
A Parallel Multigrid Poisson Solver
for PINC, a new Particle-in-Cell

Model

by

Gullik Vetvik Killie

Thesis

for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

ii

November 2016

Abstract
This thesis is about the development of a parallel multigrid solver to the Particle-
in-Cell program PINC. The workings of the multigrid solver is described as well
the most important parts of PINC. The solver is confirmed to work accurately on
various test cases. The convergence rate of the algorithm was found to be between
0.149 and 0.203 for various grid sizes. A Langmuir oscillation was simulated with
the PINC, where it performed the expected number of oscillations confirming
that the program as a whole works.

v

Acknowledgements

I thank especially my girlfriend for keeping with me and supporting me through
my high and lows. As well as my family for unconditional support.

I express sincere to my advisor Wojciech Miloch for support and more help
than could be expected.

Sigvald Marholm recieves my thanks for teaching my to be a better program-
mer, in addition to the homebrewed beers he occasionaly brings. Shafa Aria
deserves gratitude for being available for plasma discussions and being my office-
mate.

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Plasma . 3

2.1.1 Plasma Parameters . 5
2.2 Single Particle Motion . 7

2.2.1 Gyration . 8
2.2.2 E-cross-B Drift . 9

2.3 Kinetic Theory . 10
2.4 Fluid Description . 11

2.4.1 Velocity Moments . 11
2.4.2 Transport Equation . 12
2.4.3 Fluid Equations . 12

2.5 Langmuir Oscillations . 14
2.6 Magnetohydrodynamics . 15
2.7 Numerical Simulations . 16

3 Method 19
3.1 Particle-in-Cell . 19

3.1.1 Movers . 20
3.1.2 Field Solvers . 21
3.1.3 Stability . 22

3.2 PINC . 24
3.2.1 Normalization . 25

3.3 Multigrid . 28
3.3.1 General idea . 29
3.3.2 Algorithm . 29
3.3.3 Smoothing . 32
3.3.4 Restriction . 34
3.3.5 Prolongation . 34
3.3.6 Grid Structs and Partitioning 35
3.3.7 Singular domain . 36
3.3.8 Several subdomains . 36

vii

viii Contents

3.4 Boundary conditions . 37

3.4.1 Periodic Boundaries . 37

3.4.2 Dirichlet Boundaries . 40

3.4.3 von Neumann Boundaries 40

3.4.4 Boundaries in Multigrid 41

3.4.5 Mixed Conditions . 42

3.5 Parallelization . 43

3.5.1 Grid Partition . 43

3.5.2 Distributed and accumulated data 43

3.5.3 Smoothing . 44

3.5.4 Restriction . 44

3.5.5 Interpolation . 45

3.5.6 Scaling . 45

3.5.7 Updating the Halo . 46

4 Implementation 49

4.1 Implementation . 49

4.2 Restriction . 50

4.3 Prolongation . 51

4.4 Smoothers . 53

4.5 Implementation of Boundary Conditions 55

4.5.1 Restriction . 55

4.5.2 Periodic . 55

4.5.3 Dirichlet . 55

4.5.4 Neumann . 56

5 Verification and Performance 57

5.1 Verification . 57

5.1.1 Error Quantification . 57

5.2 Multigrid Solver . 58

5.2.1 Analytical Solutions . 58

5.2.2 Random Charge distribution 60

5.2.3 Additional Tests . 60

5.2.4 ND vs 3D algorithms . 60

5.3 Scaling of the error compared to discretization 63

5.4 Plasma Oscillation . 63

5.4.1 Input parameters . 65

5.5 Performance . 67

5.5.1 Perfomance Optimizer . 67

5.5.2 Convergence Rate . 67

5.5.3 Scaling of the MG Solver 68

Contents ix

6 Summary and Conclusion 71
6.1 Summary . 71
6.2 Concluding Remarks and Further Proposals 72

A Unittests 73
A.1 Unittests . 73

A.1.1 Prolongation and Restriction 73
A.1.2 Finite difference . 73
A.1.3 Multigrid and Grid structure 74
A.1.4 Edge Operations . 74

B Scripts 75
B.1 PINC framework . 75
B.2 Multigrid Parameter Optimizer 76

B.2.1 V-cycle, code . 78

C Examples 81
C.1 Ex: 3 level V cycle, steps necessary 81

D Multigrid Libraries 83
D.1 Libraries . 83
D.2 PPM - Parallel Particle Mesh . 83
D.3 Hypre . 84
D.4 MueLo - Algebraic Multigrid Solver 84
D.5 METIS - Graph Partitioning Library 84
D.6 PETSc - Scientific Toolkit . 84

Chapter 1

Introduction

As the computational capabilities of supercomputers increase, it is becoming
more viable to simulate larger domains of plasma in more detail. This can help
us foresee space-weather and also understand many fundamental phenomena of
plasma. Particle-in-Cell is one widely used method to simulate space plasma
(Lapenta, 2012). To efficiently use massive parallel computer the Particle-in-Cell
method need efficient parallel field solvers. For the electrostatic case Multigrid
solver are well suited to solve the Poisson equation. This thesis follows the
development of a parallel multigrid solver to accompany the new Particle-in-Cell
model PINC.

The thesis first introduces plasma and gives an overview the theoretical back-
ground, in chapter 2. Plasma as a state is defined, single particle motion in
charged field is introduced and the fluid description of plasma shown. The fun-
damental Langmuir Oscillation is derived from the fluid description before a short
overview of ways to numerically simulate plasma. The next chapter, chapter 3
gives an overview of the PiC method and our implementation is introduced. The
theory behind the parallel multigrid is discussed afterwards. The implementa-
tion chapter, chapter 4, gives the details behind the actual implementation of
the multigrid solver. The verification and performance of both PINC and the
multigrid solver is discussed in chapter 5, before a summary and proposals for
further developments follows in chapter 6.

1

Chapter 2

Theoretical Background

2.1 Plasma

This section presents a short overview of basic plasma theory, it can serve as a
quick reminder for those already familiar with the subject, and necessary back-
ground to understand the numerical simulations in this work. For a more thor-
ough introduction the books Plasma Physics (Fitzpatrick, 2014), Introduction
to Plasma Physics (Goldston and Rutherford, 1995), Waves and Oscillations in
Plasmas (Pécseli, 2012) or the classic Introduction to Plasma Physics and Con-
trolled Fusion (Chen, 1984) can be consulted.

Plasma is the fourth, lesser known, state of matter. It is similar to a gas in
that the particles are free to move, but it has the key distinction that a part of
its constituent particles are electrically charged.

”A plasma is a quasineutral gas of charged and neutral particles
which exhibits collective behaviour.”

Francis F. Chen

The charge causes the particles to be subject to the Lorentz force, which changes
the behaviour of the gas. The plasma state is a typical state of matter and
appears in various environments, i.e. the Sun, and other stars, the upper parts
of Earoth’s atmosphere, and has many industrial applications as plasma cutters,
argon light tubes or fusion. The plasma density and temperature can extend over
several orders of magnitude as shown in section 2.1.

A better understanding of the mechanism governing a plasma’s behaviour
can help us predict spaceweather, improve design of spacecraft and instruments
affacted by plasma, future fusion devices and plasma technologies.

3

4 Theoretical Background Chapter 2

Figure 2.1: Plasmas occurs both in the hot and dense conditions in necessary
for fusion, as well as in the cold and sparse interstellar environment. Figure
after Goldston and Rutherford (1995).

Section 2.1 Plasma 5

2.1.1 Plasma Parameters

In this section we introduce basic plasma parameters that are also of concern
for plasma simulations, which are the temperature, plasma frequency and Debye
length. We also introduce the concept of quasineutrality.

Temperature

A modern view of temperature comes from kinetic theory developed by Maxwell
and Boltzmann (Swendsen, 2006). We here provide only the final result of the
detailed treatment that can be found in Goldston and Rutherford (1995). Tem-
perature, T , is then related to the average kinetic energy of a particle, Ek. For
an ideal monoatomic gas the kinetic energy is then

Ēk =
1

2
mv2

th =
3

2
kT, (2.1)

where m is the mass and k is the Boltzmann constant. Here we have introduced
vth ≡

√
kT/m as the thermal velocity, i.e. the average velocity of a particle

considering only one dimension. It should be mentioned that the fraction in
front of the temperature is dependent on the degrees of freedom of the particle.
A monoatomic particle can only move in three directions, but a diatomic particle
can also vibrate and spin.

If the particles in a plasma collide often compared to the characteristic timescales
of energy and particle changes, the particle velocity distribution can be approxi-
mated by a Maxwellian distribution. It is only then that the concept of temper-
ature is valid (Goldston and Rutherford, 1995).

In high energy plasma physics it is also costumary to drop the Boltzmann
factor, k, in eq. (2.1), and express temperature directly in electronvolt, eV . Elec-
tronvolt is defined as the energy it takes to move an elementary charge through
a potential difference of 1 V, and corresponds to approximately 11600K.

Electron Plasma Frequency

A rather important frequency in plasma physics is the electron plasma frequency
(Chen, 1984),

ωpe ≡

√
ne2

ε0me

(2.2)

This frequency, ωpe, is dependent on the number density, n, the fundamental
charge, e, the vacuum permittivity, ε0, and the electron mass, me. It can be
thought of as a typical electrostatic oscillatory frequency. Consider an electrically
neutral 1D slab, which is then disturbed, from its neutrality, by an infinitesimal
charge density on one side.

6 Theoretical Background Chapter 2

σ = enδx (2.3)

It will have an equal and opposite charge density on the other side. The slab
will then have an electric field due to the charge density, caused by Gauss’ Law.

∂Ex

∂x
= − σ

ε0
→ Ex =

−enδx
ε0

(2.4)

Inserting this field as the only force in Newtons’ law for a single particle yields

m
∂δx

∂t
= eEx = −mω2

peδx (2.5)

The particle will then oscillate around its equilibrium position with the elec-
tron plasma frequency. The same phenomenon often happens in plasma as it
tries to go back to its equilibrium and is called plasma oscillations, or Langmuir
oscillations, see section 2.5 for a treatment of plasma oscillations.

An otherwise useful timescale is the reciprocal of the plasma frequency, the
plasma period

τp ≡ 2π/ωpe (2.6)

Some researchers prefer to define the τp, without the 2π prefactor (Fitzpatrick,
2014).

Debye Shielding

Debye shielding length is the distance at which the electric influence from a
particle is shielded out by the surrounding plasma. Consider a charged particle
immersed in a plasma bath. The plasma is in a thermodynamical equilibrium, i.e.
there is no significant temperature gradients. We artificially place a positively
charged ion into the plasma. This ion will then attract electrons and repel positive
ions. As a result There will be more negatively charged particles, and fewer
positively charged particles, near the ion. This will form an electric shield around
the ion. The distance away from a particle, where its field is reduced by a factor
1/e, is called the Debye Shielding Length, λD, defined as:

λD ≡
√
ε0kTe
nee2

(2.7)

The above definition is often used, (Pécseli, 2012), neglecting the ion influ-
ence since they often have a much lower temperature. The shielding length is
dependent on the ratio between the electron temperature, Te, and electron den-
sity, ne. In a warmer plasma the particles will move quickly and efficiently shield
any charges, so the λD becomes smaller. In cases where we also need to account
for ions, a more complete definition can be used

Section 2.2 Single Particle Motion 7

λD ≡
√

ε0kTe

nee2(1 + Z Te

Ti
)

(2.8)

Due to the earlier argument, and the statistical approach used when deriving
it (Goldston and Rutherford, 1995), there must be a significant amount particles
close to the ion to shield it out.

It should be noted that the shielding length is related (Fitzpatrick, 2014) to
the plasma period and the thermal velocity through

λDωpe = vth (2.9)

Quasineutrality

The assumption of quasi-neutrality is a crucial approximation for collective phe-
nomena in plasma physics. By quasi-neutrality we assume that the electron
density is equal to the ion density, ne ≈ ni. This is often called the ”plasma ap-
proximation” (Chen, 1984). This approximation is usually valid on length scales
much larger than the shielding length. If we had a case where a large volume of
plasma lost a significant amount of charge, a large electric field would accompany
the density imbalance. This electric field would quickly correct the imbalance,
and quasineutrality would be regained.

Plasma Classification

For a plasma description to be applicable the system we consider must have
a typical length scale, L, and time scale, τ , larger than the Debye length and
plasma period respectively.

λD
L
� 1

τp
τ
� 1

A plasma treatment aims to describe the collective behaviour of many particles.
If the length scale is smaller than the λD the charges from individual particles
are not effectively shielded out and the trajectories of each particle should be
considered. On a timescale shorter than τpe, the collective plasma oscillation
cannot be observed.

2.2 Single Particle Motion

To better understand the collective motion of plasma it is useful to consider the
motions of single particles that the plasma consists of. By at first treating only
one particle we can ignore the electromagnetic influence from other particles
which greatly simplifies the situation. The Lorentz force, eq. (2.10), governs

8 Theoretical Background Chapter 2

the dynamics of a charged particle in a plasma, provided that other forces, e.g.
gravity, are neglible. The Lorentz force is due to charged particles in the electric
field, E, and charged particles moving across the magnetic field B

F = q (E + v × B) (2.10)

To simplify matters we will only consider particles in static electric and magnetic
fields, as that is often a valid approximation on the time and spatial scales of
interest.

2.2.1 Gyration

Let us consider a situation with a single moving particle in a static and isotropic
external magnetic field, i.e. E = 0, B 6= 0, a similar set up as in Baumjohann
and Treumann (1997). Newton’s Second law together with eq. (2.10) then gives

m
∂v

∂t
= qv × B (2.11)

We should note that the velocity component parallel to the magnetic field, is not

affected by the field and will remain constant,
∂v‖
∂t

= 0. The cross product of
two parallel vectors is always zero, so v‖ × B = 0. Using these two notions we
can write the equation only in terms of the perpendicular, with respect to B,
velocity.

m
∂v⊥
∂t

= qv⊥× B (2.12)

Then we perform a temporal derivative.

∂2v⊥
∂t2

=
q

m

∂v⊥
∂t

× B (2.13)

Then we insert eq. (2.12) into the equation and use the vector relation a×b×c =
b(a · b)− c(a · b).

∂2ω⊥
∂t2

+

(
qB

m

)2

ω⊥ = 0 (2.14)

In the last equation we also changed the term, v⊥, describing the rotational
motion, to ω⊥, which will from now on signify gyrational motion. This differen-
tial equation corresponds to a gyration around the magnetic field lines with the
gyration frequency, ωc = qB

m
, as the frequency. The particles are free to move

parallel to the magnetic field lines causing a spiralling motion along the mag-
netic field lines, as illustrated in fig. 2.2a. The high mobility along mangetic field
lines is often an important part of why there are field-aligned currents, such as
’Birkeland Currents’ (Cummings and Dessler, 1967), transporting plasma along
magnetic field lines.

Section 2.2 Single Particle Motion 9

B

e i
ρc

v⊥
ρc

v⊥

(a)

B

E

i

e

(b)

Figure 2.2: (a) The trajectories of an electron, left, and a positive ion,
right, are shown. In both cases the trajectories of particles are are gyrating
around the magnetic field lines. (b) Here we can see examples of particles
experiencing the E-cross-B drift. The particle motion consists of a gyration as
well a constant drift in the E ×B direction.

2.2.2 E-cross-B Drift

A drift called E-cross-B drift can appear when a particle is moving within static
and isotrop electric and magnetic fields. The equation of motion, neglecting all
forces except the electromagnetic, is then

m
∂v

∂t
= q(E + v × B) (2.15)

In plasma physics it is often a good strategy to decompose quantities into
parallel and perpendicular, with respect to B. We start by seperating the velocity
into v = v‖ + v⊥ and the electric field into E = E‖ + E⊥. Inserting this and
using that v‖× B = 0 the equation, eq. (2.15), becomes

m
∂

∂t

(
v‖ + v⊥

)
= q

(
E⊥ + E‖ + (v⊥) × B

)
(2.16)

The parallel motion consists of an acceleration caused by the parallel part of
the electric field and is given by:

m
∂v‖
∂t

= qE‖ (2.17)

The remaining part of the equation describes the perpendicular motion:

m
∂v⊥
∂t

= q (E⊥ + (v⊥) × B) (2.18)

Now we assume that there is a time-invariant drift vD, i.e. not dependent
on time, and we seperate the perpendicular motion into a drift and gyration,
v = v‖ + ω⊥ + vD.

10 Theoretical Background Chapter 2

m
∂

∂t
(ω⊥ + vD) = q (E⊥ + (ω⊥ + vD) × B) (2.19)

From section 2.2.1 we know that the gyration part is given by

m
∂ω⊥
∂t

= qω⊥× B (2.20)

Taking this out of the equation we have

∂vD

∂t
=

q

m
(E⊥ + vD × B) (2.21)

Then we use the previous assumption that the drift velocity is constant, cross
the equation with B and simplify, see Goldston and Rutherford (1995), to arrive
at

vD =
E × B

B2
(2.22)

As we can see the E-cross-B drift is independent of the particle charge and
mass, which means that both the ions and electrons will be drifting in the same
direction and speed perpendicular to the electric and magnetic fields, as it is also
shown in fig. 2.2b.

The E × B drift is an example of a single particle motion in electric and
magnetic fields. There are many other important concepts and drifts when con-
sidering single particle motion, such as gradient-B drift, curvature drift, polar-
ization drift and magnetic mirroring. We will not present them here and refer to
Fitzpatrick (2014), or other introductionary plasma physics book for details. We
note that the understanding of motions of single particles is necessary to study
the collective behaviour of large amounts of particles constituting a plasma.

2.3 Kinetic Theory

In the previous section we provided examples of single particle motion. To deal
with collective phenomena we need to account for large amount of particles si-
multaneously. This can be done with the kinetic theory that we will introduce
here.

To consider a large amount of particles we consider a charge and current
density instead of the individual particles. Let Fs be the exact phase-space
density of a particle species, it contains all the positions, velocities for all the
particles at all times. By integrating over all velocities and multiplying with the
charge for all species we obtain the charge density, ρc.

