroRNA Levels, Target-Site Complementarity, and 
Cooperativity on Competing Endogenous RNA-Regulated Gene Expression. Mol Cell, 2016. 
64(3): p. 565-579. 

21. Cerutti, H. and J.A. Casas-Mollano, On the origin and functions of RNA-mediated silencing: 
from protists to man. Curr Genet, 2006. 50(2): p. 81-99. 

22. Tarver, J.E., P.C. Donoghue, and K.J. Peterson, Do miRNAs have a deep evolutionary history? 
Bioessays, 2012. 34(10): p. 857-66. 



89 
 

23. Erwin, D.H., Early origin of the bilaterian developmental toolkit. Philos Trans R Soc Lond B 
Biol Sci, 2009. 364(1527): p. 2253-61. 

24. Erwin, D.H., et al., The Cambrian conundrum: early divergence and later ecological success in 
the early history of animals. Science, 2011. 334(6059): p. 1091-7. 

25. Kozomara, A. and S. Griffiths-Jones, miRBase: annotating high confidence microRNAs using 
deep sequencing data. Nucleic Acids Res, 2014. 42(Database issue): p. D68-73. 

26. Castellano, L. and J. Stebbing, Deep sequencing of small RNAs identifies canonical and non-
canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res, 
2013. 41(5): p. 3339-51. 

27. Chiang, H.R., et al., Mammalian microRNAs: experimental evaluation of novel and previously 
annotated genes. Genes Dev, 2010. 24(10): p. 992-1009. 

28. Jones-Rhoades, M.W., Conservation and divergence in plant microRNAs. Plant Mol Biol, 
2012. 80(1): p. 3-16. 

29. Fromm, B., et al., A Uniform System for the Annotation of Vertebrate microRNA Genes and 
the Evolution of the Human microRNAome. Annu Rev Genet, 2015. 49: p. 213-42. 

30. Ambros, V., A uniform system for microRNA annotation. Rna, 2003. 9(3): p. 277-279. 
31. Neilsen, C.T., G.J. Goodall, and C.P. Bracken, IsomiRs--the overlooked repertoire in the 

dynamic microRNAome. Trends Genet, 2012. 28(11): p. 544-9. 
32. Newman, M.A., V. Mani, and S.M. Hammond, Deep sequencing of microRNA precursors 

reveals extensive 3' end modification. RNA, 2011. 17(10): p. 1795-803. 
33. Lee, L.W., et al., Complexity of the microRNA repertoire revealed by next-generation 

sequencing. RNA, 2010. 16(11): p. 2170-80. 
34. Burroughs, A.M., et al., A comprehensive survey of 3' animal miRNA modification events and 

a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res, 
2010. 20(10): p. 1398-410. 

35. Wyman, S.K., et al., Post-transcriptional generation of miRNA variants by multiple nucleotidyl 
transferases contributes to miRNA transcriptome complexity. Genome Res, 2011. 21(9): p. 
1450-61. 

36. Koppers-Lalic, D., et al., Nontemplated nucleotide additions distinguish the small RNA 
composition in cells from exosomes. Cell Rep, 2014. 8(6): p. 1649-58. 

37. Bentwich, I., et al., Identification of hundreds of conserved and nonconserved human 
microRNAs. Nat Genet, 2005. 37(7): p. 766-70. 

38. Auyeung, V.C., et al., Beyond secondary structure: primary-sequence determinants license 
pri-miRNA hairpins for processing. Cell, 2013. 152(4): p. 844-58. 

39. Nguyen, T.A., et al., Functional Anatomy of the Human Microprocessor. Cell, 2015. 161(6): p. 
1374-87. 

40. Fromm, B., microRNA Discovery and Expression Analysis in Animals. 2016: p. 121-142. 
41. Fang, W. and D.P. Bartel, The Menu of Features that Define Primary MicroRNAs and Enable 

De Novo Design of MicroRNA Genes. Mol Cell, 2015. 60(1): p. 131-45. 
42. Weinberg, R.A. and D. Hanahan, The Hallmarks Of Cancer. 2000. 
43. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): 

p. 646-74. 
44. Cheng, N., et al., Transforming growth factor-beta signaling-deficient fibroblasts enhance 

hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and 
invasion. Mol Cancer Res, 2008. 6(10): p. 1521-33. 

45. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and 
progression. Nature, 2004. 432(7015): p. 332-7. 

46. Deshpande, A., P. Sicinski, and P.W. Hinds, Cyclins and cdks in development and cancer: a 
perspective. Oncogene, 2005. 24(17): p. 2909-15. 

47. Burkhart, D.L. and J. Sage, Cellular mechanisms of tumour suppression by the retinoblastoma 
gene. Nat Rev Cancer, 2008. 8(9): p. 671-82. 



90 
 

48. Calin, G.A., et al., Frequent deletions and down-regulation of micro- RNA genes miR15 and 
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002. 99(24): p. 
15524-9. 

49. Berindan-Neagoe, I., et al., MicroRNAome genome: a treasure for cancer diagnosis and 
therapy. CA Cancer J Clin, 2014. 64(5): p. 311-36. 

50. Fromm, B., et al., Substantial loss of conserved and gain of novel MicroRNA families in 
flatworms. Mol Biol Evol, 2013. 30(12): p. 2619-28. 

51. Philippe, H., et al., Acoelomorph flatworms are deuterostomes related to Xenoturbella. 
Nature, 2011. 470(7333): p. 255-8. 

52. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): 
p. 834-8. 

53. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in 
metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72. 

54. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypthesis revisited. 
Nature, 2002. 

55. Massague, J. and A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature, 
2016. 529(7586): p. 298-306. 

56. Minn, A.J., et al., Genes that mediate breast cancer metastasis to lung. Nature, 2005. 
436(7050): p. 518-24. 

57. Talmadge, J.E. and I.J. Fidler, AACR centennial series: the biology of cancer metastasis: 
historical perspective. Cancer Res, 2010. 70(14): p. 5649-69. 

58. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 
679-95. 

59. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of 
development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29. 

60. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 
2009. 119(6): p. 1420-8. 

61. Hur, K., et al., MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in 
human colorectal cancer metastasis. Gut, 2013. 62(9): p. 1315-26. 

62. Burk, U., et al., A reciprocal repression between ZEB1 and members of the miR-200 family 
promotes EMT and invasion in cancer cells. EMBO Rep, 2008. 9(6): p. 582-9. 

63. Park, S.M., et al., The miR-200 family determines the epithelial phenotype of cancer cells by 
targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008. 22(7): p. 894-907. 

64. Gregory, P.A., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal 
transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008. 10(5): p. 593-601. 

65. Gibbons, D.L., et al., Contextual extracellular cues promote tumor cell EMT and metastasis by 
regulating miR-200 family expression. Genes Dev, 2009. 23(18): p. 2140-51. 

66. Zhang, J.P., et al., MicroRNA-148a suppresses the epithelial-mesenchymal transition and 
metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene, 2014. 33(31): p. 
4069-76. 

67. Zhang, J.X., et al., MiR-29c mediates epithelial-to-mesenchymal transition in human 
colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. 
Ann Oncol, 2014. 25(11): p. 2196-204. 

68. Siemens, H., et al., miR-34 and SNAIL form a double-negative feedback loop to regulate 
epithelial-mesenchymal transitions. Cell Cycle, 2011. 10(24): p. 4256-71. 

69. Hu, F., et al., MiR-363-3p inhibits the epithelial-to-mesenchymal transition and suppresses 
metastasis in colorectal cancer by targeting Sox4. Biochem Biophys Res Commun, 2016. 
474(1): p. 35-42. 

70. Png, K.J., et al., MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and 
epigenetic mechanisms in human breast cancer. Genes Dev, 2011. 25(3): p. 226-31. 



91 
 

71. Heyn, H., et al., MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast 
cancer development. Int J Cancer, 2011. 129(12): p. 2797-806. 

72. Zhu, S., et al., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell 
Res, 2008. 18(3): p. 350-9. 

73. Zhu, S., et al., MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol 
Chem, 2007. 282(19): p. 14328-36. 

74. Gaziel-Sovran, A., et al., miR-30b/30d regulation of GalNAc transferases enhances invasion 
and immunosuppression during metastasis. Cancer Cell, 2011. 20(1): p. 104-18. 

