
Memetic Robot Control Evolution
and Adaption to Reality
Else-Line Ruud, Eivind Samuelsen, and Kyrre Glette

Department of Informatics, University of Oslo, Norway
Email:{elmruud,eivinsam,kyrrehg}@ifi.uio.no

Abstract—Inspired by animals’ ability to learn and adapt to
changes in their environment during life, hybrid evolutionary
algorithms have been developed and successfully applied in
a number of research areas. This paper explores the effects
of learning combined with a genetic algorithm to evolve con-
trol system parameters for a four-legged robot. Here, learning
corresponds to the application of a local search algorithm on
individuals during evolution. Two types of learning were imple-
mented and tested, i.e. Baldwinian and Lamarckian learning.
On the direct results from evolution in simulation, Lamarckian
learning showed promising results, with a significant increase in
final fitness compared with the results from evolution without
learning. Further experiments with learning on the real robot
demonstrated an efficient adaptation of the robot gait to the
real world environment, and increased the performance to the
level measured in simulation. This paper demonstrates that
Lamarckian evolution is effective in improving the performance
of robot controller evolution, and that the same learning process
on the physical robot efficiently reduces the negative impact of
the simulation-reality gap.

I. INTRODUCTION

In robotic system design and development, a large number
of components must be considered simultaneously, such as the
motor system, morphology, control policy, sensory apparatus,
etc. [1]. All of these components are closely interdependent
and together determine the behavior of the robot, making opti-
mization of each component a challenge; the changing of one
component is likely to influence the functioning of the others.
One way of dealing with this challenge is to examine the entire
robotic system as a whole [2], [3]. Nature has mastered this
procedure perfectly through the use of evolution, which has
produced a vast number of examples of embodied intelligence.
Evolutionary robotics (ER) attempts to recreate evolution as
a mechanism instead of its biological results, which is often
what has been used as inspiration in mainstream robotics.
The use of metaheuristics, that is, evolutionary algorithms
(EAs) in this case, is the main difference between ER and
mainstream robotics, where machine learning is often used
instead to optimize the control policy of a robot [2].

Recent studies on hybrid EAs show that including additional
methods during evolution can lead to higher robustness and
possibly better solutions [4], [5], e.g., by using local optimiza-
tion of an individual’s behavior between generations. In nature,
a similar process is evident. Some living organisms have an
a priori ability to learn during their lifetime, and are thereby
able to adapt to changes that may occur in their environment,
hence improving their own fitness during life.

When it comes to combining learning and evolution, two
main models have been applied so far, Lamarckian and Bald-
winian learning [4], [6]. Although based on an evolutionary
theory that has been more or less rejected as a correct de-
scription of biological evolution, Lamarckian learning has been
the most successful model in combination with evolutionary
algorithms [4], due to the fact that the results of the local
improvements are placed back in the population after learning.
It should be noted that recently there have been some reports
which observe a Lamarckian type of evolution happening in
nature as well, such as mice inheriting sensitivity to odors
related to parents’ fear experiences [7]. Baldwinian learning,
inspired by the Baldwin effect [8], only stores the learning
potential of a solution, thereby focusing on individuals that
may have better learning abilities. Much of the research
on Baldwinian learning revolves around how this can aid
evolution [9], [10], [11], and whether the stored potential
can lead to a predisposition to learn, both during and after
evolution [5]. Other work on combining evolution and learning
studies the correlations between the fitness and the learning
task, and how this affects the search performance [12].

While most research in evolutionary and adaptive robotics
has been done on evolution and learning separately, there has
also been some exploration of the effects of combining the
two. Work combining evolution and reinforcement learning
for a simulated mobile robot shows that such a combination
outperforms systems which uses either only evolution or
only learning [13]. In [14], simulated mobile robots combine
evolution and learning on neural network controllers. It is
shown that when using a Baldwinian learning mechanism, the
neural networks evolve a predisposition to learn, both in stable
and unstable environments. Using a real mobile robot, [11]
demonstrates evolution of plastic agents with neural network
control systems, where the robot is allowed to explore and
learn from its environment in periods during evolution.

