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Abstract

When designing and selecting future collider projects, it is important to un-
derstand the physics potential of the different alternatives. Here, we investi-
gate the naturalness reach of the International Linear Collider (ILC) in simple
constrained supersymmetric models, and compare it to the reach of the High-
Luminosity Large Hadron Collider (HL-LHC), based on the results in [1]. The
reach is quantified both in terms of the range of naturalness covered, given by
the Barbieri–Giudice measure, and in terms of the information gained about
naturalness, quantified by the Kullback–Leibler divergence.

Two particular scenarios (parameter choices) for the Constrained Supersym-
metric Standard Model (CMSSM) are studied, and one for the second Non-
Universal Higgs Mass (NUHM2) model. We find that the HL-LHC in general
has a higher naturalness reach than the ILC in the two CMSSM scenarios. How-
ever, for the NUHM2 scenario, it is the other way around. In this scenario, we
find that the information gain from the 1 TeV ILC searches are over ten times as
large as the information gain from the HL-LHC searches. Post HL-LHC natural-
ness scores below c ∼ 20, or a tuning to no worse than 5%, are allowed. Thus, the
particular variant of the NUHM2 model studied in this work motivates building
the ILC.
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mange rare og artige samtalar rundt eit lunsjbord igjen. Ein spesiell takk til
Anders Kvellestad, for alt du har bidrege med, og for at du har vore guruen v̊ar.
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pappa, Lisa og Nora, for at de er mine bautaer i livet, og for at de alltid viser
interesse og omsorg.

S̊a, til slutt. Kjære Mari [1]. Ord blir fattige. Denne masteren hadde ikkje
blitt til utan deg, p̊a alle mulege måtar. Vi klarte det!
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Introduction

Recent precision tests of the Standard Model (SM) of particle physics and the
discovery of the Higgs boson have firmly established the validity of the SM at
energies up to the electroweak scale and beyond. Despite these successes, there
are many unanswered questions. The Standard Model is a model where the
parameters are chosen to match the observations rather than coming from a
higher theoretical principle. Thus, it is not believed to be the final theory of
particle physics. Numerous theories for physics beyond the Standard Model have
been proposed, and the perhaps most popular candidates are theories based on
the idea of supersymmetry (SUSY).

In supersymmetry, each Standard Model particle has a superpartner “spar-
ticle”, which only differs from the particle by half a unit of spin. One of the
motivations for supersymmetry is that it predics a candidate for the dark mat-
ter observed in the Universe. However, the main motivation is that it offers an
explanation to the hierarchy problem of the Standard Model, and the resulting
fine-tuning of the Higgs mass. Theories that require fine-tuned cancellations of
large numbers in order to explain results are often thought to be theoretically
unsatisfactory, or rather unnatural. This has led to the concept of naturalness,
which can be interpreted as the heuristic rule that parameters in a fundamental
physical theory should not be too fine-tuned.

The Large Hadron Collider (LHC) at CERN has since its start-up in 2008
generated around 5 fb−1 of collisions at a centre-of-mass energy

√
s = 7 TeV,

over 20 fb−1 at
√
s = 8 TeV, and 39 fb−1 at

√
s = 13 TeV. This data set was

sufficient for the discovery of the long sought Higgs boson in 2012, however, there
has so far been no evidence for production of any supersymmetric particles. The
question then becomes if some signs of supersymmetry can be found at future
colliders.

When designing and selecting future collider projects, it is important to un-
derstand the physics potential of the different alternatives. In this thesis, we
investigate the naturalness reach of the planned International Linear Collider
(ILC) with energy options

√
s = 0.5 and 1 TeV in simple constrained super-

symmetric models, and compare it to similar results for the already approved
High-Luminosity Large Hadron Collider (HL-LHC), operating at

√
s = 14 TeV

and collecting up to 3000 fb−1 of data, based on the results in [1]. The reach

1



2 Contents

is quantified both in terms of the range of naturalness covered, calculated from
the Barbieri–Giudice measure, and in terms of the information gained about
naturalness, quantified by the Kullback–Leibler divergence.

We begin by giving a basic review of the Standard Model in Chapter 1, be-
fore introducing supersymmetry in Chapter 2. The hierarchy problem and its
supersymmetry solution is presented in Chapter 3, together with the concept of
naturalness. Chapter 4 gives an introduction to the statistical concepts needed
for this work, before we present the details of the simulations performed in Chap-
ter 5. Our results are presented and discussed in Chapter 6, before we make our
conclusions. The notation and conventions used in this thesis are given i Ap-
pendix A.



Chapter 1

The Standard Model of particle
physics

The Standard Model of particle physics emobodies our current understanding of
the fundamental constituents of the Universe, the elementary particles, and the
interactions between them, the forces, where the forces themselves are actually
described by the exchange of a certain type of elementary particles.

The Standard Model (SM) is undoubtedly one of the greatest triumphs of
modern physics. Over the years, it has proven to be a very successful theory, and
its highlight came when the ATLAS and CMS experiments at CERN discovered a
Higgs boson consistent with Standard Model predictions in 2012 [2,3]. However,
the Standard Model is not believed to be the final theory of particle physics. It
is a model where the parameters are chosen to match observations rather than
coming from a higher theoretical principle, and it fails to include the force of
gravity. There are also some more technical problems with the SM, such that it
does not contain dark matter, or offer an explanation to the hierarchy problem
coming from the radiative loop corrections to the Higgs boson mass (which will
be discussed in detail in Chapter 3).

In this chapter, the general principles behind the Standard Model will be
given. The need for new physics will be explained in more detail at the end.

1.1 The Standard Model for dummies

There are two major categories for elementary particles: bosons and fermions.
The fermions are responsible for matter, while the bosons are responsible for the
forces of nature. There are four presently known fundamental forces:

– The electromagnetic force, which is mediated by massless photons.
– The weak force, which is mediated by massive W+, W− and Z0 bosons.
– The strong force, which is mediated by massless gluons.

3



4 The Standard Model of particle physics Chapter 1

– Gravity, which may be mediated by massless gravitons. (The gravitons
have not been confirmed experimentally.)

Only the three former forces are included in the Standard Model, due to difficul-
ties encountered when trying to also include gravity. The SM is actually widely
considered to be incompatible with the most successful theory of gravity to date,
namely general relativity. This is one of the main reasons for believing that the
SM is not the final theory of particle physics. However, since gravitational effects
are expected to be negligible all the way up to the Planck scale, ΛP ∼ 1018 GeV,
the Standard Model is a highly predictive theory at low energies even though
gravity is not included.

The fundamental forces are closely related to symmetries, and the fact that
the bosons mediating the weak force are massive means that the corresponding
symmetry is broken. In fact, one of the most important features of the Standard
Model is the unification of the electromagnetic and weak interactions into a more
fundamental electroweak force. It is due to electroweak symmetry breaking, ex-
plained by the Higgs mechanism, that they appear as two separate forces at low
energies. This breaking is actually responsible for the masses of all elementary
particles, which will be explained in more detail in Sec. 1.4, where we encounter
the famous Higgs boson mentioned in the introduction of this chapter.

The elementary particles interact via some force if they carry the charge
corresponding to the force:

– Only particles that are electrically charged interact via the electromagnetic
force.

– Only particles with (weak) isospin interact via the weak force.1

– Only particles with color charge interact via the strong force.2

All of the known fermions carry isospin, and thus interact via the weak force.
Further, the fermions are divided into two subcategories: quarks and leptons.
Quarks are the building blocks of protons and neutrons, while leptons are for
example electrons and neutrinos. Quarks carry color charge, and thus interact
via the strong force, while leptons do not. In the SM, there are three generations
of fermions, which each consists of two leptons and two quarks. This gives six
lepton and six quark species, often referred to as flavours. Because of the confine-
ment property of the strong force, quarks can actually only exist in “colorless”
combinations collectively known as hadrons, meaning either in a combination of
all three possible colors, called baryons, or in a combination of color-anticolor,
called mesons. All ordinary atomic matter is built up of the lighter first genera-
tion of fermions, while the heavier fermions only appear as unstable products of
particle interactions.

1The prefix “weak” will be omitted in the following. There is also another type of isospin,
but this is not a fundamental charge, and will not be treated in this thesis.

2There are three different color charges, referred to as red, green and blue. The term “color
charge” can be a bit confusing, as it has nothing to do with visual perception of color.
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Figure 1.1: The particles of the Standard Model and their interactions. The
first three columns show the three generations of fermions. The charge referred
to in the figure is electric charge. Figure taken from [4].

In addition to the charges mentioned above, all fundamental particles carry an
intrinsic property called spin, which can be seen as some kind of internal angular
momentum. Fermions carry half-integer spin, whereas bosons carry integer spin.
All SM fermions have spin-1/2. All SM bosons have spin-1 and are called vectors,
except for the Higgs boson, which has spin-0 and is called a scalar.3

A schematic overview of the elementary particles in the Standard Model is
shown in Fig. 1.1. Most particles have antiparticles distinct from the particles
themselves. Antiparticles are particles with the same mass and spin, but opposite
charges.4 The antiparticle of the electron is called the positron, but in general
there is no extra name, only a prefix “anti”. For instance, the antiparticle of
the up-quark is called the anti-up-quark. All of the neutral bosons, and possibly
the neutrinos, are their own antiparticles.5 The two charged W bosons are each
others antiparticle.

The electromagnetic and strong interactions both conserve flavour. This

3The hypothetical graviton would have to have spin-2.
4Historically, the concept of antiparticles was introduced when trying to construct quantum

theories consistent with special relativity.
5Although it is still an open question whether the neutrinos are Majorana particles, in

which case they are identical to the corresponding antineutrinos, there are good reasons to
believe they are.



6 The Standard Model of particle physics Chapter 1

means that a top-quark cannot change into a bottom-quark through emission
of a photon or a gluon. On the other hand, the weak force does not conserve
flavour in charged interactions, so a top-quark can indeed change into a bottom-
quark through emission of a charged W boson. More generally, this does not
only apply within the same generation — mixing of generations is quantified by
the Cabibbo–Kobayashi–Maskawa (CKM) matrix for the quarks [5, 6], and the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix for the leptons [7,8]. If the
neutrinos are assumed to be massive (which they technically are not in the SM),
the latter matrix can also explain the observed neutrino oscillations.6

1.2 Symmetries in particle physics

The previous section gave a somewhat superficial introduction to the ingredients
of the Standard Model. A more detailed introduction to the underlying the-
ory of the SM will be given in the coming sections, with a special emphasis on
symmetries.

The theoretical framework of elementary particle physics is quantum field the-
ory (QFT), which successfully combines two well-established concepts in physics:
quantum mechanics (describes really small stuff) and special relativity (describes
really fast stuff). The idea of QFT is to use fields rather than individual particles
as the fundamental constituents of the theory. Particles are treated as excited
states of the fields, and are therefore called field quanta.7 Quantum mechan-
ical interactions between particles are described by interaction terms between
the corresponding quantum fields, which can be visualized and evaluated using
Feynman diagrams (more about this in Sec. 1.5).

The starting point of a quantum field theory is the Lagrangian density, L,
which is a function of fields, ψi(x), and their derivatives, ∂µψi(x). Different fields
represent different particles. The Lagrangian density (from now on simply called
the “Lagrangian”) is closely related to the fields’ equations of motion, as the
latter can be obtained from L through the Euler-Lagrange equation:

∂L
∂ψi
− ∂µ

(
∂L

∂(∂µψi)

)
= 0, i = 1, ..., N, (1.1)

where the index i runs over all N fields contained in L.

A symmetry transformation is a transformation that leaves the equations of
motion for the fields of the theory invariant. This is guaranteed if the action,

6The neutrinos are assumed to be massless in the Standard Model. However, the exper-
imentally established phenomenon of neutrino oscillation requires neutrinos to have nonzero
masses.

7Since particles and fields are closely related in QFT, the two will be used interchangeably
throughout this thesis. But it is important to know the difference.
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defined by

S =

∫
d4xL, (1.2)

is left invariant under the transformation. This is automatically fulfilled if the
Lagrangian itself is invariant. The action also remains invariant if the Lagrangian
only changes by a total derivative, L → L′ = L + ∂µf(x), where f(x) is a func-
tion of the fields, since we assume that all fields must vanish on the integration
boundary.

1.2.1 Noether’s theorem

One of the basic principles in physics is that the laws of physics are the same at
all locations and all times. This principle is equivalent to a symmetry: the laws of
physics are invariant when we change our viewpoint — either from one location
to another, or from one time to another. For instance, the theory of special
relativity is symmetric under boosts and rotations, as well as translations, in
space and time.

In 1915, Emmy Noether proved that there is a deep connection between sym-
metries and conserved physical quantities [9, 10]. Noether’s theorem states that
every differentiable symmetry of the action of a physical system has a corre-
sponding conservation law. In the example of special relativity, the conserved
quantities corresponding to the symmetries under translations in space and time
are the well-known momentum and energy, respectively. Noether’s theorem is
one of the most profound observations in theoretical physics.

1.2.2 Description by groups

It is often convenient to describe the symmetries of physical systems in terms of
groups. Mathematically, a group G is a set of elements gi, together with a binary
operation •, that satisfies the following properties ∀gi ∈ G:

i) gi • gj ∈ G (closure), (1.3)

ii) (gi • gj) • gk = gi • (gj • gk) (associativity), (1.4)

iii) ∃ e ∈ G such that gi • e = e • gi = gi (identity element), (1.5)

iv) ∃ g−1
i ∈ G such that gi • g−1

i = g−1
i • gi = e (inverse). (1.6)

The set of all transformations that leave a given object invariant is called a
symmetry group. In the example of special relativity introduced above, the object
that is left invariant is the Minkowski metric, and the corresponding symmetry
group is called the Poincaré group, which is assumed to be the fundamental
symmetry group of spacetime.
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For quantum field theories, there are actually two kinds of symmetries. Up
until now, we have only discussed invariance of the Lagrangian under transfor-
mations of spacetime, such as rotation. But we can also have invariance under
transformations of the fields themselves, which are called internal symmetries.
The latter leads us to the principle of gauge invariance, which will be explained
in detail in the next section. For now we only state that the particle interactions
are related to internal symmetries, and that the corresponding conserved quan-
tities implied by Noether’s theorem are related to the charges of the different
fundamental forces.

An important type of groups in this context are the SU(n) groups, which we
encounter on several occasions in the following. In the defining, fundamental,
representation, the SU(n) group is the set of all complex-valued and unitary
n×n matrices with determinant 1.8 The SU(n) groups are so-called Lie groups,
meaning that they describe continuous symmetries.

When working with groups, it is often more instructive to look at the cor-
responding algebra, which is expressed in terms of the generators of the group.
The group generators are group elements that can produce all the elements in the
group by repeated application of the generators on themselves and each other.
With the generators of a Lie group denoted Ta, the corresponding Lie algebra
can be written as

[Ta, Tb] = ifab
cTc, (1.7)

where fabc is a set of (antisymmetric) numbers called structure constants. These
structure constants uniquely determine the algebra. For SU(n), there are n2− 1
generators, so a, b, c = 1, ..., n2 − 1. For a general Lie group, the binary opera-
tor [−,−], called a Lie bracket, must be specified, but for SU(n) it is just the
commutator

[Ta, Tb] ≡ TaTb − TbTa. (1.8)

For SU(2), the fundamental representation of the generators are proportional
to the three Pauli matrices σi, and for SU(3) they are proportional to the eight
Gell-Mann matrices λi. For further details of notation, see Appendix A.

1.3 The gauge principle

We became familiar with the concept of Lagrangians in the previous section, but
we did not discuss exactly how they are constructed. A prescription known as
the gauge principle has proven to be very successful for obtaining theories for
elementary particles. The term gauge refers to redundant degrees of freedom in

8Group elements, and the objects they act upon, can be given in several different repre-
sentations. For a SU(n) group, the two most important representations are the defining, or
fundamental, representation, and the adjoint representation.
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the Lagrangian, meaning that they have no observable consequences.9 We can re-
quire that the Lagrangian should remain unchanged when transforming between
different values of the gauge degrees of freedom. Simpler put, the Lagrangian
should be gauge independent. A very important feature of such gauge theories
is that they should be renormalizable, i.e. that all observables have finite values
(more about this in Sec. 1.5).

The gauge principle is explained in the following. We start out with a La-
grangian containing the free, i.e. non-interacting, fermion fields, and identify
global transformations, of these fields that leave the Lagrangian unchanged.10

We then promote these transformations to local, or gauge, transformations, and
demand that the Lagrangian should still be invariant. This latter criterion forces
us to introduce spin-1 (vector) fields, which is where the bosons come into play.

The set of gauge transformations that leave the Lagrangian invariant form a
gauge group. The Standard Model is based on invariance under three such groups,
collectively known as the Standard Model gauge group: SU(3)C × SU(2)L ×
U(1)Y .11 The two former groups can be recognized from the previous section,
where we stated that the SU(n) groups are related to internal symmetries and
particle interactions. In fact, SU(3)C is the symmetry group of the strong force,
or more precisely, quantum chromodynamics (QCD), which is the quantum field
theory of the strong interaction. The conserved quantity implied by Noether’s
theorem is in this case the color charge introduced in Sec. 1.1, referred to by
the subscript C. Further, SU(2)L is the symmetry group of the weak force,
with isospin I as the conserved quantity. In this case, however, the subscript L
refers to the fact that only left-chiral particles (and antiparticles of right-chiral
particles) are charged under this force. We will return to this topic in Sec. 1.3.3.

Finally, the U(1)Y symmetry group is a bit simpler. The conserved quantity
is in this case weak hypercharge Y , which is related to electric charge Q (in
elementary charge units) and the third component of the weak isospin I3 through

Y = 2(Q− I3). (1.9)

As briefly mentioned in Sec. 1.1, one of the cornerstones of the Standard Model is
that it unifies the electromagnetic and weak interactions into a more fundamental
electroweak interaction. This is often referred to as the Glashow–Weinberg–Salam
model, and is described by the combined gauge group SU(2)L×U(1)Y . However,
because of electroweak symmetry breaking, needed to give all of the Standard
Model particles their masses, this group is broken down from SU(2)L×U(1)Y to
U(1)em, so that the weak and electromagnetic interactions appear as two different

9In physics, a degree of freedom is an independent parameter in the formal description of
the state of a physical system.

10A global transformation is a transformation that is independent of the coordinate x.
11Multiplication here shows the factorization of these transformations, i.e. they act inde-

pendtly as if on separate coordinates of a vector.
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forces at low energies. The electroweak symmetry breaking will be described in
more detail in Sec. 1.4.

The U(1)em symmetry group describes quantum electrodynamics (QED), the
quantum field theory of the electromagnetic interaction. The corresponding con-
served quantity is the well-known electric charge. QED describes interactions of
photons with charged fermions, and is the simplest of the quantum field gauge
theories. We will illustrate the gauge principle for this theory below.12

1.3.1 Abelian gauge groups

Analogous to the SU(n) group, the U(n) group consists of all complex and unitary
n×n matrices.13 In the simple case of n = 1, all of the group elements commute
with each other, which is the definiton of an Abelian group. In this subsection,
we will apply the gauge principle to the Abelian U(1)em symmetry group of QED
and see that it necessitates the existence of photons.

Fermions are described by so-called Dirac spinor fields, and the basic Dirac
Lagrangian for such a free field ψ(x) is

LD = ψ̄(x)(iγµ∂µ −m)ψ(x), (1.10)

where γµ are the 4 × 4 Dirac gamma matrices, ψ̄ ≡ ψ†γ0, and m is the mass
of the fermion. The Dirac spinor fields must have four components in order
to match the dimension of the Dirac gamma matrices. These four components
describe both the particle and the antiparticle, with two possible spin states for
each of them.14 By application of the Euler-Lagrange equation in Eq. (1.1), the
Lagrangian in Eq. (1.10) reproduces the Dirac equation of relativistic quantum
mechanics.

According to the gauge principle, we now want to identify global transforma-
tions of the Dirac spinor field ψ(x) that leave LD invariant. The phase transfor-
mations

ψ(x)→ ψ′(x) = e−igαψ(x) (1.11)

fulfill this criterion, where α is an arbitrary real number, and g is the charge
of the field under the symmetry, i.e. electric charge in the case of QED. The
charge g is also often referred to as the field’s coupling strength or coupling
constant, since it is the normalizing factor in the terms in the Lagrangian coupling

12Historically, the gauge principle was inspired by QED, not the other way around.
13The SU in SU(n) stands for special unitary, where the term special refers to the fact that

the group matrices have determinant 1. The SU(n) groups are therefore subgroups of the more
general U(n), since the latter have no determinant requirements.

14All fermions have spin-1/2, but they exist in two different spin states, either with spin
+1/2 or with spin −1/2.
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fermions to gauge bosons.15 This will become evident below. These (global) phase
transformations constitute the group of 1× 1 “matrices” called U(1).

The next step is to make the above transformations local:

ψ(x)→ ψ′(x) = e−igα(x)ψ(x), (1.12)

where α(x) now is an arbitrary real and differentiable function which depends
on spacetime, making it local. Due to the derivative ∂µ in Eq. (1.10), LD is not
invariant under these local transformations:

LD → L′D = ψ̄′(x)(iγµ∂µ −m)ψ′(x)

= ψ̄(x)eigα(x)(iγµ∂µ −m)e−igα(x)ψ(x)

= ψ̄(x)(iγµ[∂µ − ig∂µα(x)]−m)ψ(x)

6= LD.

(1.13)

In order to restore the invariance, we start by substituting the derivative ∂µ in
Eq. (1.10) with the covariant derivative, defined by

Dµ ≡ ∂µ + igAµ(x), (1.14)

where a spin-1 (vector) field Aµ(x) has been introduced. When putting this
covariant derivative into the Dirac Lagrangian in Eq. (1.10), we see that we
ultimately need

Dµψ(x)→ D′µψ
′(x) = Dµψ(x) (1.15)

for the Lagrangian to be invariant, leading to a requirement on the gauge trans-
formation of Aµ(x) itself. By comparing the definition of Dµ with the term
−ig∂µα(x) in Eq. (1.13) that breaks the invariance of LD, we find that Aµ(x)
must transform according to

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x). (1.16)

This new spin-1 field Aµ(x) is called a gauge boson field, which in the case
of QED is the photon. This field must also have its own free field term in the
Lagrangian, which for a vector field is given by the Proca Lagrangian:

LProca = −1

4
FµνF

µν +
1

2
m2Aµ(x)Aµ(x), (1.17)

where the electromagnetic field strength tensor Fµν is defined as

Fµν ≡ ∂µAν(x)− ∂νAµ(x). (1.18)

15The term coupling constant is also used in a broader sense, meaning the constant of any
Lagrangian term that gives rise to a coupling vertex.
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Only the first (kinetic) term in Eq. (1.17) is invariant under the transformation
in Eq. (1.16), so the second (mass) term can not be included.

We have thus arrived at the complete QED Lagrangian:

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1

4
FµνF

µν

= ψ̄(x)(iγµ∂µ −m)ψ(x)− 1

4
FµνF

µν − gψ̄(x)γµψ(x)Aµ(x),
(1.19)

which is invariant under the coupled gauge transformations in Eqs. (1.12) and
(1.16). We see that the last term couples the fermion and gauge fields, giving
rise to interactions between them.

1.3.2 Non-Abelian gauge groups

For non-Abelian groups, i.e. groups with non-commuting elements, the gauge
principle gets a bit more complicated. We get some additional terms due to the
non-commuting property. This is the case for both SU(3)C , describing QCD, and
SU(2)L, describing the weak interaction. We will not go through the full gauge
principle for such groups, but rather point out the main differences compared to
the simpler Abelian case.

Similar to the Abelian case, the SU(n) gauge transformations of a Dirac
spinor field ψ(x) can be expressed as

ψ(x)→ ψ′(x) = e−igα
a(x)Taψ(x), (1.20)

where the (non-commuting) generators Ta of the SU(n) group are now included.
In this case, there are as many transformation parameters αa(x) as generators of
the group. For SU(2), the index a runs from 1 to 3, while for SU(3) it runs from
1 to 8, corresponding to their respective number of generators (n2 − 1).

The covariant derivate needed to restore gauge invariance of the Lagrangian
now takes the form

Dµ ≡ ∂µ + igAaµ(x)Ta, (1.21)

where we see that as many gauge boson fields Aµ(x) as group generators have
been introduced. These have to transform according to

Aaµ(x)→ A′µ
a
(x) = Aaµ(x) + ∂µα

a(x) + gfabcα
b(x)Acµ(x), (1.22)

where fabc are the structure constants of the SU(n) group given by the Lie algebra
in Eqs. (1.7) and (1.8), and the last term is a consequence of the non-commuting
property of the group generators.

As for the Abelian case, the gauge bosons need their own free term in the
Lagrangian, given by the Proca Lagrangian in Eq. (1.17). However, also the field
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strength tensor gets an additional term due to the non-commuting property of
the generators:

F a
µν = ∂µA

a
ν(x)− ∂νAaµ(x) + gfabcA

b
µ(x)Acν(x), (1.23)

which gives rise to self-interactions between the gauge bosons.
For the full Standard Model gauge group SU(3)C × SU(2)L × U(1)Y , the

covariant derivative takes the form

Dµ = ∂µ + igs
λa
2
Ca
µ(x) + ig

σa
2
W a
µ (x) + i

1

2
g′Y Bµ(x), (1.24)

where Ca
µ(x), W a

µ (x) and Bµ(x) are the gauge fields, and gs, g and g′ the coupling
constants, of SU(3)C , SU(2)L and U(1)Y , respectively. As a convention, the
hypercharge Y is assigned in units of 1

2
g′. The generators of SU(3)C and SU(2)L

are defined as 1/2 times the Gell-Mann (λa) and Pauli (σa) matrices, respectively.
The gauge fields W a

µ (x) and Bµ(x) introduced above do not correspond to
the physical gauge bosons mediating the weak and electromagnetic interactions
directly. In Sec. 1.4, we will see how the electroweak symmetry breaking mixes
these fields by linear combinations, so that the physical bosons W±, Z0 and γ are
obtained. This is not the case for the strong interaction, where the eight gauge
fields Ca

µ(x) correspond to the mediating gluons directly.

1.3.3 Gauge multiplets

In the above discussion on the gauge principle for non-Abelian theories, we ig-
nored the fact that the fermion fields have to be put into vectors in order to
be acted upon by the SU(n) transformations. For instance, since the SU(2)
transformations are defined in terms of 2 × 2 matrices (in the fundamental rep-
resentation), they need a two-dimensional vector to act upon. Analogously, the
SU(3) transformations need to act upon a three-dimensional vector. These vec-
tors are referred to as SU(2) doublets and SU(3) triplets.

In order to explain observations of parity (spatial inversion) violation of the
weak interaction, it is defined as a chiral theory. Using projection operators PL
and PR, defined as

PL =
1

2
(1− γ5) and PR =

1

2
(1 + γ5), (1.25)

a Dirac fermion field ψ(x) can be separated into a left-chiral and a right-chiral
part:

ψ(x) = PLψ(x) + PRψ(x) ≡ ψL(x) + ψR(x). (1.26)

As briefly mentioned in Sec. 1.3, only the left-chiral part of a fermion is charged
under the weak force.
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For the weak force, described by the SU(2)L gauge group, it is thus the left-
chiral parts of fermion fields that are put into doublets. For instance, for the first
generation of quarks we construct the SU(2)L doublet

qL(x) =

(
uL(x)
dL(x)

)
, (1.27)

while the right-chiral parts uR(x) and dR(x) are SU(2)L singlets, meaning that
they are not affected by the weak force. Analogously, for the first generation of
leptons we construct the SU(2)L doublet

`L(x) =

(
νeL(x)
eL(x)

)
, (1.28)

while the right-chiral parts νeR(x) and eR(x) yet again are SU(2)L singlets. In
fact, right-chiral neutrinos are actually singlets under the full Standard Model
gauge group, meaning that they are not charged under any of the SM forces.
If they exist, they are thus difficult to detect. They are not included in the
Standard Model.