75. Loo, J.M., et al., Extracellular metabolic energetics can promote cancer progression. Cell, 
2015. 160(3): p. 393-406. 

76. Ferlay, J., et al., Cancer incidence and mortality patterns in Europe: estimates for 40 countries 
in 2012. Eur J Cancer, 2013. 49(6): p. 1374-403. 

77. Nguyen, D.X., P.D. Bos, and J. Massague, Metastasis: from dissemination to organ-specific 
colonization. Nat Rev Cancer, 2009. 9(4): p. 274-84. 

78. Riihimaki, M., et al., Patterns of metastasis in colon and rectal cancer. Sci Rep, 2016. 6: p. 
29765. 

79. O'Connell, J.B., M.A. Maggard, and C.Y. Ko, Colon cancer survival rates with the new 
American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst, 2004. 96(19): p. 
1420-5. 

80. Johnson, C.M., et al., Meta-analyses of colorectal cancer risk factors. Cancer Causes Control, 
2013. 24(6): p. 1207-22. 

81. Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. 
Gastroenterology, 2010. 138(6): p. 2059-72. 

82. Guinney, J., et al., The consensus molecular subtypes of colorectal cancer. Nat Med, 2015. 
21(11): p. 1350-6. 

83. Meng, W., et al., Comparison of microRNA deep sequencing of matched formalin-fixed 
paraffin-embedded and fresh frozen cancer tissues. PLoS One, 2013. 8(5): p. e64393. 

84. Landgraf, P., et al., A mammalian microRNA expression atlas based on small RNA library 
sequencing. Cell, 2007. 129(7): p. 1401-14. 

85. Shenoy, A. and R.H. Blelloch, Regulation of microRNA function in somatic stem cell 
proliferation and differentiation. Nat Rev Mol Cell Biol, 2014. 15(9): p. 565-76. 

86. Pichler, M. and G.A. Calin, MicroRNAs in cancer: from developmental genes in worms to their 
clinical application in patients. Br J Cancer, 2015. 113(4): p. 569-73. 

87. Angelini, T.G. and C. Emanueli, MicroRNAs as clinical biomarkers? Front Genet, 2015. 6: p. 
240. 

88. Ravery, V., The significance of recurrent PSA after radical prostatectomy: benign versus 
malignant sources. Semin Urol Oncol, 1999. 17(3): p. 127-9. 

89. Yang, Y.F., et al., Discordances in ER, PR and HER2 receptors between primary and 
recurrent/metastatic lesions and their impact on survival in breast cancer patients. Med 
Oncol, 2014. 31(10): p. 214. 

90. Drooger, J.C., et al., Diagnostic and therapeutic ionizing radiation and the risk of a first and 
second primary breast cancer, with special attention for BRCA1 and BRCA2 mutation carriers: 
a critical review of the literature. Cancer Treat Rev, 2015. 41(2): p. 187-96. 

91. Schee, K., O. Fodstad, and K. Flatmark, MicroRNAs as biomarkers in colorectal cancer. Am J 
Pathol, 2010. 177(4): p. 1592-9. 

92. Schee, K., et al., Deep Sequencing the MicroRNA Transcriptome in Colorectal Cancer. PLoS 
One, 2013. 8(6): p. e66165. 

93. Baran-Gale, J., et al., Addressing Bias in Small RNA Library Preparation for Sequencing: A New 
Protocol Recovers MicroRNAs that Evade Capture by Current Methods. Front Genet, 2015. 6: 
p. 352. 



92 
 

94. Toedling, J., et al., Deep-sequencing protocols influence the results obtained in small-RNA 
sequencing. PLoS One, 2012. 7(2): p. e32724. 

95. Leshkowitz, D., et al., Differences in microRNA detection levels are technology and sequence 
dependent. RNA, 2013. 19(4): p. 527-38. 

96. Buschmann, D., et al., Toward reliable biomarker signatures in the age of liquid biopsies - 
how to standardize the small RNA-Seq workflow. Nucleic Acids Res, 2016. 44(13): p. 5995-
6018. 

97. Fretland, A.A., et al., Open versus laparoscopic liver resection for colorectal liver metastases 
(the Oslo-CoMet Study): study protocol for a randomized controlled trial. Trials, 2015. 16: p. 
73. 