Most examples of ER research on the combination of
evolution and learning have concentrated on neural network
learning [5]. However, scenarios like evolution of morphology
or parametric control systems may call for other types of
learning, such as local optimization using a local search
algorithm [15].

In many cases the performance of solutions evolved in
simulation is considerably worse when transferred to the
physical robot [16], [17]. This phenomenon is often referred
to as the reality gap, and is thought to be largely caused



by inaccuracies in the simulator, combined with evolution’s
tendency to produce overfit solutions. Thus, evolution may
produce solutions which exploit features nonexistent in the
real world.

Proposed methods to deal with the reality gap include
introducing noise in the simulations to make the evolved
behavior more robust [16], [18], improving the simulator
through real world sampling [19], [20], [21], or concentrating
around behaviors which are known to match well in both
simulation and reality [22]. Another approach would be to con-
tinue evolution or learning after transferral from simulation to
reality, in order to adapt to the new environment. While there
are several approaches doing full on-board evolution [23], [24],
there could be potential for exploring further a combination
of simulated evolution and post-simulation learning. In [25]
an approach of continued evolution after transferral to reality
shows promising results.

We have earlier conducted experiments on evolving a com-
bination of legged robot morphologies and control systems
in simulation and then constructing a selection of these in
reality [26], [27], [28]. A recent investigation on the difficulty
of co-evolving morphology and control in virtual creatures
suggest that mutations in the morphology may cause large
variations in the behavior of the controller [29], and this is in
line with our own observations. One possible way of tackling
this challenge could be to introduce a learning phase for the
controller in order to allow it to adjust to the new morphology.
The resulting gaits from our earlier experiments [28] are
efficient but highly dynamic and thus prone to larger reality
gap effects, and there could be potential for a learning phase
in reality to adjust to the new environment.

Thus, in this paper we take some first steps in investigating
the effects of applying a hybrid evolutionary algorithm in this
new context of legged robots which have relatively complex
dynamics: We apply learning in the evolutionary search for the
control system, and also for adjusting to the real world. While
we for practical reasons keep the morphology fixed throughout
these experiments, by using one of the results from [28] we
hope to gain some insight into whether this could in the future
be applied to the full morphology-controller search.

The hybrid EA in question is a memetic algorithm [30],
which consists of a combination of a genetic algorithm and
a local search algorithm. The investigation involves testing
the performance of evolution with and without learning under
equal conditions, followed by a comparison of the results.
The hypothesis is that learning can aid evolution by moving
individuals towards local optima during evolution, thereby
increasing the probability of discovering more fine-tuned solu-
tions. The results from simulation do indeed indicate that it is
more efficient to include learning in the evolutionary process,
compared to an approach without learning.

After running the evolutionary algorithm with learning in
a simulated environment, we then proceed to re-evaluate
selected results more extensively, first in the simulator and
then on a real robot. We then demonstrate that it is possible to
efficiently adapt to the real world by running the same learning

process on the real robot, resulting in performances similar to
those measured in simulation.

The remainder of the paper is structured as follows: Section
II presents the robot platform used in the experiments, as well
as the evolutionary algorithm used to evolve the control system
parameters. In Section III, the experiments are described,
followed by reports of the results. Section IV contains a
discussion of the results, while Section V finally gives a
conclusion and possibilities for future work.

II. ROBOT AND IMPLEMENTATION

This section presents the robot platform and control system
used in the experiments, as well as the evolutionary algorithm
and the local search algorithm which were used to perform
the parameter optimization. 1

A. The robot

The experiments were done using a four-legged modular
robot which was produced in a previous experiment: A large
number of robots were evolved in a simulated environment
with a genotype inspired by a high-level genetic coding
found in nature [26]. The encoding specified the shape of
a parametrized body section template, together with a set of
parameter values specifying multiple instances of the template.
This resulted in robots of varying size and shape, which were
grouped using a clustering method based on a morphological
distance measure [28].