Section 2.4 Fluid Description 11

ρc =
∑
s

es

∫
Fs(r,v, t) d3v

Likewise we find the current density, j by:

j =
∑
s

es

∫
vFs(r,v, t) d3v

Then its seems we can derive all plasma interaction from considering the con-
servation of the phase-space density, coupled with Maxwells equations. The
phase-space conservation is given by what is known as the Vlasov equation
eq. (2.23) (Pécseli, 2012)):

∂F
∂t

+ v · ∇Fs +
es
ms

(E + v× B) · ∇vFs = 0 (2.23)

where ∇v =
(

∂
∂vx
î+ ∂

∂vy
ĵ + ∂

∂vz
k̂
)

is the velocity grad-operator. Unfortunately

this expression, combined with Maxwells equations, is only solvable for special
simple geometries.

2.4 Fluid Description

In another limit one can consider plasma as conducting fluids. Here we are
not interested in single particle motion anymore, but in the motion of a small
volume of plasma. This section provides an overview of the derivation of the
fluid equations from the kinetic theory, by taking different order moments of
the Vlasov equation. This can help in understanding the limitations of the fluid
model of plasma. Lastly a few different approximations are introduced to make
the fluid equations closable.

2.4.1 Velocity Moments

To investigate plasma as a fluid we have to make certain fluid approximations.
The plasma is then characterized by local parameters describing particle density,
kinetic temperature, flow velocity and so on. These parameters refer to a small
volume of plasma, in contrast with the discussions earlier about single particle
motion, section 2.2. The time evolution is then governed by the fluid equation,
but unfortunately the resulting equations are generally less tractable than the
usual hydrodynamical equations. This is because they need to be closed with
Maxwell’s equations.

The first order moment is given by mass times velocity, in introductionary
physics literature this is usually refered to as the moment (Fitzpatrick, 2014).

12 Theoretical Background Chapter 2

Here we will introduce a more general form of moment. This will help under-
stand how the fluid equations result from averaging over different moments of the
general transport equation (Pécseli, 2012; Fitzpatrick, 2014). The zeroth, first
and second order moments are respectively given by:

Φ0(v) = m (2.24a)

Φ1(v) = mv (2.24b)

Φ2(v) = mvv (2.24c)

By integrating the moment functions and the distribution function F , over
the velocity space we can retrieve different quantities.

Integrating the zeroth order moment gives the density, if we divide by the
mass.

n =
1

m

∫
mFdv (2.25)

Integrating over the first order moment gives the momentum, if we divide by
density.

mv =
1

n

∫
mvFdv (2.26)

We can in fact find the mean of any order moment by integrating the distri-
bution function over F .

〈Φn(v)〉 =
1

n

∫
ΦnFdv (2.27)

2.4.2 Transport Equation

By multiplying the moment function, Φ, with the Vlasov equation, eq. (2.23), we
obtain the general momentum transport equation (Shu, 2010).

∂n 〈Φn(v)〉
∂t

+∇ · (〈Φn(v)v〉) =
n

m
〈FL · ∇vΦ

n(v)〉 (2.28)

This then becomes a conservation equation for the average macroscopic quan-
tity 〈Φ〉. By multiplying this equation with the moments the fluid equations can
be obtained, see section 2.4.3.

2.4.3 Fluid Equations

From the Vlasov equation and the zeroth, first and second order moments we ob-
tain the fluid equations. The generalized fluid equations are given in eqs. (2.29a)

Section 2.5 Fluid Description 13

to (2.29c), where the three equations describe the conservation of mass, momen-
tum and energy respectively. The collision term is neglected. We refer to Fitz-
patrick (2014), although some notation differ, for the rather involved derivation
of these equations. (

∂

∂t
+ us · ∇

)
ns + ns∇ · us = 0 (2.29a)

msns

(
∂

∂t
+ us · ∇

)
us = −∇ps −∇ · π + nsfs (2.29b)(

∂

∂t
+ us · ∇

)
ps = −5

3
ps∇ · us −

2

3
πs : ∇us −

2

3
∇ · qs (2.29c)

The first equation, eq. (2.29a), is the continuity equation, it states that the
total mass in a volume should be preserved. us is the flow velocity and ns is
the number density, i.e. number of particles in a volume. The divergence terms
signify change due to the compressability of the fluid and can in many cases be
set to 0. The total derivative, i.e.

(
∂
∂t

+ us · ∇
)

accounts for change in density
in a volume taking into account substance exiting and entering. The momentum
equation, eq. (2.29b), shows that the fluid momentum change (left hand side) is
due to pressure gradients, ∇ps, visceous forces, ∇ · π and external forces, nsfs,
per unit volume. Lastly we have the energy equation, in its pressure form, which
shows that changes to thermal energy, p = nkT , are caused by compression,
ps∇·us, visceous effects πs : ∇us and heat transport 2

3
∇·qs. The fluid equations

are in general not closeable and adding higher order moments always introduces
more unknowns. Due to this one generally uses different closing schemes to make
them tractable.

One example is the local thermodynamic equalibrium (LTE). A plasma is said
to be in LTE if the phase-space distribution is locally Maxwellian. This means the
variations in temperature are slow enough that we can neglect heat conduction
in the plasma. We can also ignore the viscosity due to there being little local
variations to the momentum flow:

Fm =
n

(2π)3/2v3
t

exp

{
−(v − u)2

2v2
t

}
(2.30)

Since the viscosity tensor, π, and the heat flux tensor, q contains odd integrals
over the distribution, see Fitzpatrick (2014), they dissappear.

Another ways of closing the set of equations is to assume cold plasma or
isothermal plasma. In a cold plasma the temperature is assumed to be 0, this
causes the pressure, p, and viscosity, π, to be zero. This can be useful if the
velocities of interest far exceed the thermal velocities. In isothermal plasma we
assume infinite heat conductivity. This means the temperatures is constant in
all space and time and can be useful in describing large scale plasma.

14 Theoretical Background Chapter 2

2.5 Langmuir Oscillations

The simplest example of plasma collective phenomena can be obtained from
the fluid description. Plasma oscillations, also called Langmuir oscillations, is
the basic resulting oscillation that happens as a plasma tries to reach a stable
equilibrium, due to a small perturbation of its density. We will use this to show
how the fluid equations can be closed for a simple system using assumptions.
This is also very suited to test simulations, as we do later in section 5.4.

Here we will consider an one specie plasma fluid consisting of electrons under
local thermal equilibrium, LTE. The electron density, n0 and pressure, p0, is
initally homogenous. The fluid has a vanishing flow, u0 = 0, and no initial
potential gradient φ0 = 0. See Pécseli (2012) for a more detailed discussion.

A small perturbation of the electron density will cause the electric field to try
to restore the equilibrium. When the electrons reach the equilibrium position they
will have a kinetic energy and will overshoot. This will cause a new perturbation
away from the equilibrium.

Under the LTE conditions the fluid equations simplify to

∂ne

∂t
+∇ · (neue) = 0 (2.31a)

mene

(
∂

∂t
+ ue · ∇

)
ue = ene∇φ−∇pe (2.31b)(

∂

∂t
+ ue · ∇

)
pe +

5

3
pe∇ · ue = 0 (2.31c)

Since this set of equations have more unknowns than equations so we need ad-
ditional information to close the set. Here we can use the Poisson equation to
close it.

ε0∇2φ = e (ne − n0) (2.32)

Now we let a small perturbation, denoted by a tilde, happen to the equi-
librium. Since we are free to choose an inertial reference frame, we select one
co-moving with the plasma so the inital fluid velocity is u0 = 0. We also select
the reference potential so the initial potential, φ0, is 0.

Perturbation→


ne = n0 + ñe

pe = p0 + p̃e

ue = ũe

φ = φ̃

Since the pertubation is small, we can say that any part that contains second
order terms of perturbation of a quantity will be much smaller than the value
of the quantity, q � q̃q̃. So even though we may miss some processes by doing

Section 2.6 Magnetohydrodynamics 15

this, we can drop the second order perturbation terms. This process is called
linearization (Pécseli, 2012).

Inserting the perturbation and linearizing the equations we get:

∂ñe

∂t
+∇ · (n0ũe) = 0 (2.33a)

me
∂ũe

∂t
= e∇φ̃− ∇p̃e

n0

(2.33b)

∂p̃

∂t
+

5

3
p0∇ · ũe = 0 (2.33c)

ε0∇2φ̃ = eñe (2.33d)

Then we combine the continuity and energy equations, eq. (2.33a) and eq. (2.33c).

∂

∂t

(
p̃e
p0

+
5

3

ñe

n0

)
= 0 (2.34)

The perturbed pressure and density are proportional, ∇p̃e = (5p0/3n0)∇ñe.
Assuming plane wave solutions along the x-axis, the differential operators become
∇ → ik and ∂

∂t
→ −iω, we can solve for the dispersion relation.

ε(ω, k) = 1 +
5

3
λ2
Dek

2 − ω2

ω2
pe

(2.35)

Here the electron Debye length, λDe, and the plasma frequency, ωpe, have
been inserted. In the limit of short k, or vanishing temperature, we can see that
the dispersion relation simplifies to ω = ωpe, which we have also derived from
the simplified perspective of a cold plasma slab (section 2.1.1). We will use the
Langmuir oscillations in benchmarking our numerical model in this thesis.

2.6 Magnetohydrodynamics

In a plasma there are usually several types of species, then it follows that each
specie needs its own set of fluid equations. Magnetohydrodynamics, (MDH), is
an attempt to simplify this situation by combining it into one electrically con-
ducting fluid. Conventional MHD assumes local thermodynamical equilibrium,
negligable electron inertia and quasi-neutrality (Goldston and Rutherford, 1995).
This simplifies Maxwell’s equations to

∇× B = µ0j (2.36a)

∇× E = −∂B

∂t
(2.36b)

16 Theoretical Background Chapter 2

∇ ·B = ∇ · E = 0 (2.36c)

The MHD fluid can be considered a neutral fluid with a current running through
it (Hockney and Eastwood, 1988). The current is described by the conductivity
σ and the bulk velocity v and is given as

j = σv (2.37)

With the condition that the conductivity is high and a finite current eq. (2.36b)
becomes

∂B

∂t
= ∇× (v × B) (2.38)

Then it remains to close the MHD equations by the continuity and momentum
equations, where ρ is the mass density and p is the scalar pressure.

∂ρ

∂t
= ∇ · (ρv) (2.39a)

ρ
∂v

∂t
= −∇p+ j × B (2.39b)

2.7 Numerical Simulations

The mathematical description of plasma is useful to improve our understanding of
the physics, but many problems doesn’t fall neatly into convenient assumptions or
are untractable. Then we need to turn to experiments and computer simulations
to solve them. All of these methods work in symbiosis and are interdependent
of each other. Numerical simulations bear many similarities to experiments, but
they also have the advantage of being applied to situations that no experiment
can reproduce. In addition, physical experiments often have constraints on what
can be measured directly, while numerical experiments have all the needed data
readily available. Modelling generally needs to be validated against against exper-
iments and has a foundation built upon theory. As the computational resources
have improved, more sophisticated simulations have been possible. Plasma sim-
ulations vary from fluid descriptions, as MHD codes, to kinetic descriptions, as
Particle-in-Cell and Vlasov codes, with hybrid codes inbetween as well. This
thesis focuses on the development of a Particle-in-Cell code, but here we will give
a brief overview of other modelling approaches as well.

MHD

Magnetohydrodynamical codes solve the one-fluid equations, given in section 2.6,
with various approaches and has similarities to Computational Fluid Dynamics.
For the fluid equations to be a reasonable description of plasma, the dynamics

Section 2.7 Numerical Simulations 17

needs to happen at much larger scales than the Debye shielding length and large
time scales (slow phenomena). This approach has been widely used in large scale
plasma simulations such as astrophysics, see Hawley and Stone (1995) where an
MHD approach is discussed with regards to astrophysical problems, and space
physics, see Watanabe and Sato (1990) for an investigation of the solar wind-
magnetsphere interaction.

Particle-in-Cell

Particle-in-Cell (PiC) simulations model the particles directly. This has an ad-
vantage that few approximations are made, but computational cost increases fast
with more particles. Numerical PiC codes have been used extensively study small
scale plasma phenomena. Details of the algorithm are given in the next chapter.

Vlasov

Vlasov codes take the kinetic description as the starting point and are used in
plasma laser modelling (Bertrand et al., 1990). They have an advantage over PiC
in low density zones, where there are often too few particles for PiC. However
computational costs are often very high.

Chapter 3

Method

The previous chapter provided the basic concepts in plasma physics and em-
phasized the need for numerical plasma models. This chapter goes through the
theory behind a Particle-In-Cell (PiC) model, with a focus on the multigrid Pois-
son solver. First there is a general overview of a PiC model and the different
building blocks needed. The stability criteria needed in a PiC model are then
introduced. Next we go into a more detailed overview of the PINC model, this
thesis was a part of building. Then there is an overview of the normalization
scheme, in PINC, designed to minimize floating point operations. Domain par-
titioning as a strategy to parallelize the model is then considered. We continue
with providing details on the multigrid solver including boundary conditions.

3.1 Particle-in-Cell

Particle based plasma simulations have been in use since the 1960s, (Verboncoeur,
2005), and the goal of this project was to design, and implement, a massively
parallel code, with a focus on the Poisson solver. The aim here is to describe
simple and fast PiC model, with good scaling properties, as a baseline and rather
add in extra functionality later. Thus, we focus on an electrostatic model and
we ignore relativistic effects, which makes it faster and more suited to certain
tasks, such as space plasmas and plasma discharges. For an example of a modern
relativistic full electromagnetic model see Sgattoni et al. (2015).

The first particle based plasma calculations was done by Dawson (1962) and
Buneman (1959). They computed the electrical force directly between the parti-
cles leading to a computational scaling of O((#particles)2). Since a large number
of particles is often needed, the PiC method seeks to improve the scaling by com-
puting the force on the particles from an electric field instead. The electric field
is computed on a grid from the charge distribution obtained from the plasma
particle distribution. For an electrostatic model, which this thesis focuses on,
this is usually done by solving the Poisson equation, eq. (3.1), over the whole

19

20 Method Chapter 3

Particle Mover

Solver

DistributeProjection

Figure 3.1: Schematic overview of the electrostatic PIC cycle. The mover
moves all the particles and updates their velocities. Next the particle charges
are distributed to a charge density grid. The solver then obtains the electric
field on the grid (and magnetic field in a full electromagnetic model when also
the currents are weigthed to the grid). Lastly the field values are projected
onto the particles.

domain, Ω.
A PiC model has 4 main components: the mover, the weighting scheme (dis-

tribute), the field solver and the projection. See fig. 3.1 for an overview of the
PiC cycle. The mover is responsible for moving the particles and updating the
velocities of the particles. The input to the solver, in the electrostatic case, is
the charge density, ρ, and the output is the potential, φ.

ε0∇2φ = −ρ in Ω (3.1)

The distribute module computes a charge distribution on a grid from the particle
distribution, This is often done with 1st order interpolation, resulting in second
order accuracy. Different order interpolation can also be used. The solver then
computes the electric field. Lastly the fields are projected onto the particles.

3.1.1 Movers

The mover in a PiC model has the task of moving all the particles according to the
velocity of the particles, as well as the electric and magnetic fields. An often used
mover is the Leapfrog algorithm (Birdsall and Langdon, 2004), derived from a
forward finite difference discretization of the timestep. Then the velocity is shifted
half a timestep forward improving the accuracy, with no extra computations
needed compared with the Euler integration. When the magnetic force also
needs to be considered the most used algorithm is the Boris algorithm (Qin
et al., 2013), employing rotations to effieciently deal with the cross product.
While the aforementioned movers are explicit, based on a forward discretization
of the time, various projects based on partial and full implicit algorithms also
exist (Friedman et al., 1981; Lapenta, 2016). Since implicit algorithms allows
a relaxation of the stability restrictions (to be introduced later) they allow the
model to resolve closer to the investigated phenomena.

Section 3.1 Particle-in-Cell 21

3.1.2 Field Solvers

The Poisson equation, eq. (3.1), is a well known and investigated problem. Here
we will mention some advantages and disadvantages of different field solvers be-
fore we describe our choice of a multigrid solver. It should also be mentioned
that a implicit methods require a different approach, with the preconditioned
Jacobian-Free-Newton-Krylov as the most promising approach. Lapenta (2012)
can be consulted for an overview.

Spectral Methods

The spectral methods are based on rewriting the problem into a sum of base
functions and solving the problem on the basis functions form, see Israeli and
Sherman (2005) for an implementation of an spectral Poisson solver. Often the
basis functions chosen are sinusoidal, allowing the Fourier Transform to be used.
Other basis functions can also be used as in Shen (1994). They are efficient
solvers that can be less intricate to implement, but can be inaccurate for complex
geometries.

When looking for a solution with a spectral method we first rewrite the prob-
lem in the form of the basis functions, in this case sinusoids, which for the three-
dimensional Poisson equation would be

∇2
∑

Aj,k,le
i(jx+ky+lz) =

∑
Bj,k,le

i(jx+ky+lz) (3.2)

where Aj,k,l and Bj,k,l are the coeffecients of the sinusoids, or otherwise the basis
functions. From there we get a relation between the coefficients

Aj,k,l = − Bj,k,l

j2 + k2 + l2
(3.3)

Then we compute the Fourier transform of the right hand side obtaining the
coefficients Bj,k,l. We compute all the coefficients Aj,k,l from the relation between
the coefficients. At last we perform an inverse Fourier transform of the left hand
side obtaining the solution.

(3.4)

Finite Element Methods

The finite element (FEM) is a method to numerically solve a partial differential
equations (PDE), by first transforming the problem into a variational problem
and then constructing a mesh and local trial functions, see Alnæs et al., 2011 for
a more complete discussion. FEM is similar to a spectral solver, with the main
difference that FEM’s basis functions are only locally nonzero.

22 Method Chapter 3

To transform the PDE to a variational problem we first multiply the PDE by
a test function v, then it is integrated using integration by parts on the second
order terms. Then the problem is separated into two parts, the bilinear form
a(u, v) containing the unknown solution and the test function, as well as the
linear form L(v) containing only the test function.

a(u, v) = L(v) vεV̂ (3.5)

Next we construct discrete local function spaces of that we assume contain
the trial functions and test functions. The function space, V̂ , often consists of
locally defined functions that are 0 except in a close neighbourhood of a mesh
point, so the resulting matrix to be solved is sparse and can be computed quickly.
The matrix system is then solved by a suiting linear algebra algorithm, before the
solution is put together. The FEM method is very suited to tackling problems
on complicated grids.

