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Abstract

Today’s software systems reach easily hundreds of thousands of lines of code, and such
systems do frequently benefit from the use of state machines, which help in managing
system complexity by guaranteeing completeness and consistency. To visualize such
state machines, statecharts have been introduced, which also offer a formalism for or-
thogonal and hierarchical states. Many developers use state machines, but even with
statecharts as a tool, it is a major challenge to keep an overview of the machine and its
effects. Gaining an overview as a newcomer to a project is an even larger challenge.
In this paper, we argue that a 3D statechart can alleviate these challenges somewhat,
and present an editor for state machines that are given in SCXML, an XML notation
for statecharts. This editor allows the user to explore the state machine by navigating
freely in a 3D environment and make changes to the machine. The editor is a prototype
and incomplete. It is an attempt to reflect the idea of having statecharts presented in 3D
space.
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Chapter 1

Motivation

In our daily lives we encounter a huge amount of computer systems, knowingly and
unknowingly. Since the beginning of their existence, they are getting smaller, faster,
less power consuming and more portable. With the increase of computational power
and networking, the expectations on software programs practically explode.

To meet the challenges of software’s complexity, which is inevitable when adding
features, developers introduced several methods to design software. Some of them,
like design patterns or language features, help to organize software on a low-level to
mid-level basis, but lack the ability to model high level logic.

As high level logic we consider the program flow ramified into sections where
conditions determine the branches taken during execution. Such conditions can either
be an expression, which evaluates the content of variables, or a waiting point, holding
the current program until an event arrives.

Assuming a program has a modified file open and is waiting for user input. In that case,
the flow control, viewed from the high-level logic, is halted until the user triggers an
event. Presses the user the quit-program button, common software programs continue
until they come to a branch with two possible directions, one where the program exits
and another one, where a window rises, informing the user about the unsaved file. In the
presented case, the content of the variable representing whether a file is modified or not
would be true and the branch where the pop-up appears executed. This simple example
shows two branches where the flow is directed once depending on an event and once
depending on a conditional variable.

One may imagine the number of branching points and its resulting complexity of
the Linux kernel; a software construct with currently 17 million lines of code[Linc].

Developers of such large software systems are often burdened with its complexity.
Newcomers to such systems can be overwhelmed or even demotivated, especially if
documentation is poor and supervision sparse.

State machines can help structure the code and make the program flow more
comprehensible. In state machine terminology, branching points are named states
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while the flow between two states is denominated transition. For learning and
editing, a graphical representation can be helpful, and Harel [Har87] formalized one
known as statecharts. One textual notation for these statecharts is the XML notation,
SCXML [Gro14], which has been used in some graphical editors [Linb; Line; Lind] and for
which the interpreter uscxml [Rad15] exists.

Although visual editors exist, we find that they do not support developers well in
understanding the state machine. The developers should be supported in making
the causal connection between source code, system behaviour and a state machine’s
state.

Our goal is to provide developers with better support for understanding and memorizing
state machines. The memorizing process shall not require a strenuous activity but rather
a subconscious effect of interaction with system through the development tools. We
expect that the better understanding of the system is achieved by letting the developer
move freely through a state machine laid out in three dimensions. As a result,
newcomers become acquainted with the system more quickly, while developers who
are familiar with the system can resume their work faster after a break. Furthermore,
communication between developers becomes easier because they can communicate with
each other in metaphors when they can associate common concepts with the 3D layout
of the state machine. For example, if a conglomerate of states is laid out like a tree, a
developer may call another one’s attention by saying: "Look behind the tree’s trunk".
Being able to name structures to facilitate communication is a valuable aspect from the
agile software development area [Gam+95].

1.1 Mnemonic strategy

The human brain can store and recall information very efficiently if a mnemonic
technique is used. One popular technique is The Method of Loci[Roe80] (MoL), aka
memory palace. The idea is, that the person wanders in his mind along a well-known
path, like the daily way to work or one’s home. While moving along this way, the person
can place images of items in salient location for later memorization. These images
should be as vivid as possible. To recall the list of items later, the subject starts the
imaginary journey again and picks up items as he progresses. If an item is not recalled,
the journey, and therefore the retrieval process, is not disrupted.

In case of a three-dimensional statechart, which we call from here on stateroom, the
path to wander is modeled by the stateroom’s author. Software development is an it-
erative process. Hence, the author wanders through the room over and over again and
learns subconsciously the stateroom by heart. Transitions are remembered as forks on
the virtual hiking trail. States are analogous to locations in MoL, while imaginery pic-
tures are considered as the result of actions occuring in a transition. This action could
be visible on the screen; for example, a widget is focused, an item is selected or a text
is changed. If the application controls a physical device, and the stateroom controls its
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electrical motors and LEDs, the effect will even be visible outside of the computer.

MoL is used in general by constructing environments in front of one’s inner eye,
based on real-world experiences. A recent study [Leg+12] showed that MoL is similarly
effective if the test subject uses a virtual environment instead of a well-known real world
environment. This study supports our theory.

1.2 Problem Definition / Statement

This work is an attempt to develop an editor, which reads an SCXML file and renders
a 3-dimensional representation of its logci on a 2-dimensional screen. We have to
investigate how hierarchical states can be represented in 3D space. This is particularly
interesting because, to the best of our knowledge, no reasearch has been publiched in
that area so far. Since our goal is that a developer can experience a state machine’s logic
as much as possible, a way where the state machine is interpreted and becomes visible
must be found.

1.3 Limitations

The editor is not in a state that we could conduct user-studies.

We were not able to present a useful visualization of orthogonal states. Compound states
can be drawn, but when several ones are nested, there usability is questionable.

Transitions with multiple targets are ignored.

1.4 Main Contributions

We built the first editor for hierarchical state machines.

The presented work gives ideas on how states can be drawn in 3D, but also shows some
dead ends.

The editor can connect via unix sockets to a server, to control simulated hardware in
Blender.

This work was partialy presented under the topic Storing coordinates of 3-dimensional
staterooms at the scxml2016-workshop in Brussel[Lina].
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1.5 Outline

Chapter 2 Introduction to SCXML gives an overview of the classical automata and the
way they are expanded by SCXML and statecharts.

Chapter 3 Mathematical background introduces basic mathematical concepts needed
to calculate and present 3-dimensional objects on a computer screen. In particular is
discussed how 3D objects are created and projected; Different kinds of billboarding are
perceived by an observer;

Chapter 4 Introduction to Blender presents briefly the 3D animation tool Blender.

Chapter 5 Blender Game Engine gives an overview of Blender’s game engine.

Chapter 6 Trial and error: Stateroom editor as game documents our attempt to build a
stateroom editor with Blender’s game engine.

Chapter 7 Introduction to OpenGL introduces OpenGL.

Chapter 8 Rendering pipeline describes the OpenGL pipeline.

Chapter 9 Design shows the widget to implement in the editor.

Chapter 10 Implementation in C++ contains details about the implementation of the
editor in C++/OpenGL.

Chapter 11 Simulator explains the connection of the editor with a Blender-game.
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Chapter 2

Introduction to SCXML

In this chapter we present SCXML, a markup language for describing statecharts;
a visual formalism for state machines introduced by Harel [Har87] in the mid 1980s.
We choose SCXML as description language because Qt, the framework we introduce
in chapter 10, offers a state machine based on SCXML.1 Furthermore, SCXML is
extensible and allows the saving of additional data besides the statecharts. We propose
an extension for our purposes in subsection 2.5.5 and talk about the implementation in
chapter 10.5.1.

In the next section we take a look at a simple state machine, while the subsequent
section 2.2 gives a recap of classical state machines before we start with the presentation
of SCXML in section 2.3; followed by the discussion of the SCXML notation in
section 2.4.

The major part of this chapter is gathered from the official webpage of SCXML [Gro14],

while information about automata in general is retrieved from the book [HMU01].

2.1 Basic Primitives

Many systems, like molecules or binary code, are constructed out of single, atomic
entities, often called primitives. Such primitives may then evolve by adding attributes
to more complex structures. In a very simple state machine domain we define three
primitives: States, Transitions and Events. Such primitives can be assembled into a
state diagram, illustrated in figure 2.1.

States are discrete points in a state chart and may be seen as branching or flow control
units. In the introductory example a program was in a waiting-state, waiting for user
input and afterwards, when the user pressed Quit, it reached an is-file-to-store-state
where it waits until the user decides if the file is to store or to discard. A developer may
introduce a new state when a decision, concerning the execution path that a program

1We assess in Qt’s chapter that the latest version is not SCXML comform anymore.

8
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Figure 2.1: Basic primitives of a state machine.

should follow, is to be made. This is true for high-level considerations and not for
if-clauses at programming language level.

Events are usually fired from an external source. They trigger the search on the currently
active state for a matching transition. A transition matches when it is configured to react
to the incoming event.

Transitions build the pathways between the states through the state machine. We say
a transition is enabled, taken or traversed. When a transition is traversed, its source
state becomes inactive while its destination state becomes the active state. Usually a
transition is enabled when a corresponding event occurs.

2.2 Automaton

States, events and transitions are the core elements of automata or finite state machine
(FSM). We will not engage in a complete discussion about FSMs, but rather sensitise
ourself by looking at their characteristics to emphasize the properties of SCXML in the
subsequent section.

FSMs are categorized into deterministic and non-deterministic state machines. Both
consists in general of the following entities:

• Finite set of states

• Finite set of input symbols (events)

• Transition function

• Start state

• Set of final states

A system, interpreting a state machine, has usually an entity whose content holds the
present state of the state machine. To facilitate the discussion we introduce the variable
current_state for that purpose. The finite set of states contains all states the FSM
operates in, hence, the current_state contains always one element of that set. The start
state marks the beginning of the interpretation of a state machine. It is the first entry
current_state holds. States marking an end of an automaton are gathered in the set of
final states. However, FSMs allow transitions leaving a final state. Input symbols is
the alphabet the state machine expects to react to. Together with a state they form a
(symbol,state)-tuple as argument for the transition function. This function determines
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if the FSM is a deterministic (DFA) or non-deterministic (NFA) automaton. For a DFA,
only one state is returned, because a deterministic automaton can only reside in one state
at a time. The transition function for NFAs return a set of states, empowering the state
machine in residing in multiple states at the same time. Every NFA can be transfered
into an equivalent DFA. The power of the NFA is to express complex systems with less
states.

Moore2 and Mealy extended independently the FSM and added a notation for output.
In figure 2.2, both notations are shown. The Mealy machine generates output when a
transition is take, while a Moore machine generates output when a state is reached.

We do not discuss these machines further, but during the discussion of SCXML, we
take the opportunity to emphasize the concepts by comparing SCXML to these classical
machines.

Figure 2.2: A Moore automaton(l) and an equivalen Mealy automaton(r).[May14]
with qn: states; x, y, z: input; a, b, c: output

2Named after the mathematicians Edward F. Moore and George H. Mealy.
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2.3 Expanding to SCXML

State diagrams are the visualization of FSMs. Harel enriches [Har87; Har88; HN96]

state diagrams with orthogonality, depth and broadcast-communication to a visual
formalism named Hierarchical State Machine (HSM) or Statechart. These features
allow a corresponding state machine to have several states active at the same time, nested
states, which introduce a parent-child relation between states, and a communication
factility to raise events internally or in remote state machines. SCXML offers an XML
notation for HSMs as well as a set of algorithms to interpret them. Our focus lies
on that part of SCXML, which describes the notation for HSMs without broadcast-
communication. We do not discuss the algorithms for the interpreter, but we look into
those parts necessary to understand the semantics of statecharts.

Before we look at the notation tag by tag, we introduce some key concepts of SCXML
to get an overview of the standard.

SCXML’s states can be partitioned into three classes:

• Atomic states are discrete states and are equivalent to FSM-states.

• Composite states, are superstates consolidating child- or substates. A composite
state is either a parallel state, where its children become active together with the
paralle state. Or a composite state is of type compound state, forming a hierarchy
between states with an atomic state at its bottom. Children of a parallel state form
an and-relation, because if one thread is active, all are; while the atomic states in
a hierarchy have an exclusive-or-relation, meaning only one atomic state can be
active at a time.

• Pseudo states never become active but they redirect a transition, when activate,
to the set of states which become active instead.

In SCXML, a state is denominated active if the current set of states contains that state.
All active states together are collectively denominated configuration. We refine this
term along this chapter and give a final definition in section 2.5.6.

C D

B

A

Figure 2.3: Nested
compound state.

In a HSM, a state can have an arbitrary number of siblings, descendants
and ancestors. Therefore, it can be discussed like a family tree.
Figure 2.3 illustrates 4 states that have among others the following
relations: A is parent of B and B is child of A; A is ancestor of B,
C and D; B is sibling of D; C is descendant of A and B. States A and B
are compound states while states C and D are atomic states. An active
compound state has at least one child active, ergo a branch ends always
in an atomic state. When a child state is active, then its lineage is active
too and all its ancestors are part of the configuration. That includes also
the root state of SCXML, which is the tag <scxml>. FSM’s initial states are qualified
states where the state machine resides in after startup. So, SCXML allows to have a
transition upon startup, entering the initial state.
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A

D

B C

H

(a) Type shallow with default
state B. A’s default state is the
history state, history is applied

every time A is targeted.

A

K L

F G

B C B E

H*

(b) The deep history stores either K(B|C) or
L(B|D) and is applied from F’s transition. G

ignores the history and activates state E.

Figure 2.4: History states of type shallow and deep.

A final state is a state without transitions.When it is reached, an automatic event is cast
internally. This is completely different from FSMs where states can be marked as an
accept state. But these accept states only indicate that the machine accepts the order of
the received events.3 And because they are allowed to have transitions, the acceptence
status may be revoked when a matching event occurs. A final state, however, has no
transitions. But it still can be exited through a transition of an ancestor, unless it is a
direct child of the scxml-root wrapper, the document’s root state.

Pseudo states, namely initial and history, redirect the transition flow of the state machine
and do never occur in a configuration. An initial state redirects the flow to a child state
when a composite state P becomes active, and the activation is in such a way that P is
targeted and not one of its children. For example, in figure 2.4b L’s initial state is B.
Because G targets B, L’s initial state is ignored if G’s transition is taken. Initialization
is specific for hierarichal states and FSMs do not have such a setting. History states
store a configuration when their parent is exited and restore the configuration when it
is activated. Note that a history state does not restore the previous state upon its parent
state activation. It must be targeted, either as parent’s default state or by another state. A
history state can be configured as shallow or deep. Setting it to shallow (see figure 2.4a)
stores only the parents current active children. Is the type is set to deep (shown in
figure 2.4b) the complete configuration to the final atomic state is recorded. FSM’s do
not have any notion of history.

A parallel state is divided into orthogonal regions. Each region is activated when the
parallel state becomes active. This empowers SCXML to have multiple atomic states in
a configuration; making SCXML equivalent to a NDA. Figure 2.5 shows the conjunction
Y of the two compound states K and J. If Y becomes active, the initial transitions to A
and G are taken. Each new incoming event is processed from each region independently:
Suppose we have the configuration scxml, Y, K, J, B, E and α is triggered, we end up

3In FSM terminology, events are named symbols and a chain of symbols is named string.
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in the configuration scxml, Y, K, J, A, F. A parallel state may be exited by making a
transition to a state that lies outside of the region Y. This is shown in the figure with
transition f to state X. A final state can be used to stop further executing a region (not
shown).

Y

K J

A
X

B

e1 e2 α

E

F

G

α

β

γ f

Figure 2.5: Parallel state with two orthogonal regions (K, J).

To react on a specific stage in state machine traversal, Mealy and Moore machines can
generate output either when a transition is taken (Mealy) or when a state is reached
(Moore). SCXML combines and extends this feature under the topci executable content.
Executable content may be attached to a transition or as handler to a state. Two handler
types exists for states, onentry and onexit, which are called when a state is entered or ex-
ited, respectively. This is comparable with constructors and destructors in OOP object.
Transitions’ executable content is performed during state change, between the execu-
tion of the onexit and onentry handler. But executable content does not just generate
output, it allows to execute code snippets, which is elaborated further in section 2.5.3.

A

B C

e1 e2 e3

Figure 2.6: Two
transitions targeting B

and C

Figure 2.6 shows three states and two transitions. Assume state A
has an exit handler exit-H-A and state B an entry handler entry-
H-B and the transition e1 has executable content e1-C attached;
taking transition e1 would result in the execution of exit-H-A, e1-
C, entry-H-B in that specific order. If under the same assumption
e2 is traversed, the execution of exit-H-A, entry-H-B would be
performed. The one to the left is enabled by events e1 and e2, the
one to the right by event e3 only. Transitions form the unidirectional
link between states. A transition is triggered by an event. It may react to multiple events
and target multiple destinations.

Considering plain states in FSMs leadss to the cognition how simple they are: Only one
of them can be active. In HSMs, however, where states can be nested and several states
may be active simultaneously, it is worth, if not even necessary, to discuss states and
there interrelations without transitions, events or other features. For example, a nested
state scenario is considered: An atomic state at the bottom of the hierarchy is active and
a transition to a target on a different branch is to be taken. Several ancestors are here
affected. To calculate which of their entry/exit handlers must be executed, in what order,
during state switch, it is often necessary to determine the Least Common Compound
Ancestor (LCCA). The LCCA is determined by finding the target’s closest compound
state that is also contained in the configuration.
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A

B C D

C2
C1

scxml

Figure 2.7: Nested compound states with
the root wrapper SCXML.

For state D in figure 2.7 we climb up the hierarchy until
we find the next compound parent, which is C2. In a
transition from the source state D to the target state B,
we identify the configuration: D, C2, C1, scxml4. B’s
closest compound state is C1 which is contained in the
configuration. So, C1 is LCCA for this transition. The
outermost and omnipresent LCCA is per definition the
scxml root element, explained in chapter 2.4.6. Since
the LCCA is the closest parent of the states involved
in transitions, we can conclude that the LCCA itself is
never left and re-entered during transitions. The LCCA
becomes more important when we talk about transition
types later in this chapter.

4The reader is encouraged to return here after finishing the document and explain, why A and B can’t be
active, when D is.
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2.4 SCXML notation

This section lists and explains in brief the SCXML notation. We start each section by
introducing the attributes followed by the child elements.

Before we start, we introduce the common attribute id5 because it is used frequently
throughout the standard. It holds a unique identifier, which is used when the parent
element is targeted by a transition.

2.4.1 State

Atomic states and compound states are incorporated in <state>. Which one a <state>
represents depends wether it has a as child state or not. A parallel state is almost
identical to <state>, but has its own tag, <parallel>. In section 2.4.2, we describe the
differences.

Attribute-tags

D C

B

A

Figure 2.8: Compound state B
contains an initial tag with a

target to C.

A <state> can be configured with two optional attributes.
Besides the id attribute, it has an initial attribute, declaring
an initial configuration. For example, transition to C in
figure 2.8 shows the graphical representation of the start-tag:
< state id = ”B” initial = ”C” >. This option preclude
executable content in the body of the transition. To overcome
this shortcoming an initial child-tag is introduced in the next
paragraph. In SCXML, if no initial state is given, then the
default initial state is the first state in document order.

Child-tags

In brackets is the range specified how often an element may occur.

• <onentry>/<onexit>[0-*] These two executable tags are processed during state
entry and exit. They may occur several times and are worked up in document
order. If a previous handler aborts on error the subsequent ones are not affected.
Executable content is discussed in section 2.5.3.

• <transition>[0-*] A state may have an arbitrary number of transitions to other
states. Transition are discussed in 2.4.5.

5Possible characters for an id are defined at XML1.0 under [5] Name. In general it is save to use: (Letter
| ’_’ | ’:’)*

http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Name
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• <initial>[0-1] Chapter 2.3 defines that a legal configuration branch must end in
an atomic state. We also clarified that the initial attribute denotes a child state (or
states) to be entered when the compound state is targeted itself. This tag needs a
transition as child and allows thereby to execute content as default initialization.

• <state>[0-*] The list of child states. If present, this becomes a compound state.

• <parallel>[0-*] Introduces a parallel substate and promotes the state to a
compound state. Chapter 2.3 discusses parallel states.

• <final>[0-*] List of final states.

• <history>[0-*] A <history> element, see section 2.4.4.

• <datamodel>[0-1] Can be used to set variables inside the scripting language.
Datamodel is discussed in chapter 2.5.2.

• <invoke>[0-*] Is used for external services and covered in section 2.5.4.

2.4.2 Parallel

The parallel state uses the tag <parallel>. It is equivalent to <state> but misses the
attribute initial and the children <initial> and <final>.

2.4.3 Final

The final state <final> provides a single attribute: id.

Its child tags are <onentry>, <onexit>, as discussed in section 2.4.1 and a new tag
<donedata>. With <donedata> some data consisting of <content> and <param> can
be returned to its callee.

2.4.4 Pseudo states

History History states use the tag <history> and two optional attributes: id and type.
The type determines if the history to be stored is of type deep or shallow, as discussed
in section 2.3.

As child is allowed an mandatory a single transition <transition>, which is discussed
in 2.4.5.

Initial Initial states are inclosed in an <initial> element and has no attributes.

The only child holds the initial configuration and is is a <transition> element, discussed
in 2.4.5. This transition is mandatory.
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2.4.5 Transition

SCXML’s transitions are triggered like FSM transitions, through an event. Furthermore,
SCXML transitions can have several targets, equivalent to NDAs. These are necessary
to address parallel states.

The following attributes are vastly beyond FSM’s capabilities and lead to more complex
behavior.

Attribute-tags

• ’event’ Is a space separated list of event descriptors, which lead to a traversal of
the transition. Event descriptors are further defined in section 2.4.7.

• ’cond’ A conditional expression must be evaluable to true or false. Only if this,
so called guard[Sam09, p. 65f], is true the transition might be selected. The expression
is evaluated solely on event occurrence.

• ’target’ Contains a list of destination state-identifiers that can be reached by taking
this transition. Multiple, space separated entries may be defined to target different
states with a single event.

• ’type’ Transitions are of type internal6 or external (default). The type is only inter-
esting for compound states and regulates which entry and exit handlers are called.
When the external switch is chosen, all exit-handlers between the current con-
figuration up to the LCCA (excluded) and all entry-handlers from the LCCA to
the next configuration are called. The internal parameter is slightly more com-
plicated. It prevents executing the handlers of states, which would be left and
re-entered again to reach the target state. Figure 2.9 shows a simple example.
Suppose the current configuration is C, A, scxml and event t1 is triggered. Since
t1 is not in any of C’s transition event descriptors, the event is "passed" up to C’s
parent A for processing7. A’s only transition matches the current event and is
therefore enabled. Because B, the target, is child of A like C, that makes A the
LCCA. Depending on t1’ type, we have two execution paths: external: C1.onexit,
t1.body, B.onentry
internal: t1.body

A transition’s only child element is executable content, see section 2.5.3.

6The UML specification uses the term local instead of internal.
7How transitions are selected is described in section 2.5.1
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B

scxml

C D

A

t3 t2

t1

Figure 2.9: Is C active and t1 enabled, t1’s type
determines if A’s exit handler is called.

2.4.6 The root tag <scxml>

Each SCXML document provides the <scxml> tag as root tag. It is a slim compound
state with the following attributes:

• initial - The optional initial tag identifies the state to set active on start-up.

• name - For informative use only a name.

• xmlns - Contains "http://www.w3.org/2005/07/scxml".

• version - Contains "1.0"

• datamodel - SCXML can use data structures and evaluable statements for
conditional variables. Ignored in this document.

• binding - Defines at which point data elements are initialized. Beyond the scope
of this document.

