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"The noblest pleasure is the joy of understanding."

Leonardo da Vinci



Abstract
We have done computer simulations on the electrodynamics of rectangular supercon-

ducting films. The critical sheet current is an isotropic quantity. By reducing the critical

sheet current in a stripe pattern, we have produced approximately 10 % anisotropy in

the macroscopic current. We have also studied the two-dimensional branching patterns

that are produced by magnetic flux avalanches in our perturbed samples. While the

traditional dendritic patterns constitute the core of the avalanche, we also see branches

that are aligned with the borders between high and low critical sheet current. The latter

branching pattern has been investigated in great detail in order to increase our under-

standing of magnetic flux avalanches in superconducting films. We have also developed

a computer algorithm for drawing Bean model streamlines. While it was intended for

studying the supercurrent in our perturbed samples, it should also be a valuable tool for

studies of the Bean model in various geometries.
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Chapter 1

Introduction

Superconducting films are used in technological applications where it is necessary that

the superconductors have high resistance to external magnetic field. It is therefore of

great importance to understand the electrodynamic behavior of such films. In some

superconductors the current can become much stronger in certain directions along the

crystal lattice of the material. We say that the current is anisotropic. Unfortunately we

are not able to do computer simulations of such material effects. However we can reduce

the local critical current in a periodic stripe pattern which makes the current anisotropic

on the macroscopic scale.

Thermo-electrical instabilities are a serious problem in practical applications of su-

perconductors. They occur when the superconducting state breaks down locally and in

turn destroys the superconducting state in the neighboring regions. We have investi-

gated breakdown of the superconducting state in the perturbed samples mentioned in

the above paragraph. The breakdown results in avalanches of magnetic flux which make

new and interesting patterns of flux.

This thesis investigates a method of artificially producing anisotropic current in su-

perconducting films. We will also study the flux patterns produced by magnetic flux

avalanches in such films.

1.1 Superconductivity

Superconductors are materials with extraordinary electromagnetic properties. Their elec-

trical resistance drops to zero when the temperature of the material is below the critical

temperature Tc. When a material becomes superconducting it enters a superconducting

phase. If the material becomes nonsuperconducting it enters the normal phase.

1
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1.2 Type I superconductors

Superconducting materials are divided into two groups: Type I and type II. Most of the

elementary metals are type I superconductors. Examples are mercury, aluminium and

lead. Type I superconductors generally have critical temperatures below 10 K [1], p. 2.

Many of them have Tc smaller than 1 K. Additionally their critical magnetic fields are

low.

A type I material will be superconducting if all the following criteria are met:

• The temperature of the material does not exceed the critical temperature Tc.

• The current density does not exceed the critical current density jc.

• The applied magnetic field, Ha, does not exceed the critical magnetic field Hc.

The values for Tc, jc and Hc are specific to materials and specimens.

The Meissner state is the name of the superconducting state available to type I

superconductors [2]. If placed in a magnetic field, the material will induce a Meissner

current on the surface. This current produces a magnetic field that is equal in magnitude,

yet antiparallel to the external field. Therefore the internal field will be Hinternal = 0

in the Meissner state. This phenomena makes type I superconductors act like perfect

diamagnets. Because there is no electrical resistance the Meissner current will persist

without decay. Therefore the magnitude of the magnetization is proportional to the

external field, while the direction of the magnetization is antiparallel to the external

field. This holds as long as Ha < Hc. At H = Hc we have a transition to the normal

state. This transition will be discontinuous as a function of the applied field. When the

material enters the normal state, the screening currents will decay quickly. Because of

this the transition will also be very sharp as a function of time. The critical magnetic

field Hc is a function of temperature T [1], p. 2:

Hc(T ) = Hc(T = 0)[1− (T/Tc)
2] (1.1)

As we cannot study materials at absolute zero temperature, we have to extrapolate

our experimental data to T = 0 K in order to find the value for Hc(T = 0) for a given

specimen. The temperature dependence of Hc is shown as a phase diagram in Figure 1.1.

The critical current density jc decreases when temperature and magnetic field decreases.
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Figure 1.1: Phase diagram for the Meissner state.

1.3 The London theory for superconductors

The London theory [3] was developed by F. London and H. London. The purpose of the

theory was to be in agreement with the experiments done by Meissner and Ochenfeld

[2]. The London theory established how the electrical field E and the magnetic field H

are related to the current density j in the Meissner state:

E = Λ
(
j̇ + c2∇ρ

)
H = −Λc∇× j

(1.2)

Here Λ = m/ne2 where m, n and e are the mass, concentration and charge of free

electrons. ρ is the charge density and c is the speed of light. Another result of the

London theory [3] was that

Λc2∇2H = H (1.3)

in the Meissner state.

Let us consider a superconductor with smooth surfaces. We focus on a small region

near the surface of the material and define the local surface field to be H = H0. If the

surface is large and flat, we can also assume that the magnetic field is parallel to the

surface at the surface. We define the x-axis to be normal to the surface, pointing into

the material and that x = 0 at the surface. From Equation 1.3 we can find the magnetic

field profile inside the surface of the material:

Λc2
∂2H

∂x2
= H (1.4)

Solving the above differential equation for x > 0 we find that

H(x) = H0 exp
(
±x/c

√
Λ
)

+ C (1.5)

where C is a constant of integration. According to the Meissner state the internal field

of the superconductor shall be zero. Therefore the sign in the exponential function must
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be negative and the integration constant must be zero:

H(x) = H0 exp
(
−x/c

√
Λ
)

(1.6)

In modern textbooks [1], p. 24, Equation 1.6 if often written as

H(x) = H0 exp (−x/λ) , (1.7)

where

λ2 =
mc2

4πnse2
(1.8)

As before m, n and e are the mass, concentration and charge of free electrons; c is the

speed of light. λ is the London length of the material, the depth where the field decays to

e−1H0. See Figure 1.2 for an illustration of the solution given by Equation 1.7. Typically

λ is about 50 nm for type I materials [1], p. 25. In other words the skin depth of magnetic

field is very shallow for type I materials in the Meissner state.

x axis
H(x = 0) = H0

H(x) = H0 exp(−x/λ)

λ

SuperconductorVacuum

Figure 1.2: The spatial decay of magnetic field from the surface of a bulk superconduc-
tor according to the London theory. The gray area represents a small section of the
superconductor near the surface of the specimen.

The original paper [3] studies, among other cases, the current and magnetic field of

a straight infinite superconducting wire of radius a carrying a current I. Provided that

the radius a of the wire is much greater than 0.1µm, the radial profile of current and

magnetic field was calculated to decay exponentially with depth. Using r as the radial

distance from the center of the wire we have:

For r ≤ a:

J = Jz = I
β

2π
√
ar

exp(β(r − a))

H = Hφ = I
1

2πc
√
ar

exp(β(r − a))

β2 = 1/Λc2

(1.9)
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For r > a (outside the wire):

J = 0

H = Hφ = I/2πrc

(1.10)

The magnetic field in Equation 1.10 is simply the magnetic field outside an infinite

straight wire carrying a current I.

1.4 Ginzburg - Landau theory

Ginzburg-Landau theory [1], chapter 3, uses an order parameter Ψ(r) to describe the

phase transition between the superconducting and the normal state. At the same time

Ψ(r) represents the wave function of superconducting electrons. Therefore Ψ(r) is gen-

erally considered to be a complex function. The advantage of the Ginzburg-Landau

theory is that the effects of quantum mechanics is included by the quantum mechanical

properties of Ψ. In a normal material we don’t have any superconducting electrons and

this implies that |Ψ(r)|2 = 0 in such materials. |Ψ(r)|2 will have a finite value in a

superconducting material. Formally we have:

Ψ = 0 for T ≥ Tc
Ψ 6= 0 for T < Tc

(1.11)

We see that the order parameter changes continuously around the critical temperature.

However, the change between

|Ψ|2 = 0 and |Ψ|2 > 0

is discontinuous.

In Landau theory [4] one is interested in the physics close to the phase transition.

The simplest case one can study is a superconductor with no external magnetic field and

a uniform concentration of superconducting electrons. Near the critical temperature one

can do the following expansion of the free energy density:

Fs0 = Fn + α|Ψ|2 +
β

2
|Ψ|4 (1.12)

Fn is the free energy density of the normal material. The subscript in Fs0 refers to the

superconducting state and zero external field.
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In order to find conditions for α and β one has to minimize the free energy in Equation

1.12. When imposing the conditions in Equation 1.11 one finds that α ∝ T −Tc and β =

constant > 0. This information can be used for the more general case when the external

magnetic field is nonzero and |Ψ(r)|2 is not uniform. In that case we have the more

general Gibbs function [1] (using g Gaussian units and with some slight modifications to

the nomenclature):

GsH = Gn + α|Ψ|2 +
β

2
|Ψ|4 +

1

4m

∣∣∣∣−ih∇Ψ− 2e

c
A

∣∣∣∣2 +
H2

8π
− H ·H0

4π
(1.13)

Here Gn is the Gibbs energy density for the normal state, m is the electron mass, A is the

magnetic vector potential, H is the local magnetic field and H0 is the applied magnetic

field. The kinetic energy of electrons in a magnetic vector potential A is included by the

term
1

4m

∣∣∣∣−ih∇Ψ− 2e

c
A

∣∣∣∣2 (1.14)

The magnetic energy density is included by the terms

H2

8π
− H ·H0

4π
(1.15)

The total Gibbs energy for the material is found by doing the volume integral of Equation

1.13. By minimizing the result one can find conditions for the functions |Ψ(r)|2 and A(r):

αΨ + βΨ|Ψ|2 +
1

4m

(
i~∇+

2e

c
A

)
= 0 (1.16)

and

js =
c

4π
∇×∇×A = − i~e

2m
(Ψ∗∇Ψ−Ψ∇Ψ2)− 2e2

mc
|Ψ|2A (1.17)

It is possible to write Equation 1.16 and Equation 1.17 on a simpler form by defining

the following quantities [1], p. 50:

ψ(r) = Ψ(r)/Ψ0 , Ψ2
0 = ns/2 = |α|/β, (1.18)

where

ξ2 =
~2

4m|α| , λ2 =
mc2

4πnse2|α|
=

mc2β

8πe2|α| .

The order parameter is assumed to reach its maximum value deep inside the super-

conductor. ψ is normalized to this maximum value so that ψ = 1 deep inside the

superconductor. As in Section 1.3, λ is the London magnetic field penetration depth. ξ

is the characteristic length scale for variation in the order parameter and is called the

coherence length. Therefore ξ characterizes the decay rate of the order parameter near

the interface between a superconductor and a normal metal. superconducting material.
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The ratio between λ and ξ is called the Ginzburg - Landau parameter:

κ = λ/ξ (1.19)

Consider an interface between a superconductor and a normal material. If one does

integrates the Gibbs energy density across the interface [1], p.p. 57-62, one finds that the

energy at the interface depends on λ and ξ. Calculations show that κ < 1/
√

2 yields a

positive energy at the interface. It is common to refer to this as positive surface tension

as the field experiences an outward pressure when trying to enter the superconductor. On

the other hand, when κ > 1/
√

2, the surface tension is said to be negative. This means

that when κ > 1/
√

2 the energy of the system decreases when magnetic field enters the

material. The Ginzburg-Landau theory predicts two types of superconductors:

• Type I: κ < 1/
√

2

• Type II: κ > 1/
√

2

1.5 Type II superconductors

For type II superconductors there are two critical fields [1], p. 12. They are called Hc1

and Hc2, with Hc1 � Hc2. A type II superconductor will be in the Meissner state when

all the following conditions are true:

• T ≤ Tc

• j ≤ jc

• H ≤ Hc1

When H > Hc1, a type II material will transition to what is called the mixed state. Tiny

threads of magnetic flux are allowed to penetrate the superconductor. In the center of

the flux threads the material transitions to the normal state. Thus in the mixed state

the material is a mixture of superconducting and normal domains, hence the name. The

conditions for the mixed state are as follows:

• T ≤ Tc

• j ≤ jc

• Hc1 < H < Hc2

Note that the conditions for temperature and current density are the same for the mixed

state and the Meissner state. A phase diagram with respect to temperature and magnetic

field is shown in Figure 1.3.
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0.0 0.2 0.4 0.6 0.8 1.0
T/Tc

1

H
/
H
c2
(T

=
0
)

Meissner state

Mixed state

Normal state
Hc2

Hc1

Figure 1.3: The phase diagram for type II superconductors. The figure is not to scale;
remember that Hc1 � Hc2.

In the mixed state, the superconductor will include an increasing number of flux

threads as the applied field increases. As these threads are directed in the same direction

as the external field, the magnetization of the material will decrease in magnitude until

it becomes zero at H = Hc2
1.