Multigrid

The multigrid method used to solve the Poisson equation and obtain the electric
field is a widely used and highly efficient solver for elliptic equations, having a
theoretical scaling of O(N) (Press et al., 1988), where N is the number of grid
points. It is very well suited to simple geometries that can easily be translated
to coarser problems. The multigrid method is based on iterative solvers such as
Gauss-Seidel, section 3.3.3, these have the property that they quickly eliminate
local errors in the solution, while far away influences takes longer to incorporate.
Multigrid algorithms try to lessen this problem by transforming it into a coarser
grid so the distant errors gets solved in fewer iterations. Due to this it needs
operators to transfer the problem between coarser and finer grids, which is called
restrictors and prolongators. The multigrid algorithm is a topic of this thesis and
is described in more detail in section 3.3.

3.1.3 Stability

A PiC model has stability criteria that need to be fulfilled for the model to
work correctly. This is caused by the inherent discretization of the problem
in a numerical method. Here we will investigate a harmonic oscillator and a
wave to find the stability criteria for the time and spatial discretization. A
short discussion on the finite grid instability, caused by representing the charge
distribution on a mesh, is included as well.

Section 3.1 Particle-in-Cell 23

Time Stability Criterion

A one-dimensional harmonic oscillator (e.g. a pendulum in a gravity field) is
described by

∂2x

∂t2
= −ω2

0x, (3.6)

and has a solution of the form

x(t) = Ce−iωt. (3.7)

Then we replace the temporal derivative with a centered finite difference:

xn+∆t − 2xn + xn−∆t

∆t2
= −ω2

0x
n. (3.8)

Inserting the harmonic solution in place of the xn, xn+∆t and xn−∆t, we obtain:

e−iω(t+∆t) − 2e−iωt + e−iω(t−∆t)

∆t2
= −ω2

0e
−iωt. (3.9)

Using Eulers relation, (e−ix = cos(x) + i sinx), this yields:

2 cos(ω∆t)− 2 = −ω0∆t, (3.10)

which can be rearranged into

sin

(
ω∆t

2

)
= ±ω0∆t

2
. (3.11)

It is clear that when ω0∆t
2

> 1, ω has an imaginary component and the numerical
solution is unstable. This puts limits on the timestep which should be much
smaller then the characteristic timescale in a system, which in our case ∆t� ω−1

pe .

Spatial Stability Criterion

A 1-dimensional wave equation is described by:

∂2ϕ

∂t2
= c2∂ϕ

∂x
(3.12)

Applying a centered difference

ϕn+∆t
j − 2ϕn

j + ϕn−∆t
j

∆t2
= c2

ϕn
j+∆x − 2ϕn

j + ϕn
j−∆x

∆x2
(3.13)

Let us assume sinusoidal waves, ϕn
j = ei(ωt−k̃j∆x).

eiω∆t − 2 + e−iω∆t

∆t2
= c2 e

−ik̃∆x − 2 + eik̃∆x

∆x2
(3.14)

24 Method Chapter 3

Which can be rewritten to

cos(ω∆t) =

(
c

∆t

∆x

)2 (
cos
(
k̃∆x

)
− 1
)

+ 1 (3.15)

ω needs an imaginary part if
(
c∆t

∆x

)
> 1, this is called the Courant-Lewy Stability

criterion (Courant et al., 1869). In general for more dimensions it becomes

∆t ≤ 1

c

(∑
i

∆x−i 2

)− 1
2

(3.16)

If this condition is not fullfilled, aliasing will appear and the wave propagation
will be represented correctly.

Finite Grid Instability

The particles in a PiC simulation move in a continuous space, while they are
represented on a discrete grid for the field calculations. This reduction allows a
Finite Grid Instability to appear, due to a loss of information of representing a
number of particles by a few grid points (Lapenta, 2016). This will cause aliasing
of properties on a smaller scale than the resolution. The numerical analysis of
the instability is complicated and we refer to Birdsall and Langdon (2004) and
Hockney and Eastwood (1988) for original works. The instability introduces the
following additional constraint on the grid resolution,

∆x < ςλD (3.17)

The constant ς is of order one and varies according to the details of the imple-
mentation. For a Cloud-in-Cell (CiC) scheme, i.e. first order weigthing, ς ≈ π.
This means that the stepsize needs to resolve on a much smaller scale than the
Debye Shielding length. Violation of this criteria will cause the simulated plasma
to unphysically heat, increasing λD, untill the condition is fullfilled.

3.2 PINC

Now we will describe the PiC code, PINC, which part of was developed as a part
of this work. Some important features of PINC include the ability to change
modules without recompiling, full N-dimensional functions as well as special 3-
dimensional functions and built in modularity. Presently PINC is not publicly
available, contact 4DSpace at UiO for access.

Section 3.2 PINC 25

3.2.1 Normalization

For most numerical codes significant computational gain can be achieved rela-
tively easy by smart normalization. With a succesful normalization most of the
multiplications with constants will dissappear. Numerical errors due to machine
precision are smallest close to unity O(1) (Hjorth-Jensen, 2016) so we want to
work with numbers as close to unity as we can. As a sidebenefit it also makes the
code easier to write and cleaner to read. Consider a single particle, with mass m
and charge q, in an electric field E. Its equation of motion is then

m
∂2r

∂t2
= qE (3.18)

To compute the acceleration of this particle in completely naive way, would
at each point cost 1 multiplications and 1 division, m/q ∗ E. If we instead use
normalized values the equation could look like this

∂2r̃

∂t2
= Ẽ (3.19)

where r̃ and Ẽ is normalized so the dimensionality of the equation works out.
Here we have no multiplications and no divisions, but we do have the added task
of transforming our variables first to the normalized variables and then back to
the original for diagnostics.

Non-dimensionality PINC

A good dimensionalizing strategy is to first remove dimensionality from the fun-
damental quantities, and then work out the normalizations necessary for the
derived quantities.

The fundamental quantities that are involved in our PiC simulation is mass
m, position r, time t and charge q. Since we are dealing with plasma it is useful
to normalize with Debye-length, λD, and electron plasma frequency, ωpe. The
normalized quantities are then:

r̃ =
r

λD
(3.20a)

t̃ = ωpet (3.20b)

m̃ =
m

me

(3.20c)

q̃ =
q

e
(3.20d)

26 Method Chapter 3

Next we need the velocity, which is the temporal derivative of the position.
This is normalized by transforming the position to the nondimensional position,
by eq. (3.20a), as well as changing the temporal derivative to a nondimensional
temporal derivate, by eq. (3.20b).

∂r

∂t
= v → ∂r̃

∂t̃
= ṽ =

v

vth
(3.21)

Here we have introduced the thermal velocity, mentioned in section 2.1.1,
vth = λDeωpe.

Now we will use the Lorentz force to normalize the electromagnetic fields.

∂v

∂t
=

q

m
(E + v × B) (3.22)

Swapping in all the nondimensional values from eqs. (3.20a) to (3.20d) we
obtain

∂(ṽvth)

∂(t̃/ωpe)
=

(q̃e)

(m̃me)
(E + (vvth) × B) (3.23)

∂ṽ

∂t̃
=

q̃

m̃

(
e

vthωpeme

E + ṽ × e

ωpeme

B

)
(3.24)

This suggests that we use the following nondimensional fields

Ẽ =
e

vthωpeme

E and B̃ =
e

ωpeme

B (3.25)

The electric field is related to the charge density ρ through Gauss’ law.

∇ · E =
ρ

ε0
(3.26)

Inserting normalized quantities for E and the gradient operator

∇̃ =

(
∂

∂x̃
,
∂

∂ỹ
,
∂

∂z̃

)
= λD∇

1

λD
∇̃ · vthωpeme

e
Ẽ =

ρ

ε0
(3.27)

∇̃ · Ẽ =
λDe

vthωpeme

ρ

ε0
(3.28)

This gives the dimensionless charge density

ρ̃ =
ρ

n0e
(3.29)

Section 3.2 PINC 27

Normalization PINC

It should be mentioned that the normalization scheme for PINC was mostly
worked out by Sigvald Marholm, and I am mostly repeating his work here. It
is still included here to give complete understanding of our PiC implementation.
The general aim of the normalization scheme is to reduce the number of float-
ing point operations on the particles. Since there are usually fewer grid points
(i.e. values for fields such as ρ and E) than particles in a simulation a multipli-
cation should preferably be done to a field instead of each particle. From now
on we will omit the tilde on dimensionless quantities and consider all quantities
dimensionless.

Mover

We use the standard Leapfrog algorithm (Birdsall and Langdon, 2004). This has
the advantage of second order accuracy and stability for oscillatory motion with
the same number of function calls as Euler integration. It should be mentioned
that the Leapfrog algorithm preserves momentum, but the energy can drift.
The finite-difference discretization of a leapfrog timestep is given by

rn+1 − rn

∆t
= vn+ 1

2 (3.30)

By discretizing time as t̄ = t/∆t and the position and velocity as

r̄ =

(
x

∆x
,
y

∆y
,
y

∆y

)
(3.31)

v̄ = ∆t(δr)−1v (3.32)

we obtain the simpler step equation

r̄n+1 = r̄n + v̄n+ 1
2 (3.33)

Accelerator

The accelerator sets a new velocity to the particles. For a case with no magnetic
field the equation of motion becomes

∂v

∂t
=

qs
ms

E (3.34)

Discretizing the equation and normalizing the electric field as

Ē =
∆t2

∆r

q0

m0

E (3.35)

the velocity step for a particle species is given by

28 Method Chapter 3

v̄n+ 1
2 = v̄n− 1

2 + ξsξs−1 · · · ξ1Ē (3.36)

where the specie specific normalization coefficient is:

ξs =
qs/ms

qs−1/ms−1

(3.37)

By applying the cooefficient directly to the electric field this enables us to accel-
erate each particle with only 1 addition.

Distribute

The interpolation of the charged particles onto a charge density grid is handled by
the distribute module. For each particle the charge is distributed to the nearby
grid points according to the distance to the grid points. We will not go into the
details of the implementation here, only mention the resulting normalization.

The normalized charge density at grid point j is given by adding together the
contribution from each particle species

ρ̄j =
∑
i

ωij q̄i (3.38)

q̄i is the normalized charge for each particle given by

q̄i =
∆t2

∆V

q0

m0

qi (3.39)

where ∆V = tr (∆r).

Solver

Due to normalization being already inherent in the charge distribution, ρ̄j, and
in the application of the electric field, Ē, to each particle the solver can disregard
the normalization.

3.3 Multigrid

Here we will go through the main theory and algorithm behind the multigrid
solver, developed as a part of this thesis. See also Press et al. (1988) and Trot-
tenberg et al. (2000) for the general description. This solver is developed for the
wholly distributed storage model.

Section 3.3 Multigrid 29

3.3.1 General idea

An iterative solver solves a problem by starting with an initial guess, then it
performs an algorithm improving the guess and repeats with the improved guess.
The difference between the guess and the correct solution, the residual, does
not necessarily converge equally fast for different frequencies. An iterative solver
can be very efficient on reducing the local error, while the errors due to distant
influence is reduced slowly. A multigrid solver attacks this problem by applying
iterative methods on different discretizations of the problem. By solving the
problem on very coarse grids the error due to distant influence will be reduced
faster, while solving on a fine grid reduces the local error fast. Thus, by solving
the problem on both fine and coarse grids the needed cycles will be reduced. To
implement a multigrid algorithm we then need algorithms to solve the problem
on a grid, restriction and prolongation, see section 3.3.3 and ??, operators to
transfer the problem between grids, as well as a method to compute the residual.

3.3.2 Algorithm

We want to solve a linear elliptic problem,

Lu = f (3.40)

where L is a linear operator, u is the solution and f is a source term. In our
specific case the operator is given by the Laplacian, the source term is given by
the charge density and we solve for the electric potential.

We discretize the equation onto a grid of size q.

Lquq = fq (3.41)

Let the error, vq be the difference between the exact solution,uq, and an
approximate solution, ũq, to the difference equation (3.41), vq = uq − ũq. Then
we define the residual as what is left after using the approximate solution in the
equation.

dq = Lqũq − fq (3.42)

Since L is a linear operator the error satisfies the following relation

Lqvq = L(uq − ũq) + (fq − fq) (3.43)

Lqvq = −dq (3.44)

The system can then be solved directly on this level with a chosen discretization.
If we then increase the resolution to obtain a better solution, the system becomes

30 Method Chapter 3

0

1

2

1

01 5

2 4

3

Restrict

Restrict Prolongate

Prolongate

Repeat

Figure 3.2: Schematic overview of the Multigrid cycle. In a three level MG
implementation, there is 5 main steps in a cycle that needs to be considered.

harder to solve. The multigrid method approaches this problem by solving it on
several different discretizations levels. We set up a system of nested coarser
regular grids, T0 ⊃ T1 ⊃ · · · ⊃ T`, where T0 is the finest and T` is the coarsest
grid. Then an iterative solver, which has the property of quickly converging of
high frequency errors, i.e. local errors, is used on the finest grid. The remaining
error is then transferred to a coarser grid where lower frequency errors are more
easily found. The errors found on the coarser levels are then transferred up to
the finest level as a correction. To transfer between the discretization coarseness
we use restriction, R, and prolongation, P , operators. Due to the fewer grid
points the problem is faster to solve on the coarser grid levels than on the fine
grid. Applying the restriction and prolongation operators on the grid gives us
the grid discretized on a different level:

Rdq = dq+1 and Pdq = dq−1 (3.45)

fig. 3.2 shows a schematic overview of a 3-level version of a multigrid V cycle.
The needed operations on each level is described in greater detail in section 3.3.1.

Section 3.3 Multigrid 31

V-Cycle

The simplest multigrid cycle is called a V-cycle, which starts at the finest grid,
goes down to the coarsest grid and then goes back up to the finest grid (Press
et al., 1988). First the problem is smoothed on the finest level, then we compute
the residual, or the rest after inserting the guess solution in the equation. The
residual is then used as the source term for the next level, and we restrict it
down as the source term for the next coarser level and repeat until we reach the
coarsest level. When we reach the coarsest level the problem is solved there and
we obtain a correction term. The correction term is prolongated to the next finer
level and added to the solution there, improving the solution, following by a new
smoothing to obtain a new correction. This is continued until we reach the finest
level again and a multigrid cycle is completed, see fig. 3.2 for a 3 level schematic.

In the following description of the steps in the MG method, we will use φ,
ρ, d and ω to signify the solution, source, defect and correction respectively. A
subscript means the grid level, where 0 si the finest level, while the superscript
0 implies an initial guess is used. Hats and tildes are also used to signify the
stage the solution is in, with a hat meaning the solution is smoothed and a tilde
meaning the correction from the grid below is added.

The overarching algorithm is shown in algorithm 1

Algorithm 1 Multigrid V cycle

if level = coarest then
Solve φ̂l = S(φl, ρl)
Interpolate correction ωl−1 = Iφl

else
for each level do

Smooth φ̂l = S(φl, ρl)

Residual dl = ∇2φ̂l − ρl
Restrict ρl+1 = Rdl
Go down, receive correction ωl = MG(φl+1)

Add correction φ̃l = φ̂l + ωl

Smooth φl = S(φ̃l, ρl)
Interpolate correction ωl−1 = Iφl

At the coarsest level the the problem is solved directly and the correction is
propageted upward.

W Cycle

The W-cycle is similar to the V-cycle, with the difference that it spends longer
time on the coarser grids, obtaining a better solution before returning to the
finest grid.

32 Method Chapter 3

Full Multigrid

Full Multigrid (FMG) is a multigrid cycle where the source term is known at
all the levels. This is achieved usually by an interpolation scheme, or reuse the
restriction algorithm, on the source term. Then the problem is first solved at the
coarsest level before going up to the finest level.

3.3.3 Smoothing

The multigrid method prefers iterative solvers as smoothers which converges fast
for high frequency errors. The low frequency convergence, i.e. the long range
interaction, is improved by also solving it with coarser discretization. In this
project we also wanted smoothers with good parallel scaling properties. We ar-
rived at using Gauss-Seidel with Red and Black ordering. We ended with 1st
order discretization of the Laplacian operator, as a compromise between simplic-
ity in the program and the computational efficiency of hardcoded parts of the
algorithms dealing with the Halo, i.e. the ghost layers. It may be that the higher
order discretizations will yield better convergence and the project has some plans
to expand to incorporate it.

Relaxation methods, such as Gauss-Seidel, work by looking for the setting
up the equation as a diffusion equation, and then solving for the equilibrium
solution.

So suppose we want to solve the elliptic equation

Lu = ρ (3.46)

Then we set it up as a diffusion equation

∂u

∂t
= Lu− ρ. (3.47)

By starting with an initial guess for what u could be the equation will relax
into the equilibrium solution Lu = ρ. By using a Forward-Time-Centered-Space
scheme to discretize, along with the largest stable timestep ∆t = ∆2/(2 · d), we
arrive at Jacobi’s method, which is an averaging of the neighbors in addition to
a contribution from the source term. By using the already updated values for
the calculation of the unew we arrive at the method called Gauss-Seidel which for
two dimensions is the following

un+1
i,j =

1

4

(
uni+1,j + un+1

i−1,j + uni,j+1 + un+1
i,j−1

)
− ∆2ρi,j

4
(3.48)

A slight improvement of the Gauss-Seidel algorithm is achieved by updating
every other grid point at a time, by using Red and Black Ordering. This allows
a vectorization of the problem and avoids any uneccessary copying.

Section 3.3 Multigrid 33

Jacobian and Gauss-Seidel RB

The main iterative PDE solver, in this version of the multigrid program, is a
Gauss-Seidel Red-Black, in addition a Jacobian solver was developed as a step-
ping stone and for testing purposes. It is a modification of the Jacobian method,
where the updated values are used where available, which lead to the convergence
increasing by a factor of two (Press et al., 1988).

Our problem is given by∇2φ = −ρ. One way to think of the Jacobian method
is as a diffusion problem, and with the equilibrium solution as our wanted solu-
tion. If we then discretize the diffusion problem by a Forward-Time-Centralized-
Space scheme, we arrive at the Jacobian method, which is shown explicitly below
for 1 dimension.

∂φ

∂t
= ∇2φ+ ρ (3.49)

Discretizing this we obtain:

φn+1
j − φn+1

j

∆t
=
φn
j+1 − 2φn

j + φn
j−1

∆x2
+ ρj (3.50)

The subscript j indicates the spatial coordinate, and the superscript n is the
’temporal’ component.

