
Porting the Distributed Object
Language Emerald to iOS
“iOS: the final frontier. These are the students of Emerald. Its two-year

mission: to explore object mobility, to seek out new platforms and new

users, to boldly go where no man has gone before.”

Audun Øygard

Master’s Thesis Autumn 2016

Abstract

This thesis discusses the research and implementation of porting a dis-
tributed object-oriented programming language known as Emerald, to
iOS devices.

Our goal is to make a working implementation of the Emerald program-
ming language on an iOS device and make this device communicate
seamlessly with Emerald on other platforms.

We have successfully ported Emerald to an iOS device and further ex-
perimented with various use cases and performed an evaluation.
The evaluation includes benchmarking of the implementation and an
evaluation of iOS as a development platform.

Our work concludes that an implementation is not possible without
jailbreaking the device, and further, that with a jailbroken device we
get an adequately performant implementation. We have also concluded
that developing such "outlying" applications on iOS is unnecessarily dif-
ficult.

i

ii

Acknowledgements

I would like to thank my supervisor Eric Bartley Jul, who offered me
this thesis and have been providing valuable feedback and invaluable
beer along the way.

I would also like to thank my fellow students on the 10th floor for the
many coffee breaks.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Goal . 4
1.3 Approach . 4
1.4 Work done . 4
1.5 Results . 4
1.6 Contributions . 4

1.6.1 Ported the Emerald runtime to iOS 5
1.6.2 Created a native iOS application using the port . . . 5
1.6.3 Evaluated the performance of the port for iOS 5
1.6.4 Briefly evaluated iOS as a development platform . . 5

1.7 Conclusion . 5
1.8 Outline . 6

II Background 7

2 Background 9
2.1 Distributed systems . 9
2.2 Object-oriented programming 11

2.2.1 History . 11
2.2.2 Concepts . 11

2.3 Distributed objects . 12
2.4 Planetlab . 14
2.5 Smartphones . 15
2.6 Summary . 15

3 Emerald 17
3.1 The Emerald programming language 17

v

3.2 Objects in Emerald . 19
3.3 Types in Emerald . 19
3.4 Distribution in Emerald . 20
3.5 Summary . 21

4 iOS - the Apple smartphone OS 22
4.1 The iOS operating system 22
4.2 The history of iOS . 24
4.3 iOS development . 25

4.3.1 Supported programming languages 25
4.3.2 Objective-C . 25
4.3.3 Swift . 26
4.3.4 Automatic Reference Counting 27
4.3.5 Xcode . 28

4.4 Core frameworks and APIs 29
4.4.1 Foundation . 29
4.4.2 UIKit Framwork . 30
4.4.3 iOS SDK . 30

4.5 The Apple publishing process 31
4.6 Summary . 31

III Porting Emerald 32

5 Porting Emerald 33
5.1 Running Emerald on an unmodified device 33

5.1.1 Bypassing the App Store 35
5.1.2 Cross-compiling Emerald 36
5.1.3 Sideloading . 37
5.1.4 Jailbreaking . 39

5.2 Porting Emerald to a jailbroken device 40
5.3 Summary . 43

6 iOS application 44
6.1 Overview . 44
6.2 Main menu . 46
6.3 Compiler view . 47
6.4 Connection view . 48
6.5 Program view . 49
6.6 The Emerald console . 51

vi

6.6.1 The console . 51
6.6.2 Emerald runner . 52
6.6.3 Console view controller 55

6.7 Summary . 59

7 Distribution with Cydia 60
7.1 Creating the packages . 60
7.2 Hosting the repository . 61
7.3 Summary . 62

8 Performance and Evaluation 64
8.1 The tests . 64

8.1.1 Basic performance . 64
8.1.2 Evaluation criteria . 66
8.1.3 Distribution tests . 66
8.1.4 Evaluation criteria . 67

8.2 Basic performance . 68
8.2.1 Thread spawning . 68
8.2.2 Thread spawn performance 69
8.2.3 Heavy calculation test 70

8.3 Distribution tests . 71
8.3.1 Phone to phone . 71
8.3.2 Phone to local machines 73
8.3.3 Phone to remote server 74
8.3.4 Phone to Planetlab . 76

8.4 Evaluation iOS as a development platform 79
8.5 Summary . 79

IV Conclusion 81

9 Conclusion 82
9.1 Contributions . 82

9.1.1 Porting Emerald to iOS 82
9.1.2 Performance evaluation 83

9.2 Future work . 83

Appendices 85

vii

A Code 86
A.0.1 Maximum supported threads 86
A.0.2 Thread spawn performance 87
A.0.3 Calculation test . 87
A.0.4 Round-trip-time . 88
A.0.5 Computational offloading 89

viii

List of Figures

2.1 An example of an Java class representing a car 12
2.2 A remote object and its remote interface 13
2.3 A map showing the distribution of Planetlab nodes. 14

3.1 An example of an object in Emerald 19
3.2 Moving an object through all the active nodes in a system . 21

4.1 Evolution of the iOS homescreen from iPhone OS 1 to iOS 8. 25
4.2 An example of a interface in objective-C 26
4.3 An example of a interface in objective-C 27
4.4 Initalizing, assigning and appending a string in objective-C

and Swift . 27
4.5 A storyboard showing 4 views and several segues. 29

5.1 A failed attempt at making Xcode compile Emerald auto-
matically . 34

5.2 The PanGu jailbreak tool . 41
5.3 SSH connection to the jailbroken iPhone 41
5.4 Emerald running successfully on iOS. The error messages

is caused by network restrictions, not the application. . . . 42

6.1 An overview of the program flow. 45
6.2 The main view. 46

7.1 Cydia showing the Emerald packages for installation . . . 62

ix

List of Tables

8.1 Performance specifications for basic performance tests . . 65
8.2 Performance specifications 67
8.3 Spesification of Planetlab nodes 76

Part I

Introduction

1

2

Chapter 1

Introduction

The iOS platform with its many security features and limitations could
be described as the Fort Knox of smartphones.
In this thesis, we try to mitigate, work around and otherwise break
these security features to be able compile and run Emerald programs
on iOS.
Previous implementations of Emerald exists on many platforms includ-
ing Android and with this thesis, we hope to bring a truly great dis-
tributed programming language used by dozens of people around the
world every year to the iOS platform.

1.1 Motivation

Emerald implements the idea of fine grained mobility [10], this means
that any object of any size can be freely moved around in the distributed
system. Any entity can easily be moved by the programmer e.g. from a
mobile device to a data center and vice versa.
From a mobile point of view this can have many advantages, like off-
loading a heavy computations to a cloud service and moving a process
closer to a network node to lower the latency.
Because Emerald runs on most modern operating systems including
the mobile operating system Android it will be beneficial to expand the
reach to other mobile operating systems for a more ubiquitous experi-
ence.
As of the fourth quarter of 2014 Android covers 76.6% of the marked
share for mobile operating systems while iOS covers 19.7%. [1] This
means that with an implementation of Emerald for iOS Emerald can be

3

used on over 96% of the mobile phones in the world.

1.2 Goal

Our goal is to expand Emerald’s reach further by making an working
implementation for the iOS operating system.

1.3 Approach

We take an existing programming language and try to port it to an iOS
device. Finally, we evaluate the results and evaluate the suitability of
the iOS platform for such a task.

1.4 Work done

We have jailbroken an iOS device and ported the Emerald runtime to
run in this environment. Further, we built an native iOS application as
a front-end to the runtime, and measured how well the implementation
performs on the device.

1.5 Results

We have successfully ported Emerald to an jailbroken iOS device and
showed the following results:

• Basic performance: We have shown that the basic performance
of the Emerald implementation is reliable, but somewhat slower
compared to our other test beds.

• Distribution performance: Using distribution of objects we have
shown that computational offloading can be very beneficial over
doing all the computation on the device.

1.6 Contributions

We have contributed on the following:

4

• Ported the Emerald runtime to iOS

• Created a native iOS application using the port

• Evaluated the performance of the port for iOS

• Evaluated iOS as a development platform.

1.6.1 Ported the Emerald runtime to iOS

We ported the Emerald runtime to run on the iOS architecture by cross-
compiling the source code using the iOS SDK provided clang compiler.
However, the iOS environment is so restrictive that to allow execution
of this binary, we had to jailbreak the device to be allowed to run it.

1.6.2 Created a native iOS application using the port

We created an native iOS application for convenient use of Emerald on
the device. The application acts as a front-end for the Emerald runtime,
letting us compile and run Emerald programs directly from the device.

1.6.3 Evaluated the performance of the port for iOS

We have evaluated the performance of distributing objects with Emer-
ald for iOS. We have also shown the performance benefits computa-
tional offloading and moving objects for latency reduction gives us.

1.6.4 Briefly evaluated iOS as a development plat-
form

We briefly evaluated iOS as a development platform concluding that
when developing "normal" applications the platform is top notch, but it
gives us some problems when developing niche applications like Emer-
ald.

1.7 Conclusion

We successfully ported Emerald to iOS by cross-compiling the source
code for the different iOS architectures. Because of the limitations that

5

is set by the platform we needed to jailbreak a device to run the cross-
compiled binary. Further we built an native iOS application acting as a
front-end for the ported Emerald version, making it easy to use on the
device.

1.8 Outline

Chapter 1: Introduction
Gives a brief introduction to the thesis and the work performed.

Chapter 2: Background
Provides background information on Distributed systems, Object ori-
ented programming, distrusted objects, Planetlab and smartphones.

Chapter 3: The Emerald programming language
Gives a brief overview of the Emerald programming language.

Chapter 4: iOS - the Apple smartphone OS
Provides a overview and a short history if iOS.

Chapter 5: Porting Emerald
Covers the steps of porting Emerald to the iOS architectures.

Chapter 6: iOS application
Explains the implementation of the Emerald iOS application.

Chapter 7: Distribution with Cydia
Briefly covers the steps of distributing the port and the iOS application
with Cydia.

Chapter 8: Performance and Evaluation
Covers the results of the performance and evaluation of the port and
iOS as a development platform.

6

Part II

Background

7

8

Chapter 2

Background

This chapter introduces basic concepts within distributed systems, gives
an introduction and a brief history to object oriented programming, dis-
tributed objects, Planetlab and smartphones in general.

2.1 Distributed systems

A distributed system is defined as one which hardware or software com-
ponents located at networked computers communicate and coordinate
their actions only by passing messages. [2]

Ghosh [3] also argues that a system can not truly be called a distributed
system unless the interaction of the components works together to meet
a common goal and further suggests that a distributed system fulfills
the following criteria:

• The system consists of more than one independent process.

• Processes communicate with message passing.

• Processes have disjoint address spaces, in principle meaning no
shared memory.

One of the motivations behind such systems is to be able to share the re-
sources each individual machine have among the other nodes in the net-
work. In this context, a resource could be anything from sharing CPU-
time for load balancing, sharing local data or more concrete resources
such as a peripheral device (printer, CD-ROM, etc.). Another important

9

motivation for distributed systems is fault tolerance. With a distributed
system you can avoid having a single point of failure and instead have
several nodes performing the same work avoiding a complete system
collapse or a single computation error propagating through the sys-
tem. [3]
There exists a wide variety of distributed systems but one of the main
ways of separating them is the coupling level of the processors in the
system. [14] This ranges from tightly coupled systems where the pro-
cessors work in synchrony communicating fast and reliably, to systems
where the processors are more independent and communication is less
frequent.

Examples of distributed systems: [3]

• The Internet — The World Wide Web is the largest distrusted sys-
tem we have with web servers, file servers, dns servers etc. spread
over the whole planet and some end nodes even in interplanetary
space.

• Social networks — Facebook has several data centers, load bal-
ancers and servers around the globe and is essentially a distrusted
system.

• Banking systems — Banking systems can be seen as distributed
systems with ATMs, branch offices and backend servers and ser-
vices spread through different cities and countries.