Children

The children <state>, <parallel>, <final>, <datamodel> are identical of those of a
<state> tag. The additional <script> tag allows to run a script during load time to
initialize the datamodel and is out of the scope of this document.

2.4.7 Event descriptors

Event descriptors are either generated by the state machine or received from an external
entity. An event descriptor has the form: "t1.t2.t3" with sub-identifiers delimited by
a period. A transition will match if a sub-string matches from the beginning. For the
string above, "t1", "t1.t2" will match, "t2" won’t match. Event descriptors are reflected
as structure _event in an executable content environemnt and in condictional expression,
like the attribute ’cond’ in transitions. See chapter 2.5.3 for more information.
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2.5 SCXML interpretation

A SCXML-file is interpreted by a processor and acts like a pure event processor. The
detailed algorithms can be found in the standard at chapter D Algorithm for SCXML
Interpretation and are not in the scope of this work.

Nevertheless, the next subsections provide an understanding on how transitions are
taken, how we can benefit from executable content and how SCXML can extended.
We use this knowledge to communicate with simulated hardware in chapter 11.

2.5.1 Transition selection process

In the previous sections, we have illustrated how complex structures with states, parallel
states and compound states are expressed. These are connected by transitions. To
traverse such structures in a deterministic way, the right transition according to the
occurred event and the definition of the current configuration has to be taken. A
transition is taken when,

• the transition’s source state is active and

• no cond-guard is given OR the conditional variable is evaluated to true and

• no event is specified OR the event occurred

• no active descendant of the transition’s source state fulfills the previous
requirements.

While the first 3 points are easy to understand, the 4th point might raise some confusion.
When an event occurs, the state-machine tries to find first a match in all active atomic
states’ transitions. If none of these atomic states provides a proper transition, the state
machine climbs up the hierarchy and looks at its parent’s transitions and their parent’s
transition and so forth. If no transition is found, the event is discarded. If, however,
two or more active states don’t match but their LCCA, then all states are exited and
the transition is taken. In some constellations, more than one state may provide a
proper transition. In such a conflict, which we designate intersection, the state sooner
in document order wins.

Listing 2.1 gives an example where transitions’ triggers intersect. Transition s1 is taken
in case event e is fired and the conditional guard c1 == 1. If the guard evaluates to
false, the 2nd transition is enabled. The last transition is set as default event and is
traversed on any event independent of the guard.

1 < s t a t e i d =" s0 ">
< t r a n s i t i o n e v e n t =" e " cond=" c1 ==1 " t a r g e t =" s1 " / >

3 < t r a n s i t i o n e v e n t =" e " t a r g e t =" s2 " / >
< t r a n s i t i o n e v e n t =" * " t a r g e t =" s3 ">

5 Some e x e c u t a b l e c o n t e n t
</ t r a n s i t i o n >

7 </ s t a t e >

Listing 2.1: Transitions with a guard, executable content and different targets but intersecting events.

https://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation
https://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation
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2.5.2 Data Model

A data model extends the SCXML standard with an abstract way to access an underlying
scripting system (e.g. ECMAScript). The processor is free to support an additional
data model but must support the null data model, see section Null Data Model below.
Appendix B of the SCXML standard lists 4 capabilities a conformant data model must
provide:

• Boolean expression language is used in the ’cond’ attribute of <transition>, <if>
and <elseif>. There executable children will only be executed if ’cond’ evaluates
to true. The predicate In() must be provided in addition to the platform specific
language.

• Location expression language pinpoint to a location in the data model. It can be
referenced in the ’location’ attribute of <assign>, <param>, <send> and <invoke>
tags. Its notation is platform specific.

• Value expression language defines expressions in attributes of the type value
expression, like ’eventexpr’, ’targetexpr’ or ’expr’, in many tags (e.g. <send>
<log> <param> <data> <assign> <content>). The evaluated result of an
expression is then passed as the data item.

• Scripting language embeds a script which has full access to the scripting
environment (global variables, functions, System variables (see section System
Variables below, etc.).

System Variables

A platform specific data model must also provide the following system variables:

• _event. Holds the event currently being processed.

• _sessionid. An identifier for this session.

• _name. Is the ’name’ attribute of the scxml-element.

• _ioprocessors. Lists all available I/O Processors, discussed in section 2.5.4.

• _x. Is the root element for platform specific system variables.

Null Data Model

The null data model does not support any functionality listed above nor the <foreach>-
tag. But it implements the predicate In(x). This predicate returns a Boolean depending
on, if x is part of the current state configuration. This is interesting because it can be
used inside a cond attribute, and check if a parallel region is inside a specific state.
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Provided Tags

There are several tags in SCXML, which allows a state machine to communicate either
internally, or with a remote system. We present only <param> and <content>, since
these two are the ones used for communication in chapter 11.

The <param> tag can be used to send a key value pair, while the <content> tag allows
to send plain text to the counterpart station.

2.5.3 Executable Content

Executable content can occur as children of the elements <onentry>, <onexit> and
<transitions> and is processed when the element becomes active. The content being
executed can provide functionality beyond the standard SCXML.

Section 4 of the SCXML standard discusses executable content. We only use the tags
<invoke> and <send>, discussed next.

2.5.4 Communication

The processor can be extended to communicate with Event I/O Processor two tags:
<param> <content> A state machine without any communication to the outside world is
of little practical use. Therefore the SCXML standard offers in chapter 6, External
Communications two capabilities to interact with the embedding processor. The
processor execute an internal Event I/O Processors depending on what the SCXML-
file being executed defines. These capabilities are platform-specific, but a few, to send
events to other SCXML-sessions are built-in.

The <send>-tag is earmarked for sending messages to a specific destination. It can
be defined wherever Executable Content is allowed, that is as child of <transition>,
<onentry> and <onexit> tags. This emphasizes the fire and forget philosophy of <send>.
Various attributes can be used to pass information to the I/O processor. We list here only
a selection:

• target and targetexpr points to a URI to where the message should be send to.
While targetexpr

• type this attribute addresses which Send-I/O Processor the system uses to deliver
the message. A default value http://www.w3.org/TR/scxml/#SCXMLEventProcessor can be set, so
that the message is send by a platform specific method.

As children, up to one <content> and an arbitrary number of <param> tags are
allowed.

An <invoke>-tag starts a service and is only allowed as child of a <parallel> or <state>
tag. It executs as long as the invoking state is active.
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• id is used to identify a specific instance of the I/O Processor. Can be used in the
<send> tag.

• type as for <send>, this attribute addresses which I/O Processor the system
creates, but this time it is Invoker I/O Processor.

2.5.5 Extending SCXML

The standard explicitly allows in section Interoperability considerations to be extended
in accordance with its MIME type application/scxml+xml. That means that
SCXML compliant processors have to ignore any XML elements that differ from the
SCXML standard.

We extend SCXML by the following attributes:

• The <state> tag is extended by the attributes: xpos, ypos, zpos. These attributes
store the Cartesian coordinates of that element. Each attribute contains a hex
string, representing a float value encoded in the widely used IEEE754 standard.
This allows to retrieve the exact value, without losing precision.

• The <scxml> tag is extended by the attribute: stateroom. Its only option is
true and it indicates that the document presented has positional information, as
declared in the previous items.

For simplicity, we do not encapsulate these tags into a namespace, although that would
probably be the better practice.

These extension are written by the SCXML serializer discussed in chapter 10.5.5 and
read by the parser presented in chapter 10.5.1.
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2.5.6 Configuration

A configuration contains all active states in a SCXML state machine.

• At least one atomic state is active.

• All ancestors of each active atomic state is contained in the configuration.

• If among the active state is a parallel state, than its children are part of the
configuration.

• Each active compound state has one active child state.

2.6 Final Note

In this chapter we discussed the capabilities of SCXML to express complex state
machines. We also peaked inside the interpretation of SCXML and how the interpreter
can communicate with the outside world. But we did not dive to deep into the internal
algorithms used by the interpreter. This is described in part D of the standard and not
completely necessary for our case.



Chapter 3

Mathematical background

In the introductory part, we set our goal to develop a software application with the
main purpose of organizing staterooms in a 3D environment and render them onto a
2D screen. Users shall be able to interact with these staterooms and move freely in
the 3D world. This chapter presents the mathematical background for the projection of
3D models onto computer screens, how a camera can be rotated smoothly and how one
ensures that a state, which is a 2D element, always faces an observer. Besides this, we
look into two algorithms used to lay out graphs in 2D as well as in 3D.

3.1 Coordinate Systems

To understand how 3D models are projected on a 2D surface and how camera movement
is simulated, we have to look at different coordinate systems and how vertices are
transformed between them. This section builds the foundation for 3D processing and
forms in particular the basis for some design decision made in chapter 9 and 10.

Figure 3.1: The 3 axis of the
right-handed 3D coordinate

system.[DP11, p.16]

There are numerous sources available about this subject.
Nevertheless, this chapter is based on the following
literature: [Len04, ch. 3, 4], [AMHH08, ch. 2], [DP11, ch. 10.3]

Before we explore the different coordinate systems and
how to convert coordinates between them, we recap the
basics of linear algebra.

In a 3D environment, several Euclidean R3 spaces with the
Cartesian coordinate system are used for the transforma-
tion of 3-dimensional scenes into 2-dimensional images.1

The axes of such a system (x, y and z) are mostly config-
ured right-handed; see figure 3.1. It is called right-handed
because if the X-axis is assigned to the thumb of a right human hand and the Y-axis is

1The transformation process involves also some spaces in R2, which are considered as prerequisite.
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assigned to the index finger, then the middle finger represents the Z-axis if directed per-
pendicular to the palm. All fingers point to their corresponding positive direction.

Positional indicators in R3 are called vertices and have the form P = (x, y, z). How-
ever, before vertices are transformed, they are extended to homogeneous coordinates by
adding a 4th component w. A vertex is then defined as a quadruple P = (x, y, z, w).
This has several advantages. Coordinates in homogeneous space can represent 3D points
at infinity (Pin f = (x, y, z, w = 0)), which can then be treated as any other point. In
Euclidean space, it is necessary to check for this anomaly. Furthermore, 4-component
vertices may be multiplied with a 4x4 matrix; applying scaling, rotation and transla-
tion at once. Non-homogeneous coordinates cannot combine translations with scaling
and rotation in a single matrix. Hence, they miss the important optimization to chain
matrices together as elaborated below.[Shr+13, p. 215ff] [Ago05, p. 134ff]

Matrices can be decomposed into their functional parts. Equations 3.1-3.3 show which
part leads to what kind of transformation. There is the translation matrix 3.1, the scale
matrix 3.2 and a rotation matrix around each axis in 3.3. The rotation matrix Mry,
for example, rotates a vertex v by degree α around the y-axis. This becomes clear by
looking at element Mry[1][1], which signifies that all resulting values will lie on a xz-
plane with y = v.y. We emphasize that the presented rotations rotate around a specific
axis of the coordinate system. That means the coordinate system itself is rotated.

Mt =

∣∣∣∣∣∣∣∣
0 0 0 Tx
0 0 0 Ty
0 0 0 Tz
0 0 0 1

∣∣∣∣∣∣∣∣ (3.1)

Translation components.

Ms =

∣∣∣∣∣∣∣∣
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 Sg

∣∣∣∣∣∣∣∣ (3.2)

Scale components.

Mrx =

∣∣∣∣∣∣∣∣
1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

∣∣∣∣∣∣∣∣ Mry =

∣∣∣∣∣∣∣∣
cosα 0 sinα 0

0 1 0 0
−sinα 0 cosα 0

0 0 0 1

∣∣∣∣∣∣∣∣ Mrz =

∣∣∣∣∣∣∣∣
cosα −sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ (3.3)

Rotation components for each axis, x, y and z.

Unfortunately, matrices are not commutative. This can easily be verified by considering
a vertex v on the y-axis with v.y 6= 0. If we rotate now with Mry by some degrees v
will not change. But if v is rotated beforehand by 90 degree with Mrx the operation
Mry with α 6= 0 will indeed rotate v.

Multiple matrix operations can be concatenated by multiplying the separate matrices to
a matrix Mc. The order matrices occure is important since matrix multiplications are not
commutative. So, if Mc is the result of matrices multiplied in the order their operations
occur, then Mc is used on the right side (v′ = v ∗Mc), and vice versa. Suppose there
are several vertices to be rotated by Mrx and Mry and eventually transposed by Mt
(from equations 3.3). We can either multiply each vertex with all matrices separately or
multiply each vertex with the concatenated matrix Mc = Mt ∗Mry ∗Mrx. And because
the order is reversed, Mc is used on the left side (v′ = Mc ∗ v). The importance of this
feature becomes apparent by the end of this chapter.
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The rotation matrices in equation 3.3 are denominated Euler rotations. They bear
the danger, in particular when they are consecutively concatenated, of eliminating the
freedom to rotate around one of the axis. That happens when two axes align with each
other or become very close to it. Imagine, in a right-handed coordinate system, a 90
degree rotation around the x axis, aligning the z axis with the y axis. A subsequent
rotation around the z axis would not be distinguishable from a rotation around the y
axis. Such a state is known as gimbal lock[Vin06, p. 73].

To prevent a gimbal lock, one may rotate around an arbitrary axis instead of each of
the 3 axes separately. Equation 3.4 shows the matrix Ma to rotate α degree around axis
through the origin and v = (a, b, c). Its derivation is not a simple concatenation of the
matrices 3.1-3.3 and outside the scope of this document.

Ma =

∣∣∣∣∣∣∣∣
a2K + cos α abK− c sinα acK + b sinα 0
abK + c sinα b2K + cosα bcK− a sinα 0
acK− b sinα bcK + a sinα c2K + cosα 0

0 0 0 1

∣∣∣∣∣∣∣∣ (3.4)

with K = 1− cosα

and rotation axis v = (a, b, c)

Rotation matrix around an arbitrary vector v by α degrees.[Vin06, p. 79]

We discuss in section 3.2 a more performant way to rotate objects.

Matrices are used to transform objects from one coordinate system to another. That
brings us back to our initial topic.

Vertices are rarely considered as single entity, but rather grouped to form a model
(alternatively called an object). Such a model resides in its own space called model
space. For example, a model may shape a car, a tree or only a leaf, depending on how it
can be reused. The main idea is to construct a scene out of such models.

A scene lives in global or world space and contains all objects, which may be rendered
on the screen. Assembling a scene means to copy transformed versions of objects
from their object space into global space. Copying and transforming is achieved by
multiplying each vertex of an object with a matrix. Matrices for that purpose are called
object matrix and follow the construction we discussed earlier. Each object has it’s own
object matrix, or even several object matrices, to create a new instance of an object with
matrix-specific transfigurations. Hence, a single tree model can be used to construct
a forest where each tree instance looks different due to the tree instance-dependent
model matrix. This fact is depicted at the beginning of figure 3.2. There, we show
the whole transformation process of a model until it is visible on the screen.

So, assuming that the global space is filled with the desired objects to visualize, a
fraction of the global space can be projected onto a 2D window on the computer screen.
The window receiving the projection is represented in global space by a rectangle called
viewport. Its origin is defined at the global space’s origin. It has its view direction along
the negative z-axis and an up vector along the positive y-axis. While the dimension of
the viewport in x and y direction must be defined by the application, its location and
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direction is stationary.2

Starting at the viewport, the view volume, which we discuss shortly, spreads out in view
direction with a user-defined length. Only objects inside this volume are candidates for
rendering on the screen. We say candidates because an object might be occluded by an
object closer to the viewport and therefore not rendered.

Because the viewport is at a fixed location, it is up to the developer to simulate
movement through the 3D world. This movement is achieved through repositioning
the world’s inventory by multiplying each vertex present in global space with a view
matrix. Afterwards, are all objects situated in view space. The view space’s origin is
the point of view towards projection occurs. That makes the transformation into view
space analogous to placing a camera in the real world; marking the spot and determining
the view direction. Hence, the view space is often refered to as camera space. We refine
the term camera later in this chapter. So, when the user wants to rotate his view by 30
degrees to the left, all objects in world space are rotated around the camera’s current
world position by 30 degrees to the right. A view matrix equals therefore: the camera’s
negated rotation-angles translated by the camera’s current world position.

Mv =

∣∣∣∣∣∣∣∣
rightx upx lookAtx 0
righty upy lookAty 0
rightz upz lookAtz 0
−posx −posy −posz 1

∣∣∣∣∣∣∣∣ (3.5)

A View Matrix.

A view matrix is shown in equation 3.5 and can
be interpreted as follows: The last row determines
the negated position of the camera in world space.
The negation puts the world coordinates relative
to the camera’s origin. The rotation components
right and up define where the right side and top of the viewport are, while lookAt
expresses the direction of the point of interest. A common initial setting is the look
at direction set to +z, up to +y and right to +x. This builds another space where the
columns of the rotation component build the new x, y and z axis.

Figure 3.2 shows the view space together with the two common view volumes. The
view volume, positioned and oriented through the view matrix, determines the cut-out
of the scene, containig the objects to be rendered. Objects outside of the volume are
culled, while objects crossing the volume’s edge are clipped and displayed partially on
the screen’s edges. This prevents unecessary processing of object data outside the view
volume.

The shape of the view volume determines how the vertices are projected on the screen.
It is usually a cuboid, in case of orthographic projection, or a frustum in case of
perspective projection. The visual differences of the projections are depicted in figure
3.3. Orthographically projected objects are projected without taking their distance to
the camera into account. Hence, two objects with the same dimensions but different
distances to the viewport will be drawn with equal size on the screen. With perspective
projection, closer objects appear larger on the screen while remote objects are displayed
smaller. Perspective projection imitates the view we know from our daily lives. Since
we are particularly interested in presenting state charts spatially, we do not discuss
orthographic projection further.

2The viewport configuration depends on the graphics library, in this case OpenGL.
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Figure 3.2: Spaces and matrices used to map between spaces. Common graphics hardware expect the software to provide clip
space coordinates which are then transformed into screen space coordinates.

The projection matrix (PM) is constructed from the view volume’s parameters. It is
used to transform all vertices from view space into clip space. This transformation
occurs in a way that the view volume is scaled into a cube; with its centroid lying in the
origin and with its edges having a length of 2w in clip space. The newly shaped view
volume is denominated canonical view volume (CVV) and depicted in figure 3.2 (clip
space). Several goals are accomplished with this procedure. They are best explained by
transforming a frustum into a perspective projection matrix (PPM).

Figure 3.4 shows a pyramid in view space. The eye on top of the pyramid indicates
the position given by the view matrix. It represents also the beginning of the line of
sight, or center of projection. The line of sight passes through the centers of the near-
and far plane.3 The view matrix’s up-vector is aligned with the Y-vector. A frustum
marks the view volume inside the pyramid. It consists of the 6 planes, top, bottom,
right, left, near and far. The near plane represents the viewport, and is the target
for the projection. It expands in clip space by 1 in x and y direction. That means
the application’s window width and height is equivalent to 2 in clip space coordinates,
which are also called normal device coordinates (NDC). Expanding the near plane
infinitly in x and y direction leads to the projection plane.

The perspective projection matrix is constructed from the frustum’s parameters. To
understand the PPM, we take its components from equation 3.6 and discuss their
objectives as well as their development.

3This is true for symmetric frustums only. Asymmetric frustums[AMHH08, p. 836], which are used in stereo
viewing are excluded from the discussion.
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Figure 3.3: Perspective and orthographic projection.[Rou14]

Figure 3.4: The frustum determines a cut-out of the global space which is to be perspectively projected onto the near plane.

PPM =

∣∣∣∣∣∣∣∣∣
n
r 0 0 0
0 n

t 0 0
0 0 f+n

f−n 1

0 0 − 2 f n
f−n 0

∣∣∣∣∣∣∣∣∣ (3.6)

Perspective projection matrix, with
distances to near, far, right and top plane.

When an object is projected, a zoom in x and y
direction occurs to compensate for non-quadratic
view planes. Without this correction, the displayed
objects would appear stretched in either direction.
The zoom factors are equivalent to scale factors and
take the positions in PPM according to equation
3.2. Their values can be determined with the
dimensions from corresponding planes of the frustum:

zx =
near
right

zy =
near
top

(3.7)

In addition, the physical pixel of a display may be elongated and is therefore included
when determining the zoom values. The ratio between the zooms is expressed as aspect
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ratio4:

ratio =
zx

zy
=

near plane width ∗ pixelphy width
near plane hight ∗ pixelphy height

(3.8)

Sometimes it is more desireable that the zoom factors depend on the angle between
left and right (zx) or top and bottom (zy) planes. Since the determination of zx and
zy is alike, we show how zx is derived from the frustum, while the same is applicable
for zy.

This angle is called field of view (FOV) and it satisfies: zx = 1
tan( 1

2 f ov)
[DP11, p.367].

Figure 3.5 illustrates two horizontal FOVs in camera space. The blue line, expanding
by 1 in the −x and x directions, represents the viewport. The content of the viewport
is represented by the gnu. A large gnu is depicted on the left side where the FOV has
an angle of 30°. On the right side of the figure the FOV is increased to 60°, letting the
near plane catche a wider range of view space. Since the width of the window did not
change, the number of pixels is still the same. That means, a larger part of the view
space must now fit into the same amount of pixels. From this follows that each pixel
catches a larger portion of the view space, which induces a smaller gnu.

Figure 3.5: A 2-dimensional field of view (FOV) in camera space. Since the near plane’s geometry is fixed, increasing the angle
means more global space must be projected to the same area.

This results in less space for the gnu, ergo, a smaller gnu[Hec, picture] is displayed.

The calculated z value is the length of a normal between the vertex to project and a
plane spannig through the camera. It is biased in such a way that if z lies on the
near plane, zn

w equals − 1, and if z lies on the far plane,
z f
w equals 1. A common

denomination is depth value, since it represents the depth from the camera into the
space in view direction. The depth value is used to determine which object is occluded
by another.

The remaining component to discuss is the 1 in the 4th row in the PPM. When a
vertex is multiplied with the PPM, this 1 copies the z-coordinate from the vertex into

4not accounted for in equation 3.6.
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the perspective component w. This values is used later to calculate the perspective
foreshortening.

With the projection matrix at hand, we can now finalize our camera analogy. While the
view matrix is responsible for position and orientation, the projection matrix determines
the characteristics of projection.

Since the frustum is transformed into a cube, all objects have been stretched in x and y
direction, and the subsequent operations are equivalent to orthographic projection.

Until now, we have discussed how matrices are used to transform vertices from one
space to another. Even vertices behind the camera, which are not displayed, are
transformed into view space and eventually projected by the projection matrix into clip
space. To determine if a vertex lies inside the viewing volume or outside of it, each
of the coordinates x, y and z is tested against the vertex’s homogeneous coordinate w.
Vertices inside the volume have only x, y and z components in the interval [−w, w].
Vertices outside the volume are discarded and the object owning the vertex is clipped or
culled.[SA12, p. 310]

The resulting set of vertices is mapped back from homogeneous coordinates to euclidean
coordinates by dividing each component through w. This perspective division leaves
the vertices in normal device coordinates (NDC). They have the range [-1,1] on all
axes. Since the z value represents the depth of a vertex, it cannot be displayed on a two
dimensional screen. On graphic adapters, it is therefore copied into the depth buffer,
which is topic of chapter 8.6.1.

The remaining (x,y)-tuples are assigned to pixel coordinates, a transformation called
viewport transform. Its position P is determined by:

P(x,y) = ( px =
2 ∗ x
width

, py =
2 ∗ y

height
) (3.9)

How these pixels are colored, specifically with OpenGL, is the matter of chapter 8.5.3.