Quarks are the only fermions that are charged under the strong force, de-
scribed by the SU(3)C gauge group. Leptons are thus SU(3)C singlets. In
Sec. 1.1, it was briefly mentioned that there are three different quark colors.
For each of the six quark flavours, we therefore construct a SU(3)C triplet

qC(x) =

qr(x)
qg(x)
qb(x)

 , (1.29)

containing the three different color components of the quark field.

1.4 The Higgs mechanism

In the above discussion on the gauge principle, the bosons had to be treated
massless in order for the Lagrangian to be gauge invariant. This is not a problem
for QED and QCD, where the gauge bosons indeed are assumed to be massless,
but it is in contradiction with observations of quite massive W± and Z0 bosons
mediating the weak force, of nearly 100 GeV each. In order to get past this
discrepancy, we need a gauge invariant way of acquiring masses for these particles.
It appears that this can be obtained by introducing a new complex scalar field
doublet Φ(x) = (φa(x), φb(x))T into the Lagrangian. This mechanism was first
proposed by Anderson back in 1962 [11], and generalised to the relativistic case
of the Standard Model by three independent groups in 1964: Guralnik, Hagen
and Kipple [12], Brout and Englert [13], and Higgs [14]. It has become known as
the Higgs mechanism.
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Figure 1.2: Illustration of the “Mexican hat” Higgs potential with µ2 < 0,
in the case of only one complex scalar field φ. Figure taken from [15].

By introducing the Higgs doublet field Φ(x), the following SU(2)L × U(1)Y
invariant terms are added to the full Lagrangian:

LH = |DµΦ(x)|2 − µ2|Φ(x)|2 − λ|Φ(x)|4, (1.30)

where the latter two constitute the so-called Higgs potential, with µ2, λ ∈ R, and
the covariant derivative in this case is given by

Dµ = ∂µ + ig
σa
2
W a
µ (x) + i

1

2
g′Y Bµ(x), (1.31)

showing that the Higgs couples to the electroweak sector.
It will become evident below that it is the properties of the vacuum state

(the lowest energy state) Φ0 = (φa0, φb0)T for this Higgs field, corresponding to
the minimum of the Higgs potential, that facilitate the electroweak symmetry
breaking and give the weak bosons their masses. In order to have such a vacuum
state at all, the potential must be bounded from below, i.e. have a finite minimum.
This introduces a requirement on one of the potential parameters, namely λ > 0.
However, no such requirement is introduced for µ2.

If µ2 is assumed to be positive, the potential has a unique minimum for
φa0 = φb0 = 0. On the other hand, if µ2 is assumed to be negative, the potential
takes the form of a “Mexican hat”: it has a circle of degenerate minima for
non-zero field values, defined by

|Φ0|2 = |φa0|2 + |φb0|2 =
−µ2

2λ
≡ v2

2
, (1.32)

where the constant v is referred to as the (non-zero) vacuum expectation value
(vev) of the Higgs field. An illustration of the analogous potential in the case
of only one complex scalar field is illustrated in Fig. 1.2. The physical vacuum
state will correspond to a particular point on this circle, breaking the underlying
SU(2)L × U(1)Y symmetry of the Lagrangian. This is known as spontaneous
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symmetry breaking, and is the key ingredient for obtaining the missing masses in
a gauge invariant way.

Without loss of generality, the vacuum state Φ0 can be chosen to be

Φ0 =
1√
2

(
0
v

)
. (1.33)

The particle states, described by excitations of the field, can be obtained by
considering perturbations of the field around this vacuum state:

Φ(x) =
1√
2

(
η1(x) + iη2(x)

v + h(x) + iη3(x)

)
, (1.34)

where h(x) and ηi(x) are four real scalar fields. Expressing the Lagrangian in
Eq. (1.30) in terms of these fields gives rise to a multitude of terms, where several
of the terms containing the ηi(x) fields are problematic. It appears that these
field are “unphysical”, meaning that they do not correspond to physical particles.

Since we have a gauge invariant theory — it is the vacuum state that breaks
the symmetry — the Lagrangian itself is symmetric), we are free to perform a
gauge transformation of Φ(x) such that the ηi(x) fields vanish:

Φ(x)→ Φ′(x) =
1√
2

(
0

v + h(x)

)
. (1.35)

This particular gauge is known as unitary gauge, and the remaining real scalar
field h(x) corresponds to the famous Higgs boson. Of course, also the gauge fields
contained in the covariant derivative in Eq. (1.31) must be transformed according
to their respective transformation properties: W a

µ (x)→ W ′
µ
a(x), Bµ(x)→ B′µ(x).

But what about the missing masses? It is the kinetic term |DµΦ(x)|2 in
Eq. (1.30) that contains the gauge fields we want to make massive. By writing
out this term in the unitary gauge, it becomes evident that mass terms for these
fields, i.e. terms that are quadratic in the fields, indeed have appeared:

|DµΦ|2 ⊃ v2

8
g2
(
W 1
µW

µ1 +W 2
µW

µ2
)

+
v2

8

(
gW 3

µ − g′Bµ

) (
gW µ3 − g′Bµ

)
, (1.36)

where we for readability have omitted the “transformation primes” and the x-
dependecy of the fields. The interpretation is that the three degrees of freedom
contained in the real scalar fields ηi(x) that are not present anymore are absorbed
into the W a

µ (x) and Bµ(x) fields in the gauge transformation, giving them the
extra degree of freedom required for massive gauge bosons.

The gauge fields are mixed together in the above expression, which means
that their physical mass eigentstates differ from their gauge eigenstates. The
physical gauge bosons are given by the linear combinations

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, Z0

µ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
g′W 3

µ + gBµ√
g2 + g′2

, (1.37)
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with masses from Eq. 1.36:

mW =
1

2
gv, mZ =

1

2

√
g2 + g′2v, mA = 0. (1.38)

The fact that the photon, described by the Aµ(x) field, is massless also after
the symmetry breaking means that there can be a remaining U(1)em symmetry.
The corresponding conserved quantity is the electric charge, which has to be
conserved in all Standard Model processes.

To summarize: by introducing a new complex scalar field doublet Φ(x) with
a non-vanishing vacuum expectation value v, the electroweak SU(2)L × U(1)Y
symmetry of the Standard Model is “spontaneously” broken down to the U(1)em

symmetry of QED. If this is combined with a particular gauge transformation,
three of the four degrees of freedom originally contained in Φ(x) can be “con-
verted” into masses for the W± and Z0 bosons of the weak force. Since these
masses have been measured to be almost 100 GeV, the weak interaction is sup-
pressed at energies below this scale.16 This is why the electromagnetic and weak
interactions appear as to separate forces at low energies. Finally, the last degree
of freedom left in Φ(x) predicts the existence of the famous Higgs boson, whose
mass term can be extracted from the Higgs potential:

mh =
√
−2µ2. (1.39)

1.4.1 Fermion masses

In Sec. 1.3.1, we saw that the fermionic mass term of the QED Lagrangian
was U(1)em gauge invariant, whereas this was not the case for the hypotethical
photon mass term. In the following, we tacitly assumed that this was valid also
for the weak and strong interactions: fermions can be massive, while bosons
initially must be treated massless. Above, we learned how the Higgs mechanism
introduces boson masses in a gauge invariant way, fixing the apparent problem
of observing massive weak bosons. So far, so good. However, due to electroweak
unification, not even fermions are allowed to be massive initially.

By using the properties of the projection operators PL and PR given in
Eq. (1.25), the Dirac Lagrangian can be expressed in terms of the chiral compo-
nents of the fermion field:

LD = ψ̄Liγ
µ∂µψL + ψ̄Riγ

µ∂µψR −m(ψ̄LψR + ψ̄RψL), (1.40)

where we have omitted the x-dependency for readability. From this, we see
that the first, kinetic, term separates the two chiral components of the fermion
field. In the mass term, however, the left- and right-chiral components have been

16The masses of the W and Z bosons are 80.4 GeV and 91.2 GeV, respectively.
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mixed. Since the SU(2)L transformations only act on the left-chiral component,
this mass term is not gauge invariant:

m(ψ̄LψR + ψ̄RψL) 6= m(ψ̄′LψR + ψ̄Rψ
′
L), (1.41)

where the prime represents a SU(2)L transformation. This means that also
fermions initially need to be treated as massless in the Standard Model.

It turns out that the Higgs mechanism also provides a resolution to the fermion
mass problem. Without going into much detail, we note that fermion masses can
be introduced into the Lagrangian through so-called Yukawa terms of the form
¯̀
LΦeR and its hermitian conjugate, where `L is a left-handed SU(2)L doublet

and eR is a right-handed SU(2)L singlet, see Eq. (1.28). That such terms are
gauge invariant can be seen from

¯̀
LΦeR → ¯̀′

LΦ′e′R = ¯̀
LU
†UΦeR

= ¯̀
LΦeR,

(1.42)

where U represents a SU(2)L transformation.
By inserting the vacuum state in Eq. (1.33) into this term, the electron mass

term appears:

Le ⊃ −ye ¯̀LΦeR

= − ye√
2

(
νeL ēL

)(0
v

)
eR

= −yev√
2
ēLeR,

(1.43)

and similarly for the hermitian conjugate term. From this, we can identify the
electron mass as

me =
yev√

2
, (1.44)

where the Yukawa coupling ye gives the coupling strength of the electron to the
Higgs boson.

1.5 Feynman calculus and renormalization

There are very few problems in the framework of the Standard Model that can be
solved exactly. Instead, physical observables, such as cross sections σ and decay
widths Γ, are calculated in terms of interaction amplitudes M, using perturbation
theory. In perturbation theory, these quantities can be expanded as infinite sums
of terms of increasing complexity and decreasing importance, in terms of powers
of some small parameter. It is often sufficient to only evaluate the first few terms.
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(a) Leading order (LO).

(b) Next-to-leading order (NLO).

Figure 1.3: The leading order (a) and some of the next-to-leading order
(b) Feynman diagrams for the QED process e+e− → µ+µ−. Figures taken
from [17].

1.5.1 Feynman calculus

Richard Feynman introduced the concept of Feynman diagrams already in 1949
[16], which represents these terms graphically. As an example, some of the Feyn-
man diagrams for the QED process e+e− → µ+µ− are shown in Fig. 1.3. Sub-
figure (a) shows the leading order (LO) diagram, while (b) shows three of the
next-to-leading order (NLO) diagrams. Each element of these diagrams is asso-
ciated with a factor that contributes to the interaction amplitude.

In Fig. 1.3(a), there are two QED interaction vertices, that each contribute a
factor ieγµ. This means that the absolute square of the amplitude |M|2 for this
diagram will be proportional to e4, or equivalently α2, where α is the dimension-
less fine-structure constant,

α =
e2

4π
. (1.45)

This is the small parameter in the perturbation theory.
Similarly, each of the NLO diagrams in Fig. 1.3(b) has a factor of α for each

of the four vertices, and hence |M|2 ∝ α4. The total squared amplitude is the
sum of all individual amplitudes giving the same final state.17 The physical

17Each pair of terms at a specific order can interfere either positively or negatively.
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observables are then obtained by integrating |M|2 over all possible spin and
momentum configurations of the system.

1.5.2 Renormalization

The subleading Feynman diagrams in Fig. 1.3(b) contain closed loops, and since
the momentum inside these loops is undetermined, we have to integrate over
all possible momenta. These integrals diverge, which is physically unacceptable.
However, this can be dealt with using renormalization.

The first step towards a finite theory is to parametrize the divergence. This is
called regularization, and there are several different ways of doing it. For instance,
with cut-off regularization, the integrals are only evaluated up to a finite cut-off
scale Λ: ∫ ∞

0

d4k →
∫ Λ

0

d4k. (1.46)

The argument is that the Standard Model is not valid at very high energies,
where we know we need a yet to be discovered quantum theory of gravitation.
We can thus limit the integrals to energies below this. This type of regularization
will be applied to the Higgs boson mass loop corrections discussed in Sec. 3.1.

Another method is dimensional regularization, where the four spacetime di-
mensions are substituted with d = 4− ε, where ε is a small parameter:∫ ∞

0

d4k →
∫ ∞

0

ddk. (1.47)

This is mathematically well-defined, and the physical limit is found when ε goes
to zero.

When the divergences have been parametrized, the next step is to get rid of
the terms that blow up, and identify the physical quantities. As an example,
consider the left-most diagram in Fig. 1.3(b), which has a loop in the photon
propagator. After dimensional regularization of the correponding integral, we
end up with terms that are proportional to 1/ε, which goes to infinity when ε
goes to zero.

Renormalization is the claim that such infinities is part of the bare physical
constants in the Lagrangian. A bare constant is not an observable quantity.
What is observed is the renormalized constant, in this case the electron charge
e = e0 + δe, where e0 is the bare charge and δe is an infinite shift that cancels
the divergence. The infinities are thus absorbed into unobservable parameters of
the theory.

All the coupling constants of the Standard Model are renormalized. The
renormalization introduces an energy dependence, since the shift comes from
loop corrections that depend on the energy of the process. For instance, the
observed value of electron charge depends on what scale µ the observation takes
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place, e(µ). The fact that the coupling “contants” are not constant is referred
to as running of the coupling constants. The evolution of the couplings with
energy is described by so-called renormalization group equations (RGEs). More
specifically, these include so-called beta functions that describe the behaviour of
a Lagrangian parameter λ as a function of the energy scale µ away from the value
where it was defined, often denoted µ0:

βλ ≡ µ
∂λ

∂µ
. (1.48)

1.6 Shortcomings of the Standard Model

Despite its tremendous success, the Standard Model is not believed to be the
final theory of particle physics. As briefly mentioned in Sec. 1.1, it does not
include the fourth fundamental force, namely gravity, and thus fails as a “theory
of everything”. There are also several other motivations for looking for physics
beyond the Standard Model.

For instance, it is widely believed that the Standard Model is only an effective
low-energy model of a more fundamental high-energy model, i.e. that the three
interactions of the Standard Model unite at a higher energy and act as a single
interaction under some larger gauge group. In such Grand Unified Theories
(GUTs), the three Standard Model couplings should unite at a high energy scale
ΛGUT ∼ 1016 GeV. However, when the three couplings are evolved to higher
energies using RGEs, they fail to intersect. Although this is not a direct problem
for the Standard Model itself, it is viewed by many as an indication for physics
beyond the Standard Model.

Further, the Standard Model has no candidate for dark matter. The existence
and properties of dark matter are inferred from its gravitational effects on visible
matter and gravitational lensing of background radiation. For instance, stars
in the periphery of spiral galaxies are rotating so fast that the galaxies would
fly apart if the gravity of their constituent stars and gas is all that is holding
them together. Since this is not happening, a huge amount of unseen mass
must be holding them together. This is known as the galaxy rotation problem,
and attempts to explain it was what led to the theory of dark matter in the
first place [18]. Dark matter is believed to make up ∼ 27% of the mass-energy
content of the universe, and the big question is then what this dark matter is. The
most widely accepted theory is that it is composed of weakly interacting massive
particles (WIMPs) that interact only through gravity and the weak force. The
neutrinos, being both massive and weakly interacting, is the only Standard Model
candidate for particle dark matter. However, the neutrinos are very low in mass
and can only account for a small fraction of the total amount of dark matter. The
existence of dark matter thus hints toward a new type of matter not described
by the Standard Model.
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There is also a more technical problem with the Standard Model. Quantum
loops in the Higgs boson propagator contribute to the Higgs boson mass. These
corrections are quadratic in the mass scale Λ, which means that if the SM is
part of a theory that is valid up to very high energies, such as that of the Grand
Unified Theory (GUT) ΛGUT (∼ 1016 GeV), or the Planck scale ΛP (∼ 1018) GeV,
these corrections become very large. It is thus difficult to keep the Higgs mass at
the electroweak scale of 102 GeV. This is known as the hierarchy problem, and
will be explained in more detail in Chapter 3.

Other problems include the mechanism for (small) neutrino masses not in-
cluded in the Standard Model, and the asymmetry between particles and an-
tiparticles observed in the Universe. Although this “list” of shortcomings of the
Standard Model is far from exhaustive, it is more than enough to justify the
need for new physics. There are numerous proposed theories for physics beyond
the Standard Model, and the perhaps most popular candidates are based on
supersymmetry, which will be the topic of the next chapter.



Chapter 2

Supersymmetry

The need for theories that go beyond the Standard Model was motivated in
Section 1.6. Supersymmetry is a proposed extension to the Standard Model
that offers a resolution to some of the problems described there. In Sec. 2.9, we
will see how it successfully unifies the Standard Model coupling constants at a
high energy scale, while we in Chapter 3 will see how it offers a solution to the
hierarchy problem. It also includes a candidate for dark matter.

We begin this chapter by presenting the general principle behind supersym-
metry. Some phenomenology relevant to the thesis is also given. The particular
supersymmetry models that will be studied in the rest of this thesis is discussed
at the end.

2.1 Supersymmetry for dummies

Supersymmetry (SUSY) proposes a symmetry between fermions and bosons.
Each Standard Model particle has a superpartner “sparticle”, which only dif-
fers from the particle by half a unit of spin. All other quantum numbers are the
same. This can be illustrated schematically as

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 , (2.1)

where Q is a supersymmetry operator that alters the spin by 1/2. A SM fermion
(spin-1/2) transforms under Q to a scalar superpartner (spin-0), while a SM
vector boson (spin-1) transforms to a fermion superpartner (spin-1/2). The Higgs
scalar boson (spin-0) also transforms to a fermion superpartner (spin-1/2).

The name sparticle is used above as a general label for any supersymmetric
particle. The naming convention for the bosonic superpartners of the SM fermions
is to add the prefix “s-” to the name of the SM particle. For instance, the
superpartner of the electron is the selectron. For the femionic superpartners of
the SM bosons one uses the suffix “-ino” together with the boson name. For
instance, the superpartner of the W boson is the wino. A tilde (˜) is used

23
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to denote supersymmetric particles, e.g. the above mentioned selectron has the
symbol ẽ.

Two important observations can be made. First, there are no two SM par-
ticles that differ in spin by 1/2, with the remaining quantum numbers being
equal. This means that supersymmetry predicts the existence of a multitude of
new particles. Second, if supersymmetry was an exact symmetry of nature, the
sparticles would have had the same masses as the particles, which means that
they already should have been discovered. Therefore, if supersymmetry exists, it
is a broken symmetry, and the mass scale of the sparticles is not known a priori.
However, there are theoretical arguments that favour a relatively low mass scale
of O(1TeV), more about this in Sec. 3.1.

2.2 Extending the Poincaré group

The previous section gave a short introduction to the general concept of super-
symmetry. But where does it come from and what is the theory behind it? Let
us start at the beginning.

In Any physical theory obeying special relativity must be invariant under the
Poincaré group, also known as the spacetime symmetry group. This is the group
of all Lorentz boost and rotations as well as translations. More explicitly, it is
defined as the group of all transformations of the form

xµ → xµ′ = Λµ
νx

ν + aµ, (2.2)

that leaves the spacetime interval (x − y)2 invariant. Here, xµ denotes a co-
ordinate four-vector, Λµ

ν denotes a Lorentz transformation, while aµ denotes a
constant translation. The generators of Lorentz boosts and rotations, Mµν , and
the generators of translations, Pµ, satisfy the Poincaré algebra:

[Pµ, Pν ] = 0, (2.3)

[Mµν , Pρ] = −i(gµρPν − gνρPµ), (2.4)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ), (2.5)

which is a Lie algebra. Further, these generators commute with the generators of
the internal gauge symmetries of the SM, i.e. the generators Bi of the SM gauge
groups all have

[Pµ, Bi] = [Mµν , Bi] = 0. (2.6)

Supersymmetry came around as a result of an attempt to extend the external
spacetime symmetries to also include the internal gauge symmetries in a non-
trivial way. That is, without all the generators of the internal gauge symmetries
commuting with the spacetime symmetry generators. In 1967, Coleman and Man-
dula [19] showed that there exists no Lie algebra based extension of the Poincaré
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algebra that fulfills this criterion. However, Haag, Lopuszanski and Sohnius [20]
did not give up on the idea of an unification of internal and external symmetries.
In 1975, they showed that a non-trivial extension can be obtained by allowing
anticommutators in Lie algebras, by introducing the concept of superalgebras.

A superalgebra, or graded Lie algebra, L, is a direct sum of two Lie algebras
L0 and L1, L = L0 ⊕ L1, with a special binary operation • called grading. For
xi ∈ Li, the grading is given by

xi • xj = xk ∈ Li+j mod 2, (2.7)

which means that x0 • x0 ∈ L0, x1 • x1 ∈ L0 and x0 • x1 ∈ L1.
By combining the Poincaré algebra with an algebra spanned by a set of four

new operators Qa, a = 1, 2, 3, 4, called Majorana spinor charges, Haag et al.
came up with the supersymmetric extension of the Poincaré algebra — the
super-Poincaré algebra (often simply called the superalgebra, which can be a
bit confusing). Represented in terms of two-component Weyl spinors QA (which
will be defined shortly) and their hermitian conjugates Q̄Ȧ, instead of the four-
component Majorana spinor charges, the superalgebra is given by the Poincaré
algebra plus the (anti)commutation relations

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0, (2.8)

{QA, Q̄Ḃ} = 2σµ
AḂ
Pµ, (2.9)

[QA, Pµ] = [Q̄Ȧ, Pµ] = 0, (2.10)

[QA,M
µν ] = σµνBA QB, (2.11)

where σµν = i
4
(σµσ̄ν − σν σ̄µ), with σµ = (12×2, σ

i) (σi are the usual two-

dimensional Pauli matrices). For the Weyl spinors, A,B = 1, 2 and Ȧ, Ḃ = 1, 2
are distinct indices. The transformations corresponding to the superalgebra are
called supersymmetry transformations.

Symbolically, the relation between the Majorana spinors and Weyl spinors is

Qa =

(
QA

Q̄Ȧ

)
. (2.12)

The fermion fields transforming under the Poincaré group are usually represented
as four-component Dirac/Majorana spinors. However, since it can be shown that
the Poincaré group is homomorphic to the special linear group SL(2,C), the
representations of this group can be used instead. The SL(2,C) group has two
inequivalent fundamental representations, with one two-component Weyl spinor
each. They are called left- and right-handed Weyl spinors, and are written as ξA
and η̄Ȧ, respectively. For the special case of Majorana fermions, we have ξA = ηA,
as in Eq. (2.12).

It should be noted that supersymmetry as defined by Eqs. (2.8) – (2.11) ac-
tually does not fulfill the original goal of unifying the internal gauge and external
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spacetime symmetries. However, the superalgebra can be extended by introduc-
ing more Majorana spinor charges, labeled Qα

a , where α = 1, ..., N . The internal
symmetries can appear for N > 1 supersymmetries, but they introduce an ex-
tensive number of extra particles, and do not seem to be realised in nature.

From the above, it is clear that supersymmetry did in fact come around as an
“accident”. Since it has some interesting features, physicists decided to explore it
some more, even though it did not fulfill its intended purpose. For instance, it can
be shown that supersymmetry is the largest possible extension of the Poincaré
group.

2.3 Superfields

As already mentioned, supersymmetry introduces several new particles. But
where exactly do they enter into the picture? This is best explained by the
superfield formalism, which is introduced next.

In the previous section, it was stated that the transformations corresponding
to the action of the operators in the superalgebra are called supersymmetry trans-
formations. The objects (particles) transforming under these transformations can
be represented by so-called superfields, which are functions of the superspace co-
ordinates. Simpler put; superspace is a coordinate system where supersymmetry
transformations are manifest.

Technically, superspace is an eight-dimensional manifold with coordinates

zπ = (xµ, θA, θ̄Ȧ), (2.13)

where xµ are the ordinary Minkowski coordinates, and θA and θ̄Ȧ, A = 1, 2 and
Ȧ = 1, 2, are four anticommuting Grassman numbers. This notation may seem
familiar, which is no accident: these Grassman numbers correspond to Weyl
spinors, which was introduced above. Because of the anticommutativity, any
Grassman number squared vanishes (no contraction implied):

θ2
A = θAθA = −θAθA = 0, (2.14)

which means that a function of a Grassman number, f(θA), has an all-order
expansion given by

f(θA) = a+ bθA. (2.15)

Further, Grassman numbers also have the properties

θA ≡ θθ ≡ θAθA = −2θ1θ2, (2.16)

θ̄2 ≡ θ̄θ̄ ≡ θ̄Ȧθ̄
Ȧ = 2θ̄1̇θ̄2̇. (2.17)
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Table 2.1: Component field content of a general superfield.

Component field Type D.o.f.

f(x),m(x), n(x) Complex (pseudo) scalar 2

ψA(x), φA(x) Left-handed Weyl spinor 4

χ̄Ȧ(x), λ̄Ȧ(x) Right-handed Weyl spinor 4

Vµ(x) Lorentz four-vector 8

d(x) Complex scalar 2

It can be shown that Eq. (2.15) enables that a superfield Φ generally may be
written as

Φ(x, θ, θ̄) =f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + θθm(x) + θ̄θ̄n(x)

+ θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ + θ̄θ̄θAψA(x) + θθθ̄θ̄d(x).

(2.18)

The properties of the component fields in this superfield are listed in Table 2.1.
It was stated above that the particles transforming under supersymmetry

transformations can be represented by superfields. However, the superfields
used to represent physical particles are not general superfields, like the one in
Eq. (2.18), but rather so-called scalar and vector superfields, which have fewer
degrees of freedom. They correspond to the irreducible representations of the su-
peralgebra, and need to be recovered from the general superfield by some rather
ad hoc restrictions.

2.3.1 Scalar superfields

The restrictions for scalar superfields involves covariant derivatives. Covariant
derivatives are introduced in gauge theories to make the Lagrangian invariant
under gauge transformations, as seen in Sec. 1.3. Similarly, it would have been
nice to have a derivative that is invariant under supersymmetry transformations,
i.e. that commutes with the supersymmetry operators. The following derivatives
fulfills this criterion:

DA ≡ ∂A + i(σµθ̄)A∂µ, (2.19)

D̄Ȧ ≡ −∂Ȧ − i(θσ
µ)Ȧ∂µ. (2.20)

A left-handed scalar superfield is then defined by the constraint

D̄ȦΦ = 0. (2.21)
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By change of variable, yµ = xµ + iθσµθ̄, the covariant derivative D̄Ȧ becomes

D̄Ȧ = −∂Ȧ ≡ −
∂

∂θ̄Ȧ
, (2.22)

which means that a left-handed scalar superfield needs to be independent of θ̄ in
this new set of coordinates, giving

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y), (2.23)

where A and F are complex scalars and ψ is a left-handed Weyl spinor.
The field F is called an auxillary field, because it can be eliminated by ap-

plying the equations of motion. This can be seen by undoing the coordinate
change, where it becomes clear that there is no derivative term for the F -field.
The equations of motion also remove two of the (fermionic) degrees of freedom
contained in the left-handed Weyl spinor ψA. A left-handed scalar superfield is
thus left with two scalar (bosonic) degrees of freedom and two fermionic degrees
of freedom.