This is numerically stable if ∆t/∆x2 ≤ 1/2, so using the timestep ∆t = ∆x2/2
we get

φn+1
j = φn

j +
1

2

(
φn
j+1 − 2φn

j + φn
j−1

)
+

∆x2

2
ρj (3.51)

Then we arrive at the Jacobian method

φn+1
j =

1

2

(
φn
j+1 + φn

j−1 + ∆x2ρj
)

(3.52)

The Gauss-Seidel method uses updated values of φ where they are available.

φn+1
j =

1

2

(
φn
j+1 + φn+1

j−1 + ∆x2ρj
)

(3.53)

Following the same procedure, we get the Gauss-Seidel method for for 2 di-
mensions:

φn+1
j,k =

1

4

(
φn
j+1,k + φn+1

j−1,k + φn
j,k+1 + φn+1

j,k−1 + ∆x2ρj,k
)

(3.54)

and 3 dimensions:

φn+1
j,k,l =

1

8

(
φn
j+1,k,l + φn+1

j−1,k,l + φn
j,k+1,l + φn+1

j,k−1,l + φn
j,k,l+1 + φn+1

j,k,l−1 + ∆x2ρj,k,l
)
.

(3.55)

34 Method Chapter 3

Here we have implemented a different version of the Gauss-Seidel (similar to
a chess board) algorithm called Red and Black ordering, which has conceptual
similarities to the leapfrog algorithm, where usually position and velocity is com-
puted at t and t+ (δt)/2. Every other grid point is labeled a red point, and the
remaining is black. When updating a red node only black nodes are used, and
when updating black nodes only red nodes are used. Then a whole cycle consists
of two halfsteps which calculates the red and black nodes seperately.

• For all red points:

φn+1
j,k,l =

1

8

(
φn
j+1,k,l + φn

j−1,k,l + φn
j,k+1,l + φn

j,k−1,l + φn
j,k,l+1 + φn

j,k,l−1 + ∆x2ρj,k,l
)

• For all black points:

φn+2
j,k,l =

1

8

(
φn+1
j+1,k,l + φn+1

j−1,k,l + φn+1
j,k+1,l + φn+1

j,k−1,l + φn+1
j,k,l+1 + φn+1

j,k,l−1 + ∆x2ρj,k,l
)

3.3.4 Restriction

The multigrid method (MG) has several grids of different resolution, and we need
to convert the problem between the diffrent grids during the overarching the MG-
algorithm. The restriction algorithm has the task of translating from a fine grid
to a coarser grid. Direct insertion is the simplest way to do this, where coarse
grid points correspond directly to its representation on the fine grid. In this
implementation we chose to use a half weight stencil, which works well together
with the 1 layer Halo, to restrict a quantity from a fine grid to a coarse grid. A
higher order restriction algorithm could later be implemented if thought useful.
The coarse grid values are obtained by giving half weighting to the fine grid point
corresponding directly to the coarse grid point, and gives the remaining half to
the adjacent fine grid values, see (3.56), for 1D, 2D and 3D examples:

R1D =
1

4

[
1 2 1

]
,

R2D =
1

8

0 1 0
1 4 1
0 1 0

 ,
R3D =

1

12

0 0 0
0 1 0
0 0 0

 ,
0 1 0

1 6 1
0 1 0

 ,
0 0 0

0 1 0
0 0 0

 .

(3.56)

3.3.5 Prolongation

Along with the restriction operator described in the previous subsection, we also
need prolongation operator to go from a coarse grid to a finer grid. As in the

Section 3.3 Multigrid 35

restriction operator, direct insertion is the simplest algorithm. Here we will use
bilinear interpolation, as advised in Trottenberg et al. (2000), for two dimen-
sions and trilinear interpolation for 3 dimensions. In the bilinear interpolation a
seperate linear interpolation is done in the x- y- and z-directions, then those are
combined to give a result on the wanted spot. The same concept is expanded to
give trilinear interpolation. The two and three dimensional stencils are given in
(3.57)

P2D =
1

4

1 2 1
2 4 2
1 2 1


P3D =

1

8

1 2 1
2 4 2
1 2 1

 ,
2 4 2

4 8 4
2 4 2

 ,
2 2 1

2 4 2
1 2 1

 (3.57)

3.3.6 Grid Structs and Partitioning

In this section our overall parallelization strategy is discussed as well as the
storage needs for the grids.

Data structures

The fields and quantities in PINC are discretized on a 3-dimensional grid. In the
multigrid calculation several grids of varying spatial coarseness are used. So it
will be useful for us to organize the data so that we have the grid stored as an
independent structure available for the program, while the multigrid part uses
an extended version where it also has access to different subgrids of different
coarseness. Each multigrid struct will have an array of different subgrids, where
the first is a pointer to the fine grid used in the rest of the calculations, this
makes it easy to select a grid level to perform an algorithm on.

Domain partitioning

We have chosen to divide the physical domain onto different processors so that
each takes care of a physical subdomain. This is known as Domain Partitioning,
and suits our distribution algorithm as well as the multigrid method, see sec-
tion 3.5.1 for the consequences of Domain Partitioning for multigrids. Since each
subdomain only needs to store the particles, and grids, on its physical subdomain
the model can be upscaled in principle without any additional need for memory
storage, by adding more processors. The subdomains are dependent on each
other and we need some communication between them, which we solve by letting
each subdomain also store the edge of the neighboring subdomain. Depending on
the boundary conditions it could also be useful to store an extra set of values on

36 Method Chapter 3

the outer domain boundary as well, which will be called ghost points, NG. The
extra grid points due the overlap between the subdomains we will call overlap
points, NO. Let us for simplicity consider a regular domain, with equal size in
all dimensions, with N grid points per dimension, d and consider how many grid
values we need to store as a singular domain and the grid values needed when it
is divided amongst several processors. Such a 2 dimensional case is depicted in
fig. 3.3.

3.3.7 Singular domain

In the case where the whole domain is worked on by one process we need Nd

to store the values on the grid representing the physical problem, in addition
we see that we also need to store values for the ghost points along the domain
boundary. Given that we have one layer of ghost points on all the boundaries,
and there is 2 boundaries per dimension, the total number of ghost points is
given by NG = 2dN . Since there is only 1 domain we don’t need to account for
any overlap between subdomains and the total number of grid points we need to
store is:

NTot = Nd +NG +NO = Nd + 2dNd−1 (3.58)

For the 2 dimensional case, shown in fig. 3.3, that adds up to NTot = 82 + 2×
4× 8 = 128.

3.3.8 Several subdomains

In the case where we introduce several subdomains, in addition to storing the
grid values and the ghost points we also need to store an overlap between the
subdomains. If we take our whole domain Ω and divide in up into several small
domains ΩS, the smaller domains only takes a subset of the grid points. For
simplicity, and for equal load on processors, we let the subdomains as well be
regular, with the whole domain being a multiple of the subdomains. Our whole
domain has N grid points in each direction, if we then divide that domain into
#Ω domains, then each of those subdomains will have NS = Nd/#Ω grid points.
Each of those subdomains will also need values representing the ghost points and
overlap from the neighboring nodes. A boundary of a subdomain will either have
overlap points, or ghost points, not both at the same time so for each boundary
we need to 1 layer, Nd−1

S . Each subdomain will have 2 boundaries per dimension
since we have regular subdomains. The total number of grid points needed per
subdomain is then

NTot,S = Nd
S + (NG +NO) = Nd

S + 2dNd−1
S (3.59)

Section 3.4 Boundary conditions 37

while the total number of grid points is

NTot = #ΩNTot,S (3.60)

For the 2 dimensional case discussed earlier we need NTot,S = 42 +2×2×41 =
32. Since the effect of the subdomain boundaries increases the coarser the grid
is, we should not let the coarsest multigrid level be too small. We also don’t need
the spatial extent of the grid to be equal on all sides, but it was done here to
keep the computations simple.

3.4 Boundary conditions

A simulation must necessarily have finite extent, we need to employ boundary
condtions to deal with the edges of the simulation. Here we will go through 3 dif-
ferent schemes corresponding to periodic boundaries, depicted in fig. 3.4, Dirich-
let conditions and von Neumann conditions. Periodic conditions used when we
want to simulate an infinite plasma sheet. It is usually used when the plasma
sheet is of a much larger extent than the length scale of the phenomena we want
to investigate, or when the investigated dynamics happen away from the edges.
Dirichlet conditions are useful when the voltage on the edge of the simulation
can be known beforehand, as it is often in laboratory experiments. When the
electric field, or alternatively gradient of the voltage, along the edges is known
von Neumann conditions should be used. The boundary conditions must also be
coupled with fitting boundary conditions applied to the particles in a full PiC
simulation. Particle conditions include periodic, bouncing and absorbing bound-
aries. To maintain the design aim of inherent modularity of our PINC model,
the boundary conditions are defined using ghost points, avoiding different dis-
cretization stencils at the boundary. This reduces the complexity the smoothers,
makes the boundary conditions easier to implement and opens the possiblity of
using them with other solvers.

3.4.1 Periodic Boundaries

With periodic boundary conditions we want the boundary on one side to be equal
to the field on the other side of the plasma. For the 1D case, see fig. 3.4b, this
can be written as

∇2φ = −ρ Ω = [0, L] (3.61)

With boundaries

φ(0) = φ(L) (3.62)

38 Method Chapter 3

00 10 20 30 40 50 60 70 80 90

01

01

03

04

05

06

07

08

09 19 29 39 49 59 69 79 89

91

91

93

94

95

96

97

98

99

11

12

13

14

15

16

17

18

21

22

23

24

25

26

27

28

31

32

33

34

35

36

37

38

41

42

43

44

45

46

47

48

51

52

53

54

55

56

57

58

61

62

63

64

65

66

67

68

71

72

73

74

75

76

77

78

81

82

83

84

85

86

87

88

(a) The grid points needed for an 8 × 8 domain.

11

12

13

14

21

22

23

24

31

32

33

34

41

42

43

44

00 10 13 30 40 50

15 15 35 45 55

01

02

03

04

05

51

52

53

54

51

52

53

54

61

62

63

64

71

72

73

74

41

42

43

44

40 50 60 70 80 90

45 55 65 75 85

41

42

43

44

91

92

93

94

95

15

16

17

18

25

26

27

28

35

36

37

38

45

46

47

48

04

05

06

07

08

09

54

55

56

57

58

14 24 34 44

19 29 39 49 59

55

56

57

58

65

66

67

68

75

76

77

78

85

86

87

88

44

45

46

47

48

49

85

95

96

97

98

99

54 64 74 84

49 59 69 79 89

(b) The 8 × 8 grid divided into 4 subdomains

Figure 3.3: Each circle in the figures represents 1 grid point, and the first
number is the column while the second is the row. The grey colour represents
physical space the computational node works on, the blue color is the outer
grid points for boundary conditions and the red colour is the overlapping grid
points.

Section 3.4 Boundary conditions 39

1 2 3 4 5 6 70 8

(a) A 1 dimensional domain with grid points before the boundary conditions
has been applied. The numbers denote the indexes for the values in the grid
array. The blue grid points, (1 − 7) represents the true grid and the grey
points, (0 and 8), is the ghost cell values. The concepts illustrated here can
easily be expanded to more dimensions.

1 2 3 4 5 6 77 1

(b) Here periodic boundary conditions has been applied to the 1D domain
above. Here and in the following the red color means a point has been changed.
The ghost points at the edges has been set to equal the true grid points at the
opposite edge giving periodic boundary conditions.

1 2 3 4 5 6 7f0 f8

(c) For Dirichlet boundary conditions we have predetermined values along the
edge, this are here represented as the ghost cells being set to a given value
defined by ∂Ωi. The boundary function can be as simple as setting everything
along the edge to a constant, but it could also be a spatially and time varying
function. It is also possible to let it correspond to input given by coupled
computer model.

1 2 3 4 5 6 7f0 f8

(d) Von Neumann boundary conditions specifies what the derivative is on the
edge. To achieve that we set the ghost points to a specified value that will
give the wanted derivative when a finite difference method swipes over the
point. For the left side the function should be set to f0 = u2 − 2∆xA and to
f8 = u6 − 2∆xA for the right side. Here A is the predetermined values that
the derivative should correspond to.

Figure 3.4: An overview of 3 boundary conditions applied to a 1D domain.

40 Method Chapter 3

Here we should note that this is very similar to what happens between the
subdomains in a Domain Partitioning parallelization scheme, so often the same
algorithm and code can be reused to achieve periodic boundary conditions.

Solutions for the continuous problem with periodic boundary conditions exist
only if the compatibility condition (Trottenberg et al., 2000)∫

Ω

ρdx = 0 (3.63)

is held. This means that the total charge in the domain must be zero, which
is often true in plasma due to quasi-neutrality.

To ensure a unique discretized solution, one needs to set the integration con-
stant. This can be done by setting a global constraint on the solution∑

Ω

φ = 0 (3.64)

3.4.2 Dirichlet Boundaries

With Dirichlet conditions the boundaries of the potential are known and given
by a function, ∂φ = f . Then a 1D problem, fig. 3.4c , is represented by

∇2φ = −ρ Ω = [0, L] (3.65)

with boundaries
φ(0) = f(0), f(L) = f(L) (3.66)

3.4.3 von Neumann Boundaries

Let us assume that we know the gradient of the potential along the boundary,
∇φ∂Ω = f . This is often used in hydrodynamics to represent reflecting bound-
aries. Then our 1D example problem will look like

∇2φ = −ρ Ω = [0, L] (3.67)

with boundaries
∂φ(0) = f(0), ∂φ(L) = f(L) (3.68)

The boundary condition is then stated as a gradient and we need to approxi-
mate it to φ to use it in the Poisson equation, eq. (3.67). We do this by the 2nd
order central difference to the gradient.

∂φ(x)

∂x
=
φ(x+ ∆x)− φ(x−∆x)

2∆x
= f(x) (3.69)

At the lower boundary, x = 0, this can then be written as

φ(−∆x) = φ(∆x)− 2∆xf(0) (3.70)

Section 3.4 Boundary conditions 41

and at the upper

φ(L+ ∆x) = φ(L+ ∆x)− 2∆xf(L) (3.71)

With our discretization, where the internal cell sizes are 1, the φ(−∆x) corre-
sponds directly to a ghost cell. So we can implement the von Neumann boundary
conditions easily by setting the ghost cells equal to eqs. (3.70) and (3.71), see
fig. 3.4d. This scheme completely avoids any modification of the smoother stencils
at the boundaries.

3.4.4 Boundaries in Multigrid

The multigrid algorithm solves the problem on several discretization levels. Due
to this we need to represent the boundaries on the coarser grid levels as well.

Periodic

Since the periodic boundary conditions can be thought of to set the domain next
a copy of itself the boundary treatment will remain equal on the coarser grids. It
should also be mentioned that the global constraint, eq. (3.64), only needs to be
set on the coarsest grids to achieve good convergence rates (Trottenberg et al.,
2000).

Dirichlet

The Dirichlet condition specifies the potential at the boundaries. Since the con-
ditions should apply to the problem at all coarseness levels, we need a restriction
operator specific to the boundary.

The easiest boundary restriction operator is direct injection, letting each
coarse grid point correspond to a grid point on the boundary of the finer grid.
This is often sufficient, especially in the case of spatially constant boundaries.
If the boundaries are constant in time, the computing time can be saved by
computing the boundaries for all levels once at the start of the simulation.

If the boundaries are more complicated first or second order interpolation
could be used to restrict them.

von Neumann

The von Neumann conditions are dependent on the next to outermost grid point,
i.e. grid point 2 in fig. 3.4d on the lower side, because of this they will have to be
recomputed each time they are used. But still the function f should be restricted
seperately from the finer grid restriction.

42 Method Chapter 3

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

D D D D D D D D

D D D D D D D D

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

x

y

Figure 3.5: This is a 2D domain with mixed boundary conditions, along
the x-axis there are periodic boundary conditions, green ghost points, and
the y-axis there are Dirichlet boundary conditions, red ghost points. If the
smoothers are using a 5 point discretization stencil the corners, grey diamonds,
are neglected when computing the inner, i.e. true, grid.

3.4.5 Mixed Conditions

All the boundary conditions can be implemented with the use of ghost cells, this
enables the use of the 7-point in 3D (and 5 pint in 2D), stencil for the smoothers.
This greatly simplifies mixed boundary conditions, the boundaries are set on the
ghost layer of the grid seperately, then the smoother runs. Here it should be
noted that the boundaries need to be reset for each halfcycle in GS-RB.

As can be seen in fig. 3.5 we do not have to care for the corners of the domain,
as long as we are using a 7-point stencil. This allows us to not need to care of
which boundary conditions takes precedence when they clash. For a higher order,
or different, stencils the corner ghost cells may be important and the mixing of
boundary conditions need to be given extra care.

Section 3.5 Parallelization 43

3.5 Parallelization

For the parallelization of an algorithm there are two obvious issues that need to
be addressed to ensure that the algorithm retains a high degree of paralleliza-
tion; communication overhead and load imbalance (Hackbusch and Trottenberg,
1982). Communication overhead means the time the computational nodes spend
communicating with each other, if that is longer than the actual time spent com-
puting the speed of the algorithm will suffer, and load imbalance appears if some
nodes need to do more work than others causing some nodes to stand idle.

Here we will focus on multigrid of a 3D cubic grid, where each grid level
has half the number of grid points. We will use grid partitioning to divide the
domain, GS-RB (Gauss-Seidel Red-Black) as both a smoother and a coarse grid
solver.

We need to investigate how the different steps: interpolation, restriction,
smoothing and the coarse grid solver, in a MG algorithm will handle the paral-
lelization.

3.5.1 Grid Partition

There are several well explored options for how a multigrid method can be paral-
lized, for example Domain Decomposition (Arraras et al., 2015), Algebraic Multi-
grid (Stüben, 2001), see Chow et al. (2006) for a survey of different techniques.
Here we will focus on Geometric Multigrid (GMG) with domain decomposition
used for the parallelization, as described in the books Trottenberg et al. (2000)
and Hackbusch and Trottenberg (1982).

With the domain partitioning we divide the grid into geometric subgrids, then
we can let each processes handle one subgrid each. As we will see it can be useful
when using the GS-RB smoothing, as well as other parts of a PiC program, to
extend the subgrids with layers of ghost cells. The GS-RB algorithm will directly
need the adjacent nodes, in its neighbour subdomain.