In this chapter, the mathematical background to project single points from 3D space onto
a 2-dimensional plane was given. Particularly, it was shown how matrices facilitate
projection and rotation. But matrix rotations around an arbitrary axis is difficult to
interpolate and concatenation of matrix rotations bears the danger of gimbal lock. There
are several ways to avoid the gimbal lock. One of them is the use of a different number
system named quaternion, which we discuss in the following chapter 3.2. Furthermore,
a camera was constructed to parameterize the projection and to change the point of view
in global space according to the user’s desire. While this foundation is only partially
necessary to understand the Blender implementation in chapter 4, it is extended when
we talk about the OpenGL implementation in chapter 7.
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3.2 Quaternions

Introduction

The proposed rotations in previous section 3.1 come with some restrictions. Euler
rotations suffer from the unavoidable[AMHH08, p. 67] phenomenon gimbal lock, while
matrix rotations, specifically formula 3.4 on page 26, cannot be interpolated easily[DP11, p.

237ff]. Quaternion is a number system, which facilitates rotation in 3-dimensional space,
free from gimbal lock and easy to interpolate with a technique named slerp. Posts
on various internet forums and the fact that many graphic books devote at least one
chapter to quaternions indicate that quaternions are the method to chose when it comes
to spacial rotations. Furthermore, Eberly analyzes in his white paper [Ebe02] different
kinds of rotations and shows that quaternions are faster while consuming less memory
than matrix rotations.

Our goal is to rotate a camera to an arbitrary point in space, which makes a rotation
around all three axis at once necessary. A smooth movement, and therefore a
linear interpolation of the rotation, is desirable to provide a fluid view through the
camera.

The information in this chapter is mainly gathered from [Vin06], [AMHH08] and [DP11].

As a start, an introductory example gives an overview of how quaternion rotations are
applied. Afterwards, an elaboration of the mathematical details and a basic geometric
interpretation is given.

Euler’s rotation theorem[DP11, p.244] says that any compilation of rotations of a point in R3

can be expressed by a single rotation around a specific vector. Quaternions do exactly
that with the help of a 4th dimension; comparable but not identical with homogeneous
coordinates.

Let’s assume that a point p shall be rotated in R3 by angle α around the vector v. Three
quaternions are needed to perform such an operation. The first one is constructed out
of v and α resulting in quaternion qr. It needs to be normalized to v̂ to be used in a
rotation. Building the inverse of qr gives the second quaternion q−1

r . This tuple, qr
and q−1

r , stores the actual rotation and is equivalent to a 3x3 rotation matrix. The last
quaternion is created by assigning p to the vector part of a quaternion qp; the quaternion
rotated. Its 4th component, the scalar s, is set to zero.

To finally apply the rotation to qp, it is embedded into the sandwich product (SP)
consisting of two quaternion multiplications: q′ = qrqpq−1

r . Multiplying two
quaternions is denominated quaternion product and is a singularity in quaternion
algebra explained later in this chapter.

The resulting quaternion q′ contains the rotated point. Transforming it back into R3 is
easy since after applying SP, the 4th component s is always 0. It can therefore simply
be dropped.
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After this small overview of how points are rotated by quaternions, we discuss now the
mathematical background.

Mathematical description

Quaternions are a number system operating in a Hamilton space5 H. It is derived from
complex numbers; having a scalar value s and an imaginary part extended to a complex
triple i + j + k. In addition to the expression i =

√
−1, the imaginary triple obeys the

rules listed in 3.10.

i2 = j2 = k2 = −1
ij = k, jk = i, ki = j (3.10)
ji = −k, kj = −i, ik = −j

In the form xi + yj + zk, with x, y, z ε R, the triple can be mapped to a vector
v = (x, y, z) ε R3. An arbitrary pointer, which is to be embedded into a quaternion, can
rotated around this vector v. The angle of the rotation is reflected in the 4th element, the
scalar s.

Both together, scalar and vector, form an element of R4; obeying all it’s algebraic
operations. That means adding, subtracting, multiplying a vector with a scalar, etc.
is achieved as usual. By enriching the list of operations with the quaternion product, a
way to multiply two vectors with each other, the definition of Hamilton space H and its
elements, quaternions, is complete[Ago05, ch. 4.14].

Figure 3.6 shows the mapping of the complex axes into a Cartesian system and some of
the imaginary products from equation 3.10.

5It is named to the honor of Sir William Rowan Hamilton (1806-1865), who discovered quaternions.
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Figure 3.6: The Cartesian system mapped with the imaginary axes into it; arrows indicate some complex products. With v̂ an
example vector to rotate around is given.

Analogous to complex number, quaternions can be expressed in different ways:

q = s + xi + yj + zk (3.11)
q = s + v (3.12)
q = [s, v] (3.13)

with s, x, y, z ε R, v ε R3

complex components: i, j, k ε I

Equation 3.11 is known from complex numbers notation; a scalar s summed up with the
imaginary parts i, j, k. The second form, 3.12 adds a scalar with a vector, and in 3.13,
the quaternion is shown as an ordered pair. These definitions are interchangeable[Vin11,

p.52]. But we use them to construct the unit-norm and the quaternion product, which
eventually build the foundation for rotations and interpolated rotation.

Unit-norm quaternion

The norm of a quaternion is defined as: |q| =
√

s2 + |v|2. Dividing the quaternion
through its norm results in the unit-norm6 quaternion q′ as shown in 3.14.

q′ = q√
s2 + |v|2

; |q′| = 1 (3.14)

6The term unit-quaternion is reserved for quaternions q = [0, v̂] whilst v̂ has unit length.
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A unit-norm quaternion is used to rotate another, arbitrary quaternion. Its vector is the
one around which the rotation occurs. To prevent the result from being randomly scaled,
the embedded vector needs to be a normalized.

Together with the relation cos2θ + sin2θ = 1, we can combine 3.12 and 3.14 to the
half-angle representation 3.15.

q = cos
1
2

θ + sin
1
2

θv̂ (3.15)

This formula encodes the angle θ into the vector v̂ as well as scalar s and is the reason
why quaternions appear often mysterious and opaque. But it is in fact a smart pre-
calculation, exploited by the quaternion product later.

In relation to the initial example, the quaternion qr is constructed in this way.

Inverse quaternion

The inverse of a quaternion is created in the same manner as the inverse of a complex
number. First, the conjugate is constructed with q∗ = [s,−v], and then divided by
q’s magnitude’s square as in formula 3.16. The division can be skipped for unit-norm
quaternion, since they are already normalized.

q−1 =
q∗

|q|2 (3.16)

This, together with qr, completes the quaternion-tuple to perform the SP.

Pure quaternion

A pure quaternion has a scalar s = 0 and the form:

q = [0, v] (3.17)

They can be rotated by the SP.

For our introductive example, p is stored into qp = [0, p].

Quaternion product

The actual rotation is performed by the quaternion product:

qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a× b]

(3.18)
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Its interpretation is not trivial. Goldman describes its geometric meaning as enigma
and eventually deciphers it in [Gol11]. But that is far out of scope of this document.
Nevertheless, we take a closer look at the SP, representing the complete rotation.

Rotation concatenation

Two unit-norm quaternions can be joined together with the quaternion product:

qrc = q2q1 (3.19)

The resultant quaternion qrc rotates than a point p as if p is first rotated by q1 and
than by q2. Since quaternion multiplication is non-commutative, the order is important.
Because of the associative property we can write:

q = q2(q1pq−1
1 )q−1

2 = (q2q1)p(q−1
2 q−1

1 ) (3.20)

While in theory the quaternion product of two unit-norm quaternion results also in
a unit-norm, in practice, it is most likely that rounding errors occur. That makes it
necessary to re-normalize the quaternion at the end of a concatenation.

Sandwich product

A complete rotation of a point p by an angle θ around a vector v̂ is done with
the sandwich product: qpq−1. John Vince expanded this product as shown in
formula 3.21 [Vin06, p. 99, 7.13]. It reveals a perennial scalar value of zero and an interesting
term in the vector part with which the desired point p′ is calculated.

qpq−1 = [0, (1− cos θ)(v̂ · p)v̂ + cos θ p + sin θ v̂× p] (3.21)

Figure 3.7: The sum of the separated terms of the
SP for different angles (0◦, 45◦, 90◦) result in the

points on the circle.

Based on that formula, we give a geometric
interpretation. With the vector term split into
three vectors, as colored in formula 3.21, the
construction of the final position becomes visible.
Figure 3.7 shows these three components and the
point p rotated to p′ and p′′. Since all terms
depend on sin and cos, two simple edge cases can
be analyzed: With θ = 0◦ no rotation occurs and
only the cosine-term (red) remains, hence p stays
at p. Rotating p about θ = 90◦, the two terms blue
and green determine the final position, which is p′.
Beside the edge cases, a gold colored disc shows a
rotation of θ = 45◦, resulting in p′′.
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Quaternion interpolation - SLERP

Rotation can be interpolated with Spherical Linear Interpolation (SLERP). This is
useful to rotate cameras in a smooth way, not to confuse the audience. Details can be
found at [DP11, p. 259 ff].

q =
sin(1− t)θ

sin θ
q1 +

sin t θ

sin θ
q2

with θ as angle between the two vectors
(3.22)

3.3 Billboarding

Billboarding is a technique to rotate an object in a way that a specific side of it faces a
target object. The adjusted object is usually a 2-dimensional polygon and is referred to
as billboard (also called impostor). Its adapted orientation is often aligned with one or
more axes of the target’s local space. Anything can serve as target; a simple coordinate
or another object. We focus merely onto the camera as target.

The billboard effect may or may not be noticed by the viewer. That depends on the
quality7 as well as the intention of this feature.

A common reason for using billboarding is to speed up rendering phenomenons
consisting of tens of thousands of similar objects. Examples hereto are particle effects
like smoke, fire, fog as well as vegetation, like grass or trees. Their elements are
displayed as texture-quadruples. Each element’s texture may be processed individually
to let them appear unique.

Billboards can exploit the symmetry of objects. An isolated tree, for example, is
cylindrically symmetric and appears the same from a distance, independent of any axial
rotation of its trunk. Its complexity can therefore be reduced to a two dimensional
image, billboarded to the camera, instead of having a complex, three dimensional
polygon[MB05, p. 285]. There are also spherically symmetric objects, which are symmetric
around two axes, like smoke particles or clouds. These are rotated around two
axes.

Another reason for using billboarding is to keep objects aligned to the screen. Head-up
displays (HUD) as well as annotations in space, for example, can be kept legible while
the viewer moves around. There is a little distinction between these two applications. A
HUD is drawn on the view-plane with a fixed depth value and can usually not be covered
by other objects. This is different for annotations, which adapt their depth value and may
be occluded by a scene’s object.

7Some 3D-video games reveal this technique unintentionally. The monsters of the first person shooter
Doom from the 90 are a well known example.
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Akenine-Möller et al. describe several kinds of technique for billboarding [AMHH08, ch.

10.6].

Figure 3.8: World oriented billboarding. Left viewplane
aligned, right viewpoint aligned.

Among others is the world-oriented bill-
boarding. It comes in two variants illus-
trated in figure 3.8. The one to the left,
viewplane-oriented billboarding, rotates all
objects parallel to the viewplane. Since
all objects are directed into the same direc-
tion, a single rotation matrix is sufficient for
all billboards. The viewpoint-oriented ap-
proach, on the picture to the right, orients
each objects separately to the camera posi-
tion (viewpoint) and needs an individual rotation matrix for each object.

(a) Render of b) viewed through the camera.
Note, a shadow indicates, that an object does

not lie on the xy-plane anymore.

(b) Scene with objects aligned to different
axes.

Figure 3.9: All ellipses were oriented as o in a). Through billboarding their orientation changed.

To demonstrate different alignment configurations, an ellipse O is billboarded in figure
10.5a around different axes, targeting the camera. For further clarification, the picture’s
scene is depicted in 10.5b with the billboarded axis noted. The dark blue areas of the
ellipses mark the part underneath the xy-plane.

Billboarded objects can affect the three-dimensional perception when the camera moves.
Contemplating the ellipse a) in 10.5b with a camera rotating counter-clockwise around
the z-axis, the ellipse appears at some point aligned to the z-axis like b, but without the
x-rotation. As the rotation goes further, a) will appear like c), but with the z-rotation
only. This effect is visible to the observant. In chapter 5.2, figure 5.3 gives a more
realistic example.

Our objective is to have text labels as legible as possible. Furthermore, the user should
not be distracted when text labels adapt their orientation during camera movement. Both
can only be achieved by viewplane-oriented billboarding around all 3 axes. This is
not mentioned in any of the references, since it is contrary to any natural appearance.
For example, looking out of a rolling plane, one would expect that things move in the
direction opposite to the planes movement, but with the method suggested, the world’s
objects rotate around their local center together with the plane.
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Calculation

As precondition, we assume that every object to be billboarded starts with an
initial orientation towards the camera. To determine the proper rotation matrix for
billboarding, we consider figure 3.8 on the left. Imagine a clockwise (CW) camera
rotation. All objects have then to be rotated counter-clockwise (CCW) to maintain
alignment. This is achieved in vector algebra by applying the inverse of a rotation. This
must be done for all 3 axes and leads therefore to the inverse of the camera rotation.
Because the inverse of an orthogonal matrix is equivalent to its transpose we can just
transpose the camera rotation to speed up calculation.

We come back to billboarding in the implementation for Blender in chapter 5.2 and for
OpenGL in chapter 10.2.1.

Visual effect

In a common 3 dimensional environment, a forward movement results in a distortion
of the elements on the border of the field of view8. By keeping the state-labels
viewplane-aligned, they are prevented from being distorted. Since an observer expects
the distortion, he may feel disoriented. To counter this effect, an artificial horizon could
be implemented.

3.4 Algorithms

SCXML does not provide any facility to store positional indicators. Even with the
extension we introduce in chapter 2.5.5 to restore a previously layed out stateroom, there
are reasons one may want an automated, generated layout. That is, for exapmle, when
an SCXML is loaded that was created with a different editor, not offering 3D positional
information. Another reason is automated adapting to a differently sized display or even
data imported from a different state machine description then SCXML.

When it comes to laying out graphs automatically in 2D or 3D, it seems that there
are two popular methods. One is named force-directed[FR91] layout and the other
one simulated annealing[DH96]. Both methods iteratively adjust the graph’s vertices
until a termination condition is reached. Fruchterman and Raingold (FR) conclude in
[FR91] that their implementation of the force-directed method has ’interactive’ speed,
while Davidson and Harel state that their implemenation[DH96] of a simulated annealing
method is focused on drawing a graph nicely and is not suited for ’interactivity’.

We do not rely on interactive layouting in our stateroom; adapting the graph dynamically
after its topology changes is out of scope of this work. So, an initial setup time to draw

8For example when starship enterprise speeds up to warp, the light rays’ length increases with the distance
to the center.
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the graph would be tolerable. The reason we use Fruchterman-Raingold anyhow, is still
its speed, which is an advantage when the algorithm is tested over and over again.

The principle idea of the algorithm is to iteratively adjust the position of each vertex
by applying two counter operating forces. Assuming a graph G consisting of vertices
V and edges E and assuming further two functions, fr() and fa(), which are used to
apply the repulsive and attractive forces, respectively. Then, each v in V is displaced by
adding the result of fr() applied on each distance v to each other element in V; repelling
vertices from each other. Attractive forces displace each v, which is part of edge e ε E,
with the result of fa() applied on the length of e; moving two vertices connected by an
edge closer together.

The challenge to specify a successful algorithm is then to define the two functions
calculating the forces. FR experimented successfully for 2-dimensional layouts with
functions depending on a maximum available area, a maximum size, equally for all
objects and a constant found expimentally.

In we use the 3D version of the FR algoritm provided by igraph[tea16].
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Blender
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Chapter 4

Introduction to Blender

Blender is a tool to work on computer graphics in several aspects. Among its wide
range of functionalities, it offers the necessary facilities to build a stateroom editor: 3D
object modeling, rendering, animating 3D models and video gaming. The quality of
animations created in Blender was proven many times. Prominent projects are: Tears
of Steel [Hub12], Cosmos Laundromat [Auv15] and Sintel [Lev10]. The environment inside
Blender for the creation of games (BGE) is less sophisticated, but some results look
promising [Art15].

This chapter gives first a small introduction into the BGE, while we refrain from
explaining Blender itself. Afterwards, our attempt to create a game to design staterooms
is documented. We show how the heads up display (HUD) and the movement is set up
and how the models for the editor are constructed in Blender. Besides a lot of unsolved
problems, we argue in particular that drawing a transition, as desired by a player, is
difficult to achieve in BGE in its current state. We substantiate our findings by showing
a working model in Blender and the problems to manipulate this model in BGE. We
finally conclude that BGE is not suited to edit staterooms.

Nevertheless, Blender and BGE become useful in chapter 11 when the hardware of a
watch is simulated and debugged.

Literature about BGE is rare. The few books available, [Chr11], [Bac12], [Fla10], give at best
an introduction to the topic. Blender’s Python API, an important aspect, is not covered
in any of these books. Therefore, most of the information presented here was revealed
by trial and error, discovered with the help of the community, specifically through the
irc channel #blender (user Olson in particular) or learned from tutorials of various web
pages. The irc channel #gameblender is unfortunately less supportive; probably because
it is not well visited.
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Chapter 5

Blender Game Engine

The BGE is a special mode of Blender. It allows to start a scene developed in Blender
as game. Such a game consists roughly of models interacting with each other, a world
in which the game actually happens and a set of rules called game-logic, defining what
is allowed to happen.

In chapter 3.1 we introduced the foundation of models. Blender facilitates designing
such models and offers additional features like textures, materials and equipping models
with a physical description. To have an objects visible in another color than white
a material must be assign to it. The material can than be colored in any thinkable
way.

When a game starts, the current scene becomes the world environment or level. Such an
environment can be fashioned by placing a landscape on the ground or putting stars in a
distance. BGE offers a few effects to have a slightly more appealing world environment
as the plane empty space.

Our focus lies on a prototype for a stateroom editor. For that reason we use only
plain color materials to make states, transitions, etc. visible. There are no sun or spot
lights, just an artificial ambient light, which is necessary to actually see something. We
activate the world’s mist feature so that objects fade out smoothly when reaching the
far-plane. This looks nicer than having states disappear abruptly. A textured hyperplane
in the middle of the room helps the user to orientate and gives visual feedback during
movement. While there are many world effects one can think of, we don not explore
this subject further.

The game-logic determines how models interact with each other and how the player’s
input affects the game. Blender’s Logic Editor is a tool to design this logic graphically.
The next section is devoted to that tool.
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5.1 Logic Editor

Blender’s logic editor[Com16a] (LE) is developed for people without programming skills.
The principle idea is to have predefined logic bricks suited for a specific task and connect
these bricks to the logic desired. A brick can be a sensor, a controller or an actuator. The
general workflow is that a sensor triggers a controller, which then possibly triggers an
actuator or executes some Python code. Figure 5.2 depicts the LE with three columns
(1) for the bricks. Sensors are created in the first column. Their output anchor (2) can
be connected to several controllers. A controller receiving a signal re-evaluates its state
and, depending on its type, executes a Python script or sets its output value.

The wires in the figure may give the impression that the interaction works like electric
current: If the sensor becomes active the controller is turned on and with it, all connected
actuators. And if the sensor becomes inactive, the controller/actuator is turned off
again. But the interaction is more complicated. A sensor becoming active emits pulses
to the connected controllers which may then trigger actuators. These run afterwards
independent from the sensor to its completion. This aspect and its consequences are
refined later in the Sensors paragraph on page 46.

Besides logic bricks, the LE offers Game Properties (5) (GP). These properties can be
a typed variable, like float or string, or a timer. For the presented work, only variables
are considered.

Logic bricks are always associated with a Blender model. In figure 5.2, all bricks
belong to the model Quit. Hence, bricks operate in the environment of that model.
In addition, the BGE extends the environment by a simple state machine. It is basically
a bitmask 6= 0. Each bit represents a state with all states being orthogonal to each other.
If a controller belongs to the state 4, and the object is in state %011, the controller
is disabled. How these states are managed is the described in the two paragraphs,
Controller and Actuator, below.

A logic brick is divided into common options (CO) and specific options (SO), as shown
in figure 5.2. The CO consists mostly of administrative properties like minimize,
discard, name, type, etc. Sensors and controllers extend these CO, which are addressed
in their sections.

The following paragraphs lists first the available logic bricks, while the discussion is
limited to the ones used in this work, which are emphasized in bold. We starting
with Controller bricks, continue with the Actuator and describe the Sensors facilitates
last.
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Controller

Figure 5.1: The controller column with states
(blue rectangle).

BGE offers the following controllers:
AND, OR, NAND, NOR, XOR, XNOR, Expression,
Python

The Python controller executes a Python script when
receiving a pulse. A subsequent actuator is not
possible1. All remaining controllers evaluate a logical
expression upon the connected sensors and signal
connected actuator bricks.

Controllers are assigned to a state. To be active, the model’s internal state machine,
with which the controller is associated, has to have the state enabled. Figure 5.1 shows
how states are assigned to a controller. The blue rectangle in the CO section assigns
state index 1 to the controller Python. Setting and resetting states is achieved through
the Python API or through the State actuator. The yellow rectangle encompasses the
state panel, which allows to show/hide the controller groups in the editor (Visibility) as
well as set the initial value on start-up (Initial). Each Blender object supports up to 32
state indices.

Figure 5.2: Executing a Python script on mouse click with logic bricks. The bricks are connected to the object Quit.

1This is probably a design flaw. It would be desirable to have the Python brick as actuator, so that the
execution of a script depends on several sensors.
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Actuator

BGE offers the following actuators:
Action, Camera, Constraints, Edit Object, Filter, Game, Message, Mouse, Motion,
Parent, Property, Random, Scene, Steering, Sound, State, Visibility

Actuators describe how an object or the environment should be changed.

The Property actuator, number (4) in figure 5.1 changes a game property according to
its mode. These modes are fairly self-explanatory, with names like assign, toggle or
add. A change triggers all sensors watching this property, and make them reevaluate
their status. We come back to this in the next section, when we talk about sensors.

The Motion actuator comes in two flavors: simple motion and servo control. We only
use simple motion to transform an object by a specified translation and rotation. Servo
control applies forces to mimic physics and the attached objects move smoothly through
the space. This is important for collision detection.

With the Edit Object actuator, several modifications on objects can be done. Here,
we focus only on two: Add Object and Track to. The former mode allows to copy
an object into the scene, while the latter allows to billboard to another object. The
billboarding feature is limited to axial or spherical billboarding, cp. chapter 3.3.

The Visibility actuator is used to set or unset the visibility of an object. It has two
further options, one propagates its visibility state to its children and another to occlude
the objects behind it.

In the previous section, we discussed the state mechanisms for controllers. The State
actuator allows to manipulate the state of the state machine. By resetting a state, all
corresponding group controllers are deactivated.

With the Action actuator the game engine can play animation sequences which is a nice
feature to temporarily highlight specific objects.

The Sound actuator plays a chosen sound when activated.

Blender can manage several scenes at the same time. The Scene actuator allows to
switch between scenes or put a scene as background resp. foreground (overlay).

Game is used, among other functions, to restart or end the game.