1.5.1 Abrikosov vortices

Alexei Abrikosov’s original paper [5] gives a theoretical explanation for the flux thread

phenomenon in type II materials. Abrikosov considered a superconductor placed in an

external magnetic field H parallel to the z-axis. Thus the magnetic vector potential A

is parallel to the y-axis. Near the transition to the normal state the order parameter

is small, ψ � 1, and Abrikosov assumed the magnetic field to be constant to a first

approximation:

H = H0ẑ and Ay = H0x (1.20)

The first Ginzburg-Landau equation is nonlinear in Ψ, but the non-linear term can be

ignored near the phase transition because ψ � 1:

αΨ + ����βΨ|Ψ|2 +
1

4m

(
i~∇+

2e

c
A

)
= 0 (1.21)

By inserting A = Ay ĵ from Equation 1.20 and simplifying the resulting equation, the

original paper arrives at the harmonic oscillator equation known from quantum mechan-

ics. The equation has the solution

ψ =

∞∑
n=−∞

Cn exp (ikny) exp

(
−κ

2

2

(
x− kn/κ2

)2) (1.22)

where k is a spatial frequency and κ is the Ginzburg-Landau parameter. ψ is the di-

mensionalless order parameter defined in Equation 1.18. This solution is inserted in the
1The magnetization in the normal state is very small.
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second Ginzburg-Landau equation. The paper continues by deriving the conditions for

H0, ψ and Cn. By requiring minimum energy, Abrikosov calculates a solution ψ(x, y)

that is periodic along the x and y axis. Moreover ψ is symmetric by 90o rotation in

the xy-plane. ψ has maxima in magnetic field that correspond to minima in the order

parameter. The original paper interprets the maxima in magnetic field as where the flux

threads penetrate. The material is in the normal state in the center of the flux threads.

The flux threads are centered inside a current vortex which screens the superconducting

domains from magnetic field. Such currents vortices are now called Abrikosov vortices.

Experiments show that the vortices tend to be arranged in a hexagonal lattice [6]. This

geometry was suggested in Abrikosov’s paper, but yielded a higher energy than the square

lattice. Because of experimental validation, the Nobel Prize in Physics was awarded to

Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett in 2003 [7]. The total

magnetic flux through a vortex is quantized to

Φ0 =
h

2e
≈ 2.07 · 10−15 Wb (1.23)

which is called the a flux-quant [1], p. 29. Here h, c and e are Planck’s constant, the

speed of light and the electron charge respectively. The field going through the center

of a vortex is commonly referred to as flux threads or flux lines. A superconductor is in

the mixed state when it is penetrated by flux vortices. For this reason we also call the

mixed state for the vortex state.

1.6 Electromagnetism in the mixed state

While the Meissner state implies several conditions, like zero internal magnetic and

electric fields, the mixed state has more freedom. In this section we will introduce the

electromagnetic relations used in the literature, e.g. Brandt [8]. The following relations

work well when we are considering phenomena on a length scale much larger that the

diameter of the Abrikosov vortices.

Provided that electric field E is varying slowly, we can ignore the displacement current

and use the original version of Ampère’s law:

∇×H = j (1.24)

The Maxwell-Faraday equation states that

∇×E = −Ḃ (1.25)

Here we have used dot notation for the time derivative of the magnetic flux density B.

By doing the substitution B = µ0H, where µ0 is the permeability constant, we can write
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Equation 1.25 in terms of the magnetic field strength H:

∇×E = −µ0Ḣ⇒ Ḣ = − 1

µ0
∇×E (1.26)

From Equation 1.26 we see that the electric field can become nonzero if the magnetic

field changes in time. The electric field is parallel with the current density vector:

E = ρj (1.27)

We have used j as the symbol for current density, however J is often used in the more

general literature on electromagnetism. ρ is the resistivity of the superconducting mate-

rial provided that j ⊥ B. The paradox of electrical resistance in superconductors appears

when the electrical field is non-zero. The internal electrical field is zero in the Meissner

state, but this is not generally true in the mixed state. By inserting Equation 1.27 into

Equation 1.26 we get the following expression for the time derivative of the magnetic

field:

Ḣ = − ρ

µ0
∇× j (1.28)

Whenever the electrical field is nonzero, there will be dissipation of heat given by

p = j ·E (1.29)

The magnetization of a superconductor is calculated by integrating the cross product of

r and j over the volume of the specimen:

m =
1

2

∫
r× j d3r (1.30)

Local fluctuations in the density of electrical charge are possible:

q = ε0∇ ·E = ε0ρ∇ · j (1.31)

The screening current in the mixed state produces a Lorentz force FL [9] which acts on

the flux-threads:

FL = j×Φ0 (1.32)

Where Φ0 = h/2e is the flux quantum, which is parallel to the applied field. h is the

Planck’s constant and e is the electron charge. The Lorentz force pushes the vortices in

the direction of lower current density.
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1.7 Material properties in the mixed state

The counter force to the Lorentz force is the pinning force. Type II superconductors are

designed to have defects in the crystal which do not transition to the superconducting

state. It is energetically favorable for flux to go through these normal defects. Such

regions of lower potential energy are called pinning potentials or pinning centers. This

is because the Lorentz force must do work on the flux line in order to move it out of

the pinning potential and into the superconductor. Y. B. Kim et al [10] calculated the

decay of persistent currents from experiment and related it to dissipation caused by flux

motion. The currents decreased at a rate proportional to − ln(t) where t is time. The

fastest decay rate found in [10] implied that the currents would still survive for a very

long time: 3 · 1092 years.

A theoretical explanation written by P. W. Anderson’s followed shortly [11]. The

rate R at which flux escapes the pinning potential was found to be proportional to the

Boltzman factor corresponding to the energy difference between the superconducting

and the normal state. In other words thermal energy can assist flux threads when they

escape the pinning potentials. This type of flux motion is called flux creep and leads to

local fluctuations in temperature. Because flux creep depends on activation energy, we

see less flux creep at lower temperatures.

While there are several models for the resistivity ρ for the mixed state, we will be

using the power law [8]:

E(j) = Ec(j/jc)
n, (1.33)

where

Ec = E(jc)

is the critical electric field when j = jc. Equation 1.27 can be inserted into Equation

1.33, which yields

ρj = Ec(j/jc)
n

ρ = Ecj
n−1/jnc

(1.34)

When n = 1 we have ohmic resistance. We see that, for large n, ρ becomes large when

j > jc and vanishes when j < jc. These expressions assume that jc is not anisotropic.

The exponent n in Equation 1.34 is a function of temperature and therefore characterizes

the rate of flux creep. A large n (100) corresponds to slow flux creep and a small value

for n (10) to a faster rate of creep.
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1.8 The Bean model

Before the theory of flux threads in the mixed state had been proven by experiments,

Charles Bean constructed a model for penetration of current and magnetic field in type

II superconductors. When the external magnetic field is increased from zero, the depth

of the screening current increases. The Bean model [12] assumes that the density of the

screening current is always equal to the critical current of the material, that is j = jc.

This is called the critical state. The screening current penetrates to the depth that is

required to cancel the external magnetic field inside the region enclosed by the current

front. In regards to Equation 1.34 in Section 1.7 the Bean model also assumes n → ∞.

This assumption means that there is no flux creep.

Consider an interface between a type II superconductor and vacuum, where the su-

perconductor is a long slab with a rectangular cross section. Let the y-axis be directed

along the length of the slab and the x-axis point perpendicularly into the material. Let

x = 0 mark the interface and H(x = 0) = H0ẑ. The geometry is similar to the situation

in Figure 1.2, however the decay of magnetic field will be different. The screening current

will be parallel to the y-axis and is assumed to be equal to jc. Therefore Equation 1.24

becomes:

∇×H = jcŷ, (1.35)

From the definition of the curl, Equation 1.35 implies that

jc =
∂Hx

∂z
− ∂Hz

∂x

Hx = 0⇒ jc = −∂Hz

∂x

⇒ H(x) = (H0 − jcx)ẑ

(1.36)

The value of H(x) is the magnetic field corresponding to the density of flux threads and

is therefore a macroscopic quantity. As the density of vortices decreases as a function of

x, the magnetic field also decreases with x. The decrease in density of vortex currents

make their collective current j nonzero. If the density was uniform, the vortex currents

would cancel each other on the macroscopic length scale.

Equation 1.36 is valid for 0 ≤ x ≤ a where a is the depth where the magnetic field

becomes zero, H(x = a) = 0:

H(a) = (H0 − jca) = 0⇒ a = H0/jc. (1.37)

If the applied field is sufficiently strong, the vortices will enter the whole sample. This

situation is called full field penetration. Because the screening current has constant
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density within depth a, the streamlines shall have constant spacing.

We can use the Bean model for other geometries than a long slab, but the thickness

will remain uniform. Figure 1.4 shows the Bean model streamlines for a rectangular slab

of uniform thickness. The streamlines are drawn using a computer algorithm which we

discuss in Section 3.1. Notice that the streamlines must make a 90o turn in the corners

in order maintain constant spacing. If we, for each corner, draw a diagonal line through

the kink of the each streamline we end up with a straight diagonal lines. This type of

lines are called D-lines. Because the current turns abruptly we get extra screening of

magnetic field on the D-line. For a square sample, the D-lines are equal to the diagonals

of the square. These diagonal lines give the letter D in the name for D-lines. On the

D-lines we have a magnetic field profile that is very different from the linear profile used

in the Bean model, Equation 1.36. D-lines can occur in many other geometries and the

Figure 1.4: Bean model streamlines for a rectangular slab.

current kinks can be any angle, not only 90o.

1.9 Superconducting films

Just like the distinction between type I and type II superconductors is important, we

also have to make a distinction between the properties of bulk superconductors and thin

film superconductors. The critical state in thin films do not have a current front, only a

magnetic flux front. Still the area that is enclosed by the flux front has zero magnetic flux.

Also the current will not necessarily reach the critical current. The only situation where

we can assume good agreement with the Bean critical state model is for full magnetic

field penetration of the sample. In that case the current is forced to reach Jc everywhere.

Some analytic solutions exist for the profiles of current and magnetic field in infinitely

long films of constant width [13].

When applying a magnetic field perpendicular to the film, the flux lines in the film

will not generally point in the z-directions at the surface. The flux lines will have a

small component parallel to the plane, directed towards the center of the film. Examples

of practical applications of superconducting films are superconducting tapes [14] and
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SQUID-magnetometers [15]. This thesis is dedicated to thin film superconductors of

type II.

1.9.1 Electrodynamics in superconducting films

In thin films we use the sheet current J instead of the current density j. The sheet

current is equal to the z-integral of the current density:

J(x, y) =

∫ d

0
j(x, y, z)dz, (1.38)

where d is the thickness of the film. For films we define the z axis to be normal to the

film and z = 0 corresponds to one of the surfaces. The x and y axis span the plane of

the film. If d is very small we can write

j = Jδ(z). (1.39)

where δ(z) is the delta-function.

In films it is common and convenient to work with the local magnetization g(x, y) which

is defined as [8]

J(x, y) = −ẑ×∇g(x, y) = ∇× ẑg(x, y). (1.40)

g(x, y) is zero outside the film. Inserting Equation 1.40 into Equation 1.39 we get

j = ∇× (ẑg(x, y))δ(z). (1.41)

Because of the cross product in Equation 1.40, we see that the sheet current is orthogonal

to the gradient of g. Because both vectors are in the xy-plane we can conclude that the

streamlines of J must be parallel to the contour lines of g. This fact is useful when we

want to plot the streamlines of the current field.

Inserting 1.41 into Equation 1.24 we get

∇×H(x, y, z) = j = ∇× (ẑg(x, y))δ(z). (1.42)

H can be calculated by inverting Equation 1.42. Note that the displacement current has

been neglected and that H is only the self field of the superconducting currents. If an

external magnetic field Ha is applied, the total field will be the superposition of the two

fields.

We assume that the electric field averaged over the thickness of a superconducting

film is

E(x, y) = ρJ(x, y)/d. (1.43)
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Similarly to Equation 1.34 we can use a power model [16], p. 9, for the resistivity of

films:

ρ(x, y) = ρ0

(
Hz

Hc2

)m(J(x, y)

Jc

)n−1
. (1.44)

ρ0 is a constant and m and n ∝ T−1 are material constants. Given a relatively high

value of n like 10 or 100, we see that the resistivity becomes large when the current grows

above the critical current. The term (
Hz

Hc2

)m
has little influence on the resistivity [16]. If we neglect it we get

ρ(x, y) ≈ ρ0
(
J(x, y)

Jc

)n−1
. (1.45)

This is the resistance for J < Jc and T < Tc. The time derivative of H was stated in

Equation 1.26 as

Ḣ = − 1

µ0
∇×E = − ρ

µ0d
∇× J(x, y), (1.46)

where we inserted Equation 1.43. Further substitution of J by Equation 1.40 yields

Ḣ = − ρ

µ0d
∇× (−ẑ×∇g(x, y)) (1.47)

By using the definition of the triple vector product

a× (b× c) = b(a · c)− c(a · b),

we can write the time derivative of the self field as:

Ḣ = − ρ

µ0d
((−ẑ)(∇ · ∇g(x, y))−∇g(x, y))(∇ · (−ẑ)) =

ρ

µ0d
(∇ · ∇g(x, y))ẑ (1.48)

For a given state g(x, y, t) we can calculate H(t), Ḣ(t), J(t) and E(t). In other words

g(x, y, t) describes the state of the superconductor and by numerical time integration of

Ḣ(t) we can find the state g(x, y, t+ ∆t).
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1.10 Protocols for the applied magnetic field

The externally applied magnetic field is a central parameter in superconductor research.

In this thesis we will only apply the field perpendicularly to the film. For experiments we

need to cool the sample to a temperature below Tc. When we reach Tc we must record

both the magnitude and direction of the external magnetic field. Field cooling is when

the external field is non-zero during cooling. If the field is zero we call it zero field cooling.

In this thesis we will only consider zero field cooling. When the sample has transitioned

to the superconducting state and the desired temperature has been reached, we can start

varying the external magnetic field. The process of changing the external field is called

a ramping protocol. The simplest ramping protocol is increasing (or decreasing) the

magnetic field at a constant rate until we reach the desired value. We can make more

sophisticated ramping protocols by combining simpler ones. An example is shown in

Figure 1.5(a). This ramping protocol is used to measure the magnetization curve for

superconductors of type II.
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(a) Ramping protocol for hysteresis. The

numbered dots indicate states for later ref-

erence.
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(b) The magnetization curve resulting

from the ramping protocol in Figure

1.5(a)

Figure 1.5: Ramping protocol for hysteresis and the resulting magnetization.