3.5.2 Distributed and accumulated data

One possible strategy to implement a parallel multigrid solver is to keep some of
the quantities distributed, i.e. they are only stored locally on the local computa-
tional nodes, while the other are accumulated and shared between the nodes. In
PINC the accumulated quantities are all stored only locally, but the processors
obtain the needed information from the nearby subdomains when needed. Below
follows an overview of which quantities need only be accessed locally and which
need a global presence during a parallel execution of the code.

44 Method Chapter 3

u solution (Φ)
w temporary correction
d defect
f source term (ρ)
L differential operator
P prolongation operator
R restriction operator
u Bold means accumulated vector
ũ is the temporary smoothed solution

• Accumulated quantities: uq, ûq, ũq, ŵq wq−1, P ,R

• Distributed quantities: fq, dq, dq−1

To avoid the accumulated quantities, which can cause memory issues, we have
therefore gone for a strategy where all the quantities are only locally distributed.
Instead of gathering all of the accumulated quantities, each of the subdomains
gathers only the needed part of the quantities from its neighboring subdomains.
With this strategy the local memory needs should not increase as the number of
processors grow.

3.5.3 Smoothing

We have earlier divided the grid into subgrids, with overlap, as described in
subsection 3.5.1 and given each processor responsibility for a subgrid. We broadly
follow the algorithm in M. F. Adams, 2001. A GS-RB algorithm start with
a guess, or approximation, of the solution uni,j. Then we will obtain the next
iteration by the following formula, for a 2D case,

un+1
i,j =

1

4

(
uni+1,j + un+1

i−1,j + uni,j+1 + un+1
i,j−1

)
− ∆2ρi,j

4
(3.72)

We can see that for the inner subgrid we will have no problems since all
the surrounding grid points are known. On the edges we will need the adjacent
grid points that are kept in the other processors. To avoid the algorithm from
asking neighboring subgrids for adjacent grid points each time it reaches a edge
we instead update the entire neighboring column at the start. So we will have a
1-row overlap between the subgrids, that needs to be updated for each iteration.

3.5.4 Restriction

For the transfer down a grid level, to the coarser grid we will use a half weighting
stencil. In two dimensions it will be the following

Section 3.5 Parallelization 45

R =
1

8

0 1 0
1 4 1
0 1 0

 (3.73)

With the overlap of the subgrids we will have the necessary information to
perform the restriction without needing communication between the processors
(Hackbusch and Trottenberg, 1982).

3.5.5 Interpolation

For the interpolation we will use a bilinear interpolation stencil, which for 2
dimensions is:

P =
1

4

1 2 1
2 4 2
1 2 1

 (3.74)

Since the interpolation is always done after GS-RB iterations the outer part
overlapped part of the grid updated, and we can have all the necessary informa-
tion. We note again that the is N-dimensional and the stencils are different for
the 1D, 2D and 3D cases. However for clarity we present here a 2D case.

3.5.6 Scaling

Volume-Boundary effect

While a sequential MG algorithm has a theoretical scaling of O(N) (Press et al.,
1988), where N is the number of grid points, an implementation will have a
lower scaling efficiency due to interprocessor communication. We want a parallel
algorithm that attains a high speedup with more added processors P , compared
to sequential 1 processor algorithm. Let T (P) be the computational time needed
for solving the problem on P processors. Then we define the speedup S(P) and
the parallel efficiency E(P) as

S(P) =
T (1)

T (P)
E(P) =

S(P)

P
(3.75)

A perfect parallel algorithm would the computational time would scale in-
versely with the number of processors, T (P) ∝ 1/P leading to E(P) = 1. Due
to the necessary interprocessor communication that is generally not achievable.
The computational time of the algorithm is also important, if the algorithm is

46 Method Chapter 3

Cycle Sequential Parallel
MG V O(N) O(logN log ε)

W O(N) O
(√

N
)

FMG V O(N) O
(
log2N

)
W O(N) O

(√
N logN

)
Table 3.1: The parallel complexities of sequential and parallel multigrid
cycles.

very slow but has good parallel efficiency it is often worse than a fast algorithm
with a worse parallel efficiency.

The parallel efficiency of an algorithm is governed by the ratio between the
time of communication and computation, Tcomm/Tcomp. If there is no need for
communication, like on 1 processor, the algorithm is perfectly parallel efficient.
In our case the whole grid is diveded into several subgrids, which is assigned to
different processors. In many cases the time used for computation is roughly
scaling with the number of interior grid points, while the communication time
is scaling with the boundaries of the subgrids. If a local solution method is
used on a local problem it is only the grid points at the boundary that need the
information from grid points on the other processors. Since the edges have lower
dimensionality than the inner grid points, the boundary grows slower than the
inner domain. As the size of the subdomains is increasing, the computational
time increases faster than the time for communication. This causes a parallel
algorithm to often have higher parallel efficiency on a larger problem. This is
called the Boundary-Volume effect (Trottenberg et al., 2000).

Parallel complexity

The computational complexity of sequential and parallel MG cycles are calculated
in Hackbusch and Trottenberg (1982) and are shown in table 3.1. In the table we
can see that in the parallel case there is a substantial increase in the complexity
in the case of W cycles compared to V cycles. In the sequential case the change
in complexity when going to a W cycle is not dependent on the problem size,
but it is in the parallel case.

3.5.7 Updating the Halo

All of the subgrids have a halo of ghostslayers around it, which is used to sim-
plify boundary conditions and subdomain communication. Each computational
node represents a subdomain of the whole, with the neighboring node being the
boundary. So between two subdomains each subdomain updates the boundary
according to the neigbouring subdomain. In addition the halo is used to facilitate

Section 3.5 Parallelization 47

boundary conditions on the whole domain. For some of the grid operators the
ghost are not used, while some of them need updated values. All of the iterative
solvers, that are used for smoothing, need updated values of the solution, φ. The
prolongation and residual operators need updated values for the solution φ, and
the restrictor need updated residual values, ρ, as long as direct insertion is not
used. We also need to take into account that the smoothers outputs an updated
halo for φ, to avoid unnecessary communication between the processors.

Chapter 4

Implementation

Presently PINC is not publicly available, contact 4DSpace at UiO for access1.
The model has been implemented in the language c, and is the common git
repository within 4DSpace strategic Research Initiative at the University of Oslo.
The module for the Poisson solver is about 2000 and is a part of the PINC
code which is still under development. For this reason the code is not explicitly
included in this thesis. However once the code is completed it will be released
publicly.

4.1 Implementation

In general there are 4 different quantities, that we need to keep track of: the
source, the solution, the residual and the correction. On each grid level the
residual is computed, then it is set as the source term for the next level and then
it is not used anymore. The correction,which is the improvement to the finer grid,
is only used when going to a finer grid. Due to this we can save some memory by
letting the correction and the residual share the same memory, so both are stored
in the same structure. There is a regular as well as a recursive implementation
of the V-cycle, see fig. 4.1. The functions take the current level, the bottom of
the cycle as well as the end point of the cycle. Thus, several different cycles can
be built from the functions. A W cycle, see section 3.3.2, can be built from a
V cycle that starts at the finest level and stops at a mid level, and then a new
V-cycle is started at the mid level that ends at the finest level. A full multigrid
algorithm (FMG) can also be implemented by first restricting the original source
term down to the coarsest level and then run a V-cycle that ends at the finest
level. The choice between different cycles can be selected in the input file of
PINC, and more type of cycles can easily be constructed if needed.

The regular V cycle algorithm is quite straightforward, first it computes the
residual and restrict it down to the bottom level, then it solves it directly on the

1www.mn.uio.no/4dspace

49

50 Implementation Chapter 4

HaloBnd(φ)

Smooth(φ, ρ)

Halo(ρ)

Residual(res, φ, ρ)

Restrict(res, ρ)

Halo(ρ) Smooth(φ, ρ) HaloBnd(φ) Prol(ρ)

Sub(φ, res)

HaloBnd(φ)

Smooth(φ)

Prolongate(res, φ)

Figure 4.1: The functions used in 2 grid deep multigrid. The algorithm
follows the steps needed for a complete V cycle.

bottom level. Then the correction is brought up and improved through the grid
up to the top level. See ?? for an example code.

The recursive algorithm uses an algorithm similar to the one described in
section 3.3.2. First it computes the steps necessary so the grid below has an
updated source term, then it calls itself on a lower level. After receiving the
correction from the lower level it is improved and sent to the level above. If
the function is at the bottom level, it solves the problem directly and sends the
correction up.

It should also be mentioned that there are both 3-dimensional algorithms, as
well as a set of recursive N -dimensional algorithms that are built to handle 2−
and 1−dimensional simulations. The N−dimensional algorithms were easier to
maintain than seperate algorithms for 1 and 2 dimensions.

4.2 Restriction

In our implementation we first cycle through all of the true coarse grid points,
then the two main tasks are to find the specific fine grid point corresponding
to the specific coarse grid point, and finding the indexes of the fine grid points

Section 4.4 Prolongation 51

surrounding the grid point.
Since the values in both grids are stored in the first order lexicographical

array, we should treat the grid points in the same fashion, so the values are
stored close to each other in the array. The first dimension is treated first, then
the next dimension is incremented followed by treating the first dimension again,
then increment the next and so on. The finer grid has twice the resolution of the
coarser grid one level below, so for each time the coarse grid index is incremented,
the fine grid index is incremented twice.

Along the x-axis each incrementation is by the number of values stored in
the grid, which for scalars is 1, and 2 for the fine index. The fine index will in
addition need to skip 1 row each time, each time the y-axis is incremented, due
to the finer resolution and 1 layer each time the z-axis is incremented.

At the edges of the grid we have ghost layers, which have equal thickness
for both the grids, so the coarse grid needs to be incremented over the ghost
values, in the x-direction, each time y is incremented. When z is incremented the
index needs to skip over a row of ghost values. The fine index follows the same
procedure as the coarse index when dealing with the ghost layers.

When correct fine grid index is found, corresponding to a coarse grid index,
the stencil needs to be applied around that grid value. This is done by first
calculating the index of the first coarse and find indexes and setting the correct
indexes for the surrounding grid values, then the surrounding grid indexes can be
incremented exactly as the fine grid index and they will keep their shape around
the fine grid index. Since our indexes in x, y and z are labeled j,l,k, the next
value along the x-axis is labeled ’fj’ and the previous is labeled ’fjj’. The coarse
and fine grid indexes are label ’c’ and ’f’ respectively.

4.3 Prolongation

The algorithm implemented for the interpolation is based on the method, de-
scribed in Press et al. (1988), has the following steps, which is also shown for a
2D case in fig. 4.2.

1. Direct insertion: Coarse→ Fine

2. Interpolation on highest Dimension: f(x) = f(x+h)+f(x−h)
2h

3. Fill needed ghosts.

4. Interpolation on next highest Dimension

The interpolation should always first be done on the highest dimension, be-
cause the grid values are stored further apart along the highest axis in the mem-
ory, and the each succesive interpolation needs to apply to more grid points.

52 Implementation Chapter 4

(a) Direct insertion (b) Swapping X-Dim ghosts

(c) Y-swipe
Lazy fix

(d) Swapping Y-ghostlayer and X-
swipe

Figure 4.2: This figure shows the steps in computing the prolongation stencil
in an [8 × 8] grid. First a direct insertion from the coarse grid is performed
(4.2a), followed be filling the ghostlayer perpendicular to the x-axis from the
neighbouring grid (4.2b). Then a swipe is performed in the y-direction filling
the grid points between, taking half the value from the node above, and half
from the node below (4.2c). Then a ghost swap is performed before doing a
swap in the x-direction (4.2d).

Section 4.4 Smoothers 53

4.4 Smoothers

Jacobi’s method

The implementation of the Jacobian algorithm, which was described in sec-
tion 3.3.3, is straightforward, but it has the downside of slow convergence and bad
smoothing properties, in addition to the need of additional grid values. When
φn+1
i is computed we need access to the previous value φn

i−1, so either the previ-
ous values need to stored seperately, or φn+1

i can be computed on a new grid and
then copied over after completing the cycle. In this implementation we computed
the solution on a temporary grid and then copied over, since it was mostly for
debugging purposes in the early development, and efficiency was not a concern.

The computation is done by starting at index g = 0, computing the surround-
ing grid indexes, gj, gjj, ..., where gj is the next grid point along the x-axis, and
gjj is the previous value. Then the entire grid is looped trough over, increment-
ing both g and the surrounding grid indexes gj, gjj, The computation on the
ghost layers will be incorrect but those will be overwritten when swapping halos.
As mentioned Jacobi’s method was used for development and testing, but in the
final version we use the Gauss-Seidel Red and Black ordering.

Gauss-Seidel Red and Black

In the implementation of Gauss-Seidel algorithm we use a clever ordering of the
computations, called Red and Black ordering, both to increase the smoothing
properties of the algorithm as well as avoiding creating a temporary grid to store
φn+1 in. Every grid point where the indexes sum up to an even number is labeled
a red point and the odd index groupings are labeled black points, see fig. 4.3a.
Then each red point is directly surrounded by only black points and vica versa.

A cycle is then divided into 2 halfcycles, where each halfcycle computes φn+1

for the red and black points respectively.

1. for(int c = 0; c < nCycles; c++)

• Cycle through red points and compute φn+1

• Swap Halo

• Cycle through black points and compute φn+1

• Swap Halo

For the 2 dimensional case the iteration is done first for the odd rows and
even rows seperately, due to the similarity between all the red points in the odd
rows, and between the red points in the even rows. Then the cycling could be
generalized into a static inline function used for all the cycling.

54 Implementation Chapter 4

(a) This figure shows the Red and
Black ordering, utlized by the GS-RB
algorithm. Each color is done seper-
ately.

For the 3 dimensional case there are two different approaches to the problem,
one where the iteration through the grid is streamlined, but needs several loops
through the grid to take care of a subset of the grid points each loop. The other
algorithm uses one loop through the grid, with different conditions on the edges
to make it go through the correct grid points in each line.

When the loops are streamlined the edges the loop go through the entire
grid, but when it reaches and edge in it either needs to add or subtract 1 to the
iterator index. In we want to do a red pass, computing all the red values, the grid
is cycled through increasing by 2 each time. Then it will access up the indexes,
36, 38, 40, 42, · · ·. In the second row we want it to use the index 43, instead of
42, so we need to increase it by 1 when it reaches the edge. When it reaches the
end of the second line, we want it to increase from 47 to 48, so then we need to
subtract 1. In the next layer we need to shift the behaviour on the edges to the
opposite.

.
48 49 49 50 51 52
42 43 44 45 46 47
36 37 38 39 40 41

In the other implementation I tried something similar to the 2D implementa-
tion, where it does several loops through the grid, computing an easier subgroup
of the red nodes each time, so the iteratior index can increase by just to each time.
So for the red points it computes the odd and even layers and rows seperately.

• Compute Odd layers, odd rows

• Compute Odd layers, even rows

Section 4.5 Implementation of Boundary Conditions 55

• Compute Even Layers, odd rows

• Compute Even layers, even rows

4.5 Implementation of Boundary Conditions

Since the subdomains already need to exchange the halo, we already had made a
suite of function dealing with halo-operations. These functions can get, set, add,
etc. N-dimensional slices from the halo. As can be seen in ?? this is quite similar
to the needs of the varying boundary conditions and we will reuse this capability
during the implementation of boundary conditions. In addition we will also need
methods to restrict the part of the conditions that need to be restricted. Here we
will only deal with time-invariant boundary conditions so they can be set, and
restricted, once during initializations of the grids. It should be easy to expand it
to time varying conditions, just restrict the boundary function each timestep.

In general the condition types are stored as a 2−dimensional array, in the
order xlow, xupper, ylow, Each time the boundary conditions function is called it
checks if each subdomain edge is at the total domain boundary. Since the outer
subdomains need to do extra computations here, it shouldn’t matter if the inner
subdomains do some extra calculations. If the subdomain boundary is at the
boundary it calls the a function depending on which boundary type the edge is.

4.5.1 Restriction

For now we have choosen to use straight injection, since we will not use any
complicated boundary conditions in this project, other developers are welcome
to expand it by more restriction algorithms.

4.5.2 Periodic

The periodic boundary conditions are just the same procedure as the halo ex-
change. To try too keep an even load, between the computational nodes, the
halo exchange is also done between the the boundary subdomains.

To keep the convergence rate good we also need to keep the global constraint
and compatibality condition in mind, see section 3.4.1. For this we have a N-
dimensional parallel algorithm that neutralizes a grid. This adds up the values
from all the subdomain and makes sure the total of the values is 0.

4.5.3 Dirichlet

Given that we have a slice, representing the dirichlet conditions on the relevant
edges, the conditions are easily set by the use of slice-operations. The outermost
slice, i.e. ghost layer, is set to be equal to the boundary slice.

56 Implementation Chapter 4

4.5.4 Neumann

Neumann conditions are dependent the outer edge of the true domain, due to this
they need to be reset at the finest level for each timestep and restricted down.
Elsewise they are handled as the Dirichlet conditions.

Chapter 5

Verification and Performance

5.1 Verification

In this chapter we will go through different methods we used to test and verify
the multigrid solver, as well as scaling measurements. Modular parts of the solver
is tested with unittests where feasible. In addition the whole solver is tested with
both analytically solvable test cases and randomly generated fields.

We also investigate the performance and scaling of the solver in the parallel
environment. This is to obtain a better understanding of how the field resolu-
tion can be scaled up without hampering the perfomance of the particle-in-cell
simulation to much. We are interested in both how well the solver performs on
a larger number of processors, as well as the perfomance impact of the different
parameters in the solver.

5.1.1 Error Quantification

In order to evaluate solutions we will primarily look at the normalized 2-norm
of the error, eq. (5.1), and the residual, eq. (5.2). The ‖e‖2 is computed from

comparing the numerical solution φ̂ to the analytical solution φ and normalized
with regards to the number of grid points, N . The residual is found by inserting
the numerical solution into the Poisson equation, the remaining part is then
the residual, and shows the difference of the current numerical solution and the
optimal numerical solution.

‖e‖2 =

√√√√∑(
φ̂− φ

)2

N
(5.1)

r̄ =
1

N

(∑
i

∇2φ̂i + ρi

)
(5.2)

57

58 Verification and Performance Chapter 5

5.2 Multigrid Solver

To test the solver itself we employ a couple of different techniques. For the main
test we use a charge distribution with known analytical solution, and we then
compare the numerical solution to the analytical solution.