The representative from the third cluster from [28] was
used, because it was a conventional quadruped design with
two joints per limb, enabling effective movement strategies
while keeping the degrees of freedom low. The robot has nine
degrees of freedom, made up of nine revolute joints. Each part
of the robot, excluding the joints, consists of a white capsule
of a specific length and radius, as shown in Figure 1.

For the physical version of the robot, these were 3D
printed in the form of hollow plastic capsules with sockets
for attaching motors in the joints. The joints were actuated by
Dynamixel AX-18A servo motors, and the joint constraints
used in the simulator were chosen to simulate the torque and
joint friction of this motor.

B. Control function and genome

The control system used to govern the movement of each
joint of the robot is inspired by a simple open-loop system
proposed in [31], where the joint position γ at time t is given
by the following function:

γα,φ(t) = α tanh(4 sin(2π(t+ φ)))

where α and φ represent amplitude and phase shift, respec-
tively. This amplitude-phase control system produces periodi-
cal signals with a period of 1 s. The tanh function is used to
keep the signal constant in parts of the cycle, thereby allowing
the robot to stabilize itself in these periods.

1Experiment source code: http://folk.uio.no/kyrrehg/evorob/memetic/



107.8 108.2

136.1 140.1

74.6
131.4

146.5
230.0

φ
 = 5°

φ
 = 88°

φ
 = 1°

φ
 = 89°

ψ
 = -2°

ψ
 = -27°

ψ
 = 5°

ψ
 = -30°

Fig. 1: Top view of the robot. The simulated robot can be seen to the left, and the real-world version to the right. All lengths
are in millimeters.

The search space is decreased by introducing symmetry
to the system. The limb joints are treated in pairs of left
and right side joints. The joints in these pairs have separate
phase parameters, but share amplitude parameter, reducing the
number of parameters to three per pair. Such a simplification
is supported by observations from nature, where this kind of
symmetry is prevalent.

C. The evolutionary algorithm

A memetic algorithm was used in order to optimize the
robot control system parameters, combining an evolutionary
algorithm with a simpler local search algorithm. For evolution
we use a real-valued genetic algorithm. Parent selection is
done by binary tournaments, and survivor selection is done by
truncation, keeping the best individuals.

A mutation operator using a Gaussian distribution
N (0, 0.12) was used, from which values were drawn and
added to each gene, with probability one. No recombination
operator was used, since this was assumed to have a possible
disruptive effect on the contribution from the local search.
To generate the initial population, µ individuals with all
control parameters set to zero were created, µ being the
population size. Mutation was then performed ten times on
each individual, in order to obtain a random initial population.

The control system parameters were optimized for maxi-
mum forward movement. Fitness was measured as the average
speed of the robot, calculated from the measured forward
displacement over a set time period. Forward was defined as
the direction in which the robot was oriented at the beginning
of the evaluation period.

Because of the unknown fitness landscape, predicting the
degree of exploration provided by the genetic algorithm is
difficult, but we hope that the random initialization of the
population and the stochastic mutation operator will handle
this sufficiently. However, due to these stochastic properties,
the GA often fails to exploit the local structures of the fitness
landscape, which is then left to the cooperating local search
algorithm. The performance of a memetic algorithm largely

depends on the choice of local search algorithm and the shape
of the fitness landscape [32]. Although the fitness landscape
is unknown in our case, we would expect a hill climbing
procedure to be a suitable choice, based on the fact that the
learning duration for each individual is limited by the learning
cost.

In these experiments, an (1+λ) evolution strategy was used
[33] as the local search algorithm. It searches by generating a
generation of solutions of size λ in the vicinity of the initial
solution, and selects the best one from which a new generation
of solutions is generated. The new solutions are generated
through mutation of the selected solution, by adding a number
drawn from a normal distribution N (0, σ2) to every control
parameter. σ is mutated alongside the solutions.

It was assumed that a deep local search could be advanta-
geous in these experiments, which should be achieved with a
low lambda value. Thus, a λ = 2 was selected. In order to
keep the number of tunable parameters low, this value was
fixed in all experiments.