In this section we will use results from numerical simulations on square films to

demonstrate the magnetization curve of a superconductor of type II. The mathematical

formalism, implementation and dimensionalless units are explained in Section 3.2.

Consider a superconducting film of type II that has been zero field cooled. We

will now apply the field ramping protocol illustrated by Figure 1.5(a). The numbers

correspond to the numbered states in Figure 1.5(b). Let us comment on the numbered

magnetization states along the hysteresis loop:

0. The sample has no magnetic field history. This state is called the virgin state.
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1. The sample has been exposed to certain maximum value in applied magnetic field,

Ha,1 = Ha,max.

2. The external field is turned back down to zero. The sample is in the remnant state.

3. The sample has been exposed to some a certain value Ha,3 = −Ha,max. The

properties in this state are anti-symmetric to state 1, that is g3(x, y) = −g1(x, y).

4. The sample is back in a remnant state that is anti-symmetric to state 2.

5. This state is equal to state 1 even though the magnetic field history is different.

Figure 1.5(b) is actually the simulation results of applying six cycles of the ramping

sequence 1-4 in Figure 1.5(a). The magnetization curve appears to overlap itself per-

fectly and we cannot see any sign of accumulated numerical error. The magnetization

curve shows hysteresis just like a ferromagnet. The sign of the magnetization is however

opposite of the magnetization that a ferromagnet would have. It is important to note

that the shape of the hysteresis loop would be different if the local critical sheet current

density was a function of the local magnetic field [17].

In this thesis we will mainly study samples in the state of full penetration of magnetic

field, which corresponds to number 1 in Figure 1.5. In our computer simulations we

cannot reach the ideal state of full penetration. However we can realize a state where

the magnetic field penetrates almost all parts of the sample. The results from such a

simulation has been shown in Figure 1.6. At full penetration the D-lines become well

defined and the angle between the edge and the D-lines are 45 degrees. We can see that

the magnetic field penetrates everywhere except at the D-lines. Through the middle of

Figure 1.6(a) we have drawn a dashed line. The values for the magnetic field are sampled

along the line and plotted in Figure 1.6(c). The two edges of the sample are located at

the peak values. The external field was H̃ = 1.5 (dimensionless) and we see that outside

the film, close to the edge, the actual field is larger than the externally applied field, in

this case it means H > 1.5. There is a region in the middle of the field profile where the

field is zero. This region corresponds to the dark region in the center of Figure 1.6(a).

In Figure 1.6(b) we have plotted the magnitude of the current distribution:

J̃(x, y) =
√
J2
x(x, y) + J2

y (x, y)/Jc.

The dashed line in the figure corresponds to the sampling points used to plot the current

profile in Figure 1.6(d). We can see that the current only reaches the critical current

(J/Jc = 1) at the edge of the sample. The current decays slowly from the edge and into

the film. Closer to the middle of the sample it falls dramatically and reaches zero at

the singularity in the center. From this we can see that there is no front in the current
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distribution. There is only a front in the magnetic field distribution, which reaches zero

far into the film.

Because of the symmetry of the square film, the current is perpendicular to the

dashed line in Figure 1.6(d). If we integrate the current profile in Figure 1.6(d) from

the edge to the center of the sample, we get the flux of the circulating current. We can

in principle calculate the current flux from any profile from the center to the edge of

the sample. However we must make sure that only the component of the current that is

perpendicular to the line is included in the calculations. The line along a D-line, from

the center to the corner, will be longer than any other line we can draw from the center

of the film to the edge. The extra length results in a lower sheet current because the

flux is distributed along a longer line. We can see the reduction in sheet current along

the diagonals in Figure 1.6(b).

Figure 1.6(d) ignores the direction of the current because it is a plot of the magnitude,

|J|. For the current across the dashed line it is easy to include the sign because it is

simply the y-component of the current Jy. We plot the profile of Jy in 1.6(e) and see

that it is asymmetric about the center. This is expected from the rotational symmetry

of the current field, circulating in the sample.

Both profiles of magnetic field and sheet current are useful tools to study results from

simulations. The profiles through the middle of the sample, perpendicular to the edges,

are the easiest to interpret and are the only form of profiles studied in this thesis.
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(a) Full field penetration magnetic field pene-
tration of a square sample.
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(b) The distribution of the magnitude of sheet
current, corresponding to the magnetic field in
Figure 1.6(a).
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(c) Field profile through the dashed line in Fig-
ure 1.6(a)
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(d) Profile of the magnitude of current mea-
sured on the dashed line in Figure 1.6(b)
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(e) profile of the current across the dashed line
in Figure 1.6(b)

Figure 1.6: Profile of the current measured along the dashed line in Figure 1.6(b).
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1.11 Dendritic flux avalanches

In type II superconductors we can get various types of magnetic flux jumps and flux

flux avalanches. With this we mean that magnetic flux enters the superconductor in an

abrupt manner. Magneto-optical imaging [18] can be used to study the magnetic field

distribution resulting from such phenomena. Some flux avalanches create flux patterns

that look like a tree branch. In science such tree-like patterns are called dendritic pat-

terns. The word "dendritic" is derived from the greek word déndron, which means tree.

Therefore we call the tree-like flux avalanches for dendritic flux avalanches. In the lingo

they are called "dendrites". While such avalanches are produced in a very short time,

the resulting flux pattern stays for a very long time. That is unless we increase the

applied field so that the dendrite gets erased by the invading flux front. An example of

dendrites imaged using magneto-optical imaging has been shown in Figure 1.7(a). The

bright horizontal line in the upper part of the figure is the north edge of the sample. From

there we can see two dendritic patterns of magnetic flux. They appeared after increasing

the applied magnetic field from zero to 13.6 mT. The experiment was conducted at a

temperature of 3.7 K. On the left side of the image we also see parts of a third dendrite.

In this particular case of dendritic avalanches, the branches are relatively straight. At

other temperatures the branch pattern may become more or less dense and/or angular.

(a) Dendrite in superconducting NbN

film. Brightness represents strong mag-

netic field relative to the dark areas,

where the field is weak.

(b) Dendrites in NbN with pressed aluminium frame. The

applied field was 25.5 mT.

Figure 1.7: Examples of dendrites in an NbN superconducting film using magneto-optical
imagning. The images are original images by the author. Thanks to Thomas Qureishy
for assisting in the experiment.
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For a MgB2 film it was shown [19] that more dendrites were formed at low temper-

atures (3.3 K) compared to higher temperatures(9.9 K). However the dendrites formed

at higher temperatures had more branches. At 10.5 K there were no dendrites and this

confirms that there is an upper threshold temperature for dendritic avalanches. In [19]

we can also read about how dendrites demagnetize the samples. The threshold temper-

ature was also found for pure niobium [20]. The latter paper shows dendrites appearing

when the applied field is turned back down to zero, approaching the remnant state. The

paper also shows images of the individual vortices in the dendrites using magnetic Bitter

decoration.

In [21] it was shown that narrow strips (0.2 mm) are more resistant to nucleation of

dendrites than wider ones. For a given sample the dendrites often have favorite starting

points and favorite branching patterns corresponding to the different starting points.

Therefore similar dendrites can happen over and over during an experiment.

It is possible to avoid dendritic avalanches by covering the superconducting film with

a metal layer. Paper [22] reports on an experiment where an aluminium disk was placed

in a range of vertical distances(0− 450µm) above the surface of superconducting films.

For MgB2 and Nb films the aluminium disc suppressed dendritical avalanches. The closer

the disk was to the film, the better the stability became. Direct contact between the

metal and the film was not necessary to observe increased stability. However the stability

became excellent when the metal was is in direct contact with the film. Figure 1.7(b) is

a magneto optical image of the same NbN as in Figure 1.7(a), but shows a larger part

of the sample and because the field is stronger it shows many more dendrites. If one

looks closely at the top left corner, it is possible to see the two dendrites from Figure

1.7(a). The sample in Figure 1.7(b) has a rectangular aluminium foil frame pressed on

top of it. The frame itself is not visible in the magneto-optical image, but the north

and east edge are indicated quite sharply by the absence of dendrites. The result is

that the dendrites that propagate in the covered region are weakened. This effect has

been known for several years [23] and is caused by both electromagnetic breaking and

heat conduction. Notice that some dendrites are powerful enough to reach inside the

frame. This means that dendrite protection cannot be guaranteed which in turn limits

the practical applications of such frame protection. On the bottom of the figure we see

a dendrite that runs parallel to the edge of the metal frame. The figure is therefore an

example of the fact that metallic layers can both weaken and lead dendrites. Metal layers

of gold can also be used to protect against dendrites. This was demonstrated in [24]. An

MgB2 film was covered with gold along half its circumference. The result was suppression

of dendrites where the edge was covered. The edges which were not protected by gold

edges showed many dendrites. The thicker the gold layer, the higher external field was

needed to make dendrites penetrate into the protected region.
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When there are more than one dendrite, the dendrites tend to avoid each other so that

the branches of the dendritic patterns do not cross. This was one of the first phenomena

discovered in magneto optical imaging of dendritic flux avalanches [25].

The growth speed of an avalanche is hard to determine in experiments because they

happen on a very short time scale. Paper [26] reports on dendrites nucleated artificially

in an YBCO sample. By using a laser pulse, the temperature was raised in a small area

of the film. This triggered both a dendrite and a camera. The camera recorded magneto

optical images at various time delays after the dendrite nucleation. The propagation

speed was found to decrease during the avalanche. In the beginning of the avalanches

the speed was found to be strongly dependent on the applied field. the average speed

after a 4.2 ns delay were about 125 km/s for Ha = 12.7 mT and about 250 km/s for

Ha = 20.6 mT 2. Towards the end of the avalanche, after a 37.7 ns time delay, the

average speeds were about 25 km/s and 20 km/s. Dendritic avalanches with anisotropic

propagation was investigated in [27].

Dendritic avalanches are important because they destroy the local superconducting

state and thus limits the supercurrents. Their direction of propagation is toward the

center of the sample, crossing the current streamlines. They can appear when the field

is increased, but also when the field is reduced back to zero. As temperatures and fields

are important, one can make scatter plots of dendrites as function of temperature and

field.

From a theoretical point of view we consider the time dependent critical current

density Jc. As the local temperature in a superconductor fluctuates, the critical current

will fluctuate as well. If the critical current fluctuation leads to Jc being smaller than the

local current density, there will be a local transition to the normal. In the normal state

the current will produce heat which causes the surrounding superconductor to heat up

as well. Therefore the surrounding material can exit the superconducting phase. This

process becomes a feed back loop and is what triggers dendritic flux avalanches. The

mechanism behind the propagation of dendritic flux avalanches is understood.

2The numbers are read from a graph in the paper and are therefore only approximates.
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2. Inhomogenous superconductors

2.1 Manipulation of the critical sheet current

In this thesis we treat the critical sheet current of a film as an isotropic quantity. In

many materials the critical sheet current Jc scales with the thickness of the material.

Now consider a superconducting film of uniform thickness d0. The uniform thickness

leads to a uniform critical sheet current Jc0. If we change the thickness in a given region

from d0 to d1, we expect the critical current density to change to

Jc1 =
d1
d0
Jc0. (2.1)

If the thickness is halved in the region, then

d1
d0

= 0.5⇒ Jc1 =
1

2
Jc0 (2.2)

The flux of current from the unperturbed to the perturbed region is limited yo the lowest

critical sheet current density of the two regions. These types of discontinuous transitions

to lower or higher Jc has been discussed in [18]. In Figure 2.1 the current approaches

the region of reduced thickness (the gray area) at some angle α. The local sheet current

is assumed to be equal to the local critical current, as we can assume for a film at full

magnetic field penetration. When

J = Jc0 > Jc1,

the angle α must obey

Jc1 = cos(α)Jc0

in order for the local critical sheet current to be equal to the local critical sheet current.

Let us consider a rectangular superconducting slab with reduced thickness along a

stripe across the sample. We call this region a channel and for simplicity we choose the

23
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α

α

J = Jc0 J = Jc1

Figure 2.1: Critical sheet current crossing the boundary to lower critical sheet current,
which is marked in gray.

film thickness in the channel to be half of the film thickness in the rest of the sample. We

assume that this reduces the critical current density by half in the channel and that the

current density in the channel reaches half of the original critical current density, j = 1
2jc0.

The applied magnetic field is increased until we reach full field penetration. Right next

to the channel, the current density will not be able to reach the local critical current

density. This is because the current density must be adjusted in order to transition to

the region of lower current density. The algorithm, discussed in Section 3.1, returns the

streamlines shown in Figure 2.2. Notice that we have D-lines where the current enters

and leaves the channel. If we study the part to the right of the channel and the one to

the left of the channel separately, we can see D-lines from each corner. We also see a

horizontal D-line which starts in the middle of the channel. The latter is an example of

a D-line where the current kinks are not 90o. This current streamlines are qualitatively

similar to the current streamlines drawn for the weak link in [18], where the extra D-lines

lead to additional lines of increased screening of magnetic field.
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Figure 2.2: Using the algorithm on a sample with 50% reduction of Jc in a stripe going
through the middle of the sample.

In Figure 2.3 we have stacked rectangular regions of Jc0 and Jc1 side by side and

drawn the corresponding screening currents. Only the south edge of the film is visible

in the figure and therefore we have only drawn current streamlines from the south edge.