• Peer-to-peer systems — Peer-top-peer systems such as Gnutella,
Bittorrent etc. is an distributed system because the resources (pro-
cessing power, network bandwidth, disk storage etc.) are dis-
tributed amongst its nodes ("peers") without any central coordi-
nation.

• Folding@home — A distributed computing project for disease re-
search that simulates protein folding. Everyone can install the
software and it will use the idle processing power to add to the
processing power of the system.

• Sensor networks — Distributed sensor networks such as battle-
field surveillance and home automation are also examples of dis-
tributed systems.

10

2.2 Object-oriented programming

2.2.1 History

The concept of objects in a programming language was first introduced
in the programming language Simula 67 in 1967 by Kristen Nygaard
and Ole Johan Dahl at the Norwegian Computing Center in Oslo. [4]
The motivation behind this was to provide a set of tools for expressing
unifying properties among related processes in a system and Simula
was the first language to introduce concepts we know from modern
programming languages such as objects, classes, subclasses and inher-
itance.
Object-oriented programming had a rise in use and popularity in the
1990s and onwards when languages such as C++ and Java became
widely available.
In figure 2.1, we see an example of a Java object representing a car.

2.2.2 Concepts

In object-oriented programming languages an object consists of a set
of operations on some hidden data. [12] These operations serves as an
interface that we interact with, which in turn interacts with the data
encapsulated by the object.
The objects serves as a way to encapsulate functionality and data that
fits logically together, and object-oriented design consists of identifying
these structures and the relations between them.
Four basic concepts for object-oriented languages: [12]

• Dynamic lookup — When using an object, the code that is executed
is determined by the way the object is implemented.

• Abstraction — The implementation details are hidden inside the
object and we interact with the object through its public opera-
tions, that in turn manipulates the objects internal data.

• Subtyping — If some object A has all the functionality of an object
B we can use object A where an object B is expected.

• Inheritance — Inheritance reuses the definition of one object to
create another type of object.

11

1 public class Car {
2
3 int currentSpeed;
4
5 public void accelerate() {
6 }
7
8 public void deaccelerate() {
9 }

10
11 public void getCurrentSpeed() {
12 }
13 }

Figure 2.1: An example of an Java class representing a car

2.3 Distributed objects

Because object-oriented programming enforces the use of encapsula-
tion this results in programs that are partitioned into logical parts. This
again means that the distribution of these objects to other computers
or processes is a natural extension of this modular design.

Distributed objects can use the server-client pattern where the objects
are maintained by its server and the clients uses RMI (Remote Method
Invocations) to access the objects on the server. [2]
Because the objects are only accessed through its methods, the state of
the objects may only change through these remote invocations.

This gives rise to several advantages: [2]

• Security — Unauthorized methods cannot change the state of the
object.

• Implementation — The implementation of the methods can differ
from system to system as long as it conforms to the objects defini-
tion.

• Concurrency — The use of synchronization primitives in the meth-
ods can protect from conflicting access to the object instance vari-
ables.

Another convenient pattern introduced with distributed objects is ob-
ject replication. Object replication is where an object is distributed

12

amongst several hosts to achieve higher fault tolerance and possibly
higher performance.

The distributed object model have two fundamental concepts at its
core: [2]

• Remote object references — A remote object reference is an global
identifier that can be used through the distributed system to refer
to a object This is different from the local reference to the object.

• Remote interfaces — A remote interface is a interface describing
which of the objects methods that can be invoked remotely. In
figure 2.2 all the remote objects methods are also described in its
remote interface.

Figure 2.2: A remote object and its remote interface

13

2.4 Planetlab

Planetlab is a global research network used as a network testbed for
distributed system research and other academic research requiring a
planetary-scale network.
The project started in 2002 with one hundred machines funded by Intel
Research and has since grown into a much larger network.
The idea behind Planetlab is to have a network testbed that operates
under real-world condition and at a planetary-scale. Planetlab cur-
rently consists of over 1000 nodes placed all around the world and each
project is given a slice of these nodes to perform on. Since the start of
Planetlab more than 1000 researchers have used PlanetLab to develop
new technologies for distributed storage, network mapping, peer-to-
peer systems, distributed hash tables, and query processing.
To have access to Planetlab you have to be a member of an institution
that is a member of the PlanetLab Consortium.

Figure 2.3: A map showing the distribution of Planetlab nodes.

14

2.5 Smartphones

After the first modern smartphones emerged in the early 2000s, mostly
adopted by business users with phones like the BlackBerry, the adop-
tion of smartphones has exploded around the world.
The smart phone usage in Norway in the first quarter in 2015 is in a
gallup conducted by TNS Gallup estimated to be 84%. [11]
The forerunners to the modern smartphone was the PDAs of the late
1990s, which started with the IBM Simon developed in 1992 and mar-
keted to consumers in 1994. [15] IMB Simon had a monochrome touch-
screen, built in applications for e-mail, calendar, clock and featured
predictive typing as seen in modern smartphones.
The IBM Simon sold about 50,000 units and the next-generation was
abandoned by IBM.
After the IBM Simon the next step in the history of smartphones was
the PDAs running operating systems such as BlackBerry OS, Windows
CE and Palm OS.
These did not have the mobile phone aspects that smartphones or the
IBM Simon had.
The Ericson R380, released in 2000 was the first mobile phone mar-
keted as a smartphone, and was the first device to use device to use
Symbian OS. In 2007, Apple Inc. released the first generation iPhone
most notable for its large touchscreen and the use of ones finger as the
main means of interaction in contrast to the stylus that previous touch-
screens used.
The year after, in 2008, the first smartphone with the Android OS was
released by HTC with the HTC Dream.
By the 4th quarter of 2010 Android overtook iOS as the best-selling
smartphone OS. [16].

2.6 Summary

In this chapter, we describe basic concepts of distributed systems and
define it as a system where hardware or software components located
at networked computers communicate and coordinate their actions only
by passing messages.

We explain how object oriented programming was first introduced with

15

the Norwegian programming language Simula and how in object ori-
ented programming we encapsulate data and functionality that fits to-
gether in logical units called objects.

We explain distributed objects and how it has two fundamental con-
cepts: remote object references and remote interfaces.

We also introduce Planetlab, a planet wide research network and gave
a quick summary of the history of smartphones.

In the next chapter, we describe the Emerald programming language
in more detail.

16

Chapter 3

Emerald

In this chapter, we introduce the Emerald programming language.
We explain the ideas and the history of the language, we and explain
Emerald objects, the type system and the distribution primitives.

3.1 The Emerald programming language

Emerald is a distributed object programming language developed in
the 1980’s by Eric B. Jul, Norman C. Hutchinson, Andrew P. Black and
Henry M. Levy at the Department of Computer Science at the Univer-
sity of Washington.
At the time, previous distributed programming languages used a twofold
computational model, one for migrating entities and one for locally ex-
ecuting entities. Emerald tried to address this with using an uniform
object model for both distributed objects and local objects, while simul-
taneously having comparable performance to procedural languages at
the time.

Emerald was designed around these three ideas: [10]

• A uniform object model for both local and distributed computation

• On-the-fly fine-grained mobility

• Language support for mobility to achieve an efficient implementa-
tion

By uniform object model, we mean that all data (small objects, big ob-
jects, objects with processes etc.) is represented as actual objects, and

17

is accessed using a single mechanism (object invocation). This is differ-
ent from other distributed programming languages that use a twofold
computational model where the programmer uses two different mech-
anisms for local and remote objects.

On-the-fly fine-grained mobility refers to the way that objects of any
size can be moved (fine-grained) at any time (on-the-fly) even while the
object has processes executing within it. As opposed to coarse-grained
mobility where an entire process and its address space is moved to-
gether.

Emerald achieved large gains in efficiency over previous systems at
the time. These gains stems from the following design decisions: [10]

• Integrating the object concept (including mobility) into the pro-
gramming language.

• Close cooperation between the compiler and the runtime system.

• A single address space for all implemented objects on a node.

Benefits gained from Emerald’s mobility and mobility in general:
[10]

• Communication performance — Objects that interact intensively
can be moved closer together (even on the same node).

• Load sharing — By moving objects around we can utilize unused
resources.

• Availability — Data can be replicated and moved to different nodes
to provide higher data availability.

• User mobility — A users processes can be moved around seam-
lessly with the user.

• Reconfiguration — Programs can be moved to other nodes during
down-time to provide uninterrupted service.

• Special capabilities — Programs can be moved to nodes that have
some special capabilities that other nodes may not possess.

18

3.2 Objects in Emerald

An object in Emerald consists of: [10]

• A network wide-network identity

• The local data of the object (Primitive objects or pointers to other
objects).

• The objects operations. Exported operations can be invoked out-
side of the object while non-exported operations can only be in-
voked inside the object. Similar to public/private in Java.

• The optional initially operation that is executed when the object
is created.

• The optional process operation that is executed after the object
is initialized.

Figure 3.1 is an example of an Emerald object with a process and a
local operation.

1 const obj <- object Example
2 const hello <- "Hello, World!\n"
3
4 operation printHello [] -> []
5 stdout.putString[hello]
6 end printHello
7
8 process
9 self.printHello

10 end process
11 end Example

Figure 3.1: An example of an object in Emerald

3.3 Types in Emerald

The type system in Emerald is based on abstract types.

"An abstract type defines a collection of operation signa-
tures, that is, operation names and the types of their ar-
guments and results. All identifiers in Emerald are typed:

19

the programmer must declare the abstract type of the ob-
jects that an identifier may name. An abstract type is rep-
resented by an Emerald object that specifies such a list of
signatures." [5]

The abstract type of the object being assigned must conform to the
abstract type of the identifier. Conformity is the basis of type checking
in Emerald. Informally, a type S conforms to a type T (written S > T)
if: [5]

• S provides at least the operations of T (S may have more opera-
tions).

• For each operation in T , the corresponding operation in S has the
same number of arguments and results.

• The abstract types of the results of S’s operations conform to the
abstract types of the results of S’s operations.

• The abstract types of the arguments of T’s operations conform to
the abstract types

3.4 Distribution in Emerald

Emerald implements several language primitives that enable easy dis-
tribution of objects.

• locate X — Returns the current location of the object X.

• move X to Y — Moves the object X to the node where Y resides.

• fix X at Y — Moves the object X to the node where Y resides and
prevents it from being moved.

• unfix X — Enables a fixed object X to move again.

• refix X at Y — Unfixes and fixes the object X at the node where Y
resides.

Emerald provides an efficient yet simple way of distributing objects as
shown in figure 3.2 where the Kilroy object is moved around to every
node in the cluster and prints Kilroy was here! at every node.

20

1 const Kilroy <- object Kilroy
2 process
3 const origin <- locate self
4 const up <- origin.getActiveNodes
5 for e in up
6 const there <- e.getTheNode
7 move self to there
8 (locate self)\$stdout.putString["Kilroy was here!\n"]
9 end for

10 move self to origin
11 end process
12 end Kilroy

Figure 3.2: Moving an object through all the active nodes in a system

3.5 Summary

In this chapter, we introduce the Emerald programming language, a
language created in the 1980’s with effortless distribution in mind. We
explaine what an Emerald object consists and that each distributable
object has an global network id. We explaine how the type system in
Emerald is based on abstract types, where a type is an interface de-
scribing what methods a object must implement to conform to the type.
We also briefly explain the distribution primitives of the Emerald lan-
guage.

In the next chapter, we give the details on iOS - the Apple smartphone
OS.

21

Chapter 4

iOS - the Apple smartphone OS

In this chapter we take a closer look at iOS, the operating system run-
ning on Apple smartphones. We explain the history, how development
works, and explain some of the core frameworks. We also expand on
Apples publishing process.