Two types of learning were implemented for the evolution,
Baldwinian and Lamarckian learning. Baldwinian learning
stores only the fitness value of the best solution discovered
during the local search, thus only storing a possible learning
potential for that individual. During evolution, individuals in a
generation will therefore acquire a new fitness value at the end
of the learning phase, if the local search succeeded in locating
a better solution. While the actual solution discovered is not
stored using Baldwinian learning, Lamarckian learning stores
both the learned control system parameters and the fitness
value and returns these to the population. In other words, the
individual’s genes are replaced with the learned solution, and
the fitness value set to the new evaluated value.

III. EXPERIMENTS AND RESULTS

In this section, the experiments and their results are pre-
sented. A description of the experimental setup is given in the
first subsection, before the results from evolution of the robot
control system parameters is presented in Subsection III-B.



General
PhysX version 3.3 beta-2
Timestep 1/128 s

Friction
Env. static 0.20 Robot static 0.30
Env. dynamic 0.15 Robot dynamic 0.30
Env. restitution 0.4 Robot restitution 0.30

Motor
Static friction 0.15 Nm Dynamic friction 1.65Nm

97rpm

Appliable torque 1.8 Nm

Obstacle
Width 0.02 m Height 0.02 m
Length 0.02 m Spacing 0.5 m

TABLE I: Simulation parameters

Finally, in Subsection III-C, the results from the experiments
where learning was applied on the real-world robot are re-
ported.2

A. Experiment setup

The simulation experiments were conducted in a custom-
built simulator using the PhysX physics simulation engine.
Table I details the simulation and environment parameters.
A custom set of joint constraints were used to simulate the
motors in the robot joints [28].

The real-world experiments were done using a motion
capture system for position and orientation measurements,
consisting of 12 OptiTrack Flex 3 infrared cameras and
reflective markers placed on the robot. For efficiency, the robot
was programmed to turn around when it moved out of bounds,
by replacing the control system with one that turned it either
left or right until facing the center of the floor. For simplicity,
the robot was controlled using an off-board computer.

Five configurations of robot control system parameters were
evolved in the simulator, one without learning, and four
with Baldwinian and Lamarckian learning, with 10 and 20
iterations of local search for both. One iteration corresponds
to one evaluation of a new solution during the local search.
An evaluation of a solution involved letting the robot move
freely in the simulator for 8 seconds using the control system
parameters in that solution, and then measuring the forward
displacement of the head of the robot.

Each evolutionary run had a population size of 40 indi-
viduals, where each individual was evaluated 1600 times. As
one iteration of local search involves doing one evaluation, an
increasing number of iterations of local search must result in
a decreasing number of generations to allow for comparison
between configurations. With a total of 1600 evaluations
available for each individual, evolution without learning lasts
for 1600 generations, while evolution with 20 iterations of
local search for each individual lasts 80 generations, assuming
the population size is equal. Each set of robot control system
parameters consisted of the results from 30 evolutionary runs,
except for the configuration without learning, which was done
over 60 runs in order to increase data for comparison with the

2Videos showing example evolved gaits from simulation and reality can be
found at http://folk.uio.no/kyrrehg/evorob/memetic/

Population size (µ) 40
Mutation size (σ) 0.1
Mutation probability per gene 1
Total number of evaluations 1600
Evaluation time 8 s
Total number of runs 180
Iterations of local search 10, 20
Local search parameter (λ) 2

TABLE II: Evolution parameters

other configurations. A summary of the evolution parameters
is shown in Table II.

From the populations in the final generation of the evolved
robot control parameters, 25 solutions were selected for further
testing, five from each configuration. Solutions from the 90th,
70th, 50th, 30th and 10th percentiles were picked to represent
the span of solutions found. These 25 solutions were then
evaluated in the simulator and on the real-world robot, where
the robot was allowed to move freely in its environment over
30 evaluations of 4 seconds each. This was done to get a
better estimate of how well the solutions performed over time,
as the fitness value alone might not be accurate enough as a
description of the performance.