Sensors

BGE offers the following sensors:
Actuator, Always, Collision, Delay, Joystick, Keyboard, Message, Mouse, Near,
Property, Radar, Random, Ray

Before discussing each of the used sensors, a short description of its CO, presented in
figure 5.2, is given. Sensors activate controllers when a certain event happens. This
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activation is done by a pulse which can be configured in the second line in the CO, in
the figure marked as (11). By default, edge-triggering is active and only state changes
from high to low or vice versa result in a pulse. The two 3-dotted buttons toggle level
triggering, one toggles positive level triggering, the other negative level triggering. That
means as long as a state is positive, resp. negative, the sensor keeps issuing pulses at a
certain frequency. The pulse-rate on level triggering is by default the same as the frame-
rate. This can be adjusted by the frequency option. It seems that level triggering works
only for Python scripts and maybe for some actuators. We give an example of this in
section Final words about Logic bricks on page 48.

There are three more switches in the sensors’ CO. The level option informs a connected
controller when the controller’s state machine changes. This is valuable in case
the sensor has already sent a pulse but the controller was deactivated by the state
machine.

We do not engage into the Tap switch, which gives in general just an extra pulse2. The
last switch Invert simply applies a logical not to the sensors’ output.

The Always sensor and the Delay sensor trigger by default at the first frame and stick
to true. While the Always sensor comes with no further options3 than the common
options, the Delay sensor allows to parameterize a duty cycle.

A Keyboard sensor can be programmed to send a pulse when a single key is pressed,
like a or b, or any key at all. Modifiers, like shift or control, are also supported.

The Mouse sensor can be configured to react to one of the following mouse events:
button pressed/released (left, right, middle), wheel up/down, movement and mouse over
any. All these events are triggered independent of whether the mouse hovers over the
related object or not. It is also not possible to detect if a mouse button was pressed or
released.

Mouse over is an actuator, which leads to a pulse only if the mouse hovers over the
object belonging to the brick. So, detecting if an object was clicked, this and the
previous, mouse sensor, have to combined with an and controller.

With the Property sensor one can detect when a game property changes, respective
changes to a specific value. This makes it an ideal candidate to listen to user-defined
events, for example when a counter reaches a certain value.

The Actuator sensor observe actuators and triggers connected controllers whenever the
actuator becomes active. An application for this is to trigger state-dependent controllers
when a state change occurs.

2The additional pulse is given when the sensor changes its state from false to true, but with some special
rules when it comes to level-triggering.

3That makes it actually superfluous because the functionality is also include in the Delay-sensor.
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Example

A complete example how logic bricks interoperate is illustrated in figure 5.2 on page
45. It shows a facility to run the exit script main.quit (7) when either the escape key is
pressed or the Quit object is clicked. The brick for the escape key is a straight forward
Keyboard-sensor (9) connected with the controller for the script.

The object clicking needs two sensors, one to check if the mouse is actually clicked (10)
and a second one to determine if the mouse hovers (11) over the Quit object. The And
controller (6) ensures that both events take place at the same time before the Property
actuator (4) sets propQuit to true. This setting is propagated to the Property sensor
(8) which triggers eventually the Python script. Having a Python actuator would make
things more easier and we could drop the Property here.

Final words about Logic bricks

At first glance, logic bricks seem to be easily understandable, but there are some
phenomena or possibly bugs. It is hard to determine which since there is no
specification. We give a small example to show how cumbersome the development
with logic bricks can be.

Let a cube have an always sensor be connected over a simple and controller to a motion
actuator. The motion actuator shall be configured with a simple movement of 0.01 into
the X-direction. When the game starts, the cube moves constantly. But we would expect
just a single step of 0.01 because level triggering is disabled. Activating level triggering
and changing the sensor’s COs skip option has no effect. According to the definition
at BGE’s manual, we expect a stop and go effect. If a script-controller with a Python
script to print a simple message is hooked up to the sensor, the expected triggering can
be observed.

Another issues with logic bricks is, that sensors and actuators cannot be connected
directly, even though it is desirable in many cases. Using an or-controller as well as
and-controller in-between works fine but gives the developer the burden of parsing this
brick as pass-through controller.

Furthermore, it is a challenge for the developer, to keep track of which logic brick is
responsible for what effect in the game. BGE tries to enforce some kind of order by
coupling models with its controlling logic bricks. That seems to work in general, but
fails in a lot of cases. Assuming a game is to be restarted, when the player falls down
a cliff, time runs out, live points hit zero or the player presses restart on a menu. A
solution with logic bricks could be to trigger a game actuator configured to restart the
game. Each object detecting the restart event would have such an actuator. If the game
to be extended, for example a dialog should pop-up to inform the player, than it would
be difficult to find every logic brick causing a restart, since there is no search function
for logic bricks. One may argue that a Python script would be more suitable location in
the first place. But that just brings us to the last drawback we want to discuss here.
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Python logic bricks cannot be backtraced in BGE itself. There is no way to have a list
showing which objects call a specific Python script. A running script though, may detect
the name of the calling controller, but that name is not related to the object the Python
controller is associated with. So, changing a Python script may have unforeseeable
consequences, if the script is called from different locations.

Python API

Blender has two APIs to Python, one for itself and a second one to BGE. They are
very different from each other but have also some common functions, which makes
it easy to become confused. The one for Blender is to control Blender itself through
Python. That means drawing and editing meshes, or any other objects, can be done
using either Blender’s GUI or by calling the internal Python functions representing that
GUI element.

The other API, for BGE, offers access to the internals of logic bricks. For example,
a mouse click consists of a press and release event. Logic bricks themselves cannot
differentiate between these two. But the Python API offers low level access to the
controller, where this information can be read.

Because the BGE Python API is only accessible when the game is running, testing can
be very cumbersome, in particular where the documentation is sparse or unclear. Some
usage is shown later in chapter 6 where the stateroom-editor is implemented.

We omit any deeper API description since it would not contribute to the stateroom
editor.

Layers

The BGE does not support creation of models or meshes. It can only copy existing
models. A direct consequence is that every object that can possibly appear on the screen
must exists in the game no matter when and if it appears. Blender supports 20 layers
(or separate global spaces). So, one of theses layers can serve as material store, from
which objects are copied into the scene. Libraries are also possible in Blender, but we
do not investigate them.

When a model is copied, all logic bricks are also copied. There are no global or shared
properties. Communication could be done via the Message actuator/sensor, but we
excluded these from the discussion.
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5.2 Billboarding

Figure 5.3: Actuator to billboard an object.

General billboarding was discussed in chapter 3.3. BGE
offers this functionality under the designation Track
to as option of the previous mentioned Edit Object
actuator. Figure 5.3 shows the actuator tracking the
Camera object. The local direction of a state label is the
-Y direction, as shown in figure 6.4 on page 54. This
option is called Track Axis in the actuator and selects
the axis facing the camera. The Up Axis determines which local axis is turned up. With
the 3D button one can choose if the object is to be billboarded around the 3rd axis, in
this case the X axis, too. Choosing a time value leads to an interpolated adjustment of
the orientation over the period specified.

Because there is no Track to destination axis option, only viewpoint billboarding is
supported; making screen-alignment, our requirement from chapter 3.3, impossible
Figure 5.4 illustrate the problem. By translating the camera to the right, S6 moves to
the left and rotates in the orientation of S7. Imagine a screen filled with states, spinning
like this, would distract an observer.

Figure 5.4: Looking down to spherically billboarded states.

Nevertheless, objects which shall stay always screen aligned in a certain distance to the
camera can use the parent-child option of Blender, which works also in BGE. Through
this relation all transformations applied to the parent are automatically propagated to its
children. This is useful for menus or other HUD elements.



Chapter 6

Trial and error: Stateroom editor as
game

In this chapter we illustrate our trial to implement the stateroom editor as Blender
game. We focus first on the main building blocks to create a minimal stateroom, like
movement, test, atomic state and transition. With the difficulties of implementing a
transition, we finally abandoned this part of the project. At the end of this chapter, in
section 6.4, we list unsolved problems, which piled up during development.

6.1 HUD - Heads up display

Figure 6.1: Empty stateroom.

The heads up display (HUD), see figure 6.1, consists of a
single button, spawn-button (top corner) and a textual menu
(not visible on this picture). These elements are positioned
very close to the camera to prevent them from being occluded
by state-objects while the user wanders about. A better way
to implement a HUD would be to construct it in a separate
scene and use that as overlay with the Scene actuator. But
since scenes do not share logic bricks or objects, new spawned states would appear in
the HUD-scene and eventually defeating the whole purpose an extra scene. There is a
chance that this would work with libraries, but we do not pursue this matter.

Game Logic

Figure 6.2 is a screenshot of Blender where the game is not running. It displays the
cut-out that the camera captures (screen-space) when the game starts, plus some space
not captured. This non-captured space is colored dark gray and contains a textual menu.
A Keyboard sensor can trigger an Action actuator to start an animation that moves the
menu smoothly into the view-space. No further functionality is implemented.

51



52

Figure 6.2: Hud during development, the spawn-button looks like a white moon. (Game engine is not running)

The spawn-button spawns new states when clicked upon and its position raises two
problems. When it is pressed, a new state appears in front of the camera but behind
the button. In other words, it occludes the just spawned state. If the mouse is than
moved while its button is still pressed, the logic to spawn a new state would be triggered
over and over again. A simplest solution for this is to hide the spawn-button when it
is clicked until the mouse-button is released again. The corresponding logic bricks can
be viewed in figure 6.3. We refrain from a detailed explanation since logic bricks are
already explained.

Besides toggling the button’s visibility, this construction calls the Python function
createState, which copies a new state with a specific distance to the camera under the
pointer’s position.

Figure 6.3: To prevent spawning uncontrolled states, the spawn-button disappears when pressed and reappears when the mouse is
released.
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6.1.1 Movement

There are many ways to navigate through space. We decided to have the camera
move freely in all directions, with translation steered by keyboard and rotation by
mouse.

The logic bricks for navigation are bound directly to the camera and navigate therefore
in relation to it. That differs from the navigation in a first person shooter. There,
movement is rather related to the body, with the camera on the height of a head, which
results in a more realistic effect when the protagonist runs through the levels. Since we
focus on staterooms, we refrain from a deeper discussion.

Translating the camera can easily be achieved by connecting keyboard sensors with
movement actuators. If, for example, the w key is pressed, the camera moves forward in
its local space until the key is released again. The orientation adjustment for the camera,
triggered through mouse movement is more cumbersome. That is because there is no
sensor to detect in what direction the mouse moved and there is also no way to set the
position of the mouse pointer. Imagine an invisible mouse pointer and a camera rotation
to the right when the mouse is moved to the right. The system does update the mouse
pointer’s position, despite the invisibility of the mouse pointer. At the point the mouse
pointer hits the screen boundary the rotation would stop, magically from the player point
of view. This makes is necessary to reset the mouse’s position every frame.

1def movement ( ) :
i f not s t a t e M a c h i n e . i s S t a t e ( s t a t e M a c h i n e . EXPLORE ) :

3re turn

5c o n t r o l l e r = l o g i c . g e t C u r r e n t C o n t r o l l e r ( )
mouse = c o n t r o l l e r . s e n s o r s [ ’ Movement ’ ]

7
xpos = mouse . p o s i t i o n [ 0 ] − 100

9ypos = mouse . p o s i t i o n [ 1 ] − 100

11o r i = owner . w o r l d O r i e n t a t i o n . t o _ e u l e r ( )
o r i . z −= ( xpos * mouseMovementSpeed )

13o r i . x −= ( ypos * mouseMovementSpeed )
owner . w o r l d O r i e n t a t i o n = o r i

15
r e n d e r . s e t M o u s e P o s i t i o n ( 100 , 100 )

Listing 6.1: Python snippet to update camera orientation on mouse movement.

The solution for this is the
Python script in listing 6.1.1 It
first checks whether the sys-
tem is in the explore state,
the state in which the user
moves around with an invis-
ible mouse pointer. After-
wards, it assumes, that the
mouse pointer started trav-
elling at window position
(100,100). That is because
BGE cannot deal with nega-
tive mouse coordinates, which
may occur when the mouse pointer moves outside of the BGE window. So, whenever
the user enters the explore state, the mouse position is set hardcoded to (100,100) (not in
the listing). The current pointer position is available in the mouse sensor named Move-
ment (line 6). It can be accessed through the Python controller (line 5), which is calling
the script. Since the owner of the calling controller is the camera, its global position
can be retrieved as in line 11. With the travelled distance, calculated in line 8 and 9, the
orientation is adjusted in line 12-14. The fact that we adjust z and x shows that rolling
cannot occur. At last, we reset the mouse pointer position in line 16.

1Blender 2.77 offers now a mouse actuator to overcome this issue.
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6.2 Modeling Atomic State

Figure 6.4: With 32 vertices is the prototype of the
atomic state constructed.

The model representing an atomic state consists
of a mesh formed as an ellipse (fig. 6.4), a text
label and an anchor point. Figure 6.5a shows the
model rendered, with its components listed on the
right and the game logic at the bottom. The anchor
point is a non-visible entity, a fixture in local space
of the model. It serves as end point for transitions.
In a finished version, this point should be recalculated for each transition to be on the
border of the mesh, so that an arrow can attach the outline of the state. This problem is
discussed deeper in the OpenGL part in chapter 9.0.8.

Game Logic

The logic is displayed in figure 6.5. When a state is spawned, its orientation is not
billboarded. To correct this, the delay sensor triggers the billboarding actuator. It is also
triggered whenever the mouse moves. This could be further optimized and only called
when the state itself or the camera moves.

With the remaining logic a state can be clicked upon and relocated. Unfortunately, if
during the relocation the mouse pointer hovers over another state, it will also be affected
by the relocation process. Since BGE does not provide global variables and the logic
bricks cannot differentiate between mouse press and release events, the bug can only be
fixed via Python.
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(a) The atomic state model. It’s components are listed to the right under MasterCircle while the game
logic is presented on the bottom half.

(b) Logic for state 1. While it awaits a click on the object to switch to state 2, it billobard to the camera.

(c) Logic for state 2. With the mouse button still pressed, a Python script is called, which makes the
object follow the mouse pointer.

Figure 6.5: The atomic state and its logic bricks.

6.3 Modeling Transitions

A simple transition connects two end-points with a line. This line can be a billboarded
2D-rectangle or a 3D-tube. Achieving one of these solutions is mainly, from the point
of view of BGE, the same task; reposition individual vertices from a mesh.

Assuming a quadrangle with 4 vertices shall be billboarded to form a transition. Because
meshes cannot be generated in BGE, see paragraph Layers on page 49, the mesh of the
quadrangle is placed on a non-visible layer. To form the transition, the mesh is copied
to the visual layer. Since the user can place the states which are linked by a transition
freely, the form of the quadrangle must adapted its dimension and location. For a first
trial we choose the anchors as end points as described in the model in section 6.2 instead
of calculating the points on the outline of the state.
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Blender offers several methods to draw elements suitable for transitions, but unfortu-
nately, they either do not work in BGE or are hard hard to maintain. We tried the
following approaches:

• Building a transition out of bones. The principle idea is to have a chain of bones,
like in figure 6.6. Scaling a bone in one direction leads to stretching a connected
mesh. While translation and rotation do work in BGE, scaling does not.

• Deformation of volumetric objects works in both, Blender and BGE. Unfortu-
nately, deformation cannot be controlled and does therefore not solve the task.

• Laying out transitions as splines does work in Blender, but again, not in BGE.

• According to BGE Python API, a mesh can be deformed through the controller,
which we positively verified. Nevertheless, trying to access the mesh of a newly
copied object failed. It is probably be possible to assemble a transition out of
several short cylinders, forming a nice bezier curve. We consider this as to
cumbersome since every piece has to recalculated everytime the camera rotates
or moves.

• Considering a transtion as a rope, we found out that ropes are often animated
through a Rigid Body, which is a setting to determine the physical behaviour
of objects. Rigid bodies allow to chain objects together, so that an impulse is
passed from one chain link to another, hence their usage for ropes. Unfortunatly,
we could not find a way to fix a rope on both sides and pull it into a curve.
Furthermore, their is no easy way to adapt the number of chain links through
python.

(a) A model with bones. (b) The mesh comprised of 1024
vertices.

(c) Stretching is possible in
Blender, but not in the BGE.

Figure 6.6: Scaling a bone in a certain direction does not work in BGE.

The two remaining ways we can think of drawing transitions is through shaders of
OpenGL 2.0, as documented for Blender here [Kra15] or to hook a mesh through a hook
constrain. But we admit here, that we simple lost faith in solving the task in BGE,
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simply because our progress is rather sparse and the samples from which we could learn
are non-existant.

6.4 Unsolved problems - Final analysis

We decided to give up trying to implement the stateroom editor as Blender game for a
various number of reasons:

• Drawing a transition was not possible in a reasonable amount of time.

• Stretching an ellipse in a way that its text does not overlap can only be done in a
cumbersome way through mesh manipulation. We discuss and solve this problem
for OpenGL in 9.0.6.

• Centering the text inside the atomic state is an unsolved riddle.

• Calculating the anchor points for transitions, which must match pixel coordinates,
is also unsolved.

• Where to calculate the routing of transitions is also an open question.

• There are no widgets like text input or combo boxes for the BGE. That means that
an editor for source code, such as code snippets like executable content used in
transitions, would have to be built from scratch.

Besides this, we have a lot of untouched features like: compound states, parallel states,
aligning text with transitions, etc.

Building a stateroom editor as Blender game may be possible, but the development
effort exceeds the resources of this work.

We want to note a key lesson we learned: Blender is at first a tool to model real world
objects and to animate those models. To find concepts how things work in Blender
or BGE, one must search after keywords someone might have used in their real world
projects. For example, to visualize a transition, literal descriptions like, elastic line,
bezier curve or a cylinder are valid. But these words are not objects in games, yet ropes
and chains are. And those terms lead to the concepts one may looking for.

A final figure 6.7 shows the unfinished stateroom editor with some issues and some
debug output.
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Figure 6.7: The stateroom with states and debug output. The transition cannot be controlled in BGE.
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OpenGL
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Chapter 7

Introduction to OpenGL

OpenGL, OGL or GL stands for "Open Graphics Library" and is an interface for
graphics rendering specified by The Khronos Group[Khr15]. It provides an API for
applications to gain low level access to video cards through their graphics driver.

The main purpose of GL is to convert 3-dimensional objects, usually collected in a
scene, into a 2-dimensional image, which is finally presented on a screen1. This process
is called rendering. OpenGL reflected the render process in its rendering pipeline. It
builds the key component of OpenGL and its understanding is imperative to successfully
work with OpenGL.

Furthermore, it is important to understand that graphic adapters are designed and
optimized to facilitate the calculations for rendering in a highly parallel manner.
OpenGL does not conceal this characteristic. This fact must be kept in mind when
designing applications using OpenGL.

OpenGL’s history spans over more than two decades. Its latest release is version
4.5. Because our hardware driver from Intel support only version 3.3, the discussion
is limited to this particular version. Also, the rendering pipeline may be used to
apply filters on an image or to a previously generated output. We focus here on
the transformation of 3d objects to 2d images. Furthermore, while we need a solid
understanding of the rendering pipeline, our main interest is a specific part of it, the
geometry and fragment shader.

This chapter gives an overview of GL’s rendering pipeline, while the next chapter 8
builds the knowledge necessary for chapter 10, where the API is used.

The presented material is mainly summarized from [SA10], [SWH13], [Shr+13], [Ope15].

1Since version 4.2 a unit as an extension solely for computation is provided.[Sel15]

60



61

7.1 Rendering pipeline overview

What we simply called rendering before, is a long way of concatenated calculations.
Such calculations are partitioned in stages and compendiously called rendering pipeline.
Some of these stages are optional while others are mandatory. A greatly simplified
pipeline of GL version 3.x is depicted in figure 7.1. Yellow polygons mark input/output
data. Input data are information to render a specific part of the image (output data). Blue
boxes mark programmable stages called shader stages. Each shader executes a little
program also called shader. Programs are written in the OpenGL Shading Language
(GLSL), a C-like language. OpenGL 3.x supports three different shader stages, each
equipped with special capabilities. Graphics systems can execute a number of shaders
per shader stage in parallel. The amount of parallel processing shaders is hardware
dependent and usually ignored by the developer2. Green boxes represent fixed function
stages. They are highly configurable and provide tasks like collecting output data,
interpolation of colors, perspective division or filtering vertices not contributing to the
final image for any reason.

Before discussing each block of the pipeline in depth, we give a small overview of their
interaction.

Figure 7.1: Rendering Pipeline for OpenGL 3.3. Input/output data is colored yellow, programmable units are marked blue and
fixed function stages are shaded green. The Geometry Shader is optional.

The first yellow polygon, Vertex data, represents the input data, consisting of the
scene’s vectorial object descriptions and additional attributes. Each attribute is
directly related to a vertex and contributes to determine its color and the gradient in-
between neighbouring vertices. Examples for attributes are solid color values, material
information or normals to reflect lightning. Vertex data is provided in a specific format,
which is subject to the specification of VertexAttributePointers, which is discussed in
chapter 8.3.3. While this format describes which bytes belong to a data type, the data
itself resides in GPU memory chunks called buffers. Such buffers are highly flexible as
well as type-less. We discuss buffers in detail in chapter 8.3.

From the Vertex Data buffer, the Vertex fetching stage fetches a vertex with its attributes
and feeds it to an instance of a Vertex Shader (VS). VSs operate on single vertices and

2The laptop we use is equipped with 16 shader units. Desktop computers have usually a couple of
hundreds.
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there associated data only. They have no information about neighbouring vertices. A
common application for VS programs is to transform a vertex from one space to another,
as discussed in chapter 3.1.

The outgoing stream of the VS stage is passed to the Primitive Assembly (PA)
tier. In here, vertices are grouped into primitives. Such primitives are the basic
geometric objects OpenGL can draw, like lines or triangles, and are further explored
in section 7.2.4. There is no further investigation in PA in general, but the choice
of primitive influences transform-feedback as discussed in 8.6.3. After grouping,
the primitive is either passed to the optional Geometry shader (GS) stage, or it is
immediately forwarded to the Rasterizer.

Assuming a GS is present, then each instance of it consumes a primitive from the PA
stage. The strength of the GS is that it can change the primitive’s geometry by discarding
or adding vertices. Furthermore, it can be programmed to have read access to adjacent
vertices, allowing to influence the internal calculations. This makes the GS ideal for
interpolating arcs from two given endpoints and additional control points. More details
about VS and GS are described in chapter 8.5.

The output of the GS stage is passed as primitive to the Rasterizer.3 In this stage, each
primitive is tested if it lies inside the viewport entirely. On a positive outcome, the
primitive is kept for further processing, otherwise it is clipped or culled. Afterwards,
the vectorial description is interpolated and broken down into discrete fragments. This
happens inside the hardware and is mostly out of the developer’s control. Fragments and
pixels have a many to one relation, so, a pixel may be described by several fragments,
while fragments belong to one pixel only. The number of fragments generated depends
on the resolution of the viewport as well as on the objects projected onto it.

The generated fragments are passed to the Fragment shader (FS), while each fragment
is equipped with information on how to color a single pixel. FSs determine the color
of a single fragment without access to adjoin fragments. Common applications for FS
are calculating gradients, mapping color from bitmaps to fragments or antialiasing. In
section 8.5 we get to the bottom of shaders.

The last stage, Per-Sample Operations, consists of several steps to combine all
fragments belonging to a coordinate to a final color value, displayed as pixel. Discussing
all steps of this stage is beyond the scope of this work, but we elaborate some steps we
experimented with in section 8.6.

At the end of a pipeline-run are the results stored into buffers and eventually presented
in a window on screen. These buffers are managed by framebuffers, which can be very
complex. In section 7.2.2 we investigate into framebuffers; but just enough to render
into several buffers at once.