4.1 The iOS operating system

iOS is an mobile operating system developed by Apple Inc. and was
first revealed in 2007 (then named iPhone OS 1.x) for the first genera-
tion iPhone.
It has later been expanded to other Apple devices such as the iPad, iPod
touch and Apple TV, and was renamed to iOS on June 7, 2010 with the
introduction of the iPad.
As of the fourth quarter of 2014 iOS have 19.7% of the marked share of
the mobile marked, only second to Android. [1]
On January 27, 2015 Apple announced that they had sold one billion
iOS devices. [9]
Major versions of iOS is released each year and the latest major update
was released on April 8, 2015.

iOS is a closed source operating system based on Darwin OS (devel-
oped by Apple) which in turn is based on Unix and NeXTSTEP. Darwin
forms the core components of both OSX and iOS and is mostly POSIX
compatible, but has never been fully certified. iOS also shares some
frameworks with OSX such as Core Foundation and Foundation but
iOS uses Cocoa Touch rather than the OSX Cocoa user interface toolkit

22

making it incompatible with OSX applications.
Even though iOS is based on Darwin OS it does not provide shell access
or access to the file system.

23

4.2 The history of iOS

Following is a list of the major versions of iOS and its most prominent
features. [17]

Version Announced Major features

iPhone OS 1.x June 29, 2007
First release,
Mobile safari,
Multitouch gestures.

iPhone OS 2.x July 11, 2008
Introduced the App Store,
making third-party applications available.

iPhone OS 3.x June 17, 2009

Copy/Paste functionality,
MMS,
iPad introduced with version 3.2.
3.2 First version to be called iOS

iOS 4 June 21, 2010
Multitasking,
Home screen folders,
Retina Display support.

iOS 5 June 6, 2011

iMessage,
Siri,
No PC needed for activation,
iCloud

iOS 6 June 11, 2012
FaceTime over cellular network,
Facebook integration,
Apple Maps.

iOS 7 June 10, 2013
Major visual overhaul,
Control Center,
AirDrop.

iOS 8 June 2, 2014
Continuity (desktop integration),
third-party widget support,
Extensibility (making third-party keyboards available)

iOS 9 June 8, 2015
3D Touch,
Proactivity (Context aware information),
Improved keyboard

24

Figure 4.1: Evolution of the iOS homescreen from iPhone OS 1 to iOS
8.

4.3 iOS development

To be able to develop for iOS there is some prerequisites.

• Applications needs to be developed on a computer running OSX.

• Applications needs to be developed with Xcode.

• To publish the application and to the App Store, an Apple devel-
oper account is needed.

All applications that is to be developed for iOS and published on the App
Store needs to be developed an signed on a Apple Mac using Xcode.
There is ways to circumvent these restrictions but none are officially
supported by Apple, and most include some sort of hack to make it
work.

4.3.1 Supported programming languages

Traditionally, the programming language used for iOS and OSX devel-
opment have been objective-C and has been used for Apple develop-
ment since the 1980’s. At the Worldwide Developers Conference in
2014 Apple announced the Swift programming language which is set
to overtake the use of Objective-C in iOS and OSX application develop-
ment. [18]

4.3.2 Objective-C

Objective-C is a object-oriented programming language originally de-
veloped in the 1980’s and was used as the main programming lan-

25

guage for the NeXTSTEP operating system that Darwin OS is based
on. Objective-C is a "strict superset" of C and inherits all of its types,
syntax and flow control statements from C, meaning we are can freely
include C code in a objective-C program.
The object syntax of Objective-C is based of the object syntax found in
Smalltalk.
A Objective-C program is in no way bound to iOS or OSX and a program
that uses none of their core frameworks or APIs can be compiled to run
on any system using GCC or Clang.

Interfaces

Objective-C uses header files in much the same way traditional C uses
them, with header files being denoted with the .h extension.
In the header files is where the interfaces are declared, an interface
on objective-C is analog to a class declaration in similar languages. An
interface for a car object might look like in figure 4.2, with accelerate,
deaccelerate and getCurrentSpeed being declared as instance meth-
ods by the - sign.

1 @interface car
2 @property speed
3 - (void)accelerate;
4 - (void)deaccelerate;
5 - (int)getCurrentSpeed;
6 @end

Figure 4.2: An example of a interface in objective-C

Implementation

The implementation file contains the implementation of a previous de-
clared interface (see figure 4.3) and uses the .m extention.

4.3.3 Swift

Swift is a multi-paradigm programming language created by Apple es-
pecially for iOS and OSX development. Swift development started in

26

1 @implementation car
2 @property speed
3 - (void)accelerate {
4 // code
5 }
6 - (void)deaccelerate {
7 // code
8 }
9 - (int)getCurrentSpeed {

10 // code
11 }
12 @end

Figure 4.3: An example of a interface in objective-C

2010 and was announced to the public at the Worldwide Developers
Conference in 2014. [18]
Swift is created as a replacement for Objective-C in iOS and OSX devel-
opment and has a simpler and cleaner syntax than its predecessor as
seen in figure 4.4.
As opposed to Objective-C Swift does not provide access to pointers,
variables are always initialized and arrays and integers are checked for
overflow. These features make simple mistakes easier to avoid in Swift
than in Objective-C.
Swift uses the Objective-C runtime allowing Objective-C and Swift to
run together in a single program.

1 // Objective-C
2 NSString *str = @"hello,";
3 str = [str stringByAppendingString:@" world"];
4
5 // Swift
6 var str = "hello,"
7 str += " world"

Figure 4.4: Initalizing, assigning and appending a string in objective-C
and Swift

4.3.4 Automatic Reference Counting

ARC or Automatic Reference Counting is a memory management scheme
used by both Objective-C and Swift.
Apple introduced ARC in 2011 and before this the programmer was

27

required to use the release and retain keywords to manually handle
marking objects for deallocation or preventing them from being deallo-
cated.
With Automatic Reference Counting the compiler analyzes the code and
automatically inserts these where they are needed.
This results in less work for the programmer and minimizes the chances
for memory leaks.
Automatic Reference Counting does not handle strong reference cy-
cles. The programmer is in charge of using the weak keyword to mark
a reference as weak, meaning that the reference is not protected from
garbage collection and the cycle is broken.

4.3.5 Xcode

Xcode is an integrated development environment (IDE) developed by
Apple first released in 2003, it is free to use for OSX users and the lat-
est version is 6.3.
It does not only consist of the IDE but also contains developer docu-
mentation and the Apple Interface Builder which is a tool for building
graphical interfaces. The latest version uses Apple Clang as a compiler
frontend with Apple LLVM as the backend.
Xcode can build, run debug and install iOS applications both through
the iOS simulator and by transferring the application to a physical de-
vice.

Storyboard

The Xcode Storyboard is an user interface designer used in Xcode for
designing graphical iOS applications.
With the Storyboard the developer lays out the path through the appli-
cation using scenes, segues and controls.
A scene represents a content area in an application, this can be the
whole view a user seen or the view can consist of several scenes.
A segue represents the transition from one scene to another scene.
Controls are used to trigger the segues between the scenes.
The Storyboard makes designing user interfaces fast an relatively easy,
and makes an solid separation between the application logic and the
user interface. In figure 4.5 we see an example of a storyboard.

28

Figure 4.5: A storyboard showing 4 views and several segues.

4.4 Core frameworks and APIs

Cocoa touch is described as the application development environment
for iOS.
Cocoa touch includes the Objective-C runtime and two core frameworks:
Foundation and the UIKit Framework.

4.4.1 Foundation

The Foundation Framework defines a base layer of Objective-C classes.
It provides a set of useful classes and introduces several paradigms that
include functionality that Objective-C does not include.
The Foundation framework was designed with these goals in mind: [7]

• Provide a small set of basic utility classes.

29

• Make software development easier by introducing consistent con-
ventions for things such as deallocation.

• Support Unicode strings, object persistence, and object distribu-
tion.

• Provide a level of OS independence, to enhance portability.

The Foundation framework provides the base object class NSObject,
classed for representing basic data types such as strings (NSString)
and various collection classes for storing objects such as NSArray, NSDictionary
and NSSet and many other useful classes such as NSDate, NSTimeZone
and NSCalendar for storing and using times and dates.

4.4.2 UIKit Framwork

The UIKit framework provides the infrastructure needed for construct-
ing iOS applications.

UIKit provides the components for creating views, managing event han-
dlers, user input and running the main loop of the application.

UIKit also provides several other features: [8]

• Handling touch and motion events.

• iCloud integration

• Cut, copy and paste support

• Accessibility support for disabled users

• Support for the Apple Push Notification service

4.4.3 iOS SDK

The iOS SDK is the iOS Software Development Kit released by Apple.
The SDK provides the core frameworks like Cocoa Touch, Core Ser-
vices, TCP/IP and power management for iOS.
The SDK is used along with the Xcode toolchain for developing and
compiling for iOS and also contains the iOS Simulator.
Each new iOS version is released along with a new version of the SDK.

30

4.5 The Apple publishing process

In the Apple ecosystem the applications operate in a very restricted en-
vironment.
As opposed to Android all applications on an iOS unit must be installed
through the Apple App Store. This means that no untrusted application
can be installed by downloading it from the Internet or in any other
way.
While with the Android Marked (The Android application distribution
channel) anyone can distribute anything at any time (with the excep-
tion of confirmed malware), the App Store uses an extensive license
agreement which dictates what is allowed and what is not. [6]
This means that an application might be rejected for reasons such as:

• Bad design

• Only applies to a niche audience

• Not enough functionality

The license agreement is an 80 page legal document covering every-
thing from design requirements to how and what APIs are allowed to
use. While these restrictions make the platform more resilient against
malware it makes distribution of more outlying applications such as the
Emerald application much harder.

4.6 Summary

In this chapter, we explain the history of iOS from its inception in 2007
to iOS 9.0 in June, 2015. We explain that to develop and deploy Applica-
tions for iOS you need a OSX installation, Xcode and a Apple developer
account. We also describe the core frameworks used when develop-
ing iOS applications: the foundation framework and UIKit framework.
Finally we explain the publishing process involved in distributing ap-
plications on the App Store and the advantages and disadvantages this
include.

31

Part III

Porting Emerald

32

Chapter 5

Porting Emerald

In this chapter, we explain the need to port Emerald to iOS as opposed
to just executing a precompiled binary of Emerald.
We test different strategies of making Emerald run on the device with-
out modifying it, and we explain some of the limitations the iOS plat-
form gives us as developers.
Further we discuss some of the compromises we have to make to run
Emerald on an iOS device such as sideloading and jailbreaking, and
explain some of the advantages and disadvantages of these. We also
jailbreak an iPhone and use the iPhone SDK for cross-compiling the
Emerald source code for running on the arm architecture.

5.1 Running Emerald on an unmodified de-

vice

Emerald is an application best run from an console which means it
would be very helpful to have a terminal available to test the appli-
cation from when we are in the proccess of porting it.
iOS does not provide a terminal for users or developers, like the adb for
Android (Android Debug Bridge, a debug console). This makes testing
the binary significantly harder, and means we have to run the binary
from an iOS application, controlling the execution of Emerald from the
iOS application.

Using the Foundation Framework, we can normally run another pro-
gram as an subprocess of the current application by using the NSTask

33

class. In the iOS SDK as opposed to OSX, the header file for NSTask
is not included in the distribution, meaning we cannot use this part of
the API. The functionality of NSTask is still included, but the header
is removed from the iOS SDK. One possibility would be to simply copy
the header from an OSX environment and bundle it with the application
along with the Emerald binaries, but because it is removed this means
its a part of what Apple calls the private API, and usage of the private
API is prevented by the license agreement for the App Store.

The first attempt to mitigate this was to simply dump the source code
for Emerald into Xcode along with the code for the iOS application and
try to let Xcode compile Emerald alongside the application. Emerald
has a fairly complex build cycle so this turned out to be very hard to
do, and after some more research it became clear that the only way to
make an application use code added like this if the code is a statically
linked library. Xcode compiles the library before the application and
then links the library to the application, ruling out the ability to do this
with a normal executable file.