Each solution was then improved on the real-world robot
by applying learning to it while running, in the form of the
same local search algorithm that was used in the evolution.
The best solution found after 20 iterations of local search was
then evaluated in the same manner as was done on the solution
before learning. With a λ = 2, one generation of (1 + λ)-
ES involves evaluation of two individuals, and 20 iterations
of local search correspond to 10 generations. Because of the
elements of randomness in the local search algorithm, this
was repeated five times for each solution, starting from the
same evolved solution each time. The after-learning results
thus consist of a merger of the evaluations of the best solutions
found in each of the five learning runs.

B. Evolution with learning in simulation

Figure 2 shows the results from evolution, where the mean
of the best fitness in each evolutionary run between the
30 runs has been plotted for each configuration. We can
see that Lamarckian learning leads to better fitness values
than Baldwinian learning. In addition, Lamarckian learning
seems to yield better final results than without learning. The
difference between Lamarckian learning with 20 iterations and
no learning in the final generation is significant, based on
a two-tailed Wilcoxon rank-sum test resulting in a p-value
smaller than 0.01. The results from the configuration with 10
iterations of Lamarckian learning are not significantly larger
than the results without learning, but there is a certain tendency
towards slightly better performance.

Baldwinian learning performs significantly worse than
Lamarckian learning and no learning (p < 0.01, Wilcoxon
rank-sum test), with the exception of 10 iterations Baldwinian
against no learning where no significant difference is detected.



Evaluations
0 200 400 600 800 1000 1200 1400 1600

Fi
tn

es
s 

(d
is

ta
nc

e)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mean best no learning
Mean best 10 it Baldwin
Mean best 20 it Baldwin
Mean best 10 it Lamarck
Mean best 20 it Lamarck

Fig. 2: Means of the best fitnesses over an increasing number
of evaluations. The configurations include evolution without
learning and both Baldwinian and Lamarckian learning, over
a varying number of iterations of local search.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

M
ea

su
re

d 
sp

ee
d

EVO

0.414

SIM

0.297

HW0

0.165

HW1

0.296

Fig. 3: Speed measurements, adjusted for percentile. Mean
values are noted beneath the labels. EVO, SIM, HW0 and
HW1 denote fitness values after evolution, re-evaluations in
simulation, and the results from evaluations on the real-world
robot before and after learning, respectively.

C. Re-evaluation and re-learning

The performances of the 25 selected solutions in the dif-
ferent environments are represented in Figure 3. The first
box, EVO, indicates the fitness score from the evolutionary
search, while SIM indicates the score from the extended
evaluation in simulation. HW0 and HW1 indicate the score
on the real-world robot before and after learning, respectively.
The solution scores have been compensated for the percentile
they are in by subtracting the difference between the mean
of all measurements in that percentile and that of the 50th
percentile.

The decrease in average performance from the final fitness
values from evolution (EVO) to re-evaluations in simulation
(SIM) is 28%, and it decreases further from SIM to HW0
with 44%. However, from HW0 to HW1, there is an increase
in average performance of 79%. With five learning runs of 20
iterations each for each gait, the duration of active learning
was less than seven minutes, not counting additional overhead
such as setting up the robot. With the exception of SIM vs.
HW1, all average differences in performance are statistically
significant (p < 0.01, T-test).

IV. DISCUSSION

Based on the results, we discuss the experimental results
along two main topics: The effects of applying learning in the
simulation-based evolutionary search, and the effects observed
when re-evaluating the results and performing real world
learning.

A. Evolution with learning in simulation

The direct results from evolution with the Lamarckian learn-
ing configurations indicate that a certain minimum number
of iterations of local search are necessary before the effects
of the local search are beneficial over the baseline genetic
algorithm. With 20 iterations, the search can reach further than
with 10 iterations, and thus does more local exploration which
increases the chances of moving towards a local optimum.
This seems to be an advantage over evolutionary selection
over more generations.

