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Abstract

The goal of this project was to create a prototype of a smart atomic clock
controller running on commodity hardware, capable of spoof proofing a GPS
controlled atomic clock, i.e harden it against GPS jamming and spoofing
attacks. The project aims to use a multi-layered approach to evaluate the
integrity of GPS signals and to use knowledge about the atomic clock and
its behavior when GPS disciplined, to detect and mitigate a spoofing at-
tack. Many solutions have been proposed to solve the problem of GPS time
spoofing [1], but as far as we know this is an issue rarely tackled using
commodity hardware and simple techniques. We aim to demonstrate the ef-
ficiency of network enabling commodity GPS receivers and connecting them
to a atomic clock controller by using a client/server architecture facilitating
GPS and atomic clock data analysis. The preliminary GPS manipulation
tests demonstrates the feasibility of our proposal.
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Chapter 1

Introduction

Timing in the context of accurate and stable reference frequencies as used in
timestamps, is both critical and valuable in the world of IT infrastructure as
well as in the world of industrial control systems. The timing itself is often
generated by clocks disciplined by GPS. This allows an inaccurate clock to
obtain the long term accuracy and stability of a much more expensive and
accurate clock. The only problem is that the GPS disciplining relies on
an antenna with a clear view of the sky and uses a known civil GPS code
structure. Since the code structure is known and antennas can not be hidden,
a GPS receiver can be ”spoofed” with a GPS-like signal generated by an
attacker. GPS based timing may therefore be viewed as an unencrypted and
physically unsecured port into industrial control systems.

An example of an application relying on GPS derived time is a phasor
measurement unit (PMU). A PMU analyzes the waves on the electrical grid
and uses a common time source for synchronization. This synchronization
allows for real-time measurements between multiple points in the grid by
multiple PMUs. The common time source (and why PMUs are relevant) is
often obtained by using GPS. [2] The value of such a device is understood
clearer by recognizing that the power grid is a complex, interconnected, in-
terdependent network. In other words, errors and abnormalities in one part
of the grid will have an effect on operation elsewhere in the grid, and in some
cases lead to whole spread blackouts [3]. When the clocks in PMU applica-
tions are spoofed, they may end up causing damage in the network instead
of protecting it [4].

GPS time is also used in telecommunication to synchronize base stations.
The radio spectrum used by cellular phones is limited, making synchroniza-
tion between base stations important in order to maintain efficient use of
the spectrum. The ability to accurately time-stamp financial transactions is
made possible all over the world using GPS and is crucial for traceability and
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accountability [5].
Our goal int this report was to develop a spoof proof atomic clock con-

troller prototype by combining multiple GPS receivers, a chip scale atomic
clock and a client/server architecture. This allowed us to test some strate-
gies for spoofing detection, knowing if the GPS signals are unsuitable or
unsafe, and mitigation, how to maintain accurate timing when reliable GPS
synchronization is unavailable.
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Chapter 2

Background on GPS

The Global Positioning System (GPS) is a utility owned by the United States
that provides its users with positioning, navigation and timing services. At
the end of the sixties, the U.S Navy was developing the Polaris missile, a mis-
sile capable of being launched from a submarine. One of the requirements
for launching the Polaris missile was exact knowledge of the submarines posi-
tion. The problem led the Navy and The Applied Physics Laboratory at John
Hopkins University to develop the Transit system, the earliest predecessor to
the GPS system [6].

Today, roughly 40 years later, we are surrounded by GPS technology.
In fields like emergency response, search and rescue, fleet management and
even agriculture, it has become a vital tool of utmost importance to ev-
eryday operation. Satellite navigation can be found in most new cars and
few phones are today sold without an internal GPS receiver. The European
Space Agency estimated that there were 2 billion GPS enabled devices by
2012 [7]. What started out as a navigation tool for the U.S navy is now
used by millions, if not billions of users both civilian and military all over
the globe. A common misconception (that is often reinforced by Hollywood
action movies) is that the GPS satellites track you by communicating with
your GPS receiver. It actually works the other way around. You are, with
your GPS receiver, tracking a set of satellites in order to establish your own
position. At any given time, there are at least 24 GPS satellites each in its
own orbit at about 20,372 nautical miles above your head [8]. In order for a
GPS receiver to determine its position and obtain correct time, it will need
four GPS satellites within line of sight 1. The method used by your GPS
receiver to determine its position is called trilateration. Trilateration is used
in geometry as a process of determining the location (absolute or relative)

1The line of sight requirement might seem unreasonable, but by the time the signal has
reached earth, is has degraded to a minimum of -160 dBW [9]

3



of a point by measuring distance. It is often confused with triangulation
which instead of distance, uses angles. Measuring the distance from the GPS
satellites to a given position on earth is quite simple when using the equation:

Distance = Rate× Time (2.1)

The equation is simple to solve, first we need the rate. In this context the rate
is how fast the signals travel. This is equal to the speed of light (299,792,458
m/s). The time the signal has used traveling from the satellite to earth can
be obtained by analyzing the signal itself. A simple and slightly inaccurate
description is that the signal contains a ”time stamp” of when the signal was
sent. By comparing this time stamp with the current time one can calculate
the age of the signal and therefor how long it has spent traveling. This is
explained in greater detail under (2.2) [10].

2.1 Clocks

What does a 10 USD wristwatch and a 100,000 USD atomic clock have in
common? They do not stay accurate forever. This phenomena known as
frequency drift, is when a clock no longer runs at the exact same speed as
a reference clock and they drift apart. This property is a result of how
they track time. In essence, all clocks work in the same way. They have
a part that oscillates, a way to count the number of oscillations and a way
to show the count. If we transfer this analogy to the typical ”grandfather
clock”, the pendulum would be the oscillator, the counting mechanism the
clockwork and the clock face and dials would be the display. In a typical
wristwatch, the oscillator is a quartz crystal powered by a battery. The
frequency of which the crystal oscillates is then divided down to a single
Hertz by simple electronics. The purity of the crystal is among the decisive
factors determining the accuracy of the clock. [11]. Although a completely
different beast, the same principles apply to the atomic clock which uses the
microwave radiation that electrons in atoms emit when they change energy
levels. One of the most commonly used elements in atomic clocks, is caesium-
133, an isotope of caesium.2 [12].

2.2 GPS signals and Time

During the introduction of this chapter the properties of GPS as a tool for
navigation was made apparent. This is however not the only use of GPS, it

21 second equals 9,192, 631,770 cycles of the Cs-133 transition
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is also used for timing. The GPS satellites transmits a Coarse/Acquisition
(C/A) code and a restricted Precision (P) code. The C/A code is freely
open for everyone and is transmitted at the L1 carrier frequency (1575.42
MHz) and the P code is transmitted at both L1 and L2 (1227.60 MHz) and
is reserved for the military. The C/A code is a 1023 bit pseudo random
code that is transmitted at 1.023 Mbit/s, which means it repeats itself every
millisecond. Each satellite transmits a different pseudo random code, codes
that does not correlate well with each other. This is important because it
makes it possible to separate the satellites from each other. The way the
receiver calculates its position was briefly mentioned earlier and is better ex-
plained here. The receiver calculates the distance from itself to the satellites
by comparing the pseudo random code received from the satellite with an
identical one that it generates itself. The receiver ”slides” these codes over
each other further and further in an attempt to match them up. The signals
travel time is determined by how far the codes had to be slided before they
matched. This is what is called Code-phase GPS and it is not without issues.
Since the codes have a wide cycle width, almost a microsecond, there is still
a significant uncertainty even though the codes match. At the speed of light
a microsecond wrong translates to a roughly 300 meter error in the solved
position. What many receivers do is that they start with the code-phase and
move on to using measurements based on the carrier frequency. Since the
frequency is much higher the uncertainty within the match decreases thus in-
creasing the accuracy dramatically. This is what is known as Carrier-phase
GPS. These signals can be seen as range signals, used to measure distance.
This is however not the whole story. The GPS signals also include naviga-
tion messages like ephemeris as well as something called the almanac. The
ephemeris data is information containing the orbit of every GPS satellite
in the constellation. This is used by the receiver to calculate the satellites
position. The almanac is a state report of the whole constellation. Alright,
but what about time? We have already established that the key to GPS is
measuring the travel time of a radio signal, but considering the consequences
of a couple of microseconds of slack when dealing with light-speed, it is re-
ally putting some pressure on a GPS receiver’s internal clock. As previously
mentioned, all your receiver needs to do to find its position in a three dimen-
sional space, are three GPS satellites. If the GPS receivers’ internal clocks
were perfect, the three satellite ranges would intersect at a single point, your
position. But in the real world our clocks are everything but perfect. One
could use atomic clocks in the receivers but that would make the receivers too
expensive (even though chip scale atomic clocks (CSAC) are becoming in-
creasingly affordable 3) for anyone to buy. The solution is to make a fourth
measurement from a fourth satellite. This measurement will not intersect
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with the first three when using an imperfect clock. The receiver can then
try to find a correction factor it can subtract from its timing measurement
in order to make the measurements intersect. By doing so, it also brings the
receiver’s clock back to sync with universal time. With the correct time it
can also make correct and precise positioning. [13]

2.3 Threat Models and countermeasures

The threat models and countermeasures presented in this paper are based on
the article Reliable GPS-Based Timing for Power Systems: A Multi-Layered,
Multi Receiver [1]. The only exception is our own proposed countermeasure
described in chapter3.

2.3.1 Threats

2.3.1.1 Jamming

By emitting a high-power signal at the frequencies used by GPS satellites,
one can interfere with the signals received by the GPS receiver, effectively
denying GPS receivers use of these signals. These signals are already weak
considering their travel from space. Such an ”attack”, although effective, is
pretty naive and easily recognized by the jammed party. If your equipment
is operational and you do not have a signal, you are probably being jammed.

2.3.1.2 Signal-level Spoofing

Signal-level spoofing is when an attacker causes a receiver to loose lock on
an authentic GPS signal by overpowering it with a false signal. This can be
achieved by using a GPS simulator that matches the authentic signals phase,
code delay and encoded data [14]. Knowing the signal that the victim is
receiving is important in order to successfully spoof it. To anyone with access
to the military-grade GPS signals this is less of an issue since military-grade
signals are encrypted and harder to spoof. The civilian frequencies on the
other hand are publicly known and readily predictable. Shepard, Humphreys
and Fansler (2012)[3] describes in their paper Evaluation of the Vulnerability
of Phasor Measurement Units to GPS Spoofing Attacks a way to successfully
spoof a GPS signal used by a PMU. They describe how they ”introduce”
the counterfeit signal to the victim receiver by adjusting the power of the
signal below the victim receiver’s noise floor and then gradually raise it until
it surpasses the authentic signal’s strength. Once the victim’s receiver locks
on, the attacker has gained full control.
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2.3.1.3 Data-level Spoofing

In data-level spoofing the contents (data) of the GPS signal is manipulated.
GPS signals include ephemeris data used to solve the positions of each satel-
lite in orbit and also the time and status of the satellite constellation. By
altering this data the receiver solves incorrect velocity, location and most
important in this context, clock offset [14].

2.3.1.4 Replay spoofing

Replay spoofing (or meaconing3) is a technique where GPS signals are in-
tercepted and rebroadcasted. The rebroadcast can be delayed and used to
confuse navigation or to cause delay in applications relying on GPS signals
for time.

2.3.1.5 Malfunctions

Just like any tool or device a GPS receiver is prone to failure. This threat may
not be posed by an external party, but is still a threat to normal operation.
The ability to differentiate between an attack and a malfunction is important
when deciding how to respond to such an event.

2.3.2 Countermeasures

2.3.2.1 Monitoring Signal Power

In any kind of attack, jamming or spoofing, a counterfeit signal must over-
power the authentic signal in order for the receiver to lock onto it or in the
case with jamming, denying access to the authentic signal. By monitoring
the strength of the signal and detecting a spike or rise in signal power, a
possible attack can be identified. This is a low-cost, low-complexity and in-
dependent (in contrast to for example using other receivers as a reference)
countermeasure. It is however because of the unpredictable nature of sig-
nals, not considered to be a detection confident countermeasure and should
therefore only be used along side other countermeasures.[1]

2.3.2.2 Checking solved position against known position

By checking the position solution against the known position of the receiver,
both receiver errors and a replay spoofing attack can be detected. It does

3Meacon is portmanteau of Masking Beacon
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however fall short when more sophisticated techniques like Data and Signal-
level spoofing are used. These types of attacks when done properly (unless it
is done with intention) will not alter the solved position. It is important to
note that this is only relevant when only using one receiver. If the position
solution from multiple receivers deployed in the same area are cross-checked,
this countermeasure can still be considered effective. Consider the following
scenarios when using three receivers:

• None of the receivers are spoofed: Each receiver’s solved position
matches their respective known position. They all solve the same time.

• One or two receivers are spoofed: The spoofed receiver(s) solve(s)
different time compared to the receiver(s) not being spoofed.

• All the receivers are spoofed: As long as they are spoofed by the
same spoofer, they will solve the same time but also the same position
which again makes it possible to detect the attack.

A possible way for an attacker to avoid detection would be to use one spoofer
per receiver. These spoofers would need to be synchronized and their signal
power fine tuned to make sure that they only spoof their respective receiver.
It is believed that such an attack would be too complex and costly to be
considered practical [1].

2.3.2.3 Checking time solutions against receiver clock statistics

By comparing statistics created by monitoring the receiver’s clock with the
time solution, one can detect spoofing, as well as malfunctions. This is
because the time solution is unlikely to be consistent with the statistics in
event of an attack. Since this countermeasure relies on the receiver’s clock
which can be described as both unpredictable and stochastic, it should only
be used along side other countermeasures [1].

2.3.2.4 Cross-checking navigation data among receivers

When under a data-level spoofing attack the navigation data is modified. By
comparing one GPS receiver’s navigation data with another, both data-level
spoofing and malfunctions may be detected. This countermeasure can also
prove useful during jamming attacks. The jammed receiver could use the
data from other receivers in the event that it is unable to correctly decode
navigation data, but still able to track satellites. This may enable the receiver
to continue operation during an attack. [1]
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2.3.2.5 Comparing navigation data and reverse-calculated satel-
lite positions

The PMU’s GPS receiver is never moved and its position is always known. By
using their pseudorange measurements the satellites’ positions can be reverse
calculated by using trilateration. Since the reverse-calculated positions only
match the positions calculated from the navigation data when both pseu-
dorange and navigation data are correct, one can effectively detect replay
spoofing and malfunctions. It is also worth noting that this countermea-
sure increases the difficulty of both signal and data-level spoofing, because it
narrows down the possible valid (seemingly) spoofing signals. [1]

2.3.2.6 Cross-correlating P(Y) code

This countermeasure assumes two receivers with at least 1 km distance from
each other that tracks a signal from a satellite visible to them both. It is also
based on the assumption that the encrypted military P(Y) code cannot be
forged by a spoofer. The receivers use the C/A code phase and timing rela-
tionship to the P(Y) code to obtain two samples from the same time frame of
the received P(Y) code and then correlate the two samples. Even though the
samples will be encrypted, noisy and perhaps distorted by narrow-band RF
front-ends, a high correlation peak should be created when a cross-correlation
is conducted as long as the receivers are not spoofed. A key conclusion of the
research made by L. Heng (2013) as referenced by L. Heng et alia (2014)[1]
was that the probability of detection errors using this method decreased ex-
ponentially with the length of the samples made from the P(Y) code and the
number of receivers used as reference. This method has therefore proved it-
self effective against spoofing attacks, but ineffective against replay spoofing
because the rebroadcast uses authentic GPS signals with correct P(Y) code.
It is important to note that the implementation of this countermeasure relies
on the GPS receiver’s ability to output baseband samples and the samples’
ability to be transfered over a data network. Because the sampling rate of
the samples are fairly high, it is recommended that the spoofing detection is
done periodically instead of continuously [1].

2.3.2.7 Position Aided (PIA) Tracking loops

Vector tracking is a receiver architecture that combine the tasks of signal
tracking and position/velocity estimation into one algorithm. This is a con-
trast to the traditional way where the tracking methods track satellites in-
dependently as well as the position/velocity solution independently. Even
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though this requires more computing power it increases immunity to inter-
ference and jamming. The vector tracking is aided by the fact the we know
the PMU’s GPS receiver’s true location. The tracking robustness can be fur-
ther improved by using a Kalman filter. Since a PMU and its GPS receiver
remain stationary, the parameters of the tracking loops can be chosen to
narrow the loop filter bandwidth which reduces noise and the effective radius
of a potential jamming attack. Replay spoofing attacks will also fail since
the PIA vector tracking depends on the knowledge of the GPS receiver’s true
position. In the event of such an attack the result would be that the vector
tracking will fail to function [1].

2.3.2.8 Multi-receiver tracking loops

Building on the idea from PIA Tracking loops one can benefit from the net-
worked nature of the GPS-timed PMU. In a multi-receiver vector tracking
loop many receivers process information in collaboration. A key conclusion
of the research made by A. Soloviev et alia as referenced by L. Heng et alia
(2014)[1] showed that acquisition and tracking performance under low signal-
to-noise ratio conditions were improved under multi-receiver signal accumu-
lation. Multi-receiver phased arrays also improved the robustness against
both jamming (2.3.1.1) and spoofing attacks (2.3.1.2,2.3.1.3) by ”Forming
beams to satellites and steering nulls in the direction of attacking transmit-
ters” ([1], p.41). In addition to the increased robustness, it increases the
ability to detect malfunction. A faulty receiver will usually not be consis-
tent with other correctly functioning receivers. As with the countermeasure
based on cross-correlating P(Y) code, this implementation also requires that
the GPS receivers are able to output baseband samples. In this implemen-
tation the samples need to be transmitted continuously among the receivers
which requires a capable data network such as a typical LAN. [1]
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2.3.3 Summary

The table (2.1) shows the different threat models and the effect of the coun-
termeasures discussed.

Table 2.1: The table shows the effectiveness of the covered countermeasures against
threat models.

Counter Measures
Threat Models

JAM4 SLS5 DLS6 RS7 MF8

Monitoring Signal Power (2.3.2.1) N X X X N
Check pos. solution (2.3.2.2) N Y Y Y Y
Check time solutions (2.3.2.3) N X X X X
Checking nav. data (2.3.2.4) X N Y N Y
Reverse calculated sat. pos. (2.3.2.5) N X X Y Y
Cross-correlating P(Y) (2.3.2.6) N Y Y N N
PIA TL (2.3.2.7) Y N N Y N
Multi-receiver TL (2.3.2.8) Y X X X X

Table 2.2: Legend for table (2.1)

Y Effective N Ineffective X Auxiliary

4Jamming (2.3.1.1)
5Signal-level Spoofing (2.3.1.2)
6Data-level Spoofing (2.3.1.3)
7Replay Spoofing (2.3.1.4)
8Malfunctions (2.3.1.5)
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2.4 Benchmark clock spoofing attack

In 2012 a team from The University of Texas at Austin published a paper [3]
describing The Civil GPS Spoofer. It was a GPS spoofer and the first of its
kind. The Cilvil GPS spoofer was able to precisely align both the C/A codes
and navigation data in a counterfeit signal with those of an authentic GPS
signal. The alignment capability allowed for sophisticated spoofing attacks
that were hard to detect. The spoofer was implemented in software-defined
radio with a digital signal processor. The user could control the fake GPS
signal specifying both navigation and timing. By tracking and acquiring GPS
signals and calculating navigation data, it could produce up to 14 spoofed L1
C/A signals by performing real-time prediction of the pseudo random C/A
codes. Key features of the time spoofing attack:

• Seamless takeover: GPS spoofer tricks target into locking on to a replica
of the authentic GPS signal, without loss of GPS lock or change in
reported position.

• Once the target is locked on to spoofer signal, the attacker manipulates
the apparent time of the target GPS clock.

• Low quality internal clocks enable aggressive manipulation of GPS
clock timing, rapidly resulting in large apparent timing errors.

The sophistication of this spoofing attack is in part due to it is technical com-
plexity, but more importantly due to the demonstrated result: The attacked
GPS controlled clock had no way to detect that it was being fed false GPS
signals. The study was targeted to the use of timing to phasor measurement
units used in the monitoring and control of power grid transmission lines.
Similar aggressive manipulation of timing may potentially cause the mali-
cious shutdown of transmission lines within a few minutes after the onset of
the attack. The team tested the spoofer against a wide variety of applica-
tions using the civilian receivers, and they were always successful [3]. When
designing spoof proof GPS systems the Civil GPS spoofer can be considered
as a benchmark reference threat.
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Chapter 3

Our Proposal: Spoof proof
atomic clock controller

We propose to construct and use what we call a Spoof proof atomic clock con-
troller. The spoof proof atomic clock controller consists of custom software
running on commodity computer hardware, connected to at least two GPS
receivers and an atomic clock. With the spoof proof atomic clock controller
you can perform:

• Spoofing detection.

– Having a stable clock that can be trusted makes it possible to
verify the GPS timing solution.

– Using two or more GPS receivers makes it possible to detect
whether or not the signals originate from satellites in orbit or
from a spoofer on the ground. See subsection 2.3.2.2 for more
about this idea.

• Mitigation.

– A stable clock will provide accurate timing for an extended time
even in the absence of valid GPS correction.

3.1 Filtering and steering

The spoof proof atomic clock controller uses what we call filters for detection.
The filters are algorithms used to detect a spoofing attack or just general
abnormalities that might affect applications relying on GPS time. The filters
can be divided into two classes or types. They are either GPS based or clock
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model based. The GPS filters analyzes collected GPS data called NMEA
data [15] and verifies their validity. This can be achieved by comparing
the collected GPS data with known GPS data for the receivers. The clock
model based filters are more sophisticated. By analyzing the behavior of the
atomic clock used by the spoof proof atomic clock controller, a model can
be built and used as a reference. This approach was actually suggested in
subsection 2.3.2.3, but in that instance using the receiver’s internal clock.
This approach was considered auxiliary because of the receiver’s clock’s poor
performance. This is in contrast to our proposal where we have a stable and
accurate atomic clock. This makes it possible to evaluate the GPS signal used
to discipline the atomic clock. The model can also be used for mitigation
during an attack. Once an attack has been detected the atomic clock should
no longer be disciplined by the signal. The clock should be usable for a
while without disciplining, but with the clock model used for steering it will
provide accurate timing for a longer time.
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Chapter 4

Hardware

4.1 Atomic Clock

Figure 4.1: Symmetricom SA.45s
CSAC. Courtesy Symmetricom.

We decided to use the Symmetricom
SA.45 as the atomic clock. This is
an atomic clock measuring only 16cc
with 1 pulse per second (PPS) output
and 1 PPS input for disciplining. The
SA.45’s strength is its low power con-
sumption (less than 120mW) and low
price. The SA.45 also uses a built-in
controller which can be communicated
with over a RS-232 serial interface. The
ability to communicate with the atomic
clock, issue commands and collect data is paramount for the feasibility of
our proposal. It is worth mentioning that any atomic clock, such as Cesium
standard or even a Rubidium standard, could be used given that they have a
means to communicate basic telemetry like phase difference and steer values
and can configured by wire to change modes of disciplining. For more about
clock performance, review the SA.45s’ user guide [16] and data sheet [17].

4.2 Atomic clock controller platform

We chose to cast the Raspberry Pi 3 Model B (RASPI3) in the role as
the host running the atomic clock controller software. The RASPI3 is an
interesting piece of equipment with an impressive list of specifications. It is
a single board computer with a 1.2GHz 64-bit quad-core ARMv8 CPU, 1
GB of RAM, built-in 802.11n Wireless LAN and four USB ports [18]. As
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with the Symmetricom SA.45, the RASPI3 is very affordable. The RASPI3
retailed at about 35 USD when this report was written. We also propose
to use Raspbian [19], a Debian derived flavor of Linux optimized for the
Raspberry Pi, as the operating system.

4.3 GPS receiver

We chose to use at least two GPS receivers. Both of the receivers should col-
lect data and feed it to the atomic clock controller, but one of the receivers
should also double as a 1 PPS disciplining source for the atomic clock. Con-
sidering the need for a stable 1 PPS source, we propose to use the u-blox
NEO-M8T. This is a relativity affordable GPS receiver with a temperature
compensated crystal oscillator (TCXO), 3 concurrent GPS reception and an
external antenna [20]. In the current implementation of the atomic clock
controller, only NMEA data is collected from the GPS receivers (see section
6.2.6 for more about NMEA data). However in the future it might be bene-
ficial to collect and process raw data1 from the receivers as well. Since most
GPS receivers today follow the NMEA standard (to some extent) and raw
data currently is not required, common and popular receivers like the u-blox
NEO series should be more than sufficient for use in our implementation.

4.3.1 GPS receiver configuration

According to the u-blox NEO-M8T’s manual [21], the device includes a fea-
ture called Fixed Position. This is a feature that must be enabled in order
to put the device in Time Mode. This feature makes the device solve time
with higher certainty even with fewer available satellites. The Time mode
was not used, relied on or accounted for, in our solution.

1The ublox M8T is capable of outputting RAW data. This is for example used by
RTKLIB (http://www.rtklib.com/) instead of NMEA
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Chapter 5

Atomic clock controller
architecture

When discussing how to implement the spoof proof atomic clock controller’s
software the following features and requirements were identified:

• Speed and efficiency is important in order to detect attacks as early as
possible.

• Extensive logging capabilities for forensics.

• Easy and fast access to all gathered data.

• Should support as many GPS receivers as possible.

• Easy interfacing. Should be possible to operate over Telnet/SSH.

• Easy to configure.

• Graphical user interface is not a requirement

5.1 Client/Server model

In order to connect many GPS receivers to the atomic clock controller, we de-
cided to implement a client/server model. The atomic clock controller serves
the same purpose as before, but doubles as a server. The data transmitted,
will still be the same, the only difference is the interface and media. A net-
work interface will be used instead of USB and the media can be whatever is
available since TCP/IP is designed to be hardware independent. This opens
up the possibility for using:
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• Twisted pair

• Fiber optics

• WiFi

• 4G (cellular)

Because reaction time is a concern, high latency media is not recommended
1. The GPS receivers that we have chosen to use do not have a network
interface, we instead use Raspberry PIs. A GPS receiver is connected to
a Raspberry PI thus giving it a network interface. Considering how cheap
single board computers have become, the price of a Raspberry PI can be
justified even just to network enable a GPS receiver. The latest model of
the Raspberry Pi has even got a built in wireless network interface. See 4.2
for more about the Raspberry Pi 3. The combination of the GPS receiver
and the Raspberry PI are in this report abstractly seen as one device. We
call this device a sensor. The sensor is responsible for reporting data to
the Server and not much more. The sensor can be deployed using already
existing infrastructure to communicate, thus making it easier to deploy than
if each GPS receiver had to be cabled directly to the atomic clock controller.
There is no denying that the implementation of a Server/Client model greatly
increases the complexity of the atomic clock controller software, but it makes
up for it by eliminating the need for long signal cables and amplifiers. We
call this approach the Sensor Server model.

5.2 Architecture description

In order to connect the Sensors to the server, the atomic clock controller’s
software needs to be able to:

• Handle connections to clients.

• Update structures as clients’ status changes (disconnects or gets kicked
out).

• Receive data from clients

These are tasks that the atomic clock controller needs to be able to perform
as well as controlling the clock and analyzing data. In order to implement the
Server/Client model, the Server is implemented using the Linux Socket API.

1IP over Avian Carriers as described in RFC 1149 is highly discouraged
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The API is based on BSD sockets and is available in in almost all Unix-like
operating system ([22], p.610). A socket is a handle that can be passed by a
program to the network API in order to use the network connection. The plan
was briefly to use Glib [23], a library that provides building blocks for libraries
and applications written in C, instead of using low-level sockets. This idea
was scrapped because I felt that it would be overkill for this implementation.

Having decided how the clients should connect to the server, the next
challenge becomes how the server should communicate with the clients and
vice versa. We decided to use what is called blocking I/O and fork(). This
is a very common approach, but not the fastest ([24], p. 188). It is however
quite easy to implement. Blocking I/O means that read operations on the
socket blocks the main thread in the process until data has been received.
This is not as dramatic as it might seem: If a Socket call cannot be completed
immediately the process who issued the call will be put to sleep thus enabling
the scheduler to schedule other processes for execution until conditions are
right for the sleeping process ([24], p.435). Fork() is a system call used to
create a new process. The new process is called a child and the process
that called the fork() system call is called the parent. The child process is a
duplicate of the parent process. The alternative to using fork() is to create
a thread. The creation of threads are typically less expensive in terms of
CPU cycles than the creation of processes, but presents their own challenges.
Processes always have their own virtual address space as opposed to threads
who share their address space with the other threads within the process.
This makes programming with threads more complex. The result of a thread
crashing may have a more severe impact on the other threads within the
same process since they all shared the same data. The new process is used
by the server to handle the newly created connection. This means that for
every connected client, there is a process created. This of course means that
this solution does not scale awfully well. This is however not a big problem
for us since the time taken for a sensor to connect to the server really does
not matter. Once all sensors in a setup have connected, they should not
disconnect unless taken down for maintenance or replacement.

Using processes presented us with a new challenge, interprocess commu-
nication. A process is not aware of its neighbor. For all it knows, it is the
only process running. Every time a client connects, a new process is born
to take care of the communication with the new client. Since every process
has its own virtual address space, the processes are isolated from each other.
This posed a challenge because we wanted the atomic clock controller to col-
lect data from sensors for processing. Inter process communication (IPC) is
nothing new, and one way to accomplish it, is to use shared memory seg-
ments that are accessible for all the processes. The processes store the data
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they have received from their respective clients in the shared memory seg-
ment. That way it is easy for one process handling a sensor to check up on
data received from another sensor. This kind of functionality was seen as
valuable, but is not utilized to the extent it was envisioned. If more filters
are added, the architecture would probably make more sense as the current
ones do not really use the shared memory to cross check data.

Using shared memory is by no means the only way to implement interpro-
cess communication. Another approach to inter process communication that
was considered, was using a pipe. The pipe can be seen as a unidirectional
channel where data written to end of the pipe is buffered by the operating
system until the data is read from the other end of the pipe. This would
however mean that each process would not only have to listen to the client
connected, but also to the pipes connecting them to the other processes. This
would be the case with message passing and sockets as well. In contrast, the
shared memory approach allowed for the server to act as a single unit even
though many processes are at work. Allowing multiple processes to share
the same memory segment is like asking for trouble. At some point the pro-
gram will suffer from race conditions and unexpected behavior. The shared
memory segments are therefor protected with semaphores.

The atomic clock controller does not have graphical user interface. Seeing
how it was going to operate much like a service, the need for a graphical user
interface was not prioritized. A user can interface with the system by logging
on using telnet, and issue commands. In order to separate the intention of a
connected client, be it to deliver GPS data or to send commands to system,
roles were made. A client connected to the server may have two roles. It
can choose to either be a sensor or a monitor. The sensor role is already
explained. The Monitor role was added in order for a user of the system to
connect to the server and check status or issue commands. For a client to
assume the role of a Monitor, the client has to pick a negative integer as ID
number. This way, the server does not expect you as a client to report any
NMEA data the way it would with a sensor. The monitor role can also be
used to interface with the server. See (6.7) for more.

5.2.1 Security

Implementing good security is not an easy task and should not be taken
lightly. The goal when developing the Sensor server was to produce a rough
prototype that could prove our concept. Time was therefor allocated towards
producing features that would realize this goal instead of attempting to im-
plement security mechanisms that would have been flawed anyway because
of time constraints.
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Chapter 6

Atomic clock controller
implementation

6.1 The Sensor server

Figure 6.1 shows a simplified block diagram of the sensor server and its tasks.
server tasks include:

• Handle connections to clients.

• Update structures as the clients’ status’ changes (disconnects or gets
kicked out).

• Communication with the atomic clock and updating the atomic clock
model.

• Sensor data analysis and filter updates.

• Raising alarms based on filter status.

• Controlling the atomic clock.

6.2 Implementation description

In the following section, the architecture and inner workings, data structures
and key components of the Sensor server will be explained. The server core
(6.2.1) consists of the source code in sensor server.c. The Parser and
Handler spans over textttsession.c and textttactions.c. The atomic clock
model and the associated filters’ source code can be found in csac filter.c.
The filter using GPS data is in filters.c. Figure 6.3 shows a simplified call
graph for the Sensor server.
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Figure 6.1: A block diagram of our proposed solution
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6.2.1 Server core

The ”Server core” is the main process and the parent of every process created
during the life of the Sensor Server. It spawns the process maintaining the
atomic clock model as well as new processes for every client that connects.
Figure 6.2 is a block diagram of the Server core.

• The Server software takes one parameter to start, the port. If the
parameters are missing or the parameters are illegal, a string containing
usage information is printed and the program exits. Because the Server
also is responsible for communication with the atomic clock, it needs
the rights to access the serial port connected to the atomic clock 1.

• The configuration is initialized and loaded. If the configuration fails to
load the Server prints and error message and exits.

• The client list, a shared memory segment containing a linked list
containing all the clients, is initialized. See section 6.2.9 and 6.2.10
for more about the client list shared memory segment and linked list
implementation.

• Shared memory segments and semaphores are initialized and allocated.
If the allocation fails, the Server prints an error message and exits. See
section 6.2.8 for more about semaphores and shared memory.

• The process responsible for maintaining the atomic clock model and
filters is forked out. If the fork fails the server prints an error message
and exits. See section 6.2.2 for more about the atomic clock model.

• Handler for SIGINT (interrupt) SIGTERM (terminate) and SIGCHLD
(child process is interrupted or terminated) are registered.

– When a process exits, a SIGCHLD signal is sent to the parent.
When a client disconnects from the server the process that handled
the client exits. Ideally, the client disconnects from the server
by sending a protocol compliant ”disconnect request”. This way
the server can handle the disconnect in a controlled manner and
update its client list when the client disconnects. However, this
is not always the case and if the client disconnects abruptly and
without a warning, the server still needs to handle it. Therefore,

1The easiest way to achieve this is to run the program as sudo or login as root. The
best solution would probably be to add the user to a group with the right permissions.
This is often the dialout group.
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Figure 6.2: The block diagram shows an abstracted view of the Sensor Servers
Core.
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Figure 6.3: Simplified call graph for the Sensor Server.
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when a SIGCHLD signal is received, the server iterates through
its client list and finds the client whose PID matches the sender of
the signal and removes it from the list. In figure 6.2.1 this routine
is the part in the dotted box.

• The socket is initialized and marked for listening. See section 6.2.7 for
more about sockets.

• A loop is entered. The loop breaks when volatile sig atomic t

done equals 0. If the loop is broken, the semaphores are destroyed
and all allocated memory is freed, the servers socket file descriptor is
closed and the Server exits. See section 10 for more about variables
used in synchronization mechanisms.

• When a client connects the server checks if the maximum number of
clients has been reached. If this number has been reached an error mes-
sage is written back to the client and the client’s socket file descriptor
is closed. If the maximum number of clients has not yet been reached,
the client list is updated and a fork is performed. The parent process
then resumes the loop.

• The process that just forked out for the new connection closes the server
socket file descriptor it inherited from its parent.

• The new process then updates its client table entry and proceeds to
the listening loop. This is covered in section 6.2.3. See section 6.5.7 for
more about the client table entry data structure.