3The rasterization-step is not uniformly defined across the references utilized. For example, fragment
shader stage is described as part of rasterization in [SA10], while other sources describe them apart from
each other, like [Shr+13, p.10]. The presented text emphasize the elements controlled in this work and
follows rather the latter approach.
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7.2 Prerequisites

Under Linux, OpenGL is a very powerful and flexible library. Its configuration has
a huge number of options, leading to an enormous amount of combinations. We are
only able to explore a fraction of it’s possibilities. To not become lost in the standard
we simplify some concepts that are vital to OpenGL-applications, but their details are
rather insignificant in this work. That is mainly because they were initially set up, but
touched sparsely during the rest of the project. Our main focus lies on the geometry and
fragment shaders, because these two are the main shaders we use to produce and color
the objects we want to render.

7.2.1 Binding concept

OpenGL manages internally a huge amount of objects to control the rendering pipeline.
Most of these objects are referred to by a handle, denominated name in OGL
terminology. An object can be manipulated by binding it’s handle to a specific binding
point and subsequently invoking functions that operate on the object identified through
the binding point. Functions for manipulation expect either a binding point as argument
or they have an implicit binding point; making it necessary to bind the object on the
proper binding point. Binding points are also referred to as binding target.

While binding is an important concept of OpenGL and it is mentioned throughout this
text, there is no need to engage in a deeper discussion.

7.2.2 Framebuffer

A framebuffer is a container, storing images where OpenGL renders into or reads from.
Images are either textures, which are discussed in section 7.2.3, or renderbuffers4, which
we ignore in this document. For now, an image can be considered being a memory
chunk, containing some image data. Before an image can be targeted by the render
process, it must be associated with one of the framebuffer’s attachment points (AP)s,
which are also denominated buffers.5 OpenGL offers two types of framebuffers.

There is the default framebuffer (DFB). It is provided and controlled by the windowing
system. Its buffers reflect usually the underlying hardware in its current state, like color
depth, number of buffers6, etc. A common DFB supports a front left buffer, which
is visualized on the computer screen, a back left buffer, to render into and swap then
with the front buffer, a stencil as well as depth buffer, which are discussed later in
section 8.6.1 and 8.5.3. Front and back buffer are generally denominated color buffers.

4Renderbuffers are memory chunks optimized for antialiasing (MSAA).
5Buffers, in this context are rather references to objects containing memory as representing memory by
itself.

6Hardware supporting stereoscopic visualization need buffers for two sides (left and right).
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Because the DFB’s buffers are not replaceable by the application, they are rarely referred
to as APs, but rather buffers.

The other type of framebuffer is called framebuffer object (FBO). FBOs are created and
managed by the application and support features beyond the underlying hardware. They
are not equipped with color buffers like the DFB, but support several attachment points7

for color buffers. Into each attached buffer, can separately be drawn to, at the same
pipeline-pass. To visualize a content of a color buffer, it is copied into the DFB, obeying
its constraints. Rendering into several color buffers at once is known as Multiple Render
Targets (MRT) and briefly discussed in 8.5.3.

7.2.3 Textures

A texture is a container for images; with an image being a one-, two- or three-
dimensional array of image elements called texels.Such containers manage several
parameters to determine, the texture’s internal storage structure, the format of the stored
texels and the way texels are sampled upon usage.

Before analysing the configuration used in this project, we contemplate what kind of
graphics we want to display. We use two types of graphics, icons and glyphs. Icons, for
example, are used for menus and are discussed in chapter 9. They are drawn in RGBA
color format. Glyphs are used to display text and discussed in chapter 10.5.2. They are
retrieved in gray scale, but converted in the RGBA format. To facilitate the discussion,
glyphs and icons are referred to as icons in this chapter. OpenGL can only manage a
certain number of textures, in the magnitude of dozens. That makes it cumbersome to
have one texture per icon, considering that we have around 100 icons; 2 * 26 letters,
numbers, special character, icons, etc.

So, the common way to organize a larger number of icons, is to use a technique known as
texture atlas (TA), or texture map. A TA is a huge image, containing all icons to display.
For each entry in the TA, a coordinate and size is stored in a look-up table. OpenGL
supports TAs by accessing a single icon through its coordinate and size parameters from
the look-up table. These coordinates, and therefore also the size, are usually measured
in unified UV coordinates. That means the size of the texture is 1 in x (called U) and
1 in y (called V) direction. The look-up table is the responsibility of the developer and
not a component of OpenGL.

To display a texture, it is mapped to vertices and passed to the Primitive Assembly stage.
Here the texture is sampled, which we discuss shortly, to fit the area covered in-between
the mapped vertices. For example, assuming a chessboard-texture is mapped with the
UV coordinates (0.0,0.0) to (0.75,0.75) to 4 vertices, which are placed as square on
the screen. Because the texture is addressed to 3

4 in each direction only 6 rows and 6
columns are drawn.

7OpenGL 3.3 specifies at least 8 attachment points.
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After this short introduction into textures, we present and argue for the configuration
used.

The storage structure specifies, among other things, the dimension of a texture. Since
we have only a 2-dimensional texture, we choose GL_TEXTURE_RECTANGLE. It
is the only storage structure for 2D only textures. Furthermore, it allows to access the
texture in pixel coordinates, rather than UV coordinates; saving the calculations of the
uniform coordinates.

The color format was already mentioned, RGBA (GL_RGBA). We give the alpha
channel a special meaning for images (not glyphs). It is used to detect easily which
pixel has a color, and which has none. This is discussed in chapter 10.4.1 to prevent
invisible pixel from becoming clickable with the mouse pointer.

The last parameters to configure determine the way a texture is sampled. While UV
coordinates operate in the range [0, 1], the texture can be accessed beyond this range.
The settings GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T determine how
texels are retrieved in U, respective V, direction, when a texel’s coordinate does
not lie in UV’s range. We do not access the texture outside its boundaries, which
makes this settings irrelevant to us. But since it is mandatory, we clamp the
coordinates to retrieve to the range [0, 1] with the option GL_CLAMP_TO_EDGE.
Another parameter configures how the texture is magnified, respective minified, in
case the area to which the texture is to be mapped is larger, respective smaller,
than the texture itself. The responsible options, GL_TEXTURE_MIN_FILTER and
GL_TEXTURE_MAG_FILTER are both set to GL_LINEAR, which determines the
color for a pixel by performing a weighted linear blend between neighbouring
texels.

With this configuration, the texture, from the OpenGL point of view is basically set up.
We spare to list the function to create and manage the texture.

To complete the texture atlas, a second texture is used to store the size and the
location of the icons kept in the previous set up texture. The texture storage used is
GL_TEXTURE_BUFFER. This kind of buffer does not apply interpolation, nor is it
accessed via uniform coordinates, hence, there is no further configuration. It is just a
texture providing random access to an underlying buffer. We discuss this further in
section 8.3.2 together with the underlying buffer.

The sample parameters, which we used earlier, are actually used to configure a
default sampler, automatically provided with the texture. But textures can be accessed
through additional sampler objects, which are out of scope of this work. Nevertheless,
in section 8.5.2 we discuss how default samplers are accessed inside a shader
program.
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7.2.4 Primitives

Primitives are the entities a graphics adapter can draw. All objects to render, like cars
or trees, must be constructed out of these basic entities. OpenGL offers the primitives
illustrated in figure 7.2. Points are single coordinates and can have a size up to 40 x 40
pixels. Lines connect two coordinates with a maximum width of 1 pixel. A line strip
and line loop exists to draw line strips and loops more efficient by saving memory for
coordinates. The triangle-types are used to form larger areas.

Figure 7.2: The Primitives OpenGL can draw. Dotted, light gray lines mark the triangles and are not visible when rendered.

What kind of primitive to draw, must be selected upon rendering start. The choice of
primitive does not just affect the resulting geometry and clipping, also the amount of
vertices a GS pulls is determined. This is elaborated further in section 8.5.2.

A single render-pass can produce thousands of primitives, but all of the same type.
Usually, a scene is constructed out of different types of primitives. That makes it
necessary to run several render-passes. This procedure, transforming a scene into an
image, is discussed in section 8.2 further.

We argue throughout chapter 10 for the choices of primitives we use to construct our
objects.

7.3 Draw call

The rendering process is started by issuing a draw call. There are different kinds of
draw calls, influencing the pattern vertices are pulled. We go briefly through the ones
we implemented during the project.

All presented draw calls have a mode parameter. This parameter determines which
primitive, from the ones in figure 7.2 on page 66, is grouped together by the primitive
assembly stage and subsequently rendered by the rasterizer.8 Table 7.1 shows in
addition to the modes one could expect for primitives, some modes with the ending
ADJACENCY. Adjacency modes give read access to neighbouring vertices inside a
geometry shader. We do not discuss the usage of adjacency-modes further.

We mentioned earlier that vertices, and their attributes, are provided by buffers. When
discussing draw calls, vertices and attributes are collectively called elements.
8A geometry shader can overwrite the mode as we discuss in section 8.5.2.
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GL_POINTS
GL_LINE_STRIP GL_LINE_LOOP GL_LINES
GL_TRIANGLE_STRIP GL_TRIANGLE_FAN GL_TRIANGLES
GL_LINES_ADJACENCY GL_LINE_STRIP_ADJACENCY
GL_TRIANGLES_ADJACENCY GL_TRIANGLE_STRIP_ADJACENCY

Table 7.1: These draw call modes render the primitives introduced in section 7.2.

• glDrawArrays is the most basic draw function. Its arguments are the number of
elements to render and an offset to the buffer’s first element. This is the only draw
call we finally use.

• glMultiDrawArray is equivalent to multiple calls of glDrawArrays. While each
primitive is from the same type, it may consists of a different amount of elements.

This draw call is used in chapter 10.4.2 to draw several polygons at ones.

• glDrawArraysInstanced is equivalent to multiple calls of glDrawArrays. This
call can be used to draw multiple instances of the same elements. The identifier
gl_InstanceID is available at the VS stage and gives the opportunity to change
the elements belonging to an iteration. It can be used, for example, as index to
access an array of positions.

But there is another option to pass individual data per iteration. The glVertex-
AttribDivisor allows to configure a buffer in such a way, that an element is only
pulled when n elements were pulled before.

We use this draw call in chapter 10.4.1 to draw ellipses.



Chapter 8

Rendering pipeline

The rendering pipeline transforms vectorial descriptions into discrete color values,
shown on the screen.

This chapter explores the possibilities on how vectorial descriptions can be fed to
the graphics adapter and how the pipeline can be programmed to transform these
descriptions into color values. We talk in particular about the organization of buffers,
the programming of shaders and the preprocessing of samples at the end of the pipeline.
Before OpenGL can commence its work in general, it must be initialized and the default
framebuffer configured. We omit a discussion about initialization and configuration
since they are more or less standard procedure and are puny for the actual editor. With
one exception, the viewport setting.

While we are interested in shader programming, in particular in the geometry and
fragment shader, a deep analysis of the GLSL, the language shaders are programmed in,
is out of scope of this text.

8.1 Viewport setting

The viewport has a fixed position in OpenGL but its size must be set prior rendering.
This is done with the function glViewport. It specifies width and height of the
viewport in number of pixels, usually set to the size of the window. It’s center has
the global position (0, 0, 0) while its X/Y axes are aligned with the global ones. GL
uses the left-handed coordinate system, known from chapter 3.1. From that follows,
that the user looks into the −Z direction. Two further arguments move the viewport
to an arbitrary position on the projection plane. We determine the viewport setting in
chapter 10.2.1.
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8.2 General Process

Assuming OpenGL is setup, the pipeline can be prepared for rendering. Since only a
single primitive type can be drawn at once, several pipeline passes are usually necessary
to produce a frame.

The principle drawing cycling is:

• Update global information used by the shaders (projection matrix, camera
position, etc.)

• Clear the target framebuffer.

• To draw a frame:

1. Fill and attach buffers to pipeline

2. Compile and upload shaders

3. Issue draw call

4. Repeat until all primitives are drawn

• Switch framebuffer

The rest of this chapter is devoted to the OpenGL components, used in chapter 10 on
page 89.

8.3 Buffer Objects

Buffer Objects (BO)s are containers to manage raw memory blocks. These memory
blocks store data like vertex positions, colors, matrices or anything else one can think of
to calculate the objects drawn on the screen. They are usually filled from the host side
and its content is drawn on the screen. But buffers can also capture the output of the
transform feedback stage and pass it back as input to the pipeline. We focus on using
BOs for the first purpose and discuss the latter in section 8.6.3.

OpenGL offers a couple of different kinds of BOs. They discern in their maximum
storage size, the way as well as location they can be accessed and other parameters,
which are of less interest to us. Before we analyse the details, we elaborate first how
buffers are generated and modified in general.

Buffer objects are administered by GL and represented by names. Such a name can be
retrieved by calling glGenBuffers which reserves storage for BO’s internal structure,
but none for the actual buffer. To allocate memory for the buffer the BO must first be
bound with glBindBuffer as described earlier in section 7.2.1. Possible BO’s targets
and their general purpose are listed in 8.1. A chunk of memory can then be requested
by invoking glBufferData with the same target the buffer object has been bound
before.
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Target name Purpose
ARRAY_BUFFER Vertex attributes
COPY_READ_BUFFER Buffer copy source
COPY_WRITE_BUFFER Buffer copy destination
ELEMENT_ARRAY_BUFFER Vertex array indices
PIXEL_PACK_BUFFER Pixel read target
PIXEL_UNPACK_BUFFER Texture data source
TEXTURE_BUFFER Texture data buffer
TRANSFORM_FEEDBACK_BUFFER Transform feedback buffer
UNIFORM_BUFFER Uniform block storage

Table 8.1: Buffer binding points for GL 3.3.[SA10, p. 39] The purpose is mostly a guideline.

To give OpenGL a chance to optimize buffer usage, glBufferData takes a hint passed
as argument. We use DYNAMIC_DRAW, which is the right choice if its content is
modified regularly by the application and it is used to draw by OpenGL. A deeper
discussion is out of scope of this document since this is a rather a topic for applications
squeezing out the last bit of performance.

Initial content for the buffer can be passed to glBufferData via pointer, pointing to a
chunk of host memory. Its size must be identical to the one requested on the GPU
side. Afterwards, the content can partially be overwritten by glBufferSubData. As for
glBufferData, the buffer’s BO has to be bound at first.

A buffer is freed when its BO is destroyed or a new buffer is assigned to it.

We look now into the characteristics and applications of buffers.

8.3.1 Uniform buffer object

OpenGL offers for constant data, which do not change during draw calls and have the
size of a few kilo bytes only, a special method of access. Any variable, or structure
can be used for that kind of access by using the uniform qualifier; converting them to
uniform variables. These varialbles are than integrated into the shader program, which
prevents them from being shared with other shader programs.

Uniform buffer objects (UBO)s are used to collect and handle several uniform variables
in a single object. This allows not only to share the collection among shader programs,
it also offers a comfortable way to pass several uniform variables to several shader
programs. Furthermore, the upload of the same data several times is prevented. Routing
the data through the application, so that it can be uploaded, is also prevented because,
a UBO is registered to the shader once upon initialization only, while uniform shaders
have to be uploaded per draw call.

UBOs come with a size limitation which is 64KiB on our system.

We use this kind of buffer in section 10.5.6 to share uniforms among shaders.
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8.3.2 Buffer Texture

Texture buffers (TB) are read only texel arrays which can be randomly accessed from in-
side a shader. A lookup of its content is a achieved by calling texelFetch(gsamplerBuffer
sampler, int index). The first argument is a sample buffer. That is because TBs are
treated internally as textures, albeit they do not perform interpolation like general sam-
plers. The second argument is the index of the desired texel.

OpenGL makes TBs minimal size at least 64Ki texels, whil our system support
128Mi texels.

We use buffer textures to lookup dimensions about glyphs in section 10.5.2 and store
information about SCXML states in section 10.4.1.

8.3.3 Vertex buffer object

Vertex buffer objects (VBO)s are buffers of arbitrary size to store vertices and their
attributes, like coordinates, colors, normals, etc. Contra the mathematical discription,
where a vertex is a coordinate, for vertex buffers, a vertex is an empty entity and its
coordinate is a separate attribute. VBO’s are the source for the vertex fetch stage which
pulls the data consecutively, passing it to the shader instances. The amount of bytes
each shader receives is determined by the Vertex Attribute Pointer which we discussed
in a jiffy.

Because buffers are not resizable, it is necessary to either know their maximum size
in advance or to keep track of it and reassign a bigger chunk of memory as soon as
needed. Our application, and with it the buffer size for the objects to draw, depends
on the input of the user. That makes it impossible to predict the size of the buffer.
Furthermore, VBOs are used quiet frequently since they are the source of basically each
object on the screen, that together makes is practical to encapsulate their management
into a class.

There is no explicit size limitation for VBO, except implicit limitations, like size of host
memory.

Vertex Attribute Pointer

s t r u c t {
i n t i d [ 2 ] ;
f l o a t c o l o r [ 4 ] ;

} a r r a y [ 1 0 0 ] ;

Listing 8.1: An array of
vertex attributes.

Assuming a buffer is filled with an array of a struct, as shown in
listing 8.1, containing information like color and id. Than GL needs
the struct’s layout to read each variable from its proper memory
location. Furthermore the mapping from the struct’s entries to the
vertex shader input variables, called vertex attributes, must be given
to GL. An example for vertex attributes is listed in 8.2 and will be elaborated next
chapter about shaders.
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in i v e c 2 i d ;
in vec4 c o l o r ;

Listing 8.2: Two vertex
attributes as VS preamble.

Vertex Specification is the process of mapping the struct’s members
to the shader’s vertex attributes by using the buffer’s layout. This
mapping occurs inside the Vertex Attribute Pointer (VAP) object.
When creating a VAP, the buffer to pull from must be bound to the

target GL_ARRAY_BUFFER. In figure 8.1 a schematic shows how the VAP connects
buffers and vertex shader instances. The buffer id is copied from the bound buffer when
the VAP is defined. So, when the VS pulls this specific attribute, it knows which buffer is
to address. The type and the number of components form the GLSL variable type. For
the first attribute, 4 floats are taken from the buffer and appear as a vec4 in the VS. The
stride parameter is the size of a struct or zero for tightly packed, non-interleaving data.
For interleaving data, an offset specifies the location inside the struct of the attribute.
To couple the VAP with a shader atrribute (input variable), the attribute location is first
queried from the shader. This location is then placed as location argument when the
VAP is defined.

Figure 8.1: Fetching vertices from different buffers according to vertex attribute pointers.

VBOs and vertex attribute pointer are managed by the library helper_gl, presented in
chapter 10.5.3, and used throughout chapter 10.

8.4 Vertex Array Object

A Vertex Array Object (VAO) is a wrapper objects, storing data about VBOs. VBOs are
usually setup once and then used throughout the life-time of the application. Changing
the contents of the buffers connected to VBOs does not affect the VBOs itself. But
VBOs are connected to entry slots to feed shader programms with data. These entry
slots have a hardware limitation. Instead of assigning every time VBOs to the shader
program from the start, they can be collected in a set, which is controlled by a VAO.
Everytime a different shader program is loaded, only the VAO, for that shader program,
has to be bound. That disables previously bound VAOs automatically and only VAPs
assigned to the VAO are present. We do not pursue VAOs further.
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8.5 Shaders

Shaders perform application-defined calculations on the GPU. They transform data
provided through the aforementioned buffers by applying algorithms programed as
shader program. Such a shader program consists of programs from a vertex shader
(VS), a fragment shader (FS) and optional, a geometry shader (GS). While each shader
is programmed separately, they are compiled and linked together before transfered as
single binary blob to the GPU. The term shader is often used ambiguous for shader
program, shader stage or instance of a shader.

Before we look into the shaders we elucidate how the data channels between shaders
are piped together.

Each shader stage offers two sets (input/output) of variables. These variables are refered
to as varyings; constructing logical pipes between shaders, hence the term rendering
pipeline.1 There are built-in varyings as well as user-defined varyings. Built-in varyings
depend on the shader stage and are explaint, if used, in the shader sections below. User-
defined varyings must be defined as pairs. An input variable on one shader stage is
expected to have a matching output variable on the previous shader stage. The qualifiers
in and out determine the belonging set. A typical preamble with varyings and qualifiers
of a vertex shader is presented in listing 8.3.

in vec2 p o s i t i o n S t r e a m ; / / A f l o a t a r r a y o f 2 e l e m e n t s
in i v e c 2 l e t t e r S t r e a m ; / / An i n t e g e r a r r a y o f 2 e l e m e n t s

out i v e c 4 l e t t e r s ; / / An i n t e g e r a r r a y o f 4 e l e m e n t s
f l a t out i n t s l o t P o s i t i o n ; / / A s i n g l e i n t e g e r

Listing 8.3: User-defined variables in a shader. The in qualifier declares incoming variables, while the out qualifier marks
variables passing data to the next stage.

To simplify the further discussion we assume that no GS is present so that the VS
is linked to the FS, with the primitive assembly (PA) stage and the rasterizer sitting
inbetween; as illustrated in figure 7.1 on page 61.

It follows some characteristics of each shader stage.

8.5.1 Vertex Shader

The vertex shader is the first fully programable stage. As discussed earlier, it receives
its data, determined through Vertex Attributes, from the vertex fetch stage. For each
vertex a separate instance of the vertex shader program is initiated. VSs are ideal for
plain vertex operations where neighbouring vertices can be ignored. Each incomming
vertex produces exactly one output vertex. That means, neither additional vertices can
be generated nor can incoming vertices be dicarded.

1The term varyings is not to be confused with the storage qualifier varyings, which is obsolete. See
[KBR10, pg. 27] and [SA10, pg. 75].
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We use vertex shaders merely to pack/unpack attributes and to forward them to the
geometry shader.

8.5.2 Geometry Shader

Unlike a VS, a GS can consume up to three vertices and can in read in addition three
adjacent vertices. We do not consider adjacent vertice further. The input primitive type
determines in the preamble of the GS, line 1 in listing 8.4, how many vertices are pulled
from the vertex buffer. This type must correspond to the mode specified by the draw
call, according to table 8.2. The vertices and their varyings are then accessible through
arrays, defined is counter part of the VS’s output varyings.

The GS has also an output primitive type, which is either points, line_strip or
triangle_strip; 2nd line in listing 8.4. Changing the output primitive overwrites the
initially, through the draw call declared primitive type.2 That allows to draw, for
example, triangles by just specifying their position by single vertices.
l a y o u t ( p o i n t s ) in ; / / i n p u t p r i m i t i v e t y p e
l a y o u t ( t r i a n g l e _ s t r i p , m a x _ v e r t i c e s = 16) out ; / / o u t p u t p r i m i t i v e t y p e

Listing 8.4: Input/Output declarations for a geometry shader. Input declaration must match the draw mode.

A GS instance can produce more than one primitive, but not more vertices than specified
through max_vertices (2nd line). Input, as well as output primitive types cannot be
changed during pipeline processing. Our library text_3d takes advantage of these two
features, as described in chapter 10.5.2.

Incoming data can be transformed by the GS with algorithms written in GLSL.

Outgoing data has to be grouped in respect to a vertex. This vertex has to be submitted
through the built-in varying gl_Position. User-defined varyings may follow or be
prepended before the vertex is submitted. A group is finalized by calling EmitVertex,
signaling the hardware that a vertex and its descriptional data is ready.

Since a GS instance can issue serveral primitives, a similar command is used to locked
a primitive, EndPrimitive.

Next section emphasize how these data is pre-processed for the FS.