Figure 2 also shows that the lifetime learning configurations
take more evaluations to converge than the baseline, probably
due to the fact that global exploration through generations
happens at a lower rate due to the evaluations spent on local
search.

The difference between Lamarckian learning and Bald-
winian learning during evolution is as expected. Baldwinian
learning obviously performs local exploration as well, but
since it only stores the new fitness value and not the dis-
covered results in the control parameters, the fitness value
only indicates if it is close to a good solution or not. This
seems not to be enough to outperform evolution with no
learning, probably because a good solution that was discovered
during local search will only be used if it is found by chance
during evolution, because of the randomness in the variation
operators.

While the Baldwinian search in this case does not perform
better than the baseline for the given evaluation budget, the
mechanism of storing the learning potential still seems to
have some effect on the evolutionary search. This can be
seen from Figure 2, where the fitness values are higher than
evolution without learning for an equal number of generations.
For example, at 1600 evaluations, the 20-iteration Baldwinian
evolution configuration has performed 80 generations, with a
higher average fitness than the configuration without learning
at 80 generations.

While it was not surprising that the Lamarckian scheme
performed well, the environment in the evolutionary experi-



ments was static. The introduction of more dynamic environ-
ments could possibly favor Baldwinian learning, as indicated
in [34]. It would also be interesting to evaluate Baldwinian
learning during simultaneous evolution of morphologies and
controllers, as changes in the morphology may be seen as a
change in the controller’s interface to the environment [29].

B. Re-evaluations and real world learning

The results from evolution and the extended re-evaluations
are evaluated in the same environment, using the same evalu-
ation method. However, when comparing the measurements
(EVO and SIM in Figure 3), we see that there is a large
discrepancy, both in variance and average performance. Since
these are highly dynamic gaits, being open-loop and displaying
fast movement, we can expect significant variation in perfor-
mance, with sensitivity to initial conditions. We hypothesize
that the cause of the performance discrepancy is selection bias;
individuals with lucky fitness evaluations tend to accumulate
across generations, with fitnesses somewhat misleading for
their actual performance. With SIM as a better representation
of the true simulation performance of the robots, we can
use the difference between SIM and HW0 as a measure
of the reality gap related to inaccuracies in the simulated
environment.

The experimental results show that learning on the real robot
can efficiently adapt a robot gait to the real world environment.
After an initial performance drop going from simulation (SIM)
to real world (HW0) evaluation, learning proves to be an
efficient method to regain performance, as can be seen in
Fig.3. Relatively few evaluations were performed to achieve
this increase in performance, with a total of 100 evaluations
for each robot gait. With evaluation time taken into account,
this involves less than 7 minutes of learning.

However, this increase in performance after learning can be
regarded as more of an adaptation to the new environment
rather than a reduction of the reality gap, as there is no
guarantee that the result of learning is closer to what we saw
in simulation. In that sense, evolution in simulation provides
solutions with a good starting point for further adaptation to
the real world environment, and does not necessarily produce
solutions that will have a real world performance as close to
the simulator performance as possible.

While we collected data from the different memetic learning
methods in the different re-evaluation and re-learning environ-
ments, these results were combined in Fig.3. Our experiments
did not reveal any clear differences in learning abilities on the
real robot related to the learning methods, and a larger number
of real world measurements are required in order to discover
such correlations, if they exist.

V. CONCLUSION AND FUTURE WORK

In this paper we applied a memetic algorithm for evolution
of control system parameters for a legged robot with highly
dynamic locomotion. The algorithm consists of a merger
between a standard genetic algorithm and a local search

algorithm, and was implemented with two models of learning,
Lamarckian and Baldwinian.

The algorithm was tested in simulation over different con-
figurations of these models. The results show that when an
adequate number of iterations were used, Lamarckian learning
had a positive effect on the results from evolution, with
a significant improvement over evolution without learning.
This is a promising result which should encourage further
studies with lifetime learning when evolving controllers for
robots with dynamic locomotion, and also when evolving mor-
phologies and controllers simultaneously. Baldwinian learning
performed, in our experiments, significantly worse than both
evolution with Lamarckian learning and evolution without
learning. For future work it would be interesting to investigate
if this changes when environments are more dynamic, or
when learning is applied in combination with evolution of
morphology.