6.2.2 Clock model implementation

Conceptually, the atomic clock model and the filter that uses the model are
two separate tasks. In practice however, they are intertwined as figure 6.4
suggests. See section 4.1 for more about the atomic clock and appendix B
for the model itself.

• The configuration for the model is loaded. The configuration includes
values defining the accepted limits for steering and phase difference.
Optionally, it can also include state values from an ”earlier” model 2

that can be used to initialize the model further, thus reducing the warm-
up time. If the loading of the configuration fails, an error message is

2The functionality to restore an earlier model is not without restrictions. It is typically
meant for a situation where the Server needs to be taken down for a couple hours and a
new warm-up period is considered undesirable. This is better explained in section B
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Figure 6.4: Block diagram showing the flow of execution in the atomic clock model
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printed, the volatile sig atomic t done is set to 1 and the process
exits. This also breaks the server core (6.2.1) loop. After all, the system
needs the atomic clock to do the job it is intended for.

• A loop is entered. The loop breaks when volatile sig atomic t

done equals 0.

• The atomic clock lock is acquired and once the telemetry is queried
from the atomic clock it is released again.

• If the model is not initialized, telemetry data is used to initialize it.
State values from earlier models will also be used if available in the
earlier loaded configuration. See section 6.4 for more about communi-
cation with the atomic clock.

• A check is done to see if the model has been running for at least 48
hours. If it has, it is ready to be used as a reference for the filters. See
section 6.2.5 for more about the atomic clock filters in particular.

• The telemetry received from the atomic clock is used to update the
model.

• A check is done to see if 24 hours have passed since the prediction values
were last calculated. The model keeps track of steer predictions for
yesterday and today. By using these two points of data, an estimation
of the predicted steer can be calculated.

6.2.3 Parser and Handler

The parser and handler are responsible for parsing data received from a client
and making sure every request is protocol compliant. Once the goal of the
request has been established, the request is executed. A function named
respond() is called in the listening loop. Every time data is received from
a client, the data is sent to the parser (parse input()) to determine the
validity of the request received. See subsection 6.2.6 for more information
about the GPS data received from the Sensors. Figure 6.5 and 6.6 are block
diagrams showing the execution flow for this part of the server. The proto-
col is explained in greater detail under section 6.3 and the parser is better
explained under subsection 6.2.11.

• A loop is entered. The loop is broken when volatile sig atomic t

done equals 0. This is the same variable that is used in the Server core
6.2.1 loop and for a good reason: If the server exits, its children should
too.
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Figure 6.6: The block diagrams shows and abstracted view of the execution after
data has been received from a client.
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• If reading from the socket fails, the client gets disconnected. If it is
successful, the client table entry for the connected client is checked
to see if the client has been marked to be kicked. If so, the client is
disconnected.

• The data received from the client is parsed and checked against the
protocol. If the request received from the client does not match any
of the supported requests or commands, the request is ignored and the
loop is entered again. See section 6.3 for more information about the
protocol and subsection 6.2.11 for more information about the parser.

• If the request received is valid, the clients ID is checked to determine
whether or not it has identified itself. If the client has identified itself,
the request gets carried out.

• If the request received is to handle NMEA data, the checksum for
that NMEA data is calculated. If the checksum check fails, the data
is discarded. If it succeeds, the data is copied into nmea container

struct (6.5.4) for easier handling.

• The client is marked as ready for processing and a ready check is com-
menced. The ready check is used to make sure that all the sensors
have received NMEA data and are ready to have filters applied. Once
the filters have been applied, the lock is released and normal execution
resumes. The ready check is explained further under subsection 6.2.12.

• If the clients ID is 0, it is considered unidentified and any other requests
but to identify itself, is ignored.

• If the client attempts to identify itself, the ID it attempts to use is
checked against the rest of the connected clients. If the ID is already
taken and the client attempts to assume the role of a Sensor, the client
will get disconnected. If it attempts to assume the role of a Monitor,
it will simply be notified that the chosen ID is taken and the request
will be ignored. The reason why a Sensor would get disconnected and
a monitor would not, is simple: When connecting the sensor to the
server, it should not be any doubt whether or not it has been accepted.
If something is wrong, it is better that a user of the system deals with
the configuration at once rather than allowing the user to apply a faulty
configuration that severely impacts the efficiency of the system. See
section section 5.2 for more information about the Sensor and Monitor
roles.
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Figure 6.7: Block diagram show the order of execution in the GPS filter(s)

• If the attempted ID is available, the client table entry for the client
is updated with the requested ID and the server will attempt to load
data for the Location and speed filter data into the clients location
and speed filter struct. The server will attempt to load this data from
a file named krl data sensor<ID>. If the load fails, the client will
be disconnected. It is after all useless without its reference position
data. For more information about location and speed filter, see section
6.2.4.1.

6.2.4 GPS filter

There is currently only one filter using GPS data in the Sensor Server imple-
mentation to this data. This is the Location and speed filter. Figure 6.2.4 is
a block diagram showing the filter as a part of the Sensor Server.

6.2.4.1 Location and speed filter

By configuring the Sensor Server with the location of the different Sensors,
the server may trigger an action if a Sensor reports an abnormal solved
position. The filter is triggered when either latitude, longitude, altitude or
speed is higher or lower than the reference value minus or plus a deviation.
Listing (1) shows an edited sample of code taken from filters.c. The
code in the sample is part of the algorithm used to check whether or not
the latitude part of the GPS receivers solved position is within ”safe” (not
spoofed) range.

Listing 1: Listing shows sample of code taken from filters.c line 79. The code is
part of the algorithm that compares the known position of a Sensor with the Sensor
resolved position. The code has been edited for clarity.
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1 if(latitude_current > latitude_reference + latitude_deviation) {

2 moved = 1;

3 lat_disturbed = HIGH;

4 } else if(latitude_current < latitude_ref - latitude_dev) {

5 moved = 1;

6 latitude_disturbed = LOW;

7 } else {

8 latitude_disturbed = SAFE;

9 }

When a Sensor connects to the Server and identifies itself, the Server
will attempt to load a file containing the location of the Sensor as well as the
accepted deviation values for the solved position. Listing 2 shows an example
of such a file.

Listing 2: Location and speed filter configuration file

1 alt_ref: 123.8

2 lon_ref: 1102.1948

3 lat_ref: 5958.5448

4 speed_ref: 0

5 alt_dev: 10

6 lon_dev: 0.005

7 lat_dev: 0.005

8 speed_dev: 10

6.2.5 Clock model filters

Figure 6.4 shows both the atomic clock model and filter in one figure. As
explained in section 6.2.2, the model of the atomic clock and the filters based
upon, are closely related. See B for a description of the clock model.

• Once the model has been running for a configurable long time (48 hours
was used during testing, see B for more about the model), it is ready
to be used as a reference, filtering out abnormal data.

• The filters are checked. There are currently two filters implemented
using the atomic clock model as reference:

– Phase jump filter. This is a simple filter that compares the current
phase reported by the atomic clock with a pre-configured limit. If
the current phase is higher, the filter is triggered.

– Frequency correction filter. This is a more sophisticated filter. It
uses the atomic clock model to calculate a predicted steer value
and compares it to the current steer value. If the current steer is
too big, the filter is triggered.
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• If any of the filters are triggered, the alarm is raised. The state of the
alarm is expressed by an int that is either 0 or 1. If the alarm was not
raised, the disciplining of the atomic clock is enabled if it was disabled,
and the telemetry data is used to update the model.

• If the alarm is raised, the disciplining of the atomic clock is deactivated,
thus protecting the atomic clock from being affected by the spoofing.
The model is now used to calculate steer values that are applied to the
atomic clock instead.

6.2.6 GPS data

The GPS receivers that we have chosen for our system and possibly all GPS
receivers, follow the National Marine Electronics Association’s 0183 standard
[15]. NMEA data consists of sentences where the first word of the sentence,
the type, defines how the sentence should be interpreted. The sentences used
by the Sensor Server and Client, is the GNRMC for latitude, longitude and
speed and GNGGA for altitude. See the u-blox manual [21] for more about the
different sentences.

6.2.7 Client connection

Every time a client connects to the server, a process is forked for the new
connection. Listing 3 is sample of code taken from the core of the Sensor
Server, and can be explained like this:

• Line 4: The server waits for a connection. accept() is a blocking
function. The code does not continue past this point before a client
has connected.

• Line 12: A client has connected. The server creates a new process to
handle the new connection. The new process is created using fork().

• Line 13: Both the new process and its parent enters the ”if statements”
regarding its process identification (PID). The parent does not match
the criteria of the ”ifs” and returns to the top of the loop. The child
on the other hand, matches the criteria for the ”if sentence” at line 15.

• Line 16: The child process closes its parent’s socket file descriptor and
continues to setup the session at the next line.

Listing 3: Sample of code taken from sensor server.c(D.2, line 494). The sample
has been edited for clarity purposes.
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1 listen(server_sockfd,SOMAXCONN);

2 int session_fd = 0;

3 while (!done) {

4 session_fd = accept(server_sockfd,0,0);

5 if (session_fd==-1) {

6 if (errno==EINTR) continue;

7 t_print(ERROR_CONNECTION_ACCEPT,errno);

8 }

9 if(number_of_clients == max_clients) {

10 close(session_fd);

11 } else {

12 pid_t pid=fork();

13 if (pid==-1) {

14 printf(ERROR_FAILED_FORK, errno);

15 } else if (pid==0) {

16 close(server_sockfd);

17 setup_session(session_fd, new_client);

18 close(session_fd);

19 _exit(0);

20 } else {

21 close(session_fd);

22 }

23 }

24 }

6.2.8 Shared memory & Semaphores

The architecture uses several shared memory segments. The pointers to
the shared memory segments are declared as extern in sensor server.h.
The extern keyword means the the variable has an external linkage, making
it visible from other files than the one in which it is defined. Listing 4
shows a code sample taken from sensor server.h where the shared memory
segments are declared.

Listing 4: Sample of code from sensor server.h(D.2, line 44) where shared mem-
ory segments are declared.

1 extern struct client_table_entry *client_list;

2 extern struct server_data *s_data;

3 extern struct server_synchro *s_synch;

4 extern struct server_config *s_conf;

5 extern struct csac_filter_data *cfd;

These shared memory segments have different usage. The client list

points to a shared segment allocated for storing a list of all connected clients.
s data contains information about the server, s synch contains semaphores
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used to lock down shared resources, s conf is the servers configuration and
cfd is the data and state for the filters based on the clock model. Every
process that forks out from the server is given access to these memory seg-
ment. One might make the point that this voids the idea of processes, and
one might be correct (see 8). The shared memory is created using the GNU
library’s Memory Mapped I/O (MMAP). Although typically used to map
files to a region of memory, MMAP can also be used to create an anonymous
map which is not connected to file but rather for sharing data between tasks
without using files. Listing 5 shows an example of MMAP being used to map
an anonymous, shared map for the client list.

Listing 5: Listing shows the use of MMAP to create an anonymous map of
memory to be used as a shared memory segment. Sample of code taken from
sensor server.c(appendix D.2, line 360)

1 client_list = mmap(NULL,

2 (s_conf->max_clients * sizeof(struct client_table_entry)),

3 PROT_READ | PROT_WRITE,

4 MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE,

5 -1, 0);

6.2.9 Client list memory segment

Every time a client connects, it is given a piece of shared memory where it can
store its data. This piece of shared memory is used as a node in a linked list.
The linked list structure, stored in the shared memory segment is available to
all the processes spawned by the server. This segment is static in size and is
allocated once and is never changed during the whole life of the Server. The
size of the segment is determined by the maximum number of allowed clients,
a configurable value read from the configuration file every time the server is
started. Read more about why the client list shared segment is static in size,
under subsection 8.2.1.

6.2.9.1 Using the client list memory segment

As previously explained, the list of clients are stored in a shared memory
segment using a linked list structure. In order to keep tabs on what part of
the shared memory segment is in use, a simple map of the memory is used
(6.8):

The map is an array containing pointers to the client list segment. These
pointers are offset by the size of the client table struct and maps 1:1
to what can be thought of as individual pieces of memory in the client list
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Figure 6.8: Figure is showing the relation between the shared memory segment
containing the client list and the memory map

Figure 6.9: Figure is showing the relation between the shared memory segment
containing the client list and the memory map after some of the pieces of shared
memory has been given out.

shared memory segment. A free piece of memory is in the map represented
by a pointer that is not NULL. Figure 6.9 is an illustration showing the state
of the map when four of the first pieces have been given out. Listing 6 shows
the function that iterates through the map to find a free piece.

Listing 6: Sample of code showing the get mem piece() function. This function
is used to find a free piece of memory in the client list shared memory segment.
The code is taken from line 200 in sensor server.c (appendix D.2

1 static struct client_table_entry* get_mem_piece()

2 {

3 int i;

4 for(i = 1; i < s_conf->max_clients; i++){

5 if(client_list_map[i] != NULL){

6 struct client_table_entry *tmp = client_list_map[i];

7 client_list_map[i] = NULL;

8 return tmp;

9 }

10 i++;

11 }

12 return NULL;

13 }
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Figure 6.10: Block diagram show an example of linked list state

6.2.10 Client linked list

Since the C standard does not provide data structures like linked lists, I had
to choose between reinventing the wheel or finding some implementation to
drop into the project. While studying another subject, I found a guide on how
to use the linked list implementation from the linux kernel source code ([25])
in a user space program. Since the implementation was solid, well tested
and had many useful functions, I decided to use it. The modified header file
containing all the code, is GPL licensed. Figure (6.10) shows pieces of the
shared memory segment linked together in a linked list structure.

6.2.10.1 Alternative to linked list

The initial reason for using a linked list to organize the connected clients,
was to reduce the time spent iterating over a space of memory. With a linked
list it would not matter where the different pieces of memory were located,
a pointer to next piece would always be readily available anyway.

6.2.10.2 Semaphores

Having shared memory segments comes with a price. Whenever two or more
processes are working on the same data set, they are prone to create race
conditions, deadlocks and data corruption. Therefore, semaphores are used
to lock the segments during read and write operations.

Listing 7: Function for removing disconnected clients from list of clients
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1 void remove_client_by_id(int id)

2 {

3 struct client_table_entry* cli;

4 struct client_table_entry* temp_remove;

5

6 sem_wait(&(s_synch->client_list_sem));

7 list_for_each_entry_safe(cli, temp_remove,&client_list->list,

8 list) {

9 if(cli->client_id == id) {

10 list_del(&cli->list);

11 s_data->number_of_clients--;

12 }

13 }

14 sem_post(&(s_synch->client_list_sem));

15 }

Listing 7 shows a typical example of a function locking down access to the
shared memory segment containing the list of connected clients by using a
semaphore. In the example (7) a client has been disconnected from the server
and the list of connected clients is updated. The semaphore is necessary
to make sure that another process is not attempting to read or write to
the segment while the data is deleted. If another process had attempted
to execute the sem wait() on the semaphore, it would have been put in a
queue. Depending on the operating system, it would most likely signal the
scheduler to do a context switch since the resource was busy anyway and
it therefor should relinquish control of the CPU. Once the semaphores is
raised, it can be lowered again by another process. It is important to note
that the semaphores are not a function of, or related to the memory segments
by anything other than the name. The semaphores are just ”flags” used to
control access to a resource. There is no automatic raising or lowering of
the associated semaphores by reading or writing to a specific shared memory
segment. All functions in the sensor server use semaphores when dealing with
shared memory segments in order to avoid deadlock and race conditions.

6.2.11 Client input parser

The parser used by the Sensor Server is a simple function. As explained in
section 6.2.3, every time a client sends data to the Server, the data is sent
though the parser in order to detect the purpose of the request. The parser
uses the protocol and compares it with the input and looks for a match.
Listing 8 shows a sample of code taken from the parser.
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Listing 8: Part of the parser comparing the input data to the IDENTIFY command
specified by the protocol. Sample code is taken from session.c(appendix D.2 line
164

1 static int parse_input(struct client_table_entry *cte){

2 char *incoming = cte->transmission.iobuffer;

3 ...

4 else if(strstr((char*)incoming, PROTOCOL_IDENTIFY ) == (incoming)) {

5 int length = (strlen(incoming) - strlen(PROTOCOL_IDENTIFY) );

6 memcpy(cte->cm.parameter,

7 (incoming)+(strlen(PROTOCOL_IDENTIFY)*(sizeof(char))),length);

8 cte->cm.code = CODE_IDENTIFY;

9 }

The listing (8) shows how the parser attempts to find a match between
the input buffer and the protocol defined IDENTIFY command. On line 6
it attempts to copy any potential parameter. The parser does not care if
the parameter is missing, but it will attempt to extract it from the input
buffer. If no matches are found, the function returns 0, letting the calling
function (respond()) know that the input from the client was invalid or
illegal. Comparing strings is hard work and a relatively CPU intensive task.
This is why the parser sets a command code (6.5.3) as seen on the last
line. The command code is an integer defined in the protocol and the is
a command code associated with every command. The code is used in the
listening loop by respond to determine what action to perform in case a
valid request. Comparing integers are ”cheaper” than comparing strings,
and since the string comparison job is already done once, there is no need to
do it again.

6.2.12 Ready check algorithm

Every time NMEA data is received and validated, the process that received
the data will initiate a ready check. This is done by setting a flag in the
client list entry called ready to 1, and calling the nmea ready() function.
The nmea ready() function locks down the client linked list and iterates
through it checking if the other processes are ready too. If all the other
processes have received valid NMEA data from their respective client, the
GPS filter is applied. If they are not ready, the lock is release and the process
carries on. This means that the last process to receive NMEA data gets the
job of applying the filters 3.

3Since NMEA data is generated every second by the GPS receivers, it might be more
appropriate to say that the scheduler decides which process executes last. This of course
also depends on the distance between the Sensor and the Client
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6.3 Sensor Server Protocol

The Sensor Server protocol is quite simply a header file containing every
keyword or command that the Sensor Server recognizes. The thought be-
hind it was that a client application (or script) could import the protocol
header file and easily use and recognize commands used between the Server
and a Client. Some constraints are also defined in the protocol header file,
like maximum parameter size, maximum and minimum command size. The
command codes used by the parser are also defined in the protocol header
file. See subsection 6.2.11 for more about the use of protocol.

6.4 Atomic clock Communication

Figure 6.11: Block diagram showing the atomic clock connected to a PC

The SA.45 atomic clock includes a serial interface that enables communi-
cation with a PC by using a COM port. As mentioned earlier, our approach
relies heavily on the ability to communicate with the atomic clock. Infor-
mation may be queried by sending commands to the atomic clock. These
commands are explained in table 6.1.

The Sensor Server communicates with the atomic clock by invoking a
script called query csac.py. This script can be found in the appendix (E).
The script takes an argument which it sends to the atomic clock over serial,
and prints the respond to the shell which the Sensor Server grabs. In this
document the word telemetry gets mentioned quite often in context with the
atomic clock. Telemetry can be obtained by querying the atomic clock. The
telemetry is a string containing a plethora of information, but we are mainly
interested in the following values:
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Table 6.1: Commands for the SA.45 atomic clock

Shortcut Description Command
6 Return telemetry headers as comma-delimited string !6[CRLF]
ˆ Return telemetry as comma-delimited string !ˆ[CRLF]
F Adjust frequency !F?[CRLF]
M Set operating mode register bits !M?[CRLF]
S Sync atomic clock 1 PPS to external 1 PPS !S[CRLF]
D Set 1 PPS disciplining time constant !D?[CRLF]
U Set ultra-low power mode parameters !U?[CRLF]
T Set/report time-of-day !T?[CRLF]

Source: [16]

• Phase, the difference between the atomic clock and the external signal
signal at 1PPS in.

• DiscOK, the discipline status.

• Steer, the frequency adjustment.

Listing 6.1 show an example of telemetry received from the atomic clock.
The fourth value from the right, is the DiscOK, the fifth is the phase and the
seventh is the steer.

Listing 6.1: Example of a telemetry string received from the atomic clock

1 0,0x0000 ,1209 CS00909 ,0x0010

,4381 ,0.86 ,1.573 ,17.62 ,0.996 ,28.26 , -24 , - - - , -1 ,1 ,1268126502 ,586969 ,1.0

The SA.45 uses a high-resolution phase meter to improve synchronization
and to calibrate the frequency of the atomic clock. The phase meter measures
the difference in time between the internal 1 PPS signal and the external
reference, in our case a GPS receiver. This difference is the phase value.
The atomic clock uses the phase value and steering algorithms to adjust
the frequency of atomic clock’s physics package thus simultaneously steering
both the phase and frequency towards the external reference. This is called
disciplining and is how the steer value is computed. The last value, DiscOK
is simply the status of the 1 PPS disciplining routine [16].

6.5 Data structures

In the C programming language a ”struct” is a complex data type that defines
a list of variables to be placed under the structs given name in a block of
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memory. This makes it possible for multiple variables to be accessed via a
single pointer. Some crucial and often used structs is explained here.

6.5.1 server data

Listing 9: Sample of code taken from sensor server common.h (appendix D.2,
line 107) showing the server data struct.

1 struct server_data {

2 int number_of_clients;

3 int number_of_sensors;

4 time_t started;

5 pid_t pid;

6 char version[4];

The server data struct as shown in listing 9, contains information about the
server. Some of the information like the PID, version and when the server
was started, is just useful information about the server itself. The number of
clients and sensors on the other hand are used to make sure that the server
does not allow more connections than it can handle.

6.5.2 server synchro

Listing 10: Sample of code taken from sensor server common.h (appendix D.2,
line 116) showing the server synchro struct

1 struct server_synchro {

2 sem_t ready_sem;

3 sem_t csac_sem;

4 sem_t client_list_sem;

5 volatile sig_atomic_t done;

6 };

The server synchro as shown in listing 10 contains ”flags” used by synchro-
nization mechanisms (6.2.8) that the server and its children use to protect
access to shared resources. The csac sem is used to control serial access to
the atomic clock, making sure that only one request is sent to atomic clock at
a time. The client list sem is used by functions manipulating and reading
the client list structure, and the ready sem is used by ready check algorithm.
See subsection 6.2.12 for more about this.

6.5.3 command code

Listing 11: Sample of code taken from sensor server common.h (appendix D.2,
line 34) showing the command code struct
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1 struct command_code {

2 int code;

3 char parameter[MAX_PARAMETER_SIZE];

4 int id_parameter;

5 };

The command code struct as shown in listing 11, is used by the parser to
more efficiently convey protocol compliant requests and related parameters.
See section 6.2.11 for more about the parser.

6.5.4 nmea container

Listing 12: Sample of code taken from nmea.h (appendix D.2, line 20) showing the
nmea container struct

1 struct nmea_container {

2 /* Raw data */

3 char raw_gga[SENTENCE_LENGTH];

4 char raw_rmc[SENTENCE_LENGTH];

5

6 /* Latitude */

7 double lat_current;

8 double lat_average;

9 double lat_avg_diff;

10 double lat_total;

11 int lat_disturbed;

12

13 /* Longitude */

14 double lon_current;

15 double lon_average;

16 double lon_avg_diff;

17 double lon_total;

18 int lon_disturbed;

19

20 /* Altitude */

21 double alt_current;

22 double alt_average;

23 double alt_avg_diff;

24 double alt_total;

25 int alt_disturbed;

26

27 /* Speed */

28 double speed_current;

29 double speed_average;

30 double speed_avg_diff;

31 double speed_total;

32 int speed_disturbed;

33
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34 /* CHECKSUM */

35 int checksum_passed;

36

37 /* COUNTER FOR AVERAGE */

38 int n_samples;

39 };

The nmea container struct as shown in listing 12 is used by the handler
(see section 6.2.3) which dissects the NMEA strings and validates them before
it fills the respective members of the structs. The purpose of it is just to make
it easier for the other parts of the Server to use the NMEA data.

6.5.5 list head

Listing 13: Sample of code taken from list.h (appendix D.2, line 70) showing the
list head struct

1 struct list_head {

2 struct list_head *next, *prev;

3 };

The list head struct is shown in listing 13. The fields of the struct are
pretty self explanatory. There is a pointer to the previous node and one to
the next. One of the members of the client table list is a struct of type
list head. This is what makes it possible to traverse the list.

6.5.6 transmission s

The transmission s struct as show in listing 14 is used by the child process
forked out by the Server in the server core to communicate with the client.
The struct has two members, a file descriptor for the socket and a buffer to
store incoming data.

Listing 14: Sample of code taken from net.h(appendix D.2) line 31

1 struct transmission_s {

2 int session_fd;

3 char iobuffer[IO_BUFFER_SIZE];

4 };

6.5.7 client table entry

The client table entry struct is what the name suggests, it is an entry in a
list of clients. Every client connected to the server, no matter the purpose,
has an entry in the client list. Listing 15 shows the complete struct.
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Listing 15: Sample of code taken from sensor server common.h(appendix D.2,
line 90) shows the client table entry struct

1 struct client_table_entry {

2 struct list_head list;

3 struct transmission_s transmission;

4 struct timeval timeout;

5 struct command_code cm;

6 struct nmea_container nmea;

7 struct filters fs;

8 pid_t pid;

9 time_t timestamp;

10 int client_id;

11 int client_type;

12 int ready;

13 int marked_for_kick;

14 char ip[INET_ADDRSTRLEN];

15 };

Beginning from the top:

• list head list is used to traverse the linked client list. See 6.2.10 for
more about the linked list implementation and 6.5.5 for more about
the struct.

• transmission s transmission is used by the process to network I/O
with the connected client.

• timeval timeout is defined by the sys/time.h and is used in the
Sensor Server implementation to hold a value defining how long a con-
nected client can stay connected without sending any commands to the
Server. When the timeout value is exceeded, the client is disconnected.
The values are:

– 5 seconds for a Sensor.

– 1000 seconds for a Monitor.

– 10 seconds for an unidentified client.

These values are defined in the sensor server.h file.

• command code cm is used by the parser to convey protocol compliant
requests. See 6.5.3 for more.

• nmea container is used to contain NMEA data in a more convenient
way for the filters. See 6.5.4 for more about the struct, and 6.2.6 for
more about NMEA.
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• filters fs is a struct containing data for the GPS based filters. There
is currently only one GPS based filter, the Location and speed filter.
It is explained in subsection 6.2.4.

• pid t pid is the process ID for the process forked out for the connected
client.

• time t timestamp is time stamp that is stamped every time the Sen-
sor’s filter data is processed.

• client id and client type is the client’s ID and the client’s type,
either ”SENSOR” or ”MONITOR”.

• ready is used to indicate that a Sensor has received NMEA data and
is ready for filter processing.

• marked for kick is a flag. If it is 1, the client has been marked by a
monitor indicating that it should be kicked. The next time the client
sends data to the Server, the client will be disconnected.

• char ip is the connected client’s IP address.

6.6 The Sensor Client

The sensor client software is a simple program written in C99 whose only task
is to relay information read from the GPS receivers. Summed up shortly:

• The client software takes two parameters to start, the servers IP and
port. If parameters are missing, the program exits.

– Example: ./sensor client -p 10000 -i 192.168.1.5

• Initializes and loads configuration from configuration file. The config-
uration file includes path to the GPS receiver, the sensors ID number
and a binary value for whether or not logging of NMEA should be done
as well as path to the log file. If the loading of the configuration file
fails, default values are used instead:

– The ID number is chosen randomly but within legal limits.

– Logging is disabled.

– Maximum of server connection attempts are set to 10.
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main()

usage()

start_client()

initialize_config()

open_serial()

create_connection()

identify()

t_print()

receive_nmea()

make_log()

load_config()

Client simplified call graph

Figure 6.12: Simplified call graph for the Sensor Client.

– Path to GPS receiver is set to /dev/ttyACM0. This should be the
path to the receiver unless another similar device is connected to
the computer and given it is a Raspberry Pi running Raspbian.

• Establishes communication with GPS receiver, exits if it fails.

• Attempts to establish communication with the server, retries for a con-
figurable amount of times at 1 second intervals.

• Identifies the client for the server according to protocol.

• Reads from the GPS receiver, scans for lines starting with either $GNRMC
or $GNGGA. When both lines are found, the data is stored in a buffer.

• Sends the GPS data to the server according to protocol.

• Repeats.

Figure 6.12 shows a simplified call graph for the Client.

6.7 Interfacing

As mentioned earlier under section (5.2), a client can assume the role of both
a monitor and a sensor. The sensor server does not differentiate between the
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two roles other than when it routinely checks the status of its filters. This
means that one could connect to the server using the sensor client software as
a monitor by configuring the sensor client software to use a negative integer
as ID. At this point, this kind of functionality is not very useful as there is
currently no way to change the ID of a client unless the client explicitly issues
the command to do so, but it opens for the possibility to interface with the
server. One way to interface with the server is to connect to it using Telnet:

1 user@machine :/$ telnet 10.1.0.46 10001

2 Trying 10.1.0.46...

3 Connected to 10.1.0.46.

4 Escape character is ’^]’.

5 ID -3

6 OK!

7

8 >

It is also possible to assume the role of a sensor by connecting to the server
via telnet. This can be used to debug or troubleshoot the sensor server by
manually feeding it NMEA data. The only requirement is that the commu-
nication is sensor server protocol compliant:

1 user@machine :/$ telnet 10.1.0.46 10001

2 Trying 10.1.0.46...

3 Connected to 10.1.0.46.

4 Escape character is ’^]’.

5 ID 2

6 OK!

7

8 NMEA <GNRMC part of NMEA ><GNGGA part of NMEA >

9 OK!

Another possibility is of course to write scripts that communicates with the
server. An example script can be found in the appendix (E).
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Table 6.2: sensor server available commands

Command Short Parameter Description
HELP ? NONE Prints this table
IDENTIFY ID ID Clients ID is set to PARAM
DISCONNECT EXIT NONE Disconnect from the server
PRINTCLIENTS PC NONE Prints an overview of con-

nected clients
PRINTSERVER PS NONE Prints server state and con-

fig
PRINTTIME ID Prints time solved from

GNSS data received from
sensor <ID>

PRINTAVGDIFF PAD NONE Prints the difference be-
tween current solved posi-
tion and the average re-
ported for all sensors

PRINTLOC PL ID Print solved position for sen-
sor <ID>

LISTDATA LSD NONE List all dump files stored by
the server

DUMPDATA DD ID & FILE Dumps state of sensor
<ID>into a file named
<FILE>

LOADDATA LD ID & FILE Load state stored in file
called <FILE>into sensor
<ID>

QUERYCSAC QC COMMAND Queries the CSAC with
COMMAND.

LOADLSFDATA LLSFD ID Load reference location data
into Sensor <ID>

PRINTCFD PFD NONE Prints CSAC filter data
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Chapter 7

GPS manipulation tests

In this chapter we present the tests that were conducted. Ideally these tests
would have been performed by using a GPS spoofer like the ”Civil GPS
spoofer” that was introduced in subsection 2.4. Unfortunately, or perhaps
not, this kind of hardware is hard to come by and spoofing GPS signals is
not legal. What we did instead was manipulating the time solution of the
GPS receivers by moving the antennas, thus naively simulating a spoofing
attack. By performing these tests we where able to not only test the sensor
server architecture part of the atomic clock controller, but also the filters and
the clock model. We also present data gathered during an unplanned GPS
disturbance that occurred in between our planned tests.

7.1 Logging filter and model data

In order to create an accurate clock model of the atomic clock, it was neces-
sary to log data from the atomic clock while it was running in a disciplined
mode. In the disciplined mode the atomic clock corrects its frequency based
on either a one pulse per second (PPS) signal or a 10 MHz signal as discussed
earlier under section (6.4). A similar approach was used in order to collect
GPS data. Data from the two u-blox NEO-M8T receivers was gathered over
the same time period as the data gathered from the atomic clock. By gath-
ering the data over the same period it was possible to detect any correlation
between the time solved by the GPS receivers and any frequency adjustments
done by the atomic clock. It also provided valuable data that could be used
to tune the detection filters. The data gathering was done by simple Python
scripts (appendix C.1 and C.2) running on a computer connected to the GPS
receivers and the atomic clock. Figure (E.1) shows a block diagram of the
setup.
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Figure 7.1: A block diagram showing the tested implementation.

7.2 Setup

Figure 7.1 shows how the server, sensors and atomic clock were physically
set up. In order to assure good GPS satellite geometry, the antennas were
placed at the roof of Justervesenet’s office at Kjeller. Antenna one was placed
at a railing about one meter above the ground, antenna two was placed at
ground level. Figure 7.2 shows the placement of the antennas. Antenna
one was connected to GPS receiver one, which in turn was connected to
sensor one. It was the same deal with antenna two, which was connected to
GPS receiver two which in turn was connected to sensor two. The distance
between the two antennas was about 35 meters. The antenna connected to
sensor one was not placed as far away as the cable would have allowed. This
is because it proved challenging to find a suitable place to securely place the
antenna and at the same time use the full length of the cable. The sensors
and the server were connected to a LAN through a Gigabit Ethernet switch.
The server was configured to log telemetry data received from the atomic
clock and the clients were configured to log all NMEA data received from
their respective GPS receiver. GPS receiver two supplied the atomic clock
with a one PPS signal. Because the atomic clock model needs live data over
time to mature, the system was started the 7 October 2016 and the test
was performed 10 October 2016. Figure 7.3 is a block diagram showing how
the measuring setup was physically configured. The measuring was done
using a Spectracom CNT-91 frequency counter using a 10 MHz reference
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from Justervesenet’s atomic clocks. The CNT-91 was configured to measure
a continuous gap-less frequency at one second time-intervals. Figure G.1 is
a photograph of the measuring setup. Both sensors were configured to use
Justervesenet’s internal NTP server and to use UTC instead of GMT+1.

7.3 Test one filter limits

Table 7.1 shows the filter thresholds used during test one.

Table 7.1: Filter thresholds used during test one.

Sensor one Sensor two
Altitude reference 123.8◦ 122.427◦

Longitude reference 1102.1948◦ 1102.1934◦

Latitude reference 5958.5448◦ 5958.5231◦

Speed reference 0 knot 0 knot
Altitude deviation 10◦ 10◦

Longitude deviation 0.005◦ 0.005◦

Latitude deviation 0.005◦ 0.005◦

Speed deviation 10 knot 10 knot

Figure 7.2: Block diagram showing the position of the antennas as reported by the
receivers. Map courtesy of Kartverket [26]

53



CNT-91

(Measure)

CAT6/WLAN

     COAX

USB

Time lab

10 MHz Out

Extern ref.

 Atomic clock

 CSAC SA. 45s

10 MHz Out

Measure Ch A

1 PPS In

1 PPS Out

u-blox M8T

Measuring

software

Atomic clock controller

Figure 7.3: Block diagram showing the setup of the measurement equipment

7.4 Test one

7.4.1 Goal of test one

The goal with test one was to use the atomic clock controller to detect a
simulated spoofing attack. By moving the antennas, the location and speed
filter should be triggered as the solved longitude, altitude, latitude and speed
change. See section 6.2.4.1 for more about the location and speed filter. The
result is observable by analyzing the log files produced by the server and
clients and the data collected by the measuring setup.

7.4.2 Description

The following is a step by step description of how the test was conducted.
The time in the brackets was obtained from a wristwatch. The time is written
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in the normal format (hours and minutes) as well as number of seconds after
10:48. This is because the data used to draw the graphs started at 10:48 but
uses seconds on the x-axis, to ease comparison. It is important to note that
neither the resolution nor the accuracy was of any notable concern when the
time was noted down. The time was mainly noted to make it easier to find
any correlation between the steps taken and patterns found in the log files.