The hermitian conjugate of a left-handed scalar superfield is called a right-
handed scalar superfield, and satisfies the constraint

DAΦ† = 0. (2.24)

By following a similar procedure as for left-handed scalar superfields, it can be
shown that a right-handed scalar superfield also contains two scalar and two
fermionic degrees of freedom, where the latter are contained in a right-handed
Weyl spinor ψȦ.

2.3.2 Vector superfields

For vector superfields, the restriction is a bit different. A vector superfield is
defined by the contraint

Φ† = Φ, (2.25)

which means that a general vector superfield can be written as

Φ(x, θ, θ̄) =f(x) + θAφA(x) + θ̄Ȧφ̄
Ȧ(x) + θθm(x) + θ̄θ̄m∗(x)

+ θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ + θ̄θ̄θAλA(x) + θθθ̄θ̄d(x).

(2.26)

Here, the scalar fields f(x) and d(x), as well as the four-vector Vµ(x), are required
to be real, which halves their amount of degrees of freedom. Further, this vector
superfield contains auxillary degrees of freedom, which can be removed with a
supergauge transformation (a generalisation of the standard gauge transforma-
tion). One particular choice of gauge that removes all the auxillary degrees of
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freedom is the Wess-Zumino gauge. In this gauge, a vector superfield can be
written as

VWZ(x, θ, θ̄) = (θσµθ̄)[Vµ(x) + i∂µ(A(x)−A∗(x))] + θθθ̄Ȧλ̄
Ȧ(x)

+ θ̄θ̄θAλA(x) + θθθ̄θ̄d(x),
(2.27)

where A(x) is a complex scalar field obeying A(x) + A∗(x) = −f(x). This
vector superfield contains one real scalar degree of freedom from d(x), three
gauge degrees of freedom from [Vµ(x) + i∂µ(A(x) − A∗(x))], and four fermionic
degrees of freedom from the Weyl spinors λ(x) and λ̄(x).1

2.3.3 Relation to physical particles

It was stated above that physical particles are represented by scalar and vector
superfields. But the superfields do not correspond to individual particles directly.
Instead, it is a matter of degrees of freedom, which is explained below.

A two-component Weyl spinor cannot on its own describe a four-component
Dirac spinor. To construct a Dirac fermion, two different Weyl spinors of opposite
handedness are needed. This gives the four fermionic degrees of freedom required
by a Dirac fermion and its antiparticle. Since each scalar superfield contains two
bosonic degrees of freedom in addition to a Weyl spinor (after the equations of
motion have been applied), two scalar particle-antiparticle pairs are introduced as
well when constructing a Dirac fermion. They are the supersymmetric partners
of a Dirac fermion, called sfermions.

To construct the SM gauge bosons, vector superfields are needed. After the
equations of motion have been applied, each vector superfield contains a mass-
less vector boson with two bosonic degrees of freedom, and two Weyl spinors of
opposite handedness with two fermionic degrees of freedom.2 We need one vec-
tor superfield for each SM gauge boson, giving a lot of “excessive” Weyl spinors.
These combine into the supersymmetric fermionic superpartners of the SM gauge
bosons, called gauginos, one for each gauge boson.

From this it is clear that supersymmetry indeed introduces many new parti-
cles. We will return to this in Sec. 2.6, where a specific supersymmetric model is
presented.

1Vµ(x) has four degrees of freedom, but one of them can be eliminated by the remaining
gauge freedom in the choice of A(x) − A∗(x), which is the ordinary gauge freedom of a U(1)
field theory.

2For vector superfields, λA and λȦ have the same two degrees of freedom, since they are
related through hermitian conjugation.
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2.4 The unbroken supersymmetric Lagrangian

In the previous sections, we have learned where supersymmetry comes from, and
how the extra particles come into play. The next step is to construct a viable
model that is invariant under supersymmetry transformations, in the same way
as the Standard Model is invariant under Poincaré transformations.

The starting point is as usual the Lagrangian. We recall that a symmetry
transformations leaves the action invariant, which is automatically fulfilled it the
Lagrangian only changes by a total derivative. The supersymmetry Lagrangian
is constructed from superfields, and it can be shown that the highest order (in
θ and θ̄) component fields always have this property for both scalar and vector
superfields, as well as their products. Invariance of the action under supersymme-
try transformations can therefore be ensured by a redefinition of the Lagrangian
such that

S =

∫
d4x

∫
d4θL, (2.28)

where the last integral is over the four Grassman numbers introduced with super-
space.3 Here, the last integral isolates the allowed terms because of the calculus
properties of Grassman numbers.4 The supersymmetry Lagrangian can therefore
generically be written as

L = Lθθθ̄θ̄ + θθLθ̄θ̄ + θ̄θ̄Lθθ, (2.29)

where the indices indicate the highest power of θ, θ̄ in the term.
The fact that the theory has to be renormalizable puts further restrictions

on the fields in L. Renormalizability forbids terms where the combined mass
dimension of the factors is greater than four, including the leading Grassman
numbers in Eq. (2.29) and the differential d4θ in Eq. (2.28). We can thus have
at most three powers of scalar superfields Φ in the Lagrangian. The general
supersymmetry Lagrangian can therefore be written in terms of scalar superfields
as

L = Φ†iΦi + θ̄θ̄W [Φ] + θθW [Φ†], (2.30)

where Φ†iΦi is called the kinetic term, and W is the so-called superpotential, given
by

W [Φ] = giΦi +mijΦiΦj + λijkΦiΦjΦk. (2.31)

2.4.1 Supergauge

In the same way as the Standard Model Lagrangian, the supersymmetry La-
grangian introduced above section has be gauge invariant. In this subsection, we

3Note that this alters the dimension of L, since the Grassman numbers have dimension
[θ] = [θ̄] = M−1/2.

4Integration over Grassman numbers is defined so that
∫
d4θ(θθ)(θ̄θ̄) = 1, while any other

power of θ and θ̄ gives zero.
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impose supergauge transformations on the superfields and see what consequenses
that implies.

The supergauge transformation on a left-handed scalar superfield under a
gauge group G is defined as

Φ→ Φ′ = e−iqΛ
aTaΦ, (2.32)

where Ta are the group generators, q is the charge of Φ under G, and the pa-
rameters of the gauge transformation Λa can be shown to be left-handed scalar
superfields themselves. The supergauge transformation on a right-handed scalar
superfields is similar.5

Requiring gauge invariance of the superpotential W puts great restrictions
on the form of the superpotential and the charge assignments of the superfields.
We will not go into detail on this in this thesis. To make the kinetic term gauge
invariant, gauge compensating vector superfields V a, with the appropriate gauge
transformations, are introduced through a modification of the kinetic term,

Φ†eqV
aTaΦ. (2.33)

The kinetic term then transforms as

Φ†eqV
aTaΦ→ Φ′

†
eqV

′aTaΦ′ = Φ†eiqΛ
a†TaeqV

′aTae−iqΛ
aTaΦ, (2.34)

which is invariant if the vector superfields transform as

eqV
′aTa = e−iqΛ

a†TaeqV
aTaeiqΛ

aTa . (2.35)

2.4.2 Supersymmetric field strength

We now have a general Lagrangian that is invariant under both supersymmetry
and gauge transformations. But there is still one thing missing — we need to
include field strength terms for the gauge fields.

Supersymmetric field strength is defined by

WA ≡ −
1

4
D̄D̄e−V

aTaDAe
V aTa , (2.36)

W̄Ȧ ≡ −
1

4
DDe−V

aTaD̄Ȧe
V aTa , (2.37)

where WA and W̄Ȧ are left- and right-handed scalar superfields, respectively. A
gauge invariant combination of these are needed in the Lagrangian. It can be
shown that the trace,

Tr[WAWA], (2.38)

5Here, the gauge transformation parameters Λ† are right-handed scalar superfields.
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fulfills this criterion.

If WA is expanded in component fields, we find that it contains the ordinary
Standard Model field strength tensor,

F a
µν = ∂µV

a
ν − ∂νV a

µ + qfbc
aV b

µV
c
ν , (2.39)

and that the trace contains the Standard Model field strength terms F a
µνF

µνa.

2.4.3 General supersymmetric Lagrangian

Gathering all the ingredients gives an expression for the most general supersym-
metric Lagrangian:

L = Φ†eqV
aTaΦ + θ̄θ̄W [Φ] + θθW [Φ†] +

1

2T (R)
θ̄θ̄Tr[WAWA], (2.40)

where T (R) is a normalization constant for the chosen representation of the gauge
group called the Dynkin index.

2.5 Supersymmety breaking

As noted already in Sec. 2.1, supersymmetry must be a broken symmetry in order
to produce the mass differences between the Standard Model and supersymmetry
particles required by experiment. This property is not contained in the expression
for the general supersymmetry Lagrangian we ended up with in the previous
section, Eq. (2.40), so we need to do something about that.

Supersymmetry is expected to be broken spontaneously. This means that
the Lagrangian itself is invariant under supersymmetry transformations, but the
vacuum state is not. In this case, the properties of the vacuum can supply the
extra mass of the supersymmetry particles compared to their SM partners. This
is analogous to the Standard Model, where the initially massless gauge bosons
acquire mass through the Higgs mechanism.

A common assumption is that the supersymmetry breaking takes place in
a hidden sector at some high energy scale that we do not have access to. By
hidden, we mean that fields in this sector have very small or no direct couplings
to the fields in our visible sector. The effects of a non-zero vacuum expectation
value (vev) in the hidden sector are mediated down to the visible sector through
some interaction that is common to both sectors. There are several alterna-
tive models for how exactly this takes place, and we will mention one of the
most popular.In Planck-scale Mediated Supersymmetry Breaking (PMSB), some
gravity mechanism at the Planck scale, ΛP ∼ 1018 GeV is assumed to mediate
the supersymmetry breaking from the hidden sector down to the visible sector.
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PMSB is assumed to be the supersymmetry breaking mechanism in the Con-
stained Supersymmetric Standard Model (CMSSM), which will be introduced in
Sec. 2.10.

In practice, in cases where the underlying symmetry-breaking mechanism is
unknown (as for supersymmetry) it is common to use an effective phenomeno-
logical theory constructed from an originally symmetric (non-broken) theory, by
adding terms that explicitly breaks the symmetry. This is known as explicit
symmetry breaking. However, we cannot simply add arbitrary terms to the La-
grangian. Only so-called soft terms, with couplings of mass dimension one or
higher, are allowed. Terms with smaller mass dimension can lead to divergences
in loop contributions to scalar masses that are quadratic or worse. We will return
to this in Sec. 3.1. The allowed supersymmetry breaking terms are in superfield
notation written as

Lsoft =− 1

4T (R)
Mθθθ̄θ̄Tr[WAWA]− 1

6
aijkθθθ̄θ̄ΦiΦjΦk

− 1

2
bijθθθ̄θ̄ΦiΦj − tiθθθ̄θ̄Φi + h.c.

−m2
ijθθθ̄θ̄Φ

†
iΦj.

(2.41)

Only the lowest order component fields of the superfields contribute, due to the
factor of θθθ̄θ̄ in each term.

The above terms are not necessarily gauge invariant. Requiring gauge in-
variance puts restrictions on the allowed terms, in the same way as it did for
the superpotential. However, it turns out that the soft terms are responsible for
most of the parameters in supersymmetric theories. This will become clear in
the next section, where a specific theory is constructed.

In terms of component fields, the soft terms can be written as

Lsoft = −1

2
MλAλA −

(
1

6
aijkAiAjAk +

1

2
bijAiAj + tiAi + c.c.

)
−m2

ijA
∗
iAj,

(2.42)
where λA are Weyl spinor fields and Ai are scalar fields. This shows that the soft
terms give masses to both the scalar and the fermionic superpartners of the SM
particles.

2.6 The Minimal Supersymmetric Standard

Model

The Minimal Supersymmetric Standard Model (MSSM) is based on the minimal
extension of the Poincaré algebra, namely N = 1 supersymmetry. It is the su-
persymmetric model with the smallest field content consistent with the Standard
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Model. In this section, it will be constructed from superfields following the recipe
of the previous sections.

As explained in Sec. 2.3.3, two Weyl spinors of opposite handedness (from
different superfields) are needed to construct a Dirac fermion and its antiparticle.
Since each scalar superfield ultimately has two bosonic degrees of freedom in
addition to a Weyl spinor, we also get four scalars — two particle-antiparticle
pairs — from constructing a Standard Model fermion. They are the bosonic
superpartners of the SM fermions, collectively called sfermions.

For the leptons, we introduce the scalar superfields

Li =

(
νi
li

)
and Ēi, (2.43)

where li and Ēi are for the charged leptons, νi is for the (left-handed) neutrinos
and i is the generation index. The Ēi superfield contains the part of the anti-
(s)electrons that do not couple to SU(2)L, while li and νi are placed in SU(2)L
doublets Li. From these three fields (and their hermitian conjugates), all of
the Standard Model leptons and their bosonic superpartners, called sleptons, are
constructed.

Similarly, for up- and down-type quarks we introduce the scalar superfields

Qi =

(
ui
di

)
, Ūi and D̄i. (2.44)

From these four fields and their hermitian conjugates, all of the Standard Model
quarks as well as their bosonic superpartners, called squarks, are constructed.

For the gauge bosons we need to introduce vector superfields. As already
noted in Sec. 2.3.3, each vector superfield contains one massless vector boson
and two Weyl spinors of opposite handedness. One vector superfield V a per
generator Ta of the gauge groups SU(3)C , SU(2)L and U(1)Y contained in the
SM are needed to obey (super)gauge invariance. They are denoted

Ca, W a and B0, (2.45)

respectively. Altogether, these 8 + 3 + 1 = 12 vector superfields give the g, W 1,2,3

and B0 gauge bosons of the SM (before the Higgs mechanism), as well as their
fermionic superpartners. The latter are referred to as the gluino, wino and bino,
and are denoted by g̃, W̃ a and B̃0, respectively.

In the MSSM, two Higgs superfield SU(2)L doublets are needed in order
to give mass to both up- and down-type quarks. In the Standard Model, one
doublet can be used for both types by rotating its components using the SU(2)L
generators, but this cannot be done in the MSSM, as it would mix left- and
right-handed superfields in the superpotential. The two Higgs doublets are

Hu =

(
H+
u

H0
u

)
and Hd =

(
H0
d

H−d

)
, (2.46)
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where the sign indicates electric charge of the component superfields. These four
left-handed scalar superfields introduce altogether four Weyl spinors and eight
bosonic degrees of freedom. Three of the latter are absorbed into mass terms for
the W± and Z0 bosons through the Higgs mechanism, leaving five physical scalar
degrees of freedom that are manifest through the mass eigenstates h0, H0, A0 and
H±. The Weyl spinors combine into so-called higgsinos.

We have now introduced all the superfields needed to reconstruct the Stan-
dard Model content, and are ready to write down the Lagrangian. From Secs. 2.4
and 2.5, it is clear that the total MSSM Lagrangian has to include kinetic terms,
superpotential terms, supersymmetric field strength terms and soft supersymme-
try breaking terms:

LMSSM = Lkin + LW + LV + Lsoft. (2.47)

The kinetic terms are given by

Lkin =L†ie
1
2
gσW− 1

2
g′BLi +Q†ie

1
2
gsλC+ 1

2
gσW+ 1

3
· 1
2
g′BQi

+ Ū †i e
1
2
gsλC− 4

3
· 1
2
g′BŪi + D̄†i e

1
2
gsλC+ 2

3
· 1
2
g′BD̄i

+ Ē†i e
2· 1

2
g′BĒi +H†ue

1
2
gσW+ 1

2
g′BHu +H†de

1
2
gσW− 1

2
g′BHd.

(2.48)

where gs, g and g′ are the coupling constants of SU(3)C , SU(2)L and U(1)Y ,
respectively.

The supersymmetric field strength terms are

LV =
1

2
Tr[WAWA]θ̄θ̄ +

1

2
Tr[CACA]θ̄θ̄ +

1

4
BABAθ̄θ̄ + h.c., (2.49)

where the field strengths are given by

WA = −1

4
D̄D̄e−WDAe

W , W =
1

2
gσaW a, (2.50)

CA = −1

4
D̄D̄e−CDAe

C , C =
1

2
gsλ

aCa, (2.51)

BA = −1

4
D̄D̄DAB, B =

1

2
g′B0. (2.52)

For the superpotential, the terms that preserve gauge invariance are

W =µHuHd + µ′iLiHu + yeijLiHdĒj + yuijQiHuŪj + ydijQiHdD̄j

+ λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k,
(2.53)

where HuHd is shorthand for HT
u iσ2Hd, and similarly for the other doublet pairs.

The iσ2 construction preserves SU(2)L invariance.
The soft supersymmetry breaking terms Lsoft are presented below, after the

concept of R-parity has been introduced.
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2.6.1 R-parity

There are no renormalizable terms in the Standard Model Lagrangian that violate
conservation of baryon number B and lepton number L, and indeed, no B or
L violating processes have been observed experimentally. In the MSSM, with
only general requirements of gauge and supersymmetry invariance, B and L are
no longer conserved. The terms LHu, LLĒ and LQD̄ in the superpotential
violate lepton number conservation, while the term ŪD̄D̄ violate baryon number
conservation. This can lead to unacceptable predictions, e.g. rapid proton decay.
Since the experimental lower limit of the proton lifetime is τproton > 1033 years
[21], the couplings of the B and L violating terms need to be suppressed.

This can be done by setting all such terms to zero by hand, by assuming that
some unknown mechanism suppresses them. However, a more elegant way is to
introduce a new symmetry. The latter is done in the MSSM, by requiring that
all the interactions conserve the discrete and multiplicative R-parity, which is
defined as

PR ≡ (−1)3(B−L)+2s, (2.54)

where s is particle spin. From this it follows that all SM particles and the
additional Higgs bosons of the MSSM have PR = +1, while all sparticles have
PR = −1.

Three important consequences follow from the fact that R-parity is required
to be conserved in the MSSM:

– When produced from SM particles, sparticles can occur in pairs only.
– Sparticles decay into an odd number of lighter sparticles (most often just

one).
– The lightest sparticle (LSP) has to be absolutely stable since it has nothing

to decay into, which means that all sparticle decay chains end with the
LSP.

From the above, it follows that supersymmetric particles typically will decay in
cascades down to the LSP, emitting multiple Standard Model particles along the
way. It also means that the LSP has to be invisible to detectors, or else it would
have been observed already. Which again means that the LSP has to interact
weakly (at most), and thus has to be both color and electrically neutral. It is
therefore a good candidate for particle dark matter discussed in Section 1.6.

With R-parity conservation, the B or L violating terms mentioned at the
beginning of this subsection are all excluded from the superpotential. In addi-
tion, requiring both R-parity conservation and gauge invariance, the possible soft
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supersymmetry breaking terms in the MSSM are, in component fields,

Lsoft =

(
−1

2
M1B̃B̃ −

1

2
M2W̃

aW̃ a − 1

2
M3g̃

ag̃a + c.c.

)
+
(
−bHuHd − aeijL̃iHdẽ

∗
jR − auijQ̃iHuũ

∗
jR − adijQ̃iHdd̃

∗
jR + c.c.

)
− (mL

ij)
2L̃†i L̃j − (me

ij)
2ẽ∗iRẽjR − (mQ

ij)
2Q̃†iQ̃j − (mu

ij)
2ũ∗iRũjR

− (md
ij)

2d̃∗iRd̃jR −m2
HuH

†
uHu −m2

Hd
H†dHd.

(2.55)

After removing all “excessive” freedom through possible field redefinitions, it
becomes clear that the MSSM introduces in total 105 new parameters in addition
to the SM parameters. The superpotential parameter µ is the only one that does
not come from the soft breaking terms.

2.7 Radiative electroweak symmetry breaking

In the Standard Model, the massive vector bosons (and also the fermions) acquire
mass through electroweak symmetry breaking (the Higgs mechanism), describen
in Sec. 1.4. In the MSSM, the soft terms are accountable for boosting the sparticle
masses, but electroweak symmetry breaking is still needed. The corresponding
mechanism in the MSSM is called radiative electroweak symmetry breaking.

In the MSSM, the scalar Higgs potential is, in terms of component fields,

V (Hu, Hd) =|µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |
2
)

+
1

8

(
g2 + g′2

) (
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2
)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2

+m2
Hu

(
|H0

u|2 + |H+
u |2
)

+m2
Hd

(
|H0

d |2 + |H−d |
2
)

+
[
b
(
H+
u H

−
d −H

0
uH

+
d

)
+ c.c.

]
,

(2.56)

where µ is the superpotential parameter, b, mHu and mHd are parameters from
the soft breaking terms, and g and g′ are the SU(2)L and U(1)Y couplings,
respectively. This potential has eight degrees of freedom from the four complex
scalar fields H+

u , H0
u, H−d and H0

d .
In the same way as in the Standard Model, we now want to break SU(2)L ×

U(1)Y down to U(1)em in order to give masses to the SM gauge bosons and
fermions. To do this, three properties are needed for the scalar Higgs potential:

– It has to be bounded from below.
– It has to have a minimum for non-zero field values.
– This minimum must have a remaining U(1)em symmetry.
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The latter can be obtained by using SU(2)L gauge freedom to set H+
u = 0 at the

minimum of the potential. One can show that this also leads to H−d = 0, since
∂V/∂H+

u = 0 at the minimum. In that case, U(1)em symmetry is guaranteed,
since the electrically charged fields have no vacuum expectation value. We are
then left with the potential

V (Hu, Hd) =
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2

+
1

8

(
g2 + g′2

) (
|H0

u|2 − |H0
d |2
)2 −

(
bH0

uH
0
d + c.c.

)
.

(2.57)

It can be shown [22] that the two former conditions for electroweak symmetry
breaking are fulfilled if

b >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
, (2.58)

and
2b < 2|µ|2 +m2

Hu +m2
Hd
, (2.59)

where Eq. (2.58) ensures that the potential has a minimum for non-zero field
values — or in other words: a negative mass term — and Eq. (2.59) ensures that
the potential is bounded from below.

Like any other quantum field theory, the MSSM is subject to renormalization,
which leads to RGE running of the coupling constants and masses of the model,
as discussed in Sec. 1.5. If we assume that m2

Hu
= m2

Hd
at some high energy

scale, e.g. ΛGUT ∼ 1016 GeV, Eqs. (2.58) and (2.59) cannot simultaneously be
satisfied at that scale. However, both these masses run down with energy, and the
extent of the running is mostly determined by their Yukawa couplings. Since the
top Yukawa coupling dominate the running of m2

Hu
, while the bottom Yukawa

coupling does the same form2
Hd

, the former runs down much faster than the latter,
and can in fact become negative. In that case, both of the above equations can be
fulfilled simultaneously, leading to the wanted symmetry breaking. This is called
radiative electroweak symmetry breaking (REWSB), and gives an explanation for
the Higgs mechanism. The term radiative comes from the fact that the symmetry
breaking in this case is driven by quantum corrections from the running. This
is in contrast to the Standard Model, where the Higgs mechanism is put in by
hand.

One of the wanted results of the symmetry breaking is that the neutral com-
ponents of both the Higgs doublets acquire a non-vanishing vacuum expectation
value, vu = 〈H0

u〉 and vd = 〈H0
d〉, respectively. These must relate to the Standard

Model vector boson masses through

v2 = v2
u + v2

d =
2m2

Z

g2 + g′2
≈ (174 GeV)2. (2.60)

This relation gives one free parameter, for the vevs, which conventionally is
parametrized as

tan β ≡ vu
vd
, (2.61)
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Table 2.2: The particle spectrum of the MSSM. SM fermions and bosons are
not included.

Name Spin PR Gauge eigenstates Mass eigenstates

Higgs bosons 0 +1 H0
u H

0
d H

+
u H−d h0 H0 A0 H±

squarks 0 −1

ũL ũR d̃L d̃R (same)

s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

sleptons 0 −1

ẽL ẽR ν̃e (same)

µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃

0
d χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

charginos 1/2 −1 W̃± H̃+
u H̃−d χ̃±1 χ̃±2

gluino 1/2 −1 g̃ (same)

where 0 < β < π/2.
Using the condition for the existence of an extremal point (minimum),

∂V

∂H0
u

=
∂V

∂H0
d

= 0, (2.62)

b and |µ| can be eliminated as free parameters from the model.6 Alternatively,
we can choose to eliminate m2

Hu
and m2

Hd
.

2.8 Particle phenomenology of the MSSM

The field content of the MSSM was presented in Sec. 2.6, along with some infor-
mation on what particles the different fields form. In this section, more detailed
information on the physical particles will be given. To get an overview, all of the

6However, not the sign of µ.
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supersymmetry particles (and Higgs) in the MSSM are listed in Table 2.2. The
SM fermions and bosons are not included.

As previously noted, each Standard Model fermion get two superpartner scalar
particles, with the same gauge charges. For instance, the superpartners of the
up-quark u are labeled ũR and ũL, where the indices R and L denote that they
couple to the left- and right-handed parts of the up-quark, respectively. Due
to effects from supersymmetry breaking and electroweak symmetry breaking,
the sparticle mass eigenstates are in general mixtures of the gauge eigenstates.
For the sfermions (sleptons and squarks), the amount of mixing can be shown
to be proportional to the masses (or more precisely, the Yukawa couplings) of
their corresponding SM fermions, and is therefore negligible for the two first
generations. All mixed mass eigenstates are numbered according to increasing
mass, e.g. t̃1 is the lighter of the two stops.

The fermionic superpartners of the SM gauge bosons are collectively called
gauginos. From Table 2.2, we see that the gauge and mass eigentstates are
identical for the gluino, the superpartner of the Standard Model gluon. This is
because the gluino is a color octet Majorana fermion, and thus has nothing to
mix with in the MSSM. The superpartners of the B0 and W 1,2,3 fields, which
in the SM make up the photon, Z and W± bosons, B̃0, W̃ 0 and W̃±, mix with
the superpartner Higgs fields (the higgsinos) and form the so-called neutralinos
and charginos. The neutralinos are four neutral Majorana fermions, labeled
χ̃0
i , i = 1, ..., 4, while the charginos are two charged fermion–antifermion pairs,

labeled χ̃±i , i = 1, 2, as seen in the above table. The lightest neutralino χ̃0
1 is the

lightest supersymmetric particle (LSP) in most of the MSSM parameter space.

The mixing of the MSSM Higgs sector was touched on already in Sec. 2.6. In
addition to the Standard Model like Higgs h, there are four other scalar Higgs
particles after mixing (the Higgs mechanism), labeled H, H± and A0. H is also
a neutral scalar such as h, except for its larger mass, and is therefore often called
“heavy Higgs”, in contrast to the “light Higgs” h which is similar to the one in
the Standard Model.

2.8.1 Sparticle masses

The main contributions to the sparticle masses come from the soft supersymmetry
breaking terms, which should not come as a surprise, since these terms were
introduced to produce the mass differences between the SM and supersymmetry
particles required by experiment. The mass parameters from these terms are
the gaugino mass parameters M1,2,3, the sfermion mass parameters mf

ij, and the
Higgs mass parameters mHu and mHd . Also the parameter µ, which couples the
two Higgs doublets in the superpotential, contributes.