In our experiments the fitness evaluations could have large
variations for similar controllers, related to the highly dynamic
gaits and sensitivity to initial conditions. Re-evaluation of
the evolved solutions in simulation showed that the final
fitness values after evolution were not necessarily an accurate
measure of the actual performance, due to the selection bias
for lucky individuals introduced by evolution. Measures to
reduce this effect should be investigated, such as re-evaluation
schemes [23] or a more robust fitness evaluation procedure.
However this typically involves spending more time on eval-
uation of each individual, and the tradeoff between evaluation
robustness and total number of search iterations should be
studied carefully.

Real world learning proved to be an efficient method to
regain performance on the real world robot. Using relatively
few evaluations, the learning process adapted the robot gait to
the new real world environment. Thus, it might be interest-
ing to see if the adaptation ability learning seems to have
in our experiments is equally strong if other environments
are introduced. Future work could investigate the effects of
introducing different real world environments to the evolved
robot gaits, perhaps with obstacles. This could also be inter-
esting to test in simulation, both as post-evolution learning
in different environments and introduction of new simulated
environments during evolution with and without learning. No
clear tendencies in differences in learning ability between the
memetic learning methods were found in our experiments,
however, it seems likely that such differences would exist.
In order to investigate this further, a larger data set should be
generated for further statistical analysis.

REFERENCES

[1] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E. G. Eiben, “Evolu-
tionary robotics: what, why, and where to,” Frontiers in Robotics and
AI, vol. 2, p. 4, 2015.

[2] J. C. Bongard, “Evolutionary robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74–83, 2013.

[3] K. Sims, “Evolving virtual creatures,” in Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques. ACM,
1994, pp. 15–22.



[4] M. N. Le, Y.-S. Ong, Y. Jin, and B. Sendhoff, “Lamarckian memetic
algorithms: local optimum and connectivity structure analysis,” Memetic
Computing, vol. 1, no. 3, pp. 175–190, 2009.

[5] S. Nolfi and D. Floreano, “Learning and evolution,” Autonomous Robots,
vol. 7, no. 1, pp. 89–113, 1999.

[6] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution, the
baldwin effect and function optimization,” in Parallel Problem Solving
from Nature-PPSN III. Springer, 1994, pp. 5–15.

[7] B. G. Dias and K. J. Ressler, “Parental olfactory experience influences
behavior and neural structure in subsequent generations.” Nature neu-
roscience, vol. 17, no. 1, pp. 89–96, 2014.

[8] J. M. Baldwin, “A new factor in evolution,” American naturalist, pp.
536–553, 1896.

[9] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Complex systems, vol. 1, no. 3, pp. 495–502, 1987.

[10] D. Ackley and M. Littman, “Interactions between learning and evolu-
tion,” in Artificial Life II, SFI Studies in the Sciences of Complexity,
1991, vol. 10, pp. 487–509.

[11] D. Floreano and F. Mondada, “Evolution of plastic neurocontrollers for
situated agents,” in From Animals to Animats 4, Proceedings of the 4th
International Conference on Simulation of Adaptive Behavior (SAB”
1996). MA: MIT Press, 1996, pp. 402–410.

[12] S. Nolfi, D. Parisi, and J. L. Elman, “Learning and Evolution in Neural
Networks,” Adaptive Behavior, vol. 3, no. 1, pp. 5–28, 1994.

[13] M. Schembri, M. Mirolli, and G. Baldassarre, “Evolution and learning
in an intrinsically motivated reinforcement learning robot,” Advances in
Artificial Life, pp. 294–303, 2007.

[14] S. Nolfi and D. Parisi, “Learning to Adapt to Changing Environments
in Evolving Neural Networks,” Adaptive Behavior, vol. 5, no. 1, pp.
75–98, 1996.