• 10:58 - 600: Moved antenna 1 approximately 15 meters to the south.

• 11:03 - 900: Moved antenna 1 back to original location.

• 11:07 - 1140: Moved antenna 2 approximately 15 meters to the north.

• 11:12 - 1440: Moved antenna 2 back to original location.

• 11:14 - 1560: Waved antenna 1 around horizontally in a half circle
motion at an increasing tempo.

• 11:18 - 1800: Waved antenna 2 around horizontally in a half circle
motion at an increasing tempo.

• 11:20 - 1920: Covered antenna 1 with aluminium foil.

• 11:25 - 2220: Covered antenna 2 with aluminium foil.

• 11:28 - 2400: Removed foil from antenna 1.

• 11:33 - 2700: Removed foil from antenna 2.

Step one and two were designed to trigger the location and speed filter,
especially the check of solved latitude, longitude and altitude but also the
speed against known values. Step five and six were also designed to trigger
the location and speed filter but more specifically the checking of solved
speed. By waving the antenna around while standing still, the solved location
should not exceed the configured limits except for speed. Step seven and eight
were designed to reveal what would happen during a jamming attack as it
was believed that covering the antennas with aluminium foil would block
all signals out. A photography showing how the antenna was covered with
aluminium foil can be seen in section G.2 in the appendix.
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7.4.3 Observations

7.4.3.1 Sensor Server logs

By reviewing the log produced by the server, the following was observed:

• No false positives were reported. The filters were not triggered before
the test started.

• The location and speed filter was triggered by sensor one at 10:59:19
and cleared at 11:04:35.

1 [10/10/16 - 10:59:17] [ ALARM ] Sensor 1 triggered LS filter!

2 ...

3 [10/10/16 - 11:04:35] [ ALARM ] Sensor 1 cleared LS filter!

• The location and speed filter was triggered again at 11:08:27, but this
time by sensor one. The alarm was cleared at 11:13:43.

1 [10/10/16 - 11:08:27] [ ALARM ] Sensor 2 triggered LS filter!

2 ...

3 [10/10/16 - 11:13:43] [ ALARM ] Sensor 2 cleared LS filter!

• Once again, 11:22:03 the location and speed filter was triggered by
sensor one and was not cleared until 11:29:21

1 [10/10/16 - 11:22:03] [ ALARM ] Sensor 1 triggered LS filter!

2 ...

3 [10/10/16 - 11:29:21] [ ALARM ] Sensor 1 cleared LS filter!

• Sensor two triggered the location and speed filter 11:27:31 and cleared
at 11:34:16.

1 [10/10/16 - 11:27:31] [ ALARM ] Sensor 2 triggered LS filter!

2 [10/10/16 - 11:34:16] [ ALARM ] Sensor 2 cleared LS filter!

• The last three seconds, sensor two triggered and cleared the location
and speed filter.

1 [10/10/16 - 11:34:17] [ ALARM ] Sensor 2 triggered LS filter!

2 [10/10/16 - 11:34:20] [ ALARM ] Sensor 2 cleared LS filter!

7.4.3.2 GPS data

The figures in this section are plots of the GPS data that was logged by the
sensors during test one. Figure 7.4 shows the altitude in meters reported by
sensor one. The only thing that stands out in the plot is when the antenna
is covered in aluminium foil as shown at around the 2000 second mark. At
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this point the receiver is no longer able to solve for a position thus generating
valid but empty fields in the NMEA data. This creates a deep void in the
plot. Because both receivers’ antennas were covered in aluminium foil, the
plots all share this trait. Figure 7.5 shows the altitude in meters as reported
by sensor two. When compared with the altitude plot for sensor one 7.4,
sensor one seems to correlate better. It remains a puzzle why sensor two
reported to have been moved seven meters down which it clearly was not.
When examining figures 7.6 and 7.7 showing the latitude for sensor one and
two (in that order), one can clearly see that sensor one was moved to the
south and sensor two was moved to the north. One might also notice that
sensor two traveled further. The difference in travel is because sensor one’s
cable is shorter. This is explained in the description of test one. Figures
7.8 and 7.9 shows a plot for the solved longitude for sensor one and two.
When examining figure 7.8, it seems as if the antenna were never moved.
This is because the building the antenna was placed on is position in a north
to south line and the receiver was moved along with the roof. The antenna
connected to sensor two was not moved in straight line because the cable
got caught in vegetation. The last two figures, figure 7.10 and figure 7.11
show the speed solved by sensor one and two. They both correlate well with
when the antennas were moved. However, the antenna connected to sensor
two seems to be slightly more sensitive than the antenna connected to sensor
one.
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7.4.4 Timing measurements

Figure 7.12 shows the relative frequency offset (1012) for the atomic clock.
The thick dark plot in the middle is from telemetry data gathered from the
atomic clock. Figure 7.13 shows the phase offset in nanoseconds for the
atomic clock. The interesting thing to observe in both of these figures, is
the jump in frequency and phase offset once the antenna was covered in
aluminium foil. There is also a clear correlation between movement of the
antenna and the relative frequency offset as seen in figure 7.12.

Figure 7.12: The figure shows the relative frequency offset for the atomic clock. The
thick dark plot in the middle is from telemetry data gathered from the atomic clock.
The lighter plot in the background is data from the CNT-91 frequency counter.
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7.4.5 Test one results

The observations from test one revealed some surprising results. When the
antennas were moved horizontally the altitude solved by sensor two dramati-
cally changed. The movement also resulted in a change in the timing solution.
The GPS filter did, however, perform as expected. We discovered that the
reason why the step five and six failed to trigger the filter, was that the limit
for speed (see section 7.1 for more) was erroneously set too high.

7.5 Test two

7.5.1 Goal of test two

The goal of the second test was to test the clock model based filters. The test
should make the atomic clock controller disable the atomic clock’s disciplining
mode and steer the atomic clock based on the clock model’s predictions. We
also wanted to test the location and speed filter again to make sure we had
fixed the error in the filter configuration from the last test.

7.5.2 Change in setup

The setup in test one is quite similar to test two. There is however some
changes. Sensor one is no longer connected to the atomic clock controller
because the location and speed filter no longer was the main priority to test.

7.5.3 Test two filter limits

Table 7.2 shows the filter limits used in test two. Note that the speed devi-
ation is set to 1 knot. Table 7.3 shows the limits for the clock model based
filters.
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Table 7.2: Filter thresholds used during test two

Config value Sensor 2
Altitude reference 122.427
Longitude reference 1102.1934
Latitude reference 5958.5231
Speed reference 0
Altitude deviation 10
Longitude deviation 0.005
Latitude deviation 0.005
Speed deviation 1

Table 7.3: Clock model filter configuration

Phase limit 50
Steer limit 50
Time constant 10000
Warmup time 2
Prediction limit 200

7.5.4 Description

The description of test two is similar to test one (see section 7.4.2). One
difference is that greater care was taken in obtaining an accurate time for
the steps.

• 13:12:00 - 125: Started to move antenna two towards north.

• 13:12:45 - 170: Reached destination.

• 13:18:00 - 485: Started the move back to original location.

• 13:19:00 - 545: Reached destination.

• 13:23:00 - 785: Waved the antenna around at an increasing tempo in a
half circle motion.

• 13:23:45 - 830: Stopped waving.

• 13:27:00 - 1070: Manually enabled the disciplining of the atomic clock.
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7.5.5 Observations

7.5.5.1 Sensor Server logs

By reviewing the log produced by the sensor server the following was ob-
served:

• No false positives, the filters were not triggered before the test started.

• The location and speed filter was triggered by at 13:12:10 and cleared
at 13:19:54

1 [10/24/16 - 13:12:10] [ ALARM ] Sensor 2 triggered LS filter!

2 ...

3 [10/24/16 - 13:19:54] [ ALARM ] Sensor 2 cleared LS filter!

• The location and speed filter was triggered again at 13:23:12 for only
a second. It was then triggered again two seconds later and was not
cleared until 13:23:43.

1 [10/24/16 - 13:23:12] [ ALARM ] Sensor 2 triggered LS filter!

2 ...

3 [10/24/16 - 13:23:13] [ ALARM ] Sensor 2 cleared LS filter!

4 ...

5 [10/24/16 - 13:23:15] [ ALARM ] Sensor 2 triggered LS filter!

6 ...

7 [10/24/16 - 13:23:43] [ ALARM ] Sensor 2 cleared LS filter!

• More interesting was the fact that the Frequency correction filter was
triggered.

1 [10/24/16 - 13:12:42] [ ALARM ] Steer > predicted!

7.5.5.2 GPS data

Figure 7.14 shows the plotted GPS data collected during test two. As with
the GPS data observed during test one, there is a clear correlation between
the plotted data and when the antenna was moved. The strange phenomena
as described in test one (7.4.3.2) where the altitude was reported to be way
too low, occurred in test two as well.
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Figure 7.14: The figure shows (from the top) the latitude, longitude, altitude, speed
and number of satellites as plotted from the GPS data collected during test two.
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7.5.6 Timing measurements

Figure 7.15 shows measurements done during test two as two graphs with
two time series each. The thin solid line in the top panel shows phase offset
in nanoseconds. It reveals that the atomic clock was not steered based on
the clock model once the disciplining was disabled. The panel at the bottom
of figure 7.15 shows relative frequency offset as measured by the CNT-91
frequency counter. The thin darkly colored line is a plot of the data received
as telemetry from the atomic clock. The plot shows that the disciplining of
the atomic clock stopped after roughly 140 seconds.

7.5.7 Test two results

As mentioned under subsection 7.5.6, the disciplining of the atomic clock
was successfully deactivated when the steer value reported by the atomic
clock exceeded the steer value that was predicted by the model. The phase
jump filter was not triggered because the phase offset never reached the
configured limit. The frequency correction filter, on the other hand, was
triggered because the steer value exceeded the configured limit (see table 7.3
for limits). It also shows that the atomic clock sadly was not steered using
the clock model.
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Figure 7.15: Timing measurements and clock telemetry data. The upper panel is
phase offset in nanoseconds. The long, sloped light line is a plot of the measure-
ments done by the CNT-91 frequency counter. The dotted dark plot, is also the
phase offset but as reported by the atomic clock. The lighter plot in the background
of the bottom panel is frequency steering as measured by the CNT-91 frequency
counter. The dark plot is frequency offset as reported by the atomic clock.
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7.6 Unplanned disturbance

The data presented in this section was gathered while the atomic clock con-
troller was building the clock model for one of the planned tests. The data
is interesting because it shows a disturbance from an unknown source. The
data shown in the figures are from the 5 October 2016 to 6 October 2016.
Figure 7.16 shows that about 10 minutes after midnight on 6 October 2016,
the atomic clock entered ”holdover mode”, indicating that the 1 PPS signal
from the GPS receiver was lost. Figure 7.17 shows the GPS receiver’s solved
altitude, longitude, latitude, speed and number of satellites. By examining
the figure, it is obvious that the signal was lost minutes after the 57667 MJD
(midnight) mark. The GPS receiver did not achieve consistent lock before
approximately 57667.32 MJD (7:45 in the morning). In the meantime, the
clock stability was impaired as figure 7.18 and 7.19 clearly show. Figure 7.19
is interesting because it shows how the atomic clock seems to have a delay
in its steering algorithm. If the atomic clock controller applied the clock
model filters while this data was collected, the phase jump filter would have
triggered before the atomic clock would have been able to apply steering.

We have no idea what might be the origin of the disturbance. The follow-
ing is therefore pure speculation: It is possible that a trucker spent the night
parked by the road used a GPS jammer to hide his or her activities from an
employer, and that the observed disturbance is a reflection of the jammer’s
signal. We did not find any traces of the disturbance when examining the
logs from sensor one. Sensor one might have been shielded from a reflection
because of its position. The time-frame for the disturbance also supports this
theory since the disturbance started around midnight and ended at around
7:45, in other words ”a good night sleep”. This is of course only speculation
as we do not have any data supporting it.

Figure 7.16: The figure shows the disciplined mode as reported by the atomic clock.
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Figure 7.17: Figure shows solved position, speed and number of satellites as re-
ported by the GPS receiver.
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Figure 7.18: Top figure shows phase offset in nanoseconds. The thin lightly colored
line is as measured by the CNT-91 frequency counter. The solid darker line is from
the telemetry string from the atomic clock.
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Figure 7.19: Figure shows the phase offset and steering correction as reported in
the telemetry string from the atomic clock.
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Chapter 8

Discussion

8.1 Test results

The GPS manipulation test as described in chapter 7 demonstrated the abil-
ity to quickly identify a GPS disturbance and also demonstrated the ability
to protect the atomic clock by disabling the disciplining. The system did,
however, fail to steer the atomic clock. When we attempted to reset and
debug the system, we encountered a bug in the clock model as well. The
bug affected the way the clock model initializes from the configuration file,
which meant that the model would need at least 48 hours to rebuild. This
is probably just a minor bug but because of the time constraint, we where
forced to seize testing.

8.2 Shortcomings in current implementation

This section is used to discuss some of the shortcomings in the current version
of the atomic clock controller and sensor server architecture. Some functions
were never implemented and others were not finished in time.

8.2.1 Resizing shared memory segments

Ideally the shared memory segments containing the client list should be re-
sizeable and its size should depend on the number of connected clients. This
proved difficult and I was not able to implement it. M. Kerrisk explains in
his book ”The Linux Programming Interface” [27] that most UNIX imple-
mentations do not support resizing of a memory map like the shared memory
segments used in the sensor server implementation. There is however a non-
portable and Linux-specific system call named mremap() that can be used
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on Linux systems for this purpose. Unfortunately the address returned by
mremap() might be different from the old address to the shared memory
segment. This would mean that a pointer inside the shared segment might
no longer be valid after a resize operation has been performed. A way to
avoid this problem, caused by the remapping would be to use offsets instead
of pointers when referring to addresses in the mapped region. While trou-
bleshooting problems I had using mremap(), I stumbled upon a bug report
in the the Kernel Bug Tracker [28] reported by someone with similar issues
as I was having. This indicates that the trouble I had, might have been
because of a bug in the Linux kernel. I have yet to confirm this but it did
convince me to leave the implementation with its shortcomings rather than
potentially wasting my time on something way out of my reach. The waste
of memory would never by substantial anyway considering that the size of
the client table entry struct is a modest 4664 bytes.

8.2.2 Atomic clock management

The sensor server should have used a separate process to handle the filters
and communication with the atomic clock. This would free the processes
handling the connections to clients from dealing with the filters, and make
the filter abstraction more complete. This would also make the clock model
cleaner. The atomic clock model is already logically separated from the
filters associated with it, but because of the way the code is organized the
use of the model implies the use of the filter. The atomic clock controller
should still communicate with the atomic clock on its own like it does today,
retrieving telemetry data, but the aforementioned process could keep track
of the atomic clock’s discipline status, steering and other functionality, thus
creating a more generic way for the system to communicate with the atomic
clock. The GPS based filter could greatly benefit from this approach because
they today do not do anything but log occurrences where they were triggered.

8.2.3 External MJD calculation

Modified Julian Day (MJD) is a way to express both date and time as a single
number. It’s convenient when doing calculations with dates, for example: the
difference between the MJD for one day and the next, is exactly 11. Modified
Julian Date relies heavily on by the clock model (see B for more about the
clock model). During testing a python script (see E for more about this

1For example, the MJD for 24/10-2016 00:00 is 57685.0 and the MJD for 25/10-2016
00:00 is 57685.0. 12’o clock at the 25/10 would be 57658.5
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script) was used to calculate MJD. This script was scheduled to be replaced
by a module written in C, but was left in use because of time constraints.
The script is called upon by using popen() which in turn calls fork() to
run the script. The clock model is updated every second which means that
this script is also invoked every second. This is of course counterintuitive
considering that one of our goals for the software was to focus on efficiency.

8.2.4 External Atomic clock communication

For some reason, it proved to be a significant challenge to implement a so-
lution in C to configure, read and write from the atomic clock. The best
solution did not even provide a reliable means of communicating with the
atomic clock even though communication with the GPS receivers which in
theory should have been exactly the same, was no problem. Once time got
tight, I made the decision to drop the development of the atomic clock serial
communication module written in C, and decided to use query csac.py by
invoking with popen().

8.3 Choice of programming language

The atomic clock controller software was originally planned to be written in
Java since this was my most fluent programming language. Java is a great
language. It is object oriented, it has a garbage collector and a lot of useful
libraries. As development commenced it quickly became apparent that some
parts of the code would be performance-critical and that portability really
was not that important anyway. The platform was already chosen and I
could not think of any reason for us to change it. I decided to look at other
languages. Because performance was a concern Python was also quickly
dismissed as an option. C++ would probably have been the best choice but
never having written anything in C before made it sound more exciting and
like a nice opportunity to learn something new. During the planning phase of
the atomic clock controller development, raspbian-2015-05-07 was the latest
build. It came with GCC 4.6.3 which only had experimental support for
C11([29]). With C11 no longer considered an option, C99 was the obvious
choice given its attractive features like:

• Variable-length arrays.

• Single line comments.

• snprintf() as standard [30].
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8.4 Alternative approaches

When planning on how to execute our proposal, these were among the ideas
that came up.

8.4.1 Single computer, many GPS receivers

A single computer is used to run the atomic clock controller software. The
atomic clock controller does not include a server/cient model, but the re-
ceivers used to collect data are all connected to to the computer through
whatever USB ports available or made available by the use of USB hubs.
With this approach you are not dependent on a network, but it limits the
number of GPS receivers you could connect as the USB specification limits
the number possible endpoints to an absolute 127([31, pp. 3]) because of
addressing. This does not mean that 127 devices can be connected because a
single device might use more than one endpoint. It is also worth mentioning
that a USB hub might ”reserve” multiple endpoints. Depending on the GPS
receivers and how they are made, this number might be reduced even further
by the power usage of the connected devices. Depending on how far each
GPS receiver is distanced from the atomic clock controller, a signal amplifier
might be necessary to compensate for the signal attenuation. In some cases
where a network is absent, this approach might be only option.

8.4.2 Store in database and analyze

With this approach, the idea of a GPS receiver and Raspberry PI as a single
”sensor” unit is the same as with sensor server approach. The difference is
that each sensor stores the collected data in a database. The atomic clock
controller software monitors the clock directly as with the sensor server ap-
proach, but the data in the database is routinely queried and analyzed. The
strength with this approach is that data is easily stored, shared and main-
tained by a single entity. The complexity of the client software would be
the same as with the sensor server approach, but the atomic clock controller
software could be implemented with less complexity as no client/server ar-
chitecture or shared memory schemes would be necessary. During planning
this approach seemed promising but was rejected because it was thought that
it might not be time-sensitive enough. It was also some doubt concerning
whether or not the ability to store data to a database actually was impor-
tant. Once the different filters and algorithms was in place, it turned that the
database functionality would have been nice but not of any real importance
for the atomic clock controller to perform its tasks.
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Chapter 9

Conclusion

The prototype developed and described in this report, demonstrates that a
fully operational spoof proof atomic clock controller would resist a spoofing
attack mounted with a sophisticated GPS spoofer like the Civil GPS spoofer
[3]. We demonstrated the current implementation’s ability to detect and in
a limited sense mitigate, a simulated spoofing attack, using multi-layered de-
fense mechanisms. The frequency steering filter made possible by the clock
model would have detected steering attempts larger than 50 × 10−12 or 0.05
nanoseconds per seconds as shown in section 7.5. Even if a spoofing attack
was done carefully and slowly enough not to trigger the clock model based
filters, it would not have been able to spoof two different receivers without
giving away the attack (see section 2.3.2.2). This would have required mul-
tiple spoofers spoofing individual GPS receivers. The spoofers would have
to be meticulously tuned in order not to spoof neighboring receivers. This
makes spoofing attempts very challenging to execute. Introducing a third
receiver, which with sensor server architecture can be done with ease, would
make it even harder.

During the GPS manipulation tests as described in chapter 7, the sensor
server architecture proved its worth and worked perfectly. The system was
stable and performed as designed over longer periods of time (over 4 days).
The system logged data reliably and without fault, accepted connections and
was responsive at all times tested. There were no memory leaks or segmenta-
tion faults and the system facilitated the detection of our GPS manipulation
attempt with low latency. The system would probably react even faster if it
received data from the atomic clock and GPS receivers at a higher frequency.
The communication with the atomic clock also worked flawlessly, providing
data for logging and the model as expected.

We have demonstrated the efficiency of creating a detection network us-
ing the sensor server architecture running on commodity hardware receiving
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generic GPS data from commodity receivers. We have demonstrated that
it is possible to detect GPS disturbances without using an atomic clock as
reference but just by using GPS receivers. The detection network combined
with an atomic clock and associated model may provide both detection and
mitigation during a spoofing attack.
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Appendix B

Clock model

Clock modelling and clock filters in the spoof proof clock controller V 2.0
20161027 HHA

B.1 Introduction

The goal of clock modelling is to provide an estimate of two key parameters
of the clock ”state”, the frequency offset and the clock drift, i.e. the rate
of change of the frequency offset. The clock model will be used for two
purposes: (1) As a reference for the clock frequency correction filter, in order
to determine whether the current clock correction, as calculated and applied
by the CSAC disciplining algorithm, is consistent with normal behavior of
the clock; (2) In the case that a valid external disciplining pulse is lost, the
model will be used to calculate the frequency corrections to be applied to
the CSAC by the ”spoof” proof clock controller. The model described below
is a simple way of modelling the clock state, motivated by being easy to
implement, more than being optimal for the task.

B.2 Input data for the clock model

Input data for the clock model comes from the CSAC telemetry string, sam-
pled nominally every second. The key data is contained in the field identified
by ”Steer”. This is the CSAC disciplining algorithm’s current estimate of
the frequency correction (in relative units) that has to be applied to the
CSAC microwave synthesizer to correct for the frequency error of the CSAC
”physics package”. Ref [16]. Sample telemetry string and explanation of the
data fields below are from the CSAC User Guide[ref]. Note that the ”Steer”
value reported by the CSAC in disciplining mode is the frequency correction
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that is applied to make the CSAC in sync with the external applied reference
pulse. If the reference pulse is accurate – such as the 1 PPS pulse output
from a properly operating GPS timing chip - then the negative ”Steer” value
is an estimate of the free-running CSAC frequency offset, i.e. a calibration
of the CSAC.

As long as there is a valid and accurate reference pulse, a series of ”Steer”
values provide the basis for estimating the frequency offset of the CSAC, as
well as its rate of change (drift).

One should note that the PPS output from the GPS chip has substantial
noise in the short term. In contrast, the CSAC itself is more stable than
the GPS reference over timespans up to 10000 s [16]. As a consequence,
the steering corrections calculated by the CSAC are also noisy and that
noise primarily due to noise in the reference pulse. In order to provide good
estimates of the clock state, it is useful to filter sampled steering data to
remove the influence of noise. This will be described next. Figure B.1 show
an example telemetry string.

Listing B.1: Example of a telemetry string received from the atomic clock

1 0,0x0000 ,1209 CS00909 ,0x0010

,4381 ,0.86 ,1.573 ,17.62 ,0.996 ,28.26 , -24 , - - - , -1 ,1 ,1268126502 ,586969 ,1.0

Figure B.1: Part 1 of table showing telemetry parameters. The table is taken from
the SA.45’s manual [16]
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Figure B.2: Part 2 of table showing telemetry parameters. The table is taken from
the SA.45’s manual [16]

B.3 Smoothing of sampled frequency steer-

ing data and estimates of the clock state

The frequency steer filter will be based on smoothed values of current and pre-
vious ”steer” data from the CSAC telemetry string. The method described
here is a very simple approach, primarily chosen for its ease of implemen-
tation. It is based on the assumption that ”Steer” values are sampled at
regular intervals. The design of an optimized approach for clock parameter
estimation is way beyond the scope of this work. Calculation of smoothed
values. Smoothed values of the clock steering correction are calculated using
an exponential filter. Input to the calculation is the current sampled ”Steer”
value, steer current, along with its associated timestamp (in mjd), t current.
The exponential filter has a parameter, w, whose inverse is the weight that
each new sampled value adds to the existing smooth value:

steer smooth current =
w − 1

w
steer smooth previous +

1

w
steer current

Smoothing is initialized by setting steer smooth previous = steer current
. Since the current smoothed value of the steering parameter is a weighted
average of all previous samples as well, it effectively ”lags” behind in time.
The effect of this lag can be calculated by applying the same exponential
smoothing to the associated timestamps

t smooth current =
w − 1

w
t smooth previous +

1

w
t current
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Again, smoothing is initialized by setting t smooth previous = t¿ current.
Updated smoothed values t smooth and steer smooth will be computed every
time the telemetry string is read (about once per second). Representative
data for sampled and smoothed ”steer” values are shown in fig XXX. Daily
updated clock model Smoothed values will be used to estimate the frequency
drift. A simple approach that ”works” is to use values at the start of every
day and compare to the values from the previous day. Again, this is not an
optimized approach. At the start of every new day set the following:

t smooth today = t smooth currentsteer smooth today = steer smooth current

and label previous day’s values t smooth yesterday and steer smooth yesterday.
The drift of the steering parameter can be estimated as:

steer drift =
(steer smooth today–steersmooth yesterday)

(t smooth today–t smooth yesterday)

The predicted steering parameter for a given point in time t can now be
computed as a simple linear relationship

steer predicted(t) = steer smooth today + (t–t smooth today) ∗ steer drift

The output of this model is the predicted CSAC steering correction for a
given point in time t.

B.4 Phase jump filter – fast timing filter

The ”fast” timing filter will check the value of the ”Phase” CSAC telemetry
phase field. The CSAC disciplining algorithm steers the clock so that the
generated PPS output is in sync with the reference PPS input. The reference
value for the phase offset filter is therefore 0. Limits for acceptable deviations
from the reference value has to be based on normal noise in the phase data.
A representative series of phase data is shown in figure B.3.

The filter parameter is a constant phase limit will be read from a config-
uration file. Flag for invalid timing will be raised when:

abs(phase current) > phase limit

Tentatively phase limit is set to 50 ns.
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Figure B.3: Figure shows phase offset in nanoseconds as measured by the CSAC

B.5 Frequency correction filter

The frequency correction filter will check the value of the CSAC telemetry
”steer” field and compare it to the steering correction predicted by the clock
model. Limits for acceptable deviations from the predicted value has to be
based on normal noise in the frequency steering data. A representative series
of sampled steering data along with model predictions is shown in figure
B.4. Filtering of the current frequency steering can now be implemented as
follows:

Abs(steer current–steer predicted(t current)) > steer limit

The parameter steer limit will be read from a configuration file. The limit
is tentatively set to 50 based on the data below. Note that this is a relative
frequency correction in units of (1012), corresponding to rate of change of
0.05 ns/s in the timing output of the clock.
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Figure B.4: Sampled clock steering corrections (gray), smoothed values (black solid
line) and predicted clock steering values (dashed). Sampled data at 1 s intervals
have been smoothed using an exponential filter with filter parameter w = 100000.
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Appendix C

Data acquisition

C.1 CSAC Logger source code

1 ’’’

2 :Author: Aril Schultzen

3 :Email: aschultzen@gmail.com

4 ’’’

5

6 import ctypes

7 import fileinput

8 import sys

9 import datetime

10 import time

11 import io

12 import os

13 import serial

14 import jdutil

15

16

17 def get_today_mjd():

18 today = datetime.datetime.utcnow()

19 return jdutil.jd_to_mjd(jdutil.datetime_to_jd(today))

20

21

22 def t_print(message):

23 current_time = datetime.datetime.now().time()

24 complete_message = "[" + str(

25 current_time.isoformat(

26 )) + "] " + "[" + message + "]"

27 print(complete_message)

28

29

30 def main_routine():

31 log_file = open("dp.txt" , "a+" )

32 t_print("Started CSAC logging script" )

33 ser = serial.Serial("/dev/ttyUSB0" , 57600, timeout=0.1)

34 sio = io.TextIOWrapper(

35 io.BufferedRWPair(ser,

36 ser),

37 encoding=’ascii’ ,

38 newline=" \r " )

39
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40 while(True):

41 log_file = open("dp.txt" , "a+" )

42 ser.write(b’^’ )

43 time.sleep(0.1)

44 telemetry = sio.readline()

45 output = str(get_today_mjd()) + "," + telemetry

46 log_file.write(output)

47 log_file.close()

48 time.sleep(1)

49

50 if __name__ == ’__main__’ :

51 main_routine()

C.2 GPS Logger source code

1 ’’’

2 :Author: Aril Schultzen

3 :Email: aschultzen@gmail.com

4 ’’’

5

6 """

7 GPS Logger requires:

8 - Python v.2.7

9 - python-mysqldb

10

11 EXPECTED TABLE

12 ---------

13

14 create table gprmc (

15 id INT NOT NULL AUTO_INCREMENT,

16 sensorID INT ,

17 fix_time TIME,

18 recv_warn VARCHAR(5),

19 latitude DECIMAL(10,5),

20 la_dir VARCHAR(5),

21 longitude DECIMAL(10,5),

22 lo_dir VARCHAR(5),

23 speed DECIMAL(10,5),

24 course DECIMAL(5,2),

25 fix_date DATE,

26 variation DECIMAL(5,2),

27 var_dir VARCHAR(5),

28 faa VARCHAR(5),

29 checksum VARCHAR(5),

30 mjd VARCHAR(50),

31 alt DECIMAL(5,2),

32 PRIMARY KEY (id) );

33 """

34

35 import ctypes

36 import MySQLdb as mdb

37 import ConfigParser

38 import fileinput

39 import sys

40 import datetime

41 import time

42 import io

43 import os

44 import serial
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45 import jdutil

46 from subprocess import call

47

48 config = ConfigParser.ConfigParser()

49

50

51 def dbConnect():

52 con = mdb.connect(config.get(’db’ , ’ip’ ), config.get(’db’ , ’user’ ),

53 config.get(’db’ , ’password’ ), config.get(’db’ , ’database’ ))

54 return con

55

56

57 def dbClose(dbConnection):

58 dbConnection.close()

59 t_print("Connection to database closed" )

60

61

62 def initConfig():

63 configFile = "config.ini"

64 config.read(configFile)

65

66

67 def t_print(message):

68 current_time = datetime.datetime.now().time()

69 complete_message = "[" + str(

70 current_time.isoformat(

71 )) + "] " + "[" + message + "]"

72 print(complete_message)

73

74

75 def format_date_string(date_s):

76 split = date_s.split("." )

77 split = split[::-1]

78 split = ’’ .join(split)

79 return split

80

81

82 def insert(con, data):

83 st = data

84 temp = st[12]

85 checksum = temp[1] + temp[2] + temp[3]

86 faa = temp[0]

87 x = con.cursor()

88 date = st[9][4:6] + st[9][2:4] + st[9][0:2]

89 st[9] = date

90

91 try:

92 query = ("INSERT INTO " + config.get(’db’ , ’table’ ) +

93 " (sensorID, fix_time, recv_warn, latitude, la_dir, longitude, lo_dir, ) " +

94 "(speed, course, fix_date, variation, var_dir, faa, checksum, mjd, alt) VALUES " +

95 "(" + config.get(’general’ , ’sensorID’ ) + "," + st[1] + ",’" + st[2] +

96 "’," + st[3] + ",’" + st[4] + "’," + st[5] + ",’" + st[6] + "’,’" + st[7] +

97 "’,’" + st[8] + "’,’" + st[9] + "’,’" + st[10] + "’,’" + st[11] +

98 "’,’" + faa + "’,’" + checksum + "’," + st[14] + ",’" + st[13] + "’);" )

99 x.execute(query)

100 con.commit()

101 except:

102 con.rollback()

103

104 # Function used to reset the serial configuration

105 # in Linux in case its mangled by something’

106
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107

108 def reset_serial():

109 call("stty -F " + config.get(’gps’ , ’port’ ) + " icanon" , shell=True)

110

111

112 def get_today_mjd():

113 today = datetime.datetime.utcnow()

114 return jdutil.jd_to_mjd(jdutil.datetime_to_jd(today))

115

116

117 def main_routine():

118 initConfig()

119 t_print("GPS logger started!" )

120 reset_serial()

121 con = dbConnect()

122 counter = 0

123 data = ""

124

125 while(True):

126 ser = serial.Serial(

127 config.get(’gps’ ,

128 ’port’ ),

129 config.get(’gps’ ,

130 ’baud’ ),

131 timeout=0.1)

132 sio = io.TextIOWrapper(io.BufferedRWPair(ser, ser), newline=" \r " )

133 time.sleep(1)

134 while True:

135 temp = sio.readline()

136 if(temp.find("GNRMC" ) == 1):

137 data = temp

138 data = data.split("," )

139 sio.readline() # Reading forward manually

140 temp = sio.readline()

141 temp = temp.split("," )

142 data.append(str(temp[9]))

143 data.append(str(get_today_mjd()))

144 counter = counter + 1

145 if(counter == int(config.get(’general’ , ’discard_interval’ ))):

146 insert(con, data)

147 counter = 0

148 dbClose(con)

149

150 if __name__ == ’__main__’ :

151 main_routine()

C.3 GPS Logger source code

1 ’’’

2 :Author: Aril Schultzen

3 :Email: aschultzen@gmail.com

4 ’’’

5 # This script attempts to connect to the

6 # Sensor Server at <ip> : "port" and

7 # IDs itself as <id>. It will then

8 # poll the time solved by the GNSS receiver

9 # connected to Sensor<id> until

10 # terminated.

11
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12 import socket

13 import sys

14 import time

15

16 ip = "10.1.0.46"

17 port = 10001

18 id = 1

19

20 try:

21 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

22 except socket.error, msg:

23 print ’Failed to create socket. Error code: ’ + str(msg[0]) + ’ , Error message : ’ + msg[1]

24 sys.exit();

25 try:

26 remote_ip = socket.gethostbyname( ip )

27

28 except socket.gaierror:

29 print ’Could not resolve hostname’

30 sys.exit()

31

32 s.connect((remote_ip , port))

33 s.sendall(b’IDENTIFY -10’ )

34 recv_buff = s.recv(1024)

35

36 while(1):

37 s.sendall(b’PRINTTIME’ + str(id))

38 time.sleep(0.1)

39 recv_buff = s.recv(1024)

40 recv_buff = recv_buff.strip(’> \n ’ )

41 print("Sensor " + str(id) + " GNSS solved time: " + recv_buff)

42 time.sleep(0.9)
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Appendix D

Sensor server software

D.1 Client

sensor client.c
1 #include "sensor_client.h"

2

3 /* CONFIG */

4 #define CONFIG_SERIAL_INTERFACE "serial_interface:"

5 #define CONFIG_CLIENT_ID "client_id:"

6 #define CONFIG_LOG_NAME "log_file_name:"

7 #define CONFIG_LOG_NMEA "log_nmea:"

8 #define CONFIG_FILE_PATH "client_config.ini"

9 #define DEFAULT_SERIAL_INTERFACE "/dev/ttyACM0"

10 #define CONFIG_CONNECTION_ATTEMPTS_MAX "connection_attempts_max:"

11 #define CONFIG_ENTRIES 5

12

13 struct config_map_entry conf_map[1];

14

15 static int identify(int session_fd, int id);

16 static int create_connection(struct sockaddr_in *serv_addr, int *session_fd,

17 char *ip, int portno);

18 static void receive_nmea(int gps_serial, struct raw_nmea_container *nmea_c);

19 static int format_nmea(struct raw_nmea_container *nmea_c);

20 static void initialize_config(struct config_map_entry *conf_map,

21 struct config *cfg);

22 static int start_client(int portno, char* ip);

23 static int usage(char *argv[]);

24

25

26 /* Identify the client for the server */

27 static int identify(int session_fd, int id)

28 {

29 /* Converting from int to string */

30 char id_str[5];

31 bzero(id_str, 5);

32 sprintf(id_str, " %d" , id); //Notice the space in the second parameter.