Expressions for the different sparticle masses are given below.
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• At tree level, the different Higgs masses can be shown to be

m2
A =

2b

sin 2β
= 2|µ2|+m2

Hu +m2
Hd
, (2.63)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2 2β

)
, (2.64)

mH± = m2
A +m2

W . (2.65)

• The gluino mass is given by

mg̃ = M3

[
1 +

αs
4π

(
15 + 6 ln

µ

M3

+
∑
all q̃

Aq̃

)]
, (2.66)

where αs is the strong fine-structure constant, and Aq̃ are one-loop squark
contributions given by

Aq̃ =

∫ 1

0

dx x ln

(
x
m2
q̃

M2
3

+ (1− x)
m2
q̃

M2
3

− x(1− x)− iε
)
. (2.67)

• The neutralinos χ̃0
i are the mass eigenstates of the neutral bino, wino and

higgsino fields. In the gauge eigenstate basis

(ψ̃0)T =
(
B̃0, W̃ 0, H̃0

d , H̃
0
u

)
, (2.68)

the neutralino mass term can be written as

Lmχ̃0 = −1

2
(ψ̃0)TMχ̃0ψ̃0. (2.69)

At tree level, the mass matrix may be written as

Mχ̃0 =


M1 0 −cβsθWmZ sβsθWmZ

0 M2 cβcθWmZ −sβcθWmZ

−cβsθWmZ cβcθWmZ 0 −µ
sβsθWmZ −sβcθWmZ −µ 0

 , (2.70)

where cx = cosx and sx = sinx, and θW is the weak mixing angle. The
neutralino masses can be found by diagonalizing this matrix.

• Similarly, the charginos are the mass eigenstates of the charged wino and
higgsino fields. In the gauge eigenstate basis

(ψ̃±)T =
(
W̃+, H̃+

u , W̃
−, H̃−d

)
, (2.71)
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the chargino mass matrix may be written as

Mχ̃± =


0 0 M2

√
2cβmW

0 0
√

2sβmW µ

M2

√
2sβmW 0 0√

2cβmW µ 0 0

 . (2.72)

As for the neutralinos, the chargino masses can be found by diagonalizing
this matrix.

• It was stated above that the first two generations of sfermions (to a good
approximation) do not experience mixing. It can be shown that these
sfermions therefore “only” get masses according to

m2
F = m2

F,soft + ∆F , (2.73)

where m2
F,soft is the contribution from soft mass terms of the form m2

F F̃
†F̃ ,

and ∆F is given by

∆F = (T3F −QF sin2 θW ) cos (2β)m2
Z . (2.74)

Here, T3F and QF are the weak isospin and electric charge, respectively,
of the left-handed supermultiplet F to which the sfermion belongs. For
example, the masses of the left- and right-handed up squarks are

m2
ũL

= m2
Q1

+ ∆ũL , (2.75)

m2
ũR

= m2
u1

+ ∆ũR , (2.76)

respectively.

The mass splitting between same generation sleptons/squarks is then uni-
versal, and given by

m2
ẽL
−m2

ν̃L
= m2

d̃L
−m2

ũL
= − cos (2β)m2

W . (2.77)

• Both the Yukawa and trilinear couplings are larger for third generation
sfermions than for sfermions from the two first generations. Third gen-
eration sfermions thus have more complicated mass contributions. As an
example, in the gauge eigenstate basis (t̃L, t̃R) for the stop quarks, the mass
term is given by

Lmt̃ = −(t̃L, t̃R)m2
t̃

(
t̃L
t̃R

)
, (2.78)

where the mass matrix is

m2
t̃ =

[
m2
Q3

+m2
t + ∆ũL v(a∗t sin β − µyt cos β)

v(at sin β − µ∗yt cos β) m2
u3

+m2
t + ∆ũR

]
(2.79)

The mass eigenstates t̃1 and t̃2 can be found by diagonalizing this matrix.
Similar expressions exists for sbottom squarks and staus.
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Figure 2.1: RGE evolution of the inverse couplings α−1
i = 4π/g2

i in the
Standard Model (dashed lines) and the MSSM (solid lines) to two-loop order.
Figure taken from [22].

2.9 Gauge coupling unification

As discussed in Sec. 1.6, one of the main motivations for extending the Standard
Model is that it does not unite the three coupling constants g′, g and gs at some
high energy scale. In supersymmetry, however, the evolution of the couplings is
altered, and they can meet in a single point.

More specifically, with the MSSM field content, and the couplings

g1 =

√
5

3
g′, g2 = g and g3 = gs, (2.80)

the gauge couplings intersect at the GUT scale ΛGUT ≈ 2×1016 GeV, see Fig. 2.1.
The assumption is that a unified gauge group, e.g. SU(5) or SO(10), is broken
down to the SM gauge group at that scale.7

An interesting feature can occur from this. If we assume, as explained above,
that the coupling constants unify to a common coupling gu at the GUT scale,
and also that the gauginos have a common mass at the same scale: m1/2 =
M1(ΛGUT) = M2(ΛGUT) = M3(ΛGUT), RGE evolution of the gaugino mass pa-
rameters Mi leads to the strikingly simple relation at one-loop level:

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
m1/2

g2
u

, (2.81)

7The somewhat odd normalization choice for g1 is the correct numerical factor when break-
ing SU(5) or SO(10) down to the SM group. This factor might be different for a different
unified group.
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which is valid at all scales. In terms of the electromagnetic and strong fine-
structure constants α and αs, and the weak mixing angle θW , this leads to

M3 =
αs
α

sin2 θWM2 =
3

5

αs
α

cos2 θWM1, (2.82)

which at a scale of 1 TeV numerically predicts

M3 : M2 : M1 ≈ 6 : 2 : 1. (2.83)

If the lightest neutralino is mostly bino, and the second lightest neutralino and
lightest charginos are mostly wino, which is true as long as |mu| �M1,M2, this
gives the following relations between the sparticle masses:

mg̃ ≈ 6mχ̃0
1

and mχ̃0
2
≈ mχ̃±1

≈ 2mχ̃0
1
. (2.84)

2.10 GUT scale motivated models

As briefly mentioned in Sec. 2.6.1, the MSSM introduces over 100 new param-
eters, where most of them come from the soft supersymmetry breaking terms.
This means that further restricting assumptions on the supersymmetry breaking
mechanism are needed to improve predictability.

2.10.1 The constrained CMSSM

A much studied theory is the Constrained MSSM (CMSSM), also known as min-
imal supergravity (mSUGRA). Planck-scale Mediated Supersymmetry Breaking,
which was introduced in Sec. 2.5, is assumed in the CMSSM. Motivated by the
wish for gauge unification, one also assumes a minimal form for the parameters
at the GUT scale, resulting in a highly predictive theory parametrized by just
four “and a half” free parameters:

m1/2, m0, A0, tan β and sign(µ). (2.85)

The mass parameters m0 and m1/2 are the common scalar and gaugino masses,
respectively, at the GUT scale. Further, A0 is the common trilinear coupling,
tan β was introduced in Sec. 2.7, while sign(µ) is the sign of the by now well-
known superpotential parameter µ.

The CMSSM is defined by choosing these input parameters at the GUT scale.
By evolving the mass parameteres m0 and m1/2 down to a lower scale, the mass
splitting between the individual sparticles appears. This is shown in Fig. 2.2 for
a particular choice of the CMSSM parameters. This figure also shows that the
quantity (µ2 +m2

Hu
)1/2 (which appears in the Higgs potential) runs negative for

low energies, providing for radiative electroweak symmetry breaking, as discussed
in Sec. 2.7.
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Figure 2.2: RGE evolution of the sfermion and gaugino masses in the MSSM,
with CMSSM conditions m0 = 300 GeV, m1/2 = −A0 = 1000 GeV, tanβ =
15, and sign(µ) = +. Figure taken from [22].

2.10.2 Non-Universal Higgs Mass models

While the universality of the sfermion masses is motivated by GUT theories,
universality in the Higgs sector is less theoretically motivated. It can thus be
tempting to generalise the CMSSM by letting the soft Higgs masses, m2

Hu
and

m2
Hd

, be non-universal.
The first Non-Universal Higgs Mass (NUHM1) model is a such a generalisa-

tion, which includes a common (but non-universal) soft Higgs mass at the GUT
scale different from the common scalar mass m0. It has only one single additional
parameter, namely mH :

m2
Hu = m2

Hd
≡ m2

H , (2.86)

which is the common mass for the two soft Higgs masses at the GUT scale.
A further generalisation can be done by allowing the two soft Higgs masses to

take different values at the GUT scale, which is done in the second Non-Universal
Higgs Mass (NUHM2) model.

The non-universality of the model may then either be parametrized by m2
Hu

and m2
Hd

, or, by using Eq. (2.62), these may be eliminated for b and |µ|, where b
in turn can be traded for the pole mass mA of the pseudo-scalar Higgs A0, using
Eq. (2.63).





Chapter 3

The hierarchy problem and
naturalness

The concept of naturalness, concerning how comfortable we are with large num-
bers cancelling seemingly by chance, has been an important topic in particle
physics over the last 30 years. However, with the discovery of the Higgs bo-
son in 2012, the question of naturalness has come to the forefront. It turns out
that the Higgs mass predicted by the Standard Model is off by ∼ 14–16 orders
of magnitude compared to the measured mass. Whereas the Standard Model
offers no explanation for this, and is thus regarded as a highly unnatural the-
ory, supersymmetry provides an elegant solution. This is regarded as one of the
main motivations for supersymmetry. However, since supersymmetry must be
broken in order to produce the mass differences between the Standard Model
and supersymmetric particles required by experiment, the problem is partially
reintroduced, and needs to be taken into account also when considering super-
symmetric theories.

3.1 The hierarchy problem

The physical Higgs boson mass squared can be expressed as

m2
h = (m0

h)
2 + ∆m2

h, (3.1)

where m0
h denotes the “bare” (non-renormalized) Higgs mass, closely related to

the Higgs parameter µ in the SM Lagrangian1, see Eq. (1.39), and ∆mh represents
the radiative corrections to this mass due to self-energy loop diagrams like the
ones in Fig. 3.1. Here, f is some fermion and s is some scalar, while λf and λs
are their couplings to the Higgs boson. There exists diagrams like these for all
the massive fermions and bosons in the SM, including the Higgs itself.

1Not to be confused with µ in the MSSM superpotential.
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(a) Fermion loop. (b) Scalar loop.

Figure 3.1: One-loop contributions to the Higgs mass from fermions (a) and
scalars (b). The largest contribution in the SM is from the top quark, for
which λf = λt ∼ 1. Figures taken from [23].

When evaluated in quantum field theory, these loop contributions diverge —
meaning that they are infinite. This is clearly a problem, since the Higgs boson
mass has been found to be ∼ 125 GeV [24]. However, regularization, introduced
in Sec. 1.5, comes to the rescue. By arguing that the SM is not valid at very
high energies, where we know we need a yet to be discovered quantum theory of
gravitation, a cut-off scale Λ (regulator) can be introduced to limit the integrals
in the loop corrections to energies below this scale. The loop corrections to the
Higgs mass, at leading order in Λ, is then

∆m2
h = −|λf |

2

8π2
Λ2 +

λs
16π2

Λ2 + ..., (3.2)

where the first term comes from fermion loops and the second term comes from
scalar loops. The terms left out are at most logarithmically dependent on Λ. This
high energy cut-off scale Λ is often taken to be the GUT scale, Λ = ΛGUT ∼ 1016

GeV, or the Planck scale, Λ = ΛP ∼ 1018 GeV, which gives very large corrections.
Since there is no apparent symmetry between the fermion and boson masses

of the SM that could lead to an internal cancellation of the contributions to ∆m2
h,

it is difficult to keep the Higgs mass at the electroweak scale of 102 GeV. This
is known as the hierarchy problem.2 In order to cancel the radiative corrections
and end up with a physical Higgs mass of ∼ 125 GeV, the contributions with
different sign would have to be extremely fine-tuned. The hierarchy problem is
therefore also referred to as a fine-tuning problem.

2In cosmology, the cosmological constant, observed as dark energy, is constrained by obser-
vations to be very tiny, i.e. around 10−3 eV. This is a hierarchy problem similar to that of the
Higgs boson mass, but worse, since the cosmological constant interpreted as vacuum energy is
also very sensitive to quantum corrections.
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3.1.1 Supersymmetry solution

Introducing supersymmetry into the problem will increase the number of correc-
tion terms to the Higgs mass because of all the new supersymmetric particles.
However, as supersymmetry is a fermion-boson symmetry, the correction terms
from SM fermions turn out to cancel the correction terms from the new SUSY
bosons, and vice versa. This is because there are exactly twice as many bosons
as fermions in supersymmetry, and their couplings can be shown to satisfy the
relation

|λf |2 = λs. (3.3)

For unbroken supersymmetry, the cancellation is exact for all orders of Λ, because
the particles and their corresponding sparticles are mass degenerate. This is one
of the main motivations for SUSY in the first place. In this case, the physical
Higgs mass would simply correspond to the bare Higgs mass m0

h.
However, since no sparticles have yet been observed, we know that SUSY is

a broken symmetry. This makes the non-leading order terms in the expression
for the correction, Eq. (3.2), important, as they are mass dependent. For softly
broken supersymmetry, we end up with contributions to the Higgs mass of at
most

∆m2
h = − λs

16π2
m2
s ln

(
Λ2

m2
s

)
+ ... (3.4)

at leading order in Λ, where ms is the mass scale of the soft breaking terms,
which can be seen as the “extra” mass of the SUSY particles compared to their
corresponding SM particles.3 This is regarded as the main motivation for SUSY
to be manifest at a relatively low energy scale, because ms can not be too large
if the above corrections ought to be small. In fact, ms ∼ O(1 TeV) is needed
in order to keep the corrections of the same size as the tree level terms. This is
often called the little hierarchy problem.

3.2 Naturalness

As explained in the previous section, the introduction of superpartners provides
a solution to the “big” hierarchy problem in the Standard Model. But we are still
left with the little hierarchy problem, due to the fact that SUSY is broken. It
appears that a minimum of parameter fine-tuning is required in order to obtain
predictions in agreement with observations.

Theories that require fine-tuned cancellations of large numbers in order to
explain results are often thought to be theoretically unsatisfactory, or rather
unnatural. It has been argued that fundamental parameters should be indepen-
dent and uncorrelated. This has led to the concept of naturalness in theoretical

3In fact, the name “soft term” is given to those possible SUSY breaking terms that at worst
give mass corrections logarithmic in Λ.
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physics, which can be interpreted as the heuristic rule that parameters in a fun-
damental physical theory should not be too fine-tuned.4,5

Historically, the concept of naturalness has been formulated in several differ-
ent ways. ’t Hooft was the first to formulate a naturalness criterion in relation
to particle physics, concerning small parameters and symmetries: in the late
1970s [26], he stated that a dimensionless parameter

is allowed to be much smaller than unity only if setting it to zero
increases the symmetry of the theory. It this does not happen, the
theory is unnatural.

Around the same time, Susskind stated [27] that naturalness means that

the observable properties of a theory should be stable against minute
variations of the fundamental parameters.

This latter formulation is closer to the understanding of naturalness that we take
on in this thesis, which will become clear shortly.

Obviously, the concept of naturalness does not only apply to the SM — which
is an extreme case — and supersymmetric models. However, since one of the main
reasons for investigating supersymmetry in the first place is that it provides a
solution to the hierarchy problem, naturalness arguments have increased rele-
vance to studies of supersymmetry. As we investigate in this thesis, experimental
searches push the lower bounds on SUSY masses upwards. This causes the mini-
mum fine-tuning that SUSY can have to increase, lowering our confidence in that
the universe is supersymmetric at low energies.6

The question then becomes how much fine-tuning we are comfortable with.
In order to answer that, we first need to introduce a measure for naturalness. A
quantitative analogue of Susskind’s formulation is introduced below.

3.2.1 Quantifying naturalness

As we have seen above, to keep the little hierarchy problem at bay, the soft masses
of the sparticles can not be too far above the weak scale. However, these are free
parameters of the theory, parametrizing our ignorance of the true (spontaneous)
SUSY breaking at a possibly very high energy scale. A popular measure for
naturalness is defined in terms of this tension between the electroweak scale,

4It is important to stress that this is an aesthetic criterion, not a physical one, but it has
shown to be a powerful guiding principle in physics.

5Almost every branch of science has its own version of the naturalness concept. For example,
in agriculture it refers to the acceptable level of product manipulation, while it in environmental
sciences refers to the degree to which an area is pristine, i.e. free from human influence [25].

6However, high fine-tuning in itself should not be regarded as an argument to completely
rule out a theory. That would immediately rule out the Standard Model.
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represented by the Z boson mass mZ , and the model parameters. In the 1980s,
Barbieri and Giudice quantified naturalness — in the following denoted c — by
relating it to the sensitivity of mZ with respect to the model parameters θi [28]:

c ≡ max
i
{|cθi |}, (3.5)

where

cθi =
∂ lnm2

Z

∂ ln θi
=

θi
m2
Z

∂m2
Z

∂θi
. (3.6)

A model with c = 10 suffers from a parameter tuning of no more than 10%,
a model with c = 100 of no more than 1%, and so on. This means that the
higher the naturalness score, the more fine-tuned are the parameters, and the
more unnatural is the theory. In the original paper, Barbieri and Giudice chose
the number 10 as a natural upper bound on c. However, as the experimental
constraints became stronger, this limit has been pushed upwards. In this work,
we will be rather agnostic about what exact amount of fine-tuning we will con-
sider as natural, and rather quantify what we can learn about naturalness in
supersymmetry from collider experiments.

3.3 Natural supersymmetry

In Eqs. (3.5) and (3.6), i runs over all the parameters in the model, in principle
including the Standard Model parameters. However, by requiring that the Z
boson mass corresponds to a minimum of the scalar potential in the radiative
electroweak symmetry breaking of the MSSM, mZ can be expressed in terms of
MSSM scalar potential parameters only.7 For large tan β, i.e. large values for the
ratio of the vevs of the two Higgs fields in the MSSM, we get the relation

m2
Z = −2(m2

Hu + |µ|2), (3.7)

where m2
Hu

is the soft mass for the up-type Higgs doublet, including radiative
corrections, and µ is the superpotential Higgs mixing parameter. The terms on
the right-hand side of Eq. (3.7) must combine into the correct value for mZ of
∼ 91 GeV.

Instead of worrying about the naturalness score of already existing SUSY
models, so-called Natural SUSY models [29] have emerged as the result of an
attempt at starting in the other end. They are based on the criterion that the
amount of fine-tuning from Eq. (3.7) should be kept as low as possible, which
in general is fulfilled if m2

Hu
and µ do not become too large. This is easily seen

7Standard Model parameters enter again from loop corrections to the potential, the most
important being the top Yukawa coupling.
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by calculating the sensitivity of the Z boson mass with respect to these two
parameters:

cµ =
µ

m2
Z

∂m2
Z

∂µ
=
−4µ2

m2
Z

, (3.8)

cmHu =
mHu

m2
Z

∂m2
Z

∂mHu

=
−4m2

Hu

m2
Z

. (3.9)

This requirement of small m2
Hu

and µ leads to a standard set of phenomenological
predictions for Natural SUSY models, which is summarized below.

First, as µ directly controls the higgsino masses, Natural SUSY predicts light
higgsinos. In terms of mass eigenstates, this implies, unless either M1 or M2 is
also very small, that the two lightest neutralinos and the lightest chargino are
mostly higgsino and have similar masses, see Eqs. (2.70) and (2.72). Second,
it can be shown that the most important one-loop contribution to m2

Hu
is from

top squarks, which means that also stops are expected to be light in Natural
SUSY scenarios. The left-handed sbottom also contributes at one-loop and is
expected to be rather light. Finally, at two-loop, the most important contribution
is from gluinos. Thus, gluinos are not expected to be too heavy in Natural
SUSY scenarios either. This is especially interesting, since gluinos are among the
sparticles with the most stringent constraints from the previous LHC searches.
The other sparticles not mentioned are less constrained by naturalness arguments.

In this thesis, Natural SUSY, represented by the second Non-Universal Higgs
Mass (NUHM2) model introduced in Sec. 2.10, will be investigated as a contrast
to its “parent model” CMSSM, which in general is not very natural given current
LHC constraints. The goal is to quantify the reach of future colliders for differ-
ent scenarios of these two models in terms of the range of naturalness covered,
quantified by the Barbieri–Giudice measure. We will also quantify the reach in
terms of the information gained about naturalness — a procedure that will be
explained in detail in the next chapter.

From Sec. 2.10.2, it is clear that the NUHM2 model can be parametrized by
the parameters m0, m1/2, A0, tan β, µ and mA. What regions of this parameter
space that are considered natural are discussed in Ref. [30], and the correponding
framework is referred to as Radiatively-driven Natural SUSY (RNS). The sparti-
cle mass spectrum of RNS differs from the spectrum listed above for “standard”
Natural SUSY models in that it has quite heavy stop and bottom squarks, no
lighter than 1 TeV.

A few comments should be made about the above discussion on naturalness
and Natural SUSY. It is important to stress that the Barbieri–Giudice measure
presented in Sec. 3.2.1 is only one out of several naturalness measures suggested
in the literatue. For instance, a similar measure is electroweak naturalness, which
is also based on the Z boson mass. Whereas the Barbieri–Giudice measure quan-
tifies the sensitivity of mZ with respect to changes in the model’s (possibly very
high scale) input parameters, electroweak naturalness determines the degree to
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which the parameters that enter into the expression for mZ are at the electroweak
scale themselves (low fine-tuning), or much larger (high fine-tuning).

However, when actually using the Barbieri–Giudice measure, it is not given
exactly what set of parameters that should be included in the analysis. In par-
ticular, should Standard Model parameters such as the top Yukawa coupling be
included? In principle should all the model’s parameters be included, but this is
not always feasible in practice. What parameters we include in our naturalness
analyses will be given in Chapter 5.

Finally, the basis for Natural SUSY was the fine-tuning from Eq. (3.7), i.e.
the expression for the Z boson mass. However, the introduction of naturalness
was given in context of the hierarchy problem and fine-tuning of the Higgs boson
mass. It can be argued that the fine-tuning of these two parameters are closely
related, since both are manifestations of the tension between the electroweak
scale and the soft masses at a possibly very high scale.





Chapter 4

Statistics and inference

The main goal of physics is to construct mathematical models that describe
nature. When observing some phenomenon, physicists seek to construct a math-
ematical model that predicts it. For instance, the most succesful theory of gravity
(phenomenon) to date is general relativity (mathematical model), which was pub-
lished by Einstein in 1915. How successful a model is depends on how well it
actually agrees with the observed phenomenon. But how is such a model tested?
The process of drawing conclusions about scientific models from observed data is
called statistical inference, which has two main concepts: parameter estimation
and hypothesis testing.

4.1 Parameter estimation and hypothesis

testing

In parameter estimation, we assume that the overall model is correct, but we do
not make any assumptions on the free parameters of the model a priori. We then
try to determine what values for the free parameters that are preferred by the
data. For instance, if we assume that the overall model for some quantity y is
y(x) = ax+b, where x is some other quantity and a and b are the free parameters
of the model, we want to find the values for a and b that makes the model fit the
data best. See Fig. 4.1(a).

In hypothesis testing, on the other hand, we assume that a particular model is
correct — we make a hypothesis — and ask whether this hypothesis is consistent
with the data. If not, the hypothesis can be excluded. For instance, if we assume
the same overall model as above, y(x) = ax + b, but with say a = 1.8 and
b = 5, we want to check whether this hypothesis is consistent with the data.1 See

1Hypothesis testing can also be used to test models without fixing the parameters. The
hypothesis under study is then the overall model in itself. This is often called model comparison.
We will not perform model comparison in this thesis, but both parameter estimation and
hypothesis testing with fixed parameters are used.
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(a) Parameter estimation. (b) Hypothesis testing.

Figure 4.1: Two of the main concepts in statistical inference. In parameter
estimation (a), the parameters are chosen so that the model fits the data. In
hypothesis testing (b), we check how well a particular model fits the data, and
determine whether this model (hypothesis) should be excluded or not.

Fig. 4.1(b). In this context, p-values are commonly used. The p-value is defined
as the probability, under the assumption of a hypothesis, of obtaining a result
equal to or “more extreme” (worse) than the observed data. If the p-value is low,
the hypothesis can be excluded. A p-value of 0.05 is often used as the limit for
exclusion, more about this in Sec. 4.8.

Simply put, statistical inference is all about trying to find the right model
based on a set of known outcomes. This is in many ways the opposite of stan-
dard probability theory, which is mainly concerned with predicting outcomes for
random variables given a known model. However, both concepts are dependent
on how probability is interpreted. There are actually two different approaches
to statistics, based on different interpretations of probability: frequentist and
Bayesian statistics. The difference between the two will be discussed in the next
section.

4.2 Frequentist and Bayesian statistics

In the frequentist interpretation of probability, probabilities can only be discussed
when dealing with a random and repeatable experiment. The relative frequency of
an outcome, observed in a number of repetitions of the experiment, is a measure
of the probability of that outcome. Thus, if N is the total number of trials, and
nA is the number of trials with the outcome A, the probability P (A) of outcome
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A occuring is approximated by the relative frequency

P (A) ≈ nA
N
. (4.1)

As the number of trials is increased, the relative frequency becomes a better
approximation to the “true” probability. In fact, in the frequentist approach, the
relative frequency will converge exactly to the true probability when the number
of trials approaches infinity:

P (A) = lim
N→∞

nA
N
. (4.2)

The above interpretation of probability is useful when dealing with standard
probability theory, for instance outcomes of games of chance. If we are told that
a fair coin is flipped ten times, we can calculate the probability of yielding for
example seven heads and three tails. This is often referred to as deductive logic.
However, we may also want to know something about the reverse situation: if
ten flips of a coin yields seven heads, can we say anything about whether the
coin is fair or biased? This is related to statistical inference: it is similar to the
challenges we face in physics when we try to pin down mathematical models based
on observed phenomena, rather than the other way around. It has to do with
inductive logic, or plausible reasoning, which in general is much more complex
than deductive logic. The most we can hope to do is to make the best inference
based on the experimental data and any prior knowledge we have available. The
latter — prior knowledge — is the key feature of Bayesian statistics.

In the Bayesian interpretation, the probability P (A) is defined as the degree
of belief in proposition A or the state of knowledge about proposition A. This
greatly extends the range of use of probability, since it is no longer only applicable
to random and repeatable experiments. The foundation is that the rules of
probability theory also applies for this interpretation of probability, not only the
frequentist interpretation. In the Bayesian interpretation, every proposition is
associated with a real number; the larger the numerical value associated with a
proposition, the more we believe in it. These numbers obey the usual rules of
probability theory:

P (A|I) + P (Ā|I) = 1 (sum rule), (4.3)

P (A,B|I) = P (A|B, I)× P (B|I) (product rule), (4.4)

where P (false) = 0 and P (true) = 1. Here, Ā denotes the proposition that A is
false, the vertical bar is read as “given”, and the comma is read as “and”.

The sum rule states that the probability that A is true plus the probability
that A is false is equal to one. The product rule states that the probability that
both A and B are true is equal to the probability that A is true given that B
is true times the probability that B is true (regardless of A). The probabilities
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above are all conditional on I, which denotes the relevant background information
at hand. It is important to stress that there is no such thing as an absolute
probability in the Bayesian interpretation. For instance, the probability assigned
to the proposition “it will rain tomorrow” depends on whether there are dark
clouds or a clear blue sky the evening before.

For a general introduction to Bayesian methods, see Refs. [31,32].

4.2.1 Bayes’ theorem

The sum and product rules in Eqs. (4.3) and (4.4) form the basic algebra of
probability theory, which many other results can be derived from. For instance,
Bayes’ theorem [33],

P (A|B, I) =
P (B|A, I)× P (A|I)

P (B|I)
, (4.5)

follows directly from the product rule.2 This theorem is useful because it relates
the probabilities P (A|B, I) and P (B|A, I). The importance of this property for
the present discussion becomes apparent if we replace A by “hypothesis” and B
by “data”:

P (hypothesis|data, I) =
P (data|hypothesis, I)× P (hypothesis|I)

P (data|I)
. (4.6)

We see that Bayes’ theorem relates the quantity of interest, namely the proba-
bility that the hypothesis is true given the data, to a quantity it is easier to find,
namely the probability of the observed data if the hypothesis is true.