We have required the sample to be at full magnetic field penetration so that the Bean

model is valid. Then the streamline density will be inversely proportional to the local

current density. We have already explained how the regions of reduced critical sheet

current dictate the direction of the current field near the region(see Figure 2.1). The

rectangles of reduced Jc will be called channels and their width is named c. The width

of the unperturbed rectangles are named b. We can, in theory, make a sample with many

parallel channels. The component of the current that runs perpendicular to the channels

c c cb b

Figure 2.3: Streamlines of current in alternating high and low critical current regions,
with Bean model assumptions. The superconductor is assumed to continue to the sides
and in the upwards direction. The bottom edge of the figure marks the edge of the
sample.
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will have the upper limit Jc1. The component running parallel to the channels will be

limited to the local value of Jc, which can be either Jc1 or Jc2. From these assumptions

it seems like such a sample will have anisotropic properties on a length scale that is

comparable to the size of the sample.

2.2 Anisotropy

2.2.1 Traditional anisotropy

Traditional films with anisotropic screening currents [27] show the current pattern in

Figure 2.4. In the case of anisotropic samples, the D-lines are not angled 45 degrees

relative to the sample edges. We also see that the D-lines divide the samples into four

regions.

• One triangle in the west part of the sample.

• The equivalent triangle on the east part of the sample.

• A trapezoid in the northern part.

• The equivalent trapezoid in the southern part.

The current field is stronger in the triangles on the west and east side. In these

regions the current is flowing parallel to the axis of high critical sheet current. In the

north and south trapezoids the current is flowing parallel to the axis of lower critical

sheet current. In order for the flux of current to be equal through all the regions, the

regions of denser current must have a smaller width:

∆xJy = ∆yJx (2.3)

This is the reason for the trapezoid shape for the high current regions.

2.2.2 Manufactured anisotropy

With the current flow in Figure 2.4 fresh in mind we can construct a first approximation

for how current will flow in a sample with channels. We are ultimately interested in

how the current field looks on much larger length scale than the period of the channel

pattern, b + c. The fine structure of the currents, shown in Figure 2.3, becomes less

important at the macroscopic scale. We consider a sample with dense channels across

the sample in the north-south direction. We expect the current across the channels to be

less dense so that the sample will show trapezoidal regions in its north and south part.

In these regions the current vector is parallel to the x-axis and the sheet current reaches
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Figure 2.4: An ideal anisotropic sample at full magnetic field penetration.
The square represents a superconducting film and the solid lines drawn on the inside
represent the D-lines at full penetration. The applied magnetic field ~B is directed into
the plane. The diagonal lines are the D-lines. ∆x marks the depth of the triangles in
the western and eastern regions. ∆y marks the depth of the trapezoids in the north and
south regions. d is the half width of the square sample. The unnamed arrows represent
the current density vector field. Their relative spacing and length indicate that Jy > Jx.

the critical sheet current in the channels:

J = Jx = Jc1. (2.4)

In the triangular regions in the west and east part we assume that the current is

flowing parallel to the y-axis. The sheet current in these regions should be the average

critical sheet current. With this we mean the weighted sum of the two critical sheet

currents Jc1 and Jc2, divided by the period b+ c of the channel pattern:

J = Jy = (Jc0 · b+ Jc1 · c)/(b+ c) (2.5)

If we introduce

B ≡ b

b+ c
, C ≡ c

b+ c

then 2.5 can be simplified to

Jy = BJc0 + CJc1 (2.6)
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Using the symbols in figure 2.4 we define the anisotropy factor by dividing Equation 2.5

on Equation 2.4:

a = Jy/Jx = (BJc0 + CJc1)/Jc1 = BJc0/Jc1 + C (2.7)

Because we are interested in the ratio between the currents, we can use dimensional units

for Jc0 and Jc1. Normalizing Jc0 to unity we get

a = B/Jc1 + C

Jx = Jc1

Jy = B + CJc1

(2.8)

The simplest case is when b = c. In that case we get:

B = C = 1/2

Jx = Jc1

Jy = (1 + Jc1)/2

a = (1/Jc1 + 1)/2

(2.9)

From Equation 2.3 we have that

∆xJy = ∆yJx ⇒ ∆y/∆x = Jy/Jx ⇒ a = ∆y/∆x (2.10)

When an anisotropic sample has been ramped up to full magnetic penetration we can

use the expression for a = ∆y/∆x to find the anisotropy factor.
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Numerical methods

3.1 Algorithm for plotting Bean model streamlines

We are sometimes interested in the streamlines of shielding current in superconducting

samples. For theoretical studies it is common to assume a Bean model for the current,

where the streamlines are equidistant. We must decide on a distance between the stream-

lines. Let us call this distance d. If the distance is too large, the fine structure in the

streamlines will be lost. If the distance is too small the number of lines will be large.

Then it will take a long time to draw the streamlines. The starting point of an analytic

drawing is to draw a streamline along the boundary. This is the first streamline. From

the requirement of equidistant streamlines we know that the next streamline must be

exactly at a distance d from the first streamline. In principle we can use a compass

to draw arcs of radius d around points on the first streamline. This has been done in

Figure 3.1(a), where the arcs have the dashed line-style. Because the streamlines must

(a) Drawing arcs with uniform radius
around selected points along the stream-
line along the border.

(b) Increased number of points for which
arcs are drawn.

Figure 3.1: Drawing Bean model streamlines manually using a compass.

be equidistant we have the two conditions for the next streamline:

• It must be drawn on the arcs.

29
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• No part of it may be inside an arc.

The set of points where these two conditions are fulfilled will approximate a streamline

when we draw many arcs. In Figure 3.1(b) we have drawn more arcs than in Figure

3.1(a). We see that the points that fulfill the conditions in 3.1 form a squiggly line. If we

draw an infinite number of arches, then this line will be much smoother and we will be

able to draw the next streamline from this line. Of course this method involves a lot of

work. It is also not necessary for the simple geometry of a rectangular sample; we know

that the streamlines will be concentric rectangles.

The reason that we present this rather laborious method is that it can be done quickly

by a computer. The iterative process of drawing streamlines is shown in Figure 3.2. We

start out with a matrix representation of the sample. The matrix elements can have

values 0 or 1. Because it only stores these two values we will name it the boolean matrix.

The boolean matrix tells us if a coordinate in the sample is inside a radius d of some

point on the existing streamlines or not. If the value is zero it means that the coordinates

are too close to existing streamlines, which in turn tells the computer that no streamlines

can be drawn through the element. An element with value 1 means that it is not too

close and therefore it may be possible to draw a streamline through the coordinates

corresponding to the element. To store information about where the streamlines have

been drawn, we use a streamline matrix. This matrix can store two values: 0 and 1.

0 means that the streamlines do not go through the element. 1 Means that there is a

streamline that goes through the element. We start out with a boolean matrix where

every element has value 1. This means that every point of the sample are candidates for

streamlines. The streamline matrix starts out with value 1 in the first and last columns

and rows. This means that we have drawn a streamline along the edge of the sample,

like in Figure 3.2(a). The indices of the streamline are recorded by the computer. We

have decided that the distance d between the streamlines sahll be 7 pixels. The computer

iterates through every element in the streamline matrix where the streamline was drawn.

Every element in the boolean matrix that is closer than d to the current element on the

streamline is set to zero: √
∆x2 + ∆y2 < d

Therefore the elements containing 1 in the boolean matrix decreases. The elements that

contain 1 in the boolean matrix is marked with gray in Figure 3.2(a). The elements

containing 0 are white. A streamline will be drawn through the elements that are gray

and has one or more neighbors that are white. These elements are at a distance d from

the latest streamline. In Figure 3.2(b) we have illustrated the elements that are too close

to the a specific point on a streamline using a discrete circle in gray. The process of

drawing new streamlines continues until the boolean matrix only contains zeros. Then

the streamline matrix is saved to a file. After the second streamline has been drawn



Chapter 3. Numerical methods 31

and the computer has eliminated invalid elements in the boolean matrix we are left with

the tiny gray rectangle marking the possible streamline elements in Figure 3.2(c). From

this the last streamline is drawn in the center of Figure 3.2(d). The last streamline

demonstrates a problem: The last streamline is too close to itself and should therefore

not be included. If we had chosen a different distance between the streamlines we might

not have ended up with this problem. One option is to do a second simulation where we

change d to some other value. Another option is to erase the last streamline.

(a) Recording the pixels that are far enough
away from the streamline at the border.

(b) At every point along the fresh stream-
line the computer eliminate pixels that are too
close.

(c) The pixels that were not removed by the
elimination are marked in gray.

(d) The last streamline has been drawn.

Figure 3.2: Drawing a new streamline

There is a usability problem in that the distance between the streamlines is rounded

to the nearest pixel. Consider a sample with Jc = 1 and a distance 10 pixels between

each streamline. If we made a perturbation in the film where Jc = 0.900 the distance

should be 10 pixels · 0.900−1 ≈ 11.1 pixels. This will be rounded off to 11 pixels. For a

perturbation Jc = 0.96 we get ≈ 10.4 pixels which will be rounded to 10 pixels. Thus

the algorithm does not pick up on gradual changing critical current. We should therefore

increase the distance between the lines; for example 100 pixels distance in between the

streamlines. Unfortunately there will still be round off errors. If the distance between

the streamlines is too large compared to the gradient of Jc, then the subtle change in
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density of streamlines will not be visible. It is similar to using too large of a box width

when calculating an integral by a finite sum. On one hand the distance must not be too

small, but it must show enough detail. One solution is to increase the resolution of the

matrices used in the program. Then the process will take a long time. Another solution

is to only draw the streamlines for a selected region of the sample. In that case the initial

streamlines in the program must be changed so that they do not surround the region.

The program is intended to check our intuition when drawing Bean model streamlines.

The algorithm has problems with round off errors and can lead to both quantitative and

qualitative errors if used incorrectly. We must therefore neither trust or disregard the

output of the program. A good approach is to use the program to check our intuition.
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3.2 Numerical simulations of electrodynamics in films

This section is dedicated to the mathematical formalism and numerical methods used by

the simulation program for electrodynamics in superconducting films. The program was

implemented by Jørn Inge Vestgården and this section is based on the description in his

paper, [16].

The purpose of the simulations is to calculate the sheet current field, the magnetic

field and local magnetization g as the state of the system evolves in time. In the simula-

tions we must specify the grid resolution in the xy-plane, the creep exponent n and the

protocol for ramping of the applied magnetic field Ha. The applied field is parallel to

the z-axis, or in other words perpendicular to the film. One of the optional parameters

is the scalar field Jc(x, y) which is the local critical sheet current.

3.2.1 The relation between magnetic field and the local magnetization

The evolution of the self field of the sample depends on the screening currents. We use

the local magnetization g as a representation of the screening current. It is therefore

important to find the relationship between the self field and the local magnetization.

From Equation 1.42 we have a relation between g(x, y, z) and H(x, y, z):

∇×H(x, y, z) = ∇× (ẑg(x, y))δ(z) (3.1)

Calculating the left hand side of the equation we get

∇×H(x, y, z) =

(
∂Hz

∂y
− ∂Hy

∂z

)
x̂−

(
∂Hz

∂x
− ∂Hx

∂z

)
ŷ +

(
∂Hy

∂x
− ∂Hx

∂y

)
ẑ (3.2)

The right hand side becomes

∇× (ẑg(x, y))δ(z) =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 0 g(x, y)

∣∣∣∣∣∣∣∣ δ(z) = δ(z)

(
∂g(x, y)

∂y
x̂− ∂g(x, y)

∂y
ŷ

)
(3.3)

By setting each dimension in Equation 3.2 equal to the same dimension in Equation 3.3

we get the following set of equations:(
∂Hz

∂y
− ∂Hy

∂z

)
= δ(z)

∂g(x, y)

∂y(
∂Hz

∂x
− ∂Hx

∂z

)
= δ(z)

∂g(x, y)

∂y(
∂Hy

∂x
− ∂Hx

∂y

)
= 0⇒ ∂Hy

∂x
=
∂Hx

∂y

(3.4)



Chapter 3. Numerical methods 34

For a non-magnetic material, the divergence of magnetic field is zero:

∇ ·H =
∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
= 0 (3.5)

It is inconvenient to use partial derivatives and therefore the simulation algorithm works

with the Fourier form of the equations. The Fourier transform is defined as

f̂ = F [f ] =

∫ ∞
−∞

f exp(−ikx)dx (3.6)

Where f̂ is the Fourier transform of f and k is the wave number. When transforming a

partial derivative we do integration by parts:

F
[
∂nf

∂xn

]
= (ik)nf̂ (3.7)

We see that the Fourier transform of a spatial derivative of a function is equal to the

function times the term ik. Doing a three-dimensional transform of Equation 3.4 and

3.5, using 3.7, we get

ikyH
[3]
z − ikzH [3]

y = ikyg
[2]

ikxH
[3]
z − ikzH [3]

x = ikyg
[2]

ikxH
[3]
y = ikyH

[3]
x

ikxH
[3]
x + ikyH

[3]
y + ikzH

[3]
z = 0

(3.8)

Where H [n]
i means the Fourier transform of field component i in n dimensions. The

Fourier transform along the z-axis is simplified by the delta function δ(z). This is the

reason that we have g[2] and not g[3] in Equation 3.8.