[15] F. Neri and E. Mininno, “Memetic compact differential evolution for
cartesian robot control,” Computational Intelligence Magazine, IEEE,
vol. 5, no. 2, pp. 54–65, 2010.

[16] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in Advances in Artificial
Life. Springer, 1995, pp. 704–720.

[17] K. Glette, G. Klaus, J. C. Zagal, and J. Torresen, “Evolution of
locomotion in a simulated quadruped robot and transferral to reality,”
in Proceedings of the Seventeenth International Symposium on Artificial
Life and Robotics, 2012.

[18] K. Glette, A. L. Johnsen, and E. Samuelsen, “Filling the reality gap:
Using obstacles to promote robust gaits in evolutionary robotics,” in
Proceedings of the 2014 IEEE International Conference on Evolvable
Systems (ICES). IEEE, 2014, pp. 181–186.

[19] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121,
2006.

[20] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19–39, 2007.

[21] G. Klaus, K. Glette, and J. Torresen, “A comparison of sampling
strategies for parameter estimation of a robot simulator,” in Simulation,
Modeling, and Programming for Autonomous Robots, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7628, pp.
173–184.

[22] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach:
Crossing the reality gap in evolutionary robotics,” Evolutionary Compu-
tation, IEEE Transactions on, vol. 17, no. 1, pp. 122–145, Feb 2013.

[23] J.-M. Montanier and N. Bredeche, “Embedded evolutionary robotics:
The (1+ 1)-restart-online adaptation algorithm,” in New Horizons in
Evolutionary Robotics. Springer, 2011, pp. 155–169.

[24] V. Zykov, J. C. Bongard, and H. Lipson, “Evolving dynamic gaits
on a physical robot,” in Proceedings of Genetic and Evolutionary
Computation Conference, Late Breaking Paper, GECCO, 2004.

[25] S. Nolfi and D. Floreano, “How to Evolve Autonomous Robots: Dif-
ferent Approaches in Evolutionary Robotics,” in Artificial life IV, vol.
1997, 1994, pp. 190–197.

[26] E. Samuelsen, K. Glette, and J. Torresen, “A hox gene inspired gen-
erative approach to evolving robot morphology,” in Proceeding of the
fifteenth annual conference on Genetic and evolutionary computation
conference. ACM, 2013, pp. 751–758.

[27] E. Samuelsen and K. Glette, “Some distance measures for morphological
diversification in generative evolutionary robotics,” in Proceedings of
the 2014 conference on Genetic and evolutionary computation. ACM,
2014, pp. 721–728.

[28] ——, “Real-world reproduction of evolved robot morphologies: Auto-
mated categorization and evaluation,” in Applications of Evolutionary
Computation - 18th European Conference, EvoApplications 2015, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2015.

[29] N. Cheney, J. Bongard, V. Sunspiral, and H. Lipson, “On the Difficulty of
Co-Optimizing Morphology and Control in Evolved Virtual Creatures,”
in Proceedings of the Artificial Life Conference 2016. MIT Press, 2016,
pp. 226–233.

[30] N. Krasnogor, “Memetic algorithms,” in Handbook of Natural Comput-
ing. Springer, 2012, pp. 905–935.

[31] S. Koos, A. Cully, and J.-B. Mouret, “Fast damage recovery in robotics
with the t-resilience algorithm,” The International Journal of Robotics
Research, vol. 32, no. 14, pp. 1700–1723, 2013.

[32] Y. S. Ong and A. J. Keane, “Meta-lamarckian learning in memetic
algorithms,” Evolutionary Computation, IEEE Transactions on, vol. 8,
no. 2, pp. 99–110, 2004.

[33] H.-G. Beyer, “Toward a Theory of Evolution Strategies: Some Asymp-
totical Results from the (1,+ λ)-Theory,” Evolutionary Computation,
IEEE Transactions on, vol. 1, no. 2, pp. 165–188, 1993.

[34] T. Sasaki and M. Tokoro, “Adaptation toward Changing Environments:
Why Darwinian in Nature?” in Fourth European Conference on Artificial
Life (ECAL97), 1997, pp. 145–153.