The various factors in Bayes’ theorem have formal names. The left-hand
side of Eq. (4.6) is called the posterior probability, often just referred to as the
posterior. It represents our state of knowledge about the truth of the hypothesis
in light of the data. Oppositely, the first factor in the nominator on the right
hand side represents the probability for obtaining the observed data under the
assumption that the hypothesis is true. When interpreted as a function of the
hypothesis, it is referred to as the likelihood, and is often denoted L. The second
factor in the nominatior is called the prior probability, or simply prior, and is
often denoted π. It represents our state of knowledge about the truth of the
hypothesis before the data has been taken into account. The very concept of
this factor is hard to accept for frequentists. They argue that this opens for
subjectivity, which should not be part of probability theory. Bayesians, on the
other hand, argue that objectivity is ensured as long as two people with identical

2As Bayes’ theorem follows directly from the product rule of probability theory, it is equally
valid in both frequentist and Bayesian statistics. But in the frequentist case, it has no depen-
dency on any prior knowledge, here denoted I.
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information assign identical priors. We will return the concept of objective priors
in Sec. 4.4.

Finally, the denominator on the right hand side of Eq. (4.6) is often called the
Bayesian evidence. It corresponds to the expression in the nominator marginalized
over all possible hypotheses. For a discrete set of hypotheses Hi, which is both
exhaustive,

∑
i P (Hi|I) = 1, and mutually exclusive, this means

P (D|I) =
∑
i

P (D|Hi, I)P (Hi|I), (4.7)

where D from now on stands for “data”.
One of the key features of Bayesian statistics is that we are always allowed to

update our belief in a hypothesis as new data becomes available. The posterior
resulting from previous data then becomes the new prior.

Up until now, we have only discussed discrete probabilites. In the continuum
limit, the above sum becomes an integral, and the probabilites become probability
distribution functions (pdfs).

4.3 Exploring parameter spaces

In this thesis, Bayesian parameter estimation will be used to study the parameter
spaces of the CMSSM and NUHM2 models introduced in Sec. 2.10. A hypothesis
will in this case correspond to a particular choice of parameter values, assuming
that the underlying model is correct. Such analyses thus tell us what parameter
regions the data prefer relative to the rest of the model’s parameter space.

In Sec. 2.10, we learned that the CMSSM and NUHM2 models are param-
eterised by four and six continuous parameters, respectively, in addition to the
sign of the superpotential parameter µ for the CMSSM. However, in order for the
analyses performed in this thesis to be computationally feasible, only two of the
parameters are varied in each model scenario, while the rest are kept constant,
leaving a simple two-dimensional parameter space to scan over.3 The choice of
parameters is discussed in Chapter 5, while the general analysis method is given
below.

Starting from a model M with a set of parameters Θ, the goal of the Bayesian
parameter estimation is to use a set of data D to determine the posterior pdf for
the parameters, P (Θ|D,M). Bayes’ theorem now reads

P (Θ|D,M) =
P (D|Θ,M)P (Θ|M)

P (D|M)
≡ L(Θ)π(Θ)

Z
, (4.8)

3If the number of free parameters is increased, we quickly fall victim to the so-called “curse
of dimensionality”: if d is number of parameters studied, and n is the number of evaluation
points per parameter, the total number of evaluation points in a grid scan is nd, which quickly
becomes computationally intractable.
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where the latter expression is written in a more compact notation, which will
be used in the following. However, we emphasize that all quantites are condi-
tioned on the overall model being true, and also on any available background
information.

In this compact notation, it is evident that the likelihood L(Θ) = P (D|Θ,M)
can be interpreted as a function of the model parameters, given the data. The
likelihood is actually not a pdf itself, but it is constructed from one. For every
parameter point Θ in the model, a pdf for an observable can be constructed. As
an example, consider the Higgs mass mh. It is common to assume a Gaussian pdf
for mass measurements like this, where we often only have a central value with
an error estimate, i.e. a width. So for every parameter point Θ, we construct a
Gaussian centered at the Higgs mass mh(Θ) predicted by the given parameter
point, with standard deviation σ. By inserting the actual observed Higgs mass
mobs
h as data, this pdf can be evaluated at each point, and the resulting expression

can be interpreted as a function of the model parameters:

LHiggs(Θ) ∝ exp

[
−(mh(Θ)−mobs

h )2

2σ2

]
. (4.9)

The likelihood function thus quantifies the level of agreement between the
model and the data across the parameter space. It will become clear below
that the normalizing factor is not important in Bayesian parameter estimation,
since the denominator in Eq. (4.8) properly normalizes the posterior pdf. For
independent observables, the total likelihood can be constructed as

L(Θ) =
∏
i

Li(Θ), (4.10)

where Li(Θ) are the likelihoods for the individual observables.
The prior π(Θ) = P (Θ|M) is in this case a pdf describing our degree of

belief in a given parameter point, or, in the context of the example above, a
given value of the Higgs mass, before the data has been introduced. Results from
previous experiments or theoretical arguments may influence this belief. Finally,
the Bayesian evidence Z = P (D|M) is given by

Z =

∫
L(Θ)π(Θ)dΘ, (4.11)

where we see that the dependence on the model parameters is integrated out.
Thus, the evidence does not affect the shape of the posterior pdf across the pa-
rameter space, and is therefore nothing else than a normalizing factor in Bayesian
parameter estimation.4

4This is in contrast to Bayesian hypothesis testing in the form of model comparison, where
the evidence is a key quantity.
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Equation (4.8) gives a recipe for finding the posterior pdf for the parameters
starting from a prior pdf and a likelihood function based on the data. In addition
to the Higgs likelihood function introduced above, with the observed Higgs mass
as data, we will in this work use accelerator simulations to obtain likelihood
functions for future supersymmetry searches, which takes the rôle of data. A
detailed explanation of this procedure will be given in Sec. 4.7. But first, the
basic prior pdfs used for the parameters in this thesis is introduced in the next
section.

4.4 Objective priors

As briefly mentioned in the previous section, the prior is a pdf describing our de-
gree of belief in a given parameter point before the data has been introduced. The
prior π(Θ) is constructed from the priors πi(θi) for each individual, independent
parameter:

π(Θ) =
∏
i

πi(θi). (4.12)

But what priors should we assign the individual parameters of the supersymmetry
models we are studying? The objective Bayesian approach is to assign priors
according to a set of common principles for how information, or the lack thereof,
should be translated into a probability distribution. We will not go into much
detail on the various principles proposed in this thesis, as this is a extensive topic,
but rather just briefly introduce the simplest one and present two of the resulting
priors that are widely used.

The principle of transformation group invariance states that the prior should
be invariant under any transformation that is considered irrelevant to the prob-
lem. It is applicable when the only available information about a parameter is
what rôle it plays in the model. For a location parameter x, this means that the
prior π(x) should be invariant under a constant coordinate translation x′ = x+a:

π(x)dx = π(x′)dx′ = π(x+ a)d(x+ a)⇒ π(x) = π(x+ a), (4.13)

where the latter expression holds because d(x + a) = dx. From this it follows
that the prior π(x) must be uniform, often referred to as flat, i.e. π(x) ∝ 1. Flat
priors have a long history in Bayesian statistics.

A scale parameter is a parameter that brings a definite scale into the problem,
for instance some mass parameter m. In this case, the prior π(m) should be
invariant under a scaling m′ = cm, where c is a constant:

π(m)dm = π(m′)dm′ = π(cm)d(cm) = π(cm)cdm. (4.14)

This is satisfied if the prior π(m) has the form π(m) ∝ 1/m, which is called a
log prior. The somewhat misleading name “log” is used because it corresponds
to the prior π(log(m)) being uniform.
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(a) Flat prior. (b) Log prior.

Figure 4.2: Priors π(θ) used for the individual parameters in this thesis.
Hard cuts (θmin, θmax) on the allowed parameter ranges are imposed, avoiding
the problem of improper priors not integrating to unity.

Technically, both flat and log priors on the real numbers do not integrate to
unity — a property that is required for pdfs — and are thus so-called improper
priors. But if the likelihood falls off quickly enough, such priors can indeed
produce properly normalized posteriors, and are still used. In this thesis, however,
hard cuts (θmin, θmax) on the allowed parameter ranges are imposed, avoiding this
problem, see Fig. 4.2. The price we pay for this is excluding parts of the a priori
allowed parameter range. We discuss this more in Sec. 5.1.

Since the flat and log priors introduced above originate from a common princi-
ple for how prior information (or the lack thereof) should be handled in Bayesian
statistics, they are so-called objective priors. But even so, the choice of prior
will indeed affect the resulting posterior, depending on the strength of the data.
For very strong data, the posterior will be dominated by the likelihood function,
and so the choice of prior will be largely irrelevant. On the other hand, if the
posteriors resulting from different priors vary significantly, the data is not strong
enough to dominate the prior. In this thesis, we will investigate the strength of
different data by comparing the resulting posteriors from both flat and log priors.
See Fig. 4.3 for an illustration of this, where the posteriors resulting from a flat
and a log prior are very similar, i.e. the data is strong enough to dominate the
posterior.
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4.5 The Kullback–Leibler divergence

Bayes’ theorem in Eq. (4.8) tells us how we should upgrade our belief in a given
parameter point Θ in light of new data, i.e. how to go from π(Θ) (prior) to
P (Θ|D) (posterior). The posterior is interesting in itself, as it tells us what
regions of parameter space that are preferred by the data. However, it does not
tell us anything about how much information we have gained from the data. In
this thesis, we want to ask questions of the form “what data are most informative,
i.e. what type of particle accelerator should we spend money on”. In order to
answer this, we need to introduce a measure for the information gain.

The Kullback–Leibler divergence [34] can be used as a measure of the infor-
mation gained in moving from a prior distribution to a posterior distribution,
or reversely: the amount of information lost when the prior is used to approxi-
mate the posterior. In the notation of Bayesian parameter estimation introduced
above, it is defined as

DKL ≡
∫
P (Θ|D) ln

[
P (Θ|D)

π(Θ)

]
dΘ. (4.15)

It can be shown that the Kullback–Leibler divergence is always positive, DKL ≥ 0,
with equality only if the two distributions are identical. Thus, the greater the
value of DKL, the more we have learned from the data. It is also easy to show that
the Kullback–Leibler divergence is invariant under a parameter transformation
Φ(Θ).

A simple example illustrating priors, posteriors and the Kullback–Leibler di-
vergence is given below.

4.5.1 Example

To illustrate the Kullback–Leibler divergence introduced above, we will consider
a simple toy model with a single parameter θ. Both flat and log priors are used
for this parameter,

πflat(θ) ∝ 1, (4.16)

πlog(θ) ∝ 1

θ
, (4.17)

so that their corresponding DKL values can be compared. We will use a Gaussian
likelihood function with mean θ0 and standard deviation σ,

L(θ) ∝ exp

[
−(θ − θ0)2

2σ2

]
, (4.18)

obtained from some data D. From the two priors and this likelihood, the two
correponding posteriors can easily be found through Bayes’ theorem:

Pflat/log(θ|D) ∝ L(θ)πflat/log(θ). (4.19)
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Figure 4.3: Qualitative illustrations of the prior (blue), likelihood (black),
posterior (red) and DKL integrand (dashed green) for two different priors. The
assumed likelihood L(θ) is the same in the two plots, and for the flat prior in
(a), it coincides with the posterior.

When evaluating this numerically, hard cuts are set on the parameter range,
avoiding the problem of the priors not integrating to unity. Both the priors and
posteriors are then easily normalized, and it is straightforward to calculate the
Kullback–Leibler divergence given by Eq. (4.15). Figure 4.3 shows qualitative
illustrations of the prior, likelihood, posterior and DKL integrand for the two
different priors. The likelihood L(θ) is the same in the two subplots, and for the
flat prior in (a), it coincides with the posterior. Note that the DKL integrand is
partially negative.

As a quantitative example, consider the simple case (θmin, θmax) = (0.05, 1),
θ0 = 0.5 and σ = 0.1. For a flat prior, the Kullback–Leibler divergence is then
Dflat

KL = 0.83, while it for a log prior is Dlog
KL = 1.19. The exact values are not

important here, but we see that Dlog
KL > Dflat

KL , meaning that the information
gain for a symmetric likelihood is greatest when starting from a logarithmic
prior, compared to starting from a flat prior. By comparing the visual difference
between the prior and the posterior in the two illustrative subplots of Fig. 4.3, it
is easy to argue that this makes sense — the difference between the two is indeed
largest for the log prior.

If we consider the exact same example, but with σ = 0.15, i.e. a little wider
Gaussian, the numbers are Dlog

KL = 0.64 and Dflat
KL = 0.44. As expected, Dlog

KL is
still greater that Dflat

KL . However, in this case, the data is not as strong as in the
previous example, and the Kullback–Leibler divergence is thus lower, for both
priors.
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4.6 Marginalization

The previous section explains how the gain in information about a model’s pa-
rameter space, when moving from prior to posterior, can be quantized through the
Kullback–Leibler divergence. However, we are also interested in the Kullback–
Leibler divergence for other properties of the model, such as the Baribieri–Giudice
naturalness measure introduced in Chapter 3. In fact, one of the main goals of
this thesis is to quantify how much we can learn about naturalness from different
data. In order to calculate this quantity, we first need to determine the prior
and posterior for naturalness in the parameter space studied, which are also in-
teresting distributions in themselves. This is done by marginalization, which is
explained below. For simplicity we will only refer to the posterior, but the same
approach also applies to the prior.

From Eqs. (3.5) and (3.6), it is clear that the Barbieri–Giudice measure is a
function of the model parameters, i.e. c(Θ). The posterior for such a function can
relatively easily be obtained from the posterior for the parameters themselves,
we simply need to perform a change of variable from Θ to c. The starting point
for this change of variable is the joint posterior for both c and Θ, which is related
to the posterior P (Θ|D) for the parameters through

P (c,Θ|D) = P (c|Θ,D)P (Θ|D). (4.20)

The first factor on the right hand side of this expression is a pdf relating c and
Θ. Since the value of c is completely determined by the parameters Θ, i.e.
independent of any data, this factor takes the simple form of a delta function:5

P (c|Θ,D) = δ(c(Θ)− c). (4.21)

The posterior for c is related to the joint posterior through marginalization over
the model parameters:

P (c|D) =

∫
P (c,Θ|D)dΘ =

∫
δ(c(Θ)− c)P (Θ|D)dΘ, (4.22)

which corresponds to weighting all values of c by the posterior probability for the
corresponding parameter point(s).

In this thesis, all of this is done numerically, and the posterior P (Θ|D) is
approximated by Monte Carlo methods. The result is a set of sampled parameter
points Θi distributed according to P (Θ|D). Due to the delta function in the
joint posterior P (c,Θ|D), we can obtain a set of samples (c,Θ)i distributed
according to this posterior by simply calculating ci = c(Θi) for each sampled Θi.
Finally, the marginalization in Eq. (4.22) then corresponds to histogramming
these samples in terms of c only.

5Note that multiple parameter points Θi may map to the same value of c.
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When both the naturalness prior π(c) and posterior P (c|D) have been found
following the above recipe, it is straightforward to calculate the Kullback–Leibler
divergence for naturalness.

4.7 Likelihoods from accelerator simulations

Our prior state of knowledge, or ignorance, about parameter space is modified
by data through the likelihood function. In Sec. 4.3 we introduced the Higgs
likelihood function with the observed Higgs mass as data. In this section, we
will explain how likelihood functions for future supersymmetry searches are ob-
tained from accelerator simulations, which for the work presented in this thesis
correspond to data.

4.7.1 Monte Carlo event generation

Monte Carlo event generators are software libraries that simulate high-energy
particle physics events. In this thesis, Monte Carlo event generation is used to
investigate future collider searches for supersymmetry. We will consider several
search analyses for two different future colliders: the planned International Linear
Collider (ILC), with centre-of-mass energy options of 500 GeV and 1 TeV, and the
already approved High-Luminosity Large Hadron Collider (HL-LHC), operating
at a centre-of-mass energy of 14 TeV and collecting up to 3000 fb−1 of data. The
focus of this thesis wil be the ILC results

The different search analyses are presented in detail in the next chapter. How-
ever, the general statistical procedure is the same for all analyses, and is presented
in the following. For each parameter point, a total of Ntot SUSY events are gen-
erated. These events are then propagated through our implementation of the
given analysis, which consists of a set of cuts designed to isolate a specific SUSY
production signature. One cut can for example be a lower limit on the number
of final leptons in the event. Some analyses have multiple signal regions, corre-
sponding to different sets of cuts on the same events. The number of accepted
events, i.e. the number of events that pass the cuts for a particular signal region
at a given parameter point, is in the following denoted Nacc.

The above discussion is only concerned with SUSY signal events. However,
there are Standard Model processes that produce signatures similar to supersym-
metry signatures. The number of SM events that pass the cuts for a particular
signal region is referred to as the Standard Model background, and is in the fol-
lowing denoted b. The background is of course independent of the considered
SUSY parameter point, and is thus a fixed value for each signal region. We will
not perform background simulations in this work, but rather use the background
estimates supplied by the experimental analyses we use.
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4.7.2 Number of signal events

For a given parameter point, the ratio between the number of accepted events
Nacc (for a given signal region) and the total number of SUSY events Ntot in
a Monte Carlo event generator should be the same as the physical ratio if this
parameter point is realised in nature. This gives us the relation

NMC
acc

NMC
tot

=
Nacc

Ntot

, (4.23)

where MC stand for Monte Carlo. The number of accepted events Nacc is the
number of events in which the requirements for a given signal region are met, and
is therefore often referred to as the number of signal events, s. The (physical)
expected number of signal events can be estimated through

s '
(
NMC

acc

NMC
tot

)
Ntot = EMCLσtot, (4.24)

where EMC ≡ NMC
acc /N

MC
tot is called the selection efficiency or Monte Carlo factor,

and Ntot = Lσtot is the standard event rate expression from the integrated lu-
minosity and total cross section. The integrated luminosity L =

∫
Ldt depends

on how much data that has been collected, and thus varies from collider to col-
lider, while σtot is the total cross section for all supersymmetry processes, which
depends on the considered parameter point.

When finding s following the above recipe, it is important that the selection
efficiency is as accurate as possible, to avoid Monte Carlo fluctutations influencing
the result. The total number of generated events NMC

tot should therefore be large,
forcing the selection efficiency to converge to its “true” value. In this work,
Monte Carlo event generators are used to determine both EMC and σtot at leading
order, except for when more sophisticated alternatives (with loop corrections) are
available for the cross section. The details of the different software used will be
given in the next chapter.

4.7.3 Likelihood

The previous sections introduced the concept of Monte Carlo event generators
and explained how these allow for finding the number of SUSY signal events for
different signal regions at each parameter point. But how is this related to the
likelihood function we set out to find?

In counting experiments like this (either we keep an event or we discard it),
where the number of events is very large (Ntot →∞), the probability of keeping
an event is low (p → 0), and the expected number of kept events is constant
(Ntotp → ν), the actual number of kept events n is said to follow a Poisson
distribution, given by

P (n; ν) =
νne−ν

n!
. (4.25)
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The distribution P (n; ν) gives the probability of getting n events when the ex-
pected number of events is ν. In our case, the expected number of events is s+ b,
where s is the expected number of signal events given by Eq. (4.24), and b is the
expected number of SM background events. Equation (4.25) can thus be written
as

P (n; s+ b) =
(s+ b)ne−(s+b)

n!
. (4.26)

In this work, the likelihood function is constructed from the cumulative Pois-
son distribution,

P (n ≤ nobs; s+ b) =

nobs∑
n=0

(s+ b)ne−(s+b)

n!
, (4.27)

which gives the probability of getting the observed number of events or less when
the expected number of events is s+b. This probability is often called the p-value,
which was briefly mentioned in Sec. 4.1.

Note that Eq. (4.27) requires that there exists an observed number of events
for each signal region. However, there exists no such numbers for the colliders
we are studying in this thesis, since they either do not exist or operate at the
considered energy yet. In this case, the variable nobs is replaced by the expected
background b:

P (n ≤ b; s+ b) =
b∑

n=0

(s+ b)ne−(s+b)

n!
. (4.28)

By inserting the background b and the signal yield s for each point in parameter
space into this expression, the likelihood function in obtained for the individual
signal regions.

For simplicity, we will join the likelihoods for the individual signal regions
when there are more than one. This is done by minimizing the likelihood over
parameter space, i.e. choosing the lowest p-value obtained for the given analysis
for each parameter point. This is equivalent to choosing the most unlikely signal
region for each parameter point.

4.8 The 95% CL exclusion limit

Up until now, the focus of this chapter has been Bayesian parameter estimation.
Such analyses tell us what regions of parameter space, relative to the rest of
the model’s parameter space, that are preferred by the data. In this case, the
cumulative Poisson distribution, or p-value, given by Eq. (4.28) is interpreted
as likelihood. However, it is also interesting to know whether any given single
parameter point should be excluded or not in light of the data, independent of
the rest of the parameter space. Such analyses are also performed in this work.
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In this context, a lower limit on the p-value is imposed. Parameter points with
p-value less than or equal to this limit are excluded. When there are multiple
signal regions that are joined together as explained above, this corresponds to
excluding a point if it should be excluded for at least one of the signal regions.
We will use an exclusion limit of 0.05 for the p-value, which is often expressed as
a 95% Confidence Level (CL) exclusion.

Even though the exclusion limit is set on the p-value directly, it can be il-
lustrative to see what it means for the expected number of signal events s at
each point. This lower limit on p-value can in fact be translated into an upper
limit on s, which corresponds to parameter points with large s being excluded.
Such points would easily show an excess of events compared to the expected SM
background. But exactly how large can s be before we exclude the corresponding
point? This upper limit can be found by doing a hypothesis test for all possible
values of s. Each value of s correspond to a hypothesis, which we check if should
be excluded or not from the lower limit in p-value.

To find the 95% CL upper limit on s, denoted s95, we need to solve the
following equation for s:

P (n ≤ b; s+ b) =
b∑

n=0

(s+ b)ne−(s+b)

n!
!

= 0.05. (4.29)

If s for a given point is below or equal to this limit (s ≤ s95), this point should
not be excluded at 95% CL.

As an example, consider a signal region with an expected SM background of
4 ± 1.2 events. Solving Eq. (4.29) numerically for b = 4, in steps of 0.001 for
s, gives s95 = 5.154 ≈ 5.2 events. This means that points in parameter space
which yield more than 5.2 expected signal events are excluded.6 Note that this
was calculated for b = 4. If the uncertainty in b is taken into account, things
get more complicated. It can ultimately lead to a weaker limit on s, i.e. a higher
value for s95, so that less parameter points are excluded. However, considering
background uncertainties are outside the scope of this thesis.

6Since the selection efficiency EMC is estimated using a Monte Carlo event generator, we
can get fractional events.





Chapter 5

Simulations of future
supersymmetry searches

As discussed in the previous chapter, one of the goals of this work is to obtain
the p-value across parameter space for different searches at the future ILC and
HL-LHC, as this forms the basis for both our Bayesian parameter estimation,
where the p-value is interpreted as a likelihood, and the 95% CL exclusion limit,
where a lower limit on the p-value is imposed. In this way, we can compare the
advantages of the two colliders in different supersymmetry scenarios.

We begin this chapter by introducing the specific supersymmetry models con-
sidered, and proceed by going through the parameter scan setup, including in-
formation on all of the software used. Finally, the different search analyses used
are presented in detail, including the validation of our implementations using
benchmark points.

5.1 Considered model scenarios

In this thesis, we consider two different sets of parameter choices (scenarios) for
the CMSSM, and one for the NUHM2 model. In Sec. 4.3, we argued that only two
of the parameters can be varied in each model, in order to keep the simulations
performed in this work computationally feasible. For both CMSSM scenarios,
we perform a grid scan in m0 and m1/2, while the rest of the parameters are
held fixed. In the first scenario, in the following referred to as CMSSM10, the
fixed parameters are tan β = 10, A0 = 0, and sign(µ) > 0.1 This is a standard
scenario that allows for comparison with other work. In the other scenario, in
the following referred to as CMSSM30, the fixed parameters are tan β = 30,

1The sign of µ is usually taken to be positive, as a negative sign will give a contribution to
the (g − 2) anomalous magnetic moment of the muon that corrects the SM value away from
measurements, where a discrepancy of ∼ 3σ already exists [35].

71
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Table 5.1: Fixed parameters for the three supersymmetry scenarios consid-
ered, in addition to the prior ranges used for the parameters that are varied.

Scenario Parameter Prior range [GeV] Fixed parameters

CMSSM10
m0 [50, 5000] tan β = 10, A0 = 0,

m1/2 [72, 1854] sign(µ) > 0

CMSSM30
m0 [50, 5000] tan β = 30, A0 = −2m0,

m1/2 [36, 1818] sign(µ) > 0

NUHM2
m1/2 [40, 2000] tan β = 15, m0 = 5 TeV,

µ [30, 2010] A0 = −1.6m0, mA = 1 TeV

A0 = −2m0, and sign(µ) > 0. This scenario predicts a Higgs mass that is in
agreement with the measured value, unlike the CMSSM10 scenario.

In contrast, in the NUHM2 scenario, we perform a grid scan in m1/2 and µ,
while the rest of the parameters are held fixed at m0 = 4 TeV, tan β = 15, A0 =
−1.6m0 = 6.4 TeV, and mA = 1 TeV. This is in accordance with the discussion
in Ref. [30] on what regions of the NUHM2 parameter space that are considered
natural, and also predicts a Higgs mass in agreement with measurements. The
prior ranges used for the parameters that are varied in each of the three scenarios
are listed in Table 5.1. They are chosen to enable comparison with previous work.
We evaluate 99 uniformly distributed points within each of these ranges, giving
9801 evaluation points in total for each scenario.2

The different lower limits on the m1/2 prior for the two CMSSM scenarios
is due to the chargino mass. Results from the Large Electron–Positron Collider
(LEP), operating at CERN from 1989 to 2000, showed that chargino masses below
∼ 45 GeV are ruled out. If the chargino mass is less than this, the Z boson with
mass ∼ 90 GeV should in principle be able to decay into two charginos. However,
LEP measured the decays of the Z boson to extreme precision, and the results
showed that there is no room for such a decay [21]. There is thus no point
in allowing chargino masses below 45 GeV in our priors. This requirement has
different consequences for m1/2 in the CMSSM10 and CMSSM30 scenarios, giving
different minimum values for m1/2. In order to get the same number of evaluation
points with the same step size for the two scenarios, the upper limits on m1/2

2Approximately 4000, 6800 and 8300 CPU hours was used to obtain the results for the
CMSSM10, CMSSM30 and NUHM2 scenarios, respectively.
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have been scaled correspondingly.

The same argument also applies to the lower limit on µ in the NUHM2 sce-
nario. The lightest chargino would be dominantly higgsino for small µ, since µ is
the higgsino mass parameter. For µ less that ∼ 45 GeV, this would again mean
that the Z could boson in principle decay into two charginos, which LEP has
ruled out. Similar restrictions from slepton searches at LEP bound m0.