By solving the equations for H [3]
z and doing the inverse Fourier transform in the

z-direction [16] one obtains that (after setting z = 0):

H [2]
z (kx, ky) =

k

2
g[2](kx, ky) (3.9)

where k =
√
k2x + k2y. The relations between Hz(x, y) and g(x, y) are [16]

Hz(x, y) = F−1
[
k

2
F [g(x, y)]

]

g(x, y) = F−1
[

2

k
F [Hz(x, y)]

] (3.10)
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3.2.2 Time evolution

We get the time evolution of the magnetic self field, inside the sample, from Equation

1.48. The z-component of the total magnetic field Ḣtotal is the superposition of the self

field Hz and the applied magnetic field Ha. The time derivative of the total field becomes

Ḣtotal = Ḣz + Ḣa. (3.11)

Here Ḣa is the time derivative of the applied magnetic field and is called the ramping

rate in experiments. The Fourier transformations in Equation 3.10 are time independent.

Therefore the time derivative of g becomes:

ġ = F−1
[

2

k
F [Ḣz]

]
(3.12)

Inside the sample we can use the expression for Ḣz in Equation 1.48. It states that

Ḣz =
ρ

µ0d
(∇ · ∇g(x, y)) (3.13)

In our calculations we include a finite region of vacuum outside the sample and Equation

3.13 is not valid in this region. If we used it without corrections it would lead to ġ 6= 0

and g 6= 0 outside the sample. We want to remove this nonphysical magnetization of

the vacuum outside the sample. Fortunately we have a good approximation for the field

distribution outside the sample: The field distribution at the previous time step. This

field can be used as a trail function which makes it possible to find a better approximation

to the Hz outside the sample. The process of finding this field is an iterative process:

• Start out with a field that uses Equation 3.13 for the field inside the sample region.

The field outside the sample is approximated by a trail function. In the first

iteration we use the field at the previous time step. For the next iteration we will

have found a better approximation which we then will use as the updated trail

function.

• The field distribution is transformed to g using Equation 3.10.

• We construct a scalar field that is equal to g (calculated above) outside the sample

and zero inside.

• This scalar field is transformed back to magnetic field. The field outside the sample

is then subtracted from the trail distribution. To the resulting field we add a

constant, outside the sample, which purpose is to assure that the magnetic flux

be conserved. We have now obtained a field distribution which corresponds to

smaller values of g outside the sample. Therefore it is better approximation to
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the actual magnetic field outside the sample. If the g is sufficiently small, we are

done; Maxwell’s equations are solved and g = 0 outside the sample. If not, we

must repeat the above process in order to find a better field distribution outside

the sample.

Notice that the magnetic field inside the sample is unaltered; we only modify the field

outside the sample.

We can find the time evolution of g and Hz by numerical integration of Equation 3.12.

The simulation program uses the fourth order Runge-Kutta method. Using a variable

time step is essential.

3.2.3 Dimensionless units

Paper [16] lists the dimensionalless form of the physical quantities. Spatial dimensions

are eliminated using the half sample width ω. This is trivial for x and y:

x̃ = x/ω , ỹ = y/ω

We also have to make

F−1
[

2

k
F [f ]

]
→ 1

ω
F−1

[
2

k
F [f ]

]
,

in order to remove the dimension of length caused by 1
k . We use the ramping rate |Ḣa|

to scale time:

t̃ = t|Ḣa|/J0

Here

J0 = Jc

(
dwµ0|Ḣa|Hm

c2

ρ0J
m+1
c

)1/(n+m)

, (3.14)

Here n andm are the exponents from the material law in Equation 3.14. In the simulation

we use

Jc = Jc0(1− T/Tc),

where Jc0 is the critical sheet current at zero temperature. The only free parameters are

Ḣa, n and m. Their values have been chosen to be Ḣa = 1, n = 19 and m = 0.

In section 2.1 we do local alterations of the critical current density. Effectively it

is J0 that is altered, not Jc. It is also important to note that reduced film thickness

would introduce many effects other than reduced critical current. It is better to think of

reduction of critical current as just that, a reduction in J0.

For g and H we define

g̃ = g/(ωJ0) , H̃ = H/J0
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3.2.4 Temperature dependence

The time evolution of temperature is essential for simulating dendrites. Whenever

J(x, y) > Jc or T (x, y) > Tc the point (x, y) is in the normal state. For the dimen-

sionalless resistance we have:

ρ(x, y) =

(
J(x, y)

Jc

)n−1
for J(x, y) ≤ Jc and T (x, y) ≤ Tc

ρ(x, y) = 1 when J(x, y) > Jc or T (x, y) > Tc

(3.15)

Here ρn is the normal state resistivity.

The time derivative of the temperature field is given by Newton’s law of cooling:

cṪ (x, y) = κ∇2T (x, y)− h(T (x, y)− T0)/d+ J ·E/d (3.16)

Here c is the specific heat of the superconductor. The first term on the right represents

thermal diffusion in the plane of the film, with κ being the in plane heat conductivity.

The second term is Newtons law of cooling. We have assumed that the substrate has

constant temperature T0. Thus the heat transfer to the substrate is characterized by the

coefficient h. The last term, J · E/d, is the Joule heating. Because the electric field is

parallel to the current field, we can simplify Equation 3.16:

Ṫ =
κ

c
∇2T − h(T (x, y)− T0)/cd+ JE/cd (3.17)

We see that the evolution of temperature depends on the thickness d of the film. This

means that reduction of thickness, like in Section 2.1, would result in additional effects;

not just a reduction of the critical current. However these effects are only important for

flux avalanches. The dendritic avalanches are triggered by a heat pulse; the temperature

is artificially raised to 1.5Tc for a short time. The pulse is typically placed on the edge

of the sample, because this is where dendritic avalanches start in experiments.

The time scale for flux avalanches is much smaller that the time scale used in stable

simulations. We need a timescale which makes
∣∣∣dH̃a

dt̃

∣∣∣ � 1. In [16] the time scale is the

decay time of currents in normal material:

t̃ = tρ0/dw0. (3.18)

Here ρ0 is the resistivity of the material when T = Tc. For temperature T̃ = T/Tc is

a natural choice. The sheet current J is scaled to the critical sheet current at absolute

zero temperature:

J̃ = J/(djc0),
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where jc0 is the critical current density at T = 0. Because E = ρj we scale E using the

same quantities used to scale resistivity and current:

Ẽ = E/ρ0jc0 (3.19)

Using the dimensionalless quantities defined above, we can write Equation 3.17 on di-

mensionalless form:

Ṫ =
κ

c
∇2T − h(T (x, y)− T0)/cd+ JE/cd

Tc
(ρ0/dwµ0)−1

∂T̃

∂t̃
=
κ

c
∇2TcT̃ − h(TcT̃ − TcT̃0)/cd+ (djc0)J̃ρ0jc0Ẽ/cd

∂T̃

∂t̃
= (dωµ0/ρ0)

κ

c
∇2T̃ − (dωµ0/ρ0)h(T̃ − T̃0)/cd

+ (dωµ0/ρ0Tc)(djc0)J̃ρ0jc0Ẽ/(cd)

∂T̃

∂t̃
= (dωµ0κ/ρ0c)∇2T̃ − (dωµ0h/ρ0cd)(T̃ − T̃0) + (dj2c0ωµ0/cTc)J̃Ẽ

(3.20)

This equation can be rewritten as

∂T̃

∂t̃
= α∇2T̃ − β(T̃ − T̃0) + γγJ̃Ẽ

α ≡ dωµ0κ

ρ0c
, β ≡ dωµ0h

ρ0cd
, γ ≡ (µ0ωdj

2
c0ω/cTc) , γ(T ) ≡ c(Tc)/c(T )

(3.21)

Here γ(T ) = T̃−3 represents a temperature dependence from the parameters which does

not cancel out.

In the simulation program the discrete time derivative of the temperature is imple-

mented as
∂T̃

∂t̃
→ (Tn+1 − Tn)/∆tn. (3.22)

∆tn is the variable time step at time step number n. Also

T → (Tn+1 + Tn)/2. (3.23)

The task at hand is to find the expression for Tn+1. However the ∇2 operator in incon-

venient to work with. Therefore we will solve the equation in Fourier-space. We use the

following notation for the Fourier transformation of temperature:

F [Ti] = T (i) (3.24)
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Using this notation we get

F
[
∂T̃

∂t̃

]
→ (T (n+1) − T (n))/∆tn , F [T ]→ (T (n+1) + T (n))/2

The Fourier transform of 3.21 becomes:

F
[
∂T̃

∂t̃

]
= α(ik)2F [T̃ ]− β(F [T̃ ]−F [T̃0]) + F [γγJ̃Ẽ] (3.25)

Using the substitutions from Equatnion 3.22 and Equation 3.23 we get:

(T (n+1)−T (n))/∆tn = α(ik)2(T (n+1)+T (n))/2−β
(

(T (n+1) + T (n))/2−F [T̃0]
)

+F [γγJ̃Ẽ]

(
1/∆tn + αk2/2 + β/2

)
T (n+1) =

(
1/∆tn − αk2/2− β/2

)
T (n) + βF [T̃0] + F [γγJ̃Ẽ]

Multiplying by ∆tn and simplifying:

(
1 + (αk2 + β)∆tn/2

)
T (n+1) =

(
1− (αk2 + β)∆tn/2

)
T (n) +

(
βF [T̃0] + F [γγJ̃Ẽ]

)
∆tn

Our solution for the next time step tn+1 then becomes

T (n+1) =
1− (αk2 + β)∆tn/2

1 + (αk2 + β)∆tn/2
T (n) +

F [βT̃0 + γγJ̃Ẽ]

1 + (αk2 + β)∆tn/2
∆tn (3.26)

In the simulations in this thesis we will use

T0 = 0.4Tc, α = 10−6, β = 0.03, γ = 15.0 (3.27)
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Results and Discussion

In Chapter 2 we discussed how macroscopic anisotropy can be manufactured by lowering

the critical sheet current Jc in channels with constant width and constant spacing. In

Section 3.2 we outlined the numerical methods used for finding the evolution of the

screening currents and magnetic self field given a ramping protocol, including simulations

of flux avalanches. In this chapter we apply the simulation program to samples with

manufactured anisotropy.

4.1 Width of channels equal to spacing

The simplest case of channel pattern is when the spacing between the channels is equal

to the width of the channel. This means that b = c and the period of the alternating

pattern is b+ c = 2b. For the simulations we have to specify both the critical current in

these channels and their width. In order to study the effect that the width has on the

magnetic flux distribution, we do simulations on a selection of widths: b = 4, 6, 16, 32

and 64 grid points. We use the same sample resolution in each simulation: 732x732 grid

points. The system is 1024x1024 grid points if we include the vacuum that surrounds

the samples. We understand that a channel width of 64 grid points is quite large for

such a sample. It is however important to study the extreme cases in order to get a

fuller understanding of the phenomena. The other extreme case is when the width is 4

grid points. In this case our perturbations are dangerously close to the grid resolution.

While simulation results should always be interpreted with skepticism, phenomena on

pixel level is even less trustworthy.

For the channels we have chosen the critical sheet current to be Jc1 = 3/4 relative to

Jc outside the channels, which is still normalized to unity.

In Figure 4.1 we have listed the resulting magnetic distributions. For the sample with

the widest channels we have included the corresponding matrix for critical current in

Figure 4.1(f). This makes it possible to see how the underlying critical current alters the

penetration pattern of the magnetic field. We see that in the channels of Jc = 3/4 = 0.75,

40
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the black regions in Figure 4.1(f), the magnetic field is much more uniform and has a

higher value. The regions of higher critical sheet current are darker, which results in a

pattern of dark stripes in the north and south trapezoid shaped regions.

The pattern of dark stripes is visible for all channel widths, but it becomes faint for

b = c = 4 (Figure 4.1(a)) and b = c = 6 (Figure 4.1(b)). Except for the anisotropy, the

flux penetration is similar to that of a sample with uniform Jc, like in Figure 1.6(a). The

simulations for b = c = 4 and b = c = 6 have thus achieved a flux penetration that is

both smooth and anisotropic.

In our case b = c which means that we can use Equation 2.9 to find a theoretical

estimate for the anisotropy factor:

a = (1/Jc1 + 1)/2 = (1/(3/4) + 1)/2 = 7/6 (4.1)

Remember that the formula assumes a Bean model where there is no flux creep,

which means n → ∞. The derivation also ignores any effects caused by fine structure

in the current. By this we mean the current kinks drawn in Figure 2.3. The anisotropy

factor corresponds to the inclination of the D-lines. A large value of a corresponds to

high anisotropy. This means that the D-lines will meet farther away form the center than

for smaller a. In Figure 4.2 we have zoomed in on the north-west D-line in each sample

in Figure 4.1. This way it is easier to see the details of the penetration pattern. For each

sub-figure 4.2(a) - 4.2(e) we have plotted two dashed lines starting from the north-west

corners, one white and one black. The black one represents the D-line corresponding to

the anisotropy factor a = 7/6 from the calculations above. Interestingly this line does

not agree with the actual D-lines. The white line is a guide for the eye for where the

D-lines lie, making it easier to see the error in our estimate for the anisotropy factor.

The anisotropy factors corresponding to the white lines are recorded in Table 4.1. It

must be said that for b = 32 pixels and b = 64 pixels we do not have well defined D-lines

as they are far from straight. Thus the anisotropy factor is not an appropriate quantity

for these states.

For b = c = 4 grid points we have a particularly small anisotropy factor. The general

tendency is that the anisotropy factors in the simulations are smaller than the one pre-

dicted by Equation 4.1. The simulation results in Figure 4.1(b), show a higher anisotropy

factor compared to 4.1(a). Also the flux penetration is quite smooth compared to the

results in Figures 4.1(c)-4.1(e). Therefore b = c is the most promising choice of widths.