Figure 5.1: A failed attempt at making Xcode compile Emerald auto-
matically

34

Even if we could bypass the NSTask problem, there is several terms
in the license agreement that disagree with some of Emerald’s core
functionality and prevents any such application from passing the App
Store review and landing in the App Store.

Mainly paragraph 3.3.2 [6]:

“ ...an Application may not download or install executable code. In-
terpreted code may only be used in an Application if all scripts, code
and interpreters are packaged in the Application and not downloaded...
”

This defeats the whole purpose of an Emerald interpreter because some
of its core functionality is distributing and sharing executable code.
It is clear at this point that because of the strict license agreement we
will not be able to distribute the application in the official App Store or
any other way without some workaround.

5.1.1 Bypassing the App Store

A possible solution for making Emerald easier to compile and run on
an iOS device would be to somehow bypass the App Store and thus by-
passing the limitations set by the license agreement.
One way to achieve this could be to distribute the iOS application with
the bundled Emerald binaries directly from Xcode in the same way that
it is done when debugging and testing an application. This is called
sideloading.
Sideloading allows users to install applications that breaks the license
agreement but that would still run on an unmodified device. This would
remove the problems concerning the license agreement and allow us to
use the private API.

Sideloading the application would also give rise to some problems con-
cerning the testing and distribution of the application:

• We would still lack a proper console to test if the compilation of
Emerald is successful before we build the iOS application.

• Any special permissions the application might need to run could

35

not be given beyond the normal permissions the application sand-
box gives it.

• To download and use the application a user would need:

– The source code of the application.

– Access to a computer running OSX.

– A Xcode installation and basic understating of how it works

As of June 2015 you no longer need to pay the license fee for the
developer program to test applications on an device, an apple account
is all that is needed. That means that to sideload an application all you
need is access to an Xcode environment.
Before we can test sideloading we need to have an Emerald binary that
is compiled for the iOS architecture.

5.1.2 Cross-compiling Emerald

We cannot simply transfer the precompiled binaries from a computer to
the device and run it, because the iPhone uses a different architecture
than most computers.
We need to cross-compile the source into an arm binary. Depending on
the device this means compiling for armv7, armv7s or arm64.
Cross-compilation is using a cross-compilation enabled compiler run-
ning on one architecture, and compiling a executable for running on a
different architecture with a different instruction set.

When compiling for the iPhone it makes sense to use the compiler and
the headers included in the iPhone SDK (Software Development Kit)
which supports cross-compiling for all arm versions.
Because Emerald uses Automake, a GNU tool for automatically gener-
ating makefiles, we can create a script that tries to set the compiler and
the right environment variables thus compiling Emerald correctly.
An reduced version of a script that can be used to compile Emerald for
armv7:

1 arch=armv7s
2 host=arm-apple-darwin11
3 prefix="/Users/pers1/em_output_new/"
4

36

5 export DEVROOT="/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
Developer"

6 export SDKROOT="$DEVROOT/SDKs/iPhoneOS8.3.sdk"
7
8 export CC="/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/

usr/bin/clang"
9 export CFLAGS="-arch ${arch} -std=c99 -isysroot $SDKROOT -isystem $SDKROOT/usr/include"

10
11 ./configure \
12 --prefix="$prefix" \
13 --host="${host}" \
14 --enable-static \
15 --disable-shared \

Before configuring and creating the makefiles we specify what archi-
tecture we want to compile for instad of using the architecture we are
running the compiler on. We use the clang compiler included in the
iPhone SDK, and we also specify sysroot to point to the SDK so the
compiler looks for libraries and headers from where the SDK is located.

Running this script is successful but running make to actually compile
the binaries fails. The reason for the failure is that clang builds code in
GNU C11 mode meaning it uses standard C99 semantics. The Emerald
source code uses inline with the semantics from GNU C89 (C89 with
extensions), which differs from the ones in C99. While in GNU C89 in-
line is a hint to the compiler that this function should be inlined, in C99
it means that this is the inline version of the function, and for this to be
correct C99 code there needs to be a corresponding non-inlined func-
tion somwhere in the code. This problem is easily corrected with just
removing the inline keyword from the applicable functions, and letting
clang optimize as desired.
Make now runs without errors and we get a complete armv7 binary we
can run on any armv7 device.

5.1.3 Sideloading

We now have a binary we can try to execute on the device.
And because we don’t have to adhere to the license agreement we can
now make use of NSTask. To use NSTask we copy the header file
NSTask.h from the OSX distribution of Foundation and add it to the
iOS project. NSTask objects can now be created and used like normal.

With the compile script we compile one binary for each iOS architec-

37

ture and one for the iOS Emulator (armv7, armv7s, arm64 and i386)
and add them to the project. Xcode supports running custom scripts
during the build phase of an application so we use a bash script to copy
the correct binary into the app bundle depending on which architecture
Xcode is currently building for. Armv7 for the iPhone 4, arm64 for the
iPhone 6 etc. The app bundle is all the compiled code and other applica-
tion resources bundled as one file, and is what is installed on the device.

For NSTask to be able to run the binary we need to change the per-
missions of the file to executable.
An application only has read access to the data in the bundle so we
need to copy the files to a folder where we have write access to change
the file permissions. We use NSFileManager to copy the file from the
bundle to the Library folder where we have write access. Here we use
the setAttributes method from NSFileManager to set the file as exe-
cutable.

The last thing we need to do is to set the EMERALD_ROOT environment
variable to the root Emerald folder. Here we use the setenv function
from the C standard library.

Now we should be able to create a new NSTask object, set its launch
path to emx in the emerald root folder and execute it.
Unfortunately, this did not work as NSTask would always throw an ex-
ception with the message "launch path not accessible" even though we
make sure the file is present and executable with the
isExecutableFileAtPath method from NSFileManager.
After some research it turns out that execution of binaries, forking and
similar functions is prohibited by the sandboxed environment the iOS
applications run in.

App Sandbox

The App Sandbox is an access control mechanism used by both OSX
and iOS.
Sandboxing is a way to control what data and resources the application
have access to. This is a way to prevent malicious code exploiting inse-
cure applications by making sure the application only can access a set
of predetermined resources.

38

In OSX, you can disable the sandbox or use entitlements to give the
application access to the resources it needs, but all iOS applications
always runs in the sandbox and we have very limited options when it
comes to allowing access to resources.

As there is no way of executing the Emerald binary on an unmodified
device we need to look at the last option available: jailbreaking.

5.1.4 Jailbreaking

Jailbreaking is a general term describing privilege escalation in closed
devices such as an iPhone or other restricted hardware. iOS jailbreak-
ing is a process where you install a modified set of kernel patches that
allows you to install and run unsigned code. Jailbreaking also gives you
root access to the device and access to the file system.
The main reasons for jailbreaking is to be able to install applications or
tweaks to the operating system in ways Apple does not normally allow.
It is also an easy way for developers to test ideas and play with the
hardware in ways not previously possible.

iOS Jailbreaking tools generally comes in the form of an Windows, OSX
or Linux application we run on a computer connected to the device,
which installs the kernel patches for us.

Jailbreaking a device comes with many advantages when porting Emer-
ald:

• Because we can install unsigned code and get access to the file
system we can run a standard command line shell for testing.

• We can bypass the application sandboxing, meaning we can give
the application the permissions it needs.

• Usage of private APIs like NSTask is possible.

• We can use alternative distribution channels bypassing the App
Store, like Cydia which is a "App Store" for jailbroken devices.

While these advantages would help us greatly porting Emerald to iOS,
jailbreaking also have two serious drawbacks:

39

• Jailbreaking becomes an prerequisite for running the application.

• While it is unlikely, there is no guarantee that jailbreaking is pos-
sible for all future iOS devices.

Making Emerald run on an unmodified iPhone was more compli-
cated than previously thought. Both the Apple license agreement and
the sandboxed architecture contains limitations when it comes to mak-
ing an application like this. The biggest problem is the part of the li-
cense agreement that prohibits downloading or transferring executable
code, and the sandbox preventing execution of binaries. Jailbreaking
seems to be the best and probably only way to solve the problems with
the restrictive environment.
The only prerequisite would be an jailbroken device as opposed to hav-
ing access to OSX, Xcode and an apple developer account.

We also get access to using Cydia to distribute the application in much
the same way as the App Store. Cydia is the de facto distribution chan-
nel for applications for jailbroken devices. Because Cydia is built using
Debian APT we can set up dependency trees where all users would
download the same iOS application, but phones with different architec-
tures would download the correct Emerald binary for the corresponding
architecture (armv7, armv7s, arm64). We also have the option of down-
loading a console for testing the Emerald binary without the need for
an iOS application acting as a layer.

5.2 Porting Emerald to a jailbroken device

When Jailbreaking the iPhone it is important to determine what iOS
version the iPhone is running. This is to make sure that we use the cor-
rect jailbreaking software for the iOS version. Because our test phone
is an iPhone 4 running iOS 7.1 we choose to use the PanGu jailbreak
tool. [13]
The process is simple:

• Install the PanGu jailbreak tool

• Install iTunes (a requirement for the Windows version of PanGu)

• Connect iPhone

40

• Let the jailbreak tool run to completion

Figure 5.2: The PanGu jailbreak tool

When the jailbreak is complete we need to reboot the iPhone and see
that Cydia is installed as an application. Using Cydia we can install
openSHH which gives us access to a console on the device by remote
connecting to it through SSH. The jailbreaking was successful, in figure
5.3 we see a terminal connection to the jailbroken device over SSH. Be-

Figure 5.3: SSH connection to the jailbroken iPhone

cause we now have access to the file system and a console on the device
we can install Emerald by creating a /bin folder in the root directory
and copying the Emerald binaries here.
To run an Emerald program we simply run emx from the console. Run-
ning ec to compile a program does not work because the tr command
line tool is missing. To use the compiler we can manually run emc , or

41

even better, install tr from Cydia. Compiling Emerald for arm was suc-
cessful as seen in figure 5.4. It even works when distributing objects
between machines!

Figure 5.4: Emerald running successfully on iOS. The error messages
is caused by network restrictions, not the application.

42

We now know that porting Emerald to iOS is possible even though
we had to make some compromises making it run.
With jailbreaking we loose the ability to install Emerald at any time
through the App Store, but this is a compromise that have to be done
to make it possible to run at all.
The iPhone SDK provides us with a toolchain that enables us to compile
any preexisting source code for running on an arm architecture and in
the end enabling us to run it on an iPhone.

5.3 Summary

In this chapter we explain the need to cross compile Emerald to make it
run on a iOS Device, and cross compiled it using the iOS SDK. We try to
sideload an application to bypass the App Store but are prevented from
running Emerald due to the app sandbox. We jailbreak an iOS Device to
mitigate the restrictions set by the license agreement and the sandbox,
and successfully run Emerald in this environment.
Currently the only way to run Emerald is by remote connecting to the
device through SSH as there is no command line shell running on the
actual device. This is why we need to create a native iOS application
that acts as a layer on top of Emerald, with an interface we can use on
the actual device making it easier to run.
Porting the Emerald runtime and compiler using the iPhone SDK is a
success, but some simple changes to the source code had to be made.

43

Chapter 6

iOS application

In this chapter, we describe the implementation of the iOS application.
The application gives the user an interface running on the device avoid-
ing the need for an terminal.
We go through the different views the application is built from and ex-
plain the code and how we stitch them together. The application acts as
a layer by executing the Emerald binary and presenting the output in
the user interface. The application has a terminal like text view acting
as the Emerald console. We use the Xcode storyboard for implementa-
tion of the user interface and implement the different view controllers
using Objective-C. The application is called iOS Emerald.

6.1 Overview

The user interface of the application consists of 5 views:

• Main view

• Compiler view

• Connection preferences view

• Program choose view

• Emerald console view

The design of the views are mainly done in the storyboard interface
designer but all the implementation specific code is put in subclasses
of the view types. The design itself is relatively uninteresting and the

44

process differs very little between projects, so we focus more on the
implementation specific code in this chapter.