Different parameters are included in the naturalness analyses of the two mod-
els. There are four and six free parameters, respectively, in the CMSSM and
NUHM2 models, in addition to the Standard Model ones, and in principle should
all of these be included. However, the relatively large top Yukawa coupling is the
only SM parameter with a significant naturalness contribution [36]. Further, in
Sec. 3.3, we explained why it is not feasible to actually include all of the parame-
ters. Since it can be argued that a model does not depend on fixed parameters, we
choose to only include the two parameters that are varied in each of the models
when calculating the naturalness score. This means that the naturalness score is
calculated from m0 and m1/2 in the two CMSSM scenarios, while it is calculated
from m1/2 and µ in the NUHM2 scenario.

The scan setup is the same for all of the three scenarios studied in this thesis,
and is explained in the next section.

5.2 Scan setup

The main part of this work has been to build up a framework that takes care of
the complete parameter scan of the considered supersymmetry model scenarios.
The basis for this framework is a Python code.3 Every external tool is associated
with a separate Python module, which the main code handles. Each module is an
independent executable that runs the given external tool and manages all input
and output. This makes it straightforward to add, remove or rearrange tools.

The main code takes care of creating the parameter space grid itself. The scan
is perfomed using parallell processing, meaning that the main code distributes
the parameter points among a set of n processes, each handling one parameter
point at a time. Once a specific parameter point has been selected, the model is
fully specified.

The first ingredient needed is the mass spectrum, as it forms the basis for
most other model predictions. The RGE code SOFTSUSY 3.7.0 [38] is used to
evolve the model parameters down to the weak scale and calculate the mass
and coupling spectrum, and also the Barbieri–Giudice naturalness measure given
by Eqs. (3.5) and (3.6). The sparticle branching ratios are then calculated with
SUSY-HIT 1.5 [39]. Further, a more detailed calculation of the masses and decays
in the Higgs sector is performed with FeynHiggs 2.12.0 [40–45]. The spectrum

3This has been developed based on the script point sampler.py by Anders Kvellestad [37].
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and decay information is communicated via the SUSY Les Houches Accord (SLHA)
[46], and the interface PySLHA [47] is used to ease communication between the
different modules, as well as processing the final results.

For colored sparticle production at the HL-LHC, the cross sections are cal-
culated at next-to-leading order in the strong coupling constant, including the
resummation of soft gluon emission at next-to-leading-logarithmic accuracy
(NLO+NLL), with NLL-fast 4.01 [48–51]. As this version of NLL-fast for√
s = 14 TeV only covers pair production of stop squarks (t̃t̃∗), first and second

generation squarks (q̃q̃∗) and gluinos (g̃g̃) in the decoupling limits, only these
indvidual processes can be used for colored production in the parameter scan.
For the electroweak production of other sparticles, we use the leading order (LO)
cross sections calculated by the Monte Carlo event generator itself, as discussed
in Sec. 4.7.2.

Finally, the last step is to generate Monte Carlo events as decribed in Sec. 4.7.1.
We run two different versions of the same event generator at each parameter
point: PYTHIA 8.2.15 [52] for the HL-LHC searches and PYTHIA 6.4.28 [53] for
the ILC searches. This is because PYTHIA 8 does not have the processes for pro-
ducing supersymmetric particles from leptons implemented. In PYTHIA 8, jets
are reconstructed with the embedded FastJet jet reconstruction program [54],
with the anti-kt clustering algorithm [55].4 In PYTHIA 6, we use a modified ver-
sion of the embedded jet clustering routine PYCELL, which clusters on energy
rather than transverse energy. There are also some other minor modifications to
PYCELL, which will be explained in Sec. 5.3. The modified PYCELL routine can
be found in Appendix B. For each of the search analyses we consider, both for
the ILC and the HL-LHC, 100 000 events are generated and propagated through
our implementation of them.5

If one of the tools in the chain above expresses that the given parameter point
is unphysical, or for some reason encounters an unrecoverable error, the main code
discards the parameter point right away, so that we don’t waste any computing
power. The non-default settings used for all of these tools are summarized in
Table 5.2, while Fig. 5.1 shows a flowchart of the scan setup.

All of the information obtained for a given parameter point is stored in the
correponding SLHA-file. SOFTSUSY, SUSY-HIT and FeynHiggs does this automati-
cally, while the cross sections and Monte Carlo efficiencies from NLL-fast and the
two PYTHIA versions are manually added and managed using extra SLHA BLOCKS

that PySLHA handles.
We have now introduced everything needed for the parameter scan, and are

ready to present the future supersymmetry searches used in this work.

4Because of the nature of QCD, quarks are never observed as free particles — they are
always found confined within hadrons. Quarks and gluons thus form showers of hadrons called
jets, which is what we observe in a detector.

5With one exception, where the number of generated events are doubled. Which analysis
this concerns will be clarified below.
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Table 5.2: Summary of non-default settings and comments on the operation
of the different tools used in this work.

Tool Non-default settings / comment Reference

SOFTSUSY 3.7.0

SM parameters:

[38]

mpole
t = 173.4 GeV

mb(mb) = 4.18 GeV

αs(mZ) = 127.944

α−1
em(mZ) = 0.1184

SUSY-HIT 1.5 — [39]

FeynHiggs 2.12.0 Log level: 2. [40–45]

NLL-fast 4.01 Parton distribution function: CTEQ6. [48–51]

PYTHIA 8.2.15 Parton distribution function: CTEQ6. [52]

PYTHIA 6.4.28 Modified PYCELL jet clustering routine. [53]

PySLHA — [47]
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5.3 Supersymmetry at the ILC

The sum of the charges of the incoming particles in an electron-positron collider is
zero, so these collisions can only produce electrically neutral final states. Particle-
antiparticle pairs are typically produced. All sparticles, except gluinos, can be
produced at tree-level:

e+e− → Z0/γ → χ̃+
i χ̃
−
j , χ̃

0
i χ̃

0
j ,

˜̀+ ˜̀−, ν̃ν̃∗, q̃q̃∗. (5.1)

In Ref. [56], the linear collider capabilities for supersymmetry at centre-of-
mass energies

√
s = 500 GeV and 1 TeV are investigated. Three different re-

gions of the CMSSM parameter space with different phenomenology are studied,
and results are shown for an integrated luminosty of 100 fb−1. At low m0, and
m1/2 ∼ 300 − 500 GeV, slepton pair production is very efficient due to light
sleptons. At low m1/2 values, the charginos are light, and chargino pair produc-
tion thus occurs at a large rate. Chargino pair production is also efficient in the
hyperbolic branch/focus point (HB/FP) region of the CMSSM parameter space,
at large values of m0 and small µ, near the region of no EWSB.

Here, we investigate the search for sleptons and charginos based on the selec-
tion cuts for these three regions given in [56]. To validate our implementation, we
compare our results to a benchmark point in the HB/FP region, given in Table 2
of that paper.

5.3.1 ILC detector simulation

When simulating the ILC detector, jets are identified using the cone jet finding
algorithm PYCELL in PYTHIA 6, modified to cluster on energy rather than trans-
verse energy. As PYCELL was originally intended for proton-proton collisions,
where the composite nature of protons does not allow for full energy conserva-
tion, only transverse energy is used. Leptons, on the other hand, are elementary
particles, which means that full energy conservation can be used at lepton collid-
ers. In addition to this energy modification, we do not allow any leptons in the
jets, in order to avoid double counting when final state leptons are expected.6

A fixed cone size of

∆R ≡
√

(∆φ)2 + (∆η)2 = 0.6, (5.2)

is used in PYCELL, where φ is the azimuthal angle around the beam axis, and η
is the pseudorapidity. The latter is defined as

η ≡ − ln

[
tan

θ

2

]
, (5.3)

6Only electrons and muons are regarded as leptons in this context. The heavier tau lepton
has a very short lifetime and thus decays before it can be detected, while the neutrinos are
invisible to all detectors.
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where θ is the polar angle with respect to the beam axis. The hadronic calorime-
ter is assumed to cover the region 0 < φ < 2π, −4 < η < 4, with cell size
∆φ×∆η = 0.05× 0.05. Due to calorimetric resolution effects, the hadronic en-
ergy Eh is smeared, cell by cell. This is done according to a Gaussian distribution,
with standard deviation ∆Eh given by

∆Eh
Eh

=
0.5√
Eh
⊕ 0.02, (5.4)

where ⊕ denotes addition in quadrature. This agrees with Ref. [56]. The latter,
constant term, is significant for large Eh. The final modification of the original
PYCELL algorithm was to add this term to the smearing routine, as it is not
implemented by default. All of the above settings are given as input to PYCELL.
Thereafter, clusters with Eh > 5 GeV and |η| < 2.5 are labeled as jets.

Also the electromagnetic energy Eem is subject to calorimetric resolution ef-
fects. In Ref. [56], the electromagnetic resolution is given as

∆Eem

Eem

=
0.15√
Eem

⊕ 0.01, (5.5)

where ∆Eem, as for the hadronic case, is the standard deviation of a Gaussian
distribution. As PYTHIA 6 does not have smearing of electromagnetic energy
implemented, this is added. The energy of electrons and photons is smeared
according to

Esmeared
em = Eem + ∆Eem ×N(0, 1), (5.6)

where Eem is the energy of the particle before smearing, and N(0, 1) is the Gaus-
sian distribution around 0 with standard deviation 1. After smearing, leptons
with energy E > 5 GeV and |η| < 2.5 are selected. They are required to be
isolated by imposing that the visible activity within a cone of ∆R = 0.5 around
the lepton is less than max[E/10, 1] GeV.

5.3.2 Search for slepton pair production

If both of the sleptons decay into a lepton and the LSP, ˜̀± → `±χ̃0
1, the signal

is a pair of Same-Flavour Opposite-Sign (SFOS) leptons and missing energy.7 In
Ref. [56], each of the two leptons are required to have an energy E`± between 5
and 200 GeV, and at least 25 GeV of missing transverse energy Emiss

T is required
in the event. Further, a cut on the invariant mass mSFOS of the SFOS lepton
pair is introduced to make sure that the leptons do not come from an on-shell Z
boson directly: |mSFOS −mZ | > 10 GeV.8

7Missing energy refers to energy which is not detected in a particle detector, but is expected
due to the laws of conservation of energy and momentum. It is used to infer the presence of
non-detectable particles such as the Standard Model neutrino and the LSP.

8From the energy–momentum relation

E2 = m2 + |p|2, (5.7)
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Table 5.3: Summary of the selection cuts for slepton pair production. The
signal is a pair of Same-Flavour Opposite-Sign (SFOS) leptons and missing
energy. In addition to these cuts, events with any jet activity are vetoed.

Selection cuts for slepton production

E`± [GeV] > 5

E`± [GeV] < 200

Emiss
T [GeV] > 25

|mSFOS −mZ | [GeV] > 10

Evisible [GeV] > 20

Evisible [GeV] <
√
s− 100

| cos θ`±| [rad] < 0.9

−q`± cos θ`± [rad] < 0.75

θacop(`+`−) [◦] > 30

Some less intuitive cuts are also introduced. Between 20 GeV and√
s− 100 GeV of visible energy Evisible is required in the event. In addition, the

cosine of the polar angles of the leptons with respect to the beam axis, | cos θ`± |,
are required to be less than 0.9. This cut is introduced to make sure that the
leptons are sufficiently far away from the beam, since their energy can be badly
reconstructed if not. A similar and stronger requirement is that −q`± cos θ`±
should be less than 0.75, where q`± is the lepton charge. Finally, a cut on the
acoplanarity angle of the two leptons,

θacop(`+`−) ≡ π − cos−1(p̂+
x p̂
−
x + p̂+

y p̂
−
y ) > 30◦, p̂i =

pi
|p|

, (5.9)

is introduced to avoid Standard Model background, since a pair of leptons pro-
duced directly from a (virtual) photon or Z boson would be more or less acopla-
nar.

The selection cuts introduced for slepton pair production are summarized in
Table 5.3. In addition to these cuts, events with any jet activity are vetoed. To

where m is the mass, E is the energy and p is the momentum, we can define the invariant mass
of a two-particle decay as

m2
0 = (E1 + E2)2 − |p1 + p2|2, (5.8)

where the indices 1 and 2 refers to the two daugther particles. This is not to be confused with
the CMSSM common scalar mass.
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maximize the slepton pair production cross section and minimize the Standard
Model background from W boson pair production, W± → `±ν, the electron
beams are assumed to be right-polarized, PL(e−) = −0.9. The expected Standard
Model background is in Ref. [56] given as 1.79 (0.045) fb−1 for a centre-of-mass
energy

√
s = 0.5 (1) TeV.

5.3.3 Search for chargino pair production

Chargino pair production can lead to events with one lepton, two jets and missing
energy (1`+2j+Emiss

T ). This signature is obtained if each of the charginos decay
into a (virtual) W boson and the LSP, χ̃±1 → W±χ̃0

1, and in turn, one of the
W bosons decay hadronically, W± → qq′, and the other one decays leptonically,
W± → `±ν. The same signature can also be obtained for other chargino decays,
for instance χ̃±1 → ˜̀±ν → `±νχ̃0

1 and χ̃±1 → q̃q′ → qq′χ̃0
1. The selection cuts

introduced in Ref. [56] to target chargino production at low m1/2 values are
presented in the following.

As for slepton pair production, events with at least 25 GeV of missing trans-
verse energy and between 20 GeV and

√
s−100 GeV of visible energy are selected.

In order to avoid Standard Model background from direct production of W+W−,
the invariant mass m`ν of the lepton and the neutrino (missing energy) is required
to be at least 10 GeV away from the W boson mass at ∼ 80 GeV. Also, if the
summed energy Ejj of the two jets is larger than 200 GeV, as it would be if they
came from a pair produced W boson at

√
s ≥ 500 GeV, their invariant mass mjj

has to be less than 68 GeV, in order to be sufficiently far away from the W boson
mass.

Further, the cosine of the polar angles of both the lepton and the two jets
are required to be less than 0.9 in order to avoid the beam, and the similar and
stronger requirements −q` cos θ` < 0.75 and q` cos θjj < 0.75 are also introduced.
Finally, also a cut on acoplanarity is introduced in order to avoid Standard Model
background from direct production of W+W−, θacop(W+W−) > 30◦, where one
of the W ’s is reconstructed from the four-vector sum of the two jets, and the
other one from the four-vector sum of the lepton and the neutrino.

The selection cuts for chargino pair production are summarized in Table 5.4.
In this case, the electron beams are assumed to be unpolarized. The expected
Standard Model background is in Ref. [56] given as 15.5 (2.1) fb−1 for a centre-
of-mass energy

√
s = 0.5 (1) TeV.

Other selection cuts are needed to target chargino pair production in the
HB/FB region of the CMSSM parameter space, which we in the following will
refer to as the “chargino extended” cuts. We still expect the same signature,
i.e. 1`+2j+Emiss

T , however, since the lightest neutralinos and the lightest chargino
have a large higgsino component in this region where µ is small, the χ̃±1 − χ̃0

1

mass gap is small, leading to very little visible energy release from chargino
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Table 5.4: Summary of the selection cuts for chargino pair production. The
signal is an isolated lepton, two jets, and missing energy (1`+ 2j + Emiss

T ).

Selection cuts for chargino production

Emiss
T [GeV] > 25

|m`ν −mW | [GeV] > 10

If Ejj > 200 GeV, then mjj < 68 GeV

Evisible [GeV] > 20

Evisible [GeV] <
√
s− 100

| cos θ`| [rad] < 0.9

| cos θj| [rad] < 0.9

−q` cos θ` [rad] < 0.75

q` cos θjj [rad] < 0.75

θacop(W+W−) [◦] > 30

decays. This makes detection of chargino pair production using the standard
cuts introduced above difficult. In order to find some more suitable selection cuts
for this region, a particular benchmark point in the HB/FB region is studied in
Ref. [56]: m0 = 4625 GeV, m1/2 = 885 GeV, A0 = 0, tan β = 30 and sign(µ) > 0.
For this point, only the lighter charginos and neutralinos are accessible to a linear
collder.

The bulk of the Standard Model background for this benchmark point can
be eliminated by requiring quite little visible energy in the event. The analysis
thus requires between 20 GeV and 100 GeV visible energy in this case, where the
upper limit is chosen to also accommodate points with larger χ̃±1 − χ̃0

1 mass gaps
than the benchmark point.9 To get rid of the background that survives this cut,
a cut on the transverse dijet opening angle φjj is introduced. For instance, in the
Standard Model process γγ → bb̄, a lepton can arise from semi-leptonic decay
of one of the b’s, b → c`ν, and two jets can arise from the remaining b-quark
and the c-quark. In this case, the two b’s will typically emerge back-to-back in
the transverse plane, meaning that the transverse dijet opening angle will peak
at cosφjj ∼ −1. We thus require cosφjj > −0.6 for signal events. Finally, it
was found that any background from γγ → bb̄ surviving the previous cut can

9In the next chapter, we find that this cut has a significant negative impact on the reach
in parts of our parameter space, in particular at

√
s = 1 TeV.
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Table 5.5: Summary of the selection cuts for chargino production in the
“chargino extended” anaysis. The signal is an isolated lepton, two jets and
missing energy (1`+ 2j +Emiss

T ), as for chargino pair production at low m1/2

values.

Selection cuts for chargino extended

Evisible [GeV] > 20

Evisible [GeV] < 100

cosφjj [rad] > −0.6

m`jnear [GeV] > 5

Table 5.6: Cut-flow in terms of effective cross sections Eσ for the cuts in Table
5.5. The results are only given for a centre-of-mass energy of

√
s = 500 GeV.

The uncertainties in our numbers are statistical only.

Cuts Our result [fb] From [56] [fb] Ratio [–]

2`+ 1j 15.8± 0.3 16.2 0.98± 0.02

20 GeV < Evisible < 100 GeV 15.5± 0.3 14.4 1.08± 0.02

cosφjj > −0.6 rad 14.2± 0.3 13.5 1.04± 0.02

m`jnear > 5 GeV 14.0± 0.3 12.9 1.08± 0.02

be eliminated by requiring that the invariant mass m`jnear of the lepton and its
nearest jet (in space angle) is greater than 5 GeV, since the bottom quark has a
mass of 4.18 GeV.

The selection cuts for chargino extended are summarized in Table 5.5. The
electron beams are assumed to be unpolarized also for this search. The expected
Standard Model background is in Ref. [56] given as 1.01 (0.92) fb−1 for a centre-
of-mass energy

√
s = 0.5 (1) TeV.

Benchmark validation

For the ILC searches presented in this section, the benchmark point in the HB/FP
region introduced above is the only case for which we can test our implementation.
In Table 2 of Ref. [56], they give the cut-flow in terms of effective cross sections
Eσ for this point after introducing the different cuts in Table 5.5 one by one. It
is only given for a centre-of-mass energy of

√
s = 500 GeV.
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As in [56], we calculate the mass spectrum of this benchmark point with
ISAJET 7.69 [57]. Both the total leading order cross section and the branching
ratios are taken directly from PYTHIA 6. A comparison of our results and the
effective cross sections from the paper is given in Table 5.6, where 100 000 events
have been generated to obtain our results. The first line, 2` + 1j, refers to
that selected events must include exactly two leptons and one jet, based on the
selection requirements for leptons and jets given in Sec. 5.3.1. We see that our
effective cross sections are in quite good agreement with Ref. [56].

Note that the uncertainties in our numbers are statistical only, i.e. in the
selection efficiencies E = Nacc/Ntot. Since the number of accepted events follow
a Poisson distribution, this uncertainty is given by

∆E =
∆Nacc

Ntot

'
√
Nacc

Ntot

(5.10)

for large Nacc. Further, the uncertainty in the ratio is given by one of the standard
formulas for propagation of uncertainties. The uncertainty in a ratio f = A/B is

∆f = f

√(
∆A

A

)2

+

(
∆B

B

)2

. (5.11)

5.4 Supersymmetry at the HL-LHC

An ATLAS note from 2014 presents benchmark studies for pair production of
gluinos (g̃g̃), first and second generation squarks (q̃q̃∗) and bottom squarks (b̃b̃∗),
as well as production of charginos and neutralinos (χ̃0

2χ̃
±
1 ), at a centre-of-mass

energy
√
s = 14 TeV [58]. The results are shown for integrated luminosities of

300 and 3000 fb−1.
Reference [1] investigates chargino–neutralino production and pair production

of gluinos and squarks based on the selection cuts given in the ATLAS note. To
make sure that the implementations of these searches are reasonable, it is checked
how well they, within the relevant uncertainties, reproduce the expected number
of signal events for the benchmark points given in Tables 2, 8 and 9 in the ATLAS
note. The searches used to obtain the results in Ref. [1] are summarised in the
following.

5.4.1 Search for charginos and neutralinos

In scenarios with heavy squarks and gluinos, production of neutralinos and
charginos can dominate the supersymmetry production at the LHC. In that case,
final states with exactly three leptons and missing energy can be expected, for in-
stance if the χ̃±1 and χ̃0

2 decay into the LSP and W (∗) and Z(∗) bosons, respectively,
and the (possibly) virtual W and Z bosons then decay into a lepton–neutrino
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Figure 5.2: Feynman diagram for production and decay of χ̃0
2χ̃
±
1 . The χ̃±1

is assumed to decay as χ̃±1 → W±(∗)χ̃0
1, and the χ̃0

2 as χ̃0
2 → Z(∗)χ̃0

1. The
(possibly) virtual W and Z bosons then decay into a lepton–neutrino pair and
a Same-Flavour Opposite-Sign (SFOS) lepton pair, respectively, giving a total
of three final state leptons. Figure taken from [58].

pair and a Same-Flavour Opposite-Sign (SFOS) lepton pair, respectively, see
Fig. 5.2. The selection cuts for chargino–neutralino production used in Ref. [1]
are introduced below.

Jets are selected with the anti-kt algorithm [55] with a radius parameter of
∆R ≡

√
(∆φ)2 + (∆η)2 = 0.4, and their energy is smeared by 3% to better

simulate a realistic detector response in ATLAS. Thereafter, the selection re-
quirements on transverse momentum pT and pseudorapidity η as they appear
in the ATLAS note are imposed: pT > 20 GeV and |η| < 2.5. Jets contain-
ing one or more b-quarks, i.e. with ∆R between a b-quark and the jet less than
0.4, are tagged as originating from b-decays with an average efficiency of 70%.
Jets not containing any b-quarks are tagged as originating from b-decays with a
misidentification probability of 1%.

Leptons are selected with pT > 10 GeV and |η| < 2.47 (2.4) for electrons
(muons) in the ATLAS note, however, for simplicity, |η| < 2.4 is used for both
electrons and muons in the implementation in [1]. They are required to be iso-
lated by imposing that the scalar sum of the transverse momenta of charged
particles with pT > 1 GeV and within a cone of ∆R = 0.3 around the lepton
cone (excluding the lepton track itself) is less that 15 % of the lepton pT. In addi-
tion, they are required to be separated from each other through ∆R(`, `′) ≥ 0.1.
Leptons not fulfilling these two requirements are discarded.

Events with exactly three final state leptons, all with pT > 50 GeV, are
selected. They are required to include at least one Z boson candidate, defined as
a SFOS lepton pair with invariant mass mSFOS satisfying |mSFOS−mZ | < 10 GeV.
The remaining lepton, which in the process we are searching for should come
from a W (∗) boson, is combined with the missing transverse energy Emiss

T in the
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event, and their transverse mass mT is calculated.10 Both large Emiss
T and mT is

required, since both the neutrino and the two neutralinos are expected to carry
a significant amount of momentum. If there are two SFOS lepton pairs in the
event, the transverse mass mT is constructed from the lepton not forming the
SFOS pair with invariant mass closest to the Z boson. Events with b-tagged
jets are vetoed to suppress tt̄ Standard Model background, since this process can
produce a similar signature.

Four signal regions are defined by different cuts on Emiss
T and mT. They are

shown in Table 5.7, together with the rest of the selection cuts introduced above.
The signal regions B, C and D are optimised for exclusion, where the latter only
applies to the L = 3000 fb−1 scenario. Signal region A, on the other hand, is
optimised for discovery, and is not included in our parameter scan. At each
parameter point, 200 000 events are generated for this search analysis, i.e. this is
the exception mentioned in Sec. 5.2. All of the SUSY proton–proton processes
implemented in PYTHIA 8 is turned on for this search.11. The expected Standard
Model backgrounds from [58] for the different signal regions / luminosities are
listed in Table 5.9.

Benchmark validation

In order to check that the implementation of this search in Ref. [1] is reasonable,
the expected number of signal events for four benchmark points

m(χ̃0
2χ̃

0
1) [GeV] = (400, 0), (600, 0), (800, 0), (1000, 0), (5.14)

given in Table 2 in the ATLAS note, is attempted reproduced.
As in the parameter scan, the mass spectra for these benchmark points are

calculated with SOFTSUSY, and the sparticle branching ratios are found using
SUSY-HIT.12 Both the χ̃±1 and the χ̃0

2 are assumed to be wino-like with equal
masses, while the LSP is bino-like. In addition, all sleptons and sneutrinos are as-
sumed to be heavy, and the only allowed decays are χ̃0

2 → Z0χ̃0
1 and χ̃±1 → W±χ̃0

1.
The production cross sections are calculated at next-to-leading order (NLO) with

10In hadron collider physics, transverse mass is defined in terms of 1→ 2 decays where one
of the particles can not be detected directly and is only indicated by missing transverse energy.
It is given by

m2
T = (ET,1 + ET,2)2 − |pT,1 − pT,2|2, (5.12)

where ET and pT are energy and momentum in the transverse plane, with energy–momentum
relation

E2
T = m2 + |pT|2. (5.13)

11This is not the case for the search for squark and gluino pair production, which will become
clear in Sec. 5.4.2

12As PYTHIA 8 for technical reasons can not handle a χ̃0
1 mass of exactly 0 GeV, a mass of

1 GeV is used in this benchmark validation.
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Table 5.7: Summary of the selection cuts for chargino–neutralino produc-
tion at the HL-LHC. The expected signal is final states with exactly three
leptons, with at least one Same-Flavour Opposite-Sign (SFOS) lepton pair
among them, and missing transverse energy.

Signal regions

Selection cuts SRA SRB SRC SRD

# b-tagged jets [–] 0

# leptons [–] 3

Lepton pT(1,2,3) [GeV] > 50

mSFOS [GeV] 81.2 – 101.2

mT [GeV] > 150 200 200 200

Emiss
T [GeV] > 250 300 400 500

Prospino 2.1 [59], since NLO cross sections have been used in Ref. [58]. The
obtained cross sections are given in Table 5.8. Finally, 200 000 events are gener-
ated with PYTHIA 8 for each of the four benchmark points, with only production
of χ̃0

2χ̃
±
1 turned on.

The expected number of signal events obtained for the different signal regions
and luminosities are given in Table 5.9, where we for reference also list the num-
bers from the ATLAS note, as well as the ratio between the two. Signal region A
has also been included for the purpose of benchmark validation. The uncertain-
ties given in this table are statistical only, i.e. they are due to the uncertainty in
the selection efficiency, given by Eq. (5.10). The uncertainty in the ratio is given

Table 5.8: Next-to-leading order (NLO) cross sections for χ̃0
2χ̃
±
1 production

used to calculate the number of signal events for the four benchmark points
given in Table 5.9.

m(χ̃0
2, χ̃

0
1) [GeV] σ [fb]

(400, 0) 130.4

(600, 0) 23.09

(800, 0) 5.53

(1000, 0) 1.646
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by Eq. (5.11).

We see that the result in [1], within the uncertainties, are in relatively good
overall agreement with the ATLAS results, with only a few exceptions at the
lowest masses.