33 int read_status = 0;

34

35 /* Declaring message string */

36 char identify_message[sizeof(PROTOCOL_IDENTIFY) + sizeof(id_str) + 1];
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37

38 /* copying */

39 memcpy(identify_message, PROTOCOL_IDENTIFY, sizeof(PROTOCOL_IDENTIFY));

40 memcpy(&identify_message[8],id_str, sizeof(id_str));

41

42 write(session_fd, identify_message, sizeof(identify_message));

43

44 char buffer[100];

45 while ( (read_status = read(session_fd, buffer, sizeof(buffer)-1)) > 0) {

46 if(strstr((char*)buffer, PROTOCOL_OK ) == (buffer)) {

47 /* ID not used. Accepting. */

48 t_print("ID %d accepted by server. \n " , id);

49 return 0;

50 } else {

51 /* ID in use. Rejected. */

52 t_print("ID %d rejected by server, already in use. \n " , id);

53 return -1;

54 }

55 }

56 /* Something happened during read. read() returns -1 at error */

57 return read_status;

58 }

59

60 /* Create connection to server */

61 static int create_connection(struct sockaddr_in *serv_addr, int *session_fd,

62 char *ip, int portno)

63 {

64 if((*session_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

65 t_print("Could not create socket \n " );

66 return -1;

67 }

68

69 memset(serv_addr, ’0’ , sizeof(*serv_addr));

70

71 serv_addr->sin_family = AF_INET;

72 serv_addr->sin_port = htons(portno);

73

74 if(inet_pton(AF_INET, ip, &(serv_addr->sin_addr))<=0) {

75 t_print("inet_pton error occured! \n " );

76 return 1;

77 }

78

79 if( connect(*session_fd, (struct sockaddr *)serv_addr,

80 sizeof(*serv_addr)) < 0) {

81 return 1;

82 }

83

84 return 0;

85 }

86

87 /* Get chosen NMEA from GPS receiver */

88 static void receive_nmea(int gps_serial, struct raw_nmea_container *nmea_c)

89 {

90 char buffer[SENTENCE_LENGTH * 2];

91 int position = 0;

92 memset(buffer, ’\0’ ,sizeof(buffer));

93

94 bool rmc = false;

95 bool gga = false;

96

97 /* Get a load of THIS timebomb!! */

98 while(1) {

98



99 while(position < 100) {

100 read(gps_serial, buffer+position, 1);

101 if( buffer[position] == ’\n’ ) break;

102 position++;

103 }

104

105 if(strstr(buffer, RMC ) != NULL) {

106 memcpy(nmea_c->raw_rmc, buffer, position+1);

107 nmea_c->raw_rmc[position + 2] = ’\0’ ;

108 rmc = true;

109 }

110

111 if(strstr(buffer, GGA ) != NULL) {

112 memcpy(nmea_c->raw_gga, buffer, position+1);

113 nmea_c->raw_rmc[position + 2] = ’\0’ ;

114 gga = true;

115 }

116

117 if(rmc && gga) {

118 break;

119 }

120 position = 0;

121 }

122 }

123

124 /* Send received NMEA data to server */

125 static int format_nmea(struct raw_nmea_container *nmea_c)

126 {

127 int nmea_prefix_length = 6;

128 memcpy(nmea_c->output, "NMEA \n " , nmea_prefix_length);

129 int total_length = 0;

130 int newline_length = 1;

131

132 /* RMC */

133 int rmc_length = strlen(nmea_c->raw_rmc);

134 memcpy( nmea_c->output+nmea_prefix_length, nmea_c->raw_rmc, rmc_length );

135 //nmea_c->output[nmea_prefix_length + rmc_length + newline_length] = ’\n’;

136

137 /* Updating total length */

138 total_length = rmc_length + nmea_prefix_length; //+ newline_length;

139

140 /* GGA */

141 int gga_length = strlen(nmea_c->raw_gga);

142 memcpy( nmea_c->output+total_length, nmea_c->raw_gga, gga_length );

143 nmea_c->output[total_length + gga_length + newline_length] = ’\n’ ;

144

145 /* Updating total length */

146 total_length += gga_length + newline_length;

147

148 return total_length;

149 }

150

151 static int make_log(struct raw_nmea_container *nmea_c, int id, char* log_name)

152 {

153 /* Allocating memory for filename buffer */

154 int filename_length = strlen(log_name) + 100;

155 char filename[filename_length];

156

157 /* Clearing buffer */

158 memset(filename,’\0’ ,filename_length);

159

160 /* Copying name from loaded config */
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161 strcpy(filename, log_name);

162

163 /* Casting int to string */

164 char id_string[10];

165 memset(id_string,’\0’ , 10);

166 sprintf(id_string, "%d" , id);

167

168 /* Concating filename and ID */

169 strcat(filename, id_string);

170

171 char log_buffer[SENTENCE_LENGTH * 2];

172 memset(log_buffer, ’\0’ , SENTENCE_LENGTH * 2);

173 strcat(log_buffer, nmea_c->raw_rmc);

174 log_buffer[strlen(log_buffer)-2] = ’\0’ ;

175 log_buffer[strlen(log_buffer)-1] = ’,’ ;

176

177 strcat(log_buffer, nmea_c->raw_gga);

178

179 return log_to_file(filename, log_buffer, 1);

180 }

181

182 /* Setting up the config structure specific for the server */

183 static void initialize_config(struct config_map_entry *conf_map,

184 struct config *cfg)

185 {

186 conf_map[0].entry_name = CONFIG_SERIAL_INTERFACE;

187 conf_map[0].modifier = FORMAT_STRING;

188 conf_map[0].destination = &cfg->serial_interface;

189

190 conf_map[1].entry_name = CONFIG_CLIENT_ID;

191 conf_map[1].modifier = FORMAT_INT;

192 conf_map[1].destination = &cfg->client_id;

193

194 conf_map[2].entry_name = CONFIG_LOG_NAME;

195 conf_map[2].modifier = FORMAT_STRING;

196 conf_map[2].destination = &cfg->log_name;

197

198 conf_map[3].entry_name = CONFIG_LOG_NMEA;

199 conf_map[3].modifier = FORMAT_INT;

200 conf_map[3].destination = &cfg->log_nmea;

201

202 conf_map[4].entry_name = CONFIG_CONNECTION_ATTEMPTS_MAX;

203 conf_map[4].modifier = FORMAT_INT;

204 conf_map[4].destination = &cfg->con_attempt_max;

205 }

206

207 static int start_client(int portno, char* ip)

208 {

209 struct termios tty;

210 memset (&tty, 0, sizeof tty);

211

212 struct sockaddr_in serv_addr;

213 int session_fd = 0;

214 int connection_attempts = 1;

215 int con_status;

216

217 struct raw_nmea_container nmea_c;

218 memset(&nmea_c, 0, sizeof(nmea_c));

219

220 struct config cfg;

221

222 initialize_config(conf_map, &cfg);
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223 int load_config_status = load_config(conf_map, CONFIG_FILE_PATH,

224 CONFIG_ENTRIES);

225 if(!load_config_status) {

226 t_print("Failed to load the config, using default values \n " );

227 memcpy(cfg.serial_interface, DEFAULT_SERIAL_INTERFACE,

228 strlen(DEFAULT_SERIAL_INTERFACE)*sizeof(char));

229

230 /* Picking ID number for client at random */

231 cfg.client_id = rand() % ID_MAX;

232 t_print("Picked ID %d at random \n " , cfg.client_id);

233

234 /* Disabling logging */

235 cfg.log_nmea = 0;

236

237 /* Setting retry times to 10 */

238 cfg.con_attempt_max = 10;

239 } else {

240 if(cfg.client_id == 0 || cfg.client_id > ID_MAX) {

241 t_print("Client ID can not be less than 1 or more than %d! \n " , ID_MAX);

242 exit(0);

243 }

244 }

245

246 /* Establishing connection to GPS receiver */

247 int gps_serial = open_serial(cfg.serial_interface, GPS);

248 if(gps_serial == -1) {

249 t_print("Connection to GPS receiver failed! Exiting... \n " );

250 exit(0);

251 } else {

252 t_print("Connection to GPS receiver established! \n " );

253 }

254

255 /* Establishing connection to server */

256 while(connection_attempts <= cfg.con_attempt_max) {

257 con_status = create_connection(&serv_addr, &session_fd, ip, portno);

258 if(con_status == 0) {

259 t_print("Connected to server! \n " );

260 break;

261 }

262 t_print("Connection attempt %d failed. Code %d \n " , connection_attempts,

263 con_status);

264 sleep(1);

265 connection_attempts++;

266 }

267

268 /* Identifying client for server */

269 if( identify(session_fd, cfg.client_id) == -1 ) {

270 exit(0);

271 }

272

273 if(cfg.log_nmea) {

274 t_print("NMEA data logging enabled \n " );

275 }

276

277 while (1) {

278 receive_nmea(gps_serial, &nmea_c);

279 int trans_length = format_nmea(&nmea_c);

280 /* Writing to socket (server) */

281 write(session_fd, nmea_c.output, trans_length);

282 if(cfg.log_nmea) {

283 make_log(&nmea_c, cfg.client_id, cfg.log_name);

284 }
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285 }

286 return 0;

287 }

288

289 static int usage(char *argv[])

290 {

291 t_print("Usage: %s -s <SERVER IP> -p <SERVER PORT> \n " , argv[0]);

292 return 0;

293 }

294

295 int main(int argc, char *argv[])

296 {

297 char *ip_address = NULL;

298 char *port_number = NULL;

299

300 if(argc < 5) {

301 usage(argv);

302 return 0;

303 }

304

305 while (1) {

306 char c;

307

308 c = getopt (argc, argv, "s:p:" );

309 if (c == -1) {

310 break;

311 }

312 switch (c) {

313 case ’s’ :

314 ip_address = optarg;

315 break;

316 case ’p’ :

317 port_number = optarg;

318 break;

319 default:

320 usage(argv);

321 }

322 }

323

324 if(ip_address == NULL || port_number == NULL) {

325 t_print("Missing parameters! \n " );

326 exit(0);

327 }

328

329 start_client(atoi(port_number), ip_address);

330 return 0;

331 }

sensor client.h
1 #ifndef SENSOR_CLIENT_H

2 #define SENSOR_CLIENT_H

3

4 // Mine

5 #include "net.h"

6 #include "utils.h"

7 #include "protocol.h"

8 #include "nmea.h"

9 #include "utils.h"

10 #include "serial.h"
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11

12 struct config {

13 char serial_interface[100];

14 int client_id;

15 char log_name[100];

16 int log_nmea;

17 int con_attempt_max;

18 };

19

20 /* Used by the client */

21 struct raw_nmea_container {

22 /* Raw data */

23 char raw_gga[SENTENCE_LENGTH];

24 char raw_rmc[SENTENCE_LENGTH];

25 char output[SENTENCE_LENGTH * 2];

26 };

27

28 #endif /* !SENSOR_CLIENT_H */

client config.ini
1 serial_interface: /dev/ttyS0

2 client_id: 1

3 log_nmea: 1

4 log_file_name: log_sensor

5 connection_attempts_max: 10

query csac.py
1 import ctypes

2 import fileinput, sys

3 import datetime

4 import time

5 import io

6 import os

7 import serial

8

9 def main_routine():

10 # Opening serial stream, use ASCII

11 ser = serial.Serial("/dev/ttyUSB0" ,57600, timeout=0.1)

12 sio = io.TextIOWrapper(io.BufferedRWPair(ser, ser),encoding=’ascii’ ,newline=" \r\n " )

13

14 # Open log file, mostly used for debug

15 log_file = open("query_csac.txt" , "a+" )

16

17 # The query to use

18 query = sys.argv[1].strip(" \r\n " )

19

20 # How long to sleep between read from serial con.

21 sleep_time = 0.2

22

23 # The minimum length of the answer

24 # for the given query.

25 minimum_len = 0

26

27 if(query == ’^’ or query == ’6’ ):

28 minimum_len = 80

29 elif(query == ’F’ ):

30 sleep_time = 0.5
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31 minimum_len = 10

32 elif(query == ’M’ ):

33 minimum_len = 6

34 elif (query == ’S’ ):

35 sleep_time = 3

36 minimum_len = 2

37 else:

38 minimum_len = 1

39

40 response_len = 0

41

42 if(len(query) > 1):

43 query = "!" + query + " \r\n "

44

45 retry_count = 0

46

47 while (response_len < minimum_len):

48 ser.write(bytes(query))

49 time.sleep(sleep_time)

50 response = sio.readline()

51 response = response.strip(" \r\n\x00 " )

52 response_len = len(response)

53 retry_count = retry_count + 1

54

55 print(response)

56 ser.close()

57 query = query.strip(" \r\n " )

58 log_string = ("Issued query " + "’" + query + "’ " + str(retry_count) + " times \n " )

59 log_file.write(log_string)

60 if __name__ == ’__main__’ :

61 main_routine()

D.2 Server

sensor server.c
1 #include "sensor_server.h"

2

3 /* VERSION */

4 #define PROGRAM_VERSION "0.8c"

5

6 /* ERRORS */

7 #define ERROR_MAX_CLIENTS_REACHED "CONNECTION REJECTED: MAXIMUM NUMBER OF CLIENTS REACHED\n"

8 #define ERROR_CONFIG_LOAD_FAILED "CONFIG LOAD FAILED: CONFIG FILE CORRUPTED\n"

9 #define ERROR_SEMAPHORE_CREATION_FAILED "SEMAPHORE CREATION FAILED\n"

10 #define ERROR_SOCKET_OPEN_FAILED "ERROR: FAILED TO OPEN SOCKET\n"

11 #define ERROR_SOCKET_BINDING "ERROR: FAILED TO BIND ON %d\n"

12 #define ERROR_CONNECTION_ACCEPT "ERROR: FAILED TO ACCEPT CONNECTION (%d)\n"

13 #define ERROR_FAILED_FORK "ERROR: FORK FAILED (%d)\n"

14 #define ERROR_MISSING_PARAMS "MISSING PARAMETERS!\n"

15

16 /* GENERAL STRINGS */

17 #define PROCESS_REAPED "Process %d reaped. Status: %d Signum: %d\n"

18 #define SIGTERM_RECEIVED "[%d] SIGTERM received!\n"

19 #define SIGINT_RECEIVED "[%d] SIGINT received!\n"

20 #define STOPPING_SERVER "Stopping server...\n"

21 #define CONFIG_LOADED "Config loaded!\n"

22 #define SERVER_RUNNING "Server is running. Accepting connections.\n"
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23 #define WAITING_FOR_CONNECTIONS "Waiting for connections...\n"

24 #define CON_ACCEPTED "Connection accepted\n"

25 #define CLIENT_DISCONNECTED "Client [%d] at [%s] disconnected\n"

26 #define SERVER_STOPPED "Server STOPPED!\n"

27 #define SERVER_STARTING "Sensor server starting...\n"

28 #define CLIENT_KICKED "Client was kicked\n"

29

30 /* USAGE() STRINGS */

31 #define USAGE_DESCRIPTION "Required argument:\n\t -p <PORT NUMBER>\n\n"

32 #define USAGE_PROGRAM_INTRO "Sensor_server: Server part of GPS Jamming/Spoofing system\n\n"

33 #define USAGE_USAGE "Usage: %s [ARGS]\n\n"

34

35 /* CONFIG CONSTANTS*/

36 #define CONFIG_FILE_PATH "config.ini"

37 #define CONFIG_SERVER_MAX_CONNECTIONS "max_clients:"

38 #define CONFIG_SERVER_WARM_UP "warm_up:"

39 #define CONFIG_SERVER_HUMANLY_READABLE "humanly_readable_dumpdata:"

40 #define CONFIG_CSAC_PATH "csac_serial_interface:"

41 #define CONFIG_LOGGING "logging:"

42 #define CONFIG_LOG_PATH "log_path:"

43 #define CONFIG_CSAC_LOG_PATH "csac_log_path:"

44 #define CONFIG_CSAC_LOGGING "csac_logging:"

45 #define SERVER_CONFIG_ENTRIES 8

46

47 /* Server data and stats */

48 struct server_data *s_data;

49

50 /* Shared synchro elements */

51 struct server_synchro *s_synch;

52

53 /* Pointer to shared memory containing the client list */

54 struct client_table_entry *client_list;

55

56 /* Pointer to client list map */

57 struct client_table_entry **client_list_map;

58

59 /* Pointer to shared memory containing config */

60 struct server_config *s_conf;

61

62 /* Pointer to shared CSAC model data */

63 struct csac_model_data *cfd;

64

65 static void remove_client_by_pid(pid_t pid);

66 void remove_client_by_id(int id);

67 static struct client_table_entry* create_client(struct client_table_entry* ptr);

68 static void handle_sigchld();

69 static void handle_sig(int signum);

70 static void initialize_config(struct config_map_entry *conf_map,

71 struct server_config *s_conf);

72 static int start_server(int port_number);

73 static int usage(char *argv[]);

74 static void setup_session(int session_fd, struct client_table_entry *new_client);

75 static int release_mem_piece(struct client_table_entry* release_me);

76

77 int set_timeout(struct client_table_entry *target,

78 struct timeval h_timeout)

79 {

80 /* setsockopt return -1 on error and 0 on success */

81 target->timeout = h_timeout;

82 if (setsockopt (target->transmission.session_fd, SOL_SOCKET,

83 SO_RCVTIMEO, (char *)&target->timeout, sizeof(struct timeval)) < 0) {

84 t_print("an error: %s \n " , strerror(errno));
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85 return 0;

86 }

87 return 1;

88 }

89

90 /* Prints a formatted string containing server info to monitor */

91 void print_server_data(struct client_table_entry *monitor)

92 {

93 char buffer [1000];

94 int snprintf_status = 0;

95 struct tm *loctime_started;

96 loctime_started = localtime (&s_data->started);

97

98 s_write(&(monitor->transmission), SERVER_TABLE_LABEL,

99 sizeof(SERVER_TABLE_LABEL));

100 s_write(&(monitor->transmission), HORIZONTAL_BAR, sizeof(HORIZONTAL_BAR));

101

102 snprintf_status = snprintf( buffer, 1000,

103 "PID: %d \n " \

104 "Number of clients: %d \n " \

105 "Number of sensors: %d \n " \

106 "Max clients: %d \n " \

107 "Sensor Warm-up time: %ds \n " \

108 "Dump humanly readable data: %d \n " \

109 "Started: %s" \

110 "Version: %s \n " ,

111 s_data->pid,

112 s_data->number_of_clients,

113 s_data->number_of_sensors,

114 s_conf->max_clients,

115 s_conf->warm_up_seconds,

116 s_conf->human_readable_dumpdata,

117 asctime (loctime_started),

118 s_data->version);

119

120 s_write(&(monitor->transmission), buffer, snprintf_status);

121 s_write(&(monitor->transmission), HORIZONTAL_BAR, sizeof(HORIZONTAL_BAR));

122 }

123

124 struct client_table_entry* get_client_by_id(int id)

125 {

126 struct client_table_entry* cli;

127 struct client_table_entry* temp;

128 int found = 0;

129

130 sem_wait(&(s_synch->client_list_sem));

131 list_for_each_entry_safe(cli, temp, &client_list->list, list) {

132 if(cli->client_id == id) {

133 found = 1;

134 break;

135 }

136 }

137 sem_post(&(s_synch->client_list_sem));

138 if(found) {

139 return cli;

140 } else {

141 return NULL;

142 }

143 }

144

145 /* Removes a client with the given PID */

146 static void remove_client_by_pid(pid_t pid)
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147 {

148 struct client_table_entry* cli;

149 struct client_table_entry* temp_remove;

150

151 sem_wait(&(s_synch->client_list_sem));

152 list_for_each_entry_safe(cli, temp_remove,&client_list->list,

153 list) {

154 if(cli->pid == pid) {

155 /* Decrementing sensor count */

156 if(cli->client_id > 0) {

157 s_data->number_of_sensors--;

158 }

159 t_print(CLIENT_DISCONNECTED, cli->client_id ,cli->ip);

160 list_del(&cli->list);

161 release_mem_piece(cli);

162 }

163 }

164 /* Decrementing total client count */

165 s_data->number_of_clients--;

166 sem_post(&(s_synch->client_list_sem));

167 }

168

169 /* Removes a client with the given ID */

170 void remove_client_by_id(int id)

171 {

172 struct client_table_entry* cli;

173 struct client_table_entry* temp_remove;

174

175 sem_wait(&(s_synch->client_list_sem));

176 list_for_each_entry_safe(cli, temp_remove,&client_list->list,

177 list) {

178 if(cli->client_id == id) {

179 list_del(&cli->list);

180 release_mem_piece(cli);

181 s_data->number_of_clients--;

182 }

183 }

184 sem_post(&(s_synch->client_list_sem));

185 }

186

187 static int release_mem_piece(struct client_table_entry* release_me)

188 {

189 int i;

190 for(i = 1; i < s_conf->max_clients; i++){

191 if(client_list_map[i] == NULL){

192 client_list_map[i] = release_me;

193 return 1;

194 }

195 i++;

196 }

197 return 0;

198 }

199

200 static struct client_table_entry* get_mem_piece()

201 {

202 int i;

203 for(i = 1; i < s_conf->max_clients; i++){

204 if(client_list_map[i] != NULL){

205 struct client_table_entry *tmp = client_list_map[i];

206 client_list_map[i] = NULL;

207 return tmp;

208 }
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209 i++;

210 }

211 return NULL;

212 }

213

214 /* Creates an entry in the client list structure and returns a pointer to it*/

215 static struct client_table_entry* create_client(struct client_table_entry* ptr)

216 {

217 sem_wait(&(s_synch->client_list_sem));

218 s_data->number_of_clients++;

219 struct client_table_entry* tmp;

220 tmp = get_mem_piece();

221 list_add_tail( &(tmp->list), &(ptr->list) );

222 sem_post(&(s_synch->client_list_sem));

223 return tmp;

224 }

225

226 /* SIGCHLD Handler */

227 static void handle_sigchld()

228 {

229 pid_t pid;

230 int status;

231 while ((pid = waitpid(-1, &status, WNOHANG)) != -1) {

232 if(pid == 0) {

233 break;

234 }

235

236 if(pid > 0) {

237 remove_client_by_pid(pid);

238 }

239 }

240 }

241

242 /* SIGTERM/INT Handler */

243 static void handle_sig(int signum)

244 {

245 if(signum == 15) {

246 t_print(SIGTERM_RECEIVED, getpid());

247 }

248 if(signum == 2) {

249 t_print(SIGINT_RECEIVED, getpid());

250 }

251 t_print(STOPPING_SERVER, getpid());

252 s_synch->done = 1;

253 }

254

255 /* Setting up the config structure specific for the server */

256 static void initialize_config(struct config_map_entry *conf_map,

257 struct server_config *s_conf)

258 {

259 conf_map[0].entry_name = CONFIG_SERVER_MAX_CONNECTIONS;

260 conf_map[0].modifier = FORMAT_INT;

261 conf_map[0].destination = &s_conf->max_clients;

262

263 conf_map[1].entry_name = CONFIG_SERVER_WARM_UP;

264 conf_map[1].modifier = FORMAT_INT;

265 conf_map[1].destination = &s_conf->warm_up_seconds;

266

267 conf_map[2].entry_name = CONFIG_SERVER_HUMANLY_READABLE;

268 conf_map[2].modifier = FORMAT_INT;

269 conf_map[2].destination = &s_conf->human_readable_dumpdata;

270
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271 conf_map[3].entry_name = CONFIG_CSAC_PATH;

272 conf_map[3].modifier = FORMAT_STRING;

273 conf_map[3].destination = &s_conf->csac_path;

274

275 conf_map[4].entry_name = CONFIG_LOGGING;

276 conf_map[4].modifier = FORMAT_INT;

277 conf_map[4].destination = &s_conf->logging;

278

279 conf_map[5].entry_name = CONFIG_LOG_PATH;

280 conf_map[5].modifier = FORMAT_STRING;

281 conf_map[5].destination = &s_conf->log_path;

282

283 conf_map[6].entry_name = CONFIG_CSAC_LOG_PATH;

284 conf_map[6].modifier = FORMAT_STRING;

285 conf_map[6].destination = &s_conf->csac_log_path;

286

287 conf_map[7].entry_name = CONFIG_CSAC_LOGGING;

288 conf_map[7].modifier = FORMAT_INT;

289 conf_map[7].destination = &s_conf->csac_logging;

290 }

291

292 /* Setups the clients structure and initializes data */

293 void setup_session(int session_fd, struct client_table_entry *new_client)

294 {

295 /* Setting the IP adress */

296 char ip[INET_ADDRSTRLEN];

297 get_ip_str(session_fd, ip);

298

299 /* Setting the PID */

300 new_client->pid = getpid();

301 new_client->timestamp = time(NULL);

302 strncpy(new_client->ip, ip, INET_ADDRSTRLEN);

303

304 /* Initializing structure, zeroing just to be sure */

305 new_client->client_id = 0;

306 new_client->transmission.session_fd = session_fd;

307

308 /* Zeroing out filters */

309 new_client->fs.ls_f.moved = 0;

310 new_client->fs.ls_f.was_moved = 0;

311

312 new_client->marked_for_kick = 0;

313 new_client->ready = 0;

314

315 /* Setting timeout */

316 struct timeval timeout = {UNIDENTIFIED_TIMEOUT, 0};

317 if(!set_timeout(new_client, timeout)) {

318 t_print("Failed to set timeout for client \n " );

319 }

320

321 memset(&new_client->transmission.iobuffer, ’0’ , IO_BUFFER_SIZE*sizeof(char));

322 memset(&new_client->cm.parameter, ’0’ , MAX_PARAMETER_SIZE*sizeof(char));

323

324 /*

325 * Entering child process main loop

326 * (Outer) breaks if server closes.

327 * (Inner) Breaks (disconnects the client) if

328 * respond < 0

329 */

330 while(!s_synch->done) {

331 if(!respond(new_client)) {

332 break;
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333 }

334 }

335 }

336

337 /*

338 * Main loop for the server.

339 * Forks everytime a client connects and calls setup_session()

340 */

341 static int start_server(int port_number)

342 {

343 /* Initializing variables */

344 int server_sockfd;

345 struct sockaddr_in serv_addr;

346 struct config_map_entry conf_map[SERVER_CONFIG_ENTRIES];

347

348 /* Initializing config structure */

349 s_conf = mmap(NULL, sizeof(struct server_config), PROT_READ | PROT_WRITE,

350 MAP_SHARED | MAP_ANONYMOUS, -1, 0);

351 initialize_config(conf_map, s_conf);

352

353 /* Loading config */

354 int load_config_status = load_config(conf_map, CONFIG_FILE_PATH,

355 SERVER_CONFIG_ENTRIES);

356

357 /* Falling back to default if load_config fails */

358 if(load_config_status) {

359 t_print(CONFIG_LOADED);

360 client_list = mmap(NULL,

361 ( (s_conf->max_clients + 1) * sizeof(struct client_table_entry)),

362 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);

363 if(client_list == MAP_FAILED){

364 t_print("Failed to allocate memory for the client list! \n " );

365 }

366 } else {

367 t_print(ERROR_CONFIG_LOAD_FAILED);

368 exit(0);

369 }

370

371 client_list_map = malloc((s_conf->max_clients + 1)

372 * sizeof(struct client_table_entry*));

373 int i;

374

375 /* Skip the first entry for some reason */

376 for(i = 1; i < s_conf->max_clients; i++){

377 client_list_map[i] = client_list + i;

378 }

379

380 INIT_LIST_HEAD(&client_list->list);

381

382 /* Create and initialize shared memory for server data */

383 s_data = mmap(NULL, sizeof(struct server_data), PROT_READ | PROT_WRITE,

384 MAP_SHARED | MAP_ANONYMOUS, -1, 0);

385 if(s_data == MAP_FAILED){

386 t_print("Failed to allocate memory for the server data! \n " );

387 }

388

389 bcopy(PROGRAM_VERSION, s_data->version,4);

390 s_data->pid = getpid();

391 s_data->started = time(NULL);

392

393 /* Init shared semaphores and sync elements */

394 s_synch = mmap(NULL, sizeof(struct server_synchro), PROT_READ | PROT_WRITE,
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395 MAP_SHARED | MAP_ANONYMOUS, -1, 0);

396

397 if(s_synch == MAP_FAILED){

398 t_print("Failed to allocate memory for the semaphores! \n " );

399 }

400

401 sem_init(&(s_synch->ready_sem), 1, 1);

402 sem_init(&(s_synch->client_list_sem), 1, 1);

403 sem_init(&(s_synch->csac_sem), 1, 1);

404

405 /* Init pointer to shared CSAC_filter data */

406 cfd = mmap(NULL, sizeof(struct csac_model_data), PROT_READ | PROT_WRITE,

407 MAP_SHARED | MAP_ANONYMOUS, -1, 0);

408

409 if(cfd == MAP_FAILED){

410 t_print("Failed to allocate memory for the CSAC filter data! \n " );

411 }

412

413 if( &(s_synch->ready_sem) == SEM_FAILED

414 || &(s_synch->client_list_sem) == SEM_FAILED) {

415 t_print(ERROR_SEMAPHORE_CREATION_FAILED);

416 sem_close(&(s_synch->ready_sem));

417 sem_close(&(s_synch->client_list_sem));

418 sem_close(&(s_synch->csac_sem));

419 exit(1);

420 }

421

422

423 pid_t f_pid;

424 f_pid = fork();

425 if(f_pid == 0) {

426 t_print("Forked out CSAC filter [%d] \n " , getpid());

427 start_csac_model(cfd);

428 _exit(0);

429 }

430

431 /* Waiting for filter to start */

432 sleep(1);

433 if(s_synch->done)

434 return 1;

435

436 /* Registering the SIGINT handler */

437 struct sigaction sigint_action;

438 memset(&sigint_action, 0, sizeof(struct sigaction));

439 sigint_action.sa_handler = handle_sig;

440 sigaction(SIGINT, &sigint_action, NULL);

441 if (sigaction(SIGCHLD, &sigint_action, 0) == -1) {

442 perror(0);

443 exit(1);

444 }

445

446 /* Registering the SIGTERM handler */

447 struct sigaction sigterm_action;

448 memset(&sigterm_action, 0, sizeof(struct sigaction));

449 sigterm_action.sa_handler = handle_sig;

450 sigaction(SIGTERM, &sigterm_action, NULL);

451 if (sigaction(SIGCHLD, &sigterm_action, 0) == -1) {

452 perror(0);

453 exit(1);

454 }

455

456 /* Registering the SIGCHLD handler */
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457 struct sigaction child_action;

458 child_action.sa_handler = &handle_sigchld;

459 sigemptyset(&child_action.sa_mask);

460 child_action.sa_flags = SA_RESTART | SA_NOCLDSTOP;

461 if (sigaction(SIGCHLD, &child_action, 0) == -1) {

462 perror(0);

463 exit(1);

464 }

465

466 /* Initialize socket */

467 server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

468 if (server_sockfd < 0) {

469 die(62,ERROR_SOCKET_OPEN_FAILED);

470 }

471

472 /*

473 * Initializing the server address struct:

474 * AF_INET = IPV4 Internet protocol

475 * INADDR_ANY = Accept connections to all IPs of the machine

476 * htons(port_number) = Endianess: network to host long(port number).

477 */

478 bzero((char *) &serv_addr, sizeof(serv_addr));

479 serv_addr.sin_family = AF_INET;

480 serv_addr.sin_addr.s_addr = INADDR_ANY;

481 serv_addr.sin_port = htons(port_number);

482

483 /*

484 * Assigns the address (serv_addr) to the socket

485 * referred to by server_sockfd.

486 */

487 if (bind(server_sockfd, (struct sockaddr *) &serv_addr,

488 sizeof(serv_addr)) < 0) {

489 t_print(ERROR_SOCKET_BINDING, port_number);

490 exit(1);

491 }

492

493 /* Marking the connection for listening*/

494 listen(server_sockfd,SOMAXCONN);

495 int session_fd = 0;

496 t_print(SERVER_RUNNING);

497 while (!s_synch->done) {

498 t_print(WAITING_FOR_CONNECTIONS);

499 session_fd = accept(server_sockfd,0,0);

500 if (session_fd==-1) {

501 if (errno==EINTR) continue;

502 t_print(ERROR_CONNECTION_ACCEPT,errno);

503 }

504 if(s_data->number_of_clients == s_conf->max_clients) {

505 write(session_fd, ERROR_MAX_CLIENTS_REACHED, sizeof(ERROR_MAX_CLIENTS_REACHED));

506 close(session_fd);

507 } else {

508 struct client_table_entry *new_client = create_client(client_list);

509 pid_t pid=fork();

510 if (pid==-1) {

511 t_print(ERROR_FAILED_FORK, errno);

512 /* WHAT HAPPENS WITH THE LIST WHEN FORK FAILS? DEAL WITH IT.*/

513 } else if (pid==0) {

514 close(server_sockfd);

515 setup_session(session_fd, new_client);

516 close(session_fd);

517 if(new_client->marked_for_kick) {

518 t_print(CLIENT_KICKED, getpid());
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519 }

520 _exit(0);

521 } else {

522 t_print(CON_ACCEPTED);

523 close(session_fd);

524 }

525 }

526 }

527

528 /* Destroying semaphores */

529 sem_destroy(&(s_synch->csac_sem));

530 sem_destroy(&(s_synch->ready_sem));

531 sem_destroy(&(s_synch->client_list_sem));

532

533 /* Freeing */

534 munmap(client_list, sizeof(struct client_table_entry));

535 munmap(s_data, sizeof(struct server_data));

536 munmap(cfd, sizeof(struct csac_model_data));

537 munmap(s_synch, sizeof(struct server_synchro));

538 free(client_list_map);

539

540 /* Closing server FD */

541 close(server_sockfd);

542 t_print(SERVER_STOPPED);

543 return 1;

544 }

545

546 static int usage(char *argv[])

547 {

548 printf(USAGE_USAGE, argv[0]);

549 printf(USAGE_PROGRAM_INTRO);

550 printf(USAGE_DESCRIPTION);

551 return 0;

552 }

553

554 int main(int argc, char *argv[])

555 {

556 char *port_number = NULL;

557

558 /* getopt silent mode set */

559 opterr = 0;

560

561 if(argc < 3) {

562 usage(argv);

563 return 0;

564 }

565

566 while (1) {

567 char c;

568

569 c = getopt (argc, argv, "p:" );

570 if (c == -1) {

571 break;

572 }

573

574 switch (c) {

575 case ’p’ :

576 port_number = optarg;

577 break;

578 }

579 }

580
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581 if(port_number == NULL) {

582 printf(ERROR_MISSING_PARAMS);

583 }

584

585 t_print(SERVER_STARTING);

586 start_server(atoi(port_number));

587 exit(0);

588 }

sensor server.h
1 /**

2 * @file sensor_server.h

3 * @author Aril Schultzen

4 * @date 13.04.2016

5 * @brief File containing function prototypes, structs and includes for sensor_server.c

6 */

7

8 #ifndef SENSOR_SERVER_H

9 #define SENSOR_SERVER_H

10

11 #define PATH_LENGTH_MAX 1000

12 #define CLIENT_TIMEOUT 5

13 #define MONITOR_TIMEOUT 1000

14 #define UNIDENTIFIED_TIMEOUT 10

15

16 #include <fcntl.h>

17 #include <sys/stat.h>

18 #include "session.h"

19 #include "serial.h"

20 #include "sensor_server_common.h"

21 #include "csac_filter.h"

22

23 /*!@struct*/

24 /*!@brief Contains configuration values for the server

25 */

26 struct server_config {

27 int max_clients;

28 int warm_up_seconds;

29 int human_readable_dumpdata;

30 char csac_path[PATH_LENGTH_MAX];

31 int logging;

32 char log_path[PATH_LENGTH_MAX];

33 int csac_logging;

34 char csac_log_path[PATH_LENGTH_MAX];

35 };

36

37 /*

38 * Made extern because the sessions should

39 * exit if the server is given a SIGINT/TERM

40 */

41 //extern volatile sig_atomic_t done;

42

43 /* Also used by session and action */

44 extern struct client_table_entry *client_list;

45 extern struct server_data *s_data;

46 extern struct server_synchro *s_synch;

47 extern struct server_config *s_conf;

48 extern struct csac_model_data *cfd;
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49

50 /** @brief Removes a client whose ID matches parameter

51 *

52 * Iterates through the linked list and removes the

53 * node containing the client whose ID matches the parameter.