GS input
primitive draw call mode

vertices
pulled

points POINTS 1
lines LINES, LINE_STRIP, LINE_LIST 2
lines_adjacency LINES_ADJACENCY, LINE_STRIP_ADJACENCY 2 (2)
triangles TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN 3
triangles_adjacency TRIANGLES_ADJACENCY, TRIANGLE_STRIP_ADJACENCY 3 (3)

Table 8.2: The draw call mode must match the GS input mode, but GS can output in a different mode. Unless a TF is activated.

2When transform feedback is activated, this freedom is lost.
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We use GS’s to apply projections and calculate objects positions. Furthermore, are they
used to locate specific regions inside a texture. See chapter 10.2.3 as example.

8.5.3 Fragment Shader

Varyings send through the pipes to the VS are rasterized and segmented into fragments.
The choice of primitive, given through the draw call or changed by the GS, determines
how the rasterizer interpolates between the vertices and their accompanying varyings.
Furthermore, the built-in varialbe gl_Position takes a homogenous coordinate, allowing
the rasterizer to perform the perspective division. This is important, because the
perspective divions also influences the interpolation of the varyings. The interpolation
can be controlled with the interpolation qualifiers: flat - no interpolation, noperspective
- linear interpolation and smooth - interpolates while taking perspectivity into
account.

The resulting data are then passed as fragments to the FS.

Any kind of algorithm can then be programed in GLSL to finally determine the color
of the fragment. But we are especially interested in orienting ourselfs inside the FS, so
that we can determine its color, depending on its position inside the object it belongs
to.

Assuming a screen aligned quad with a texture on it. Then the GS is programed to use
triangle_strip and issues 4 vertices. Because the vertices, and therefore the resulting
fragments, can be everywhere on the screen, it is impossible for a fragment to determine
where it is located on the quad. If we issue for each vertex of the quad a specific
coordinate, the interpolation of the rasterizer gives each fragment a unique varying. For
example, each vertex becomes one of the following 2D coordinate as attribute: {(1,1),
(1,0), (0,0), (0,1)}. The fragment in the middle of the quad, has then a location attribute
with the value (0.5, 0.5).

We exploit this behavour numerous of times. Worth noting is chapter 10.2.3, where the
color depends on the mouse pointer’s position, and chapter 10.4.1, where the geometry
of the atomic state is adjusted depending on its size.

Multiple Render Targets - MRT

Multiple Render Target (MRT) allows to bind several color buffers to a framebuffer
object. The fragment shader can then write different colors into each buffer. A drawback
of this operation is that it cannot be written into the default buffer. Hence, if one of the
buffer shall be visible on the screen it must be copied into the default framebuffer. But
this is usually a fast operation.

We use the MRT in chapter 10.2.2 to identify objects under the mouse pointer.
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Figure 8.2: This work benefits only from the Depth buffer and Blending stage[SA10, p. 195].

8.6 Per-Sample Operations

After the fragment shader finishes execution, a series of fixed function operations
combine the fragments into a final pixel color. Figure 8.2 shows the path of this final
stage. While most of these functions are disabled by default the remaining do not need
to be configured to work probably. We take a closer look at Depth test and Blending
only.

8.6.1 Depth Test

The depth test discards fragments depending on their distance, a test function and a
value stored in the depth buffer. An incomming fragment’s distance is tested against
the distance stored in the depth buffer. That means the depth buffer has the same
geometry as the near plane. If the test fails, the fragment is discared and not processed
further. In case of a positive outcome, the fragment passes and is processed by the
subsequent function blocks. Furtheremore, the depth buffer is updated with the distance
from the fragment just processed. How the test is performed, can be determined with
the glDepthFunc. Possible comparing operations are: NEVER, ALWAYS, LESS,
LEQUAL (<=), EQUAL, GREATER, GEQUAL and NOTEQUAL.

When a new frame is rendered, the depth buffer should be cleared by setting a default
value through the function glClearDepth. The default value depends on the function
used for comparison.

8.6.2 Blending

Blending combines the color of incoming fragments with either the color already stored
in the framebuffer or a constant value. Afterwards the resulting color is stores back into
the framebuffer. The general idea can be expressed as equation:

C = EQS( f ragmentcolor) + EQD( f ramebu f f ercolor)

. While EQS as source equation and EQD as destination equation and C as the color
stored back into the buffer. OpenGL offers a huge amount of equations to control the
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influence of each of the color channels. Our goal are transparent objects, so that a
SCXML state does not necessarily occlude another widget. According to OpenGL[SG06]

this is best achieved by choosing for EQS GL_SRC_ALPHA and for the destination
GL_ONE_MINUS_SRC_ALPHA). Further discussion about these equations is
beyond the scope of this text.

The above blending equation is not commutative. As a consequence, changing the
drawing order of superimposing objects ends in different color values, hence appear
different on the screen. To avoid this affect the drawn objects can be sorted in z direction,
starting with the farthest object away, cp. [AMHH08, p. 136].

8.6.3 Transform feedback

Transform feedback[MF12] TF as a technique to store the output of a VS or GS in a buffer
and feed it back as input in a subsequent draw call. We experimented with TF for all
kind of calculations but finally abandoned its usage because it does not support the usage
of user-defined structures; data has to be provided in textures. That makes it hard when
restructuring the code over and over again.

One interesting observation is that when using TF, the GS can not overwrite the output
primitive, because the TF expects the output primitive given from the draw call.



Chapter 9

Design

In chapter 1 we reason for a new approach to design software by using state machines.
We argued that the developing of state machines can be enhanced by laying out the
statecharts in a 3-dimensional room, so that developers learn easier the logic behind the
state machine.

Laying out states demands a new design and handling for the elements SCXML
provides. But furthermore, menus and icons are needed to manipulate and steer the
system.

This chapter is devoted to this topic.

9.0.1 Floating and stationary states

To facilitate the further discussion, we introduce the notion of floating and stationary
states. Compound-states as well as parallel-states are considered as floating states.
That is because these states enclose a volume, defined by their children as well as
their SCXML-id. Nevertheless, the volume is rendered as a 2-dimensional polygon,
as we define in chapter 9.0.7. Atomic-states and pseudo-states are collectively named
stationary states. Their size is fixated in global space and does change when the point
of view does. While they are rendered 2-dimensional too, they do not depend on
underlying states. We discuss these states in chapter 9.0.6.

9.0.2 Anchors

Anchors are specific locations where two objects touch each other. Assuming a
transitions, for example, connecting a source state with a destination states. From
a graphical point of view, the transitions has two anchor points, one on each state’s
hull. We name these anchors graphical anchors (GA), describing a specific position
on a graphical representation. Occasionally, we want to refer, event when discussing

78
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graphical matters, to a relation between transition and a state where the GA is of no
concern. In that case, we speak from logical anchors (LA), refering to the fact that a
transition is connected to a state. By using the notion LA, we free our minds from the
idea if the transition is embarking from a state or if it is targeting the state.

9.0.3 Label

several attributes:
id: <state>, <parallel>, <event>, ..
type: <send>, <invoke>, ..
name: <param>, ..
expr: <param>, ..
location: <param>, ..
target: <transition>, ..
event: <transition>, ..

A very elementary item is the label. It shows one short line
of text, mostly a single word. The intended use is to display
user-changable SCXML-attributes like id of states or events
of transitions. The label itself is not clickable and has no
background color. It’s position is updated, either by the layout
algorithm or in conjunction with other objects. For example,
when the user relocates a state or the camera is moved.

Labels are mainly implemented through the text_3d library explained in section 10.5.2.
That is because the library displays text in 3D space, yet screen aligned to ensure
legibility, as we argue in chapter 3.3. Because text_3d can only handle single lined
text, executable content, which expands usually over several lines, is not visualized
through the label. Widgets containing executable content hark back to Qt’s internal
widgets.

9.0.4 Menu

several attributes
Context menu: depends on
underlying object.
General menu: none.

Like most GUIs, we provide a menu to give the user easy
access to actions. It can be partitioned into three categories
or modes. The first category, the general menu, handles
the options: Load, Save, New, Preferences and Simulator,
see figure 9.1a. Load, Save and New are file related and self explanatory. The
Preference option opens a dialog to adjust some settings, for example movement
speed or the FOV. The simulator option activates the debugger menu. The debugger
menu, shown in figure 9.1b allows to interprete a state machine and contains the
options: ShowEventList, Start (arrow right), Exit and Stop (arrow left). With the option
ShowEventList the the window in figure 9.1c can be toggled. It lists such events, which
can be taken from the current configuration. Double clicking an entry sends the event
to the state machine. The third category, the context menu, offers actions to manipulate
the underlying object, like adding a transition or changing an attribute. These menus are
elaborated on the objects they influence.

The rounded menus in figure 9.11 are known as pie menu [Hop91]. They ensure faster
access than conventional menus by using less screen space.[Sam11]

Implementation details about the menu are elaborated in section 10.2.3.

1Icons are taken from the GNOME project (tango-icon-theme)[pro09]
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(a) The general menu with the
options: New, Simulator,
Preferences, Load, Save.1

(b) The debugger menu with the
options: ShowEventList, Start,

Exit, Stop1

(c) During debugging, a list of
such events, resulting, if occure,
in a state change are offered for

emission.

Figure 9.1: Menus are implemented as Pie chart menus. [Hop91]

9.0.5 Tooltip

Tooltips are shown for attributes which are likely not to be changed on a daily basis.
Neither are the information they display helpful or necessary to understand the state
machine’s essence. For example, version and name are attributes of <scxml> and serve
an administrative purpose. They do not influence the state machine. Nevertheless, these
information are important and must be presented and edited on the user’s demand.

A tooltip is shown temporarly when the mouse hovers over an object. When click upon,
its content can be changed. The places where tooltips are used is mentioned in the
sections below.

9.0.6 Stationary states

Final state

<final>
tags: attributes:
<onentry> id
<onexit>
<donedata>

Figure 9.2: Final state icon.

A final state signifies the end of a parallel’s region or the
end of the state machine. We searched the internet for the
keywords end icon and final icon to see what kind of symbols
are connected to such a state. Regarding to our findings we
designed figure 9.2, a dart like icon. The three triangles reflect
the presents (or non-present) of the three children tags. With
<donedata> being the one directing to the bottom, <onentry>
the one towards the middle and <onexit> the triangle directed
to the right. A brighter filled drawn triangle (like donedata)
indicates the present of content, while a darker holey triangle
(remaining triangles) shows that a tag is not present.

Atomic state
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<state>
as atomic

tags: attributes:
<onentry> id
<onexit>
<datamodel>
<invoke>

The common representation in 2D editoris for states is a box,
or a box with rounded corners. To build hierarchies, boxes are
placed into each other. Figure 9.3 shows a parallel state with
atomic states and an hierarchical state in a ecplipse plugin to
edit state charts. Our approach in Blender, see section 6.3,
exhibits a state as ellipse. There are three reasons to consider
an ellipse rather than rectangle or rounded rectangles.

First, an ellipse can be expressed in a mathematical function. That way there are no
edge cases, like rounded corners to consider when calculating GAs (graphical anchors).
The second reason to draw ellipses rather than rectangles is the adaption of the GA
during the movement of the user. This is different in 2D applications where the
routing for transitions is done once and only adapted when the user edits the chart.

Figure 9.3: Yakindu, a state chart editor, draws states
in rounded rectangles. [AG15]

Imagine a user moves and all GAs are adapted be-
cause of the billboarding. That makes it possible
that a GA is recalculated and wanders around the
hull. Assuming rectangles are used to represent
states, then a GA could halt on an edge of a rect-
angle for some time. Such an abrupt upholding
may irritate an observer, tricking him into think-
ing something went wrong. Considering the same
movement of the GA around an ellipsoid, does not
solve the problem entirely, because the object trig-
gering the GA’s recalculation has a larger circle
than the ellipsoid, which means that several posi-
tions of the triggering GA are mapped to a single

position on the recalculated GA. Nevertheless, with an ellipsoid the effect is diminishes.
The last reason is that rounded objects look more pleasing to the human eye.

Figure 9.4: First mock-up of a
state. The circled arrow signifies a

transition to itself.

Figure 9.4 shows the first mock-up. We tried in the initial
design phase to make the state as expressive as possible and
reduce objects which can break homogeneity. Transitions,
which loops to the same state are such elements, since they
are not drawn away from the state, but turn quickly and return
to the source. The red circle indicates there is a transition loop without occupying the
space around the state. Neverthelss, such an indicator has some downsides. First of all, it
breaks the notation that transitions, no matter what kind, leave the state, which is a think
what developers would simply expect. Secondly, there is no space for displaying the
triggering event label. This could be indicated by adding a simple point in the middle
of the loop-indicator, which is still not the same as having the event label displayed.
Another point is that it might be easily overlooked, especially when the state is farther
away. We do not pursue this notation.

In chapter 10.4.1, is the atomic state’s evolution and its final presentation dis-
cussed.
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Figure 9.5: Dialog to edit source tags for atomic states as well as compound states.

Pseudo states

<initial>, initial=""
tags: attributes:
<transition> id

<history>
tags: attributes:
<transition> type, id

Figure 9.6: Icons for history
state (l) and initial state (r).

Initial state The initial state is drawn as a circle with an I
in it, see figure 9.6 to the right. Every compound state has
an initial state, as discussed in section 9.0.7. We do not
differentiate between an <initial>-tag element and an initial-
attribute of a <state>. Both are drawn the same way. There
are no further options.

Implementation details are listed in section 10.4.1.

History state History states are drawn as circle too, but with
an H in it, as illustrated in figure 9.6 on the left side. While
the default type (shallow) is not explicitly indicated, it can be
changed through the tooltip facility to deep. This prints the word "deep" below the icon
and ensures that the icon is distinguishable from other icons and from its default setting,
even at a greater distance. We considered to negate the icon or to put an asterisk on its
top right corner, like its original visualization in figure 2.4 on page 12. But showing
the type is not just easier to differentiate, it also reminds the developer what this option
actually means in contrast to an asterisk.

Implementation details are listed in section 10.4.1.
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9.0.7 Floating states

Compound states

<state>
as atomic

atttributes:
initial id
tags:
<onentry> <onexit>
<datamodel> <invoke>
<transition> <initial>
<state> <parallel>
<final> <history>

Figure 9.7: Context menu to edit a
compound state.

Displaying compound states in 3 dimenions is not completely
solved yet. We discuss on the hand of the illustration in
figure 9.8 the trouble of the subject. Figure 10.9 shows
3 overlapping compound state mockups, each drawn with
transparent background in a different color. One have to admit
that looking at the picture, no advantage of a 3rd dimension
can be experienced. The transparent colors, marking the space
around a compound state, do rather disturb the recognition
of the structure. Furthermore, the transition from State 1 to
State 2 is hard to recognize too. In figure 9.8b an image,
rendered in Blender, is shown. There are also three compound
states, which contain the following states: {State 2}, {State 3,
State 3b}, {State 4} (barely visible). Each compound state
is enclosed in a colored glass box, while atomic states are
light emitting objects. Again, one has to admit, parsing of
this image is a cognitive challenge.

But there is a lot room for improvement. For example, the
emitting light can be adjusted depending on the objects distance to the camera, making
the appearance of the closer compound state clearer. Sibling compound states should
become equally visible if they not overlap, otherwise, the one in the back should be
tarnished.

(a) Three overlapping compound states. (b) Mockup of three compound states in Blender with
glass and light emitting material.

Figure 9.8: Mockups for compound states.

To edit a compound state it is equipped with a context menu illustrated in figure
9.7. Its icons represent the following options, starting with the blue triangle running
counter-clockwise: new transition, new history child-state, new parallel child-state, new
compound child-state, source editor for source tags (which is the same for atomic state,
see figure 9.5 on page 82), new final child-state, new child-atomic-state.
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In an SCXML-document, a compound state’s initial state is either the first child-state
in document order, referenced by an initial attribute or being targeted by the transition
of an initial tag. But in a graphical environment, a visualization is needed so that the
user can operate on it. For that reason we introduce in section 9.0.6 an initial state
icon, which is displayed independent on how the SCXML-document specifies the initial
state.

The transitions’ routing is discussed in section 9.0.8 and the label placement,
which names the superstate and is also the anchor for the menu, is presented in
section 9.0.7.

In chapter 10.4.2 we present the development of the compound state.

Parallel states

<parallel>
attributes: id
tags:
<onentry> <onexit>
<state> <parallel>
<datamodel> <invoke>

Parallel states are basically, closely cumulated compound
states. Imagine four SCXML regions drawn as 3-dimensional
boxes, side by side, each containing a nested compound state.
By now moving to the side of the cumulus and viewing to its
center, it is easy to recognize that distiction of single regions
becomes difficult, if not imposible, during exploration. From
here follows, that parallel states needs to have a more flexible handling.

One way, for example, is an arbitrary number of windows, which can be defined by the
user. A window contains a region of a parallel state and is billboarded screen aligned.
The user determines which regions are to be presented in what window. Furthermore, a
window is only a 2-dimensional plane, a viewport into the 3D space of the parallel state.
That way, a user can configure what to focus in a scalable way.

Unfortunately are our resources to sparse to investigate this topic further.

SCXML (root) state

<scxml>
tags: attributes:
<state> initial
<parallel> name
<final> xmlns
<datamodel> version
<script> datamodel

binding

The SCXML root tag is equivalent to a compound state and
streated therfore similar. Only the options in the menu and
edit dialog are adjusted.



85

Labels in composite states

Figure 9.9: Each element’s id should be visible at all times on the
screen, if the element is visible.

Positioning labels beloning to a compos-
ite state is a complex issue. Imagine a
nested composite state, which has sev-
eral children, also being composite states.
When one moves further into the first
state, then the label should still be visi-
ble all the time, without jumping around.
Furthermore, if composite state moves
closer to the border, the labels should not
leave the screen. Figure 9.9 shows some
example of intelligent label placement.
Considering the state in the middle of the
picture, marked 4). If the camera turns to
the right, then then label could be moved
smoothly, as indicated in 3), to the position 2); ensuring its visibility on the screen.
Unfortunately, there is also a catch. There is no smooth movement for the label from
position 2) to 1). We can either jump, or flip the label when it is in the middle of the
screen.

Figure 9.10: Fold a state
by pressing the icon.

To save space, composite states can be folded, so that all children
disappear and only a place-holder-state stays back to represent
the composite state. This is named folding and discussed in
section 9.0.7. It is triggered by pressing the icon besides the label,
see figure 9.10.

Folding

Figure 9.11: A folded composite state.

Folding is a typical concept for hierarchical organzied items
to save screen space by hiding descendent elements of a
superelement. When a composite object is folded, then
not only all descending states have to be set to inivisible,
also there transitions have to be re-routed. And not just
the outgoing transitions, also the incoming transitions. The
opposite operation, unfolding, opens all descending composite states and re-route
transitions according to the SCXML-document. Because we expect that a folded state
has more transitions, we reserve more space for state, see figure 9.11. Also, the state
is equipped with a button for the unfold action, while the button for the fold action is
presented in section 9.0.7.
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9.0.8 Transitions

<transition>
attributes:
event[n], cond, type

SCXML’s transitions can become very complex elements.
One transition may have numerous targets, triggered by an
arbitrary number of events which may depend on a conditional
attribute. That not enough, transitions are also typed as either
internal or external and may carry executable content. The complete logical background
is given in 2.4.5.

For a first implementation, we make some limitations. Because several events are
separated by a comma in the SCXML standard, we consider here a single line to
display events only. That leaves the burdern to differentiate between events by the
user. Furthermore, we ignore multi-targeting, which eases the routing problem. The
remainings are an informative field for event-id, condition and type as well as a
single line connecting the two states, whith its direction indicated on one end with an
arrow.

Figure 9.12: Left: internal, parent’s exit hander is not
called - Right: external, parent’s exit hander called.

Showing the executable content constantly would
fill the screen in a rather impractical manner.
Hiding the content without any indication of
its existence on the other hand, would reduce
readability of the graph. One would need to
open the transitions’s code, in whatever manner,
only to find out there is none. Therefore an
indicator to mark the present of a condition as
well as accessor to the editing window is added.
We considered several indicators: the transitions
color, an additional icon (maybe an asterisk in
front of the event label), the transitions stroke

style (thickness, dotted, segmented, etc...), a different start/end marker or an indicator
on mouse hover. Currently, we ignore the executable content.

Figure 9.12 gives an example how internal and external transitions can be represented
visually. This information is currently ignored.

The implementation of transitions is discussed in chapter 10.4.3.

9.0.9 User Navigation

Moving in 3-dimensional space comes with a great level of freedom. We use the
standard control capacities. That is, the keyboard is used for translational movement
like forward (w), backward (s), upwards (e), left (d), while the mouse, if its left button
is pressed while hovering over the background, rotates the view around the x-axes as
well as the y-axes. We name the state without a button pressed pointing mode and the
state where the mouse button is pressed and rotation occurs explore-mode.
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Figure 9.13: Two orthogonal states handle user input. Mouse input is controlled to the right, while keyboard is reflected on the left.

Because the subject changed frequently during development, we state in figure 9.13 our
last preference. There are two orthogonal regions, the mouse handling on the left side
and the keyboard handling on the right side. Toggling the left mouse button switches
between explore and pointing mode, which are both expressed as compound states.
When the user starts editing a state via double-clicking a state-label, camera translation
is deactivated (right region). This prevents abrupt camera translation whenever a keys
is pressed that belongs to the set of movement-keys and to the new object identifier.
Pressing the RETURN key frees the camera translation again, while also the edit state
is left.

Arcball

Initially in this subsection we stated that the mouse movement is projected into camera
rotations around its local x/y-axis. The Arcball[Sho91] input method calculates from the
distance travelled by the mouse pointer a third rotation, which can be used to rotate
around the z-axes. The idea is to project the start point and the end point onto a sphere.
Afterwards, two vectors, starting at the sphere’s origing and ending at the end/start point
can be calculated. The angle inbetween represents a rotation around an axes running
through the sphere’s origin, perpendicular to a plane consisting of the three points: start-
point, end-point and the sphere’s origin.

Usually, the arcball technique is used to rotate objects, which are observed and presented
in 3D space. We experimented with the arcball by setting the sphere in the middle of
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the screen, making the camera the origin of the sphere. When the camera was adjusted
according to the rotation of the sphere, we were rather confused because there were
no visual anchor points. That made it hard to understand the rotation occuring. The
experience was surly influenced by the states, which billboarded to the camera.

3D Mouse

A 3D mouse is an input device created for faster navigation and handling of
objects presented in 3-dimensional space. It allows to: pan (left/right, up/dow,
forward/backward), tilt, spin and roll.

We connect such a device in chapter 10.3.2.

Camera rotation

We experienced the camera rotating around the line of view when using the 3D mouse,
the arcball technique and throught the page up/down keys. This kind of rotation brings
more confusion than benefits at this point of development. For that reason the camera
rotation around the z-axes has been disabled.



Chapter 10

Implementation in C++

In the previous chapter we gave some ideas on how widgets can be displayed in a 3D
enviroment and how the user can explore this environment. In this chapter, we argue
first for the choice using Qt and show subsequently our attemts to fullfil our priviously
defined objects.

10.1 Introduction

Nowadays are many programing languages with powerful development tools available.
A complete analysis of what development environment is the right choice for a specific
project is probably impossible for non-trivial challenges. Nevertheless, it is still a good
idea to argue for the choice one makes. Our choice for using Qt is justified through the
following arguments:

• Qt offers native support to read and parse XML files. Although, we evolve some
objections of Qt’s new way of handling XML, as argumented in chapter 10.5.1.