5.4.2 Search for squark and gluino pair production

Given that they are light enough to be produced at the LHC, strongly produced
supersymmetric particles are expected to have the highest production cross sec-
tion of all supersymmetric processes. With strongly produced supersymmetry,
events with many jets, large Emiss

T and no leptons are expected. The gluinos
can decay directly into two quarks and the LSP, while the squarks can decay
into a quark and the LSP, see Fig. 5.3. The selection cuts for strongly produced
supersymmetry used in Ref. [1] are introduced below.

The selection requirements for jets and leptons in Sec. 5.4.1 are imposed also
in this search, with one exception: here, jets are selected with pseudorapidity
|η| < 4.5, in contrast to |η| < 2.5 in Sec. 5.4.1. Events with no leptons and at
least 160 GeV of missing transverse energy are selected. Between a minimum
of two and a minimum of six jets with pT > 20 GeV are required for different
signal regions, where the hardest one has an additional requirement of pT > 160
GeV. In order to make sure that the missing energy does not come from bad jet
reconstruction, requirements on the difference in azimuthal angle φ between the
missing transverse energy (vector) and the centre of the jets are imposed. For the
three hardest jets, the requirement is ∆φ(jet1,2,3, E

miss
T )min > 0.4 radians, while

for all other jets with pT > 40 GeV it is ∆φ(jetpT>40 GeV, E
miss
T )min > 0.2 radians.

Three more cuts are introduced in terms of the missing transverse energy
Emiss

T , HT and the effective mass meff , where the two latter quantities are defined
as

HT =
∑
jets

pjet
T , (5.15)

and
meff = Emiss

T +HT. (5.16)

A lower limit on meff is introduced to make sure that the total energy from the
LSPs and the jets is large, which is expected due to large squark and gluino
masses. Further, a lower limit on the ratio Emiss

T /meff is introduced to make sure
that a substantial part of the outgoing energy comes from missing energy, not
only jets, which would be the case for QCD backgrounds. A cut on the ratio
Emiss

T /
√
HT is imposed for the same reason.

Altogether ten different signal regions are defined in terms of different cuts on
these three quantities, see Table 5.10. The 2j, 3j and 4jl signal regions, targetting
squark pair production, have two different cuts on meff . The first is designed for
scenarios where the gluino is completely decoupled, the other for the case in
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Figure 5.3: Feynman diagrams for production and decay of g̃g̃ and q̃q̃. Each
quark is assumed to the decay into a quark and the LSP, while each gluino is
assumed to decay into to quarks and the LSP directly. Figures taken from [58].

which the gluino mass is large. Since there only exists background estimates for
the latter case (given in Tables 8 and 9 of the ATLAS note), only the last meff-cut
for these three signal regions are included in the analysis used in Ref. [1].

As briefly discussed in Sec. 5.2, only pair production of t̃t̃∗, q̃q̃∗ and g̃g̃ can be
used, due to the limitations NLL-fast 4.01. These three processes are turned
on in turn, meaning that both NLL-fast and PYTHIA 8 is run three times for
each parameter point. The results can be joined according to

s ' L(Et̃t̃∗σt̃t̃∗ + Eq̃q̃∗σq̃q̃∗ + Eg̃g̃σg̃g̃). (5.17)

Note that the expected number of signal events is underestimated and conserva-
tive when only specific processes are turned on.

The expected Standard Model backgrounds from [58] for the different signal
regions / luminosities are listed in Tables 5.12, 5.13, 5.14 and 5.15.

Benchmark validation

The implementation of this search can be validated by reproducing the expected
number of signal events for four benchmark points,

m(g̃, χ̃0
1) [GeV] = (1950, 1), (1425, 1400) (5.18)

and
m(q̃, χ̃0

1) [GeV] = (2250, 1), (1050, 900), (5.19)

given in Tables 8 and 9 in the ATLAS note [58].
Again, the mass spectra for these benchmark points are calculated with

SOFTSUSY, while the sparticle branching ratios are calculated with SUSY-HIT.
Only the decays depicted in Fig. 5.3 are allowed. For the gluino points, all spar-
ticles except the gluino and the LSP are decoupled. For the squark points, all
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Table 5.10: Summary of the selection cuts for squark and gluino pair pro-
duction. The 2j, 3j and 4jl signal regions, targetting squark pair production,
have two different cuts on meff . The first is designed for scenarios where the
gluino is completely decoupled, the other for the case in which the gluino mass
is large. There are background estimates only for the latter.

Signal regions

Selection cuts 2jl 2jm 3j 4jl 4jm 4jt 5j 6jl 6jm 6jt

# leptons [–] 0

Emiss
T [GeV] > 160

Njets(pT > 60 GeV) [–] ≥ 2 2 3 4 4 4 5 6 6 6

pT(j1) [GeV] > 160

∆φ(jet, Emiss
T )min [rad] > 0.4 (j1, j2, j3), 0.2 (all pT > 40 GeV jets)

L = 300 fb−1

Emiss
T /meff [–] > — — 0.3 0.40 0.25 — 0.20 0.30 0.15 0.20

Emiss
T /
√
HT [GeV1/2] > 8 15 — — — 10 — — — —

meff [GeV] > 3600 3100,
4300

3600,
3000

3000,
2200

3200 3400 3000 2800 3400 3400

L = 3000 fb−1

Emiss
T /meff [–] > — — 0.3 0.35 0.25 — 0.25 0.25 0.35 0.15

Emiss
T /
√
HT [GeV1/2] > 8 15 — — — 10 — — — —

meff [GeV] > 4500,
5000

4500,
4900

4000 4000,
3800

4000 4500 4000 3400 3500 5000
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Table 5.11: Cross sections for gluino and squark–antisquark pair production
used for calculating the number of signal events in Tables 5.12, 5.13, 5.14 and
5.15. Please see the text for details.

m(g̃, χ̃0
1) [GeV] σ [fb] Source m(q̃, χ̃0

1) [GeV] Process σ [fb] Source

(1425, 1400) 32.4 NLL-fast (1050, 900)
sb 85.4 Prospino

ss 66.5 Prospino

(1950,1) 2.14 NLL-fast (2250, 1)
sb 0.245 Prospino

ss 1.29 Prospino

sparticles except the squarks, the LSP and the gluinos are decoupled, where the
gluino mass is set to 4.5 TeV, as in [58].

For gluino pair production, the cross sections are calculated at NLO+NLL
accuracy with NLL-fast 4.01 for decoupled squarks. For squark pair produc-
tion, the gluino is not completely decoupled, so NLL-fast 4.01 can not be used.
Instead, Prospino 2.1 is used to calculate the cross sections to NLO accuracy
for the squark points. For the purpose of benchmark validation, both squark–
antisquark (sb) and squark–squark (ss) production are included.13 The cross
sections obtained for the benchmark points are given in Table 5.11.

Finally, 1 000 000 and 100 000 events are generated with PYTHIA 8 for the
mass degenerate and non-degenerate benchmark points, respectively. The ex-
pected number of signal events for gluino pair production are given in Tables
5.12 (L = 300 fb−1) and 5.13 (L = 3000 fb−1), where we have for reference
also listed the numbers from the article, as well as the ratio between them. The
uncertainties given in these tables are statistical only. To obtain the expected
number of signal events for squark production, the results from ss and sb are
joined according to

s ' L(Essσss + Esbσsb). (5.20)

These are given in Tables 5.14 (L = 300 fb−1) and 5.15 (L = 3000 fb−1).
We see that the result in [1], within the uncertainties, are in relatively good

overall agreement with the ATLAS results, however, with a few exceptions for
the benchmark points with mass degeneration.

13Only squark–antisquark production is included in the parameter scan, again due to limits
in NLL-fast 4.01.
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Chapter 6

Results and discussion

In this chapter, the results obtained in this work will be presented and discussed.
As the focus of this thesis is the ILC, these results will be discussed in more detail
than the HL-LHC results, which are thoroughly reviewed in Ref. [1].

Since the ILC is an electron–positron collider, it offers a well-defined initial
state. The collision energy is known and tuneable, allowing the choice of the best
suited center-of-mass energy, e.g. thresholds for particle pair production. With
energy options of 0.5 and 1 TeV, the ILC allows for detection of pair produced
particles up to 250 and 500 GeV, respectively.

6.1 The CMSSM10 scenario

In the CMSSM10 scenario, defined in Sec. 5.1, the predicted Higgs mass is too
low compared to the measured value of ∼ 125 GeV. However, this is a standard
scenario that allows for comparison with other work. For instance, Ref. [36] from
2000, i.e. before the LHC started operating, investigates the naturalness reach of
the LHC in this scenario. Below, we will compare our results to Fig. 3 of that
paper, included here as Fig. 6.1 for ease of reference.

6.1.1 95% CL exclusion limits

Figure 6.2 shows the 95% CL exclusion limits obtained in this work for the
CMSSM10 scenario. The green and blue lines show the limits for the ILC at
centre-of-mass energies 0.5 and 1 TeV, respectively. There are three lines in each
color, representing the three different searches presented in Sec. 5.3, for slep-
tons (˜̀̀̃ ∗), charginos (χ̃+

1 χ̃
−
1 ) and “charginos extended” (χ̃+

1 χ̃
−
1 E). The red lines

show the HL-LHC exclusion limits based on the searches presented in Sec. 5.4,
for squarks and gluinos (g̃g̃/q̃q̃∗) and charginos and neutralinos (χ̃0

2χ̃
±
1 ), for two

different integrated luminosities: 300 and 3000 fb−1.
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Figure 6.1: Expected naturalness reach of the LHC in the m0–m1/2 mass
plane for tanβ = 10, A0 = 0 and sign(µ) > 0, from Ref. [36]. Included for
ease of reference.

Also shown are mass contours for sleptons (dark blue), squarks (purple),
gluinos (dark green), Higgs (black), charginos (turquoise) and neutralinos (yel-
low).1,2 The background density represents the naturalness score given by
Eqs. (3.5) and (3.6), as indicated by the bar on the right-hand side of the figure.
White contours for the naturalness score are also shown. The two black areas in
the plot are unphysical. In the left-most black area, the lightest sparticle (LSP)
would be electrically charged, which we know can not be the case. In the black
area on the right, there is no radiative electroweak symmetry breaking (REWSB).

We see that all of the three green (blue) lines more or less follow the
250 (500) GeV chargino mass contour, as expected.3 However, there are two
areas where this is not the case. In the lower left corner of the plot, the slep-
ton line follows the 250 (500) GeV slepton mass contour instead, meaning that
this analysis actually finds slepton pair production here. Further, in the HB/FP
region of the CMSSM parameter space, close to the area with no REWSB, the
lines fall off compared to the chargino mass contour(s). This effect is most pro-
nounced in the 1 TeV case. As indicated by the mass contours, the charginos

1The squark mass contour is the average mass of the first and second generation squarks,
both left- and right-handed, while the slepton mass contour is the average mass of the left- and
right-handed selectrons.

2The 250 and 500 GeV mass contours for χ̃±1 and χ̃0
1 overlap for large values of m0, leading

to an unfortunate color mixing. We ran out of colors.
3Chargino production can produce the same signature as slepton production if both of the

charginos decay leptonically, χ̃±1 →W±χ̃0
1 → `±νχ̃0

1.
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and neutralinos become mass degenerate in this area, meaning that the energy
release in the chargino decays falls drastically, leading to soft final state particles
not passing the selection cuts for the different search analyses.4

When taking a closer look at the 1 TeV exclusion limits, there are two surpris-
ing things worth noticing. First, the slepton analysis appears to be very efficient
in the HB/FP region. The chargino extended analysis, designed for this region,
is just marginally better. Investigating this further, we found that the slepton
analysis picks up production of χ̃0

2χ̃
0
1 in this area, where mχ̃0

2
≈ mχ̃0

1
≈ mχ̃±1

. If

the χ̃0
2 decays into a virtual Z boson and the LSP, and the Z boson in turn decays

into two leptons, this gives the signature the slepton analysis is searching for.

Second, the chargino extended analysis is very inefficicent for low values of
m0, more so than the standard chargino analysis. In principle, this line should
follow the 500 GeV chargino mass contour. The inefficiency is due to too much
visible energy. If two charginos with mχ̃±1

≈ 500 GeV are produced, and each

of them decay into the LSP with mχ̃0
1
≈ 250 GeV (predicted by Eq. (2.84)),

there is approximately 2 × 250 GeV = 500 GeV of energy left for leptons and
jets, i.e. visible energy. However, the chargino extended analysis only allows
between 20 and 100 GeV of visible energy, see Table 5.5.5 Although this analysis
is no good in this area, it has the best reach in the HB/FB region, which it was
designed for. We also observe that the 1 TeV chargino extended analysis does
not exclude the lowest values of m1/2. This is probably due to the same reason
as discussed above: there is too much visible energy below the lower exclusion
line.

The exclusion limit for the HL-LHC analysis searching for squark and gluino
pair production is shown for both integrated luminosities considered, while only
the 3000 fb−1 result has been included for the chargino–neutralino search. As
seen in the plot, the latter analysis suffers from statistical fluctuations, although
200 000 events were generated for each parameter point, i.e. twice as many as for
the other analyses.6,7

We see that the dashed red line, corresponding to the 3000 fb−1 g̃g̃/q̃q̃∗ exclu-
sion limit, excludes all m1/2 values below ∼ 900 GeV, in addition to all squark
and virtually all gluino masses below ∼ 2000 GeV. The shape of this line is similar
to the exclusion limit in Fig. 3 of Ref. [36], here given in Fig. 6.1. However, since

4Equation (2.84), predicted by GUT relations, is mostly valid in the CMSSM. The only
exception is the HB/FB region, where µ is small and χ̃0

2, χ̃0
1 and χ̃±1 all are dominantly higgsino,

with masses ∼ µ.
5The effect discussed here is not so evident for the 0.5 TeV chargino extended line, since

the decay products are not that hard at this energy.
6The statistical fluctuations are due to the uncertainty in the very low selection efficiency,

given by Eq. (5.10).
7The HL-LHC results discussed in Ref. [1] are obtained from eight times the statistics used

here, i.e. 800 000 (1 600 000) generated events for each parameter point for the gluino/squark
(chargino–neutralino) search.
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the integrated luminosity used here is much higher, 3000 fb−1 vs. 10 fb−1, it lies
above the limit in that figure. Another prominent difference between Figs. 6.1
and 6.2 is the clear shift of the “no REWSB” area, due to the improvement of
RGE codes since 2000.

An important result in Fig. 6.2 is that the ILC has a better reach than the
HL-LHC in the HB/FP region of the CMSSM parameter space. Two of the 1 TeV
ILC analyses reach past gluino masses of 3000 GeV.

6.1.2 Naturalness reach

In Ref. [36], the naturalness reach of the LHC is quantified in terms of the largest
naturalness score for which the contour is completely within the exclusion limit.
The resulting naturalness reach in that paper is 210, which can be seen in Fig. 6.1.
Following the same approach, we find a naturalness reach of 400 for the HL-LHC,
given by the 3000 fb−1 g̃g̃/q̃q̃∗ exclusion limit. By comparing Figs. 6.1 and 6.2, it
is evident that the naturalness contours are more or less located at the same place
in the parameter space. The difference in the naturalness reach is thus mostly
due to the luminosity difference discussed above. Following the same prescription
for the ILC exclusion limits, the naturalness reach of the ILC can be quantified
to be ∼ 250, given by the 1 TeV slepton exclusion limit.

The definition of naturalness reach described above is rather limited. For
instance, it does not reflect that the HL-LHC excludes regions of parameter
space with naturalness scores up to c ∼ 800, while the ILC excludes regions of
parameter space with naturalness scores up to c ∼ 2000. In this work, we have
therefore also used Bayesian parameter estimation to investigate the naturalness
reach of these colliders. In this context, the reach is quantified by the Kullback–
Leibler divergence in Eq. (4.15), and reflects the amount of information that
can be gained about naturalness from the different searches at the ILC and the
HL-LHC.

Figure 6.3 shows the naturalness prior and posteriors for the different analyses
in the case of flat priors in m0 and m1/2. These distributions have been obtained
following the prescription in Sec. 4.6. The sudden drop at c ∼ 1500 is due to the
shape of the naturalness contour lines in Fig. 6.2 and the chosen prior ranges.
The ILC 1 TeV and HL-LHC 3000 fb−1 posteriors are based on the product
of the likelihoods for the different searches at the given energy/luminosity. For
clarity, the ILC 0.5 TeV and HL-LHC 300 fb−1 posteriors have not been included
in the figure. However, the total posterior is based on the product of all of the
likelihoods obtained in this work, in addition to the Higgs likelihood given by
Eq. (4.9), with standard deviation σ = 2 GeV, and the observed Higgs mass



102 Results and discussion Chapter 6

mobs
h = 125 GeV as data.8

From this figure, we see that the ILC’s effect on the naturalness distribu-
tion is not very significant in this scenario. The distribution is more limited
by the HL-LHC searches. This corresponds to what we found above, following
the prescription in Ref. [36]. However, the total posterior is dominated by the
Higgs likelihood. Since the standard deviation of 2 GeV is small compared to the
measured Higgs mass of ∼ 125 GeV, this likelihood represents very strong data.
As the correct Higgs mass does not occur in this scenario, the Higgs likelihood
favours the highest naturalness scores shown in Fig. 6.2. The total posterior
peaks at c ∼ 1500, meaning that after introducing all of the data, this is the
most probable naturalness score in the CMSSM10 scenario for the given prior
ranges.

Note that the HL-LHC posterior has a small peak for the lowest values of
c. This is because the χ̃0

2χ̃
±
1 exclusion limit in Fig. 6.2 does not exclude m1/2

values below ∼ 300 GeV, i.e. the area with the lowest naturalness scores. As
the HL-LHC searches are designed to target heavy sparticle production, they
are inefficient for low sparticle masses, for which the decay products are not
hard enough to pass the selection cuts. However, due to the poor statistics, it
is not clear exactly where the return line should be. Thus, although this is a
physical effect, it may be exaggerated due to the bad statistics for this particular
analysis. The g̃g̃/q̃q̃∗ exclusion limit also contributes to this effect, although this
is not directly visible in Fig. 6.2. In any case, this particular area has already
been excluded by previous searches, meaning that the effect can be ignored.

Figure 6.4 shows the corresponding results as Fig. 6.3, but for log priors in
m0 and m1/2. We have used a logarithmic y-axis in this figure, to emphasize
the differences between the distributions. The features discussed above can be
seen also in this figure. The effect for the HL-LHC posterior at low values of
c is more pronounced in this case, since the log priors favour low values of c,
giving a larger contribution to the posterior in this area than flat priors. It is
again evident that it is the Higgs likelihood that dominates the total posterior.
In fact, we see that the probability density is virtually the same at large values
of c for the two different prior choices, meaning that the total data in this case
is so strong that the posterior is prior independent.

The Kullback–Leibler divergence (DKL) values correponding to the natural-
ness priors and posteriors shown in Figs. 6.3 and 6.4 are given in Table 6.1. Note
that the DKL value for the total posterior is not the sum of the DKL values for the
individual posteriors, although it appears to be close. There is no linear relation
between the DKL values calculated from the individual likelihoods and the DKL

value calculated from the total likelihood.

8The experimental uncertainty in the measured Higgs mass is small. However, the theoret-
ical uncertainty in the predicted Higgs mass at a given SUSY parameter point, calculated by
FeynHiggs, is rather large (∼ 2 GeV).



Section 6.1 The CMSSM10 scenario 103

0 500 1000 1500 2000

c=max(ci)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P
ro

b
ab

il
it
y

d
en

si
ty

πflat(c)

Pflat(c) Higgs

Pflat(c) ILC 1 TeV

Pflat(c) HL−LHC 3000 fb−1

Pflat(c) Total

Figure 6.3: Naturalness prior and posterior distributions in the CMSSM10
scenario for flat priors in m0 and m1/2.
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Table 6.1: DKL values in the CMSSM10 scenario, correponding to the priors
and posteriors given in Figs. 6.3 and 6.4, for flat and log priors in m0 and
m1/2, respectively. The ILC 0.5 TeV and HL-LHC 300 fb−1 likelihoods have
been included in the total.

Posterior Flat priors Log priors

ILC 1 TeV 0.221 1.313

HL-LHC 3000 fb−1 0.400 0.639

Higgs 0.708 2.141

Total 0.845 2.436

It is difficult to say anything about the absolute values of these numbers,
as they depend on the prior ranges used for m0 and m1/2, especially for flat
priors.9 However, the Kullback–Leibler divergence is a well-behaved measure of
information [60], and the different values can be compared to each other as long
as they are based on the same ranges.

We see that we in general learn more when starting from log priors compared
to starting from flat priors, as we also saw in the toy example in Sec. 4.5.1. This
is no surprise, since log priors favour low sparticle masses, while the different
likelihoods obtained in this work (mostly) favour large masses. The numbers in
Table 6.1 again emphasize that the Higgs likelihood is completely dominant in
this scenario — the information gain is by far largest for this data.

Note that the information gain for flat priors is larger for the HL-LHC than
for the ILC. This corresponds to that the HL-LHC searches exclude a larger area
of Fig. 6.2 than the ILC searches. In this case, we learn almost twice as much
about naturalness from the HL-LHC than from the ILC. However, for log priors,
it is the other way around, as log priors emphasize low sparticle masses. Since
the HL-LHC searches used here allow small masses, the resulting information
gain is small.

6.2 The CMSSM30 scenario

The goal of this work is to study the effect of future supersymmetry searches
at the ILC and the HL-LHC on naturalness. The fact that the Higgs likelihood

9The likelihood becomes constant for large values of m0 and m1/2. By extending the prior
ranges for flat priors in these parameters, a constant contribution is added to the Kullback–
Leibler divergence, since the naturalness distribution then contains a bigger range of naturalness
scores. For log priors, this contribution goes to zero, since these priors fade for large values of
m0 and m1/2.
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completely dominates the total posterior in the CMSSM10 scenario makes the
above first encounter with Bayesian parameter estimation and Kullback–Leibler
divergence in relation to naturalness a little silly. In this section, we will see
how this changes for the more realistic CMSSM30 scenario, which contains the
measured Higgs mass. The price we pay for this is that the naturalness score in
this scenario in general is a little higher than in the CMSSM10 scenario.

6.2.1 95% CL exclusion limits

Figure 6.5 shows the 95% CL exclusion limits obtained in this work for the
CMSSM30 scenario. The components of this plot are the same as in Fig. 6.2
for the CMSSM10 scenario. The only exception is that there is no unphysical
area without radiative electroweak symmetry breaking in this scenario. Instead,
there is an unphysical area due to tachyons, i.e. particles with negative (squared)
masses. The 1 TeV chargino extended line has been removed for clarity, since the
HB/FP region with mass degenerate charginos and neutralinos that this analysis
was designed for does not appear in this figure. This region is located at larger
values of m0 in the CMSSM30 scenario. The excluded line ran along m1/2 ∼ 200
GeV, not contributing much to the plot.

As expected, we see that the 0.5 and 1 TeV ILC exclusion limits follow the
250 and 500 GeV chargino mass contours, respectively.10 The only exception
is for small values of m0, where the slepton analysis surprisingly exclude both
slepton and chargino masses above these contours. This is most evident for the
1 TeV line. The analysis probably picks up production of χ̃0

2χ̃
0
1 in this area, as

we also saw in the HB/FP region of the CMSSM10 scenario.11

Only the g̃g̃/q̃q̃∗ results have been included for the HL-LHC in Fig. 6.5, since
the χ̃0

2χ̃
±
1 analysis suffers from massive statistical fluctuations in this scenario

(much worse than in the CMSSM10 scenario), and its exclusion limits are located
below the g̃g̃/q̃q̃∗ limits. These fluctuations are also evident for the lower g̃g̃/q̃q̃∗

lines, at low values of m1/2. As stated in Sec. 6.1.2, the reason for these lower
lines is that the HL-LHC analyses are inefficient for small sparticle masses.

The (upper) g̃g̃/q̃q̃∗ lines are close to being gluino mass isocurves, meaning
that gluino pair production is very efficient in this scenario. At low m0 values,
where the squark and gluino mass contours meet, squark pair production takes
over. Both squark and gluino masses below ∼ 2300 GeV are excluded by the
3000 fb−1 line. Again, the HL-LHC results will be discussed in more detail in
Ref. [1].

10The slepton analysis picks up chargino production also here.
11However, in this case, there is no chargino–neutralino mass degeneration. The relation

mχ̃0
2
≈ 2mχ̃0

1
from Eq. (2.84) is valid in the entire m0–m1/2 plane we are studying in this

scenario.
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6.2.2 Naturalness reach

By following the prescription in Ref. [36], the naturalness reach of the HL-LHC
can be quantified to be 800 in this scenario, given by the 3000 fb−1 g̃g̃/q̃q̃∗ line.
This is twice as much as in the CMSSM10 scenario. However, as mentioned in
the introduction to this section, a higher naturalness reach was expected for this
scenario. Similarly, the naturalness reach of the ILC can be quantified to be
∼ 300, also in this scenario given by the 1 TeV slepton exclusion limit.

Figure 6.6 shows the naturalness prior and posteriors for the different analyses
in the case of flat priors in m0 and m1/2, while Fig. 6.7 shows the same for
log priors. Here, the HL-LHC 3000 fb−1 posterior is obtained from the g̃g̃/q̃q̃∗

likelihood alone, while the ILC 1 TeV posterior is obtained from the product of
the likelihoods of all three ILC analyses, even though the 1 TeV chargino extended
line has been removed from figure Fig. 6.5. As for the CMSSM10 scenario, the
ILC 0.5 TeV and HL-LHC 300 fb−1 posteriors are not shown, but their likelihoods
are included for the total posterior.

Most features seen in these distributions are the same as in Figs. 6.3 and 6.4
for the CMSSM10 scenario. The main difference is that the Higgs likelihood is
less dominating, as expected, since the CMSSM30 scenario actually contains the
measured Higgs mass. For flat priors in Fig. 6.6, it is the HL-LHC likelihood that
dominates the total posterior. This is in good agreement with Fig. 6.5, where
we see that the 3000 fb−1 HL-LHC exclusion limit excludes a larger area than
the 1 TeV ILC exclusion limits. However, for log priors in Fig. 6.7, the HL-LHC
posterior has a significant peak for the lowest naturalness scores. The rest of the
distribution then needs to be rather low, as all posteriors must integrate to unity.
It is thus the ILC likelihood (together with the Higgs likelihood) that dominates
the total posterior in this case.

Despite the differences between Figs. 6.6 and 6.7, the total posterior has a
peak at roughly the same naturalness score in the two figures, i.e. c ∼ 1600, and
with roughly the same magnitude. After introducing all of the data, this is thus
the most probable naturalness score in the CMSSM30 scenario for the given prior
ranges, independent of the prior choice. However, as the total posterior is much
more flat in Fig. 6.7, naturalness scores below this value are also very probable
in the case of log priors in m0 and m1/2.

The DKL values correponding to the naturalness priors and posteriors shown
in Figs. 6.6 and 6.7 are given in Table 6.2. By comparing these numbers to Table
6.1, we see that we in general learn less about naturalness in this scenario than
in the CMSSM10 scenario. This is due to how the naturalness is distributed
in Fig. 6.5, together with the shape of the exclusion limits. Thus, even though
higher naturalness scores are excluded in this scenario than in the CMSSM10
scenario, we actually learn less about naturalness.

For the HL-LHC posterior, the information gain is largest when starting from
flat priors in this scenario, in contrast to the trend in Table 6.1. This reflects
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Figure 6.6: Naturalness prior and posterior distributions in the CMSSM30
scenario for flat priors in m0 and m1/2.
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Figure 6.7: Naturalness prior and posterior distributions in the CMSSM30
scenario for log priors in m0 and m1/2.
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Table 6.2: DKL values in the CMSSM30 scenario, correponding to the priors
and posteriors given in Figs. 6.6 and 6.7, for flat and log priors in m0 and
m1/2, respectively. The ILC 0.5 TeV and HL-LHC 300 fb−1 likelihoods have
been included in the total.