54 * @param id ID for the client

55 * @return Void

56 */

57 void remove_client_by_id(int id);

58

59 /** @brief Returns a client whose ID matches parameter

60 *

61 * Iterates through the linked list and returns

62 * a pointer to the client_table_entry struct in the

63 * list that corresponds with the parameter.

64 * @param id ID for the client

65 * @return client_table_entry *

66 */

67 struct client_table_entry* get_client_by_id(int id);

68

69 /** @brief Prints information about the server.

70 *

71 * Transmits info about the server:

72 * Time when started, PID, number of clients,

73 * number of sensors, max number of clients,

74 * sensor warm-up time and version.

75 *

76 * @param client MONITOR who made the request.

77 * @return Void

78 */

79 void print_server_data(struct client_table_entry *monitor);

80

81 int set_timeout(struct client_table_entry *target,

82 struct timeval h_timeout);

83

84 #endif /* !SENSOR_SERVER_H */

config.ini
1 humanly_readable_dumpdata: 1

2 max_clients: 100

3 warm_up: 24000

4 csac_serial_interface: /dev/ttyUSB0

5 logging: 1

6 log_path: server_log.txt

7 csac_logging: 1

8 csac_log_path: csac_log.txt

sensor server common.h
1 /**

2 * @file sensor_server_common.h

3 * @author Aril Schultzen

4 * @date 13.04.2016

5 * @brief File containing structs and defines used by session.c, analyzer.c, sensors_server.c and actions.c

6 */

7

8 #ifndef SENSOR_SERVER_COMMON_H
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9 #define SENSOR_SERVER_COMMON_H

10

11 #include <semaphore.h>

12 #include "net.h"

13 #include "colors.h"

14

15 /* General */

16 #define SERVER_TABLE_LABEL "SERVER DATA\n"

17 #define HORIZONTAL_BAR "================================================================================\n"

18 #define ERROR_NO_CLIENT "ERROR: No such client\n"

19 #define ERROR_NO_FILENAME "ERROR: No FILENAME specified\n"

20 #define MAX_FILENAME_SIZE 30

21 #define ID_AS_STRING_MAX 10

22

23 /* Errors */

24 #define ERROR_CODE_NO_FILE -1

25 #define ERROR_CODE_READ_FAILED -2

26 #define ERROR_NO_FILE "ERROR:No such file\n"

27 #define ERROR_READ_FAILED "ERROR:Failed to read file\n"

28

29 /*

30 * command_code struct is used by the parser

31 * to convey an easy to compare command code, as well

32 * as any parameter belonging to that command

33 */

34 struct command_code {

35 int code;

36 char parameter[MAX_PARAMETER_SIZE];

37 int id_parameter;

38 };

39

40 /*!@struct*/

41 /*!@brief Data used by the red_dev_filter.

42 * Read from file.

43 */

44 struct lsf_data {

45 double alt_ref;

46 double lon_ref;

47 double lat_ref;

48 double speed_ref;

49 double alt_dev;

50 double lon_dev;

51 double lat_dev;

52 double speed_dev;

53 };

54

55 struct disturbed_values {

56 int lat_disturbed;

57 int lon_disturbed;

58 int alt_disturbed;

59 int speed_disturbed;

60 };

61

62 struct lsf {

63 struct lsf_data lsf_d;

64 int moved;

65 int was_moved;

66 struct disturbed_values dv;

67 };

68

69 struct filters {

70 struct lsf ls_f;
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71 };

72

73 /*

74 * CLIENT TABLE STRUCT

75 *

76 * list_head list: The head in the list of clients

77 * pid: Process ID for the client connection (See "fork")

78 * session_fd: The file descriptor for the session.

79 * client_id: The connected clients ID

80 * iobuffer: A general purpose buffer for in and output

81 * heartbeat_timeout: Number of seconds of inactivity before disconnect

82 * ip: Clients IP Address.

83 * cm: Command code. Used for quick comparison after commands

84 * are parsed by command parser.

85 */

86

87 /*!@struct*/

88 /*!@brief Contain information about every client that is connected.

89 */

90 struct client_table_entry {

91 struct list_head list; /* The head of the client list */

92 struct transmission_s transmission; /* Everything needed for socket com. */

93 struct timeval timeout; /* Timeout in seconds if not active */

94 struct command_code cm; /* See command code */

95 struct nmea_container nmea; /* All NMEA data associated with the client */

96 pid_t pid; /* The process ID */

97 time_t timestamp; /* When last analyzed */

98 int client_id; /* Clients ID */

99 int client_type; /* Client type, SENSOR or MONITOR */

100 int ready; /* Ready status */

101 int marked_for_kick; /* Marked for kicked at next opportunity */

102 char ip[INET_ADDRSTRLEN]; /* Clients IP address */

103 struct filters fs;

104 };

105

106 /* Server info shared with processes */

107 struct server_data {

108 int number_of_clients; /* Number of clients currently connected */

109 int number_of_sensors; /* Number of sensors, subset of clients */

110 time_t started; /* When the server was started */

111 pid_t pid; /* Servers PID */

112 char version[4]; /* Version of server software */

113 };

114

115 /* Synchronization elements shared with processes */

116 struct server_synchro {

117 sem_t ready_sem;

118 sem_t csac_sem;

119 sem_t client_list_sem;

120 volatile sig_atomic_t done;

121 };

122

123 /*

124 * Roles of client, either SENSOR or MONITOR.

125 * A monitor is only used to monitor the programs state.

126 */

127 enum client_type {

128 SENSOR,

129 MONITOR

130 };

131

132 #endif /* !SENSOR_SERVER_COMMON_H */
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session.c
1 #include "session.h"

2

3 /* ERRORS*/

4 #define ERROR_ILLEGAL_COMMAND "ERROR:Illegal command\n"

5 #define ERROR_NO_ID "ERROR:Client not identified\n"

6 #define ERROR_ID_IN_USE "ERROR:ID in use\n"

7 #define ERROR_ILLEGAL_MESSAGE_SIZE "\rERROR:Illegal message size\n"

8 #define ERROR_WARMUP_NOT_SENSOR "ERROR:Warm-up only applies to sensors\n"

9 #define ERROR_DUMPDATA_FAILED "ERROR:Failed to dump data\n"

10 #define ERROR_LOADDATA_FAILED "ERROR:Failed to load data\n"

11 #define ERROR_NO_COMMAND "ERROR:No command specified\n"

12 #define ERROR_LSD_LOAD_FAILED "ERROR:Failed to load LS data from file\n"

13 #define ERROR_CHECKSUM_FAILED "ERROR: Checksum failed!\n"

14 #define ERROR_ILLEGAL_NMEA "ERROR: Received illegal/corrupt NMEA data\n"

15

16 static int nmea_ready();

17 static int extract_nmea_data(struct client_table_entry *cte);

18 static void calculate_nmea_average(struct client_table_entry *cte);

19 static void calculate_nmea_diff(struct client_table_entry *cte);

20 static int parse_input(struct client_table_entry *cte);

21

22 /*

23 * Used by spawned client processes to "mark" that their NMEA

24 * data is ready for processing. Works as a barrier in a way.

25 */

26 static int nmea_ready()

27 {

28 struct client_table_entry* c_iter;

29 struct client_table_entry* temp;

30 int ready = 0;

31

32 /* iterating through the list of clients */

33 list_for_each_entry_safe(c_iter, temp, &client_list->list, list) {

34 /* Is it a SENSOR?*/

35 if(c_iter->client_type == SENSOR) {

36 /* Is it ready?*/

37 if(c_iter->ready){

38 ready++;

39 }

40 }

41 }

42 /* if everyone is ready, clear ready flag and carry on */

43 if(ready == s_data->number_of_sensors) {

44 list_for_each_entry_safe(c_iter, temp, &client_list->list, list) {

45 c_iter->ready = 0;

46 }

47 return 1;

48 } else {

49 return 0;

50 }

51 }

52

53 /* Extract position data from NMEA */

54 static int extract_nmea_data(struct client_table_entry *cte)

55 {

56 int buffsize = 100;

57 char buffer[buffsize];

58 memset(&buffer, 0, buffsize);

59

60 /* Extracting latitude */
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61 if(substring_extractor(LATITUDE_START,LATITUDE_START + 1,’,’ ,buffer, buffsize,

62 cte->nmea.raw_rmc, strlen(cte->nmea.raw_rmc)))

63 {

64 cte->nmea.lat_current = atof(buffer);

65 } else {

66 return 0;

67 }

68

69

70 /* Extracting longitude */

71 if(substring_extractor(LONGITUDE_START,LONGITUDE_START + 1,’,’ ,buffer, buffsize,

72 cte->nmea.raw_rmc, strlen(cte->nmea.raw_rmc)))

73 {

74 cte->nmea.lon_current = atof(buffer);

75 } else {

76 return 0;

77 }

78

79 /* Extracting altitude */

80 if(substring_extractor(ALTITUDE_START,ALTITUDE_START + 1,’,’ ,buffer, buffsize,

81 cte->nmea.raw_gga, strlen(cte->nmea.raw_gga)))

82 {

83 cte->nmea.alt_current = atof(buffer);

84 } else {

85 return 0;

86 }

87

88 /* Extracting speed */

89 if(substring_extractor(SPEED_START,SPEED_START + 1,’,’ ,buffer, buffsize,

90 cte->nmea.raw_rmc, strlen(cte->nmea.raw_rmc)))

91 {

92 cte->nmea.speed_current = atof(buffer);

93 } else {

94 return 0;

95 }

96

97 return 1;

98 }

99

100 /* Calculate the average NMEA values */

101 static void calculate_nmea_average(struct client_table_entry *cte)

102 {

103 /* Updating number of samples */

104 cte->nmea.n_samples++;

105

106 /* Updating total */

107 cte->nmea.lat_total = cte->nmea.lat_total + cte->nmea.lat_current;

108 cte->nmea.lon_total = cte->nmea.lon_total + cte->nmea.lon_current;

109 cte->nmea.alt_total = cte->nmea.alt_total + cte->nmea.alt_current;

110 cte->nmea.speed_total = cte->nmea.speed_total + cte->nmea.speed_current;

111

112 cte->nmea.lat_average = ( cte->nmea.lat_total / cte->nmea.n_samples );

113 cte->nmea.lon_average = ( cte->nmea.lon_total / cte->nmea.n_samples );

114 cte->nmea.alt_average = ( cte->nmea.alt_total / cte->nmea.n_samples );

115 cte->nmea.speed_average = ( cte->nmea.speed_total / cte->nmea.n_samples );

116 }

117

118 /*

119 * Calculate the diff between current

120 * NMEA values and the average values.

121 */

122 static void calculate_nmea_diff(struct client_table_entry *cte)
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123 {

124 cte->nmea.lat_avg_diff = (cte->nmea.lat_current - cte->nmea.lat_average);

125 cte->nmea.lon_avg_diff = (cte->nmea.lon_current - cte->nmea.lon_average);

126 cte->nmea.alt_avg_diff = (cte->nmea.alt_current - cte->nmea.alt_average);

127 cte->nmea.speed_avg_diff = (cte->nmea.speed_current - cte->nmea.speed_average);

128 }

129

130 /*

131 * Parses input from clients. Return value indicates status.

132 * Uses the command_code struct to convey parameter and command code.

133 *

134 * Returns -1 if size is wrong

135 * Returns 0 if protocol is not followed

136 * Returns 1 if all is ok

137 */

138

139 static int parse_input(struct client_table_entry *cte)

140 {

141 char *incoming = cte->transmission.iobuffer;

142

143 /* INPUT TO BIG */

144 if(strlen(incoming) > (MAX_PARAMETER_SIZE + MAX_COMMAND_SIZE) + 2) {

145 return -1;

146 }

147

148 /* INPUT TO SMALL */

149 if(strlen(incoming) < (MIN_PARAMETER_SIZE + MIN_COMMAND_SIZE) + 2) {

150 return -1;

151 }

152

153 /* ZEROING COMMAND CODE */

154 cte->cm.code = 0;

155 /* ZEROING ID_PARAMETER */

156 cte->cm.id_parameter = 0;

157

158 /* NMEA */

159 if(strstr((char*)incoming, PROTOCOL_NMEA ) == (incoming)) {

160 cte->cm.code = CODE_NMEA;

161 }

162

163 /* IDENTIFY */

164 else if(strstr((char*)incoming, PROTOCOL_IDENTIFY ) == (incoming)) {

165 int length = (strlen(incoming) - strlen(PROTOCOL_IDENTIFY) );

166 memcpy(cte->cm.parameter, (incoming)+(strlen(PROTOCOL_IDENTIFY)*(sizeof(char))),

167 length);

168 cte->cm.code = CODE_IDENTIFY;

169 }

170

171 /* IDENTIFY SHORT */

172 else if(strstr((char*)incoming, PROTOCOL_IDENTIFY_SHORT ) == (incoming)) {

173 int length = (strlen(incoming) - strlen(PROTOCOL_IDENTIFY_SHORT) );

174 memcpy(cte->cm.parameter,

175 (incoming)+(strlen(PROTOCOL_IDENTIFY_SHORT)*(sizeof(char))), length);

176 cte->cm.code = CODE_IDENTIFY;

177 }

178

179 /* DUMPDATA */

180 else if(strstr((char*)incoming, PROTOCOL_DUMPDATA ) == (incoming)) {

181 int length = (strlen(incoming) - strlen(PROTOCOL_DUMPDATA) );

182 memcpy(cte->cm.parameter, (incoming)+(strlen(PROTOCOL_DUMPDATA)*(sizeof(char))),

183 length);

184 cte->cm.code = CODE_DUMPDATA;
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185 }

186

187 /* DUMPDATA_SHORT */

188 else if(strstr((char*)incoming, PROTOCOL_DUMPDATA_SHORT ) == (incoming)) {

189 int length = (strlen(incoming) - strlen(PROTOCOL_DUMPDATA_SHORT) );

190 memcpy(cte->cm.parameter,

191 (incoming)+(strlen(PROTOCOL_DUMPDATA_SHORT)*(sizeof(char))), length);

192 cte->cm.code = CODE_DUMPDATA;

193 }

194

195 /* PRINT_LOCATION */

196 else if(strstr((char*)incoming, PROTOCOL_PRINT_LOCATION ) == (incoming)) {

197 int length = (strlen(incoming) - strlen(PROTOCOL_PRINT_LOCATION) );

198 memcpy(cte->cm.parameter,

199 (incoming)+(strlen(PROTOCOL_PRINT_LOCATION)*(sizeof(char))), length);

200 cte->cm.code = CODE_PRINT_LOCATION;

201 }

202

203 /* PRINT_LOCATION_SHORT */

204 else if(strstr((char*)incoming, PROTOCOL_PRINT_LOCATION_SHORT ) == (incoming)) {

205 int length = (strlen(incoming) - strlen(PROTOCOL_PRINT_LOCATION_SHORT) );

206 memcpy(cte->cm.parameter,

207 (incoming)+(strlen(PROTOCOL_PRINT_LOCATION_SHORT)*(sizeof(char))), length);

208 cte->cm.code = CODE_PRINT_LOCATION;

209 }

210

211 /* PRINTTIME */

212 else if(strstr((char*)incoming, PROTOCOL_PRINTTIME ) == (incoming)) {

213 int length = (strlen(incoming) - strlen(PROTOCOL_PRINTTIME) );

214 memcpy(cte->cm.parameter,

215 (incoming)+(strlen(PROTOCOL_PRINTTIME)*(sizeof(char))), length);

216 cte->cm.code = CODE_PRINTTIME;

217 }

218

219 /* PRINTCLIENTS */

220 else if(strstr((char*)incoming, PROTOCOL_PRINTCLIENTS ) == (incoming) ||

221 strstr((char*)incoming, PROTOCOL_PRINTCLIENTS_SHORT ) == (incoming)) {

222 cte->cm.code = CODE_PRINTCLIENTS;

223 }

224

225 /* PRINTSERVER */

226 else if(strstr((char*)incoming, PROTOCOL_PRINTSERVER ) == (incoming) ||

227 strstr((char*)incoming, PROTOCOL_PRINTSERVER_SHORT ) == (incoming)) {

228 cte->cm.code = CODE_PRINTSERVER;

229 }

230

231 /* KICK */

232 else if(strstr((char*)incoming, PROTOCOL_KICK ) == (incoming)) {

233 int length = (strlen(incoming) - strlen(PROTOCOL_KICK) );

234 memcpy(cte->cm.parameter, (incoming)+(strlen(PROTOCOL_KICK)*(sizeof(char))),

235 length);

236 cte->cm.code = CODE_KICK;

237 }

238

239 /* EXIT */

240 else if(strstr((char*)incoming, PROTOCOL_EXIT ) == (incoming)) {

241 cte->cm.code = CODE_DISCONNECT;

242 }

243

244 /* DISCONNECT */

245 else if(strstr((char*)incoming, PROTOCOL_DISCONNECT ) == (incoming) ||

246 strstr((char*)incoming, PROTOCOL_DISCONNECT_SHORT ) == (incoming)) {
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247 cte->cm.code = CODE_DISCONNECT;

248 }

249

250 /* HELP */

251 else if(strstr((char*)incoming, PROTOCOL_HELP ) == (incoming) ||

252 strstr((char*)incoming, PROTOCOL_HELP_SHORT ) == (incoming)) {

253 cte->cm.code = CODE_HELP;

254 }

255

256 /* PRINTAVGDIFF */

257 else if(strstr((char*)incoming, PROTOCOL_PRINTAVGDIFF ) == (incoming) ||

258 strstr((char*)incoming, PROTOCOL_PRINTAVGDIFF_SHORT ) == (incoming)) {

259 cte->cm.code = CODE_PRINTAVGDIFF;

260 }

261

262 /* LISTDUMPS */

263 else if(strstr((char*)incoming, PROTOCOL_LISTDUMPS ) == (incoming) ||

264 strstr((char*)incoming, PROTOCOL_LISTDUMPS_SHORT ) == (incoming)) {

265 cte->cm.code = CODE_LISTDUMPS;

266 }

267

268 /* LOADDATA */

269 else if(strstr((char*)incoming, PROTOCOL_LOADDATA ) == (incoming)) {

270 int length = (strlen(incoming) - strlen(PROTOCOL_LOADDATA) );

271 memcpy(cte->cm.parameter, (incoming)+(strlen(PROTOCOL_LOADDATA)*(sizeof(char))),

272 length);

273 cte->cm.code = CODE_LOADDATA;

274 }

275

276 /* LOADDATA_SHORT */

277 else if(strstr((char*)incoming, PROTOCOL_LOADDATA_SHORT ) == (incoming)) {

278 int length = (strlen(incoming) - strlen(PROTOCOL_LOADDATA_SHORT) );

279 memcpy(cte->cm.parameter,

280 (incoming)+(strlen(PROTOCOL_LOADDATA_SHORT)*(sizeof(char))), length);

281 cte->cm.code = CODE_LOADDATA;

282 }

283

284 /* QUERYCSAC */

285 else if(strstr((char*)incoming, PROTOCOL_QUERYCSAC ) == (incoming)) {

286 int length = (strlen(incoming) - strlen(PROTOCOL_QUERYCSAC) );

287 memcpy(cte->cm.parameter,

288 (incoming)+(strlen(PROTOCOL_QUERYCSAC)*(sizeof(char))), length);

289 cte->cm.code = CODE_QUERYCSAC;

290 }

291

292 /* QUERYCSAC_SHORT */

293 else if(strstr((char*)incoming, PROTOCOL_QUERYCSAC_SHORT ) == (incoming)) {

294 int length = (strlen(incoming) - strlen(PROTOCOL_QUERYCSAC_SHORT) );

295 memcpy(cte->cm.parameter,

296 (incoming)+(strlen(PROTOCOL_QUERYCSAC_SHORT)*(sizeof(char))), length);

297 cte->cm.code = CODE_QUERYCSAC;

298 }

299

300 /* PRINT_LOADKRLDATA */

301 else if(strstr((char*)incoming, PROTOCOL_LOADKRLDATA ) == (incoming)) {

302 int length = (strlen(incoming) - strlen(PROTOCOL_LOADKRLDATA) );

303 memcpy(cte->cm.parameter,

304 (incoming)+(strlen(PROTOCOL_LOADKRLDATA)*(sizeof(char))), length);

305 cte->cm.code = CODE_LOADKRLDATA;

306 }

307

308 /* PRINT_LOADKRLDATA_SHORT */
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309 else if(strstr((char*)incoming, PROTOCOL_LOADKRLDATA_SHORT ) == (incoming)) {

310 int length = (strlen(incoming) - strlen(PROTOCOL_LOADKRLDATA_SHORT) );

311 memcpy(cte->cm.parameter,

312 (incoming)+(strlen(PROTOCOL_LOADKRLDATA_SHORT)*(sizeof(char))), length);

313 cte->cm.code = CODE_LOADKRLDATA;

314 }

315

316 /* PROTOCOL_PRINTCFD */

317 else if(strstr((char*)incoming, PROTOCOL_PRINTCFD ) == (incoming)) {

318 int length = (strlen(incoming) - strlen(PROTOCOL_PRINTCFD) );

319 memcpy(cte->cm.parameter, (incoming)+(strlen(PROTOCOL_PRINTCFD)*(sizeof(char))),

320 length);

321 cte->cm.code = CODE_PRINTCFD;

322 printf("PRINTCFD \n " );

323 }

324

325 /* PROTOCOL_PRINTCFD_SHORT */

326 else if(strstr((char*)incoming, PROTOCOL_PRINTCFD_SHORT ) == (incoming)) {

327 int length = (strlen(incoming) - strlen(PROTOCOL_PRINTCFD_SHORT) );

328 memcpy(cte->cm.parameter,

329 (incoming)+(strlen(PROTOCOL_PRINTCFD_SHORT)*(sizeof(char))), length);

330 cte->cm.code = CODE_PRINTCFD;

331 }

332

333 else {

334 return 0;

335 }

336

337 /* Attempting to retrive ID */

338 sscanf(cte->cm.parameter, "%d" , &cte->cm.id_parameter);

339

340 return 1;

341 }

342

343 /* Responds to client action */

344 int respond(struct client_table_entry *cte)

345 {

346 bzero(cte->cm.parameter, MAX_PARAMETER_SIZE);

347 /* Only print ">" if client is monitor */

348 if(cte->client_id < 0) {

349 s_write(&(cte->transmission), ">" , 1);

350 }

351

352 int read_status = s_read(&(cte->transmission)); /* Blocking */

353 if(read_status == -1) {

354 t_print("[ CLIENT %d ] Read failed or interrupted! \n " , cte->client_id);

355 return 0;

356 }

357

358 if(cte->marked_for_kick) {

359 return 0;

360 }

361

362 int parse_status = parse_input(cte);

363

364 if(parse_status == -1) {

365 s_write(&(cte->transmission), ERROR_ILLEGAL_MESSAGE_SIZE,

366 sizeof(ERROR_ILLEGAL_MESSAGE_SIZE));

367 } else if(parse_status == 0) {

368 s_write(&(cte->transmission), ERROR_ILLEGAL_COMMAND,

369 sizeof(ERROR_ILLEGAL_COMMAND));

370 }
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371 /* PARSING OK, CONTINUING */

372 else {

373 /* Comparing CODES to determine the correct action */

374 if(cte->cm.code == CODE_DISCONNECT) {

375 s_write(&(cte->transmission), PROTOCOL_GOODBYE, sizeof(PROTOCOL_GOODBYE));

376 return 0;

377 }

378

379 else if(cte->cm.code == CODE_HELP) {

380 print_help(cte);

381 }

382

383 else if(cte->cm.code == CODE_IDENTIFY) {

384 if(cte->cm.id_parameter == 0) {

385 s_write(&(cte->transmission), ERROR_ILLEGAL_COMMAND,

386 sizeof(ERROR_ILLEGAL_COMMAND));

387 return 0;

388 }

389

390 /* Checking to see if the ID is in use */

391 struct client_table_entry* client_list_iterate;

392 list_for_each_entry(client_list_iterate, &client_list->list, list) {

393 if(client_list_iterate->client_id == cte->cm.id_parameter) {

394 cte->client_id = 0;

395 s_write(&(cte->transmission), "ID in use! \n " , 11);

396 if(cte->cm.id_parameter < 0){

397 return 1;

398 }

399 return 0;

400 }

401 }

402

403 /* Determining role */

404 if(cte->cm.id_parameter < 0) {

405 cte->client_type = MONITOR;

406 struct timeval timeout = {MONITOR_TIMEOUT, 0};

407 set_timeout(cte, timeout);

408

409 } else {

410 cte->client_type = SENSOR;

411 sem_wait(&(s_synch->client_list_sem));

412 s_data->number_of_sensors++;

413 sem_post(&(s_synch->client_list_sem));

414 }

415 /* Everything is good, setting id and responding*/

416 s_write(&(cte->transmission), PROTOCOL_OK, sizeof(PROTOCOL_OK));

417 cte->client_id = cte->cm.id_parameter;

418 t_print("[%s] ID set to: %d \n " , cte->ip,cte->client_id);

419

420 if(cte->client_type == SENSOR) {

421 if(load_lsf_data(cte)) {

422 t_print("Loaded filter data for client %d \n " , cte->client_id);

423 } else {

424 t_print("Failed to load LS filter data for Sensor %d \n " , cte->client_id);

425 s_write(&(cte->transmission),ERROR_LSD_LOAD_FAILED,

426 sizeof(ERROR_LSD_LOAD_FAILED));

427 return 0;

428 }

429 }

430

431 return 1;

432 }
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433

434 /* Stop here if client is unidentified */

435 else if(cte->client_id == 0) {

436 s_write(&(cte->transmission), ERROR_NO_ID, sizeof(ERROR_NO_ID));

437 return 1;

438 }

439

440 else if(cte->cm.code == CODE_NMEA) {

441 /* Fetching data from buffer */

442 char *rmc_start = strstr(cte->transmission.iobuffer, RMC);

443 char *gga_start = strstr(cte->transmission.iobuffer, GGA);

444

445 if(rmc_start == NULL || gga_start == NULL){

446 s_write(&(cte->transmission), ERROR_ILLEGAL_NMEA, strlen(ERROR_ILLEGAL_NMEA));

447 return 1;

448 }

449

450 memcpy(cte->nmea.raw_rmc, rmc_start, gga_start - rmc_start);

451 memcpy(cte->nmea.raw_gga, gga_start,

452 ( strlen(cte->transmission.iobuffer) - (rmc_start - cte->transmission.iobuffer)

453 - (gga_start - rmc_start)));

454

455 /* Checking NMEA checksum */

456 int rmc_checksum = calculate_nmea_checksum(cte->nmea.raw_rmc);

457 int gga_checksum = calculate_nmea_checksum(cte->nmea.raw_gga);

458

459 /* Continue to filters if ok */

460 if(rmc_checksum && gga_checksum) {

461 s_write(&(cte->transmission), PROTOCOL_OK, strlen(PROTOCOL_OK));

462 cte->timestamp = time(NULL);

463 cte->nmea.checksum_passed = 1;

464

465 if(!extract_nmea_data(cte)){

466 return 1;

467 }

468

469 calculate_nmea_average(cte);

470 calculate_nmea_diff(cte);

471

472 /* Checksums where OK, client marked ready */

473 cte->ready = 1;

474

475 /* Acquiring ready-lock */

476 sem_wait(&(s_synch->ready_sem));

477

478 /* Checking if the other clients are ready as well*/

479 int ready = nmea_ready();

480

481 /* If everyone is ready, process data */

482 if(ready) {

483 apply_filters();

484 }

485 /* Releasing ready-lock */

486 sem_post(&(s_synch->ready_sem));

487 } else {

488 cte->nmea.checksum_passed = 0;

489 t_print("RMC and GGA received from %d , checksum failed! \n " , cte->client_id);

490 s_write(&(cte->transmission), ERROR_CHECKSUM_FAILED, strlen(ERROR_CHECKSUM_FAILED));

491 }

492 }

493

494 else if(cte->cm.code == CODE_PRINT_LOCATION) {
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495 struct client_table_entry* candidate = get_client_by_id(cte->cm.id_parameter);

496 if(candidate == NULL) {

497 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

498 } else {

499 print_location(cte, candidate);

500 }

501 }

502

503 else if(cte->cm.code == CODE_LOADKRLDATA) {

504 struct client_table_entry* candidate = get_client_by_id(cte->cm.id_parameter);

505 if(candidate == NULL) {

506 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

507 } else {

508 if(load_lsf_data(candidate)) {

509 s_write(&(cte->transmission), PROTOCOL_OK, sizeof(PROTOCOL_OK));

510 } else {

511 s_write(&(cte->transmission),ERROR_LSD_LOAD_FAILED,

512 sizeof(ERROR_LSD_LOAD_FAILED));

513 }

514 }

515 }

516

517 else if(cte->cm.code == CODE_PRINTCLIENTS) {

518 print_clients(cte);

519 }

520

521 else if(cte->cm.code == CODE_PRINTSERVER) {

522 print_server_data(cte);

523 }

524

525 else if(cte->cm.code == CODE_PRINTTIME) {

526 struct client_table_entry* candidate = get_client_by_id(cte->cm.id_parameter);

527 if(candidate != NULL) {

528 print_client_time(cte, candidate);

529 } else {

530 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

531 }

532 }

533

534 else if(cte->cm.code == CODE_KICK) {

535 struct client_table_entry* candidate = get_client_by_id(cte->cm.id_parameter);

536 if(candidate == NULL) {

537 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

538 } else {

539 kick_client(candidate);

540 }

541 }

542

543 else if(cte->cm.code == CODE_DUMPDATA) {

544 int filename_buffer_size = MAX_FILENAME_SIZE;

545 char filename[filename_buffer_size];

546 int target_id;

547 char id_buffer[ID_AS_STRING_MAX];

548 bzero(id_buffer, ID_AS_STRING_MAX);

549 bzero(filename, filename_buffer_size);

550

551 /* Attempting to extract filename */

552 substring_extractor(2,3, ’ ’ , filename, filename_buffer_size,cte->cm.parameter,

553 MAX_FILENAME_SIZE);

554

555 /* If length of filename = 0 (no filename specified).. */

556 if(strlen(filename) == 0) {
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557 /* ...Cast to int without a care */

558 target_id = atoi(cte->cm.parameter);

559 }

560 /* Else, extract ID */

561 else {

562 substring_extractor(1,2, ’ ’ , id_buffer, ID_AS_STRING_MAX,cte->cm.parameter,

563 ID_AS_STRING_MAX);

564 target_id = atoi(id_buffer);

565 }

566

567 if(!target_id) {

568 s_write(&(cte->transmission), ERROR_ILLEGAL_COMMAND,

569 sizeof(ERROR_ILLEGAL_COMMAND));

570 } else {

571 struct client_table_entry* candidate = get_client_by_id(target_id);

572 if(candidate != NULL) {

573 if(!datadump(candidate,filename, s_conf->human_readable_dumpdata)) {

574 s_write(&(cte->transmission), ERROR_DUMPDATA_FAILED,

575 sizeof(ERROR_DUMPDATA_FAILED));

576 }

577 } else {

578 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

579 }

580 }

581 }

582

583 else if(cte->cm.code == CODE_LOADDATA) {

584 int filename_buffer_size = MAX_FILENAME_SIZE;

585 char filename[filename_buffer_size];

586 int target_id;

587 char id_buffer[ID_AS_STRING_MAX];

588 bzero(id_buffer, ID_AS_STRING_MAX);

589 bzero(filename, filename_buffer_size);

590

591 substring_extractor(2,3, ’ ’ , filename, filename_buffer_size,cte->cm.parameter,

592 MAX_FILENAME_SIZE);

593

594 /* No filename specified, abort */

595 if(strlen(filename) == 0) {

596 s_write(&(cte->transmission), ERROR_NO_FILENAME, sizeof(ERROR_NO_FILENAME));

597 return 1;

598 }

599 /* Extract target id and move on */

600 else {

601 substring_extractor(1,2, ’ ’ , id_buffer, ID_AS_STRING_MAX,cte->cm.parameter,

602 ID_AS_STRING_MAX);

603 target_id = atoi(id_buffer);

604 }

605

606 if(!target_id) {

607 s_write(&(cte->transmission), ERROR_ILLEGAL_COMMAND,

608 sizeof(ERROR_ILLEGAL_COMMAND));

609 } else {

610 struct client_table_entry* candidate = get_client_by_id(target_id);

611 if(candidate != NULL) {

612 int load_status = loaddata(candidate,filename);

613 if(load_status == ERROR_CODE_NO_FILE) {

614 s_write(&(cte->transmission), ERROR_NO_FILE, sizeof(ERROR_NO_FILE));

615 } else if(load_status == ERROR_CODE_READ_FAILED) {

616 s_write(&(cte->transmission), ERROR_READ_FAILED, sizeof(ERROR_READ_FAILED));

617 }

618 } else {
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619 s_write(&(cte->transmission), ERROR_NO_CLIENT, sizeof(ERROR_NO_CLIENT));

620 }

621 }

622 }

623

624 else if(cte->cm.code == CODE_PRINTAVGDIFF) {

625 print_avg_diff(cte);

626 }

627

628 else if(cte->cm.code == CODE_LISTDUMPS) {

629 listdumps(cte);

630 }

631

632 else if(cte->cm.code == CODE_QUERYCSAC) {

633 if(strlen(cte->cm.parameter) < 3) {

634 s_write(&(cte->transmission), ERROR_NO_COMMAND, sizeof(ERROR_NO_COMMAND));