Table 4.1: The anisotropy factor for each simulation shown in Figure 4.2.

b [pixels] 4 6 16 32 64
c [pixels] 4 6 16 32 64
a [dimensionalless] 1.035 1.08 1.08 1.09 1.08
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(a) b = c = 4 grid points
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(b) b = c = 6 grid points
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(c) b = c = 16 grid points
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(d) b = c = 32 grid points
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(e) b = c = 64 grid points
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(f) The Jc matrix for Figure 4.1(e).

Figure 4.1: Varying the period of the channel patterns.
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(a) b = c = 4 grid points (b) b = c = 6 grid points

(c) b = c = 16 grid points (d) b = c = 32 grid points

(e) b = c = 64 grid points (f) The Jc matrix corresponding to Figure
4.2(e). See 4.1(f) for colorbar.

Figure 4.2: Close ups of Figures 4.1(a)-4.1(f). The dashed black lines correspond to our
theoretical calculation of the anisotropy factor. The dashed white lines approximate the
D-lines we actually see.
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4.1.1 Study of the distribution of magnetic field

Figure 4.1(e) is well suited for studying the magnetic field distribution resulting from the

channel perturbations of Jc. Figure 4.3(a) shows the same magnetic field distribution

as in Figure 4.2(e), but four regions have been marked in gray and numbered from 1 to

4. Each region shows a distinct qualitative behavior in the flux distribution, which is

repeated periodically in the horizontal direction. Regions of type 1 and 2 alternate in

the north and south part of the sample. Regions of type 3 and 4 alternate in the west

and east part. Regions of type 1 and 3 correspond to reduced critical sheet current. In

Figure 4.3(a) we cannot see the eastern and southern parts of the sample, but because

of the symmetry of Figure 4.1(e), the behavior in the northern part is equivalent to the

southern part and the western part equivalent to the eastern part.

Region 2 shows the same type of flux distribution that is largely similar to what is

seen in rectangular freestanding samples, like Figure 1.6(a). From each top corner of

region 2 we can see a faint dark D-line. These D-lines join and continue south, forming

the letter "Y". These D-lines indicate sharp turns in the current streamlines, just like we

have at the D-lines in a rectangular sample. We can see more regions with this behavior

and we call these regions of type 2. In between regions of type 2 we have regions of type

1, where the critical current is lower. Therefore the magnetic field is not screened as

effectively in regions of type 1 and therefore they appear brighter than regions of type

2 in Figure 4.2(e). For samples with a very tight stripe pattern, like Figure 4.1(a) and

4.1(b), the regions of type 1 and type 2 become very thin. Therefore it is hard to study

the flux distribution in detail. For these samples the penetration pattern looks like the

teeth of a comb, entering from the sample’s top and bottom edges.

Let us return to the Flux distribution of Figure 4.3(a). In region 3 and 4 we see a

different situation to the one in type 1 and type 2 regions. The flux penetration in region

3 and region 4 is quite uniform, except for alternating dark and bright stripes in between

them. The critical sheet current in region 3 is 3/4 relative to Jc in region 4. As seen

in Figure 4.3(b) the current is almost parallel to the channels. Figure 4.5(a) shows that

the current along the channels reaches approximately Jy = 0.75 in region 3 and Jy = 1

in region 4. At least measured along a horizontal line going through the middle of the

sample, y = 512 [grid points]. Flux creep appears to be the reason that the current

doesn’t fully reach the critical sheet current, just like we see in Figure 1.6(e).

If there was no flux creep, we would expect the streamlines to be similar to those

shown in Figure 4.4. These streamlines are the output from the computer program in

Appendix A and the algorithm was discussed in Section 3.1. In Figure 4.4 we see that

the streamlines in the Bean model are much more angular than the streamlines in Figure

4.3(b). They also resemble the idealized streamlines shown in Figure 2.3, which are valid

for zero flux creep. Flux creep is therefore the most likely reason for the low observed
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(a) Analysing patterns of magnetic field penetra-
tion in inhomogenous sample

(b) Plot of streamlines corresponding to the field
in Figure 4.3(a)

0.00 0.25 0.50 0.75 1.00
J/Jc

0.00 0.25 0.50 0.75 1.00
J/Jc

Figure 4.3: Analysis of regions where the magnetic- and current-field has distinct behav-
ior.

Figure 4.4: The streamlines calculated using Bean model assumptions for the Jc matrix
shown in Figure 4.1(f). At full magnetic field penetration. The critical current in the
gray areas is 75% of the critical current in the white areas.

value for the anisotropy factor in table 4.1. We study this effect more closely in Section

4.3

Let us return to Figure 4.3(b). Just as in Figure 4.3(a), we have marked the numbered

regions in gray. The curvature of the streamlines determine how effective the current

is at screening the applied magnetic field. Inside region 2 the streamlines curve in the
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direction of internal screening of magnetic field. This makes regions of type 2 darker in

Figure 4.3(a) compared to regions of type 1. The same happens on the D-lines inside

region 2 in Figure 4.3(a). These small D-lines correspond to the current kinks on the

dashed lines in Figure 2.3. The current kinks are better defined in the Bean state in

Figure 4.4 and therefore easier to see than in Figure 4.3(b). Thus Figure 4.4 makes it

easier to do a qualitative study. On the western and eastern border of region 2, the

streamlines curve the opposite direction of the screening direction. This increases the

magnetic field locally along the borders between type 1 and 2 regions. This is seen in

Figure 4.3(a) as bright vertical stripes.
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(a) Jy profile along y = 512 of the simulation
corresponding to 4.1(e).
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(b) Simlified version of the current profile in
Figure 4.5(a).

Figure 4.5: Current profiles

We will now study the alternating black and white stripes between regions of type

1 and type 2, seen in Figure 4.2(e). In the transition between high and low screening

current there are lines of strong(bright) and weak(dark) magnetic field. The current

profile of Jy, measured across the channels, through the middle of the sample, is has

been plotted in Figure 4.5(a). In order to simplify our study, we ignore the details in

the current profile and introduce an artificial current profile in Figure 4.5(b). Here Jy
reaches the local critical sheet current, except for in the middle of the sample and outside

the sample. From this artificial current profile we have created a 2 dimensional current

distribution which has been plotted in Figure 4.6(a). The current is assumed to reach

the local value of Jc and be parallel to the y-axis. Therefore the current is either 0, ±0.75

or ±1 of Jc, where the sign gives the direction along the y-axis. This current field does

neglect the current that should be flowing in the northern and southern trapezoids of

the sample. Of course this does not represent a physical system1 as it does not fulfill

continuity of current. However, it does provide a simple current field which will yield a
1The simplification done here may be unsatisfactory to many. However, in physics we have to make

an intelligent choice in what effects we may neglect in order to study the impact of other more dominant
effects.
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magnetic self field which will be easy to interpret. Our purpose is to calculate the self

field from the alternating high (J = 1 [dimensionalless] in regions of type 4) and low

(J = 0.75 [dimensionalless] in regions of type 3) screening currents that seem to cause

the bright and dark lines in Figure 4.1(e). The neglected parts of the current field is far

away from the regions of interest and will have minor impact on the self field in regions

of type 1 and type 2. Biot-Savart’s law tells us how to calculate the magnetic self field
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(a) Idealized current segments inspired by Fig-
ure 4.1(e) and Figure 4.3(b). A black square
outlines the sample.
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(b) The current distribution necessary to calcu-
late the self field from Figure 4.6(a). A black
square outlines the sample.

Figure 4.6: Current distribution used to calculate self field.

from the current field in Figure 4.6(a). The magnetic field B at a point r is

B(r) =
µ0
4π

∫ ∫ ∫
V

j(r′)× (r′ − r)

|r′ − r|3 dV. (4.2)

Here µ0 is the permeability of vacuum, j(r′) is the current density at a point r′. The in-

tegration is over all space in all three dimensions. µ0 can be removed from our expression

by changing to magnetic field strength:

H(r) =
1

4π

∫ ∫ ∫
V

j× (r′ − r)

|r′ − r|3 dV =
1

4π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

J(x′, y′, z′)δ(z′)× (r′ − r)

|r′ − r|3 dz′dy′dx′

=
1

4π

∫ ∞
−∞

∫ ∞
−∞

J(x, y, z = 0)× (r′ − r)

|r′ − r|3 dy′dx′

(4.3)
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We see that the term
(r′ − r)

|r′ − r|3dy
′dx′

is dimensionalless. Thus the magnetic field strength has the same units as the sheet

current density: A/m. We can divide the expression for H(r) by the maximum critical

sheet current Jc,0 to obtain Equation 4.3 on dimensionalless form:

H̃(r) = H(r)/Jc0 =
1

4πJc0

∫ ∞
−∞

∫ ∞
−∞

J(x′, y′, z′ = 0)× (r′ − r)

(r′ − r)3
dy′dx′

=
1

4π

∫ ∞
−∞

∫ ∞
−∞

J̃(x, y, z = 0)× (r′ − r)

|r′ − r|3 dy′dx′,

(4.4)

where J̃ ≡ J/Jc0.

It is a trivial task to calculate the field numerically by replacing the integral by a

finite sum:

H̃(x, y) =
1

4π

N∑
n=0

M∑
m=0

J̃(x′n, y
′
m)× ((x′n − x)̂i + (y′m − y)̂j)

((x′n − x)2 + (y′m − y)2)3/2
a2 (4.5)

Here we have replaced dx′dy′ by a2 which is the area of a current element in the sample.

x′n and y′n are defined as

x′n = na , y′n = ma

and the dimensions of the sample is

Lx = Na , Ly = Ma

The cross product in Equation 4.5 can be simplified because J̃ ⊥ î:

H̃(x, y) =
a2

4π

N∑
n=0

M∑
m=0

−J̃(x′n, y
′
m)(x′n − x)k̂

((x′n − x)2 + (y′m − y)2)3/2
(4.6)

We choose M = 1023 and N = 1023, which corresponds to a 1024 × 1024 sample

like in Figure 4.1(e). For simplicity we choose a = 1. The current distribution is shown

in Figure 4.6(a)

When programming this calculation we see that the symmetry in the current distri-

bution will let us get away with calculating only 1/4 of the calculations in 4.6. We can

calculate the magnetic field produced by the current distribution in Figure 4.6(b) and

then rotate the resulting matrix to find the solution from the rest of the current distribu-

tion in Figure 4.6(a). The program code is provided in Appendix B. The Resulting self

field is shown in Figure 4.7. We can see a striking similarity to the alternating vertical

lines of low and high magnetic flux we see in Figure 4.1(e).
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Figure 4.7: Self field resulting from calculations.

4.2 Systematic variation of the reduction of critical sheet

current in the channels

We have studied the effect of the width of channels in samples where the channels have

the same width as the distance in between them. We can also vary how much the critical

current is reduced in the channels. For this section we run simulations for b = c = 6 grid

points and

Jc1 = 0.7, 0.75, 0.8, 0.85

in the channels. Jc1 = 0.7, b = c = 6 has already been simulated in Section 4.1. As

b = c, we know that

a = (1/Jc1 + 1)/2. (4.7)

The expected anisotropy factors, for samples with no flux creep, are listed in Table 4.2.

Table 4.2: The anisotropy factor predicted for each value of Jc1/Jc0, assuming no flux
creep.

Jc1/Jc0 0.7 0.75 0.8 0.85
a [dimensionalless] 1.21 1.17 1.125 1.09

In Figure 4.8 we have plotted the flux distributions resulting from ramping each

sample to full magnetic field penetration. As for the simulations in Section 4.2, we

see that our theoretical model for anisotropy over estimates the anisotropy factor. The

actual anisotropy factors are listed in Table 4.3.

The actual anisotropy factor for Jc1/Jc0 = 0.70 (Figure 4.8(a)) is quite large. Un-

fortunately these larger reductions of Jc result in slow computation speed because the
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Table 4.3: The actual anisotropy factor a measured in the simulation results in Figure
4.8.

Jc1/Jc0 0.7 0.75 0.8 0.85
a [dimensionalless] 1.12 1.08 1.07 1.045

(a) Jc1/Jc0 = 0.70 (b) Jc1/Jc0 = 0.75

(c) Jc1/Jc0 = 0.80 (d) Jc1/Jc0 = 0.85

Figure 4.8: At full field penetration for b = c = 6 for different values of p.

discontinuous step is very large. For Jc1/Jc0 = 0.70 (Figure 4.8(a)) we see a slightly more

moderate anisotropy. For further studies we will use b = c = 6 and Jc1/Jc0 = 0.75 as this

combination has shown a good compromise between smoothness in its field distribution,

relatively large anisotropy and stability in calculations. For the higher values of Jc1/Jc0
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(a) n = 5
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(b) n = 19

Figure 4.9: How flux creep destroys anisotropy. b = c = 6

we get less anisotropy, as expected. For Jc1/Jc0 = 0.85 the anisotropy almost disappears.

4.3 The importance of flux creep

Until now we have only used n = 19 as the creep exponent, which is considered a

moderate value. Increasing the value of n will decrease the flux creep and thus bring our

results closer to the Bean model. However, it will also increase the nonlinearity of the

material law in Equation 1.45. Simulations for b = c = 6, Jc1/Jc0 = 0.75, n = 29 yielded

too much numerical error and ran slowly. Instead we choose n = 5, keeping the other

parameters equal. The resulting magnetic field distribution is plotted in Figure 4.9(a).

For the purpose of comparison we have also included the results for n = 19 in Figure

4.9(b), which is equivalent to Figure 4.1(b). We see that for n = 5 we have almost no

appreciable anisotropy as the D-lines meet extremely close to the center of the sample.