Since constructed solutions can often behave too nice, we will also perform
another test with a randomized charge distribution, here we will only look at
the residual since we cannot compute the error due to not having an analytical
solution. We expect the residual to approach 0.

Lastly we perform a few run on identical charge distributions, domain subdi-
visions and compare the solutions.

5.2.1 Analytical Solutions

We use a few different constructed charge density fields, which are analytically
solvable, to test the performance and correctness of the solver. All the simulations
here are ran on a grid of the size 128, 64, 64 divided into 1, 2, 2 subdomains, with
PINC version 36ad. It uses 5 cycles when presmoothing, solving on the coarsest
grid and postsmoothing, the MG solver is instructed to run for 100 MG V-cycles
with 2 grid levels.

Sinusoidal function

A sinusoidal source term, ρ can be useful to test the solver since it can be con-
structed to have very simple derivatives and integrals. Here we use a sinusoidal
function that has two positive maxima and two negative maxima over the total
domain. We want the sinus function to go over 1 period over the domain, so we
normalize the argument by dividing the grid point value, xj, yk, zl, by the domain
length in the direction, Lx, Ly, Lz.

ρ(xj, yj, zl) = sin

(
xj

2π

Lx

)
sin

(
yk

2π

Ly

)
(5.3)

A potential that fits with this is:

φ(x, y, z) = −
(

2π

Lx

)2(
2π

Ly

)2

sin

(
xj

2π

Lx

)
sin

(
yk

2π

Ly

)
(5.4)

Fig. 5.1 shows the results from running the MG-solver on the test sinusoidal
test case described here. As can be expected the potential mirrors the charge
distribution, except with an opposite sign and a larger amplitude. A decently
large grid was simulated and the mean residual was found to be: r̄ ≈ 0.031.

Section 5.2 Multigrid Solver 59

0 20 40 60 80 100 120
x

0

20

40

60

80

100

120

y

ρ

0.96

0.72

0.48

0.24

0.00

0.24

0.48

0.72

0.96

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

Numerical φ

200

150

100

50

0

50

100

150

200

0 20 40 60 80 100 120
x

0

20

40

60

80

100

120

y

Res

0.12

0.09

0.06

0.03

0.00

0.03

0.06

0.09

0.12

Figure 5.1: The x, y-plane is depicted from the grids cut along zl = 32,
from the sinusoidal test case described in section 5.2.1. The top plot shows
the charge distribution, the center plot shows the numerical solution of the
potential and the bottom plot depicts the residual. All the quantities are in
normalized dimensionless units. x, y and z are given in grid points.

60 Verification and Performance Chapter 5

Heaviside Function

The solver is also tested with a charge distribution described by a Heaviside
function. This is also suited to testing since the charge distribution is then
constant planes, and we expect second order polynomial when integrating them.
In the test case there are two planes with the value −1 and two planes with 1.
In fig. 5.2 the test case, as well as the solution and residual is shown, and we can
see the polynomials in the solution. The mean residual r̄ was 0.0068.

ρ(xj, yk, zl) =

{
1 yjε(0, 32), (64, 96)

−1 yjε(33, 65), (97, 127)
(5.5)

5.2.2 Random Charge distribution

To ensure that the solver performs well for less regular charge distributions,
we carry out a test with randomized charge distribution. We use a standard
random number generator from the gnu scientific library. Fig. 5.3 shows the
charge distribution, numerical potential and the residual for this case. The mean
residual was found to be r̄ ≈ 0.0039, which is even smaller than for other more
regular cases. This confirms that the solver performs well and accurately.

5.2.3 Additional Tests

In addition to the tests on shown in this section, we also ran the same tests
obtaining similar results on various sizes and directions. Since we wanted to
be sure that the program was working independently of the how the domain
was divided into subdomains, we also performed tests on different subdomain
divisions. There were no difference between different subdivisions and directions,
which confirms that the merging between subdomains works well. These results
are not shown here.

5.2.4 ND vs 3D algorithms

PINC is built to have two sets of algorithms, one N-dimensional and one 3-
dimensional. The N-dimensional algorithms is meant to be used in cases where
one want to do 1- and 2-dimensional simulations as well as a test for the 3-
dimensional algorithm. The 3-dimensional algorithm is generally slightly faster
than the N-dimensional due to some extra capabilities in hardcoding certain
parts. On a laptop, using two ’Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz’
processors, we ran the multigrid solver on a 128, 128, 128 size problem, with
both the 3D and ND algorithms. The ND algorithms used 80.08s to solve it to
the given tolerance, while the 3D algorithms used 78.75s achieving only a slight

Section 5.2 Multigrid Solver 61

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

ρ

0.96

0.72

0.48

0.24

0.00

0.24

0.48

0.72

0.96

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

φ̂

500

375

250

125

0

125

250

375

500

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

res

0.0000020

0.0000015

0.0000010

0.0000005

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

Figure 5.2: As earlier this is a x, y-plane cut along xk = 32, of the grid. The
plots show the charge distribution, numerical solution and the solution, from
left to right. This is a test case constructed with Heaviside functions. In the
solution of the potential the expected second degree polynomial can be seen.

62 Verification and Performance Chapter 5

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

ρ

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

φ̂

3

2

1

0

1

2

3

4

0 20 40 60 80 100 120
xj

0

20

40

60

80

100

120

y k

res

0.000008

0.000006

0.000004

0.000002

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

Figure 5.3: As earlier this is a x, y-plane cut along xk = 32, of the grid. The
plots show the charge distribution, numerical solution and the solution, from
top to bottom. It is visible that the potential shows more structure than the
ρ, since the integration smooths the original problem.

Section 5.4 Scaling of the error compared to discretization 63

speedup. This is likely due to most of the computational time being spent on the
interprocessor communication.

5.3 Scaling of the error compared to discretiza-

tion

The charge density is represented on a discretized grid and due to this a numerical
solution will have an inherent error. The error will be of second order, O(h−2),
dependent on the stepssize, ∆x, due to the first order solver, see section 3.3.3.

To investigate that the error of the solver follows a second order improvement
as the stepsize decreases we construct a sinusoidal ρ as a test case.

ρ(x) = sin
(x

2π

)
; xε[0, 2π] (5.6)

This ρ is analytically solvable for the Poisson equation so we can compute the
2-norm of the error, ‖err‖2. Then we gradually decrease the stepsize and compare
the norm of numerical solutions. Since the normalization in PINC is normally
done outside the multigrid solver, rho had to be suitably scaled to the stepsize.
We expect the error to be proportional to the squared stepsize, err(h) ≈ Ch2,
where C is a constant dependent on the geometry of the problem. By taking the
logarithm we obtain

log(err(h)) = 2 log(Ch) (5.7)

Fig. 5.4 shows the the measured error when solving the sinusoidal charge
distribution, eq. (5.6), for both the potential, φ, and the electric field, Ex. The
problem was solved with different discretizations on a 3-dimensional domain,
starting at [8, 8, 8] doubling the grid points each time. The slope on the loga-
rithmic plots was in both cases found to be 2.00, showing a second order error
scaling O(h−2). The same test was also performed in 1 and 2 dimensional cases,
with varying subdomain configurations and with the sinus shape along the other
axes.

5.4 Plasma Oscillation

As a test of the validity of our PiC program, we can use the Langmuir oscillation,
described in section 2.5. This test is inspired by a case set up in Birdsall and
Langdon (2004), and modified to fit with our normalization and discretizations.
To verify that the oscillation is properly simulated we will look at oscillations in
the energy.

64 Verification and Performance Chapter 5

10-4 10-3 10-2

log∆x

10-3

10-2

10-1

100

lo
gφ

Numerical Error in Potential

10-4 10-3 10-2

log∆x

10-3

10-2

10-1

100

lo
gE

Numerical Error in Electric Field

Figure 5.4: Logarithmic plot of the 2-norm of the error of the potential φ,
top figure, and the x-component of the electric field. The solver was run on a
scaled sinus-shaped charge distribution. Both of the plots show a straight line
of the error, on the logarithmic plots, with a slope of 2.00. This corresponds
to the error scaling with order −2 as a function of the stepsize as expected.
All the units are in PINC normalized units.

Section 5.4 Plasma Oscillation 65

5.4.1 Input parameters

Timestep

First we need to ensure that the simulation does not violate the time- stability
criterion, section 3.1.3, ∆t ≤ 2ωpe. For computational reasons each particle in
the program represents many real particles and we can adjust the number, of real
particles represented, to ensure that the electron plasma frequency is 1.

ω2
pe =

nq2
e

mε0
=

(
N

V

)(
qe∗
me∗

)
qe∗ (5.8)

Here (N/V) is just the number of electron super-particles divided by the
volume, qe∗ and me∗, represent super-particles and need to be multiplied by the
number of particles in a super-particle, κ.

ω2
pe =

(
N

V

)(
e

me

)
κe (5.9)

Since we want the electron plasma frequency to be 1, κ is set to

κ =
V me

Ne2
(5.10)

Now the time is given in units of ωpe and we use ∆t = 0.2 < 2 easily.

Spatial-step

The spatial step need to satisfy the finite grid instability condition, ∆x < ςλDe,
section 3.1.3. We use a similar procedure as in normalizing the time with regards
to ωpe to normalize the length with regards to λDe. The we end up with the
temperature, or its other representation as thermal velocity, as the parameter we
can adjust to make sure that it satisfies the condition.

λ2
De =

ε0kTe
nq2

e

(5.11)

Simulation

We ran a simulation for 10ω−1
pe , on a 64, 64, 64 size grid. The particles were first

randomly distributed and given a Maxwellian velocity distribution. Then they
were slightly perturbed to create an imbalance.

The simulation was set to run for 100 timesteps, where each timestep repre-
sents 0.1ω−1

pe .

τp ≡ 2π/ωpe (5.12)

Using the plasma period this gives 10/2π ≈ 1.6 periods.

66 Verification and Performance Chapter 5

Size Stepsize Timestep #Particles per cell vth (electrons, ions)
(64, 64, 64) 0.2 0.1 64 0.002, 0.00046

Table 5.1: Key settings for the Langmuir wave oscillation. The complete
settings are stored as an input file, langmuirWarm, in the PINC directory.

0 20 40 60 80 100
∆t

0

1

2

3

4

5

En
er

gy

EP

EK

ETot

Figure 5.5: This shows the time-evolution of the energy in an perturbed
plasma. The energies are in normalized units and ∆x = 0.1λDe. The total
energy has a maximum variation of 0.22%. In the timespan of 10ωpe the
plasma oscillates over 1.6 times.

Section 5.5 Performance 67

The section 5.4.1 shows the energy fluctuations for a plasma oscillation, the
total energy is stable conserved, with a maximal variation of 0.22%. The potential
energy starts large and then it sinks as the potential energy is converted to
kinetic energy. This is due to the particles attempting to neutralize the fields.
The particles overshoots equilibrium position and the kinetic energy starts to
convert back to potential energy. Thus, the PINC with the multigrid solver
developed in this thesis, can simulate collective plasma phenomena and accurately
reproduce Langmuir Oscillations, which we discussed in section 2.5 and which are
the fundamental oscillations in plasma (Pécseli, 2012; Chen, 1984).

5.5 Performance

5.5.1 Perfomance Optimizer

A multigrid solver has several parameters that needs to be set correctly for a
an optimal performance. These parameters are dependent on the problem size,
as well as the computing architecture. Instead of attempting to estimate them
beforehand we have included an external script that runs the program with dif-
ferent MG-solver settings on the wanted domain size and tries to optimize them,
see appendix B.2. The parameters it tries to change is the number of grid levels
and the cycles to run for presmoothing, postsmoothing and the coarse solver.
It should be worth it to spend some computing power, finding close to optimal
settings, prior to running a full scale simulation since the solver needs to run each
time step. The performance optimizer naively runs the solver for a predetermined
mesh of settings.

5.5.2 Convergence Rate

As an iterative solver a multigrid solver will gradually approach a solution, re-
ducing the residual further each run. In this subsection we will measure the
convergence rate, defined in similar way as in Zhukov et al. (2014),

p =

(
rm
r0

)1/m

(5.13)

where rm, r0 are the 2-norm of a the residual after m multigrid runs and the
inital residual. We presume that each run of the multigrid solver will remove a
proportion of the remaining residual. The tests are done on a sinusoidal problem
for varying grid sizes. The smoothers run for 100 cycles on each of the 5 multigrid
levels. Zhukov et al. (2014) found convergence rates, p, between 0.095 and 0.155
using a multigrid solver with a Chebyshev algorithms to smooth. While the
convergence rates found here were worse, this is to be expected with the much
simpler Gauss-Seidel smoothers.

68 Verification and Performance Chapter 5

Grid p
643 0.149
1283 0.192
2563 0.203

Table 5.2: The convergence rate for the multigrid solver, running on 5 levels.
The convergence rate becomes worse for larger grids.

5.5.3 Scaling of the MG Solver

One of the aims of building a parallell multigrid solver was to be able to enable
simulating large plasma problems. To be able to achieve that the solver should
be able to scale up very well, i.e. doubling the problem size and the number
of available processors should only give a manageable increase in computational
time. We don’t expect to be able to achieve a perfect parallelization, since there
is a certain amount of interprocessor communications necessary that will slow
down the algorithm compared to a sequential algorithm. The exact parallel
performance is also dependent on the communications channels and the topology
between the processor clusters. In section 3.5.6 the parallel complexeties for the
different multigrd algorithms is given and we will look at the parallel proprties
for a V, W and FMG algorithm.

To investigate the scaling properties we will run set up a standard problem,
and solve it with increasing resolutions. We keep the size of the domain un-
changed but increase the resolution (reducing the spacing). We start with a 323

grid on 13 computaional core, then we increase the problemsize to 643 on 23 and
so on. These tests were run on Abel, UiO’s computer cluster, and the technical
details can be found at the web page 1. The results are shown on c??. From sec-
tion 3.5.6 we expect theoretical optimal scaling of logN log ε. While this was not
achieved, the settings were not optimized in these runs, for the various problem
sizes and this may have caused it to scale worse than it should. When more pro-
cessors are used the speed of the interprocessor communcation may have slowed
down, as the processors are not part of the same node. The main problem with
the test was that the subdomains was very small so the communication costs
dominated. The communication costs scales linearly (Jung, 1997), so for the
coarse grids of the 5-level multigrid the solver scaled close to linearly.

Baker et al. (2012) found it crucial to use assumed partition to achieve good
scalability, as the interprocessor communication costs are the main obstacle to
scalability for multigrid methods. By assumed partitioning the subdomains are
divided into nearby groups to easy communication between them.

1http://www.uio.no/english/services/it/research/hpc/abel/more/index.html (Accessed
2016-11-15)

Section 5.5 Performance 69

Figure 5.6: A Langmuir Oscillation were performed for 10 timesteps with a
(32, 32, 32) grid on each processor. This was repeated with increasing amount
of processors, (1, 8, 32, 64), to see how the multigrid solver scales.

Chapter 6

Summary and Conclusion

6.1 Summary

The main object of this project was to develop a new parallel multigrid solver
for use in PINC.

The verification section goes through different ways the solver was tested. The
main tests were done on charge distributions with known analytical solutions.
The numerical solutions were confirmed to agree with the analytical solutions.
These type of tests were done for various dimensions and subdivisions of the
domain. The N -dimensional algorithms were then tested and compared with
the specialized 3-dimensional algorithms. For the chosen parameters the N -
dimensional algorithms were almost as fast as the 3D version, this may not be
true for all configurations. Unfortunately the capability of the solver to use
different boundary conditions, and mix them, was not well tested due to limited
time and debugging of PINC to make it functional. The O(h2) scaling of the 1st
order discretization of the solver was then verified by measuring how the error
decreased as the resolution increased. Next we wanted to look at the whole PINC
program. It then confirmed to work correctly with a simulation of a Langmuir
oscillation.

Since PINC is made to perform on a supercomputer we wanted to see how
well it performs and scales on a multiple processors. First we measured the con-
vergence rate of the algorithm, which was found to be between 0.149 and 0.203.
For this we used UiO’s supercomputer Abel. Due to bad choices in multigrid pa-
rameters, using 5 multigrid levels on small grids, the communication dominated
the computational time. Due to time constraints further scaling measurements
with better parameters were not conducted.

71

72 Summary and Conclusion

6.2 Concluding Remarks and Further Proposals

While the multigrid solver was shown to work and produce the correct results
the scalability was satisfactorily shown. While the program is usable and under
further development, it needs to be shown to scale well. A multigrid algorithm
based on Gauss-Seidel should scale better than the performed tests show, as
Jung (1997) showed. It should also be considered to implement the processor-
block Gauss-Seidel from M. Adams et al. (2003). Further additions to increase
the possible use of PINC include the possiblity to have objects in the plasma,
which can be used to model the effects surrounding spacecraft and dust parti-
cles (Miloch, 2010; Miyake et al., 2013; Ergun et al., 2010). Collisions between
particles will enable further studies of instabilities of plasma streams (Brackbill
et al., 1995). Another way PINC can be further developed is with full implicit
algorithms. Some of these suggestions are under planning and development.

Appendix A

Unittests

A.1 Unittests

Unittests are small tests that is used to check that the single pieces of the code
work as they should. This serves a dual purpose in developing a software project.
When a part of the code is developed it serves as a framework to create a stan-
dardized test of the piece of code that can easily be repeated. The unit tests are
not maintained in the latest version of the software. It also helps when devel-
oping the higher level algorithms, in that the unittests ensures that the problem
lies in the higher level algorithm and not in the lower level pieces it uses. When
implementing wider changes, for example datastructures, the unittests can help
making sure that the changes are not causing any unintended bugs. For infor-
mation of how to use the unittests see the documentation, documentation

A.1.1 Prolongation and Restriction

The prolongation and restriction operators with the earlier proposed stencils will
average out the grid points when applied. So the idea here is to set up a system
with a constant charge density, ρ(r) = C, and then apply a restriction. After
performing the restriction we can check that the grid points values are preserved.
Then we can do the same with the prolongation. While this does not completely
verify that the operators work as wanted, it gives an indication that we have not
lost any grid points and the total mass of the charge density should be conserved.