635 return 1;

636 }

637 client_query_csac(cte, cte->cm.parameter);

638 } else if(cte->cm.code == CODE_PRINTCFD) {

639 print_cfd(cte, cte->cm.id_parameter);

640 }

641

642 else {

643 t_print("No action made for this part of the protocol \n " );

644 }

645 }

646 return 1;

647 }

session.h
1 /**

2 * @file session.h

3 * @author Aril Schultzen

4 * @date 13.04.2016

5 * @brief File containing function prototypes and includes for session.c

6 */

7

8 #ifndef SESSION_H

9 #define SESSION_H

10

11 #include "sensor_server_common.h"

12 #include "filters.h"

13 #include "actions.h"

14 #include "sensor_server.h"

15

16 int respond(struct client_table_entry *cte);

17

18 #endif /* !SESSION_H */

actions.c
1 #include "actions.h"

2

3 /* GENERAL */

4 #define CLIENT_TABLE_LABEL "CLIENT TABLE\n"

5 #define NEW_LINE "\n"
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6 #define PRINT_LOCATION_HEADER " CURRENT MIN MAX AVG\n"

7 #define DUMPDATA_HEADER "CURRENT MIN MAX AVERAGE AVG_DIFF TOTAL DISTURBED\n"

8 #define PRINT_AVG_DIFF_HEADER "ID LAT LON ALT SPEED\n"

9 #define DATADUMP_EXTENSION ".bin"

10 #define DATADUMP_HUMAN_EXTENSION ".txt"

11 #define CSAC_SCRIPT_COMMAND "python query_csac.py "

12

13 /* ERRORS */

14 #define ERROR_APPEND_TOO_LONG "ERROR: TEXT TO APPEND TOO LONG\n"

15 #define ERROR_NO_SENSORS_CONNECTED "NO SENSORS CONNECTED\n"

16 #define ERROR_FCLOSE "Failed to close file, out of space?\n"

17 #define ERROR_FWRITE "Failed to write to file, aborting.\n"

18 #define ERROR_FREAD "Failed to read file, aborting.\n"

19 #define ERROR_FOPEN "Failed to open file, aborting.\n"

20 #define ERROR_UPDATE_WARMUP_ILLEGAL "Warm-up time value has to be greater than 0!\n"

21 #define ERROR_CSAC_FAILED "Communication with CSAC failed!\n"

22

23 /* LOAD_REF_DEV_DATA */

24 #define KRL_FILENAME "ls_data_sensor"

25 #define ALT_REF "alt_ref:"

26 #define LON_REF "lon_ref:"

27 #define LAT_REF "lat_ref:"

28 #define SPEED_REF "speed_ref:"

29 #define ALT_DEV "alt_dev:"

30 #define LON_DEV "lon_dev:"

31 #define LAT_DEV "lat_dev:"

32 #define SPEED_DEV "speed_dev:"

33 #define KRL_DATA_ENTRIES 8

34

35 /* HELP */

36 #define HELP "\n"\

37 " COMMAND | SHORT | PARAM | DESCRIPTION\n"\

38 "--------------------------------------------------------------------------------\n"\

39 " HELP | ? | NONE | Prints this table\n"\

40 "--------------------------------------------------------------------------------\n"\

41 " IDENTIFY | ID | ID | Your ID is set to PARAM ID\n"\

42 "--------------------------------------------------------------------------------\n"\

43 " DISCONNECT | EXIT | NONE | Disconnects\n"\

44 "--------------------------------------------------------------------------------\n"\

45 " PRINTCLIENTS | PC | NONE | Prints a list of connected clients\n"\

46 "--------------------------------------------------------------------------------\n"\

47 " PRINTSERVER | PS | NONE | Prints server state and config\n"\

48 "--------------------------------------------------------------------------------\n"\

49 " PRINTTIME | | ID | Prints time solved from Sensor <ID>\n"\

50 "--------------------------------------------------------------------------------\n"\

51 " PRINTAVGDIFF | PAD | NONE | Prints all average diffs for all clients\n"\

52 "--------------------------------------------------------------------------------\n"\

53 " PRINTLOC | PL | ID | Prints solved location for Sensor <ID>\n"\

54 "--------------------------------------------------------------------------------\n"\

55 " LISTDATA | LSD | NONE | Lists all dump files in server directory\n"\

56 "--------------------------------------------------------------------------------\n"\

57 " DUMPDATA | DD | ID & FILE | Dumps state of Sensor <ID> into FILE\n"\

58 "--------------------------------------------------------------------------------\n"\

59 " LOADDATA | LD | ID & FILE | Loads NMEA of FILE into sensor ID\n"\

60 "--------------------------------------------------------------------------------\n"\

61 " QUERYCSAC | QC | COMMAND | Queries the CSAC with parameter COMMAND\n"\

62 "--------------------------------------------------------------------------------\n"\

63 " LOADLSFDATA | LLSFD | ID | Load reference location data into Sensor<ID>\n"\

64 "--------------------------------------------------------------------------------\n"\

65 " PRINTCFD | PFD | | Prints CSAC filter data\n"\

66 "--------------------------------------------------------------------------------\n"\

67
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68 /* SIZES */

69 #define DUMPDATA_TIME_SIZE 13

70 #define MAX_APPEND_LENGTH 20

71

72 void kick_client(struct client_table_entry* client)

73 {

74 sem_wait(&(s_synch->client_list_sem));

75 sem_wait(&(s_synch->ready_sem));

76 client->marked_for_kick = 1;

77 sem_post(&(s_synch->ready_sem));

78 sem_post(&(s_synch->client_list_sem));

79 }

80

81 /* Prints client X’s solved time back to monitor */

82 void print_client_time(struct client_table_entry *monitor,

83 struct client_table_entry* client)

84 {

85 int buffsize = 100;

86 char buffer[buffsize];

87 memset(&buffer, 0, buffsize);

88

89 substring_extractor(RMC_TIME_START,RMC_TIME_START + 1,’,’ ,buffer, buffsize,

90 client->nmea.raw_rmc, strlen(client->nmea.raw_rmc));

91 s_write(&(monitor->transmission), buffer, 12);

92 s_write(&(monitor->transmission), " \n " , 1);

93 }

94

95 /* Prints a formatted string containing info about connected clients to monitor */

96 void print_clients(struct client_table_entry *monitor)

97 {

98 char buffer [1000];

99 int snprintf_status = 0;

100 char *c_type = "SENSOR" ;

101 char *modifier = "" ;

102

103 struct client_table_entry* client_list_iterate;

104 s_write(&(monitor->transmission), CLIENT_TABLE_LABEL,

105 sizeof(CLIENT_TABLE_LABEL));

106 s_write(&(monitor->transmission), HORIZONTAL_BAR, sizeof(HORIZONTAL_BAR));

107 list_for_each_entry(client_list_iterate,&client_list->list, list) {

108

109 if(client_list_iterate->client_type == MONITOR) {

110 c_type = "MONITOR" ;

111 } else {

112 c_type = "SENSOR" ;

113 }

114

115 if(monitor->client_id == client_list_iterate->client_id) {

116 modifier = BOLD_GRN_BLK;

117 } else {

118 modifier = RESET;

119 }

120 snprintf_status = snprintf( buffer, 1000,

121 "%sID: %d " \

122 "IP:%s, " \

123 "PID: %d, " \

124 "TYPE: %s, " \

125 "NMEA age %d%s \n " ,

126 modifier,

127 client_list_iterate->client_id,

128 client_list_iterate->ip,

129 client_list_iterate->pid,
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130 c_type,

131 (int)difftime(time(NULL),client_list_iterate->timestamp),

132 RESET);

133

134 s_write(&(monitor->transmission), buffer, snprintf_status);

135 }

136 s_write(&(monitor->transmission), HORIZONTAL_BAR, sizeof(HORIZONTAL_BAR));

137 }

138

139 /*

140 * Prints a string containing simple description

141 * of the different implemented commands back

142 * to the monitor.

143 */

144 void print_help(struct client_table_entry *monitor)

145 {

146 s_write(&(monitor->transmission), HELP, sizeof(HELP));

147 }

148

149 /*

150 * Prints MAX, MIN, CURRENT and AVERAGE position

151 * for client X back to the monitor

152 */

153 void print_location(struct client_table_entry *monitor,

154 struct client_table_entry* client)

155 {

156 char buffer [1000];

157 int snprintf_status = 0;

158

159 char *lat_modifier;

160 char *lon_modifier;

161 char *alt_modifier;

162 char *speed_modifier;

163 char *reset = RESET;

164

165 struct nmea_container nc;

166

167 nc = client->nmea;

168 s_write(&(monitor->transmission), PRINT_LOCATION_HEADER,

169 sizeof(PRINT_LOCATION_HEADER));

170

171 /*Determining colors*/

172 if(!nc.lat_disturbed) {

173 lat_modifier = BOLD_GRN_BLK;

174 } else if(nc.lat_disturbed > 0) {

175 lat_modifier = BOLD_RED_BLK;

176 } else {

177 lat_modifier = BOLD_CYN_BLK;

178 }

179

180 if(!nc.lon_disturbed) {

181 lon_modifier = BOLD_GRN_BLK;

182 } else if(nc.lon_disturbed > 0) {

183 lon_modifier = BOLD_RED_BLK;

184 } else {

185 lon_modifier = BOLD_CYN_BLK;

186 }

187

188 if(!nc.alt_disturbed) {

189 alt_modifier = BOLD_GRN_BLK;

190 } else if(nc.alt_disturbed > 0) {

191 alt_modifier = BOLD_RED_BLK;
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192 } else {

193 alt_modifier = BOLD_CYN_BLK;

194 }

195

196 if(!nc.speed_disturbed) {

197 speed_modifier = BOLD_GRN_BLK;

198 } else if(nc.speed_disturbed > 0) {

199 speed_modifier = BOLD_RED_BLK;

200 } else {

201 speed_modifier = BOLD_CYN_BLK;

202 }

203

204 snprintf_status = snprintf( buffer, 1000,

205 "LAT: %s%f%s %f \n " \

206 "LON: %s%f%s %f \n " \

207 "ALT: %s %f%s %f \n " \

208 "SPD: %s %f%s %f \n " ,

209 lat_modifier, nc.lat_current,reset, nc.lat_average,

210 lon_modifier, nc.lon_current,reset, nc.lon_average,

211 alt_modifier, nc.alt_current,reset, nc.alt_average,

212 speed_modifier, nc.speed_current,reset, nc.speed_average);

213 s_write(&(monitor->transmission), buffer, snprintf_status);

214 }

215

216 /*

217 * Prints the difference between the calculated

218 * average values for location and the current value

219 */

220 void print_avg_diff(struct client_table_entry *client)

221 {

222 char buffer [1000];

223 int snprintf_status = 0;

224 struct nmea_container nc;

225

226 if(s_data->number_of_sensors > 0) {

227 s_write(&(client->transmission), PRINT_AVG_DIFF_HEADER,

228 sizeof(PRINT_AVG_DIFF_HEADER));

229 struct client_table_entry* client_list_iterate;

230 list_for_each_entry(client_list_iterate,&client_list->list, list) {

231 if(client_list_iterate->client_id > 0) {

232 nc = client_list_iterate->nmea;

233 snprintf_status = snprintf( buffer, 1000, "%d %f %f %f %f \n " ,

234 client_list_iterate->client_id, nc.lat_avg_diff, nc.lon_avg_diff,

235 nc.alt_avg_diff, nc.speed_avg_diff);

236 s_write(&(client->transmission), buffer, snprintf_status);

237 }

238 }

239 } else {

240 s_write(&(client->transmission), ERROR_NO_SENSORS_CONNECTED,

241 sizeof(ERROR_NO_SENSORS_CONNECTED));

242 }

243 }

244

245 static int get_pfd_string(char *buffer, int buf_len)

246 {

247 memset(buffer, ’\0’ ,buf_len);

248 int snprintf_status = snprintf( buffer, 1000,

249 "Phase: %lf \n\n " \

250 "T current: %lf \n " \

251 "T current (smooth): %lf \n " \

252 "T previous (smooth): %lf \n " \

253 "T today (smooth): %lf \n " \
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254 "T yesterday (smooth): %lf \n\n " \

255 "Steer current: %lf \n " \

256 "Steer current (smooth): %lf \n " \

257 "Steer previous (smooth): %lf \n\n " \

258 "Steer today (smooth): %lf \n " \

259 "Steer yesterday (smooth): %lf \n\n " \

260 "Steer prediction: %lf \n\n " \

261 "MJD today: %lf \n " \

262 "Days passed since startup: %d \n\n " \

263 "Discipline status: %d \n " \

264 "Fast timing filter status %d \n " \

265 "Freq corr. filter status %d \n\n " ,

266 cfd->phase_current,

267 cfd->t_current,

268 cfd->t_smooth_current,

269 cfd->t_smooth_previous,

270 cfd->t_smooth_today,

271 cfd->t_smooth_yesterday,

272 cfd->steer_current,

273 cfd->steer_smooth_current,

274 cfd->steer_smooth_previous,

275 cfd->steer_smooth_today,

276 cfd->steer_smooth_yesterday,

277 cfd->steer_prediction,

278 cfd->today_mjd,

279 cfd->days_passed,

280 cfd->discok,

281 cfd->ftf_status,

282 cfd->fqf_status);

283 return snprintf_status;

284 }

285

286 void print_cfd(struct client_table_entry *monitor, int update_count)

287 {

288 int buf_len = 1000;

289 char buffer [buf_len];

290 int counter = 0;

291

292 if(update_count == 0) {

293 update_count = 1;

294 }

295

296 while(counter < update_count) {

297 get_pfd_string(buffer, buf_len);

298 s_write(&(monitor->transmission), buffer, strlen(buffer));

299 counter++;

300 sleep(1);

301 }

302 }

303

304 int dump_cfd(char *path)

305 {

306 int buf_len = 1000;

307 char buffer[buf_len];

308

309 /* Formating string with CSAC filter data */

310 get_pfd_string(buffer, buf_len);

311

312 /* Opening and writing to file */

313 FILE *cfd_file;

314 cfd_file = fopen(path, "w+" );

315
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316 if(!cfd_file) {

317 t_print("dump_cfd: %s: %s" ,ERROR_FOPEN, path);

318 return 0;

319 }

320

321 if(!fprintf(cfd_file,"%s" , buffer) ) {

322 t_print(ERROR_FWRITE);

323 return 0;

324 }

325

326 if(fclose(cfd_file)) {

327 t_print(ERROR_FCLOSE);

328 }

329 return 1;

330 }

331

332 /* Dumps data location data for client X into a file */

333 int datadump(struct client_table_entry* client, char *filename,

334 int dump_human_read)

335 {

336 FILE *bin_file;

337 char bin_name[strlen(filename) + strlen(DATADUMP_EXTENSION)];

338 strcpy(bin_name, filename);

339 strcat(bin_name, DATADUMP_EXTENSION);

340

341 bin_file=fopen(bin_name, "wb" );

342

343 if(!bin_file) {

344 t_print(ERROR_FOPEN);

345 return 0;

346 }

347

348 if(!fwrite(&client->nmea, sizeof(struct nmea_container), 1, bin_file)) {

349 t_print(ERROR_FWRITE);

350 return 0;

351 }

352

353 if(fclose(bin_file)) {

354 t_print(ERROR_FCLOSE);

355 }

356

357 if(dump_human_read) {

358 /* Dumping humanly readable data */

359 FILE *h_dump;

360 char h_name[strlen(filename) + strlen(DATADUMP_HUMAN_EXTENSION)];

361 strcpy(h_name, filename);

362 strcat(h_name, DATADUMP_HUMAN_EXTENSION);

363

364 h_dump = fopen(h_name, "wb" );

365

366 fprintf(h_dump, "Sensor Server dumpfile created for client %d \n " ,

367 client->client_id);

368

369 /*

370 * Dumping all from NMEA container

371 * after raw_rmc and including speed_disturbed

372 */

373 int inner_counter = 0;

374 int outer_counter = 0;

375 double *data = &client->nmea.lat_current;

376

377 fprintf(h_dump,DUMPDATA_HEADER);
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378 while(outer_counter < 4) {

379 while(inner_counter < 7) {

380 fprintf(h_dump, "%f " ,*data);

381 data++;

382 inner_counter++;

383 }

384 fprintf(h_dump, "%f" , *data);

385 inner_counter = 0;

386 outer_counter++;

387 }

388

389 /*

390 * Dumping ref_dev_data

391 */

392 fprintf(h_dump,DUMPDATA_HEADER);

393 inner_counter = 0;

394 double *rdf = &client->fs.ls_f.lsf_d.alt_ref;

395 while(inner_counter < 8) {

396 fprintf(h_dump, "%lf \n " ,*rdf);

397 rdf++;

398 inner_counter++;

399 }

400

401 if(fclose(h_dump)) {

402 t_print(ERROR_FCLOSE);

403 }

404 }

405 return 1;

406 }

407

408 /* Print list of dumped data */

409 int listdumps(struct client_table_entry* monitor)

410 {

411 DIR *dp;

412 struct dirent *ep;

413

414 dp = opendir ("./" );

415 if(dp != NULL) {

416 while ( (ep = readdir(dp)) ) {

417 if(strstr(ep->d_name,DATADUMP_EXTENSION) != NULL) {

418 s_write(&(monitor->transmission),ep->d_name, strlen(ep->d_name));

419 s_write(&(monitor->transmission),NEW_LINE, sizeof(NEW_LINE));

420 }

421 }

422 closedir (dp);

423 } else {

424 return 0;

425 }

426

427 return 1;

428 }

429

430 /* Load dumped data into the client */

431 int loaddata(struct client_table_entry* target, char *filename)

432 {

433 FILE *dump_file;

434 int file_len = 0;

435

436

437 dump_file=fopen(filename, "rb" );

438

439 if(!dump_file) {

135



440 t_print(ERROR_FOPEN);

441 return ERROR_CODE_NO_FILE;

442 }

443

444 /* Checking file length */

445 fseek(dump_file, 0, SEEK_END);

446 file_len=ftell(dump_file);

447 fseek(dump_file, 0, SEEK_SET);

448

449 int f_s = fread( &target->nmea,1,sizeof(struct nmea_container), dump_file);

450

451 t_print("Read %d/%d bytes successfully from %s \n " , f_s, file_len,filename);

452

453 if(f_s == 0) {

454 t_print(ERROR_FREAD);

455 return ERROR_CODE_READ_FAILED;

456 }

457

458 if(fclose(dump_file)) {

459 t_print(ERROR_FCLOSE);

460 }

461

462 return 1;

463 }

464

465 int query_csac(char *query, char *buffer)

466 {

467 /* Building command */

468 int command_size = MAX_PARAMETER_SIZE + sizeof(CSAC_SCRIPT_COMMAND);

469 char command[command_size];

470 memset(command,’\0’ , command_size);

471 strcat(command, CSAC_SCRIPT_COMMAND);

472 strcat(command, query);

473

474 /* Acquiring lock*/

475 sem_wait(&(s_synch->csac_sem));

476

477 /* Running command */

478 if(!run_command(command, buffer)) {

479 /* Releasing lock */

480 sem_post(&(s_synch->csac_sem));

481 return 0;

482 }

483

484 /* Releasing lock */

485 sem_post(&(s_synch->csac_sem));

486 return 1;

487 }

488

489

490 int client_query_csac(struct client_table_entry *monitor, char *query)

491 {

492 char buffer[MAX_PARAMETER_SIZE];

493 memset(buffer, ’\0’ , MAX_PARAMETER_SIZE);

494

495 if(!query_csac(query, buffer)) {

496 return 0;

497 }

498

499 if(!s_write(&(monitor->transmission), buffer, strlen(buffer))) {

500 return 0;

501 }
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502 return 1;

503 }

504

505 /*

506 * Load ls filter data into the client struct.

507 * Re-using the config loader.

508 * This whole function needs some work! Magic numbers beware.

509 */

510 int load_lsf_data(struct client_table_entry* target)

511 {

512 /* Request lock */

513 sem_wait(&(s_synch->client_list_sem));

514 sem_wait(&(s_synch->ready_sem));

515 struct config_map_entry conf_map[KRL_DATA_ENTRIES];

516

517 int filename_length = strlen(KRL_FILENAME) + 10;

518 char filename[filename_length];

519 memset(filename,’\0’ ,filename_length);

520 strcpy(filename, KRL_FILENAME);

521

522 /* Way overkill for int to string, but still. */

523 char id[10];

524 memset(id,’\0’ ,10);

525 sprintf(id, "%d" , target->client_id);

526 strcat(filename, id);

527

528 conf_map[0].entry_name = ALT_REF;

529 conf_map[0].modifier = FORMAT_DOUBLE;

530 conf_map[0].destination = &target->fs.ls_f.lsf_d.alt_ref;

531

532 conf_map[1].entry_name = LON_REF;

533 conf_map[1].modifier = FORMAT_DOUBLE;

534 conf_map[1].destination = &target->fs.ls_f.lsf_d.lon_ref;

535

536 conf_map[2].entry_name = LAT_REF;

537 conf_map[2].modifier = FORMAT_DOUBLE;

538 conf_map[2].destination = &target->fs.ls_f.lsf_d.lat_ref;

539

540 conf_map[3].entry_name = SPEED_REF;

541 conf_map[3].modifier = FORMAT_DOUBLE;

542 conf_map[3].destination = &target->fs.ls_f.lsf_d.speed_ref;

543

544 conf_map[4].entry_name = ALT_DEV;

545 conf_map[4].modifier = FORMAT_DOUBLE;

546 conf_map[4].destination = &target->fs.ls_f.lsf_d.alt_dev;

547

548 conf_map[5].entry_name = LON_DEV;

549 conf_map[5].modifier = FORMAT_DOUBLE;

550 conf_map[5].destination = &target->fs.ls_f.lsf_d.lon_dev;

551

552 conf_map[6].entry_name = LAT_DEV;

553 conf_map[6].modifier = FORMAT_DOUBLE;

554 conf_map[6].destination = &target->fs.ls_f.lsf_d.lat_dev;

555

556 conf_map[7].entry_name = SPEED_DEV;

557 conf_map[7].modifier = FORMAT_DOUBLE;

558 conf_map[7].destination = &target->fs.ls_f.lsf_d.speed_dev;

559

560 int load_config_status = load_config(conf_map, filename,

561 KRL_DATA_ENTRIES);

562

563 /* releasing lock */
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564 sem_post(&(s_synch->ready_sem));

565 sem_post(&(s_synch->client_list_sem));

566 return load_config_status;

567 }

actions.h
1 /**

2 * @file actions.h

3 * @brief File containing function prototypes and includes for actions.c

4 *

5 * Function prototypes for functions that implements different

6 * actions that a MONITOR or the system can use to manipulate the

7 * state of the SENSORS or print stats or similar.

8 *

9 * Be advised that any reference to MONITOR in this file means

10 * a client connected to the server who’s role is that of a

11 * monitor of the system and not a monitor like a peripheral

12 * connected to a computer. The names of these roles are under

13 * discussion and will probably be changed to avoid misunderstanding.

14 *

15 * @author Aril Schultzen

16 * @date 9.11.2015

17 */

18

19 #ifndef ACTIONS_H

20 #define ACTIONS_H

21

22 #include "sensor_server.h"

23 #include "serial.h"

24 #include <dirent.h>

25

26 /** @brief Kicks a client (both MONITOR or SENSOR)

27 *

28 * Marks the client so respond() in session.c can

29 * disconnect it the next time that client transmits

30 * data. The kick is in other words not instant, this

31 * is however an easy way to gracefully disconnect a

32 * client.

33 *

34 * @param client Pointer to the client_table_entry for the candidate to be kicked.

35 * @return Void

36 */

37 void kick_client(struct client_table_entry* client);

38

39 /** @brief Prints clients solved time to MONITOR

40 *

41 * Extracts the time solved by the GPS receiver, transmitted

42 * via NMEA and stored in the client_table_struct at the server,

43 * and transmits it to the MONITOR that requested it.

44 *

45 * @param monitor Pointer to MONITOR who made the request.

46 * @param client Pointer to SENSOR whose time was requested.

47 * @return Void

48 */

49 void print_client_time(struct client_table_entry *monitor,

50 struct client_table_entry* client);

51

52 /** @brief Prints a table of clients to the MONITOR

53 *
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54 * Transmits a table of the connected clients to the MONITOR.

55 *

56 * @param monitor Pointer to MONITOR who made the request.

57 * @return Void

58 */

59 void print_clients(struct client_table_entry *monitor);

60

61 /** @brief Prints table of available commands to requesting MONITOR.

62 *

63 * @param monitor Pointer to MONITOR who made the request.

64 * @return Void

65 */

66 void print_help(struct client_table_entry *monitor);

67

68 /** @brief Prints location of SENSOR to requesting MONITOR.

69 *

70 * Prints a overview of current as well as MIN, MAX and AVERAGE

71 * values of LAT, LON, ALT and SPEED recovered from NMEA.

72 *

73 * @param monitor Pointer to MONITOR who made the request.

74 * @param client Pointer to SENSOR whose location is requested.

75 * @return Void

76 */

77 void print_location(struct client_table_entry *monitor,

78 struct client_table_entry* client);

79

80 /** @brief Prints difference between current position and average.

81 *

82 * Prints the difference between the current position values

83 * recorded from NMEA, and the calculated averages.

84 * Two sensors in close proximity (100m >) should be

85 * subjected to the same noise. If the difference between

86 * sensor A (current-avg) and sensor B (current-avg) changes,

87 * this could mean that one of them is being spoofed.

88 *

89 * @param monitor Pointer to MONITOR who made the request.

90 * @return Void

91 */

92 void print_avg_diff(struct client_table_entry *monitor);

93

94 /** @brief Dumps NMEA data to file for given client

95 *

96 * @param client Pointer to client whose data should be dumped.

97 * @param filename Pointer to filename.

98 * @param human_readable Switch to determine if humanly readable data should be made as well.

99 * @return 1 if success, 0 if fail.

100 */

101 int datadump(struct client_table_entry* client, char *filename,

102 int human_readable);

103

104 /** @brief List dump files in folder

105 *

106 * @param monitor Pointer to requesting monitor

107 * @return 1 if success, 0 if fail.

108 */

109 int listdumps(struct client_table_entry* monitor);

110

111 /** @brief Loads NMEA data into the NMEA struct of a given client (target).

112 *

113 * @param target Pointer to the client whose NMEA data should be loaded

114 * from file.

115 * @param filename Pointer to the filename of the data file.
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116 */

117 int loaddata(struct client_table_entry* target, char *filename);

118

119 /** @brief Uses the query_csac.py to communicate with the CSAC.

120 * Stores the response in a buffer.

121 *

122 * @param buffer Buffer to store the response

123 * @param query Command (query) to send to the CSAC.

124 */

125 int query_csac(char *query, char *buffer);

126

127 /** @brief Uses the query_csac.py to communicate with the CSAC

128 * Prints the response from the CSAC back to the client

129 *

130 * @param monitor Monitor who made the request

131 * @param query Command (query) to send to the CSAC.

132 */

133 int client_query_csac(struct client_table_entry *monitor, char *query);

134

135 /** @brief Loads data for the REF_DEV_FILTER into the client.

136 *

137 * @param target Client to load the data into

138 */

139 int load_lsf_data(struct client_table_entry* target);

140

141 /** @brief Prints the current state of the CSAC filter.

142 *

143 * @param monitor Monitor to print the data to.

144 * @return Status of sprintf() used to build string.

145 */

146 void print_cfd(struct client_table_entry *monitor, int update_count);

147

148 /** @brief Dumps the state of the CSAC filter to file.

149 *

150 * @param Path to desired file to use.

151 * @return 1 if successful, 0 else.

152 */

153 int dump_cfd(char *path);

154 #endif /* !ACTIONS_H */

utils.c
1 #include "utils.h"

2

3 /* These are also in action.c, duplicates are no solution */

4 #define ERROR_FCLOSE "Failed to close file, out of space?\n"

5 #define ERROR_FWRITE "Failed to write to file, aborting.\n"

6 #define ERROR_FREAD "Failed to read file, aborting.\n"

7 #define ERROR_FOPEN "Failed to open file, aborting.\n"

8

9 #define MJD_SCRIPT_PATH "./get_mjd.py"

10

11 void die (int line_number, const char * format, ...)

12 {

13 va_list vargs;

14 va_start (vargs, format);

15 fprintf (stderr, "%d: " , line_number);

16 vfprintf (stderr, format, vargs);

17 fprintf (stderr, ". \n " );

18 exit(1);
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19 }

20

21 /*

22 * Extracts IP address from sockaddr struct.

23 * Supports both IPV4 and IPV6

24 */

25 void extract_ip_str(const struct sockaddr *sa, char *s, size_t maxlen)

26 {

27 switch(sa->sa_family) {

28 case AF_INET:

29 inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),

30 s, maxlen);

31 break;

32

33 case AF_INET6:

34 inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),

35 s, maxlen);

36 break;

37

38 default:

39 strncpy(s, "Unknown AF" , maxlen);

40 }

41 }

42

43 /*

44 * Extracts IP from session file descriptor

45 */

46 void get_ip_str(int session_fd, char *ip)

47 {

48 struct sockaddr addr;

49 addr.sa_family = AF_INET;

50 socklen_t addr_len = sizeof(addr);

51 if(getpeername(session_fd, (struct sockaddr *) &addr, &addr_len)) {

52 die(44,"getsocketname failed \n " );

53 }

54 extract_ip_str(&addr,ip, addr_len);

55 }

56

57 /*

58 * Print with timestamp:

59 * Example : [01.01.01 - 10:10:10] [<Some string>]

60 */

61 void t_print(const char* format, ...)

62 {

63 char buffer[100];

64 time_t rawtime;

65 struct tm *info;

66 time(&rawtime);

67 info = gmtime(&rawtime);

68 strftime(buffer,80,"[%x - %X] " , info);

69 va_list argptr;

70 va_start(argptr, format);

71 fputs(buffer, stdout);

72 vfprintf(stdout, format, argptr);

73 va_end(argptr);

74 }

75

76 /*

77 * Loads config.

78 * Returns: 0 fail | 1 success

79 */

80 int load_config(struct config_map_entry *cme, char *path, int entries)
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81 {

82 FILE *config_file;

83 int file_len;

84 char *input_buffer;

85

86 int status = 0;

87

88 config_file=fopen(path, "r" );

89 if(!config_file) {

90 return 0;

91 }

92

93 fseek(config_file , 0L , SEEK_END);

94 file_len = ftell(config_file);

95 rewind(config_file);

96

97 char temp_buffer[file_len];

98

99 /* Alocating memory for the file buffer */

100 input_buffer = calloc( file_len, sizeof(char));

101 if(!input_buffer) {

102 fclose(config_file);

103 t_print("config_loader(): Memory allocation failed, aborting. \n " );

104 return 0;

105 }

106

107 /* Get the file into the buffer */

108 if(fread( input_buffer , file_len, 1 , config_file) != 1) {

109 fclose(config_file);

110 free(input_buffer);

111 t_print("config_loader(): Read failed, aborting \n " );

112 return 0;

113 }

114

115 int counter = 0;

116 while(counter < entries) {

117 memset(temp_buffer, ’\0’ ,file_len);

118 char *search_ptr = strstr(input_buffer,cme->entry_name);

119 if(search_ptr != NULL) {

120 int length = strlen(search_ptr) - strlen(cme->entry_name);

121 memcpy(temp_buffer, search_ptr+(strlen(cme->entry_name)*(sizeof(char))),

122 length);

123 status = sscanf(temp_buffer, cme->modifier, cme->destination);

124 if(status == EOF || status == 0) {

125 fclose(config_file);

126 free(input_buffer);

127 return -1;

128 }

129 }

130 else{

131 return 0;

132 }

133 counter++;

134 cme++;

135 }

136

137 fclose(config_file);

138 free(input_buffer);

139 return 1;

140 }

141

142 int calculate_nmea_checksum(char *nmea)
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143 {

144 char checksum = 0;

145 int i;

146 int received_checksum = 0;

147 int calculated_checksum = 0;

148

149

150 /* Substring to iterate over */

151 char substring[100] = {0};

152

153 /* Finding end (*) and calculate length */

154 char *substring_end = strstr(nmea, "*" );

155 int length = substring_end - (nmea+1);

156

157 /* Copying the substring */

158 memcpy(substring, nmea+1, length);

159

160 /* Calculating checksum */

161 for(i = 0; i < length; i++) {

162 checksum = checksum ^ substring[i];

163 }

164

165 /* Reusing substring buffer */

166 sprintf(substring, "%x \n " , checksum);

167

168 /* Converting calculated checksum to int */

169 sscanf(substring, "%d" , &calculated_checksum);

170

171 /* Fetching received checksum */

172 memcpy(substring, substring_end+1, strlen(nmea));

173

174 /* Converting received checksum to int*/

175 sscanf(substring, "%d" , &received_checksum);

176

177 /* Comparing checksum */

178 if(received_checksum == calculated_checksum) {

179 return 1;

180 } else {

181 return 0;

182 }

183

184 }

185

186 /*

187 * Used to extract words from between two delimiters

188 * delim_num_1 -> The number of the first delimiter, ex.3

189 * delim_num_2 -> The number of the second delimiter, ex.5

190 * delimiter -> The character to be used as a delimiter

191 * string -> Input

192 * buffer -> To transport the string

193 */

194 int substring_extractor(int start, int end, char delimiter, char *buffer,

195 int buffsize, char *string, int str_len)

196 {

197 int i;

198 int delim_counter = 0;

199 int buffer_index = 0;

200

201 const int carriage_return = 13;

202

203 bzero(buffer, buffsize);

204
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205 for(i = 0; i < str_len; i++) {

206 /* Second delim (end) reached, stopping. */

207 if(delim_counter == end || (int)string[i] == carriage_return) {

208 return 1;

209 }

210

211 if(string[i] == delimiter) {

212 delim_counter++;

213 } else {

214 /* The first delim is reached */

215 if(delim_counter >= start) {

216 buffer[buffer_index] = string[i];

217 buffer_index++;

218 }

219 }

220 }

221 /* Reached end of string without encountering end delimit */

222 return 0;

223 }

224

225 int str_len_u(char *buffer, int buf_len)

226 {

227 int i;

228 char prev = ’X’ ;

229 for(i = 0; i < buf_len; i++) {

230 if(buffer[i] == 0x0a && prev == 0x0a) {

231 return i;

232 }

233 prev = buffer[i];

234 }

235 return -1;

236 }

237

238 /* Mega hackish code for getting MJD */

239 int get_today_mjd(char *buffer)

240 {

241 int status = run_command(MJD_SCRIPT_PATH, buffer);

242 /* Removing newline */

243 buffer[strcspn(buffer, " \n " )] = 0;

244 return status;

245 }

246

247 int run_command(char *path, char *output)

248 {

249 FILE *fp;

250 int buffer_size = 1000;

251 char buffer[buffer_size];

252 memset(buffer, ’\0’ , buffer_size);

253

254 /* Open the command for reading. */

255 fp = popen(path, "r" );

256 if (fp == NULL) {

257 t_print("Failed to run command \n " );

258 return 0;

259 }

260

261 /* Read the output a line at a time - output it. */

262 while (fgets(buffer, sizeof(buffer)-1, fp) != NULL) {

263 strcat(output,buffer);

264 }

265

266 /* close */
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267 pclose(fp);

268 return strlen(output);

269 }

270

271 int log_to_file(char *path, char *content, int stamp_switch)

272 {

273 FILE *log_file;

274 log_file = fopen(path, "a+" );

275

276 /* Open file */

277 if(!log_file) {

278 t_print(ERROR_FOPEN);

279 return 0;

280 }

281

282 /* Add MJD timestamp */

283 if(stamp_switch == 1) {

284 int timestamp_size = 50;

285 char timestamp[timestamp_size];

286 memset(timestamp,’\0’ , timestamp_size);

287

288 get_today_mjd(timestamp);

289 if(!fprintf(log_file,"%s," ,timestamp)) {

290 t_print(ERROR_FWRITE);

291 return 0;

292 }

293 }

294

295 /* Just stamp with regular time */

296 if(stamp_switch == 2){

297 char timestamp[100];

298 memset(timestamp, ’\0’ , 100);

299 time_t rawtime;

300 struct tm *info;

301 time(&rawtime);

302 info = gmtime(&rawtime);

303 strftime(timestamp,80,"[%x - %X]" , info);

304

305 if(!fprintf(log_file,"%s" ,timestamp)) {

306 t_print(ERROR_FWRITE);

307 return 0;

308 }

309 }

310

311 /* Write content to file */

312 if(!(fprintf(log_file,"%s" ,content))) {

313 t_print(ERROR_FWRITE);

314 return 0;

315 }

316

317 /* Close file */

318 if(fclose(log_file)) {

319 t_print(ERROR_FCLOSE);

320 }

321 return 1;

322 }
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utils.h
1 /**

2 * @file utils.h

3 * @author Aril Schultzen

4 * @date 13.04.2016

5 * @brief File containing function prototypes and includes for utils.c

6 */

7

8 #ifndef UTILS_H

9 #define UTILS_H

10

11 #include <stdio.h>

12 #include <stdarg.h>

13 #include <stdlib.h>

14 #include <arpa/inet.h>

15 #include <string.h>

16 #include <time.h>

17

18 #include "list.h"

19 #include "config.h"

20

21 /** @brief Terminates program and prints the line

22 * number where die was called from.