In Figure 4.10(a) we see that for n = 5 the streamlines are much more rounded off

in the corners compared to the streamlines for n = 19 which is shown in Figure 4.10(b)

simulation for n = 19. This is the reason that the D-lines are very weak in Figure 4.9(a).

Figure 4.11 shows the current profile of Jy(x, y = 512). This is the current component

flowing parallel to the channels and y = 512 corresponds to the middle of the samples.

We see that the current is smeared out much more for n = 5 than for n = 19. Neither

of the current profiles reach the critical sheet current perfectly. However, for n = 19

the current does not decay as quickly from the sample edge and reaches much closer to
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the local Jc. We see that the creep of current is much higher for n = 5 as much of the

current ends up in the middle of the sample. For high values of n we get closer to the

current assumed by our estimate from Section 2.2.2. Thus we need a high value for n if

we want to construct macroscopic anisotropy. Because n ∝ 1/T , high n corresponds to

low temperature. For higher values of n we increase the non-linearity of the resistivity in

Equation 1.34. This leads to increased numerical instability and therefore our simulations

for significantly higher n (n = 29 and n = 39) were not successful.
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(a) n = 5
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(b) n = 19

Figure 4.10: The current distributions and current streamlines for simulations where
n = 5 and n = 19.
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Figure 4.11: Comparison of current profiles for n = 5 and n = 19.
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4.4 Dendrites in sample with channels

In this section we will compare dendritic flux avalanches in uniform samples to avalanches

in samples with a periodic pattern of channels. For the uniform sample we have chosen

a system resolution (including vacuum) of 1024× 1024, where the sample is centered in

the middle and occupies 5/7 of the system. As before we use samples with n = 19 and

we have chosen b = c = 6 grid points. The samples are prepared for dendrite nucleation

by ramping the applied magnetic field Ha to a small value. We have used H̃a = 0.2

(dimensional less) before nucleation. Remember that in Section 1.10 we ramped up to

H̃a = 1.5 to reach full field penetration of the sample.

We will compare the dendrites in a sample of uniform Jc to the dendrites in the

sample with channels where Jc1 = 3/4Jc0. For the uniform sample we nucleate one

dendrite on the middle of the edge and one off center. The resulting dendrites are shown

in Figure 4.12(a) and 4.12(b). The dendrite which was triggered on the center of the edge

behaves quite symmetrically, Figure 4.12(a). Even though the branching is random, we

see that they are similar in length and direction on each side of y = 512. The dendrite

which is triggered off center tends to branch towards the diagonal of the sample. Both

of these dendrites show traditional behavior.
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(a) Dendrite triggered on the center of the edge
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(b) Dendrite triggered off center

Figure 4.12: Simulation results for dendritic avalanches in uniform samples.

For the samples with channels we trigger the dendrites at the same places as we did

for the uniform samples. However, because of the channels, we can rotate the sample by

90 degrees which results in a different situation. In Figure 4.13 we trigger the dendrites
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so that their initial direction of propagation is perpendicular to the channels. In Figure

4.14 the initial propagation is parallel to the channels. In both Figure 4.13 and 4.14

we can see that the channels have a huge impact on the morphology of the dendrites.

From the points of nucleation we see traditional branches which continue deep into the

samples. However, these main branches have many smaller side branches which follow

the direction of the channel pattern in a rather strictly. The length of these smaller

branches vary greatly. Even though the branches are very tightly spaced, we can see

that they manage to avoid crossing each other. This behavior is also found in traditional

dendritical avalanches.

0.06 0.00 0.06 0.12 0.18 0.24 0.30 0.36
H [dimensionalless]

200 300 400 500 600 700 800 900
x [gridpoints]

200

300

400

500

600

700

800

900

y 
[g

rid
po

in
ts

]

(a) Dendrite triggered on the center of the edge.
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(b) Dendrite triggered off center.

Figure 4.13: Simulation results for dendritic avalanches in samples with channels in the
vertical direction

We can group the dendrite branches into two groups: primary branches that cross the

channels and secondary branches propagate parallel to the channels. Primary branches

seem to favor a certain angle relative to the channels and this angle is approximately

equal. This angle may have a close relationship to the choice of b, c and Jc1/Jc0, but

this matter will not be investigated in this work. The branches in the uniform samples

seem propagate in a range of directions, while the dendrites in samples with channels

are restricted to a few general directions.

It is a philosophical question if the latter patterns are dendritic or not. On one

hand they contain classical branches, which we have named type primary branches. The

secondary branches, on the other hand, have a well defined direction of propagation

which are therefore not dendritic at all.
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(a) Dendrite triggered symmetrically on the edge.
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(b) Dendrite triggered asymmetrically.

Figure 4.14: Simulation results for dendritic avalanches in samples with channels in the
horizontal direction.

4.4.1 A closer look at secondary branches

It is natural to assume that the branches of the dendritic avalanches will follow the path of

lowest critical sheet current. That is because a lower sheet current density is necessary

to destroy the superconducting state in these regions. This section investigates this

phenomena in more detail. Thanks to Professor Tom Henning Johansen for suggesting

a more detailed study.

In this Section we will start to include information of the underlying matrix of critical

sheet current. Then we can do a more thorough analysis of what causes the interesting

branching patterns that we have described in the section before.

The simulation program provides us with several types of data that we can visualize.

We have already shown images of the magnetic field distribution, the magnitude of cur-

rent, current streamlines, individual components of the current field and the underlying

matrix for the critical sheet current. When we study flux avalanches we should also

study also study the temperature field T of the sample as it is central to the feedback

loop which destroys the superconducting state.

The information about the critical sheet current will be included by superimposing

a transparent layer of the Jc matrix above the image. In practice we scale the Jc matrix

by some small value, i.e. 5%, and add this to the matrix we are plotting. As an example

we can plot:

H(x, y) + 0.05Jc(x, y),
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where H(x, y) and Jc are dimensionalless units and Jc varies between 0.75 and 1. In

our plots the bright colors correspond to higher values and the dark colors correspond to

values closer to zero. Because Jc is lower in the channels, the resulting plots will leave

dark lines in the channels and slightly brighter lines where Jc is higher. It is important

to note that the additional transparent layer results in an error between the colors in

the figure and the actual values. In our plots the colors are about 0.05− 0.1 too bright

compared to the accompanying colorbars.
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(a) Plot of magnetic field H̃(x, y)
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(b) Plot of current J̃(x, y) and current streamlines.
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(c) Plot of temperature, T̃ (x, y)

Figure 4.15: Closer investigation the flux avalanche in Figure 4.14(b).
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In Figure 4.15 we investigate a close up of the avalanche in Figure 4.14(b). Fig-

ure 4.15(a) shows the magnetic field (where we welcome a colormap which results in

improved contrast) and Figure 4.15(b) shows the magnitude of current, including the

current streamlines. Figure 4.15(c) shows the temperature field T̃ , where T̃ = T/Tc. For

these figures we have applied the method of superimposing the Jc matrix.

In Figure 4.15(a) we can see two large primary branches, but the image is dominated

by branches following the direction of the channels. Surprisingly the secondary branches

are not propagating inside the channels, they are propagating along the boundaries

between high and low Jc. Also they do not follow every boundary, only every other

boundary. The avalanche in Figure 4.15(a) originates coming from the upper left (outside

the boundary of the image), spreading downwards to the right. When the main branches

cross a channel, nothing happens until it reaches the other side of the channel where

it meets the discontinuous increase in Jc. From here the primary branch splits into a

secondary branch. This happens every time the primary branch transitions from low to

high Jc and therefore we get a dense pattern of secondary branches with spacing equal

to b + c. In figure 4.15(a) the primary branches move in the positive x and negative y

direction. The secondary branches continue in the positive x direction, which is parallel

to the channels. We also see some very small primary avalanches which are moving in

the negative x and y direction. Their secondary avalanches continue in the negative x

direction. We observe that the secondary avalanches inherit their direction of propagation

from the primary branch, but only the component parallel to the channels of course. This

phenomenological analysis is consistent with the other simulation results in Figure 4.13

and Figure 4.14.

It is important to note that we are studying phenomena on pixel level and that the

critical current density changes discontinuously. These are both factors which decrease

the confidence in our analysis.

In Figure 4.15(b) we see that the secondary branches disrupt the current field. Wher-

ever the current streamlines cross the branches, we see kinks in the streamlines with a

varying degree of sharpness. We also see that the magnitude of current is at its highest

right outside the tips and the side of the branches.

The temperature field in Figure 4.15(c) shows how the temperature is raised inside

the dendrite branches. The bright dots we see, where we have secondary branches, are

a sign of errors in the numerical calculations. A point of interest is that the primary

branches of high temperature are not straight on the tip. Outside the channels we see

that the branch moves perpendicular to the channels. Inside the channels the branch

bends and becomes more diagonal. When the branch meets the boundary where Jc
increases, the channel splits in two: a secondary branch moving parallel to the boundary

of the channel and a continuation of the primary avalanche. The latter branch exits the

channel perpendicular to the boundary.
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4.4.2 Inner avalanches

I made a movie of the evolution of the magnetic field corresponding to Figure 4.14(b) and

Jørn Inge Vestgården noticed secondary avalanches inside secondary branches. To show

this we provide in Figure 4.16 close up images of the time evolution of H and T/Tc. The

Jc field is superimposed on the image with 5% opacity for magnetic field and current,

and 10% for temperature. The state of the system was recorded at 50 equidistant time

steps during the avalanche in Figure 4.14(b). In this section we study the consecutive

time steps from 20-28.

In Figure 4.16 the time steps are sorted so that the upper plots of Figures 4.16(a) and

4.16(b) correspond to the 20th time step and the bottom corresponds to the 28th time

step is at the bottom of the figure. In Figure 4.16(a) we see two secondary branches.

In the middle of each branch we can see increased intensity which spreads in the pos-

itive x-direction. This direction i also the original direction of propagation for these

secondary branches. The cause for this reintensification might be that the surround-

ing branches have stopped propagating and therefore flux must be transferred through

existing branches.

The temperature evolution shown in Figure 4.16(b) does not seem to change as

dramatically in the secondary branches, but the main branch becomes much warmer.

We interpret the individual spots of high temperature as numerical error. In Figure

4.16(b) it is easier to see how the primary branch bends inside the channel and exits

the channel perpendicular to the boundary of the channel2. The angle between primary

branches and the channels are likely related to this bending inside the channels.

2The primary branch may not exit the channel perfectly perpendicular to its boundary. However, we
are mostly interested in the tendencies in the morphology.
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(a) Magnetic field
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(b) Temperature

Figure 4.16: Inner avalanches observed during propagation of the dendrite in Figure
4.14(b). Each horizontal set of plots correspond to the same time step. The time evolu-
tion is ordered from top to bottom and the time intervals between each row of plots are
constant.

4.5 Dendrite where one half of the sample has reduced crit-

ical current

To get a better understanding of the behavior of secondary branches, we will now study

a sample where the northern half of the sample has reduced Jc. Specifically we have

chosen Jc1/Jc2 = 0.5, which is a very large difference in critical sheet current. The
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resolution of the system was 256× 256 grid points and the boundary between high and

low Jc is between y = 127 and y = 128. The magnetic field was ramped up to H̃ = 0.3

[dimensionalless]. Then a dendrite was triggered off center on the edge so that the

dendrite starts in the region where the critical sheet current is lowest. For this section

we have not superimposed the underlying Jc data in the plots. In Figure 4.17(a) we

can see how the primary branches are deflected and produce secondary branches along

the boundary. The dendrites are not able to penetrate into the southern part because

the increase in Jc is so much larger in that region. In Figure 4.17(a) we see that the

magnitude of the current is low. The highest value is well below Jc1/Jc0 = 1/2. We

must remember that the critical sheet current is a function of the local temperature.

The temperature field is shown in Figure 4.17(c). Whenever

T (x, y)/Tc > 1, (4.8)

the superconducting state is destroyed at (x, y). The other condition for the supercon-

ducting state is that

J/Jc < 1. (4.9)

In the simulation we have used the following temperature dependence for the critical

sheet current:

Jc(T ) = Jc(1− T/Tc) for T < Tc (4.10)

Inserting this dependence into Equation 4.9 we get the following two conditions for the

superconducting state at (x, y):

J(x, y)/Jc(x, y)(1− T/Tc) < 1 for T < Tc

T (x, y)/Tc < 1
(4.11)

If either of the above conditions are not satisfied, we classify the material as normal at

(x, y). If both of the conditions are satisfied, we can quantify the local vulnerability

V (x, y, T (x, y)) of the superconducting state by the ratio J(x, y)/Jc(x, y, T ):

V (x, y, T ) ≡ J(x, y)

Jc(x, y, T )
=

J(x, y)

Jc(x, y)(1− T/Tc)
for T < Tc and J(x, y) < Jc(x, y)

(4.12)

We define V (x, y, T ) ≡ 1 whenever T ≥ Tc or J ≥ Jc. From these definitions we can

plot V (x, y) as shown in Figure 4.17(d). We see that the vulnerability has a much larger

value for y ≥ 128 than for y < 128. y ≥ 128 corresponds to the part of the sample where

Jc has been reduced. All the avalanches propagate in this region and it is obvious that

it is more vulnerable to breakdown compared to the other half of the sample.

We will study the largest secondary branch in Figure 4.17 in more detail. In Figure

4.18 we show close up images of the time evolution of H̃ and J/J(x, y) for this branch.
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(a) Final state of the magnetic field distribution.
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(b) Final state of the current distribution, in-
cluding current streamlines.
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(c) Final state of the temperature field.
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(d) The local vulnerability of the superconductor
in the final state.