• A module in Qt[Com16c] provides C++ classes to construct state machines explicitly
based on SCXML. Unfortunately, support was halted while SCXML was still
envolving, leading to a gap between SCXML and Qt’s state machine. We
discovered this discrepancy during development and switched to the library
uscxml. To prevent the editor from being to strong attached to uscxml, we created
a wrapper library scxmlInterpreterManager, which can handle several instances
of different state machines. Section 10.5.4 outlines this library. Nevertheless,
since SCXML became a recommendation1 Qt resumed developing their SCXML
implementation and have an up to date version in Qt 5.7.

• Qt’s qt-creator is an extensible IDE with standard functionality like file handling,
document handling, window management, mine-type recognition, etc.

1SCXML is developed by a group inside the W3C consortium, which gives the property recommendation
to standards worth deploying.
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• Qt has built-in support for OpenGL. We learned that the support is incomplete.
A wrapper library, helper_gl, encapsulates therefore some functionality needed.
Section 10.5.3 describes the details.

Besides these facts, Qt is a well known framework, which is used in industry and in a
huge number of open source projects since a quarter of a century.

10.2 Navigation and Interaction

10.2.1 Frustum determination

The frustum is the basis for the projection matrix PM and is described in chapter 3.1.
Its defining parameters are field of view, near/far plane as well as aspect ratio.

The general approach is to use the window’s dimension to define the right and top plane.
Based on the fact that the width and hight in NDC is 2, one may find that something
between 4 and 8 is a reasonable distance from near plane to far plane, depending on how
much space one wants to capture in view direction. The distance, camera to near plane,
depends on how huge an object shall be allowed to appear. Textures, displayed with a
distance of 1 and no zooming or scaling, appear in their original size. Choosing a near
plane smaller 1 allow textures appear larger, while higher values for the near plane will
deminish the maximal size. Before we determine concrete values for the PM, we take a
step back and contemplate the objects to display.

Pie menus, as discussed in chapter 9.0.4, are rendered in a constant distance to the
camera and are therefore not affected by perspective projection. Context menus, relating
to floating states, are not affected by the PM either because they are also drawn fixed
distanced.The handling of context menus belonging to stationary states is different.
Here, the menu becomes part of the state, see chapter 9.0.6. Nevertheless, the menu
drawn depends on the rendered state, which makes it only indirect affected by the PM.
Transitions are drawn out of gradient textures and an arrow head as end-marker at the
transition’s destination. Since the curve for the transitions is calculated inside a GS out
of supporting points, a normal is needed to calculate a rectangle to catch the gradient
and arrow head, see chapter 9.0.8. Because these calculations are performed in screen
space, the aspect ratio must be known to determine the normal. All remaining object
types are devided into floating and stationary states. And since floating states depend
on stationary states, see chapter 9.0.1, we conclude that we just have to consider those
together with the transition when specifying the PM.

Stationary states depend on text. Text has a fixed size, measured in pixels. In chapter
10.5.2 we argue for rendering text by a GS directly in screen space, instead of having
vertices in global space, transforming them into screen coordinates. If we consider the
general approach, we can encounter ill-favoured side effects.

Assuming a PM with the procedure described above and the viewport is set equivalent
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to the window’s size. When the space is filled with states, their positions are determined
in global space, while their dimensions are always calculated in screen space. If the
window is resized, and with it the view frustum, which eventually updates the PM, then
the states are moved either horizontally or vertically. That is, because the aspect ration
changes, which is not reflected in the actual size of the text object. We could pass the
changes to the text objects. But that would resize the objects, an affect we would rather
avoid.

Furthermore, changing the aspect ration, must also be reflected whenever a normal is in
screen space. That is the case for each transition and especially for their arrows.

A simple solution is to have a fixed quadratic projection plane, big enough to capture
the larges possible window size. That way the aspect ratio in always constant to 1. The
downside of the method is, that the centroid of the projection plane is not the centroid
of the actual window. But glViewport takes a parameter to set an offset, which aligns
the projection plane’s centroid with the centroid of the window.

10.2.2 Object picking

Object picking, mouse picking or just picking is the procedure to discover which objects
reside under the mouse cursor’s position. Since OpenGL is not aware of input devices,
it is the application’s responsibility to map the mouse position to the underlying objects.
Nevertheless, OpenGL can assist by delivering the depth and color value of a specific
window coordinate. The mouse pointer’s coordinate is retrieved from the windowing
system.

After a short presentation of common picking procedures, we argue for the procedure
we have chosen in respect of a list of requirements.

The following three methods are well known and postulated on websites and
literature:

• The depth buffer[Mov13, p. 72] method evaluates the distance between the camera
and the object to detect. The first step is therefore to retrieve the depth value of
the pixel under the mouse cursor’s position. A depth of 0 indicates an object on
the near plane’s position while 1 signifies that there is no object under the pointer.
A value inbetween forms in conjunction with the window coordinates a triple that
can be unprojected to world coordinates. The object in question is the one with
the smallest distance to the calculated position.

• Specifying objects through a unique color[Mov13, p. 74] is another possibility to
reveal an object located at the mouse pointer’s position. The main idea is to
assign each object a unique color value and render the scene into an off-screen
buffer where each object is drawn with its unique color. Reading out the color
under the pointer’s position leads then to the desired object. The background
color represents the absence of an underlying object.



92

• ray casting[Mov13, p. 76][Ger15] is a solely mathematical way that does not include
any interactions with OpenGL. The cursor’s window coordinates are transformed
twice into world space, resulting in two points P0 with z = 0 and P1 with z = 1.
With these points a ray V = P1 − P0 is formed; connecting the near plane with
the far plane. All drawn objects intersecting that ray are then collected in a list as
candidates. The candidate closest to the near plane is the object in question.

To choose a proper method for our application we assemble a list of requirements:

1. As accurate as possible. Activating the wrong object on mouse click reduces user
satisfactory parlously.

2. Single object detection. It is sufficient if only the closest object to the camera can
be detected.2

3. Reasonable fast. We want to highlight elements when the mouse hovers over it.
Object picking is therefore triggered on mouse movement and not only on mouse
clicks.

4. We want to identify specific regions of objects. For example, a compound state
can be moved or unfolded depending where on the state the mouse click occurs.

Assessing the presented algorithms is done with these pickable objects in mind: text-
based objects (states, event labels, etc.), transitions (start point, target point and the line
inbetween) and a Pie menu (pieces of pie must be differentiated). Also, the Pie menu is
drawn at fixed distance.

Analysing each algorithm leads to the following observation:

• The depth buffer algorithm’s accuracy relies highly on the depth buffer’s
precisition and on the distance between the near and far plane. Nowadays, depth
buffers have a 32 bit precisition, which seems to be enough for our purpose.
Therefore, requirement items 1 and 2 are not of any concern. But, having the
global position of the object, does not allow fast identification of the object’s
section the click occured upon. To find this section, one must map the coordinate
to an object’s local space. We rate items 3 and 4 as medium fulfilled. Item 3,
because there are calculations to do on every mouse move and item 4, which
is just evaluated on an actual mouse click, because the calculations have to be
adapted for each object.

• Identifying objects by there color values makes it necessary to render each object
in a unique color into an off-screen buffer. OpenGL supports off-screen rendering,
named MRT, as introduced in 8.5.3. For item 4 we can argue that each objects
region has to be identified and drawn differently, no matter if the item is clicked
or not. That is some extra work.

• The ray casting method has the same evaluation as the depth buffer method,
because the calculations are identical, only the way the object is identified differ.

2Inkscape, for example, offers the selection of hidden items on layers.
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We conclude that the color picking method is the right choice for the application. Setting
up the drawing of the objects’ interactive sections can easily be done because all sections
have either a mathematical description or are drawn separate anyway. The Pie menu
in chapter 9.0.4, for example, is a disk where its sections can be determined by an
angle.

10.2.3 Main and debug menu

Figure 10.1: Pie menu, with mouse pointer hovering
over the debug icon.

This section describes the implementation of the
Pie menu introduced in section 9.0.4. Figure 10.1
shows the main menu, whith the mouse pointer
hovering over the debug icon, which is bleached
out to emphasize the option to be selected. While
the menu appears when the mouse button is
clicked, the underlying action is triggered when
the button is released. No action is taken when
the button is released in the center of the menu or
beyond the blue circle.

The pie menus presented, can be divided into
equally sized regions; each region containing an icon, representing an option. We have
two pie menus with a different number of regions. The main menu has 5 regions while
the debugging menu has 4.

A shader program ActionDisplayMenu takes several parameter as input to behave
according to the menu is represents. The icon id is used to present either the bitmap
of the main menu or the debugging menu. This id is retrieved throught the text_3d
library, which stores identifiers representing bitmaps, see chapter 10.5.2 and chapter
10.5.6 for more details. To display the menu, the location and the menu’s size in pixel
is to be defined. For the interaction, like emphasizing the menu hovered by the mouse
pointer, we need to identify each region. This can be achieved by 4 further parameters;
one specifies an offset where the first region starts, another specifies the amount of the
equally sized regions the menu has, while the other two are the radii of the inner and
outer circle. Now, only the current position of the mouse pointer is missing. It can be
retrieved by the global shader, which is discussed in chapter 10.5.6.

To find the item hovered by the mouse pointer, so that it can be enlightened, a clever
interaction between geoemtry shader and fragment shader is necessary. The prinicipal
idea is that those fragments, belonging to the icon in question are recognized in the FS
and their color treated differently.

To achieve this, the GS issues in addition to the quad, 4 user-defined varyings, specifying
a square with the values (1, 1) and (-1, -1), for the left bottom and right top corner,
respectively. This defines a coordinate system with its origin at the quad’s centroid.
The mouse pointer’s position lies somewhere inside that coordinate system, even if it
is outside the quad. By calculating its angle towards the ordinate, and by having the
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number of icons and the offset of the first icon at hand, each FS instance can easily
identify if it is part of the section, covered by the icon underneath the mouse pointer.
Because radii are also past to the FS, each instance can check, if the mouse pointer is
outside the circle, or in the middle circle.

In addition to color the icon, the FS also determines the picking-color. That makes it
easy for the system to determine which option (if one) was select when the mouse button
is released. Section 10.3.2 discusses how mouse clicks are processed and section 10.2.2
for a discussion about object picking.

An alternative way to identify regions would be a different usage of alpha values per
region. Depending on that alpha value, each FS instance could take the apropriate
actions (highlight or not). Obviously, the alpha values would not be passed as color
value, but very much as picking-color. This method has a performance advantage
because it does not calculate as much as our implementation. But performance is of
lesser concern here, because there is only one menu and mouse pointer at a time.3

The advantage our method is that we do not have to deal with alpha values in the
bitmap.

10.3 Architecture

The principal architecture of the plugin is illustrated in figure 10.2. There is the Qt-
plugin, which is separated into two section. Section 10.3.1 describes how the plugin
is integrated into qt-creater, while section 10.3.2 documents the main plugin, handling
OpenGL, SCXML, etc.

The four libraries, libtext_3d (visualize text with OpenGL), libhelper_gl (encapsulating
OpenGL function for Qt), libscxmlParser (parses SCXML to generate application
defined objects) and libscxmlManager (provides access to an SCXML interpreter) are
described in the modul section 10.5.

Figure 10.2: Library used/written for in this project.

Figure 10.2 illustrates also a raw workflow. The libscxmlParser reads in a SCXML

3Even with two mice, which crossed our minds, is there still no performance issue.
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document, which is then passed to the plugin (stateroom editor). The editor displays the
statroom and manages the changes applied by the user. Furthermore, the stateroom can
pass a serialized version to the libscxmlManager, which then manages the interpretation
done by the external component libuscxml. The configuration of liuscxml is displayed
graphically from the editor, while the editor can send events to the interpreter. We
discuss this in detail in chapter 11. Serializing the stateroom into an SCXML document
is elaborated in section 10.5.5.

The remaining part of this chapter describes the aforementioned overview in de-
tails.

10.3.1 Qt plugin

Most development for Qt is done in either Eclipse or qt-creator. The plugin system for
qt-creator is powerful and allows to take control of a huge part of the IDE. For example,
the core elements, TextEditor as well as the Designer, are implemented as plugin.

For this project we use qt-creator, downloaded from github[Com16b], the version taged
with v3.3.0. The qt-creator API changes frequently, which makes it necessary to adapt
the plugin for higher versions. Although, API changes are not that complicated. But for
qt-creator version 4.0, at least Qt version 5.6 is needed, which in turn, does not work
with qt-creator version 3.3.

Unfortunately, the plugin system for qt-creator is not well documented. A small
tutorial[Com15] helps to get started, but does not show, how to get access to the main
screen and implement a new editor.

We took the plugin BinEditor as template since it is much simpler then the TextEditor,
but offers almost the features we need for our plugin.4 Figure 10.3 shows the reverse
engineered logic and the gate to the stateroom editor. Green boxes represent qt-
creator classes (top line) derived for our purposes (bottom line). Dotted lines are event,
triggering a function on its receiver, while solit lines signify relations between classes.
The three columns express the domains, qt-creator core on the left, derived classes
controled by qt-creator in the middle and the stateroom editor on the right. For the
sake of visibility, only a single use case (opening a file) is depicted in the figure, which
we examine next.

When qt-creator starts, all plugins register them self through the class ExtensionSys-
tem::IPlugin which in turn registers a factory Core::IEditorFactor::IEditorFactory
to instanciate the plugin, which is derived from Core:IEditor. During registration, the
plugin manifests the filename extension it can open. For the stateroom editor, this is
scxml as well as SCXML. If a file is loaded with a matching ending, then qt-creator
sends a "plugin needed" to the factory (StateRoomEditorFactory). During this call,
the plugin can decide if an already existing instance of the editor shall handle the new

4The plain qt-creator plugin, on which our application builts upon has the hash:
015d4c21474945be234285acdf7c628b61b53118 in our git repository.
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Figure 10.3: This chart shows the reverse engineered architect of a Qt creator plugin.

file, or if a new editor is instanciated. At the current implementation, a new editor
is created every time a file is loaded. After creation, the editor’s (StateRoomEditor)
open function is called with the filename as argument. StateRoomEditor opens the
scxml-file and passes it to libscxmlParser, where it is parsed and the corresponding
StateRoom returned. StateRoom contains all objects for the 3D representation, while
the SCXML-file is stored in the StateRoomDocument.

The library libscxmlParser is discuss in chapter 10.5.1 while the GraphicObjectMan-
ager is part of the editor discussed in chapter 10.3.2.

This stateroom is subsequently passed to GraphicObjectManager.
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10.3.2 stateroom editor plugin

The core of the plugin is illustrated in figure 10.4. The class UserInputController (left
upper part) receives all user input; like mouse movement and key press’. It also reads
the color below the mouse pointer whenever it moves.

Figure 10.4: The core of the plugin, managing the staterooms.

3D Mouse

Under linux, 3D mice are widely controlled by separate daemons. In our case, the
daemon spacenavd[Tsi16] manages the communication with the device and offers the
information on a local socket. The stateroom-editor handles a connection to that socket
in the class SpaceNavWrapper (SNW). Whenever a data package arrives from the
driver, SNW decodes it and fills an object with the rotation and translation data for each
axis. This objects is then passed to the UserInputController where it is applied to the
cameras position and orientation.
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10.4 Modeling SCXML Elements

10.4.1 Stationary States

We proposed in chapter 9.0.6 an ellipse as the visuall representation for an atomic state.
But unfortunately, ellipses come with a problem. They cannot not be stretched arbitrary
in length to keep the rectangle large enough as background for the text without having a
huge overhang on the sides. Stretching the ellipse in Y-direction would help to maintain
the rectangle’s size, but results in an overhang in Y-direction too. The superellipse [Ago05,

p. 463] eases these symptoms by making a compromise between an ellipse and rectangle.
It is calculated by the formula 10.1.

∣∣∣x
a

∣∣∣m +
∣∣∣ y
n

∣∣∣m = 1, m ≥ 0 (10.1)

Figure 10.5 shows the final atomic state. In subfigure b) the menu, appearing when the
mouse hovers over quadrant I of the ellipse, is shown. It offers buttons to manipulate
atomic states in the scope of SCXML. A window to edit the entry/exit handler, the
datamodel and the invoker is poped up when d, i or one of the green arrows is pressed.
The separated indicators inform if a script is present for that function. For example, the
figure indicates the absences of an entry handler but the presents of an exit handler. With
the yellow arrow head a new transition can be created. It makes the menu vanish while
a transition appears, following the mouse until the button is released. This is discussed
further in the section about transitions 9.0.8. The e in the menu for an extended menu
to promote a state into a compound or parallel state.

(a) Atomic state with the menu
deactivated.

(b) Menu options: edit, datamodel, invoker,
entry/exit hander and add transition.

Figure 10.5: The atomic state drawn as superellipse. The menu in b) appears on mouse hovering.

Developing the final state took a couple if iterations. A selection is presented
below.

Iteration 1

Our first idea is to implementat an infrastructure that can load objects from Blender.
Such a facility would free ourself from the burden of managing objects on a vertex level
basis.

The C++ assimp[Tea15] library facilitates importing scenes generated in Blender. We
load a scene we constructed in the Blender experiment. It consisted of the state only
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(see figure 6.5a on page 55). Unfortunately, we could not find a way to use the meshes
in a more controlled fashion. For example, there is no function reporting the size of an
object or how it can be modified.

Using assimp and loading its meshes, would not free us from managing objects on a
vertex level basis. Furthermore, using it would add complexity, because the meshes are
organized in a hierarchy.

Iteration 2

Figure 10.6: The ellipse
formed by vertices to
draw it as triangle fan.

In the second approach, we calculate the vertices for the ellipse
ourself. Figure 10.6 shows the ellipse-model rendered with
the draw mode GL_POINTS. To render several instances of the
ellipse-model, we use the draw mode glDrawArraysInstanced.
The glVertexAttribDivisor is used to pass each model-instance its
corresponding model-view-projection matrix (MVP). That way,
each instance is transfromed in the VS stage according to the
location and orientation stored in its MVP.

The implementation has basically two buffers, A and B. Buffer A contains the vertices
for the ellipse, while buffer B is filled with MVP matrices. Each time a new ellipse is
needed, only an MVP has to be appendend.

In this iteration, no menu is implemented. Ellipses can be picked and repositioned.
Identified is an ellipse through the color picking method, described in section
10.2.2.

But we are not satisfied with this solution. Because the ellipse is the background for
a state, which has text of different length, it should be stretched to cover the whole
area behind the text. But an ellipse cannot arbitrarily stretched in X-direction without
becoming sharpend at the ends. Furthermore, the billboarding of a screen aligned object
is unnecessary, as we discuss in 10.5.2. This is not a real problem, but it is a flaw.

Iteration 3

To prevent an ellipse from becoming unesthetic sharpend, we divide the ellipse in three
parts.5 The central part, see figure 10.7, can then stretched to cover the background of
the text, while the side parts are repositioned accordingly.

The GS drawing the ellipse, renders 3 quads (left, mid, right), appearing as one objects.
Two textures are used to show the vertical gradient. The texture to the right is mirrored
from the left.

This method gives us the opportunity to draw different picking colors for the quads. We
attached the folding feature, discussed in 9.0.7 for compound states to the right quad.

5Strictly speaking, the shape lost the privilege of being called an ellipse.
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Whenever this quad is clicked, and the state reflects a compound state, all child state’s
visibiliy is toggled and their transitions re-routed.

Unfortunately is this three-parted ellipse not free from drawbacks. The graphical
anchor (GA) does rely on the texture forming the state’s body, making their calculation
intricated.

Figure 10.7: Elliptical state drawn out of a three-parted texture.

Iteration 4

Figure 10.8: Ellipsoid draw with the
Catmull Rom algorithm; 4 support

points are used.

Considering the difficulty to calculate GAs for inhomoge-
nous drawn objects, an obvious solution is to draw states
with a single function. We experimented with the Catmull
Rom[Twi03] (CR) algorithm, using the 4 outer vertices of the
text as control points. A state drawn with CR is illutrated
in figure 10.8.

Unfortunately, if the state name becomes longer, the upper and lower deviation becomes
much bigger. Practically, the sharpening effect we observed for ellipses, only that is
occurs this time in the vertical direction.
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10.4.2 Floating States

Compound States

Figure 10.9: Two nested compound states.

In figure 10.9, a final render of two com-
pound states is illustrated. It is a con-
vex hull from all corner points of each
child state. The rubber ribbon is calcu-
lated by the GS, while the convex hull
is calculated with the boost geometry li-
brary[Geh+15]. Both calculations are per-
formed in screen space, making the thick-
ness of the ribbon constant.

The current implementation does render siblings equally. That means, if they are
positioned back-to-back, then they will not be recognized as siblings.

Iteration 1

To get a more eye-pleasing appearance for the compound state, we tried to use the
Catmull Rom algorithm and display the ribbon as curves instead of having the angular
ribbon in figure 10.9.

10.4.3 Transitions

Transitions are drawn with 5 support points and the Catumull Rom algorithm. Two
support points are the centroids of the states, independent wether it is a floating state or
a stationary state. The 3rd support point the position of the event. The other two support
points are the points on the peel of the source, respective target, state.

The calculation is performed in the GS stage. Figure 10.11 shows transitions without a
proper event set; making them all pass through point (0,0,0).

Because the transtions are drawn out of several rectangular segments, they have gaps,
as in figure 10.10, which are usually hard to observe.

Figure 10.10: Transitions are composed of single rectangles with gaps.
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Figure 10.11: No calculations for the transitions’ events occured.

Iteration I (GPU)

Figure 10.12: OpenGL’s internal
lines do not honour perspectivity.

As first implemention we tried GL’s built-in line primitive
GL_LINE. Figure 10.12 shows this kind of line connecting
two states. Each state has a different distance to the camera.
It is clearly visible that the line does not adapt it’s width
when approaching state S2, the one closer to the camera. All
attempts through GL’s API influencing the line’s appearing
failed. Calling glLineWidth with a value greater 1 resulted
in a GL_INVALID_VALUE error on both, NVIDIA and Intel hardware. OpenGL’s
specification states that at least for antialiased lines, widths other then 1 are optional[SA10,

ch. 3.5.2]. But no statement for none-antialiased lines were made. So we were encouraged
to construct lines out of triangles.
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10.5 Modules

10.5.1 scxmlParser

This section describes the scxmlParser. We omit the actual reading of separate elements
but discuss the main loop of the parser. Before we look into the details, we give a small
overview of its interface.

The parser’s interface consists of three classes and a free function. These three classes,
SMFactory, GenericState and GenericTransition, are inherited and implemented
by the client application. The derivatives in an application are modelled after there
disposition on the client side. In the stateroom-editor, for example, the class SMglState
(derived from GenericState) is designed to be modified and to be displayed in the
editor’s OpenGL environment. In a testing application, which we use to construct the
Qt state machine, a derivate of GenericState inherits also QState, making its usage in
a Qt state machine possible. Construction of objects like states and transitions occur
in a factory derived from SMFactory. The customized factory can then establish
connections between states and transitions as well as build up the hierarchy of states
or simply ignore unwanted functionality. The parsing process is started by calling the
free function buildStateMachine with an xml document and the customized factory.
The factory’s functions and these classes build the communication interface between
the parser and the application.

Since the Qt-internal state machine is buggy and its development stopped years before
the SCXML standard reached its Recommendation6 state, the latter was not pursued
until the end of this project.

Qt marked its XML dom parser as not actively maintained and recommends the usage of
QXmlStreamReader to parse XML files and QXmlStreamWriter to serialize XML
files. We follow Qt’s recommendation.

The parser expects a pristine SCXML file. While our extensions from chapter 2.5.5 are
recognized and honored, their absence do not harm. Furthermore, the parser expects
the aforementioned classes. So, all kind of states, including pseudo states, have to be
derived from GenericState, while transitions have to inherite GenericTransition.