A.1.2 Finite difference

The finite difference operators is tested by setting up a test field based on a
polynomial on which the operator should give an exact answer for. For example
if we have a quantity f(x) = 3x, then a first order finite difference scheme will
give ∇̂f(x) = 3.

73

74 Unittests Chapter A

A.1.3 Multigrid and Grid structure

We want the basic grid to be available through a grid datastructure and the
stack of grids stored in the multigrid structure. To ensure that this will still
work through changes in the the structs there is a simple unittest that uses a
grid struct to set up a field, then it is changed in the multigrid struct. Then it
confirms that the values in the grid struct is also changed.

A.1.4 Edge Operations

In the communication between the subdomains, as well as in the treatment of
boundary conditions, there is a group of functions dealing with slice operations.
These are tested by putting assigning each subdomain different constant values,
then different slice operations is performed.

Appendix B

Scripts

B.1 PINC framework

impor t s ubp r o c e s s
impor t numpy as np

c l a s s Pinc (d i c t) :
d e f i n i t (s e l f , p i n c=” . / mpinc . sh ” ,

i n i=” langmuirWarm . i n i ” , path=” . . / . . ”) :
A l l commands w i l l be execu t ed from ”path ”

s e l f . p i n c = p in c
s e l f . i n i = i n i
s e l f . path = path

de f run (s e l f) :
cmd = s e l f . p i n c + ” ” + s e l f . i n i
f o r key i n s e l f :

cmd += ” ” + key + ”=” + s e l f . p a r s e (key)
s e l f . runCommand (cmd)

de f runCommand (s e l f , cmd) :
cmd = ”cd ” + s e l f . path + ” ; ” + cmd
subp r o c e s s . c a l l (cmd , s h e l l=True)

de f c l e a n (s e l f) :
s e l f . runCommand (”rm – f data /∗ . h5”)
s e l f . runCommand (”rm – f data /∗ . t x t ”)

de f pa r s e (s e l f , key) :
v a l u e = s e l f [key]
i f i s i n s t a n c e (va lue , (l i s t , np . nda r r ay)) :

s t r i n g = s t r (v a l u e [0])
i f (l e n (v a l u e) > 1) :

75

76 Scripts Chapter B

f o r l i n range (1 , l e n (v a l u e)) :
s t r i n g += ” , ” + s t r (v a l u e [l])

r e t u r n s t r i n g
e l i f i s i n s t a n c e (va lue , (i n t , f l o a t)) :

r e t u r n s t r (v a l u e)
e l s e :

r e t u r n v a l u e

Listing B.1: Framework to more easily run PINC with various settings

B.2 Multigrid Parameter Optimizer

from p i n cC l a s s impor t ∗
impor t s ubp r o c e s s
impor t h5py
impor t numpy as np
impor t s y s as s y s

i f (l e n (s y s . a rgv) > 1) :
path = ” . . / . . / ” + sy s . a rgv [1]

e l s e :
path = ” . . / . . / l o c a l . i n i ”

p i n c = PINC(i n i P a t h = path)

#Se t t i n g up wanted needed i n i f i l e
p i n c . mode = ”mgRun”
p i n c . mgCycles = 1
p i n c . s t a r tT ime = –1

c l a s s S e t t i n g s :
d e f i n i t (s e l f , nPre = 10 , nPost = 10 ,

nCoarse = 10 , mgLeve ls = 3) :
s e l f . nPre = nPre
s e l f . nPost = nPost
s e l f . nCoarse = nCoarse
s e l f . mgLeve l s = mgLeve ls
#Sto r e r e s u l t s
s e l f . mgCycles = 0
s e l f . t ime = f l o a t (’ I n f ’)

d e f copy (s e l f , copy) :
s e l f . nPre = copy . nPre
s e l f . nPost = copy . nPost
s e l f . nCoarse = copy . nCoarse
s e l f . mgLeve l s = copy . mgLeve l s

d e f s e tP i n c (s e l f , p i n c) :
p i n c . p r eC y c l e s = s e l f . nPre

Section B.2 Multigrid Parameter Optimizer 77

p i n c . p o s tC y c l e s = s e l f . nPost
p i n c . c o a r s eC y c l e s = s e l f . nCoarse
p i n c . mgLeve l s = s e l f . mgLeve l s
p i n c . s t a r tT ime += 1

de f fo rmatTimeCyc l e s (f i l eName , nRuns) :
data = h5py . F i l e (f i l eName , ’ r ’)
t ime = np . a r r a y (data [’ t ime ’] [nRuns , 1])
mgCycles= np . a r r a y (data [’ c y c l e s ’] [nRuns , 1])
data . c l o s e ()

r e t u r n time , mgCycles

de f nCyc l eOpt im i ze (count , nTr i e s , nRun , bestRun , cur rentRun ,
p i n c) :

pTime = f l o a t (’ I n f ’)
p r e I n c = 1
f o r j i n range (0 , nT r i e s) : #nCoarse
p r i n t ” He l l o ”
i f (count>0) :

nRun = nCyc l eOpt im i ze (count – 1 , nTr i e s , nRun , bestRun ,
cur rentRun , p i n c)

##Run , r e t r i e v e t ime and c y c l e s used
cur rentRun . s e tP i n c (p i n c)
p i n c . runMG()
time , mgCycles = formatTimeCyc le s (’ t e s t t i m e r . xy . h5 ’ , nRun)

#Check i f b e s t run
i f (t ime < bestRun . t ime) :

bestRun . copy (cu r rentRun)
bestRun . t ime = t ime
bestRun . mgCycles = mgCycles

i f (p r e I n c == 1) :
i f (t ime < pTime) :

pTime = t ime
i f (count == 2) :

cu r r entRun . nCoarse ∗= 2
i f (count == 1) :

cu r r entRun . nPre ∗= 2
i f (count == 0) :

cu r r entRun . nPost ∗=2
e l s e :

i f (count == 2) :
cu r r entRun . nCoarse ∗= 0.5

i f (count == 1) :
cu r r entRun . nPre ∗= 0.5

i f (count == 0) :
cu r r entRun . nPost ∗=0.5

78 Scripts Chapter B

p r e I n c = –1
e l s e :

i f (t ime < pTime) :
pTime = t ime
i f (count == 2) :

cu r r entRun . nCoarse ∗= 0.5
i f (count == 1) :

cu r r entRun . nPre ∗= 0.5
i f (count == 0) :

cu r r entRun . nPost ∗=0.5
e l s e :

b reak
nRun += 1

r e t u r n nRun

bestRun = S e t t i n g s ()
cu r r entRun = S e t t i n g s (10 ,10 ,10 ,5)

p i n c . c l e a n ()
nT r i e s = 100
nRun = 0
p r e I n c = 1

f o r i i n range (1) : #mgLeve ls

nRun = nCoarseOpt (nTr i e s , nRun , bestRun , currentRun , p i n c)
nRun = nCyc l eOpt im i ze (2 , nTr i e s , nRun , bestRun , currentRun ,

p i n c)

cu r r entRun . mgLeve l s += 1

p r i n t ”\nBest runt ime \ t= ” , bestRun . t ime ∗1 . e– 9 , ” s ”
p r i n t ”\nProposed run : ”
p r i n t ”mgCycles \ t= ” , bestRun . mgCycles
p r i n t ”mgLeve ls \ t= ” , bestRun . mgLeve l s
p r i n t ”nPreSmooth \ t= ” , bestRun . nPre
p r i n t ”nPostSmooth \ t= ” , bestRun . nPost
p r i n t ” nCoa r s eSo l v e \ t= ” , bestRun . nCoarse

Listing B.2: Optimizer script

B.2.1 V-cycle, code

vo i d i n l i n e s t a t i c mgVRecurs ive (i n t l e v e l , i n t bottom , i n t
top , Mu l t i g r i d ∗mgRho , Mu l t i g r i d ∗mgPhi ,

Section B.2 Multigrid Parameter Optimizer 79

Mu l t i g r i d ∗mgRes , con s t Mpi In fo ∗mpi In f o) {

// So l v e and r e t u r n at c o a r s e s t l e v e l
i f (l e v e l == bottom) {

g I n t e r a c tHa l o (s e t S l i c e , mgPhi–>g r i d s [l e v e l] , mp i I n f o) ;
mgRho–>c o a r s e S o l v (mgPhi–>g r i d s [l e v e l] , mgRho–>g r i d s [l e v e l] ,

mgRho–>nCoarseSo lve , mp i I n f o) ;
mgRho–>p r o l o n g a t o r (mgRes–>g r i d s [l e v e l – 1] ,

mgPhi–>g r i d s [l e v e l] , mp i I n f o) ;
r e t u r n ;

}

// Gathe r i ng i n f o
i n t nPreSmooth = mgRho–>nPreSmooth ;
i n t nPostSmooth= mgRho–>nPostSmooth ;

Gr i d ∗ ph i = mgPhi–>g r i d s [l e v e l] ;
G r i d ∗ rho = mgRho–>g r i d s [l e v e l] ;
G r i d ∗ r e s = mgRes–>g r i d s [l e v e l] ;

//Boundary
g I n t e r a c tHa l o (s e t S l i c e , rho , mp i I n f o) ;
gBnd (rho , mp i I n f o) ;

// Prepa re to go down
mgRho–>preSmooth (phi , rho , nPreSmooth , mp i I n f o) ;
mgRes idua l (r e s , rho , phi , mp i I n f o) ;
g I n t e r a c tHa l o (s e t S l i c e , r e s , mp i I n f o) ;
gBnd (re s , mp i I n f o) ;

//Go down
mgRho–> r e s t r i c t o r (r e s , mgRho–>g r i d s [l e v e l + 1]) ;
mgVRecurs ive (l e v e l + 1 , bottom , top , mgRho , mgPhi , mgRes ,

mp i I n f o) ;

// Prepa re to go up
gAddTo(phi , r e s) ;
g I n t e r a c tHa l o (s e t S l i c e , phi , mp i I n f o) ;
gBnd (phi , mp i I n f o) ;
mgRho–>postSmooth (phi , rho , nPostSmooth , mp i I n f o) ;

//Go up
i f (l e v e l > top) {
mgRho–>p r o l o n g a t o r (mgRes–>g r i d s [l e v e l – 1] , phi , mp i I n f o) ;

}
r e t u r n ;
}

Listing B.3: Implementation of an recursive V-cycle

Appendix C

Examples

C.1 Ex: 3 level V cycle, steps necessary

À Compute defect on grid 0, the finest grid:

• φ̂0 = S(φ0, ρ0)

• d0 = ∇2φ̂0 − ρ0

• Restrict defect: ρ1 = Rd0

Á Compute defect on grid 1:

• φ̂1 = S(φ0
1, ρ1)

• d1 = ∇2φ̂1 − ρ1

• Restrict defect: ρ2 = Rd1

Â Solve Coarse Grid for correction ω

• φ2 = S(φ0
2, ρ2)

• Interpolate as correction:ω1 = Iφ2

Ã Add correction on level 1:

• φ̃1 = φ̂1 + ω1

• φ1 = S(φ̃1, ρ1)

• Interpolate correction:ω0 = Iφ1

Ä Compute solution.

• φ̃0 = φ̂0 + ω0

• φ0 = S(φ̃0, ρ0)

81

Appendix D

Multigrid Libraries

Efficient computation of the poisson equation, or other elliptic equations, is a
common problem with many applications, and there exists several predeveloped
and optimized libraries to help solve it. These include Parallel Particle Mesh
(PPM) (Sbalzarini et al., 2006), Hypre (Falgout and Yang, 2002), Muelu (),
METIS (A fast and high quality multilevel scheme for partitioning irregular
graphs — Karypis Lab 2016) and PETCs (manual.pdf 2016) amongst others.
There is also PiC libraries that can be used PICARD and VORPAL to mention
two.

If we want to have an efficient integration of a multigrid library into our
PiC model we need to consider how easy it is to use with our scalar and field
structures. To have an effiecient program we need to avoid having the program
convert data between our structures and the library structures. Since our PiC
implementation uses the same datastructures for the scalar fields in several other
parts, than the solution to the poisson equation, we could have an efficiency
problem in the interface between our program and the library.

We could also consider that only part of the multigrid algorithm uses building
blocks from libraries. The algorithm is now using the conceptually, and progra-
matically easy, GS-RB as smoothers, but if we implement compatibility with a
library we could easily use several other types of smoothers which could improve
the convergence of the algorithm

D.1 Libraries

D.2 PPM - Parallel Particle Mesh

Parallel Particle Mesh is a library designed for particle based approaches to phys-
ical problems, written in Fortran. As a part of the library it includes a structured
geometric multigrid solver which follows a similar algorithm to the algorithm we
have implemented in our project implemented in both 2 and 3 dimensions. For

83

84 Multigrid Libraries Chapter D

the 3 dimensional case the laplacian is discretized with a 7-point stencil, then it
uses a RB-SOR (Red and Black Succesive Over-Relaxation), which equals GS-
RB with the relaxation parameter ω set as 1, as a smoother. The full-weighting
scheme is used for restriction and trilinear interpolation for the prolongation,
both are described in (Trottenberg et al., 2000). It has implementations for both
V and W multigrid cycles. To divide up the domains between the computa-
tional nodes it uses the METIS library. The efficiency of the parallel multigrid
implementation was tested

D.3 Hypre

Hypre is a library developed for solving sparse linear systems on massive parallel
computers. It has support for c and Fortran. Amongst the algorithms included
is both structured multigrid as well as element-based algebraic multigrid. The
multigrid algorithms scales well on up to 100000 cores, for a detailed overview
see Baker et. al. (2012).

D.4 MueLo - Algebraic Multigrid Solver

MueLo is an algebraic multigrid solver, and is a part of the TRILINOS project
and has the advantage that it works in conjunction with the other libraries there.
It is written as an object oriented solver in cpp. For a investigation into the
scaling properties see Lin et. al. (2014).

D.5 METIS - Graph Partitioning Library

METIS is a library that is used for graph partitioning, and could have been used
in our program to partition the grids. The partitionings it produces has been
shown to be 10% to 50% faster than the partionionings produces by spectral
partitioning algorithms (A fast and high quality multilevel scheme for partitioning
irregular graphs — Karypis Lab 2016). It is mostly used for irregular graphs,
and we are not sure if it could be easily made to work with the datastructures
used throughout the program.

D.6 PETSc - Scientific Toolkit

The PETSc is an extensive toolkit for scientific calculation that is used by a
multitude of different numerical applications, including FEniCS. It has a native
multigrid option, DMDA, where the grid can be constructed as a cartesian grid.
In addition there is large amount of inbuilt smoothers that can be used.

Bibliography

A fast and high quality multilevel scheme for partitioning irregular graphs —
Karypis Lab (2016). url: http://glaros.dtc.umn.edu/gkhome/node/107
(visited on 07/08/2016).

Adams, M. F. (2001). “A distributed memory unstructured Gauss-Seidel algo-
rithm for multigrid smoothers”. In: Supercomputing, ACM/IEEE 2001 Conference.
IEEE, pp. 14–14. url: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
1592790 (visited on 04/21/2016).

Adams, M. et al. (2003). “Parallel multigrid smoothing: polynomial versus Gauss–Seidel”.
In: Journal of Computational Physics 188.2, pp. 593–610. url: http://www.
sciencedirect.com/science/article/pii/S0021999103001943 (visited on 11/15/2016).

Alnæs, M. S. et al. (2011). The FEniCS Manual. October. url: http://mmc2.
geofisica.unam.mx/acl/edp/Ejemplitos/FEniCs/fenics- manual- 2011- 10-
31.pdf (visited on 04/21/2016).

Arraras, A. et al. (2015). “Domain decomposition multigrid methods for nonlinear
reaction–diffusion problems”. In: Communications in Nonlinear Science and Numerical Simulation
20.3, pp. 699–710. url: http://www.sciencedirect.com/science/article/pii/
S1007570414003074 (visited on 04/21/2016).

Baker, A. H. et al. (2012). “Scaling Hypre’s Multigrid Solvers to 100,000 Cores”.
en. In: High-Performance Scientific Computing. Ed. by M. W. Berry et al.
DOI: 10.1007/978-1-4471-2437-5 13. Springer London, pp. 261–279. isbn: 978-
1-4471-2436-8 978-1-4471-2437-5. url: http://link.springer.com/chapter/10.
1007/978-1-4471-2437-5 13 (visited on 11/15/2016).

Baumjohann, W. and R. A. Treumann (1997). Basic Space Plasma Physics. en.
Google-Books-ID: e4yupcOzJxkC. World Scientific. isbn: 978-1-86094-079-8.

Bertrand, P. et al. (1990). “A nonperiodic Euler–Vlasov code for the numerical
simulation of laser–plasma beat wave acceleration and Raman scattering”.
In: Physics of Fluids B: Plasma Physics (1989-1993) 2.5, pp. 1028–1037. issn:
0899-8221. doi: 10.1063/1.859276. url: http://scitation.aip.org/content/
aip/journal/pofb/2/5/10.1063/1.859276 (visited on 08/24/2016).

Birdsall, C. K. and A. B. Langdon (2004). Plasma Physics via Computer Simulation.
en. CRC Press. isbn: 978-1-4822-6306-0.

Brackbill, J. U. et al. (1995). “Particle Simulation MethodsA Monte Carlo col-
lision model for the particle-in-cell method: applications to argon and oxy-

85

http://glaros.dtc.umn.edu/gkhome/node/107
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592790
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592790
http://www.sciencedirect.com/science/article/pii/S0021999103001943
http://www.sciencedirect.com/science/article/pii/S0021999103001943
http://mmc2.geofisica.unam.mx/acl/edp/Ejemplitos/FEniCs/fenics-manual-2011-10-31.pdf
http://mmc2.geofisica.unam.mx/acl/edp/Ejemplitos/FEniCs/fenics-manual-2011-10-31.pdf
http://mmc2.geofisica.unam.mx/acl/edp/Ejemplitos/FEniCs/fenics-manual-2011-10-31.pdf
http://www.sciencedirect.com/science/article/pii/S1007570414003074
http://www.sciencedirect.com/science/article/pii/S1007570414003074
http://link.springer.com/chapter/10.1007/978-1-4471-2437-5_13
http://link.springer.com/chapter/10.1007/978-1-4471-2437-5_13
http://dx.doi.org/10.1063/1.859276
http://scitation.aip.org/content/aip/journal/pofb/2/5/10.1063/1.859276
http://scitation.aip.org/content/aip/journal/pofb/2/5/10.1063/1.859276

86 Bibliography Chapter D

gen discharges”. In: Computer Physics Communications 87.1, pp. 179–198.
issn: 0010-4655. doi: 10.1016/0010-4655(94)00171-W. url: http://www.
sciencedirect.com/science/article/pii/001046559400171W (visited on 08/18/2016).