In figure 6.1 we show an overview of the program flow with the ar-
rows representing the segues between the views.
In the following sections, we explain each views function and layout in
more detail.

Figure 6.1: An overview of the program flow.

45

6.2 Main menu

The main view is the first view we see when we open the application, it
gives us 3 choices as seen in figure 6.2.

• Host session — Starts an Emerald session without connecting to
any other nodes. Shows the program choose view.

• Connect to session — Start an Emerald session with user provided
connection information. Shows the connection info view.

• Compiler — Shows the compiler view.

The code for the main view is contained in MainViewController.m and
is relatively uninteresting as the segues between the views is handled
by the storyboard.

Figure 6.2: The main view.

46

6.3 Compiler view

The compiler view lets us compile Emerald programs directly on the
device. Each application in the iOS environment have access to its own
documents folder. This is where the application can store files which
the users needs access to, and the user can transfer files to this folder
for the application to use. The compiler view reads all the files in this
folder and presents us with a list of the ones ending with the .m exten-
sion.
Because the compiler view is a UITableView the interesting code is con-
tained in the table cells, the actual view only finds the Emerald files and
populates the table with one cell for each file.

In the cell we have a button that calls the compileFile function. compileFile
creates a NSTask and runs the Emerald compiler.
We bind the NSTaskDidTerminateNotification to the compileDone func-
tion which shows the outcome of the compilation as a label with the text
Success or Failure. By having a NSTask instance for each cell, we can
compile several files concurrently. If the files are compiled successfully
they are saved to the documents folder for use by the Emerald inter-
preter.

1 #import "CompileCellTableViewCell.h"
2 #import "NSTask.h"
3

4 @interface CompileCellTableViewCell ()
5 @property NSTask *task;
6 - (void)compileDone;
7 @end
8 @implementation CompileCellTableViewCell
9

10

11 - (BOOL)compileFile {
12 // alloc task
13 self.task = [[NSTask alloc] init];
14

15 // set path
16 self.task.launchPath = @"/bin/ec";
17

18 // set arguments
19 [self.task setArguments:[NSArray arrayWithObjects:self.filePath, nil

]];

47

20

21 // Add callback for completion
22 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
23 [nc addObserver:self
24 selector:@selector(compileDone)
25 name:NSTaskDidTerminateNotification
26 object:self.task];
27

28 // Hide button
29 self.compileButton.hidden = YES;
30

31 // Show progress icon
32 self.activity.hidden = NO;
33 [self.activity startAnimating];
34

35 // Launch compiler
36 [self.task launch];
37 return YES;
38 }
39

40 - (void)compileDone {
41 int status = [self.task terminationStatus];
42

43 self.activity.hidden = YES;
44 self.compileButton.hidden = NO;
45 // Success
46 if(status == 0) {
47 [self.compileButton setTitleColor:[UIColor greenColor] forState:

UIControlStateNormal];
48 self.compileButton.titleLabel.text = @"Success";
49 } else { // Failure
50 [self.compileButton setTitleColor:[UIColor redColor] forState:

UIControlStateNormal];
51 self.compileButton.titleLabel.text = @"Failure";
52 }
53 }
54

55 @end

6.4 Connection view

The connection view is where we can give Emerald a hostname or IP-
address and a port to connect to already running node. The connection
view is a simple view containing two instances of UITextField embed-

48

ded in a UIScrollView.
When we perform the segue from this view we create an array with the
connection details the user provided and pass it along to the program
chooser view which in turn passes it along to the console view.

1 #import "ConnectionInfoViewController.h"
2 #import "ChooseProgramViewController.h"
3

4 @interface ConnectionInfoViewController ()
5 @property (weak, nonatomic) IBOutlet UITextField *hostname;
6 @property (weak, nonatomic) IBOutlet UITextField *port;
7 @end
8

9 @implementation ConnectionInfoViewController
10

11 - (void)viewDidLoad {
12
13 }
14

15 - (void)didReceiveMemoryWarning {
16
17 }
18

19

20 #pragma mark - Navigation
21 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
22 ChooseProgramViewController *programView = [segue

destinationViewController];
23

24 if(self.hostname.text.length != 0 && self.port.text.length != 0) {
25 programView.connectionInfo = [[NSArray alloc] initWithObjects:

self.hostname.text, self.port.text, nil];
26 } else {
27 programView.connectionInfo = nil;
28 }
29 }
30

31 @end

6.5 Program view

The program view is presented when connecting to a session or host-
ing one. This is where we choose what program to start the Emerald

49

interpreter with. The view consists of a UIPickerView and a button for
continuing. The UIPickerView is populated with the filenames of the
files ending with the .x extension in the documents folder. This is per-
formed in the forComponent: function for the picker view.
When a user scrolls to the program he wishes to run, didSelectRow: is
called and we set the chosen program here. Finally when the continue
button is pressed we pass the program info along to the console view
along with the connection info we may have got from the connection
view.

1 #import "ChooseProgramViewController.h"
2 #import "Utilities.h"
3 #import "ConsoleViewController.h"
4

5 @interface ChooseProgramViewController () <UIPickerViewDataSource,
UIPickerViewDelegate>

6 @property (weak, nonatomic) IBOutlet UIPickerView *picker;
7 @property NSMutableArray *emeraldFiles;
8 @property NSString *chosenProgram;
9 @end

10

11 @implementation ChooseProgramViewController
12

13 - (void)viewDidLoad {
14 ...
15 self.emeraldFiles = [NSMutableArray arrayWithArray:[Utilities

getDocumentsFileListByFileExtention:@".x"]];
16 [self.emeraldFiles insertObject:[NSArray arrayWithObjects:@"", @"<

none>", nil] atIndex:0];
17 }
18

19 - (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(
NSInteger)row forComponent:(NSInteger)component {

20 return self.emeraldFiles[row][1];
21 }
22

23
24

25 // returns the # of rows in each component..
26 - (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component {
27 return self.emeraldFiles.count;
28 }
29

50

30 // set chosen program
31 - (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)

row inComponent:(NSInteger)component {
32 self.chosenProgram = self.emeraldFiles[row][0];
33 }
34

35
36

37 #pragma mark - Navigation
38 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
39 ConsoleViewController *consoleView = [segue

destinationViewController];
40 consoleView.connectionInfo = self.connectionInfo;
41 consoleView.program = self.chosenProgram;
42 }
43

44 @end

6.6 The Emerald console

The console is where we run the Emerald interpreter showing the out-
put of the program and taking input from the user. This view is by far
the most complex view in the application as it deals with subclassing
components, task execution, input/output piping and preventing some
default iOS behavior. We have broken it down into three parts and des-
ignated one section explaining each part.

6.6.1 The console

The console is a subclassed UITextView with a black background and
monospaced font for resembling a console.
Writing to the console directly is disabled meaning we have to explicitly
enable the keyboard from the surrounding view controller. We have ex-
tended the the text view with three methods: write, append and clear.
Write is a private function setting the actual text of the view. Append
is a public function that appends text to the console. Clear removes all
text in the view. We have overloaded scrollRectToVisible disabling
animations so the automatic scrolling of the view looks smooth.
The behavior of the console is controlled from the parent view con-
troller.

51

1 #import "Console.h"
2

3 @implementation Console
4 - (void)write:(NSString *)text {
5 // To avoid resetting text formatting and losing text color
6 if (![self isSelectable]) {
7 self.selectable = YES;
8 }
9

10 // Set text
11 self.text = text;
12

13 // To avoid resetting text formatting and losing text color
14 if (![self isSelectable]) {
15 self.selectable = NO;
16 }
17 }
18

19 // Append to the console
20 - (void)append:(NSString *)text {
21 NSString *newText = [self.text stringByAppendingString:text];
22 [self write:newText];
23 }
24

25 // Clear the console
26 - (void)clear {
27 [self write:@""];
28 }
29

30 // For automatic scrolling
31 - (void)scrollRectToVisible:(CGRect)rect animated:(BOOL)animated {
32 [super scrollRectToVisible: rect animated: NO];
33 }
34

35 @end

6.6.2 Emerald runner

The Emerald runner is the class that takes care of the initialization, run-
ning and stopping of the Emerald interpreter. It contains three public
methods: initialize, run and stop.
initialize checks the given connection/program data and builds com-
mand line arguments for Emerald with it. It creates a input pipe for

52

writing and a output pipe for reading and assigns them to the Emerald
task.
A callback notification is registered on the output pipe so the parenting
view controller is given a notification when there is data on the pipe.
We set the launch path to the Emerald binary and also set the appropri-
ate command line arguments.
Run simply launches the task and stop sends a SIGTERM signal to the
task and waits for it to exit.

1 #import "EmeraldRunner.h"
2 #import "NSTask.h"
3

4 @import Foundation;
5

6 @interface EmeraldRunner ()
7 @property NSString *hostPort;
8 @property NSPipe *inputPipe;
9 @property NSPipe *outputPipe;

10 @property NSTask *task;
11 @property NSString *program;
12 @end
13

14 @implementation EmeraldRunner
15 - (void)initalize:(NSString *)host portNumber:(NSString *)port

callbackObject:(ConsoleViewController *)callback program:(
NSString*)program {

16

17 // Create host:port string
18 if(host.length != 0 || port.length != 0) {
19 self.hostPort = [NSString stringWithFormat:@"%@:%@", host, port

];
20 } else {
21 self.hostPort = @"";
22 }
23

24 // Set program
25 if(program == nil) {
26 self.program = @"";
27 } else {
28 self.program = program;
29 }
30

31 // Initalize pipes
32 self.inputPipe = [NSPipe pipe];

53

33 self.outputPipe = [NSPipe pipe];
34 self.output = [self.outputPipe fileHandleForReading];
35 self.input = [self.inputPipe fileHandleForWriting];
36

37 // Add callback to console view, for when there is output on pipe
38 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
39 [nc addObserver:callback selector:@selector(notifiedForOutput:) name

:NSFileHandleReadCompletionNotification object:self.output];
40

41 // Create task and assign pipes
42 self.task = [[NSTask alloc] init];
43 [self.task setStandardInput:self.inputPipe];
44 [self.task setStandardOutput:self.outputPipe];
45

46 // Set binary to launch (emx)
47 self.task.launchPath = @"/bin/emx";
48

49 // Set arguments
50 if(![self.program isEqual: @""]) {
51 [self.task setArguments:[NSArray arrayWithObjects:@"-U",
52 [NSString stringWithFormat:@"-R%@",

self.hostPort],
53 [NSString stringWithFormat:@"%@", self.

program],
54 nil]];
55 } else {
56 [self.task setArguments:[NSArray arrayWithObjects:@"-U",
57 [NSString stringWithFormat:@"-R%@",

self.hostPort],
58 nil]];
59 }
60

61 // Notify callback when there is data in pipe
62 [self.output readInBackgroundAndNotify];
63 }
64

65 - (void) run {
66 // Launch emerald
67 [self.task launch];
68 }
69

70 - (void) stop {
71 // Kill the current session
72 kill([self.task processIdentifier], SIGTERM);
73 [self.task waitUntilExit];
74 }
75 @end

54

6.6.3 Console view controller

In console view controller is where the magic happens, it connects the
console view and the Emerald runner and takes care of data flowing
between the two.
In the viewDidLoad method we initialize the console and the Emerald
runner, and we pass the data we have been given from the previous
views to the Emerald runner.
We start the Emerald runner and append the devices current IP-address
to the console.

The notifiedForOutput method is the callback method for the output
pipe of the Emerald runner. We are notified when there is data on the
output pipe by this method being called. Here we fetch the data from
the pipe and append it to the console, we scroll the console down to the
most recent line and tell the output pipe to keep listening.