23 *

24 * @param line_number Line number where die() was written

25 * @param format String with error description.

26 * @return Void

27 */

28 void die (int line_number, const char * format, ...);

29

30 /** @brief Extracts IP address from file descriptor

31 *

32 * @param session_fd file descriptor for the session

33 * @param ip Buffer to store the IP address as string.

34 */

35 void get_ip_str(int session_fd, char *ip);

36

37 /** @brief Extracts IP address from sockaddr struct

38 *

39 * Used by get_ip_str() to extract IP address from

40 * sockaddr struct.

41 *

42 * @param session_fd file descriptor for the session

43 * @param ip Buffer to store the IP address as string.

44 * @return Void

45 */

46 void extract_ip_str(const struct sockaddr *sa, char *s, size_t maxlen);

47

48 /** @brief Print function with time-stamp

49 *

50 * Print function like printf() but with time-stamp

51 * in square bracket appended before the String.

52 * Example: [04/13/16 - 08:50:41] Waiting for connections..

53 *

54 * @param format String to print

55 * @return Void

56 */

57 void t_print(const char* format, ...);

58

59 /** @brief Loads config from file using config_map_entry struct

60 *
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61 * Uses the config_map_entry struct to find the correct entry

62 * in the config file, cast it to correct type and fill the

63 * respective memory area (pointer).

64 *

65 * @param cme Pointer to the config_map_entry struct

66 * @param path Path to config file

67 * @param entries Entries in the config file

68 * @return 1 if success, 0 if fail.

69 */

70 int load_config(struct config_map_entry *cme, char *path, int entries);

71

72 /** @brief Calculates the checksum of a given string of NMEA data.

73 *

74 * Used to check the integrity of NMEA data from the

75 * GPS receiver before potential analysis.

76 *

77 * @param nmea String containing NMEA data to check

78 * @return 1 if success, 0 if fail.

79 */

80 int calculate_nmea_checksum(char *s);

81

82 /** @brief Extracts words from a String

83 *

84 * Used to extract a substring from a string by using a

85 * delimiter. The from and to parameters defines which

86 * occurrence of the delimiter in the parent string to

87 * use as start and end for the substring.

88 *

89 * @param start The delimiter number to start from

90 * @param end The delimiter number to stop

91 * @param delimiter Symbol/character to use as delimit

92 * @param buffer Buffer to store the word(s)

93 * @param buffsize Size of buffer

94 * @param string Pointer to parent string

95 * @param str_len Length of parent string

96 * @return 1 if success, 0 if no string within the delimits was found.

97 */

98 int substring_extractor(int start, int end, char delimiter, char *buffer,

99 int buffsize, char *string, int str_len);

100

101 /** @brief Counts bytes from start to first occurence of null character

102 *

103 * @param buffer Buffer to search through

104 * @param buf_len Length of the buffer in bytes

105 */

106 int str_len_u(char *buffer, int buf_len);

107

108 /** @brief Calls a script using run_command to get mjd(now).

109 *

110 * @param buffer Buffer to store response

111 */

112 int get_today_mjd(char *buffer);

113

114 /** @brief Run a script or a program through the shell

115 *

116 * @param path Path to program

117 * @param output Buffer to store response

118 */

119 int run_command(char *path, char *output);

120

121 /** @brief Log to file

122 *
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123 * @param content Data to log

124 * @param path Path to the log file to log to

125 * @param stamp_switch 0 if no timestamp, 1 if MJD.

126 */

127 int log_to_file(char *path, char *content, int stamp_switch);

128 #endif /* !UTILS_H */

net.c
1 #include "net.h"

2

3 int s_read(struct transmission_s *tsm)

4 {

5 bzero(tsm->iobuffer,IO_BUFFER_SIZE);

6 return read(tsm->session_fd, tsm->iobuffer,IO_BUFFER_SIZE);

7 }

8

9 int s_write(struct transmission_s *tsm, char *message, int length)

10 {

11 return write(tsm->session_fd, message, length);

12 }

net.h
1 #ifndef NET_H

2 #define NET_H

3

4 #define _GNU_SOURCE 1

5 #include <unistd.h>

6 #include <sys/mman.h>

7

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <string.h>

11 #include <strings.h>

12 #include <sys/types.h>

13 #include <sys/socket.h>

14 #include <netinet/in.h>

15 #include <netdb.h>

16 #include <errno.h>

17 #include <stdarg.h>

18 #include <signal.h>

19 #include <sys/wait.h>

20 #include <arpa/inet.h>

21 #include <stdbool.h>

22

23 /* My own header files */

24 #include "utils.h"

25 #include "protocol.h"

26 #include "nmea.h"

27

28 /* GENERAL */

29 #define IO_BUFFER_SIZE MAX_PARAMETER_SIZE + MAX_COMMAND_SIZE

30

31 struct transmission_s {

32 int session_fd;

33 char iobuffer[IO_BUFFER_SIZE];

34 };

35
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36 int s_read(struct transmission_s *tsm);

37 int s_write(struct transmission_s *tsm, char *message, int length);

38

39 #endif /* !NET_H */

csac filter.c
1 #include "csac_filter.h"

2

3 /* PATH TO CONFIG FILE */

4 #define CSAC_FILTER_CONFIG_PATH "cfilter_config.ini"

5

6 /* CONFIG CONSTANTS */

7 #define CONFIG_CFD_PATH "cfd_state_path: "

8 #define CONFIG_INIT_FROM_FILE "init_cfd_from_file: "

9 #define CONFIG_TELEMETRY_LOG "telemetry_log: "

10 #define CONFIG_LOG_PREDICTION "log_predict: "

11 #define CONFIG_LOG_PRED_PATH "pred_log_path: "

12 #define CONFIG_INIT_SSC "init_cfd_steer_smooth_current: "

13 #define CONFIG_INIT_SST "init_cfd_steer_smooth_today: "

14 #define CONFIG_INIT_SSP "init_cfd_steer_smooth_previous: "

15 #define CONFIG_INIT_SSY "init_cfd_steer_smooth_yesterday: "

16 #define CONFIG_PHASE_LIMIT "phase_limit: "

17 #define CONFIG_STEER_LIMIT "steer_limit: "

18 #define CONFIG_PRED_LIMIT "pred_limit: "

19 #define CONFIG_TIME_CONSTANT "time_constant: "

20 #define CONFIG_WARMUP_DAYS "warmup_days: "

21 #define CSAC_FILTER_CONFIG_ENTRIES 14

22

23 #define ALARM_FAST_TIMING_FILTER " [ ALARM ] Phase > Limit\n"

24 #define ALARM_STEER_TO_BIG " [ ALARM ] Steer > limit!\n"

25 #define ALARM_FREQ_COR_FILTER " [ ALARM ] Steer > predicted!\n"

26

27 static double mjd_diff_day(double mjd_a,

28 double mjd_b)

29 {

30 double diff = mjd_a - mjd_b;

31 return diff;

32 }

33

34 static double get_mjdf()

35 {

36 double mjd_today = 0;

37 const int BUFFER_LEN = 100;

38 char buffer[BUFFER_LEN];

39 memset(buffer, ’\0’ , BUFFER_LEN);

40 if(!get_today_mjd(buffer)) {

41 t_print("get_mjdf(): Failed to calculate current MJD \n " );

42 return 0;

43 } else {

44 if(sscanf(buffer, "%lf" , &mjd_today) == EOF) {

45 t_print("get_mjdf(): Failed to cast MJD to float \n " );

46 return 0;

47 }

48 }

49 return mjd_today;

50 }

51

52 static int load_telemetry(struct csac_model_data

53 *cfd, char *telemetry)
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54 {

55 const int BUFFER_LEN = 100;

56 char buffer[BUFFER_LEN];

57

58 /* Checking discipline mode of the CSAC */

59 if(!substring_extractor(13,14,’,’ ,buffer,100,

60 telemetry,strlen(telemetry))) {

61 printf("Failed to extract DiscOK from CSAC data \n " );

62 return 0;

63 } else {

64 if(sscanf(buffer, "%d" , &cfd->discok) == EOF) {

65 return 0;

66 }

67 /* CSAC is in holdover or acquiring */

68 if(cfd->discok == 2) {

69 return 0;

70 }

71 }

72

73 if(!substring_extractor(12,13,’,’ ,buffer,100,

74 telemetry,strlen(telemetry))) {

75 printf("Failed to extract Phase from CSAC data \n " );

76 return 0;

77 } else {

78 if(sscanf(buffer, "%lf" ,

79 &cfd->phase_current) == EOF) {

80 return 0;

81 }

82 }

83

84 if(!substring_extractor(10,11,’,’ ,buffer,100,

85 telemetry,strlen(telemetry))) {

86 printf("Failed to extract Steer from CSAC data \n " );

87 return 0;

88 } else {

89 if(sscanf(buffer, "%lf" ,

90 &cfd->steer_current) == EOF) {

91 return 0;

92 }

93 }

94

95 double mjd_today = get_mjdf();

96 if(!mjd_today){

97 return 0;

98 }

99

100 if(mjd_diff_day(mjd_today, cfd->today_mjd) >= 1

101 && cfd->t_current != 0) {

102 cfd->new_day = 1;

103 cfd->today_mjd = mjd_today;

104 cfd->days_passed++;

105 }

106

107 // Initializing today_mjd, only done once at startup

108 if(cfd->today_mjd == 0) {

109 cfd->today_mjd = mjd_today;

110 cfd->days_passed = 0;

111 }

112

113 // Updating running MJD

114 cfd->t_current = mjd_today;

115 return 1;
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116 }

117

118 static void calc_smooth(struct csac_model_data

119 *cfd)

120 {

121 double W = cfd->cf_conf.time_constant;

122

123 /* Setting previous values */

124 cfd->t_smooth_previous = cfd->t_smooth_current;

125 cfd->steer_smooth_previous =

126 cfd->steer_smooth_current;

127

128 /* Calculating t_smooth_current */

129 cfd->t_smooth_current = (((W-1)/W) *

130 cfd->t_smooth_previous) + ((1/W) *

131 cfd->t_current);

132

133 /* Calculating steer_smooth_current */

134 cfd->steer_smooth_current = (((W-1)/W) *

135 cfd->steer_smooth_previous) + ((1/W) *

136 cfd->steer_current);

137 }

138

139 /*

140 * Returns 1 if abs(phase_current) is bigger

141 */

142 int fast_timing_filter(int phase_current, int phase_limit)

143 {

144 if(abs(phase_current) > phase_limit) {

145 return 1;

146 }

147 return 0;

148 }

149

150 /*

151 * Returns 1 if abs(cfd->steer_current - cfd->steer_prediction) is bigger

152 */

153 int freq_cor_filter(struct csac_model_data *cfd)

154 {

155 if ( abs(cfd->steer_current -

156 cfd->steer_prediction) >

157 cfd->cf_conf.steer_limit) {

158 return 1;

159 }

160 return 0;

161 }

162

163 static void update_model(struct csac_model_data *cfd)

164 {

165 /* Updating t_smooth */

166 cfd->t_smooth_yesterday = cfd->t_smooth_today;

167 cfd->t_smooth_today = cfd->t_smooth_current;

168

169 /* Updating steer_smooth */

170 cfd->steer_smooth_yesterday =

171 cfd->steer_smooth_today;

172 cfd->steer_smooth_today =

173 cfd->steer_smooth_current;

174

175 /* Updating steer prediction, just for show */

176 get_steer_predict(cfd);

177 }
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178

179 double get_steer_predict(struct csac_model_data *cfd)

180 {

181 if(cfd->days_passed >= cfd->cf_conf.warmup_days) {

182 cfd->steer_prediction = cfd->t_current - cfd->t_smooth_today;

183 cfd->steer_prediction = cfd->steer_prediction *

184 (cfd->steer_smooth_today -

185 cfd->steer_smooth_yesterday);

186 cfd->steer_prediction = cfd->steer_prediction /

187 (cfd->t_smooth_today - cfd->t_smooth_yesterday);

188 cfd->steer_prediction = cfd->steer_prediction

189 +cfd->steer_smooth_today;

190 return cfd->steer_prediction;

191 } else {

192 return -1;

193 }

194 }

195

196 /* Making sure there are no 0 values about */

197 int init_csac_model(struct csac_model_data *cfd,

198 char *telemetry)

199 {

200

201 if(!load_telemetry(cfd, telemetry)) {

202 return 0;

203 }

204

205 /* Setting preliminary values, don’t want to divide by zero */

206 cfd->t_smooth_current = cfd->t_current;

207 cfd->t_smooth_today = cfd->t_smooth_current;

208 cfd->t_smooth_yesterday = cfd->t_smooth_current

209 -0.1;

210

211 /* Setting values from config if preset */

212 if(cfd->cf_conf.init_cfd_from_file) {

213 cfd->steer_smooth_current =

214 cfd->cf_conf.init_cfd_ssc;

215 cfd->steer_smooth_today =

216 cfd->cf_conf.init_cfd_sst;

217 cfd->steer_smooth_previous =

218 cfd->cf_conf.init_cfd_ssp;

219 cfd->steer_smooth_yesterday =

220 cfd->cf_conf.init_cfd_ssy;

221

222 /* Setting preliminary values, don’t want to divide by zero */

223 } else {

224 cfd->steer_smooth_current = cfd->steer_current;

225 cfd->steer_smooth_today =

226 cfd->steer_smooth_current;

227 cfd->steer_smooth_previous =

228 cfd->steer_smooth_today;

229 }

230

231 if(cfd->cf_conf.warmup_days == 0) {

232 cfd->new_day = 1;

233 }

234

235 return 1;

236 }

237

238 /* Update the filter with new data */

239 int update_csac_model(struct csac_model_data
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240 *cfd, char *telemetry)

241 {

242 /* Load new telemetry into the filter */

243 if(!load_telemetry(cfd, telemetry) ) {

244 fprintf(stderr,"Telemetry failed to load \n " );

245 return 0;

246 }

247

248 /* Calculate smoothed values */

249 calc_smooth(cfd);

250

251 /* Updating prediction if 24 hours has passed since the last update */

252 if(cfd->new_day == 1) {

253

254 /* Update prediction */

255 update_model(cfd);

256

257 /* Updating fast timing filter status */

258 cfd->ftf_status = fast_timing_filter(

259 cfd->phase_current, cfd->cf_conf.phase_limit);

260

261 /* Updating frequency correction filter status */

262 cfd->fqf_status = freq_cor_filter(cfd);

263

264 /* Clearing new day variable*/

265 cfd->new_day = 0;

266

267 /* If logging is enabled, log steer predicted */

268 if(cfd->cf_conf.pred_logging) {

269 char log_output[200];

270 memset(log_output, ’\0’ , 200);

271 snprintf(log_output, 100, "%lf \n " ,

272 cfd->steer_prediction);

273 log_to_file(cfd->cf_conf.pred_log_path,

274 log_output, 1);

275 }

276 }

277 return 1;

278 }

279

280 /* Setting up the config structure specific for the server */

281 static void initialize_config(struct

282 config_map_entry *conf_map,

283 struct csac_map_config *cf_conf)

284 {

285 conf_map[0].entry_name = CONFIG_CFD_PATH;

286 conf_map[0].modifier = FORMAT_STRING;

287 conf_map[0].destination = &cf_conf->cfd_state_path;

288

289 conf_map[1].entry_name = CONFIG_INIT_FROM_FILE;

290 conf_map[1].modifier = FORMAT_INT;

291 conf_map[1].destination = &cf_conf->init_cfd_from_file;

292

293 conf_map[2].entry_name = CONFIG_INIT_SSC;

294 conf_map[2].modifier = FORMAT_DOUBLE;

295 conf_map[2].destination = &cf_conf->init_cfd_ssc;

296

297 conf_map[3].entry_name = CONFIG_INIT_SST;

298 conf_map[3].modifier = FORMAT_DOUBLE;

299 conf_map[3].destination = &cf_conf->init_cfd_sst;

300

301 conf_map[4].entry_name = CONFIG_INIT_SSP;
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302 conf_map[4].modifier = FORMAT_DOUBLE;

303 conf_map[4].destination = &cf_conf->init_cfd_ssp;

304

305 conf_map[5].entry_name = CONFIG_PHASE_LIMIT;

306 conf_map[5].modifier = FORMAT_DOUBLE;

307 conf_map[5].destination = &cf_conf->phase_limit;

308

309 conf_map[6].entry_name = CONFIG_STEER_LIMIT;

310 conf_map[6].modifier = FORMAT_DOUBLE;

311 conf_map[6].destination = &cf_conf->steer_limit;

312

313 conf_map[7].entry_name = CONFIG_TIME_CONSTANT;

314 conf_map[7].modifier = FORMAT_DOUBLE;

315 conf_map[7].destination = &cf_conf->time_constant;

316

317 conf_map[8].entry_name = CONFIG_WARMUP_DAYS;

318 conf_map[8].modifier = FORMAT_INT;

319 conf_map[8].destination = &cf_conf->warmup_days;

320

321 conf_map[9].entry_name = CONFIG_INIT_SSY;

322 conf_map[9].modifier = FORMAT_DOUBLE;

323 conf_map[9].destination = &cf_conf->init_cfd_ssy;

324

325 conf_map[10].entry_name = CONFIG_PRED_LIMIT;

326 conf_map[10].modifier = FORMAT_DOUBLE;

327 conf_map[10].destination = &cf_conf->pred_limit;

328

329 conf_map[11].entry_name = CONFIG_TELEMETRY_LOG;

330 conf_map[11].modifier = FORMAT_STRING;

331 conf_map[11].destination = &cf_conf->telemetry_log_path;

332

333 conf_map[12].entry_name = CONFIG_LOG_PREDICTION;

334 conf_map[12].modifier = FORMAT_INT;

335 conf_map[12].destination = &cf_conf->pred_logging;

336

337 conf_map[13].entry_name = CONFIG_LOG_PRED_PATH;

338 conf_map[13].modifier = FORMAT_STRING;

339 conf_map[13].destination = &cf_conf->pred_log_path;

340 }

341

342 void steer_csac(int prediction)

343 {

344 /* Allocating buffer for run_program() */

345 char program_buf[200];

346 memset(program_buf, ’\0’ , 200);

347

348 /* Buffer for the prediction */

349 char pred_string[200];

350 memset(pred_string, ’\0’ , 200);

351 sprintf(pred_string, "%d" ,prediction);

352

353 /* Buffer for the steer adjust command string */

354 char steer_com_string[200];

355 memset(steer_com_string, ’\0’ , 200);

356

357 /* Building the string */

358 strcat(steer_com_string,"python query_csac.py FA" );

359 strcat(steer_com_string, pred_string);

360

361

362 /* Acquiring lock on CSAC serial*/

363 sem_wait(&(s_synch->csac_sem));
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364

365 /* Adjusting frequency according to the models prediction */

366 run_command(steer_com_string, program_buf);

367

368 /* Releasing lock on CSAC serial*/

369 sem_post(&(s_synch->csac_sem));

370

371 char log_buf[200];

372 memset(log_buf, ’\0’ , 200);

373 strcat(log_buf, " Steer: " );

374 strcat(log_buf, pred_string);

375 strcat(log_buf, ", response: " );

376 strcat(log_buf, program_buf);

377

378 /* Logging steer value */

379 log_to_file(s_conf->log_path, log_buf, 2);

380 }

381

382 void disable_csac_disc()

383 {

384 /* Allocating buffer for run_program() */

385 char program_buf[200];

386 memset(program_buf, ’\0’ , 200);

387

388 /* Acquiring lock on CSAC serial*/

389 sem_wait(&(s_synch->csac_sem));

390

391 /* Disabling disciplining */

392 run_command("python query_csac.py Md" ,

393 program_buf);

394

395 fprintf(stderr,"Disabling CSAC disciplining: %s \n " , program_buf);

396

397 /* Releasing lock on CSAC serial*/

398 sem_post(&(s_synch->csac_sem));

399 }

400

401 void enable_csac_disc()

402 {

403 /* Allocating buffer for run_program() */

404 char program_buf[200];

405 memset(program_buf, ’\0’ , 200);

406

407 /* Acquiring lock on CSAC serial*/

408 sem_wait(&(s_synch->csac_sem));

409

410 /* Disabling disciplining */

411 run_command("python query_csac.py MD" ,

412 program_buf);

413

414 fprintf(stderr,"Enabling CSAC disciplining: %s \n " , program_buf);

415

416 /* Releasing lock on CSAC serial*/

417 sem_post(&(s_synch->csac_sem));

418 }

419

420 int check_filters(struct csac_model_data *cmd)

421 {

422 if(freq_cor_filter(cmd)){

423 log_to_file(s_conf->log_path, ALARM_FREQ_COR_FILTER, 2);

424 return 1;

425 }
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426

427 /* If current steer is bigger than the predicted limit */

428 if( abs(cfd->steer_current) > cfd->cf_conf.pred_limit ){

429 log_to_file(s_conf->log_path, ALARM_STEER_TO_BIG, 2);

430 return 1;

431 }

432

433 if(fast_timing_filter(cfd->phase_current, cfd->cf_conf.phase_limit)){

434 log_to_file(s_conf->log_path, ALARM_FAST_TIMING_FILTER, 2);

435 return 1;

436 }

437

438 return 0;

439 }

440

441 int start_csac_model(struct csac_model_data

442 *cfd)

443 {

444 int raised_alarm = 0;

445 int csac_disc = 1;

446

447 /* Allocating buffer for run_program() */

448 char program_buf[200];

449 memset(program_buf, ’\0’ , 200);

450 int model_init = 0;

451

452 /* csac_filter config */

453 struct config_map_entry

454 conf_map[CSAC_FILTER_CONFIG_ENTRIES];

455

456 /* Initialize config map */

457 initialize_config(conf_map, &cfd->cf_conf);

458

459 /* Load the config */

460 if(!load_config(conf_map, CSAC_FILTER_CONFIG_PATH,

461 CSAC_FILTER_CONFIG_ENTRIES)){

462 t_print("CSAC model/filter: Failed to load config \n " );

463 s_synch->done = 1;

464 return -1;

465 }

466

467 /* Keep going as long as the server is running */

468 while(!s_synch->done) {

469 /* Acquiring lock*/

470 sem_wait(&(s_synch->csac_sem));

471

472 /* Querying CSAC */

473 run_command("python get_telemetry.py" ,

474 program_buf);

475

476 /* Releasing lock */

477 sem_post(&(s_synch->csac_sem));

478

479 /* Initialize model if not already initialized */

480 if(!model_init) {

481 model_init = init_csac_model(cfd, program_buf);

482 }

483

484 /* checking alarm */

485 if(cfd->days_passed >= cfd->cf_conf.warmup_days){

486 raised_alarm = check_filters(cfd);

487 }
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488

489 /* If the alarm is raised */

490 if(raised_alarm){

491 if(csac_disc){

492 disable_csac_disc();

493 csac_disc = 0;

494 }

495

496 /* Get mjd to update filter */

497 double mjd_today = get_mjdf();

498

499 /* Calculating MJD */

500 cfd->t_current = mjd_today;

501

502 /* Calc steer predict */

503 int steer_pred = (int)get_steer_predict(cfd);

504 steer_pred = steer_pred * 1000;

505

506 /* Steering CSAC */

507 steer_csac(steer_pred);

508 }

509

510 /* If the alarm is not raised */

511 if(!raised_alarm){

512 if(!csac_disc){

513 enable_csac_disc();

514 csac_disc = 1;

515 }

516 update_csac_model(cfd, program_buf);

517 }

518

519 /* If logging enabled, log all data from the CSAC */

520 if(s_conf->csac_logging) {

521 log_to_file(s_conf->csac_log_path, program_buf,1);

522 }

523

524 /* Dump filter data for every iteration */

525 dump_cfd(cfd->cf_conf.cfd_state_path);

526

527 sleep(0.5);

528 memset(program_buf, ’\0’ , 200);

529 }

530 return 0;

531 }

csac filter.h
1 /**

2 * @csac_filter.h

3 * @author Aril Schultzen

4 * @date 05.09.2016

5 * @brief Filter module using CSAC for the sensor_server

6 */

7

8 #ifndef CSAC_FILTER_H

9 #define CSAC_FILTER_H

10

11 #include <stdio.h>

12 #include <stdlib.h>

13 #include <string.h>
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14 #include <stdarg.h>

15 #include <errno.h>

16 #include <unistd.h>

17 #include "utils.h"

18 #include "serial.h"

19

20 #include "sensor_server.h"

21

22 struct csac_map_config {

23 int pred_logging;

24 char cfd_state_path[PATH_LENGTH_MAX];

25 char telemetry_log_path[PATH_LENGTH_MAX];

26 char pred_log_path[PATH_LENGTH_MAX];

27 int init_cfd_from_file;

28 double init_cfd_ssc;

29 double init_cfd_sst;

30 double init_cfd_ssp;

31 double init_cfd_ssy;

32 double phase_limit;

33 double steer_limit;

34 double time_constant;

35 double pred_limit;

36 int warmup_days;

37 };

38

39 struct csac_model_data {

40 /* Phase */

41 double phase_current;

42

43 /* Current */

44 double t_current;

45 double steer_current;

46 double steer_prediction;

47

48 /* Current smooth */

49 double t_smooth_current;

50 double steer_smooth_current;

51

52 /* Previous */

53 double t_smooth_previous;

54 double steer_smooth_previous;

55

56

57 double t_smooth_today;

58 double steer_smooth_today;

59

60

61 double t_smooth_yesterday;

62 double steer_smooth_yesterday;

63

64 /* Changes once a day */

65 double today_mjd;

66

67 /* Days passed since startup */

68 int days_passed;

69

70 /* New day, 1 if yes, 0 if no */

71 int new_day;

72

73 /* Discipline mode */

74 int discok;

75
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76 /* fast timing filter status */

77 int ftf_status;

78

79 /* Frequency correction filter status */

80 int fqf_status;

81

82 /* Config */

83 struct csac_map_config cf_conf;

84 };

85

86 /** @brief Updates the state of the filter from data

87 * received from the CSAC

88 *

89 * @param cfd State of filter

90 * @param telemetry String of telemetry from the CSAC

91 * @return 0 if error, 1 if success.

92 */

93 int update_csac_model(struct csac_model_data *cfd, char *telemetry);

94

95 /** @brief Initializes the state of the filter by using

96 * telemetry from the CSAC.

97 *

98 * @param cfd State of filter

99 * @param telemetry String of telemetry from the CSAC

100 * @return 0 if error, 1 if success.

101 */

102 int init_csac_model(struct csac_model_data *cfd, char *telemetry);

103

104 /** @brief Updates the state of the filter from data

105 * received from the CSAC

106 *

107 * @param cfd State of filter

108 * @return The predicted steer value as double.

109 */

110 double get_steer_predict(struct csac_model_data *cfd);

111

112 /** @brief Starts the csac_filter

113 *

114 * @param cfd State of filter

115 * @return 1 if filter started successfully, 0 if not.

116 */

117 int start_csac_model(struct csac_model_data *cfd);

118

119 #endif /* !CSAC_FILTER_H */

cfilter config.ini
1 cfd_state_path: cfd_state.txt

2 telemetry_log: telemetry.txt

3 pred_log_path: pred.txt

4 log_predict: 0

5 init_cfd_from_file: 0

6 init_cfd_steer_smooth_current: -49.134799

7 init_cfd_steer_smooth_today: -43.508808

8 init_cfd_steer_smooth_previous: -49.135013

9 init_cfd_steer_smooth_yesterday: -43.091711

10 phase_limit: 50

11 steer_limit: 50

12 time_constant: 10000

13 warmup_days: 0
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14 pred_limit: 200

get telemetry.py
1 import ctypes

2 import fileinput, sys

3 import datetime

4 import time

5 import io

6 import os

7 import serial

8

9 def main_routine():

10 ser = serial.Serial("/dev/ttyUSB0" ,57600, timeout=0.1)

11 sio = io.TextIOWrapper(io.BufferedRWPair(ser, ser),encoding=’ascii’ ,newline=" \r\n " )

12

13 log_file = open("telemetry.txt" , "a+" )

14

15 telemetry_len = 0

16 while (telemetry_len < 60):

17 ser.write(b’!^ \r\n ’ )

18 time.sleep(0.01)

19 telemetry = sio.readline()

20 telemetry = telemetry.strip(" \r\n\x00 " )

21 telemetry_len = len(telemetry)

22

23 print(telemetry)

24 ser.close()

25 log_file.write(telemetry + " \n " )

26 if __name__ == ’__main__’ :

27 main_routine()

filters.c
1 #include "filters.h"

2

3 #define ALARM_RDF "[ ALARM ] Sensor %d triggered LS filter!\n"

4 #define ALARM_RDF_RETURNED "[ ALARM ] Sensor %d cleared LS filter!\n"

5

6 #define LOG_FILE "server_log"

7 #define LOG_STRING_LENGTH 100

8 #define MJD_LENGTH 15

9

10 /** @brief Checks for any "moving" SENSORS

11 *

12 * Checks solved position against known position.

13 * Known position loaded from the config file.

14 * @return Void

15 */

16 static void ls_filter(void);

17

18 /** @brief Checks if a sensor has been marked as moved

19 *

20 * Iterates through client_list and checks for clients marked

21 * as moved. Raises alarm.