The core function of the parser is illustrated in listing 10.1. Before discussing its content,
we give a note on the notation. Line 17 calls a function named create*Element with
identifiers for each state-tag in SCXML. The real source code has for each element a
separate function in a dedicated case-block corresponding to the SCXML-tag.

The parser’s core component is the function traverseScxmlStream, taking a stream-
reader stream, pointing to the SCXML document, as argument. Because the stream-
reader is unidirectional, moves forward whenever an item is read and can not access
any item in advance, no information can be accessed behind or in front of the stream.

6The W3C consortium marks it’s stable specification with Recommendation to emphasize its readiness.
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Therefore, two variables, line 4 and 7, are introduced to keep track of the parsing
process. There is the stack variable, which is a stack of type GenericStates. It holds
the predecessors while we climb down the XML tree. And there is the currentState
variable, pointing to the latest generated state object.

The traverseScxmlStream function is basically a loop, pulling tags from stream until
the end of the SCXML-document. Inside the loop is an if-statement, differentiating
between opening and closing tags. Both of the if-branches have a switch-statement with
blocks for SCXML tags.
t r a v e r s e S c x m l S t r e a m ( XmlStream s t r e a m ) {

2 / / To keep t r a c k o f t h e g e n e r a t i o n o r d e r o f s t a t e s , t h e y are pushed
/ / on to a s t a c k upon s t a r t−t a g and are poped on a c l o s i n g−t a g

4 s t a c k < G e n e r i c S t a t e > = S t a c k t o s t o r e s t a t e s
/ / The c u r r e n t s t a t e i s t h e s t a t e j u s t g e n e r a t e d . I t may be

6 / / e n r i c h e d w i t h e x e c u t a b l e c o n t e n t or become a compound s t a t e .
c u r r e n t S t a t e < G e n e r i c S t a t e > = NULL

8
whi le ( t a g = ge tNextTag ( ) )

10 i f t a g i s s t a r t −t a g

12 sw i t ch t a g
== " scxml " / / ana log " s t a t e " and " p a r a l l e l "

14 s t a c k . push ( c u r r e n S t a t e )
c u r r e n t S t a t e = c r e a t e [ S t a t e | Scxml | P a r a l l e l ] Element ( s r , c u r r e n t S t a t e )

16
== " i n i t i a l " / / anaog " f i n a l " , " h i s t o r y " and " t r a n s i t i o n "

18 c r e a t e [ I n i t i a l | F i n a l | H i s t o r y | T r a n s i t i o n ] Element ( s r , c u r r e n t S t a t e )

20 == " o n e x i t " / / ana log " o n e n t r y "
a b s o r b E x e c u t a b l e C o n t e n t ( s r , c u r r e n t S t a t e −>s c x m l S t a t e ( ) . onExi t , " o n e x i t " )

22
== " i nv ok e "

24 a b s o r b I n v o k e ( s r , c u r r e n t S t a t e −>s c x m l S t a t e ( ) . i n v o k e L i s t )

26 e l s e i f t a g i s end−t a g
== " scxml " / / ana log " s t a t e " and " p a r a l l e l "

28 f a c t o r y −>c l o s i n g [ Scxml | S t a t e ] ( c u r r e n t S t a t e )
c u r r e n t S t a t e = s t a c k . pop ( )

30
end sw i t ch

32 end i f
}

Listing 10.1: Main loop for object construction. After an SCXML snip is read in, control is passed to client application.

SCXML’s opening-tags are handled in the first if-branch (lines 12-24) and consist of
4 case-blocks. Whenever a new GenericState is needed, because an SCXML-state tag
is read, the first block (13-15) is entered. The currentState is pushed on the stack and
a corresponding create*Element-function is called. All create*Element-functions take
the currentState and the stream-reader stream as arguments. Possible attributes of a
state are then read from the stream-reader according to the called function. Each create-
function reads out all possible attributes belonging to the tag. These are then passes
together with the currentState to a corresponding function of the factory.

The factory, part of the application, can then create a GenericState-based-objects and
fill in the received attributes. It can also build-up the state-tree by using the currentState
as parent. Afterwards is the new created GenericState returned to the parser’s create-
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function, which in turn returns it further to the main loop. Here the GenericState
substitutes the currentState.

The remaining 3 case-blocks handle possible children of state-tags. Functions called in
these blocks have no influence of the state-tree and read always until their corresponding
closing-tag. That includes also the child-tags, like mandatory transitions for a history-
tag.

The 2nd branch of the if-statement (26-29) handles SCXML’s closing tags. That is
necessary to give the application the opportunity to update a state’s configuration. For
example, if a state is a compound state or not can only be identified when one knows
if it has a <state> as child or not. Since the stream-reader cannot read in advance, a
compound state can only be detected after its creation. So, by calling a closing-function,
the application can adjust if necessary. A similar problem is the handling of the absence
of initial-information for compound states. In such a case, the first state in document
order is to be treated as initial state. The application could handle that at runtime, by
simply checking if that information exists, and if not, refer to the first child. But we need
to display an initial state, a real object which can change the target, instead of having
a simple tag referencing to a target. Through the closing-function, the application can
create an object representing the initial state.

Remark

Parsing an XML file as stream enforces the developer to store all attributes and children
one may possibly need during the program execution, unless one is prepared to parse
the file again. That means, if a modified version of the file is to be written, then the
parser must traverse all elements in the original file, just to dump them in the output file.
This is especially cumbersome, if the original file contains XML tags not understood
by the parser. Especially because QXmlStreamReader does not allow a plain text read
from one tag to another, which could then just be dumped to the writer. Furthermore, by
parsing and writing a file, written by another program, it is likely that the order in which
attributes occure changes. This is annoying if the file is part of a source repository,
where histories matter.
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10.5.2 text_3d

In various places in our application the visualization of text positioned in space is
imperative. For example the naming of states as labels, see chapter 9.0.3, or the naming
of events, discussed in chapter 9.0.8. Unfortunately, the open source solutions we
encountered do not meet our requirements. As an example we want to name the very
advanced library freetyp-gl.

Freetype-gl delivers amazing high quality text. This is not supprising because it uses the
ubiquitous libraries freetype and harfbuzz. Both are used in nearly every open source
program with the need of displaying text. Freetype delivers withal the actuall glyphs;
which are then layed out and antialiased by harfbuzz.

But freetype-gl comes with some caveats. Firstly, no documentation is provided. The
demo files, on the other hand, shows basic, as well as advanced features. Secondly,
the API has is rather complex. We missed a function like placeText( position, text) to
simply draw text on a specific position. Instead the application has to handle kerning
and other glyph metrices by itself. While freetype-gl has very positive responses over
the internet, there is no bigger project known using it, even on a halfway professional
basis. Furthermore, freetype-gl is incompatible with OpenGL 3.3, has no cursor support
nor can it place text in global space (only screen space). A small test revealed also that
the integration into the Qt plugin is not that easy and would make it necessary to change
the freetype-gl sources.

Glyph is the terminology used when it comes to typesetting, because its metrics and
drawing are from high importance. From now on, we use the term character instead of
glyph, neglecting its visual characteristics.

This led to the development of the lightweighted libarary text_3d which is based on the
following requirements:

• Simple handling of single text lines.

• Support for user input. The cursor is a feature of this library.

• Rotating text. Necessary when compound states are partialy visible at the screens’
edge, as explained at 9.0.7.

• Coloring, to highlight text on mouse hover or selection. To spare memory, a color
for a letter can be chosen from a pallet with 256 entries.

• Scaling is used to simulate a different font sizes; for example for event names on
transitions.

• Optional: Multi-text editing. Useful to add prefixes/postfixes for state labels. This
is a nice feature to show/hide XML’s namespaces.

Since the development of a full featured text library is out of scope of this work, we have
to neglect nicer features typography has to offer; like text shaping, kerning, typefaces
and even different font sizes. We also omit a discussion about fonts in general because
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it would not contribute to the editor. The only important information are that we use a
proportional (as oppose to monospaced) font, which means each letter has a different
dimension. For example i is narrower then H. Glyphs and their metrics are retrieved
from the open source library freetype[Tur16].

Drawing text on the screen can be done in various ways. For a single static text a texture
containing the complete text might be sufficient. Are several text snippets to be drawn,
a single texture containing the text may be partitioned into a texture atlas. In that way
a pair of (x,y) coordinates defines a text cut-out, which can be projected on the screen.
This is sufficient for fixed text since no fragmentation occurs.

But the text we want to draw does change. Therefore we go one step further and address
solitary letters, as discussed in chapter 7.2.3. That way, each character has to be added
to the atlas once only. Unfortunately, are then 4 vertices needed to draw each letter;
instead of 4 vertices per text snippet. But the fragmentation problem is shifted from
the atlas to the buffer containing the indices for letters. Fragmentation of such a linear
buffer is easier to handle then the one of 2-dimensional objects.

So far, we have defined the texture atlas and from chapter 7.2.3 we know that we need a
look-up table where each letter’s position as well as dimension has an entry. The metrics
of a character is inserted into the look-up table whenever a new character is retrieved
from the freetype library and added to the texture map.

When a letter is drawn on a quad, then that quad needs to have the same proportion as
it has in the texture map (or look-up table). Otherwise the letter will appear stretched
in one direction. One way to do this, is to transform the dimension of each letter into
global space dimension; making it a quad in its own local space. When the letter is
used, its coordinates are transformed into global space coordinates, as discussed in
chapter 3.1. While doing this, the quad’s orientation has to face the camera, so that
it can be billboarded whenever the camera moves, see chapter 3.3. But care is to be
taken when chosing the pivot point billboarding occurs around. That is not the center of
each letter, but the center of the text as a whole.

While this is an obvious and direct way to display billboarded text, it seems cumbersome
to transform screen dimensioned quads into global coordinates just to transform them
back later into screen dimensions. That is especially true, considering that the quads
are rendered screen aligned and almost all effects of the perspective projections are
vanished, which is as desired and argued for in chapter 3.3. Furthermore, if text is
moved, then each vertex of each letter has to be translated separately. Knowing the
capabilities of the geometry shader points one to the idea that the GS can draw several
letters depending on the centroid of the text.

Figure 10.13 shows the interoperation of several buffers, a texture and pseudo shader
code to position text in 3D-space. The actual text to display is provided in TextChunks
(TC) by vertex buffer 1 . Each TC is worked by a GS instance 2 . Because a TC
has data for up to 8 letters 3 , a GS instance can draw 8 letters at maximum. Texts
longer than that are assembled together by several TC, making it necessary that a TC
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has the amount of letter stored, variable letter count, and the position inside the text
available, chunkWidth. Each letter in the TC is represented by an index to the look-up
table 4 . The look-up table contains the metrics, to set a letter, and the positions for the
caracter-bitmap inside the texture atlas 5 .

To calculate the text’s screen coordinate 10 , its global coordinate as well as the view-

projection matrix (VPM) is necessary. The VPM is retrieved through the UBO 7 ,
a UBO shared between shaders as explained in chapter 10.5.6, while the text’s global
position is taken from the buffer texture 6 . The screen position is then calculated
inside the GS 9 . Because this is the mid-position of the complete text the TC specific
offset chunkWidht for text longer than 8 letters, must be added to the position 9 . As
last step, the character metrics from 4 are added to the position pos 9 .

For each character is a quad submitted to the FS. With each vertex of the quad, is a
position of the character inside the texture atlas submitted 8 . That way the character
is scaled to the size of the quad.

In addition is for each letter in the TC an index for the color pallete 4 , which is also
passed to the FS 8 . This color is used to show a cursor.

Figure 10.13: The GS to draw text cosumes data from 4 buffers, 1 UBO (global data), 1 VAB (vertex data) and 2 BTO (character
data) to gain random access.

The variables bearingUp 3 and bearing_down 4 , and the metrics 4 are not



109

discussed because they are part of the typesetting procedure and therefore out of scope
of this document.

We also omit the discussion on setting up the TextChunks, since it does not contribute
to the editor.

To not to issue for each text element a separate OpenGL-draw call, TextElements are
assigned to a group. Such a group is then drawn by a single OpenGl-draw call. This
design is a compromise between granularity of drawing text elements and speed. We
use GROUP_0 for state labels and GROUP_1 for event labels. By setting OpenGL’s
depth buffer comparison value to GL_LESS we ensure that text elements with greater
depth-values are overwritten by text with lesser depth-values. Drawing groups in the
order GROUP_0, GROUP_1 makes state labels be overdrawn by event labels.

All TextElement objects are retrieved by calling the addText() function from the
singleton Text3d. Besides memory management, this singleton builds the gate to some
global parameters.

Icon extension

The library has a texture atlas and a buffer object to store the location of texels inside
the atlas. For the main application we need a way to store simple icons, like the menu
presented in chapter 9.0.4. To make the atlas and buffer object accessible from outside,
we extended the interface by a function to add icon. The addIcon function takes a
filename as argument and returns the entry’s position inside the buffer texture. The file
is loaded by the GraphicsMagick[Gro16] library, which returns a bitmap suitable to be
stored inside the buffer.

The ids to use the buffers are shared through a common header file.

Remark

We also tried to integrate a background color. The idea was to draw first a colored quad
and render the letters subsequently over the quad. This did not work. No output was
generated.

Increasing the number of letters per GS above 8 did not work either and ended in a
weired effect. Somehow did, two vertices of one GS instace bleed into a subsequent GS
instance, generating a parallelogram between two independent TCs.

and this has an affect on the PM see 10.2.1
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10.5.3 helper_gl

Qt offers build-in support for OpenGL. The functions are only accessible through a
class derived, in our case, from QOpenGLFunctions_3_3_Core. While our Scene
class derives this class, it feels like a burden to pass it throughout the whole application.
Furthermore, are we able to abstract some function calls and free therefore the main
application of repetitive source snippets.

We list here only the two most interesting implementations:

• create_program takes as argument a vertex, geometry and fragment shader.
Furthermore, can 2 string path which are used as preamble for each given shader.
That allows easily to prepend the definitions of the global shader data introduced
in chapter 10.5.6.

• BufferWrapper is a class encapsulating vertex buffer. It handles internally the
size of a buffer. If the current buffer is to small when new data is written to it, it
automatically allocates a new buffer, copies the content from the old buffer to the
new buffer, stores the new data to the new buffer and frees the old buffer. Because
vertex array pointer (VAP) dependent on buffer ids, see chapter 8.3.3, all VAPs
used to address the buffer, are stored inside the BufferWrapper; allowsing it to
re-initialized the VAPs automatically whenever the buffer is switched.

10.5.4 scxmlInterpreterManager

In chapter 10 we state that Qt’s internal SCXML based state machine is not up to
date. Because for the simulator, presented in section 11, is an interpreter imperative,
we evaluated three alternatives. Two interpreters are javascript based, SCION[Bea16]

and JSSCxml[Jun13]. Since both need a javascript environment to work, we compiled
Google’s V8[coo16] and built a small application to inject a javascript program into V8.
That way we encountered that both, SCION as well as JSSCXML, need a browser
environment to work. Not willing to investigate further, we decided to focused on
uscxml, a C++ library to interpret SCXML-documents. This leads to the presented
wrapper library, scxmlInterpreterManager.

Every StateRoom class, see chapter 10.3, has an instance of class UStateMachine.
This class is used to run an instance of the SCXML-document represented by the
the StateRoom. The StateRoom can fire events and retrieve runtime information like:
current configuration, reachable targets and possible events to trigger.

The state machine is extended with two I/O-processors, SocketProcessor, a class
facilitating SCXML’s <send>, and SocketInvoker, a class implementing SCXML’s
<invoke>. With <invoke> a socket connection can be established, while <send> uses
that socket to transmit messages to a server. The protocol is described in chapter 11.2,
where we also discuss the simulator.
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A small program (uscxmlManagerDemo) was written to test the library independent
from the editor.

10.5.5 Serializing to SCXML

In chapter 10.5.1 we describe how we read and parse SCXML-files. The coun-
terpart is implemented in the free function writeSCXML located in the files
scxmltoscxml.{h,cpp}. It is called by the menu-option Save, introduced in 9.0.4. The
function takes a Stateroom as argument and traverses the state-tree with the DFS algo-
rithm, which is the only sensible way, since a <state> is to be followed by its children
in SCXML notation.

10.5.6 Shared uniform buffer

In section 8.3.1 on page 70 we introduced the uniform qualifier how data can be made
available to each shader instance through several shader programs. Sharing UBOs
among shaders does not just facilitates the upload of uniforms, it also eases adding new
variables in shaders for testing purposes. A newly added value is immediately available
in all shaders using the UBO. Furthermore, freshly created shaders benefit from the
already established infrastructure.

Figure 10.14 illustrates the architecture implemented to facilitate the handling and
editing of the UBO we use. The header shaderCdefinitions can be included directly
in a C++ enviroment, while for GLSL, the library helper_gl, presented in section
10.5.3, offers the function create_program to mix shaders with other files. Each
environment accesses shared definitions, a block of magic numbers, which are used
in both environment as protocol. Furthermore, each environment has a section in the if-
statement. Global uniforms are defined in the section for GLSL and a corresponding
setter function is defined in the C++ domain. Updates of variables are done by
globalobjectmanager, which is discussed in section 10.3.2.

There is also a drawback. Global variables introduced like this are hard to comprehend
by developers unfamiliar with the code. That is because they show up without any
include directive. When not commented or documented, one may forced to search the
source, not just after the origin, also after they way the variable is integrated.
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Figure 10.14: Flow of variables to a global uniform buffer, available to every shader program.



Chapter 11

Simulator

In this chapter, we present how a game can be debugged with the stateroom editor.

Harel visualized, in the form of a state chart, the logic of a watch, see figure 11.2. This
logic is the foundation of a game developed in BGE. It simulates the hardware of the
wristwatch, the kind popular in the 1990s. The logic itself is written in an SCXML
file. This file can be interpreted through the stateroom editor and can control the watch
through a socket connection.

Because the Blender Game Engine as well as the editor itself were already covered
in chapters previous chapters, we refrain from describing implementation details.
We state the feature and shortly describe the interaction between the simulator and
debugger.

11.1 Harel’s watch as blender game

The wristwatch, illustrated in figure 11.1, has a typical 7-segment display for hours,
minutes and seconds. Above these segments are indicators for: alarm 1 and 2, beeping
(also audible), stopwatch running and an indicator to differentiate between before and
after noon (am/pm). A wearer, or rather player, controls the watch by the 4 buttons on
it’s sides; marked on the figure with a), b), c) and d), corresponding with the events on
the chart. These are the features defined in the state chart.

113
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Figure 11.1: Digital clock created after Harel’s state chart. When a button is pressed a message is send to a connected stateroom
debugger.
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Figure 11.2: Harel’s state chart from the mid 1980s describing the logic of a wristwatch. [Har87, p.21 f]
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11.1.1 Communication server

Figure 11.3: As the original watch, when the light is turned on it
becomes harder to differentiated between active and inactive

segments.

When the game commences, a Python
script starts a socket server and awaits
connections. A client can send com-
mands in form of ASCII text. These com-
mands control the features, like alarm,
stopwatch, etc. and are reflected by
their indicators discussed earlier in sec-
tion 11.1.

The messages emitted from the watch are
of the form button_x_pressed, button_x_released and P, P1, P2. Messages are created
with the first two sets whenever a state of button changes; they can be mapped to the
events in the state chart with: x and x̂, where x ε a, b, c, d. The latter three occur as
asynchronous event when one or both alarms matche the current time. These can be
mapped directly to the events in the chart.

11.2 Communication client

The connection betwenn Blender and the stateroom editor is realized via sockets and
SCXML’s I/O-processor. We use the SCXML tags <invoke> and <send>, described in
chapter 2.5.4, while the I/O-processor are implemented in chapter 10.5.4.

Listing 11.1 shows an SCXML snip with an invoke tag (lines 2-5). It connects to
the Blender game, see figure 11.5, as soon as the state machine enters the PL.main
state, which is the main state in figure 11.2 (top). The <send> in line 10-12 will send
the command to enable alarm 1, if (see line 9) the alarm is current disabled, and the
transition in line 9 is taken. Note the id blenderClock in both tags. It identifies the
connection to the server in the SCXML environment.

1 < p a r a l l e l i d ="PL . main ">
< i nv ok e i d =" b l e n d e r C l o c k " t y p e =" s o c k e t C o n n e c t i o n ">

3 <param name=" p o r t " exp r =" 64000 " / >
<param name=" i p " l o c a t i o n =" ’ 1 2 7 . 0 . 0 . 1 ’ " / >

5 < / inv ok e >
. . .

7 < s t a t e i d =" alarm_1−s t a t u s " i n i t i a l =" a1s . d i s a b l e d ">
< s t a t e i d =" a1s . d i s a b l e d ">

9 < t r a n s i t i o n e v e n t =" d " cond=" In ( ’ a la rm_1 . o f f ’ ) " t a r g e t =" a1s . e n a b l e d ">
<send t y p e =" s o c k e t " i d =" b l e n d e r C l o c k ">

11 < c o n t e n t >cmd . se tA la rm1 < / c o n t e n t >
< / send >

13 < / t r a n s i t i o n >
< / s t a t e >

15 < / s t a t e >
. . .

17 < / p a r a l l e l >

Listing 11.1: The <invoke> opens a connection to a server, so that <send> can issue commands to it.
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11.3 Debugger

The debugger is part of the stateroom editor. It can be activated through the menu
presented in section 9.0.4. Its control window lists events from those transitions
that are outgoing from the current configuration. Sending an event is handled by
the uscxmlManager as described in section 10.5.4. This module contains the actual
interpreter and communicates with the connected simulator through the IO/Processor.
After an event is emitted, the system waits until the state machine has a stable
configuration. The debugger then reads this information, colors the active states
accordingly and updates the event list.

Figure 11.4 depicts a running debugger. The current configuration is S3 and it’s parent.
But only S3 is marked since coloring is only implemented for atomic states. A transition
with even E3 goes only out from S3. Hence, the only entry in the list is E3.

Figure 11.4: Debugging the file simple.scxml, consisting of 6 states. S3 is currently active and can take a transition with event E3.
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Harel’s watch

The state chart of Harel’s clock 11.2 was implemented in SCXML as canonical
test during this project. It can be loaded and executed by the demo program
uscxmlManagerDemo, mentioned in 10.5.4 to demonstrate the clock. Nevertheless, the
stateroom-editor is currently not able to display the stateroom properly as can be seen
in the picture 11.5.

One of the most noticeable errors is the weird routing on the left. That is because the
algorithm for the intersection of transitions and floating objects is not implemented. It
currently takes the position (0,0,0) as anchor point. The twisted arrows and transitions
are a second issue, which is caused by Catumull Rom algorithm due to support points,
forcing the arc a drastic change in direction.

Figure 11.5: Harel’s state chart loaded as SCXML into a stateroom. Among the errors: arrows are twisted, transitions are routed
weirdly.



Chapter 12

Evaluation and Discussion

“Evaluation”: Describe your experiments and analyze your results. Describe what the
results mean in detail, and explain why the results are like they are.
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Chapter 13

Conclusion

13.1 Summary

We analyzed several software packages to support our idea of having statecharts
rendered in 3D-space. Unfortunately, the support for such a project is rather sparse.
There is not even a library present to render text in 3-dimentional space.

Anyway, we were able to succeed in displaying SCXML-documents partially. While
the results look promising, a lot more reasearch is necessary, wether staterooms is worth
pursuing or not. Especially parallale states are a tricky construct in 3D.
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