The toggleButton method is the action for the toggle keyboard but-
ton in the user interface and simply calls the toggleKeyboard method.
toggleKeyboard sets the console as editable and makes it the respon-
der for keyboard input making the keyboard appear.

shouldChangeTextInRange is a method that is called when the text in
an UITextView changes by user input. In this case that means when the
user inputs some text to the console. It is called for each character the
user writes so we must append this character to self.currentCommand
and when the user presses return (\n) we write this command to the
input pipe of the Emerald runner.

Finally prepareForSegue is called when we navigate away from the
view. Here we kill the runner task, preventing it from running in the
background. We could have implemented functionality for running sev-
eral Emerald processes in the background, but chose not to for simplic-
ity.

1 #import <UIKit/UIKit.h>

55

2

3 @interface ConsoleViewController : UIViewController
4 @property NSArray *connectionInfo;
5 @property NSString *program;
6 -(void) notifiedForOutput: (NSNotification *)notified;
7 @end

1 #import "ConsoleViewController.h"
2 #import "Console.h"
3 #import "EmeraldRunner.h"
4 #import "Utilities.h"
5

6 @interface ConsoleViewController () <UITextViewDelegate>
7 - (void) toggleKeyboard;
8 @property (weak, nonatomic) IBOutlet Console *console;
9 @property EmeraldRunner *runner;

10 @property BOOL keyboardVisible;
11 @property NSString *currentCommand;
12 @end
13 @implementation ConsoleViewController
14

15 - (void)viewDidLoad {
16 [super viewDidLoad];
17 // init
18 self.currentCommand = [[NSString alloc] init];
19

20 // Set self as delegate for console view
21 [self.console setDelegate:self];
22 self.keyboardVisible = NO;
23

24 // Hide back button. We have a custom handler
25 self.navigationItem.hidesBackButton = YES;
26

27 // Allocate runner
28 self.runner = [[EmeraldRunner alloc] init];
29

30 // Clear console
31 [self.console clear];
32

33 // Initalize runner
34 // Check if we have connection info
35 if (self.connectionInfo != nil) {
36 NSLog(@"%@:%@", self.connectionInfo[0], self.connectionInfo[1]);
37 [self.runner initalize:self.connectionInfo[0] portNumber:self.

connectionInfo[1] callbackObject:self program:self.
program];

38 } else {

56

39 [self.runner initalize:@"" portNumber:@"" callbackObject:self
program:self.program];

40 }
41 [self.runner run];
42 // Append ip to console
43 [self.console append:[NSString stringWithFormat:@"Running with IP: %

@\n", Utilities.getIPAddress]];
44 }
45

46 - (void)didReceiveMemoryWarning {
47
48 }
49

50 -(void) notifiedForOutput: (NSNotification *)notified
51 {
52 // Get data
53 NSData * data = [[notified userInfo] valueForKey:

NSFileHandleNotificationDataItem];
54

55 if ([data length]){
56 // Create string from data
57 NSString * outputString = [[NSString alloc] initWithData:data

encoding:NSUTF8StringEncoding];
58

59 // Write to console
60 [self.console append:outputString];
61

62 // Keep listening
63 [self.runner.output readInBackgroundAndNotify];
64 }
65 [self.console scrollRangeToVisible:NSMakeRange(self.console.text.

length-1, 1)];
66 // Hack for making scrolling smooth
67 self.console.scrollEnabled = NO;
68 self.console.scrollEnabled = YES;
69 }
70

71 // Listener for keyboard button
72 - (IBAction)toggleButton:(id)sender {
73 [self toggleKeyboard];
74 }
75

76 // Detect changes in TextView
77 - (BOOL)textView:(UITextView *)textView shouldChangeTextInRange:(NSRange

)range replacementText:(NSString *)text {
78

79 // Delete

57

80 if(range.length == 1) {
81 if (self.currentCommand.length > 0) {
82 self.currentCommand = [self.currentCommand substringToIndex:

self.currentCommand.length-1];
83 }
84 } else if ([text isEqual: @"\n"]) { // New line
85 // Send command to Emerald
86 self.currentCommand = [self.currentCommand

stringByAppendingString:text];
87 [self.runner.input writeData:[self.currentCommand

dataUsingEncoding:NSUTF8StringEncoding]];
88 // Clear command
89 self.currentCommand = @"";
90 } else { // Append new character to command string
91 self.currentCommand = [self.currentCommand

stringByAppendingString:text];
92 }
93

94 return YES;
95 }
96

97 // Enable or disable keyboard
98 -(void) toggleKeyboard {
99 if (self.keyboardVisible) {

100 self.console.editable = NO;
101 [self.console setUserInteractionEnabled:YES];
102 [self.console resignFirstResponder];
103 } else {
104 self.console.editable = YES;
105 [self.console setUserInteractionEnabled:NO];
106 [self.console setSpellCheckingType:UITextSpellCheckingTypeNo];
107 self.console.autocorrectionType = UITextAutocorrectionTypeNo;
108 [self.console becomeFirstResponder];
109 }
110 self.keyboardVisible = !self.keyboardVisible;
111 }
112

113 #pragma mark - Navigation
114

115 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
116 // Kill the emerald task
117 [self.runner stop];
118 }
119

120 @end

58

6.7 Summary

In this chapter, we describe the implementation of the Emerald iOS
application. We describe how we design the user interface and explain
in detail how we implemented each of the five views the application
uses. We explain how we subclassed and modified a UITextView making
it look like a console, and how we use pipes for redirecting the input
and output of the Emerald process.

59

Chapter 7

Distribution with Cydia

We now have a working Emerald binary and an iOS application for easy
interaction. The last step is distributing both the binary and the iOS
application.
In this chapter we explain how we package the applications we want to
distribute and how we create an APT repository.

Because we cannot use the App Store and have a jailbroken device,
using Cydia is very convenient.
Cydia is an application for jailbroken devices that allows users to install
custom software packages. Cydia is built upon APT (Advanced Packag-
ing Tool), and is basically a graphical interface for this.
This means that all we need to do to distribute Emerald is setting up a
APT repository.

7.1 Creating the packages

To distribute the files we need to package them as .deb files.
This means running the dpkg-deb tool on a folder that has the follwing
structure:

• The files and folders as they should appear in the file system

• A DEBIAN folder with a file called control containing the package
information

The following is the folder structure for one of the Emerald binary pack-
ages:

60

EmeraldArm7
bin

-ec
-emc
-emx
-emxx
-gencctab

DEBIAN
-control

include
-array.h
-extract.h
...

lib
-bcdef
-Builtins
-ccdef
-Compiler
-jsdef

The control file contains information about the package with the architecture
key being the most important:

Package: link.pers.emeraldarmv7
Name: Emerald
Version: 1.0
Architecture: iphoneos-arm
Description: Emerald binaries for armv7
Homepage:
Depiction:
Maintainer: audunjoy@uio.no
Author: Audun Oygard
Sponsor:
Section: Development

We do this with all the binaries for the different architectures and the
iOS application resulting in 4 deb files to distribute.

7.2 Hosting the repository

The last step of the process is hosting the packages on a web server.
We make an emerald end point on the web server and put the packages
we created there.
By running the dpkg-scanpackages tool a package index is created in

61

the same folder and is used by clients when they search for packages.
The last thing we do is compressing the package index with bzip2 and
the repository is ready for use.

To install the packages from Cydia we simply add the web server end-
point as a source in Cydia and as seen in figure 7.1 it lists the packages
we can install.

Figure 7.1: Cydia showing the Emerald packages for installation

7.3 Summary

In this chapter, we explain how we make an APT repository for distribut-
ing the Emerald binaries and application with Cydia. We explain how
we package the applications using dpkg-deb and how we use dpkg-scanpackages
to create a package index on a web server.

62

The next chapter describes the results of testing iOS Emerald with dis-
tribution of objects through Planetlab and remote servers.

63

Chapter 8

Performance and Evaluation

In this chapter we discuss what and how we want to test and evalu-
ate the Emerald implementation. We test the basic performance of the
implementation and also test the distribution capabilities of the imple-
mentation. We try to find limitations of the implementation and com-
pare it to other Emerald implementations.
Finally we briefly evaluate iOS as a development platform.

8.1 The tests

We run two sets of tests. One set of tests to evaluate the basic perfor-
mance of the Emerald implementation on iOS, and one set of test where
we evaluate the distribution performance. The basic performance tests
is meant to identify the basic capabilities of the implementation without
any distribution while the distribution tests evaluate the basic distribu-
tion capabilities.

8.1.1 Basic performance

The testbeds

In the basic performance tests we use 3 devices to run the tests. A
iPhone 4, a Samsung Galaxy Fame S6810 and a Macbook Air with spec-
ifications seen in table 8.1. For testing on Android we had to compile
Emerald for armv7 with the Android NDK in much the same way we did
for iOS in chapter 5. While there is a previous Emerald implementation
for Android it turns out that this implementation uses a different Emer-

64

Table 8.1: Performance specifications for basic performance tests

Processor RAM

iPhone 4 1.0 GHz Cortex-A8 512 MB
Samsung Galaxy 1.0 GHz Cortex-A9 512 MB
Macbook Air 2014 1,4 GHz Intel Core i5 8 GB

ald version (0.99) than the iOS version of Emerald (1.06), and that the
two where not always compatible.

Test cases

The basic performance tests we have 3 test cases:

Stress tests:
The stress test have two test cases:

• Maximum supported threads

• Thread spawn time

In the first test we incrementally spawn threads until Emerald crashes
or runs out of memory.
The second test measures the time the platform uses to spawn 1000
threads.

In Emerald threads is called processes and each thread is bound to
a Emerald object and is denoted by the process keyword. The threads
start running as soon as the object it belongs to is initialized. This
means that in the first test we continually create objects with a process
until Emerald crashes, and in the second we measure the time it takes
to spawn a thousand such objects.

Calculation test:
In the calculation test we use an Emerald program that calculates the
first 50000 prime numbers and time this. This gives us a basic idea of
the performance of the platform.

65

8.1.2 Evaluation criteria

We evaluate each test case by the following criteria:

• Functionality and Stability: We evaluate whether the function-
ality and stability is as expected from the iOS implementation. Do
the programs run as expected, can we distribute normally etc.

• Consistency: We evaluate the results in terms of the consistency
of the iOS samples.

• Efficiency: We evaluate the efficiency of the test compared to the
other devices.

In all the test cases we run each test 20 times and present the average
of the samples.

8.1.3 Distribution tests

The testbeds

For the distribution test we try to determine the basic distribution per-
formance of the implementation using 4 different testbeds with specifi-
cations seen in table 8.2.

• Phone-to-phone: We test the distribution performance between
two smartphones on a local network.

• iPhone to local machine: We test the distribution performance
between one iPhone and a computer on a local network.

• iPhone to remote machine: We run the same distribution tests
but with a remote computer.

• iPhone to various Planetlab machines: The same distribution
tests on a set of Planetlab computers described in table ??.

66

Table 8.2: Performance specifications

Device Processor RAM Location

iPhone 4 1.0 GHz Cortex-A 512 MB Local network
Samsung Galaxy 1.0 GHz Cortex-A9 512 MB Local network
Local computer 1,4 GHz Intel Core i5 8 GB Local network
Remote Computer 2,4 GHz Intel Core 2 Duo 1 GB Falkenstein, Germany

Test cases

The distribution tests have two test cases:

Round-Trip-Time:
We determine the average round-trip-time by moving an object to an-
other node then back to the original node again. This gives us data on
how much time is needed to move objects around on a given testbed.

Break-even-point for computational offloading:
Computational offloading is one of the most advantageous things we
can do when using an distributed programming language on a mobile
device, both to save time and save power on the mobile unit.
In this test we try to find the break-even-point for computational of-
floading. We incrementally calculate prime numbers both locally on the
device and distribute the operation to a remote host and try to find the
point where offloading the operation to the remote device is faster than
performing the calculation on the device itself.