22 *

23 * @return Void

24 */

25 static void raise_alarm(void);
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26

27 static int log_alarm(int client_id, char *alarm)

28 {

29 /* allocating memory for string */ ;

30 char log_string[LOG_STRING_LENGTH];

31 memset(log_string, ’\0’ , LOG_STRING_LENGTH);

32

33 /* Formatting alarm */

34 char alarm_buffer[strlen(alarm) + ID_AS_STRING_MAX];

35 memset(alarm_buffer, ’\0’ , strlen(alarm) + ID_AS_STRING_MAX);

36 snprintf(alarm_buffer, strlen(alarm) + ID_AS_STRING_MAX, alarm, client_id);

37

38 /* Formatting output*/

39 snprintf(log_string, LOG_STRING_LENGTH, " %s" , alarm_buffer);

40

41 /* Logging */

42 return log_to_file(s_conf->log_path, log_string, 2);

43 }

44

45

46 void raise_alarm(void)

47 {

48 struct client_table_entry* iterator;

49 struct client_table_entry* safe;

50

51 list_for_each_entry_safe(iterator, safe,&client_list->list, list) {

52 if(iterator->client_id > 0) {

53 /* Checking ls_filter */

54 if(iterator->fs.ls_f.moved == 1) {

55 iterator->fs.ls_f.was_moved = 1;

56 iterator->fs.ls_f.moved = 0;

57 if(s_conf->logging) {

58 log_alarm(iterator->client_id, ALARM_RDF);

59 }

60 } else {

61 if(iterator->fs.ls_f.was_moved) {

62 iterator->fs.ls_f.was_moved = 0;

63 if(s_conf->logging) {

64 log_alarm(iterator->client_id, ALARM_RDF_RETURNED);

65 }

66 }

67 }

68 }

69 }

70 }

71

72 void ls_filter(void)

73 {

74 struct client_table_entry* iterator;

75 struct client_table_entry* safe;

76

77 list_for_each_entry_safe(iterator, safe,&client_list->list, list) {

78

79 if(iterator->nmea.lat_current > iterator->fs.ls_f.lsf_d.lat_ref +

80 iterator->fs.ls_f.lsf_d.lat_dev) {

81 iterator->fs.ls_f.moved = 1;

82 iterator->fs.ls_f.dv.lat_disturbed = HIGH;

83 } else if(iterator->nmea.lat_current < iterator->fs.ls_f.lsf_d.lat_ref -

84 iterator->fs.ls_f.lsf_d.lat_dev) {

85 iterator->fs.ls_f.moved = 1;

86 iterator->fs.ls_f.dv.lat_disturbed = LOW;

87 } else {
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88 iterator->fs.ls_f.dv.lat_disturbed = SAFE;

89 }

90

91 if(iterator->nmea.alt_current > iterator->fs.ls_f.lsf_d.alt_ref +

92 iterator->fs.ls_f.lsf_d.alt_dev) {

93 iterator->fs.ls_f.moved = 1;

94 iterator->fs.ls_f.dv.alt_disturbed = HIGH;

95 } else if(iterator->nmea.alt_current < iterator->fs.ls_f.lsf_d.alt_ref -

96 iterator->fs.ls_f.lsf_d.alt_dev) {

97 iterator->fs.ls_f.moved = 1;

98 iterator->fs.ls_f.dv.alt_disturbed = LOW;

99 } else {

100 iterator->fs.ls_f.dv.alt_disturbed = SAFE;

101 }

102

103 if(iterator->nmea.lon_current > iterator->fs.ls_f.lsf_d.lon_ref +

104 iterator->fs.ls_f.lsf_d.lon_dev) {

105 iterator->fs.ls_f.moved = 1;

106 iterator->fs.ls_f.dv.lon_disturbed = HIGH;

107 } else if(iterator->nmea.lon_current < iterator->fs.ls_f.lsf_d.lon_ref -

108 iterator->fs.ls_f.lsf_d.lon_dev) {

109 iterator->fs.ls_f.moved = 1;

110 iterator->fs.ls_f.dv.lon_disturbed = LOW;

111 } else {

112 iterator->fs.ls_f.dv.lon_disturbed = SAFE;

113 }

114

115 if(iterator->nmea.speed_current > iterator->fs.ls_f.lsf_d.speed_ref +

116 iterator->fs.ls_f.lsf_d.speed_dev) {

117 iterator->fs.ls_f.moved = 1;

118 iterator->fs.ls_f.dv.speed_disturbed = HIGH;

119 } else if(iterator->nmea.speed_current < iterator->fs.ls_f.lsf_d.speed_ref -

120 iterator->fs.ls_f.lsf_d.speed_dev) {

121 iterator->fs.ls_f.moved = 1;

122 iterator->fs.ls_f.dv.speed_disturbed = LOW;

123 } else {

124 iterator->fs.ls_f.dv.speed_disturbed = SAFE;

125 }

126 }

127 }

128

129 void apply_filters()

130 {

131 ls_filter();

132 raise_alarm();

133 }

filters.h
1 /**

2 * @file filters.h

3 * @author Aril Schultzen

4 * @date 13.04.2016

5 * @brief File containing function prototypes and includes for analyzer.h

6 */

7

8 #ifndef ANALYZER_H

9 #define ANALYZER_H

10

11 #include "sensor_server.h"

162



12

13 void apply_filters();

14

15 #endif /* !ANALYZER_H */

net.c
1 #include "net.h"

2

3 int s_read(struct transmission_s *tsm)

4 {

5 bzero(tsm->iobuffer,IO_BUFFER_SIZE);

6 return read(tsm->session_fd, tsm->iobuffer,IO_BUFFER_SIZE);

7 }

8

9 int s_write(struct transmission_s *tsm, char *message, int length)

10 {

11 return write(tsm->session_fd, message, length);

12 }

net.h
1 #ifndef NET_H

2 #define NET_H

3

4 #define _GNU_SOURCE 1

5 #include <unistd.h>

6 #include <sys/mman.h>

7

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <string.h>

11 #include <strings.h>

12 #include <sys/types.h>

13 #include <sys/socket.h>

14 #include <netinet/in.h>

15 #include <netdb.h>

16 #include <errno.h>

17 #include <stdarg.h>

18 #include <signal.h>

19 #include <sys/wait.h>

20 #include <arpa/inet.h>

21 #include <stdbool.h>

22

23 /* My own header files */

24 #include "utils.h"

25 #include "protocol.h"

26 #include "nmea.h"

27

28 /* GENERAL */

29 #define IO_BUFFER_SIZE MAX_PARAMETER_SIZE + MAX_COMMAND_SIZE

30

31 struct transmission_s {

32 int session_fd;

33 char iobuffer[IO_BUFFER_SIZE];

34 };

35

36 int s_read(struct transmission_s *tsm);

37 int s_write(struct transmission_s *tsm, char *message, int length);
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38

39 #endif /* !NET_H */

gps serial.c
1 #include "serial.h"

2

3 int configure_gps_serial(int fd)

4 {

5 struct termios tty;

6 memset (&tty, 0, sizeof tty);

7

8 if (tcgetattr (fd, &tty) != 0) {

9 printf ("error %d from tcgetattr" , errno);

10 exit(0);

11 }

12

13 cfsetospeed (&tty, B9600);

14 cfsetispeed (&tty, B9600);

15

16 tty.c_cflag &= ~PARENB;

17 tty.c_cflag &= ~CSTOPB;

18 tty.c_cflag &= ~CSIZE;

19 tty.c_cflag |= CS8;

20 tty.c_cflag &= ~CRTSCTS;

21 tty.c_cflag |= CREAD | CLOCAL;

22 tty.c_iflag &= ~(IXON | IXOFF | IXANY);

23 tty.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG);

24 tty.c_oflag &= ~OPOST;

25 tty.c_cc[VMIN] = 0;

26 tty.c_cc[VTIME] = 0;

27

28 if (tcsetattr (fd, TCSANOW, &tty) != 0) {

29 printf ("error %d setting term attributes" , errno);

30 return -1;

31 }

32 return 0;

33 }

34

35 int open_serial(char *portname, serial_device device)

36 {

37 int fd = open (portname, O_RDWR | O_NOCTTY);

38 if (fd < 0) {

39 t_print ("Error %d opening %s: %s \n " , errno, portname, strerror (errno));

40 }

41

42 if(device == GPS) {

43 if(configure_gps_serial(fd) < 0) {

44 exit(0);

45 }

46 }

47

48 return fd;

49 }

serial.h
1 /*

2 ## CSAC Config ##################
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3 #

4 # 57600

5 # 8 bit

6 # No parity

7 #

8 # While CSAC is off:

9 #

10 # sudo stty -F /dev/ttyS0 57600

11 # cat /dev/ttyS0

12 #

13 # Turn the CSAC ON

14 #

15 # Symmetricom CSAC <- Output

16 #

17 #################################

18 */

19

20 #ifndef SERIAL_H

21 #define SERIAL_H

22

23 #include <errno.h>

24 #include <termios.h>

25 #include <unistd.h>

26 #include <string.h> /* memset */

27 #include <stdio.h>

28 #include <stdlib.h>

29 #include <features.h>

30 #include <fcntl.h>

31 #include <signal.h>

32

33 //Mine

34 #include "utils.h"

35 #include "protocol.h"

36

37 typedef enum e_serial_device {

38 GPS,

39 CSAC

40 } serial_device;

41

42 int open_serial(char *portname, serial_device device);

43

44 /** @brief Queries the CSAC with the command over serial connection

45 *

46 * Sends a command to the CSAC and reads buf_len bytes into

47 * the buffer. Does not deal with formatting in any way.

48 *

49 * @param file_descriptor FD for the CSAC serial connection

50 * @param query Command (query) to send to the CSAC.

51 * @param buffer Buffer to store the response

52 * @buf_len buf_len Length of buffer

53 */

54 int serial_query(int file_descriptor, char *query, char *buffer, int buf_len);

55

56 #endif /* !SERIAL_H */

colors.h
1 #ifndef COLORS_H

2 #define COLORS_H

3

165



4 /* RESET */

5 #define RESET "\033[0m"

6

7 /* COLORS */

8 #define BLK_WHT "\033[030;47m"

9

10 /* BOLD */

11 #define BOLD_BLK_WHT "\033[1;30;47m"

12 #define BOLD_GRN_BLK "\033[1;32;40m"

13 #define BOLD_RED_BLK "\033[1;31;40m"

14 #define BOLD_YLW_BLK "\033[1;33;40m"

15 #define BOLD_CYN_BLK "\033[1;36;40m"

16

17 /* BOLD INVERTED*/

18 #define BOLD_BLK_GRN "\033[7;32;40m"

19 #define BOLD_BLK_RED "\033[7;31;40m"

20 #define BOLD_BLK_YLW "\033[7;33;40m"

21 #define BOLD_WHT_CYN "\033[1;37;46m"

22

23 /* UNDERLINED */

24 #define UNDER_RED_BLACK "\033[4;031;40m"

25

26 #endif /* !COLORS_H */

config.h
1 #ifndef CONFIG_H

2 #define CONFIG_H

3

4 #define FORMAT_INT "%d"

5 #define FORMAT_FLOAT "%f"

6 #define FORMAT_STRING "%s"

7 #define FORMAT_DOUBLE "%lf"

8

9 struct config_map_entry {

10 char *entry_name;

11 char *modifier;

12 void *destination;

13 };

14

15 #endif /* !CONFIG_H */

nmea.h
1 #ifndef NMEA_H

2 #define NMEA_H

3

4 /* NMEA SENTENCES */

5 #define GGA "£GNGGA"

6 #define RMC "£GNRMC"

7 #define SENTENCE_LENGTH 100

8

9 /* NMEA SENTENCES DELIMITER POSITIONS */

10 #define ALTITUDE_START 9

11 #define LATITUDE_START 3

12 #define LONGITUDE_START 5

13 #define RMC_TIME_START 1

14 #define SPEED_START 7

15
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16 #define SAFE 0

17 #define HIGH 1

18 #define LOW -1

19

20 struct nmea_container {

21 /* Raw data */

22 char raw_gga[SENTENCE_LENGTH];

23 char raw_rmc[SENTENCE_LENGTH];

24

25 /* Latitude */

26 double lat_current;

27 double lat_average;

28 double lat_avg_diff;

29 double lat_total;

30 int lat_disturbed;

31

32 /* Longitude */

33 double lon_current;

34 double lon_average;

35 double lon_avg_diff;

36 double lon_total;

37 int lon_disturbed;

38

39 /* Altitude */

40 double alt_current;

41 double alt_average;

42 double alt_avg_diff;

43 double alt_total;

44 int alt_disturbed;

45

46 /* Speed */

47 double speed_current;

48 double speed_average;

49 double speed_avg_diff;

50 double speed_total;

51 int speed_disturbed;

52

53 /* CHECKSUM */

54 int checksum_passed;

55

56 /* COUNTER FOR AVERAGE */

57 int n_samples;

58 };

59

60 #endif /* !NMEA_H */

list.h
1 /**

2 * @author kazutomo@mcs.anl.gov

3 * @file list.h

4 * @brief Linked list implementation from linux kernel source code.

5 *

6 * This code was lifted from http://www.mcs.anl.gov/~kazutomo/list/.

7 * I stumbled upon when writing when writing a Linux clone autumn 15’,

8 * and tested it in this project. It was planned to be replaced by something

9 * smaller.

10 * Kazutomo’s description:

11 *

12 * I grub it from linux kernel source code and fix it for user space
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13 * program. Of course, this is a GPL licensed header file.

14 *

15 * Here is a recipe to cook list.h for user space program

16 *

17 * 1. copy list.h from linux/include/list.h

18 * 2. remove

19 * - #ifdef __KERNE__ and its #endif

20 * - all #include line

21 * - prefetch() and rcu related functions

22 * 3. add macro offsetof() and container_of

23 *

24 * - kazutomo@mcs.anl.gov

25 */

26

27 #ifndef _LINUX_LIST_H

28 #define _LINUX_LIST_H

29

30 /**

31 * @name from other kernel headers

32 */

33 /*@{*/

34

35 /**

36 * Get offset of a member

37 */

38 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

39

40 /**

41 * Casts a member of a structure out to the containing structure

42 * @param ptr the pointer to the member.

43 * @param type the type of the container struct this is embedded in.

44 * @param member the name of the member within the struct.

45 *

46 */

47 #define container_of(ptr, type, member) __extension__({ \

48 const typeof( ((type *)0)->member ) *__mptr = (ptr); \

49 (type *)( (char *)__mptr - offsetof(type,member) );})

50 /*@}*/

51

52

53 /*

54 * These are non-NULL pointers that will result in page faults

55 * under normal circumstances, used to verify that nobody uses

56 * non-initialized list entries.

57 */

58 #define LIST_POISON1 ((void *) 0x00100100)

59 #define LIST_POISON2 ((void *) 0x00200200)

60

61 /**

62 * Simple doubly linked list implementation.

63 *

64 * Some of the internal functions ("__xxx") are useful when

65 * manipulating whole lists rather than single entries, as

66 * sometimes we already know the next/prev entries and we can

67 * generate better code by using them directly rather than

68 * using the generic single-entry routines.

69 */

70 struct list_head {

71 struct list_head *next, *prev;

72 };

73

74 #define LIST_HEAD_INIT(name) { &(name), &(name) }
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75

76 #define LIST_HEAD(name) \

77 struct list_head name = LIST_HEAD_INIT(name)

78

79 #define INIT_LIST_HEAD(ptr) do { \

80 (ptr)->next = (ptr); (ptr)->prev = (ptr); \

81 } while (0)

82

83 /*

84 * Insert a new entry between two known consecutive entries.

85 *

86 * This is only for internal list manipulation where we know

87 * the prev/next entries already!

88 */

89 static inline void __list_add(struct list_head *new,

90 struct list_head *prev,

91 struct list_head *next)

92 {

93 next->prev = new;

94 new->next = next;

95 new->prev = prev;

96 prev->next = new;

97 }

98

99 /**

100 * list_add - add a new entry

101 * @new: new entry to be added

102 * @head: list head to add it after

103 *

104 * Insert a new entry after the specified head.

105 * This is good for implementing stacks.

106 */

107 static inline void list_add(struct list_head *new, struct list_head *head)

108 {

109 __list_add(new, head, head->next);

110 }

111

112 /**

113 * list_add_tail - add a new entry

114 * @new: new entry to be added

115 * @head: list head to add it before

116 *

117 * Insert a new entry before the specified head.

118 * This is useful for implementing queues.

119 */

120 static inline void list_add_tail(struct list_head *new, struct list_head *head)

121 {

122 __list_add(new, head->prev, head);

123 }

124

125 /*

126 * Delete a list entry by making the prev/next entries

127 * point to each other.

128 *

129 * This is only for internal list manipulation where we know

130 * the prev/next entries already!

131 */

132 static inline void __list_del(struct list_head * prev, struct list_head * next)

133 {

134 next->prev = prev;

135 prev->next = next;

136 }
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137

138 /**

139 * list_del - deletes entry from list.

140 * @entry: the element to delete from the list.

141 * Note: list_empty on entry does not return true after this, the entry is

142 * in an undefined state.

143 */

144 static inline void list_del(struct list_head *entry)

145 {

146 __list_del(entry->prev, entry->next);

147 //entry->next = LIST_POISON1;

148 //entry->prev = LIST_POISON2;

149 }

150

151

152

153 /**

154 * list_del_init - deletes entry from list and reinitialize it.

155 * @entry: the element to delete from the list.

156 */

157 static inline void list_del_init(struct list_head *entry)

158 {

159 __list_del(entry->prev, entry->next);

160 INIT_LIST_HEAD(entry);

161 }

162

163 /**

164 * list_move - delete from one list and add as another’s head

165 * @list: the entry to move

166 * @head: the head that will precede our entry

167 */

168 static inline void list_move(struct list_head *list, struct list_head *head)

169 {

170 __list_del(list->prev, list->next);

171 list_add(list, head);

172 }

173

174 /**

175 * list_move_tail - delete from one list and add as another’s tail

176 * @list: the entry to move

177 * @head: the head that will follow our entry

178 */

179 static inline void list_move_tail(struct list_head *list,

180 struct list_head *head)

181 {

182 __list_del(list->prev, list->next);

183 list_add_tail(list, head);

184 }

185

186 /**

187 * list_empty - tests whether a list is empty

188 * @head: the list to test.

189 */

190 static inline int list_empty(const struct list_head *head)

191 {

192 return head->next == head;

193 }

194

195 static inline void __list_splice(struct list_head *list,

196 struct list_head *head)

197 {

198 struct list_head *first = list->next;
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199 struct list_head *last = list->prev;

200 struct list_head *at = head->next;

201

202 first->prev = head;

203 head->next = first;

204

205 last->next = at;

206 at->prev = last;

207 }

208

209 /**

210 * list_splice - join two lists

211 * @list: the new list to add.

212 * @head: the place to add it in the first list.

213 */

214 static inline void list_splice(struct list_head *list, struct list_head *head)

215 {

216 if (!list_empty(list))

217 __list_splice(list, head);

218 }

219

220 /**

221 * list_splice_init - join two lists and reinitialise the emptied list.

222 * @list: the new list to add.

223 * @head: the place to add it in the first list.

224 *

225 * The list at @list is reinitialised

226 */

227 static inline void list_splice_init(struct list_head *list,

228 struct list_head *head)

229 {

230 if (!list_empty(list)) {

231 __list_splice(list, head);

232 INIT_LIST_HEAD(list);

233 }

234 }

235

236 /**

237 * list_entry - get the struct for this entry

238 * @ptr: the &struct list_head pointer.

239 * @type: the type of the struct this is embedded in.

240 * @member: the name of the list_struct within the struct.

241 */

242 #define list_entry(ptr, type, member) \

243 container_of(ptr, type, member)

244

245 /**

246 * list_for_each - iterate over a list

247 * @pos: the &struct list_head to use as a loop counter.

248 * @head: the head for your list.

249 */

250

251 #define list_for_each(pos, head) \

252 for (pos = (head)->next; pos != (head); \

253 pos = pos->next)

254

255 /**

256 * __list_for_each - iterate over a list

257 * @pos: the &struct list_head to use as a loop counter.

258 * @head: the head for your list.

259 *

260 * This variant differs from list_for_each() in that it’s the
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261 * simplest possible list iteration code, no prefetching is done.

262 * Use this for code that knows the list to be very short (empty

263 * or 1 entry) most of the time.

264 */

265 #define __list_for_each(pos, head) \

266 for (pos = (head)->next; pos != (head); pos = pos->next)

267

268 /**

269 * list_for_each_prev - iterate over a list backwards

270 * @pos: the &struct list_head to use as a loop counter.

271 * @head: the head for your list.

272 */

273 #define list_for_each_prev(pos, head) \

274 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \

275 pos = pos->prev)

276

277 /**

278 * list_for_each_safe - iterate over a list safe against removal of list entry

279 * @pos: the &struct list_head to use as a loop counter.

280 * @n: another &struct list_head to use as temporary storage

281 * @head: the head for your list.

282 */

283 #define list_for_each_safe(pos, n, head) \

284 for (pos = (head)->next, n = pos->next; pos != (head); \

285 pos = n, n = pos->next)

286

287 /**

288 * list_for_each_entry - iterate over list of given type

289 * @pos: the type * to use as a loop counter.

290 * @head: the head for your list.

291 * @member: the name of the list_struct within the struct.

292 */

293 #define list_for_each_entry(pos, head, member) \

294 for (pos = list_entry((head)->next, typeof(*pos), member); \

295 &pos->member != (head); \

296 pos = list_entry(pos->member.next, typeof(*pos), member))

297

298 /**

299 * list_for_each_entry_reverse - iterate backwards over list of given type.

300 * @pos: the type * to use as a loop counter.

301 * @head: the head for your list.

302 * @member: the name of the list_struct within the struct.

303 */

304 #define list_for_each_entry_reverse(pos, head, member) \

305 for (pos = list_entry((head)->prev, typeof(*pos), member); \

306 &pos->member != (head); \

307 pos = list_entry(pos->member.prev, typeof(*pos), member))

308

309 /**

310 * list_prepare_entry - prepare a pos entry for use as a start point in

311 * list_for_each_entry_continue

312 * @pos: the type * to use as a start point

313 * @head: the head of the list

314 * @member: the name of the list_struct within the struct.

315 */

316 #define list_prepare_entry(pos, head, member) \

317 ((pos) ? : list_entry(head, typeof(*pos), member))

318

319 /**

320 * list_for_each_entry_continue - iterate over list of given type

321 * continuing after existing point

322 * @pos: the type * to use as a loop counter.
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323 * @head: the head for your list.

324 * @member: the name of the list_struct within the struct.

325 */

326 #define list_for_each_entry_continue(pos, head, member) \

327 for (pos = list_entry(pos->member.next, typeof(*pos), member); \

328 &pos->member != (head); \

329 pos = list_entry(pos->member.next, typeof(*pos), member))

330

331 /**

332 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry

333 * @pos: the type * to use as a loop counter.

334 * @n: another type * to use as temporary storage

335 * @head: the head for your list.

336 * @member: the name of the list_struct within the struct.

337 */

338 #define list_for_each_entry_safe(pos, n, head, member) \

339 for (pos = list_entry((head)->next, typeof(*pos), member), \

340 n = list_entry(pos->member.next, typeof(*pos), member); \

341 &pos->member != (head); \

342 pos = n, n = list_entry(n->member.next, typeof(*n), member))

343

344 /**

345 * list_for_each_entry_safe_continue - iterate over list of given type

346 * continuing after existing point safe against removal of list entry

347 * @pos: the type * to use as a loop counter.

348 * @n: another type * to use as temporary storage

349 * @head: the head for your list.

350 * @member: the name of the list_struct within the struct.

351 */

352 #define list_for_each_entry_safe_continue(pos, n, head, member) \

353 for (pos = list_entry(pos->member.next, typeof(*pos), member), \

354 n = list_entry(pos->member.next, typeof(*pos), member); \

355 &pos->member != (head); \

356 pos = n, n = list_entry(n->member.next, typeof(*n), member))

357

358 /**

359 * list_for_each_entry_safe_reverse - iterate backwards over list of given type safe against

360 * removal of list entry

361 * @pos: the type * to use as a loop counter.

362 * @n: another type * to use as temporary storage

363 * @head: the head for your list.

364 * @member: the name of the list_struct within the struct.

365 */

366 #define list_for_each_entry_safe_reverse(pos, n, head, member) \

367 for (pos = list_entry((head)->prev, typeof(*pos), member), \

368 n = list_entry(pos->member.prev, typeof(*pos), member); \

369 &pos->member != (head); \

370 pos = n, n = list_entry(n->member.prev, typeof(*n), member))

371

372

373

374

375 /*

376 * Double linked lists with a single pointer list head.

377 * Mostly useful for hash tables where the two pointer list head is

378 * too wasteful.

379 * You lose the ability to access the tail in O(1).

380 */

381

382 struct hlist_head {

383 struct hlist_node *first;

384 };
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385

386 struct hlist_node {

387 struct hlist_node *next, **pprev;

388 };

389

390 #define HLIST_HEAD_INIT { .first = NULL }

391 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }

392 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)

393 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)

394

395 static inline int hlist_unhashed(const struct hlist_node *h)

396 {

397 return !h->pprev;

398 }

399

400 static inline int hlist_empty(const struct hlist_head *h)

401 {

402 return !h->first;

403 }

404

405 static inline void __hlist_del(struct hlist_node *n)

406 {

407 struct hlist_node *next = n->next;

408 struct hlist_node **pprev = n->pprev;

409 *pprev = next;

410 if (next)

411 next->pprev = pprev;

412 }

413

414 static inline void hlist_del(struct hlist_node *n)

415 {

416 __hlist_del(n);

417 n->next = LIST_POISON1;

418 n->pprev = LIST_POISON2;

419 }

420

421

422 static inline void hlist_del_init(struct hlist_node *n)

423 {

424 if (n->pprev) {

425 __hlist_del(n);

426 INIT_HLIST_NODE(n);

427 }

428 }

429

430 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)

431 {

432 struct hlist_node *first = h->first;

433 n->next = first;

434 if (first)

435 first->pprev = &n->next;

436 h->first = n;

437 n->pprev = &h->first;

438 }

439

440

441

442 /* next must be != NULL */

443 static inline void hlist_add_before(struct hlist_node *n,

444 struct hlist_node *next)

445 {

446 n->pprev = next->pprev;
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447 n->next = next;

448 next->pprev = &n->next;

449 *(n->pprev) = n;

450 }

451

452 static inline void hlist_add_after(struct hlist_node *n,

453 struct hlist_node *next)

454 {

455 next->next = n->next;

456 n->next = next;

457 next->pprev = &n->next;

458

459 if(next->next)

460 next->next->pprev = &next->next;

461 }

462

463

464

465 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)

466

467 #define hlist_for_each(pos, head) \

468 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \

469 pos = pos->next)

470

471 #define hlist_for_each_safe(pos, n, head) \

472 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \

473 pos = n)

474

475 /**

476 * hlist_for_each_entry - iterate over list of given type

477 * @tpos: the type * to use as a loop counter.

478 * @pos: the &struct hlist_node to use as a loop counter.

479 * @head: the head for your list.

480 * @member: the name of the hlist_node within the struct.

481 */

482 #define hlist_for_each_entry(tpos, pos, head, member) \

483 for (pos = (head)->first; \

484 pos && ({ prefetch(pos->next); 1;}) && \

485 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

486 pos = pos->next)

487

488 /**

489 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point

490 * @tpos: the type * to use as a loop counter.

491 * @pos: the &struct hlist_node to use as a loop counter.

492 * @member: the name of the hlist_node within the struct.

493 */

494 #define hlist_for_each_entry_continue(tpos, pos, member) \

495 for (pos = (pos)->next; \

496 pos && ({ prefetch(pos->next); 1;}) && \

497 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

498 pos = pos->next)

499

500 /**

501 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point

502 * @tpos: the type * to use as a loop counter.

503 * @pos: the &struct hlist_node to use as a loop counter.

504 * @member: the name of the hlist_node within the struct.

505 */

506 #define hlist_for_each_entry_from(tpos, pos, member) \

507 for (; pos && ({ prefetch(pos->next); 1;}) && \

508 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
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509 pos = pos->next)

510

511 /**

512 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry

513 * @tpos: the type * to use as a loop counter.

514 * @pos: the &struct hlist_node to use as a loop counter.

515 * @n: another &struct hlist_node to use as temporary storage

516 * @head: the head for your list.

517 * @member: the name of the hlist_node within the struct.

518 */

519 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \

520 for (pos = (head)->first; \

521 pos && ({ n = pos->next; 1; }) && \

522 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

523 pos = n)

524

525

526 #endif

protocol.h
1 #ifndef PROTOCOL_H

2 #define PROTOCOL_H

3

4 /* CONSTRAINS */

5 #define MAX_COMMAND_SIZE 20

6 #define MAX_PARAMETER_SIZE 2048

7 #define ID_MAX 1000

8 #define MIN_COMMAND_SIZE 2

9 #define MIN_PARAMETER_SIZE 0

10

11 /* COMMANDS TO USE WHEN COMMUNICATING */

12 #define PROTOCOL_DISCONNECT "DISCONNECT"

13 #define PROTOCOL_EXIT "EXIT"

14 #define PROTOCOL_GET_TIME "GETTIME"

15 #define PROTOCOL_IDENTIFY "IDENTIFY"

16 #define PROTOCOL_NMEA "NMEA"

17 #define PROTOCOL_PRINTCLIENTS "PRINTCLIENTS"

18 #define PROTOCOL_PRINTSERVER "PRINTSERVER"

19 #define PROTOCOL_KICK "KICK"

20 #define PROTOCOL_HELP "HELP"

21 #define PROTOCOL_PRINT_LOCATION "PRINTLOC"

22 #define PROTOCOL_PRINTTIME "PRINTTIME"

23 #define PROTOCOL_DUMPDATA "DUMPDATA"

24 #define PROTOCOL_PRINTAVGDIFF "PRINTAVGDIFF"

25 #define PROTOCOL_LISTDUMPS "LISTDATA"

26 #define PROTOCOL_LOADDATA "LOADDATA"

27 #define PROTOCOL_QUERYCSAC "QUERYCSAC"

28 #define PROTOCOL_LOADKRLDATA "LOADLSFDATA"

29 #define PROTOCOL_PRINTCFD "PRINTCFD"

30

31 /* SHORT */

32 #define PROTOCOL_HELP_SHORT "?"

33 #define PROTOCOL_DISCONNECT_SHORT "DC"

34 #define PROTOCOL_DUMPDATA_SHORT "DD"

35 #define PROTOCOL_IDENTIFY_SHORT "ID"

36 #define PROTOCOL_PRINTCLIENTS_SHORT "PC"

37 #define PROTOCOL_PRINTSERVER_SHORT "PS"

38 #define PROTOCOL_PRINT_LOCATION_SHORT "PL"

39 #define PROTOCOL_PRINTAVGDIFF_SHORT "PAD"
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40 #define PROTOCOL_LISTDUMPS_SHORT "LSD"

41 #define PROTOCOL_LOADDATA_SHORT "LD"

42 #define PROTOCOL_QUERYCSAC_SHORT "QC"

43 #define PROTOCOL_LOADKRLDATA_SHORT "LSFD"

44 #define PROTOCOL_PRINTCFD_SHORT "PFD"

45

46 /* RESPONSES */

47 #define PROTOCOL_GOODBYE "Goodbye!\n"

48 #define PROTOCOL_OK "OK!\n\n"

49 #define PROTOCOL_WELCOME "Welcome to the Sensor Server!\n"

50

51 /* COMMAND CODES */

52 /* Used by respond() */

53 #define CODE_DISCONNECT 1

54 #define CODE_GET_TIME 2

55 #define CODE_IDENTIFY 3

56 #define CODE_STORE 4

57 #define CODE_NMEA 5

58 #define CODE_PRINTCLIENTS 6

59 #define CODE_PRINTSERVER 7

60 #define CODE_KICK 8

61 #define CODE_HELP 9

62 #define CODE_PRINT_LOCATION 10

63 #define CODE_WARMUP 11

64 #define CODE_PRINTTIME 12

65 #define CODE_DUMPDATA 13

66 #define CODE_MOVED 14

67 #define CODE_PRINTAVGDIFF 15

68 #define CODE_LISTDUMPS 17

69 #define CODE_LOADDATA 18

70 #define CODE_QUERYCSAC 19

71 #define CODE_LOADKRLDATA 20

72 #define CODE_PRINTCFD 21

73

74 /* SIZES */

75 #define TIME_SIZE 9 /* SIZE OF TIME AS CHARS eg.142546.00, FROM GNRMC */

76

77 #endif /* !PROTOCOL_H */

makefile
1 SERVER_OBJS = sensor_server.o net.o utils.o session.o filters.o actions.o csac_filter.o

2 CLIENT_OBJS = sensor_client.o net.o utils.o gps_serial.o

3

4 CC = gcc

5 DEBUG = -g

6

7 CFLAGS = -Wall -Wextra -c -g -std=gnu99 -pedantic

8

9 cpu := $(shell uname -m)

10

11 ifeq (£(cpu),armv7l)

12 CFLAGS = -Wall -Wextra -c -std=gnu99 -pedantic -g -march=armv7-a -mtune=arm7 -fsigned-char

13 endif

14

15 LFLAGS = -Wall $(DEBUG)

16

17 server : $(SERVER_OBJS)

18 $(CC) $(LFLAGS) $(SERVER_OBJS) -o server -lpthread

19
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20 client : $(CLIENT_OBJS)

21 $(CC) $(LFLAGS) $(CLIENT_OBJS) -o client

22

23 sensor_server.o : sensor_server.h net.h sensor_server.c

24 $(CC) $(CFLAGS) sensor_server.c

25

26 sensor_client.o : sensor_client.h sensor_client.c

27 $(CC) $(CFLAGS) sensor_client.c

28

29 csac_filter.o : csac_filter.h csac_filter.c utils.h sensor_server.h

30 $(CC) $(CFLAGS) csac_filter.c

31

32 net.o : net.h utils.h net.c

33 $(CC) $(CFLAGS) net.c

34

35 utils.o : utils.h list.h utils.c config.h

36 $(CC) $(CFLAGS) utils.c

37

38 gps_serial.o : serial.h gps_serial.c

39 $(CC) $(CFLAGS) gps_serial.c

40

41 session.o : session.h session.c sensor_server.h

42 $(CC) $(CFLAGS) session.c

43

44 filters.o : filters.h filters.c sensor_server.h

45 $(CC) $(CFLAGS) filters.c

46

47 actions.o : actions.h actions.c sensor_server.h

48 $(CC) $(CFLAGS) actions.c

49

50 clean:

51 \r m *.o
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Appendix E

Scripts

CSAC query source code

1 import ctypes

2 import fileinput, sys

3 import datetime

4 import time

5 import io

6 import os

7 import serial

8

9 def main_routine():

10 # Opening serial stream, use ASCII

11 ser = serial.Serial("/dev/ttyUSB0" ,57600, timeout=0.1)

12 sio = io.TextIOWrapper(io.BufferedRWPair(ser, ser),encoding=’ascii’ ,newline=" \r\n " )

13

14 # Open log file, mostly used for debug

15 log_file = open("query_csac.txt" , "a+" )

16

17 # The query to use

18 query = sys.argv[1].strip(" \r\n " )

19

20 # How long to sleep between read from serial con.

21 sleep_time = 0.2

22

23 # The minimum length of the answer

24 # for the given query.

25 minimum_len = 0

26

27 if(query == ’^’ or query == ’6’ ):

28 minimum_len = 80

29 elif(query == ’F’ ):

30 sleep_time = 0.5

31 minimum_len = 10

32 elif(query == ’M’ ):

33 minimum_len = 6

34 elif (query == ’S’ ):

35 sleep_time = 3

36 minimum_len = 2

37 else:

38 minimum_len = 1

39
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40 response_len = 0

41

42 if(len(query) > 1):

43 query = "!" + query + " \r\n "

44

45 retry_count = 0

46

47 while (response_len < minimum_len):

48 ser.write(bytes(query))

49 time.sleep(sleep_time)

50 response = sio.readline()

51 response = response.strip(" \r\n\x00 " )

52 response_len = len(response)

53 retry_count = retry_count + 1

54

55 print(response)

56 ser.close()

57 query = query.strip(" \r\n " )

58 log_string = ("Issued query " + "’" + query + "’ " + str(retry_count) + " times \n " )

59 log_file.write(log_string)

60 if __name__ == ’__main__’ :

61 main_routine()

MJD calculator
1 #! /usr/bin/env python

2

3 import datetime

4 import jdutil

5 from dateutil import parser

6

7 today = datetime.datetime.utcnow()

8 print(jdutil.jd_to_mjd(jdutil.datetime_to_jd(today)))

Script example

1 ’’’

2 :Author: Aril Schultzen

3 :Email: aschultzen@gmail.com

4 ’’’

5 # This script attempts to connect to the

6 # Sensor Server at <ip> : "port" and

7 # IDs itself as <id>. It will then

8 # poll the time solved by the GNSS receiver

9 # connected to Sensor<id> until

10 # terminated.

11

12 import socket

13 import sys

14 import time

15

16 ip = "10.1.0.46"

17 port = 10001

18 id = 1

19

20 try:

21 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
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22 except socket.error, msg:

23 print ’Failed to create socket. Error code: ’ + str(msg[0]) + ’ , Error message : ’ + msg[1]

24 sys.exit();

25 try:

26 remote_ip = socket.gethostbyname( ip )

27

28 except socket.gaierror:

29 print ’Could not resolve hostname’

30 sys.exit()

31

32 s.connect((remote_ip , port))

33 s.sendall(b’IDENTIFY -10’ )

34 recv_buff = s.recv(1024)

35

36 while(1):

37 s.sendall(b’PRINTTIME’ + str(id))

38 time.sleep(0.1)

39 recv_buff = s.recv(1024)

40 recv_buff = recv_buff.strip(’> \n ’ )

41 print("Sensor " + str(id) + " GNSS solved time: " + recv_buff)

42 time.sleep(0.9)

E.1 Logger setup schematic

CSACGNSS Chip #1
1 PPS Out

1 PPS In

csac_logger.py

gps_logger.py

Serial interface

USB interface

GNSS Chip #2
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Appendix F

E-mails

F.1 Correspondence with Mr. Davis

Hi Aril,

This would be fine, but you may want to take a look at the Astropy library

and see if their time package would meet your needs. It’s certain to be

more robust and well tested. But if you’d like to use my module, please do.

http://docs.astropy.org/en/stable/time/index.html

Best,

Matt Davis

On Sun, Oct 23, 2016 at 2:25 PM Aril Schultzen <aschultzen@gmail.com> wrote:

> Hi!

>

> I am currently writing my master thesis in compsci and I wanted to ask you

> if it was OK if I used your library for converting dates to/from JD and MJD

> (https://gist.github.com/jiffyclub/1294443) in my implementation? It

> will be used to convert time to MJD for a model and also for stamping logs.

> Your work will of course be acknowledge as your own.

>

> Kind regards

>

> Aril Schultzen

>
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Appendix G

Figures
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Figure G.1: Photograph of the system used to measure the 10 MHz output from
the atomic clock. Not in the picture is the source of the 10 MHz reference.
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Figure G.2: Antenna covered in aluminium foil to simulate a jamming attack.
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