98. Kristensen, A.T., et al., Molecular detection (k-ras) of exfoliated tumour cells in the pelvis is a 
prognostic factor after resection of rectal cancer? BMC Cancer, 2008. 8: p. 213. 

99. Neerincx, M., et al., MiR expression profiles of paired primary colorectal cancer and 
metastases by next-generation sequencing. Oncogenesis, 2015. 4: p. e170. 

100. Rohr, C., et al., High-throughput miRNA and mRNA sequencing of paired colorectal normal, 
tumor and metastasis tissues and bioinformatic modeling of miRNA-1 therapeutic 
applications. PLoS One, 2013. 8(7): p. e67461. 

101. Lopez, J.P., et al., Biomarker discovery: quantification of microRNAs and other small non-
coding RNAs using next generation sequencing. BMC Med Genomics, 2015. 8: p. 35. 

102. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol, 2014. 15(12): p. 550. 

103. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 
2015. 4. 

104. Lorenz, R., et al., ViennaRNA Package 2.0. Algorithms Mol Biol, 2011. 6: p. 26. 
105. Hong, S.H., et al., Effects of delay in the snap freezing of colorectal cancer tissues on the 

quality of DNA and RNA. J Korean Soc Coloproctol, 2010. 26(5): p. 316-23. 

 

 



93 
 

Attachments 

 Top 10 miRNA per Tissue 

 
 

  

Appendix Figure 1 Top 10 miRNA in nCR, pCRC, CLM and nLi.   
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 Volcano plot nCR vs pCRC 

 

Appendix Figure 2 Volcano Plot nCR vs pCRC Plot of -log10 padj against LFC of nCRC vs pCRC. Signature 

miRNA (red) have more than one LFC, padj < 0.05 and one group > 100 RPM. Only top 10 significant miRNA 

highlighted. 

↓ miRNA in nCR vs pCRC ↑ miRNA in nCR vs pCRC 

Hsa-Mir-26-P1_5p  Hsa-Mir-135-P3_5p  

Hsa-Mir-26-P2_5p  Hsa-Mir-224_5p  

Hsa-Mir-148-P3_3p  Hsa-Mir-31_5p  

Hsa-Mir-15-P2c_5p  Hsa-Mir-21_5p  

Hsa-Mir-145_5p  Hsa-Mir-19-P1_3p  

Hsa-Mir-378_3p  Hsa-Mir-17-P3a_5p  

Hsa-Mir-10-P1b_5p  Hsa-Mir-17-P1a_5p  

Hsa-Mir-338-P1_3p  Hsa-Mir-15-P1d_5p  

Hsa-Mir-133-P1_3p  Hsa-Mir-17-P4_5p  

Hsa-Mir-133-P2_3p  Hsa-Mir-96-P2_5p  
Appendix Table 1 Top 10 signature miRNA in nCR vs nLi. Only top 10 by significance level up- and down 

regulated are shown 

 

Log2 Fold Change 
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 Volcano plot nLi versus CLM 

 

Appendix Figure 3 Volcano Plot nLi vs CLM Plot of -log10 adjusted p-value against Log2 Fold Change of 

nLi vs CLM Signature miRNA highlighted. 

  



96 
 

 Volcano plot of isomiRs in nCR and nLi 

 

Appendix Figure 4 IsomiR Volcano Plots nCR vs nLi Plots of -log10(padj) against LFC of nCR vs nLi. 

IsomiRs defined as all fragments mapped to MirGeneDB annotated pri-miRNA sequences, and fragment not 

identical to canonical miRNA. IsomiRs must be expressed in at least 50 % of samples. Signature isomiRs must 

have > 100 RPM in one of the groups, and no signature isomiR may have one group with 0 counts. 
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 Volcano plot of isomiRs in pCRC and CLM 

 

Appendix Figure 5 IsomiR Volcano Plots pCRC vs CLM Plots of -log10(padj) against LFC of pCRC and 

CLM (bottom). IsomiRs defined as all fragments mapped to MirGeneDB annotated pri-miRNA sequences, and 

fragment not identical to canonical miRNA. IsomiRs must be expressed in at least 50 % of samples. Signature 

isomiRs must have > 100 RPM in one of the groups, no signature isomiR may have one group with 0 counts and 

no signature isomiR may be signature in normal tissue. 

 