8.1.4 Evaluation criteria

We evaluate each test case by the following criteria:

• Functionality and Stability: We evaluate whether the function-
ality and stability is as expected from the implementation.

• Consistency: We evaluate the results in terms of the consistency
of the samples.

• Efficiency: We evaluate the efficiency of the test compared to the
other test beds.

67

In all the test cases we run each test 20 times and present the average
of the samples.

8.2 Basic performance

In this section we test the basic performance of the implementation to
identify some of the limitations Emerald has on iOS. These tests should
help us to determine the usability of Emerald on iOS.

8.2.1 Thread spawning

In this test we try to spawn the maximum amount of threads the differ-
ent test beds support.
Having a number on the maximum number of concurrent processes is
useful when designing Emerald programs.

Results

Device Number Time

Macbook Air 65241 1200ms
iPhone 4 7894 6.94s
Samsung Galaxy Fame 65241 20.5s

Discussion

Both the Android and the OSX implementations have a maximum num-
ber of 65241 processes before the run time crashes. This is probably
due to an integer overflow in the virtual machine.
The iOS implementation crashes after 7894 processes. This could be
due to different sizes of the primitives between the Android NDK and
the iOS SDK causing the stack to be smaller on iOS. It is worth men-
tioning that increasing the stack size of the virtual machine with the
-s command line switch solves the issue and we can spawn more than
7894 processes.

68

Evaluation

Functionality and Stability: The test program runs as expected. No
problems when starting processes.
Consistency: No Variation in the samples.
Efficiency: The iOS implementation performs worse than the other
two implementations with 7894 maximum processes to 65241 on An-
droid and OSX.

8.2.2 Thread spawn performance

In this test we determine the performance of spawning 1000 processes
on the different test beds. This gives us an indication of the overhead
of spawning processes with the iOS implementation.

Results

Device Time

Macbook Air 4ms
Samsung Galaxy Fame 20ms
iPhone 4 92ms

Discussion

The iOS implementation performs worse than the Android and OSX
implementations with 92ms per 1000 processes. While it is expected
that both the iOS and the Android implementations perform worse than
the OSX implementation it is noteworthy that iOS is almost five times
slower than the Android implementation. This is partly due to some
samples being much higher than the others, but overall the iOS imple-
mentation is slower.

Evaluation

• Functionality and Stability Stable: The test program runs as
expected. No problem when spawning processes.

• Consistency: There is some inconsistencies in the samples that
makes the iOS average somewhat higher.

69

• Efficiency: The iOS implementation performs worse than the other
two with an average of 92ms for every 1000 processes.

8.2.3 Heavy calculation test

In this test we simply evaluate the computational performance of the
implementation and compare it to the two other devices. This is done
by an Emerald program that calculates the first 50,000 prime numbers
and we present the average time of this operation.

Results

Device Time (avg.)

Macbook Air 3.72ms
Samsung Galaxy Fame 42.89ms
iPhone 4 55.96ms

Discussion

The iOS implementation performs worse than the two other test beds.
As expected it is much slower than the OSX implementation, but also
somewhat slower than the Android implementation. Again this is a re-
sult of the variation in the iOS samples. Some of the samples where
more than 200% slower than the median. This is due to App Store up-
dates or similar operations out of our control happening on the device
while Emerald is running.

Evaluation

• Functionality and Stability: The test program runs as expected.

• Consistency: Generally consistent samples, but at times the phone
slows down causing deviating samples.

• Efficiency: As expected against OSX and slightly slower than the
Android implementation due to the deviating samples.

70

8.3 Distribution tests

In this section we test and evaluate the distribution performance of the
Emerald implementation. This helps us determine if and when distribu-
tion of certain tasks can be beneficial.

8.3.1 Phone to phone

In this test we check the round-trip-time of distributing a object to the
Android phone and back to the iPhone, and evaluate if and when compu-
tational offloading is useful. The round-trip-time says something about
the general performance of distribution, and the computational offload-
ing graph will tell us at what time computational offloading is viable.

Results

Round-trip-time

Testbed Time

Phone-Phone 20.9ms

Computational offloading

71

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of primes calculated

0

25

50

75

100

125

150

175

200

225

250

Ti
m

e
 (

m
s)

Local
Remote

Discussion

The round-trip-time is as expected compared to the other testbeds,
slightly slower than distribution to a local more powerful device, and
faster than distribution to a remote server.
In the computational offloading graph we see that this is not ever viable
as the computation is always slower on the Android phone.

Evaluation

• Functionality and Stability: Both test runs as expected.

• Consistency: Consistent samples.

• Efficiency: As expected for RTT and computational offloading not
viable:.

72

8.3.2 Phone to local machines

In this section we perform the same two tests as previously but dis-
tribute from the iPhone to a local machine.

Results

Round-trip-time

Testbed Time

Phone-Local Machine 14,6ms

Computational offloading

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of primes calculated

0

25

50

75

100

125

150

175

200

225

250

Ti
m

e
 (

m
s)

Local
Remote

73

Discussion

The round-trip-time is faster when distributing to a local machine com-
pared to the Android device on the local network. This is not surprising
as the local machine have more computational power than the Android
device.
The computational offloading graph shows us that if we have tasks
where the execution time exceeds about 13ms it would be beneficial to
distribute the task to the local machine and to the computation there.

Evaluation

• Functionality and Stability: The test program runs as expected.

• Consistency: Consistent samples.

• Efficiency: As expected for RTT and computational offloading vi-
able for execution times exceeding 13ms.

8.3.3 Phone to remote server

In this section we perform the same two tests as previously but dis-
tribute from the iPhone to a remote server.

Results

Round-trip-time

Testbed Time

Phone-Remote Server 44ms

Computational offloading

74

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of primes calculated

0

25

50

75

100

125

150

175

200

225

250

Ti
m

e
 (

m
s)

Local
Remote

Discussion

The round-trip-time is slower than both the Android phone and the com-
puter on the local network, as expected because the server lives in
Germany. The computational offloading graph shows that offloading is
viable if the execution time of a task exceeds about 45ms.

Evaluation

• Functionality and Stability: The test program runs as expected.

• Consistency: Generally consistent samples, but some variation
in the round-trip-time samples.

• Efficiency: As expected for RTT and computational offloading vi-
able for execution times exceeding 45ms.

75

Table 8.3: Spesification of Planetlab nodes

Host CPU RAM Location

planetlab1.pop-mg.rnp.br 3.16GHz 4GB Brazil
planetlab3.cesnet.cz 2.66GHz 4GB Czech Republic

8.3.4 Phone to Planetlab

In this section we do the same two distribution test against two Plan-
etlab nodes. This will show us how the implementation works with dis-
tributing to devices over longer distances than the previous tests. The
spesifications and locations of the two nodes can be seen in table 8.3.

Results

Round-trip-time

Testbed Time

Phone-planetlab1.pop-mg.rnp.br 328ms

Testbed Time

Phone-planetlab3.cesnet.cz 46ms

Computational offloading

76

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of primes calculated

0

109

218

327

436

545

654

763

872

981

1090

T
im

e
 (

m
s)

Local
Remote

77

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of primes calculated

0

25

50

75

100

125

150

175

200

225

250

Ti
m

e
 (

m
s)

Local
Remote

Discussion

The server in Brazil have a much higher round-trip-time than the server
in the Czech Republic which also shows in the computational offloading
graphs where the breakpoints is at 45ms (CZ) and 330ms (BR).

Evaluation

• Functionality and Stability: The test program runs as expected.

• Consistency: The CZ server gave consistent samples, while the
BR server gave some inconsistent samples.

• Efficiency: The CZ server had a lower break point for computa-
tional offloading with about 45ms than the BR server with about
330ms.

78

8.4 Evaluation iOS as a development plat-

form

When it comes to developing "standard" applications iOS is a very good
platform for developers.

• There is a uniform way of developing applications with Xcode,
Objective-C/Swift.

• The same interface builder for all iOS devices.

• Predictable hardware to develop for.

• A safe and somewhat predictable way to distribute the application.

iOS comes with many security features and conventions that when de-
veloping standard applications is very welcome, but gives us some prob-
lems when porting programs such as Emerald:

• The restrictive license agreement prevents applications that have
a to small audience and exists outside of the norm of being dis-
tributed.

• The application sandboxing gives more security to the platform
but prevents a lot of operations like executing binaries.

• Even if the previous restrictions can be mitigated the only way to
distribute applications is through the official App Store.

In conclusion, for normal development iOS and its ecosystem is very
good for developers but when it comes to doing something out of the
box like porting Emerald the restrictive environment prevents us from
doing the things we need with the platform forcing us to jailbreak the
device.

8.5 Summary

We have shown that integrating Emerald into an iOS device is possible
and shown test cases in two categories. Basic performance has three
test cases, Maximum supported threads, Thread spawn Performance
and Computational performance.

79

The distribution tests have two test cases, Round-trip-time and Com-
putational offloading. We have proved that distribution with objects
with the iOS implementation of Emerald is relatively efficient and that
in some cases computational offloading can give great benefits when it
comes to execution time. To summarize, the Emerald implementation
for iOS works, and the performance is on par or slightly worse than the
other smart phone we ran tests on.

80

Part IV

Conclusion

81

Chapter 9

Conclusion

In conclusion, we have now successfully ported the Emerald run-time
to iOS. We have cross compiled the Emerald source code for the dif-
ferent architectures supported by the different iOS devices, created an
iOS native application as a front-end to the runtime and distributed
these through Cydia. Because of the many security restrictions on the
iOS platform a prerequisite for running the application is a jailbroken
device.

9.1 Contributions

We have made the following contributions with this thesis:

• Ported Emerald to iOS

• Evaluated the performance for Emerald on iOS

9.1.1 Porting Emerald to iOS

Using the compiler distributed with the iOS SDK we cross-compiled
Emerald for the ARM architecture.
Because different iOS devices uses different versions of the ARM archi-
tecture we had to compile one binary for each of the available architec-
tures. Some small changes to the source code had to be made in order
for the Clang compiler to accept, and compile the sources. To execute
the binaries we can either use Secure Shell to login to the device or run
it from a application created to run the binary.

82

Emerald for iOS native App

We created an native iOS application to be able to run Emerald conve-
niently without having to use Secure Shell.
This application have a user interface that is more suited for using on a
touchscreen than a console and makes compiling and executing Emer-
ald programs easy.

Distributed Emerald to Cydia

Because Apple does not allow such an application to be distributed
through the App Store we had to distribute the binaries and the ap-
plication through Cydia, an App Store for jailbroken devices.

9.1.2 Performance evaluation

We have evaluated the performance of the Emerald implementation and
shown that computational offloading can be very beneficial. Even if the
remote node have more computing power we have to consider the la-
tency and the bandwidth between the nodes before offloading compu-
tational tasks. In the cases where computational offloading is viable the
smart phone will save both time and battery power.

Limitations of the implementation

The stack size of the Emerald implementation is smaller om iOS versus
other devices, but can be increased with the -s command line switch.
Emerald is unstable when distributing to nodes running other Emerald
versions. Generally stable as long as we make sure that all the nodes
runs the same version (1.06). Because the application is not tied in
to iOS in any way we cannot distribute anything defined outside of an
Emerald program or use iOS functions from Emerald in any way.

9.2 Future work

The Emerald for iOS application is more of a proof-of-concept than a
fully fledged iOS application and there is some thing that should be
fixed to make it more usable.
There should be an easier way of transferring Emerald programs to the

83

device when the application is installed through Cydia. If the applica-
tion is installed through Xcode we can use the file transfer in iTunes,
but this option is not available for Cydia applications. The current so-
lution is copying the files through secure shell. The terminal in the
application could also be easier to use.

When it comes to Emerald it should be ported to support 64-bit ar-
chitectures. Further than that the holy grail for Emerald on iOS would
be an re-implementation of Emerald as a library that could be statically
compiled. This would mean that Emerald could be embedded in any
device, and for iOS it means that we could get it through the App Store
without breaking the license agreement.