Posterior Flat priors Log priors

ILC 1 TeV 0.165 0.903

HL-LHC 3000 fb−1 0.174 0.092

Higgs 0.101 0.672

Total 0.469 1.517

that this posterior is very similar to the naturalness prior in Fig. 6.7. Further, for
flat priors, the DKL values for the HL-LHC and ILC posteriors are approximately
equal. The searches at the two colliders thus contribute with the same amount
of information in this case. For log priors, on the other hand, we learn about ten
times as much about naturalness from the ILC than from the HL-LHC, again
reflecting the inefficiency of the HL-LHC searches discussed above.

6.3 The NUHM2 scenario

As discussed in Sec. 3.3, the part of the NUHM2 parameter space that we are
studying in this thesis is motivated by that it both has low fine-tuning and
includes the correct Higgs mass. These two things can not be obtained simulta-
neously in the CMSSM.

This particular NUHM2 region is investigated in Ref. [30], where it is referred
to as Radiatively-driven Natural SUSY (RNS). Below, we will compare our results
to Fig. 16 of that paper, included here as Fig. 6.8 for ease of reference. The only
differences between the scenario we are studying and the scenario depicted in
that figure is that we have fixed m0 at 4 TeV instead of 5 TeV, in order to
predict a Higgs mass as close to the measured value as possible with a different
choice of RGE codes.12 In addition, the naturalness measure used in Fig. 6.8 is so-
called electroweak naturalness, not the Barbieri–Giudice measure. The difference
between the two measures was briefly discussed in Sec. 3.3.

12We use SOFTSUSY versus ISAJET in Ref. [30], and we improve the Higgs mass calculation
with FeynHiggs, see Sec. 5.2.
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Figure 6.8: Expected naturalness reach of the LHC in the m1/2–µ mass
plane of the NUHM2 model, for tanβ = 15, m0 = 5 TeV, A0 = −1.6m0 and
mA = 1 TeV, from Ref. [30]. Included for ease of reference. In black are
shown approximate ILC reach in terms of chargino mass isocurves (ILC1000
indicates mχ̃±1

= 500 GeV, etc.). Note that the naturalness measure in this

plot, indicated by the red contours, is so-called electroweak (EW) naturalness,
not the Barbieri–Giudice measure.
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6.3.1 95% CL exclusion limits

Figure 6.9 shows the 95% CL exclusion limits obtained in this work for the
NUHM2 scenario. In this plot, there are no unphysical areas.

As in Figs. 6.2 and 6.5, the 0.5 and 1 TeV ILC exclusion limits more or less
follow the 250 and 500 GeV chargino mass contours, respectively. However, in this
scenario, there are three exceptions. First, when the charginos and neutralinos
become mass degenerate for large values of m1/2, the exclusion limits fall off
compared to the mass contours, as we also saw in the CMSSM10 scenario. As
discussed in Sec. 6.1.1, this is because the energy release in the chargino decays
becomes so small that the final state particles do not pass the selection cuts for
the different analyses. Although this effect is evident for all three analyses, the
chargino extended lines are strongest, as expected.

Second, both the 0.5 and 1 TeV slepton lines have some excursions above the
respective chargino mass contours, indicating that something else than charginos
has been produced.13 As in the first two scenarios, it appears that the slepton
analysis picks up production of χ̃0

2χ̃
0
1, where mχ̃0

2
≈ mχ̃0

1
≈ µ.

Third, the 1 TeV chargino extended line is once again completely off for small
values of m1/2, due to the cut on visible energy. However, as stated above, it has
the best reach in the mass degenerate area, which it was designed for.

In this scenario we only include the g̃g̃/q̃q̃∗ results for the HL-LHC, since the
chargino–neutralino analysis suffers from massive statistical fluctuations. The
g̃g̃/q̃q̃∗ analysis only picks up gluino production, since the squarks are too heavy
to be produced (m0 = 4 TeV). As for the two CMSSM scenarios, we see that
gluino masses below ∼ 2000 GeV are completely excluded. This reflects that
gluinos of approximately 2000 GeV is the kinematical limit for gluino production
at a proton–proton collider with centre-of-mass energy

√
s = 14 TeV. In contrast,

the ILC appears to exclude parameter points with gluino masses well above this
in this particular scenario.

The results in Fig. 6.9 can be compared to Fig. 16 of Ref. [30], here given
in Fig. 6.8. We see that the 3000 fb−1 HL-LHC exclusion limit obtained in this
work is located at a higher m1/2 value than in that figure. This is no surprise,
since the luminosity used here is ten times as high as the luminosity used in
Ref. [30]. Further, the ILC results obtained here are more realistic than the ILC
lines (chargino mass isocurves) shown in Fig. 6.8.

6.3.2 Naturalness reach

From Fig. 6.9, we see that the naturalness score is drastically lower in this scenario
than in the two CMSSM scenarios, as expected. Note that some of the naturalness
contours have a peculiar shape. There is a plateu with c ∼ 40 in the lower

13The sleptons are too heavy to be produced in this scenario, since m0 is fixed at 4 TeV.
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Figure 6.10: Naturalness prior and posterior distributions in the NUHM2
scenario for flat priors in m0 and m1/2.
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Figure 6.11: Naturalness prior and posterior distributions in the NUHM2
scenario for log priors in m0 and m1/2.
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middle part of the plot. The naturalness score is calculated from m1/2 and µ in
this scenario, in contrast to m0 and m1/2, which is the case for the two CMSSM
scenarios.

In Fig. 6.9, it is the combined 1 TeV chargino and chargino extended lines
that enclose the largest naturalness score contour. Taking the same approach
as Ref. [36], the naturalness reach of the ILC is quantified to be c ∼ 30 in this
scenario. The correponding reach in Fig. 6.8 is c ∼ 70. By comparing the
naturalness contours in these two figures, we see that they are quite similar, even
though they are based on two different measures of naturalness. However, since
the 1 TeV ILC line in Fig. 6.8 only depicts the kinematical limit, it does not
take into account the search inefficiency due to the chargino and neutralino mass
degeneration, and a higher naturalness reach is thus obtained.

Figure 6.10 shows the naturalness prior and posteriors for the different analy-
ses in the case of flat priors in m1/2 and µ. The Higgs posterior is not included in
this case, since the complete standard deviation of 2 GeV is present in Fig. 6.9,
meaning that the Higgs posterior does not contribute with very much information
in this scenario. However, the Higgs likelihood has been included in the total, in
addition to the ILC 0.5 TeV and HL-LHC 300 fb−1 likelihoods.

Due to the naturalness plateau noted above, a quite pronounced peak is seen
at c ∼ 40 for the naturalness prior. Since the 3000 fb−1 HL-LHC line excludes
most of this plateau in Fig. 6.9, this peak is not visible in the HL-LHC posterior.
Due to the peculiar distribution of the lowest naturalness scores in Fig. 6.9,
the HL-LHC posterior is distributed quite evenly over all of the possible scores,
although almost half of the parameter space shown in the figure is excluded. This
means that the HL-LHC contributes with very little knowledge on naturalness
in this scenario. In contrast, we see that the ILC posterior limits the naturalness
distribution much more, and its likelihood totally dominates the total posterior.

Figure 6.11 shows the corresponding results, but for log priors in m1/2 and
µ. The features discussed above can be seen also in this figure. However, as log
priors favour the lower left corner of Fig. 6.9, as well as the areas close to both
axes, both the prior and the HL-LHC posterior peak at very low c values, in
addition to the peak at c ∼ 40 for the prior.

By comparing the posterior distributions for the two different prior choices,
we see that the total posterior in both cases is completely dominated by the ILC
likelihood. The total posteriors in Figs. 6.10 and 6.11 are virtually identical. This
correponds to that the ILC searches exclude most of the parameter space shown
in Fig. 6.9, so the prior choice is not very significant in this scenario. The ILC
data is so strong that the total posterior is independent of the prior. The total
posterior peaks at c ∼ 120. This is thus the most probable naturalness score in
the NUHM2 scenario for the given prior ranges.

The DKL values corresponding to the naturalness priors and posteriors shown
in Figs. 6.10 and 6.11 are given in Table 6.3. Again, we see that the information



Section 6.3 The NUHM2 scenario 115

Table 6.3: DKL values in the NUHM2 scenario, correponding to the priors
and posteriors given in Figs. 6.10 and 6.11, for flat and log priors in m1/2 and

µ, respectively. The ILC 0.5 TeV, HL-LHC 300 fb−1 and Higgs likelihoods
have been included in the total.

Posterior Flat priors Log priors

ILC 1 TeV 1.063 2.075

HL-LHC 3000 fb−1 0.088 0.132

Total 1.031 2.018

gain in general is largest when starting from log priors. In this scenario, the
information gain from the ILC is ∼ 16 times as large as the information gain
from the HL-LHC. For flat priors, the ILC information gain is ∼ 12 times as
large. This confirms quantitatively all of the properties discussed above for the
distributions.

The most important thing to note from the above discussion on naturalness in
the NUHM2 scenario is that the HL-LHC searches do not exclude low naturalness
scores, independent of the prior choice. The lowest naturalness scores are not
excluded in the CMSSM scenarios either, however, this is due to low cut efficiency
that can be ignored since the corresponding areas are excluded by earlier LHC
searches, which is not the case in this scenario. In contrast, the ILC searches
exclude naturalness scores up to ∼ 50. A linear collider with centre-of-mass
energy

√
s = 1 TeV can tell us much more about naturalness in the NUHM2

scenario than the HL-LHC. This motivates building such a collider.





Conclusions

We set out to quantify the naturalness reach of the International Linear Collider
(ILC) and the High-Luminosity Large Hadron Collider (HL-LHC) in three differ-
ent supersymmetry scenarios, both in terms of the range of naturalness covered,
quantified by the Barbieri–Giudice measure, and in terms of the amount of infor-
mation gained about naturalness, quantified by the Kullback–Leibler divergence.
The ILC results have been the focus of this thesis, while the HL-LHC results are
discussed in detail in Ref. [1].

By following the prescription by Allanach et al. in Ref. [36], the naturalness
reach of the ILC (HL-LHC) was quantified to be c ∼ 250(400), c ∼ 300(800) and
c ∼ 30(−) in the CMSSM10, CMSSM30 and NUHM2 scenarios, respectively. The
fact that the HL-LHC excludes higher naturalness scores than the ILC in the two
CMSSM scenarios correponds to that the HL-LHC searches exclude larger areas
in the mass planes of Figs. 6.2 and 6.5. Further, the hierarchy of the naturalness
reach in these three scenarios was as expected.

Since the definition of naturalness reach given in Ref. [36] is rather limited, we
also used Bayesian parameter estimation to investigate naturalness. This allowed
us to identify the posterior distribution of the naturalness score after introducing
the different searches explored in this work (assuming negative results). Further,
the Kullback–Leibler divergence allowed us to compare how much we can learn
about naturalness from the different collider searches.

The Kullback–Leibler (KL) divergence is a well-known measure in informa-
tion and probability theory, quantifying the information gain between prior and
posterior. From the literature, it appears that it has never previously been used
in relation to particle physics. Although it is difficult to say anything useful
about the absolute value of the KL-measure in this context, as it is prior depen-
dent, it is a potentially powerful tool for comparing the advantages of different
colliders. Here, it has been used in relation to naturalness. However, there are
no limitations on what posterior it can be applied to.

After introducing all of the searches, the most probable naturalness score was
roughly the same in the two CMSSM scenarios, c ∼ 1500–1600, more or less
independent of the prior choice for m0 and m1/2. In the CMSSM10 scenario,
the Higgs likelihood completely dominated the total posterior. In the CMSSM30
scenario, however, the total posterior was dominated by the HL-LHC likelihood

117



118 Results and discussion Chapter 6

for flat priors in m0 and m1/2, and the ILC and Higgs likelihoods for log priors.
Since the HL-LHC searches used were inefficient for the lowest sparticle masses,
the corresponding KL-values were somewhat ambigious.

In the NUHM2 scenario, the most probable naturalness score was c ∼ 120
after introducing all of the searches. For both prior choices, the total posterior
was completely dominated by the ILC likelihood from the 1 TeV search. The
information gain from the ILC searches was over ten times as large as the in-
formation gain from the HL-LHC searches in this scenario. Surprisingly, post
HL-LHC naturalness scores below c ∼ 20, or a tuning to no worse than 5%,
were allowed. Thus, if the particular variant of the NUHM2 model studied here,
so-called Radiatively-driven Natural SUSY (RNS), actually describes the Uni-
verse, a linear collider with centre-of-mass energy 1 TeV would tell us much more
about naturalness than the HL-LHC, which in that case would not exclude any
significant naturalness scores at all. This motivates building the ILC.

Our implementation of the ILC searches detailed in Ref. [56] showed that
they are effective in all three scenarios considered, with two small surprises. The
upper cut on visible energy in the chargino extended search was found to have
bad side effects at 1 TeV and should be increased. We also observed that the
slepton analysis had surprising reach in discovering χ̃0

2χ̃
0
1 production. A separate

search optimized for χ̃0
2χ̃

0
1 should be considered.

The present study has been limited to scanning parameter space grids instead
of the full parameter spaces of the CMSSM and NUHM2 models. Due to time
constraints, we have also been limited in our treatment of signal and background
uncertainties. We hope that future progress in scanning tools and computer
power will allow a full evaluation of the naturalness reach in these models. Such
works should also study in more detail the dependence of the results on the prior
ranges used.



Appendix A

Notation and conventions

Natural units, in which } = c = 1, are used throughout this thesis. So is the rel-
ativistic four-vector notation, although the Lorentz indices are often suppressed
when there is no risk of ambiguity. The most important contravariant four-
vectors are the spacetime four-vector xµ and the energy-momentum four-vector
pµ, defined as

xµ ≡ (x0, x1, x2, x3) = (t,x) (A.1)

and
pµ ≡ (p0, p1, p2, p3) = (E, p1, p2, p3) = (E,p). (A.2)

Greek indices run from 0 to 3 unless otherwise noted, and repeated indices are im-
plicitly summed over. Covariant four-vectors are defined from the contravariant
ones using the metric tensor gµν :

xµ ≡ gµνx
ν = (x0,−x1,−x2,−x3) = (t,−x), (A.3)

where the flat space metric tensor is defined by the relations

g00 = −g11 = −g22 = −g33 = 1, (A.4)

gµν = 0 for µ 6= ν. (A.5)

Further, the following notation is used for the spacetime derivative:

∂µ =
∂

∂xµ
. (A.6)

The 4× 4 Dirac gamma matrices are defined by the relations

γµ† = γ0γµγ0, (A.7)

{γµ, γν} = 2gµν , (A.8)

where the curly brackets denote the anticommutator:

{A,B} ≡ AB +BA. (A.9)
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Further, the product of the gamma matrices is defined as

γ5 ≡ iγ0γ1γ2γ3. (A.10)

The three Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.11)

with commutation relations

[σi, σj] = 2iεij
kσk, (A.12)

where the structure constants εijk are given by the completely antisymmetric
Levi–Civita symbol. Analogous to the Pauli matrices, the eight Gell–Mann ma-
trices λi satisfy the commutation relations

[λi, λj] = 2ifij
kλk, (A.13)

where again the structure constants fijk are completely antisymmetric.



Appendix B

Modified PYCELL jet clustering
routine

PYCELL is a jet clustering routine found in the Monte Carlo event generator
PYTHIA 6 [53] that simulates the response of calorimeter cells to particles, and
then clusters these cells to form jets using a cone algorithm. We have modified
this routine in order for the jets to cluster on energy instead of transverse energy,
and made some improvements in how the calorimeter is simulated in order for it
to correspond better to ILC parameters. Details of these changes are described
in Sec. 5.3.1. The resulting code can be found below. The changes are indicated
by the green comments.

1 C*********************************************************************

2

3 SUBROUTINE PYCELL(NJET)

4

5 C...Double precision and integer declarations.

6 IMPLICIT DOUBLE PRECISION(A-H, O-Z)

7 IMPLICIT INTEGER(I-N)

8 INTEGER PYK,PYCHGE,PYCOMP

9 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

10 DOUBLE PRECISION P_E(4000)

11 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

12

13 C...Parameter statement to help give large particle numbers.

14 PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,

15 &KEXCIT=4000000,KDIMEN=5000000)

16

17 C...Commonblocks.

18 COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

19 COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

20 COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

21 SAVE /PYJETS/,/PYDAT1/,/PYDAT2/

22

121
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23 C...Loop over all particles. Find cell that was hit by given particle.

24 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

25 DO 42 II = 1,4000

26 P_E(II)=0D0

27 42 CONTINUE

28 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

29 PTLRAT=1D0/SINH(PARU(51))**2

30 NP=0

31 NC=N

32 DO 110 I=1,N

33 IF(K(I,1).LE.0.OR.K(I,1).GT.10) GOTO 110

34 IF(P(I,1)**2+P(I,2)**2.LE.PTLRAT*P(I,3)**2) GOTO 110

35 IF(MSTU(41).GE.2) THEN

36 KC=PYCOMP(K(I,2))

37 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

38 ! Electrons (KC=11) and muons (KC=13) have been added to the

39 ! list below of particles that should not be included in

40 ! jets.

41 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

42 IF(KC.EQ.0.OR.KC.EQ.12.OR.KC.EQ.14.OR.KC.EQ.16.OR.

43 & KC.EQ.13.OR.KC.EQ.11.OR.KC.EQ.18.OR.K(I,2).EQ.

44 & KSUSY1+22.OR.K(I,2).EQ.39.OR.K(I,2).EQ.KSUSY1+39) GOTO 110

45 IF(MSTU(41).GE.3.AND.KCHG(KC,2).EQ.0.AND.PYCHGE(K(I,2)).EQ.0)

46 & GOTO 110

47 ENDIF

48 NP=NP+1

49 PT=SQRT(P(I,1)**2+P(I,2)**2)

50 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

51 P_XYZ=SQRT(P(I,1)**2+P(I,2)**2+P(I,3)**2)

52 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

53 ETA=SIGN(LOG((SQRT(PT**2+P(I,3)**2)+ABS(P(I,3)))/PT),P(I,3))

54 IETA=MAX(1,MIN(MSTU(51),1+INT(MSTU(51)*0.5D0*

55 & (ETA/PARU(51)+1D0))))

56 PHI=PYANGL(P(I,1),P(I,2))

57 IPHI=MAX(1,MIN(MSTU(52),1+INT(MSTU(52)*0.5D0*

58 & (PHI/PARU(1)+1D0))))

59 IETPH=MSTU(52)*IETA+IPHI

60

61 C...Add to cell already hit, or book new cell.

62 DO 100 IC=N+1,NC

63 IF(IETPH.EQ.K(IC,3)) THEN

64 K(IC,4)=K(IC,4)+1

65 P(IC,5)=P(IC,5)+PT

66 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

67 P_E(IC) = P_E(IC) + P_XYZ

68 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

69 GOTO 110

70 ENDIF

71 100 CONTINUE

72 IF(NC.GE.MSTU(4)-MSTU(32)-5) THEN

73 CALL PYERRM(11,’(PYCELL:) no more memory left in PYJETS’)
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74 NJET=-2

75 RETURN

76 ENDIF

77 NC=NC+1

78 K(NC,3)=IETPH

79 K(NC,4)=1

80 K(NC,5)=2

81 P(NC,1)=(PARU(51)/MSTU(51))*(2*IETA-1-MSTU(51))

82 P(NC,2)=(PARU(1)/MSTU(52))*(2*IPHI-1-MSTU(52))

83 P(NC,5)=PT

84 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

85 P_E(NC)=P_XYZ

86 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

87 110 CONTINUE

88

89 C...Smear true bin content by calorimeter resolution.

90 IF(MSTU(53).GE.1) THEN

91 DO 130 IC=N+1,NC

92 PEI=P(IC,5)

93 IF(MSTU(53).EQ.2) PEI=P(IC,5)*COSH(P(IC,1))

94 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

95 ! A constant term of 0.02 has been added to the standard

96 ! deviation sigma in the energy smearing below, given by

97 ! E = E + sigma*N(0,1)

98 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

99 120 PEF=PEI+PARU(55)*SQRT(PEI+(0.0004/PARU(55)**2)*PEI**2

100 & *(-2D0*LOG(MAX(1D-10,PYR(0)))))*COS(PARU(2)*PYR(0))

101 IF(PEF.LT.0D0.OR.PEF.GT.PARU(56)*PEI) GOTO 120

102 P(IC,5)=PEF

103 IF(MSTU(53).EQ.2) P(IC,5)=PEF/COSH(P(IC,1))

104 130 CONTINUE

105 ENDIF

106

107 C...Remove cells below threshold.

108 IF(PARU(58).GT.0D0) THEN

109 NCC=NC

110 NC=N

111 DO 140 IC=N+1,NCC

112 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

113 IF(P_E(IC).GT.PARU(58)) THEN

114 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

115 NC=NC+1

116 K(NC,3)=K(IC,3)

117 K(NC,4)=K(IC,4)

118 K(NC,5)=K(IC,5)

119 P(NC,1)=P(IC,1)

120 P(NC,2)=P(IC,2)

121 P(NC,5)=P(IC,5)

122 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

123 P_E(NC)=P_E(IC)

124 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
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125 ENDIF

126 140 CONTINUE

127 ENDIF

128

129 C...Find initiator cell: the one with highest p (originally pT) of not

yet used ones.

130 NJ=NC

131 150 EMAX=0D0

132 DO 160 IC=N+1,NC

133 IF(K(IC,5).NE.2) GOTO 160

134 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

135 IF(P_E(IC).LE.EMAX) GOTO 160

136 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

137 ICMAX=IC

138 ETA=P(IC,1)

139 PHI=P(IC,2)

140 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

141 EMAX=P_E(IC)

142 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

143 160 CONTINUE

144 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

145 IF(EMAX.LT.PARU(52)) GOTO 220

146 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

147 IF(NJ.GE.MSTU(4)-MSTU(32)-5) THEN

148 CALL PYERRM(11,’(PYCELL:) no more memory left in PYJETS’)

149 NJET=-2

150 RETURN

151 ENDIF

152 K(ICMAX,5)=1

153 NJ=NJ+1

154 K(NJ,4)=0

155 K(NJ,5)=1

156 P(NJ,1)=ETA

157 P(NJ,2)=PHI

158 P(NJ,3)=0D0

159 P(NJ,4)=0D0

160 P(NJ,5)=0D0

161 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

162 P_E(NJ)=0D0

163 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

164

165 C...Sum up unused cells within required distance of initiator.

166 DO 170 IC=N+1,NC

167 IF(K(IC,5).EQ.0) GOTO 170

168 IF(ABS(P(IC,1)-ETA).GT.PARU(54)) GOTO 170

169 DPHIA=ABS(P(IC,2)-PHI)

170 IF(DPHIA.GT.PARU(54).AND.DPHIA.LT.PARU(2)-PARU(54)) GOTO 170

171 PHIC=P(IC,2)

172 IF(DPHIA.GT.PARU(1)) PHIC=PHIC+SIGN(PARU(2),PHI)

173 IF((P(IC,1)-ETA)**2+(PHIC-PHI)**2.GT.PARU(54)**2) GOTO 170

174 K(IC,5)=-K(IC,5)



125

175 K(NJ,4)=K(NJ,4)+K(IC,4)

176 P(NJ,3)=P(NJ,3)+P(IC,5)*P(IC,1)

177 P(NJ,4)=P(NJ,4)+P(IC,5)*PHIC

178 P(NJ,5)=P(NJ,5)+P(IC,5)

179 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

180 P_E(NJ)=P_E(NJ)+P_E(IC)

181 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

182 170 CONTINUE

183

184 C...Reject cluster below minimum E (originally ET), else accept.

185 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

186 IF(P_E(NJ).LT.PARU(53)) THEN

187 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

188 NJ=NJ-1

189 DO 180 IC=N+1,NC

190 IF(K(IC,5).LT.0) K(IC,5)=-K(IC,5)

191 180 CONTINUE

192 ELSEIF(MSTU(54).LE.2) THEN

193 P(NJ,3)=P(NJ,3)/P(NJ,5)

194 P(NJ,4)=P(NJ,4)/P(NJ,5)

195 IF(ABS(P(NJ,4)).GT.PARU(1)) P(NJ,4)=P(NJ,4)-SIGN(PARU(2),

196 & P(NJ,4))

197 DO 190 IC=N+1,NC

198 IF(K(IC,5).LT.0) K(IC,5)=0

199 190 CONTINUE

200 ELSE

201 DO 200 J=1,4

202 P(NJ,J)=0D0

203 200 CONTINUE

204 DO 210 IC=N+1,NC

205 IF(K(IC,5).GE.0) GOTO 210

206 P(NJ,1)=P(NJ,1)+P(IC,5)*COS(P(IC,2))

207 P(NJ,2)=P(NJ,2)+P(IC,5)*SIN(P(IC,2))

208 P(NJ,3)=P(NJ,3)+P(IC,5)*SINH(P(IC,1))

209 P(NJ,4)=P(NJ,4)+P(IC,5)*COSH(P(IC,1))

210 K(IC,5)=0

211 210 CONTINUE

212 ENDIF

213 GOTO 150

214

215 C...Arrange clusters in falling E (originally ET) sequence.

216 220 DO 250 I=1,NJ-NC

217 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

218 EMAX=0D0

219 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

220 DO 230 IJ=NC+1,NJ

221 IF(K(IJ,5).EQ.0) GOTO 230

222 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

223 IF(P_E(IJ).LT.EMAX) GOTO 230

224 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

225
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226 IJMAX=IJ

227 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

228 EMAX=P_E(IJ)

229 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

230 230 CONTINUE

231 K(IJMAX,5)=0

232 K(N+I,1)=31

233 K(N+I,2)=98

234 K(N+I,3)=I

235 K(N+I,4)=K(IJMAX,4)

236 K(N+I,5)=0

237 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

238 P_E(N+I)=P_E(IJMAX)

239 !*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

240 DO 240 J=1,5

241 P(N+I,J)=P(IJMAX,J)

242 V(N+I,J)=0D0

243 240 CONTINUE

244 250 CONTINUE

245 NJET=NJ-NC

246

247 C...Convert to massless or massive four-vectors.

248 IF(MSTU(54).EQ.2) THEN

249 DO 260 I=N+1,N+NJET

250 ETA=P(I,3)

251 P(I,1)=P(I,5)*COS(P(I,4))

252 P(I,2)=P(I,5)*SIN(P(I,4))

253 P(I,3)=P(I,5)*SINH(ETA)

254 P(I,4)=P(I,5)*COSH(ETA)

255 P(I,5)=0D0

256 260 CONTINUE

257 ELSEIF(MSTU(54).GE.3) THEN

258 DO 270 I=N+1,N+NJET

259 P(I,5)=SQRT(MAX(0D0,P(I,4)**2-P(I,1)**2-P(I,2)**2-P(I,3)**2))

260 270 CONTINUE

261 ENDIF

262

263 C...Information about storage.

264 MSTU(61)=N+1

265 MSTU(62)=NP

266 MSTU(63)=NC-N

267 IF(MSTU(43).LE.1) MSTU(3)=MAX(0,NJET)

268 IF(MSTU(43).GE.2) N=N+MAX(0,NJET)

269

270 RETURN

271 END

272

273 C*********************************************************************
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