Buneman, O. (1959). “Dissipation of Currents in Ionized Media”. In: Physical Review
115.3, pp. 503–517. doi: 10.1103/PhysRev.115.503. url: http://link.aps.org/
doi/10.1103/PhysRev.115.503 (visited on 08/19/2016).

Chen, F. F. (1984). Introduction to Plasma Physics and Controlled Fusion. en.
Boston, MA: Springer US. isbn: 978-1-4419-3201-3 978-1-4757-5595-4. url:
http://link.springer.com/10.1007/978-1-4757-5595-4 (visited on 07/12/2016).

Chow, E. et al. (2006). “A survey of parallelization techniques for multigrid
solvers”. In: Parallel processing for scientific computing 20, pp. 179–201. url:
http://www.edmondchow.com/pubs/parmg- survey- siam.pdf (visited on
04/21/2016).

Courant, R. et al. (1869). “Über die partiellen Differenzengleichungen der mathe-
matischen Physik - PPN235181684 0100 log5.pdf”. In: Mathematische Annalen
100. url: http://www.digizeitschriften.de/download/PPN235181684 0100/
PPN235181684 0100 log5.pdf (visited on 09/27/2016).

Cummings, W. D. and A. J. Dessler (1967). “Field-aligned currents in the magne-
tosphere”. en. In: Journal of Geophysical Research 72.3, pp. 1007–1013. issn:
2156-2202. doi: 10.1029/JZ072i003p01007. url: http://onlinelibrary.wiley.
com/doi/10.1029/JZ072i003p01007/abstract (visited on 07/19/2016).

Dawson, J. (1962). “One-Dimensional Plasma Model”. In: Physics of Fluids (1958-1988)
5.4, pp. 445–459. issn: 0031-9171. doi: 10 . 1063 / 1 . 1706638. url: http :
// scitation .aip . org/content/aip/ journal/pof1/5/4/10 .1063/1 .1706638
(visited on 08/19/2016).

Ergun, R. E. et al. (2010). “Spacecraft charging and ion wake formation in the
near-Sun environment”. In: Physics of Plasmas (1994-present) 17.7, p. 072903.
issn: 1070-664X, 1089-7674. doi: 10.1063/1.3457484. url: http://scitation.
aip . org/content/aip/ journal/pop/17/7/10 .1063/1 .3457484 (visited on
10/27/2016).

Falgout, R. D. and U. M. Yang (2002). “hypre: A Library of High Performance
Preconditioners”. en. In: Computational Science — ICCS 2002. Ed. by P. M. A.
Sloot et al. Lecture Notes in Computer Science 2331. DOI: 10.1007/3-540-
47789-6 66. Springer Berlin Heidelberg, pp. 632–641. isbn: 978-3-540-43594-5
978-3-540-47789-1. url: http://link.springer.com/chapter/10.1007/3-540-
47789-6 66 (visited on 07/08/2016).

Fitzpatrick, R. (2014). Plasma Physics: An Introduction. English. 1 edition. Boca
Raton: CRC Press. isbn: 978-1-4665-9426-5.

Friedman, A. et al. (1981). “A direct method for implicit particle-in-cell simula-
tion”. In: Comments on Plasma Physics and Controlled Fusion 6.6, pp. 225–
236. issn: ISSN 0374-2806. url: http://inis.iaea.org/Search/search.aspx?
orig q=RN:15000463 (visited on 11/06/2016).

http://dx.doi.org/10.1016/0010-4655(94)00171-W
http://www.sciencedirect.com/science/article/pii/001046559400171W
http://www.sciencedirect.com/science/article/pii/001046559400171W
http://dx.doi.org/10.1103/PhysRev.115.503
http://link.aps.org/doi/10.1103/PhysRev.115.503
http://link.aps.org/doi/10.1103/PhysRev.115.503
http://link.springer.com/10.1007/978-1-4757-5595-4
http://www.edmondchow.com/pubs/parmg-survey-siam.pdf
http://www.digizeitschriften.de/download/PPN235181684_0100/PPN235181684_0100___log5.pdf
http://www.digizeitschriften.de/download/PPN235181684_0100/PPN235181684_0100___log5.pdf
http://dx.doi.org/10.1029/JZ072i003p01007
http://onlinelibrary.wiley.com/doi/10.1029/JZ072i003p01007/abstract
http://onlinelibrary.wiley.com/doi/10.1029/JZ072i003p01007/abstract
http://dx.doi.org/10.1063/1.1706638
http://scitation.aip.org/content/aip/journal/pof1/5/4/10.1063/1.1706638
http://scitation.aip.org/content/aip/journal/pof1/5/4/10.1063/1.1706638
http://dx.doi.org/10.1063/1.3457484
http://scitation.aip.org/content/aip/journal/pop/17/7/10.1063/1.3457484
http://scitation.aip.org/content/aip/journal/pop/17/7/10.1063/1.3457484
http://link.springer.com/chapter/10.1007/3-540-47789-6_66
http://link.springer.com/chapter/10.1007/3-540-47789-6_66
http://inis.iaea.org/Search/search.aspx?orig_q=RN:15000463
http://inis.iaea.org/Search/search.aspx?orig_q=RN:15000463

Section D.6 Bibliography 87

Goldston, R. J. and P. H. Rutherford (1995). Introduction to Plasma Physics.
en. CRC Press. isbn: 978-1-4398-2207-4.

Hackbusch, W. and U. Trottenberg (1982). “Multigrid methods”. In: url: http:
//158.69.150.236:1080/jspui/handle/961944/66389 (visited on 04/21/2016).

Hawley, J. F. and J. M. Stone (1995). “Numerical Methods in Astrophysical
HydrodynamicsMOCCT: A numerical technique for astrophysical MHD”. In:
Computer Physics Communications 89.1, pp. 127–148. issn: 0010-4655. doi:
10 . 1016 / 0010 - 4655(95) 00190 - Q. url: http : / / www . sciencedirect . com /
science/article/pii/001046559500190Q (visited on 08/24/2016).

Hjorth-Jensen, M. (2016). Computational Physics - Lecture Notes Fall 2013. url:
http://www.physics.ohio- state.edu/∼ntg/6810/readings/Hjorth- Jensen
lectures2013.pdf (visited on 08/22/2016).

Hockney, R. W. and J. W. Eastwood (1988). Computer Simulation Using Particles.
en. Google-Books-ID: nTOFkmnCQuIC. CRC Press. isbn: 978-1-4398-2205-
0.

Israeli, M. and A. Sherman (2005). “An Accurate Fourier-spectral Solver for Vari-
able Coefficient Elliptic Equations”. In: Proceedings of the 5th WSEAS/IASME International Conference on Systems Theory and Scientific Computation.
ISTASC’05. Stevens Point, Wisconsin, USA: World Scientific, Engineering
Academy, and Society (WSEAS), pp. 152–156. isbn: 978-960-8457-35-5. url:
http://dl.acm.org/citation.cfm?id=1373616.1373642 (visited on 11/06/2016).

Jung, M. (1997). “On the parallelization of multi-grid methods using a non-
overlapping domain decomposition data structure”. In: Applied Numerical Mathematics
23.1, pp. 119–137. url: http://www.sciencedirect.com/science/article/pii/
S0168927496000645 (visited on 11/15/2016).

Lapenta, G. (2016). Particle In Cell Methods. With Application to Simulations in Space. Weather.
url: https://perswww.kuleuven.be/∼u0052182/pic/book.pdf (visited on
09/27/2016).

Lapenta, G. (2012). “Particle Simulations of Space Weather”. In: J. Comput. Phys.
231.3, pp. 795–821. issn: 0021-9991. doi: 10.1016/j.jcp.2011.03.035. url:
http://dx.doi.org/10.1016/j.jcp.2011.03.035 (visited on 11/10/2016).

manual.pdf (2016). url: http://www.mcs.anl.gov/petsc/petsc-current/docs/
manual.pdf (visited on 07/08/2016).

Miloch, W. J. (2010). “Wake effects and Mach cones behind objects”. en. In:
Plasma Physics and Controlled Fusion 52.12, p. 124004. issn: 0741-3335. doi:
10 . 1088 / 0741 - 3335 / 52 / 12 / 124004. url: http : / / stacks . iop . org / 0741 -
3335/52/i=12/a=124004 (visited on 10/27/2016).

Miyake, Y. et al. (2013). “Plasma particle simulations of wake formation behind a
spacecraft with thin wire booms”. en. In: Journal of Geophysical Research: Space Physics
118.9, pp. 5681–5694. issn: 2169-9402. doi: 10.1002/jgra.50543. url: http:
/ / onlinelibrary. wiley. com / doi / 10 . 1002 / jgra . 50543 / abstract (visited on
10/27/2016).

http://158.69.150.236:1080/jspui/handle/961944/66389
http://158.69.150.236:1080/jspui/handle/961944/66389
http://dx.doi.org/10.1016/0010-4655(95)00190-Q
http://www.sciencedirect.com/science/article/pii/001046559500190Q
http://www.sciencedirect.com/science/article/pii/001046559500190Q
http://www.physics.ohio-state.edu/~ntg/6810/readings/Hjorth-Jensen_lectures2013.pdf
http://www.physics.ohio-state.edu/~ntg/6810/readings/Hjorth-Jensen_lectures2013.pdf
http://dl.acm.org/citation.cfm?id=1373616.1373642
http://www.sciencedirect.com/science/article/pii/S0168927496000645
http://www.sciencedirect.com/science/article/pii/S0168927496000645
https://perswww.kuleuven.be/~u0052182/pic/book.pdf
http://dx.doi.org/10.1016/j.jcp.2011.03.035
http://dx.doi.org/10.1016/j.jcp.2011.03.035
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://dx.doi.org/10.1088/0741-3335/52/12/124004
http://stacks.iop.org/0741-3335/52/i=12/a=124004
http://stacks.iop.org/0741-3335/52/i=12/a=124004
http://dx.doi.org/10.1002/jgra.50543
http://onlinelibrary.wiley.com/doi/10.1002/jgra.50543/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jgra.50543/abstract

88 Bibliography Chapter D

Pécseli, H. L. (2012). Waves and Oscillations in Plasmas. English. 1 edition. Boca
Raton: CRC Press. isbn: 978-1-4398-7848-4.

Press, W. H. et al. (1988). “Numerical recipes in C”. In: Cambridge University Press
1, p. 3. url: http :// journals . cambridge .org/abstract S0269964800000565
(visited on 04/21/2016).

Qin, H. et al. (2013). “Why is Boris algorithm so good?” In: Physics of Plasmas (1994-present)
20.8, p. 084503. issn: 1070-664X, 1089-7674. doi: 10.1063/1.4818428. url:
http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4818428
(visited on 11/06/2016).

Sbalzarini, I. et al. (2006). “PPM – A highly efficient parallel particle–mesh li-
brary for the simulation of continuum systems”. en. In: Journal of Computational Physics
215.2, pp. 566–588. issn: 00219991. doi: 10.1016/j. jcp.2005.11.017. url:
http://linkinghub.elsevier.com/retrieve/pii/S002199910500505X (visited on
07/08/2016).

Sgattoni, A. et al. (2015). piccante: arXiv:1503.02464. DOI: 10.5281/zenodo.16097.
url: http://zenodo.org/record/16097 (visited on 08/22/2016).

Shen, J. (1994). “Efficient Spectral-Galerkin Method I. Direct Solvers of Second-
and Fourth-Order Equations Using Legendre Polynomials”. In: SIAM Journal on Scientific Computing
15.6, pp. 1489–1505. issn: 1064-8275. doi: 10.1137/0915089. url: http://
epubs.siam.org/doi/abs/10.1137/0915089 (visited on 04/21/2016).

Shu, F. H. (2010). The Physics of Astrophysics Volume I: Radiation. English. Mill
Valley, Calif.: University Science Books. isbn: 978-1-891389-76-4.

Stüben, K. (2001). “A review of algebraic multigrid”. In: Journal of Computational and Applied Mathematics
128.1, pp. 281–309. url: http://www.sciencedirect.com/science/article/pii/
S0377042700005161 (visited on 04/21/2016).

Swendsen, R. H. (2006). “Statistical mechanics of colloids and Boltzmann’s def-
inition of the entropy”. In: American Journal of Physics 74.3, pp. 187–190.
issn: 0002-9505, 1943-2909. doi: 10.1119/1.2174962. url: http://scitation.
aip .org/content/aapt/journal/ajp/74/3/10.1119/1 .2174962 (visited on
07/22/2016).

Trottenberg, U. et al. (2000). Multigrid. Academic press. url: https://www.
google.com/books?hl=en&lr=&id=9ysyNPZoR24C&oi=fnd&pg=PP1&dq=
trottenberg+2000&ots=rJCHSPzSMY&sig=sin3i-gmWOoykoTFnyHGIPZXT5Q
(visited on 04/21/2016).

Verboncoeur, J. P. (2005). “Particle simulation of plasmas: review and advances”.
en. In: Plasma Physics and Controlled Fusion 47.5A, A231. issn: 0741-3335.
doi: 10 .1088/0741- 3335/47/5A/017. url: http ://stacks . iop .org/0741-
3335/47/i=5A/a=017 (visited on 07/21/2016).

Watanabe, K. and T. Sato (1990). “Global simulation of the solar wind-magnetosphere
interaction: The importance of its numerical validity”. en. In: Journal of Geophysical Research: Space Physics
95.A1, pp. 75–88. issn: 2156-2202. doi: 10 . 1029 / JA095iA01p00075. url:

http://journals.cambridge.org/abstract_S0269964800000565
http://dx.doi.org/10.1063/1.4818428
http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4818428
http://dx.doi.org/10.1016/j.jcp.2005.11.017
http://linkinghub.elsevier.com/retrieve/pii/S002199910500505X
http://zenodo.org/record/16097
http://dx.doi.org/10.1137/0915089
http://epubs.siam.org/doi/abs/10.1137/0915089
http://epubs.siam.org/doi/abs/10.1137/0915089
http://www.sciencedirect.com/science/article/pii/S0377042700005161
http://www.sciencedirect.com/science/article/pii/S0377042700005161
http://dx.doi.org/10.1119/1.2174962
http://scitation.aip.org/content/aapt/journal/ajp/74/3/10.1119/1.2174962
http://scitation.aip.org/content/aapt/journal/ajp/74/3/10.1119/1.2174962
https://www.google.com/books?hl=en&lr=&id=9ysyNPZoR24C&oi=fnd&pg=PP1&dq=trottenberg+2000&ots=rJCHSPzSMY&sig=sin3i-gmWOoykoTFnyHGIPZXT5Q
https://www.google.com/books?hl=en&lr=&id=9ysyNPZoR24C&oi=fnd&pg=PP1&dq=trottenberg+2000&ots=rJCHSPzSMY&sig=sin3i-gmWOoykoTFnyHGIPZXT5Q
https://www.google.com/books?hl=en&lr=&id=9ysyNPZoR24C&oi=fnd&pg=PP1&dq=trottenberg+2000&ots=rJCHSPzSMY&sig=sin3i-gmWOoykoTFnyHGIPZXT5Q
http://dx.doi.org/10.1088/0741-3335/47/5A/017
http://stacks.iop.org/0741-3335/47/i=5A/a=017
http://stacks.iop.org/0741-3335/47/i=5A/a=017
http://dx.doi.org/10.1029/JA095iA01p00075

Section D.6 Bibliography 89

http ://onlinelibrary.wiley. com/doi/10 . 1029/JA095iA01p00075/abstract
(visited on 08/24/2016).

Zhukov, V. T. et al. (2014). “Parallel multigrid method for solving elliptic equa-
tions”. en. In: Mathematical Models and Computer Simulations 6.4, pp. 425–
434. issn: 2070-0482, 2070-0490. doi: 10 . 1134 / S2070048214040103. url:
http://link.springer.com/article/10.1134/S2070048214040103 (visited on
10/17/2016).

http://onlinelibrary.wiley.com/doi/10.1029/JA095iA01p00075/abstract
http://dx.doi.org/10.1134/S2070048214040103
http://link.springer.com/article/10.1134/S2070048214040103

	Introduction
	Theoretical Background
	Plasma
	Plasma Parameters

	Single Particle Motion
	Gyration
	E-cross-B Drift

	Kinetic Theory
	Fluid Description
	Velocity Moments
	Transport Equation
	Fluid Equations

	Langmuir Oscillations
	Magnetohydrodynamics
	Numerical Simulations

	Method
	Particle-in-Cell
	Movers
	Field Solvers
	Stability

	PINC
	Normalization

	Multigrid
	General idea
	Algorithm
	Smoothing
	Restriction
	Prolongation
	Grid Structs and Partitioning
	Singular domain
	Several subdomains

	Boundary conditions
	Periodic Boundaries
	Dirichlet Boundaries
	von Neumann Boundaries
	Boundaries in Multigrid
	Mixed Conditions

	Parallelization
	Grid Partition
	Distributed and accumulated data
	Smoothing
	Restriction
	Interpolation
	Scaling
	Updating the Halo

	Implementation
	Implementation
	Restriction
	Prolongation
	Smoothers
	Implementation of Boundary Conditions
	Restriction
	Periodic
	Dirichlet
	Neumann

	Verification and Performance
	Verification
	Error Quantification

	Multigrid Solver
	Analytical Solutions
	Random Charge distribution
	Additional Tests
	ND vs 3D algorithms

	Scaling of the error compared to discretization
	Plasma Oscillation
	Input parameters

	Performance
	Perfomance Optimizer
	Convergence Rate
	Scaling of the MG Solver

	Summary and Conclusion
	Summary
	Concluding Remarks and Further Proposals

	Unittests
	Unittests
	Prolongation and Restriction
	Finite difference
	Multigrid and Grid structure
	Edge Operations

	Scripts
	PINC framework
	Multigrid Parameter Optimizer
	V-cycle, code

	Examples
	Ex: 3 level V cycle, steps necessary

	Multigrid Libraries
	Libraries
	PPM - Parallel Particle Mesh
	Hypre
	MueLo - Algebraic Multigrid Solver
	METIS - Graph Partitioning Library
	PETSc - Scientific Toolkit