84

Appendices

85

Appendix A

Code

The source code of the iOS application is available at:
https://github.com/apers/iOSEmerald

The end-point for the Cydia repository is:
http://pers.link/emerald

The rest of the code presented in this chapter is the test programs from
the evaluation chapter.

A.0.1 Maximum supported threads

const Thread <- class Thread[n: Integer]
var count: Integer
initially

(locate self)$stdout.putString["Starting thread: " || n.asString
|| "\n"]

end initially
process

loop
count <- count + 1

end loop
end process

end Thread

const Main <- object Main
var thread_list: Array.of[Thread] <- Array.of[Thread].empty
var n: Integer

process
n <- 0

86

https://github.com/apers/iOSEmerald
http://pers.link/emerald

loop
thread_list.addUpper[Thread.create[n]]
n <- n + 1

end loop
end process
end Main

A.0.2 Thread spawn performance

const Thread <- class Thread[n: Integer]
var count: Integer
initially

%(locate self)$stdout.putString["Starting thread: " || n.
asString || "\n"]

end initially
process

loop
count <- count + 1

end loop
end process

end Thread

const Main <- object Main
var thread_list: Array.of[Thread] <- Array.of[Thread].empty
var n: Integer
var startTime: Time
var finishTime: Time

process
n <- 0
startTime <- (locate self)$timeOfDay
for j : Integer <- 0 while j < 1000 by j <- j + 1

thread_list.addUpper[Thread.create[n]]
end for
finishTime <- (locate self)$timeOfDay
stdout.putString["Time: " || (finishTime-startTime).asString || "\n"

]
end process
end Main

A.0.3 Calculation test

const driver <- object driver
export op findPrimes

87

attached var finishTime: Time
attached var startTime: Time <- (locate self)$timeOfDay
attached const limit <- 50000
attached const primes <- Vector.of[Integer].create[limit]
attached var howmany : Integer <- 0
attached var j : Integer
for i : Integer <- 2 while i < limit by i <- i + 1
j <- 0

loop
exit when j >= howmany or i # primes[j] = 0
j <- j + 1

end loop

if j >= howmany then
primes[howmany] <- i
howmany <- howmany + 1

if howmany#1000 = 0 then
(locate self)$stdout.putString[i.asString || "\n"]

end if
end if

end for
finishTime <- (locate self)$timeOfDay - startTime
stdout.putString["Execution time: " || finishTime.asString || "\n"]

end findPrimes
end driver

const Main <- object Main
initially

const up <- (locate self)$activeNodes

% Only this node available
if up.upperbound = 0 then

driver.findPrimes
else

move driver to up[1]$theNode
driver.findPrimes

end if
end initially
end Main

A.0.4 Round-trip-time

const Kilroy <- object Kilroy

88

process
const home <- locate self
var there : Node
var startTime, diff : Time
var total: Time
var all : NodeList
var theElem :NodeListElement
var stuff : Real

home$stdout.PutString["Starting on " || home$name || "\n"]
all <- home.getActiveNodes
home$stdout.PutString[(all.upperbound + 1).asString || " nodes

active.\n"]

total <- Time.create[0,0]

for j : Integer <- 0 while j < 20 by j <- j + 1
startTime <- home.getTimeOfDay

for i : Integer <- 1 while i <= all.upperbound by i <- i + 1
there <- all[i]$theNode
move Kilroy to there
there$stdout.PutString["Kilroy was here\n"]

end for

move Kilroy to home
diff <- home.getTimeOfDay - startTime
total <- total + diff;

home$stdout.PutString["Back home. Total time = " || diff.
asString || "\n"]

end for
home$stdout.PutString["Finished. Avg.= " || (total/20).asString ||

"\n"]
end process

end Kilroy

A.0.5 Computational offloading

const driver <- object driver
export op findPrimes[limit: Integer]
attached const primes <- Vector.of[Integer].create[limit]
attached var howmany : Integer <- 0
attached var j : Integer
for i : Integer <- 2 while i < limit by i <- i + 1

89

j <- 0

loop
exit when j >= howmany or i # primes[j] = 0
j <- j + 1

end loop

if j >= howmany then
primes[howmany] <- i
howmany <- howmany + 1

end if
end for

end findPrimes
end driver

const Main <- object Main
process

const here <- (locate self)
var finishTime: Time
var startTime: Time
const up <- here$activeNodes
const file <- OutStream.toUnix["primes-data.txt", "w"]

file.putString["Local:\n"]

for i : Integer <- 1 while i <= 10001 by i <- i + 200
startTime <- here$timeOfDay
driver.findPrimes[i]
finishTime <- here$timeOfDay
file.putString[i.asString || ";" || (finishTime-startTime).

asString || "\n"]
here$stdout.putString[i.asString || ";" || (finishTime-startTime

).asString || "\n"]
end for

fix driver at up[1]$theNode
file.putString["Remote:\n"]

for i : Integer <- 1 while i <= 10001 by i <- i + 200
startTime <- here$timeOfDay
driver.findPrimes[i]
finishTime <- here$timeOfDay
file.putString[i.asString || ";" || (finishTime-startTime).

asString || "\n"]
here$stdout.putString[i.asString || ";" || (finishTime-startTime

).asString || "\n"]
end for

90

here$stdout.putString["Done\n"]
file.flush
file.close

end process
end Main

91

Bibliography

[1] International Data Corporation. Smartphone os mar-
ket share, q4 2014. http://www.idc.com/prodserv/
smartphone-os-market-share.jsp. Online; accessed: 05-
May-2015.

[2] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon
Blair. Distributed Systems: Concepts and Design. Addison-Wesley
Publishing Company, USA, 5th edition, 2011.

[3] S. Ghosh. Distributed Systems: An Algorithmic Approach, Second
Edition. Chapman & Hall/CRC Computer and Information Science
Series. Taylor & Francis, 2014.

[4] Jan Rune Holmevik. Compiling simula: A historical study of tech-
nological genesis. IEEE Ann. Hist. Comput., 16(4):25–37, Decem-
ber 1994.

[5] N.C. Hutchinson. Emerald: an object-based language for dis-
tributed programming. PhD thesis, Univ. of Washington,Seattle,
WA, Jan 1987.

[6] Apple Inc. Apple developer program license agreement.
https://adcdownload.apple.com/Documentation/License_

Agreements__Apple_Developer_Program/Apple_Developer_

Program_Agreement_20150909.pdf. Online; accessed: 06-Jan-
2016.

[7] Apple Inc. The foundation framework. https://developer.
apple.com/library/ios/documentation/Cocoa/Reference/
Foundation/ObjC_classic/. Online; accessed: 10-Nov-2015.

92

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://adcdownload.apple.com/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_Agreement_20150909.pdf
https://adcdownload.apple.com/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_Agreement_20150909.pdf
https://adcdownload.apple.com/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_Agreement_20150909.pdf
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/ObjC_classic/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/ObjC_classic/
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/ObjC_classic/

[8] Apple Inc. Uikit framework reference. https://developer.
apple.com/library/ios/documentation/UIKit/Reference/
UIKit_Framework/. Online; accessed: 11-Nov-2015.

[9] Computer World Jonny Evans. Apple has
sold one billion ios devices, company claims.
http://www.computerworld.com/article/2876320/
apple-has-sold-one-billion-ios-devices-company-claims.
html. Online; accessed: 19-May-2015.

[10] E. B. Jul. Object Mobility in a Distributed Object-oriented System.
PhD thesis, Univ. of Washington,Seattle, WA, Seattle, WA, USA,
1989. UMI Order No: GAX90-00257.

[11] Medienorge. Andel som har smarttelefon. http://medienorge.
uib.no/statistikk/medium/ikt/379. Online; accessed: 04-Nov-
2015.

[12] J.C. Mitchell. Concepts in Programming Languages. Cambridge
University Press, 2003.

[13] Pangu. Pangu jailbreak tool. http://en.7.pangu.io/. Online;
accessed: 12-Jan-2016.

[14] David Peleg. Distributed Computing: A Locality-sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[15] Ira Sager. Before iphone and android came simon, the first
smartphone. www.bloomberg.com/bw/articles/2012-06-29/
before-iphone-and-android-came-simon-the-first-smartphone.
Online; accessed: 04-Nov-2015.

[16] Kevin C. Tofel. Android sales overtake iphone
in the u.s. https://gigaom.com/2010/08/02/
android-sales-overtake-iphone-in-the-u-s/. Online; ac-
cessed: 04-Nov-2015.

[17] The Verge. ios: A visual history. http://www.theverge.com/2011/
12/13/2612736/ios-history-iphone-ipad. Online; accessed:
19-May-2015.

93

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
http://www.computerworld.com/article/2876320/apple-has-sold-one-billion-ios-devices-company-claims.html
http://www.computerworld.com/article/2876320/apple-has-sold-one-billion-ios-devices-company-claims.html
http://www.computerworld.com/article/2876320/apple-has-sold-one-billion-ios-devices-company-claims.html
http://medienorge.uib.no/statistikk/medium/ikt/379
http://medienorge.uib.no/statistikk/medium/ikt/379
http://en.7.pangu.io/
www.bloomberg.com/bw/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
www.bloomberg.com/bw/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
https://gigaom.com/2010/08/02/android-sales-overtake-iphone-in-the-u-s/
https://gigaom.com/2010/08/02/android-sales-overtake-iphone-in-the-u-s/
http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad
http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad

[18] Owen Williams. Apple announces swift, a new programming lan-
guage for ios and os x. http://thenextweb.com/apple/2014/06/
02/apple-announces-swift-new-programming-language-ios/.
Online; accessed: 05-Nov-2015.

94

http://thenextweb.com/apple/2014/06/02/apple-announces-swift-new-programming-language-ios/
http://thenextweb.com/apple/2014/06/02/apple-announces-swift-new-programming-language-ios/

	I Introduction
	Introduction
	Motivation
	Goal
	Approach
	Work done
	Results
	Contributions
	Ported the Emerald runtime to iOS
	Created a native iOS application using the port
	Evaluated the performance of the port for iOS
	Briefly evaluated iOS as a development platform

	Conclusion
	Outline

	II Background
	Background
	Distributed systems
	Object-oriented programming
	History
	Concepts

	Distributed objects
	Planetlab
	Smartphones
	Summary

	Emerald
	The Emerald programming language
	Objects in Emerald
	Types in Emerald
	Distribution in Emerald
	Summary

	iOS - the Apple smartphone OS
	The iOS operating system
	The history of iOS
	iOS development
	Supported programming languages
	Objective-C
	Swift
	Automatic Reference Counting
	Xcode

	Core frameworks and APIs
	Foundation
	UIKit Framwork
	iOS SDK

	The Apple publishing process
	Summary

	III Porting Emerald
	Porting Emerald
	Running Emerald on an unmodified device
	Bypassing the App Store
	Cross-compiling Emerald
	Sideloading
	Jailbreaking

	Porting Emerald to a jailbroken device
	Summary

	iOS application
	Overview
	Main menu
	Compiler view
	Connection view
	Program view
	The Emerald console
	The console
	Emerald runner
	Console view controller

	Summary

	Distribution with Cydia
	Creating the packages
	Hosting the repository
	Summary

	Performance and Evaluation
	The tests
	Basic performance
	Evaluation criteria
	Distribution tests
	Evaluation criteria

	Basic performance
	Thread spawning
	Thread spawn performance
	Heavy calculation test

	Distribution tests
	Phone to phone
	Phone to local machines
	Phone to remote server
	Phone to Planetlab

	Evaluation iOS as a development platform
	Summary

	IV Conclusion
	Conclusion
	Contributions
	Porting Emerald to iOS
	Performance evaluation

	Future work

	Appendices
	Code
	Maximum supported threads
	Thread spawn performance
	Calculation test
	Round-trip-time
	Computational offloading