Figure 4.17: The final state of an avalanche in a sample where the northern half has half
the critical sheet current relative to the southern part.

Both the magnetic field and the current are the most intense at the point where the

primary branch encounters the boundary of the high Jc region. These maxima should

be important for the further propagation of primary branches in samples where the

avalanche is able to cross the high Jc regions. For this sample the difference in Jc is

simply too large for further propagation of the primary branch. In Figure 4.18 we also

see a local maxima in field and current at the tip of the secondary branch. The time

evolution of the temperature field is shown in Figure 4.19(a). We can see that along
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the secondary branch there are many small peaks in temperature(bright dots). This is

most likely caused by numerical errors in the simulation, as stated earlier. We see that

the temperature traces the boundary very strictly within the time interval that we are

studying.

The part of the sample with reduced Jc lies in the region with y > 127. This region

is much brighter in Figure 4.19(b). Hence its vulnerability is higher. The vulnerability is

at its highers at the tip of the secondary branch, at the row y = 128 which is the closest

row to the region of large Jc. Thus the vulnerability is typically highest at the tip of the

secondary branch, close to the boundary between high and low Jc. It is therefore no longer

any surprise that the secondary branch follows the boundary, with some exceptions. In

this simulation, the primary branch did not propagate into the region of high Jc. If it

did, we would expect it to propagate into the pixels (x, y) for which V (x, y) is minimum.

In Figure 4.19(b) we see that the pixels at y = 127 have a low value. However V (x, y)

has a maximum at about (x = 111, y = 125), let us call this point m. The primary

branch ends at about (x = 111, y = 128), which we can call e. If the primary dendrite

was to continue propagating along the shortest path from m to e, it would cross the

boundary perpendicularly. This may be the explanation why the primary temperature

branch in Figure 4.16(b) tends to cross the channels perpendicularly to the channels.

If the difference in Jc is small, we would expect the dendrite to spend minimal time

crossing the boundary. In that case it would most likely just cross in the point where it

encounters the boundary.

The part of the sample with reduced Jc lies in the region with y > 127. This region

is much brighter in Figure 4.19(b). Hence its vulnerability is higher. The vulnerability

is at its highest at the tip of the secondary branch, at the row y = 128 which is the

closest row to the region of large Jc. Thus the vulnerability is typically highest at the

tip of the secondary branch, close to the boundary between high and low Jc. It is

therefore no longer any surprise that the secondary branch follows the boundary, with

some exceptions. In this simulation, the primary branch did not propagate into the

region of high Jc. If it did, we would expect it to propagate into the pixels (x, y) for

which V (x, y) is minimum. In Figure 4.19(b) we see that the pixels at y = 127 have

a low value. However V (x, y) has a maximum at about (x = 111, y = 125), let us call

this point m. The primary branch ends at about (x = 111, y = 128), which we can call

e. If the primary dendrite was to continue propagating from m to e, it would cross the

boundary perpendicularly. This may explanation why the primary temperature branch

in Figure 4.16(b) tends to cross the channels perpendicularly to the channels. If the

difference in Jc is small, we would expect the dendrite to spend minimal time crossing

the boundary. In that case it would most likely cross in the point where it encounters

the boundary.
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(a) Evolution of the magnetic field around the
boundary
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(b) Evolution of the current and current
streamlines around the boundary

Figure 4.18: Close up time evolution of magnetic field and current at the boundary
between high and low Jc.
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(a) Evolution of temperature around the
boundary.
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(b) Evolution of vulnerability around
the boundary.

Figure 4.19: Close up time evolution of temperature and vulnerability at the boundary
between high and low Jc.
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Conclusion

We have invented a method for producing anisotropy in computer simulations of su-

perconducting thin films. This was achieved by reducing the critical sheet current in a

stripewise pattern across the film. These stripes of reduced critical sheet current have

been called channels and we chose the width of the channels to be equal to the spacing

in between them. For samples without flux avalanches, the channels can be interpreted

as regions where the thickness of the material is reduced. The current was found to be

anisotropic on a length scale much larger than the width of these channels, even though

it is isotropic on the microscopic scale.

The resulting anisotropy was much weaker than we expected from our theoretical

predictions. It turns out that flux creep destroys the anisotropy we try to produce. If

the creep exponent was chosen to be low, i.e. n = 5, the anisotropy would vanish. For

less flux creep, i.e. n = 19, we got a rather weak anisotropic effect. For even higher values

of the creep exponent, the simulations were unstable. When our choice of parameters

were appropriate, the resulting anisotropy factor was typically measured to be about half

of the predicted value.

The largest anisotropy factor a ≈ 1.12 was found for a sample where the critical sheet

current was reduced by 30 % in the channels. However this simulation took more time

than for more moderate reductions of Jc. In general the channels introduces numerical

instability because of the discontinuous changes in Jc. More gradual variations in Jc will

not necessarily resolve this issue. This is because a gradual change is impossible on the

length scale of single pixels, even though the discontinuous jumps would be smaller.

An algorithm was developed for the purpose of drawing streamlines in samples with

channels. There are some situations where it can be used to assist our intuition about

Bean model streamlines. However one must be careful in order to avoid round off errors

in the distance between the streamlines.

After the model for anisotropy had been studied we investigated the behavior of

magnetic flux avalanches in such samples. The avalanches made dendritic patterns, but

65
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we also observed flux branches which traced the boundaries where Jc increases discon-

tinuously. This type of branches were named secondary branches. By studying the

local vulnerability of the superconducting state, we found an explanation for this phe-

nomenon. When the avalanche approaches a boundary where Jc increases discontinu-

ously, the boundary was found to be vulnerable to breakdown.

Inside secondary branches we found secondary avalanches. This is seen as reintensi-

fication of the magnetic flux inside the branch.

From our research we have increased our understanding of magnetic flux avalanches

in samples where the critical current density is not uniform. If nontraditional branching

patterns are observed in experiments, one should consider the possibility that pertur-

bations in Jc may be the explanation. However in real samples we would expect the

variation of Jc to be more subtle and thus the secondary branches would also be more

subtle.

There are still matters that should be investigated when it comes to avalanches

in samples with channels. Obviously we would like to see experimental verification.

However it will be difficult to synthesize this type of samples. In our simulations we

would like to investigate branching patterns in samples where the perturbations are

more subtle.



Appendix A

Program code for simulating

streamlines in a sample assuming a

Bean model

Main program written in the Julia programming language1:

include("helpingfunctions.jl")

outfile = "streamlines.csv"

infilename = "jc.csv"

numberOfLines = 50

data = initialize(infilename, numberOfLines)

J = solve(data)

println("I am done with computing the streamlines,

but I have to write the data to file.")

writecsv(outfile, float(J))

print("I am done with everything. Data stored in "

* string(outfile) )

File "helpingfunctions.jl":

function initialize(filename, numberOfLines::Int64)

# critical current init:

jc = readcsv("jc.csv")

s = size(jc)

#rows and collumns:

nx = s[1]

ny = s[2]

# distance between streamlines:

distance = zeros(Int64, (nx,ny))

distanceScaling = round(min(nx, ny) / (2.0*numberOfLines))

1See http://julialang.org/ for the official documentation of the Julia programming language.
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println("nx, ny = " * string(nx) * ", " *string(ny))

println("distanceScaling = " * string(distanceScaling))

for i in 1:nx

for j in 1:ny

distance[i,j] = round(distanceScaling/jc[i,j])

end

end

# The matrix of current stream lines:

J = falses(nx, ny)

J[1,:] = true

J[nx,:] = true

J[:,ny] = true

J[:,1] = true

# the indices for which J[currIndX[k],currIndY[k]]

# are true:

currIndX = Int64[]

currIndY = Int64[]

for i in 1:nx

for j in 1:ny

if J[i,j]

push!(currIndX, i)

push!(currIndY, j)

end

end

end

# boolean matrix init:

boolMat = trues(nx,ny)

return (distance, J, nx, ny, currIndX, currIndY, boolMat)

end

function solve(data)

dist, J, nx, ny, currIndX, currIndY, boolMat= data

# As long as there is space for more current in the current

# matrix J:

while any1(boolMat)

# Update which elements of the sample that we are allowed

# to add current to:

updateBoolMat(currIndX, currIndY, dist, nx, ny, boolMat)

# From a new boolean matrix created above we will

# drawCurrentline the next iteration of current lines:

currIndX, currIndY = drawCurrentline(boolMat, J, nx, ny)

end

return J

end

"""
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Checks if multidimensional bitarray has a 1

returns true if one or more elements contains 1

"""

function any1(mat::BitArray{2})

s = size(mat)

for h in 1:s[1]

for k in 1:s[2]

if mat[h,k]

return true

end

end

end

return false

end

"""

Given the indices of the latest streamlines,

the function modifies the booleanMatrix.

The elements of the booleanMatrix which are

within a certain distance of streamline elements

are set to zero.

"""

function updateBoolMat(currIndX::Array{Int64,1},

currIndY::Array{Int64,1},

distance::Array{Int64,2},

nx::Int64, ny::Int64,

bolsk_matrise::BitArray{2})

s = size(currIndX)

length = s[1]

# Iterate through the elements that are within

# a distance distance[x,y] of element (x,y)

for k in 1:length

x = currIndX[k]

y = currIndY[k]

spacing = distance[x,y]

spacing2 = spacing*spacing

i_min = max(x - spacing, 1)

i_max = min(x + spacing, nx)

for i in i_min:i_max

deltaX = i-x

deltaX2 = deltaX*deltaX

inted_semi_circle = isqrt(spacing2 - deltaX2)

j_min = max(1, y - inted_semi_circle )

j_max = min(ny, y + inted_semi_circle)

for j in j_min:j_max

bolsk_matrise[i,j] = 0

end

end

end

end
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function testIfNeighboursHave0(mat::BitArray{2},

x::Int64, y::Int64,

nx::Int64, ny::Int64)

# Avoid index out of bouds errors:

i_min = max(1,x-1)

j_min = max(1,y-1)

i_max = min(nx,x+1)

j_max = min(ny,y+1)

# check elements:

for i in i_min:i_max

for j in j_min:j_max

if !mat[i,j]

return true

end

end

end

# returns false if no zeros in neighbours

return false

end

"""

Given a BitArray{2}, yields an the indices of

where current lines should be placed.

"""

function drawCurrentline(boolMat::BitArray{2},

J::BitArray{2}, nx::Int64,

ny::Int64)

currIndX = Int64[]

currIndY = Int64[]

for i in 1:nx

for j in 1:ny

# if the element is true and at least one of its

# neighbours are false

if boolMat[i,j] && testIfNeighboursHave0(boolMat,

i, j,

nx, ny)

# Dra a pixel of current

J[i,j] = 1

# Add the indices of new current pixel to the

# current indices:

currIndX = push!(currIndX, i)

currIndY = push!(currIndY, j)

end

end

end

return currIndX , currIndY

end
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Program code for calculating

magnetic field from segments of

current

Main program:

include("helpingfunctions.jl")

filenameForJx = "jx.csv"

outfilename = "resultatH.csv"

JcInfilename = "jc.csv"

startIndex = 146

# We have to make a matrix for the current:

jx, nx, ny = makeJx(JcInfilename, 1.0958,-13.988, startIndex, filenameForJx)

# Then calculate the magnetic field from the current matrix:

magneticField = zeros(nx,ny)

magneticField = startCalculations(magneticField, jx, nx, ny)

# Write results to file:

writecsv(outfilename, magneticField)

println("Done with calculations")

File "helpingfunctions.jl":

"""

Starts and runs the calculation of the magnetic field.

"""

function startCalculations(magneticField::Array{Float64,2},

jx::Array{Float64,2}, nx::Int64, ny::Int64)

half = round(Int64, nx/2)

for i in 1:nx

for j in 1:ny

if abs(jx[i,j]) > 0.0

H(i, j, magneticField, jx[i,j], nx, ny)

end

71
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end

println(i)

end

magneticField = magneticField / (4.0*pi)

return magneticField

end

"""

For the special case of current parallel to the x direction,

the function H calculates the z component of the magnetic field,

contributed by the current in current[x,y], in the x,y plane

"""

function H(x::Int64, y::Int64, field::Array{Float64, 2},

current::Float64, nx::Int64, ny::Int64)

for i in 1:nx

cathetus_x = i-x

# Precalculate some reused variables:

cathetus_x2= float(cathetus_x * cathetus_x)

current_cathetus_x= current * cathetus_x

# If i = x => dB[i,:] = 0, i != x => (x,y) != (i,j)

if (i!=x)

for j in 1:ny

cathetus_y= float(j-y)

hypotenuse = sqrt(cathetus_x2 + cathetus_y*cathetus_y)

field[i,j] += current_cathetus_x /hypotenuse^3

end

end

end

end

"""

Only works for jc.txt with two different values

"""

function makeJx(filenameJc, gradient::Float64,

constant::Float64, start::Int64, outFilenameJx)

jc = readcsv(filenameJc)

nx, ny = size(jc)

jx = zeros(nx, ny)

Jmax = float(maximum(jc))

Jmin = float(minimum(jc))

averageJc = (Jmax+Jmin)/2.0

i = start

ymin = round(Int, gradient*i + constant)

ymax = round(Int, ny/2)

# We need to set the currents in a triangle:

while ymin < ymax

ymax = ny/2

for j in ymin:ymax

# If jc is not the high value

if abs(jc[j,i]) < averageJc

jx[i,j]=Jmin
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else

jx[i,j]=Jmax

end

end

i+=1

ymin = round(Int, gradient*i + constant)

end

writecsv(outFilenameJx, jx)

return jx, nx, ny

end
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