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Abstract

In this thesis we conduct numerical studies on plasma-spacecraft interactions by
examining two different shapes of spacecrafts, a rocket and a satellite. They are
simulated by a cylinder and a box corresponding to the rocket and the satellite
respectively. We will make use of the DiP3D code developed by Miloch, 2006
with modification to the object handling of the code. Our simulation objects have
different dimensions and different shapes and we discover that this has profound
impact on the spacecraft. The charging over the spacecrafts turn out to be
anisotropic and we retrieve different potential profiles for the two objects. The
anisotropic potential results in a dipole electric field which also seems to differ in
intensity for the two objects. For the cylinder we yield a stronger electric field in
the upstream than in the downstream while in the case of the box the intensity
does not seem to differ by much.

Furthermore the study shows agreement with the previous work concerning
the temperature ratio and the wake structures forming behind the object. The
wake structures in particular seem to depend on the flow and the object dimension
as the electrostatic wake structure is also significantly different in the two cases.

We present the problem in the introduction of this thesis and go through the
specifications of the object implementation in the main part of the thesis.
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Chapter 1

Introduction

Space is a very complex environment consisting of charged particles of different
species, plasmas, electric and magnetic fields, space-debris, and radiation from
external sources, such as cosmic rays that arise from supernovae. All of these can
affect a spacecraft and cause significant damage to the spacecraft, its performance
and operation lifetime, and in some cases even cause loss of mission which was the
recent case for the spacecraft ADEOS II (Cho, 2005) and many others (Beding-
field, Richard D. Leach, and Margaret B. Alexander, 1996). Spacecraft charging
is thus a very important aspect of the physics involved and needs to be taken into
consideration in the design of a spacecraft, since it can have critical effects on the
mission. With the advancements of electronic circuits that operate at low voltage
and low current, the study of spacecraft charging has become ever so important
resulting in significant development in both theories and simulations to predict
and prevent charging effects (Mikaelian, 2009). Furthermore, spacecraft charging
can result in modulation of measurements as was the case in the measurements of
the Cluster satellites. This is a very important aspect of spacecraft charging and
its effect and has been covered both numerically and analytically by Y. Miyake
et al., [2013; N. Meyer-Vernet, (1976

In the following thesis we will delve into the study of the space-environment,
how it can affect the spacecraft, the methods that are in use to analyse the prob-
lem and finally, analysis of the plasma-spacecraft interactions. More specifically,
the numerical method particle in cell (PIC), which we will be using to simulate
a system in which a body is submerged in a plasma flow and study the charg-
ing of the spacecraft. The object shapes will consist of a cylinder and a box,
corresponding to a rocket and a satellite respectively. There are essentially two
regions of plasma simulations that are of interest. There is the case in which the
object is larger than the Debye length Ap at a low voltage and then there is the
case in which we concern ourselves to electric probes such as Langmuir probes
in which the size of the object is smaller than the Debye length. The size of the
objects can range from dust particles (Y. Miyake et al., 2013) to as large bodies
as the Moon (Holmstrom et al., 2012). In the former the sheath that is formed

3



4 Introduction Chapter 1

by the plasma is of the order of the Debye length while in the latter case the
sheath will be much smaller than the Debye length and thus are of particular
interest when it comes to laboratory experiments. We will confine ourselves to
the LEO region of space and we will use the parameters corresponding as close
to the region as possible.

The thesis is organised as follows, we will start with the background theory
covering the basics of the Earth’s space environment from the solar wind to
the ionosphere (which is the region of interest for sounding rockets simulations).
We will then briefly go through the basics of plasma physics covering the two
extreme descriptions of the plasma, namely the fluid description and the kinetic
description. Following the kinetic description we then cover the fundamental
equations used in plasma physics and how the particles interaction with the
electric and magnetic fields change their trajectories. After the section covering
plasma physics we will briefly look into orbital mechanics as we will be using
the basic equations in this section to calculate velocity from the altitude to be
used later as parameter in the simulation. We then get to the theory covering
the issue at hand, namely plasma and spacecraft interactions. In the section
concerning the plasma spacecraft interaction we will go thoroughly through the
theory of the charging mechanism and examine the fundamental regions in which
the equations of said charging are valid and their limitations. We will finally go
over the different charging processes in the two different regions, LEO and GEO,
however in the subsequent chapters we will solely focus on the LEO region.

Having covered the theory, we will delve into the numerical part of this thesis.
The method of choice, arguments for using the chosen method, implementation
and the used parameters are covered in the first section of the this chapter. In
the second section we will cover the results of the simulations with the used
parameter and in the subsequent section go through the discussion of the results.
Finally we will summarise the results. conclude our observations and analysis,
and include thought for future work in the fifth, and final chapter of this thesis.



Chapter 2

Theoretical background

This chapter is meant to lie the foundation for the upcoming chapters. We
will look at different space environments and focus on what they consist of.
Furthermore we will elaborate the theory and equations that govern these regions
of space and their interconnectivity.

We will however not go through detailed calculations and for further theoret-
ical insight into the problems, we refer the reader to the references provided.

2.1 Earth’s space environment

Before we thoroughly study the problem of spacecraft charging, we will consider
the definitions and constrains in what we here define as the Earth’s space envi-
ronment and the designated subject space physics. In the following, space physics
is understood as the physics of charged and neutral particles and their interaction
with the force fields within the space region of the solar system and its vicinity.
Once again when we say particles, we here mean a gas which is composed of
atoms, molecules, ions and electrons. The term field here is mainly appointed to
the magnetic and electric fields; although the gravitational field is also present, we
assume it as a given quantity. Furthermore the electric and magnetic fields will
play a much larger role in the coming sections than the gravitational field. There
are many regions of interest in space, but we constrain ourselves in which region
we would like to study. We do not deal with planetary bodies, moons, planetary
rings or interplanetary dust. That would be the domain of planetary science.
The same goes for the solar interior, which is evaluated by solar physics (Prolss,
2012). We will also not discuss lower atmospheres of the Earth which would be in
the realm of meteorology. In some ways one could say space physics handles the
physics that takes place between the field of astronomy and the fields mentioned
above (Prolss, 2012).
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2.1.1 Electromagnetic radiation from the Sun

The regions of space in part of our solar system is illustrated in fig. Im-
portant to note here is the charged gas that envelopes the different bodies. Let
us break down each region starting from the Sun and down to Earth. Looking
at the whole solar system, an interstellar medium comes in contact with the in-
terplanetary magnetic field of the Sun. We refer to this medium as interstellar
wind, the pressure of the interstellar wind constrains the charged particles and
fields of interplanetary space to a finite volume, which we call the heliosphere.
The boundary of this region is called the heliopause and it defines the border
of our solar system. The concepts we have described here (interstellar wind and
heliosphere) can similarly also be considered around Earth.

Figure 2.1: Sun-Earth space environment depicting the different regions.
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The Sun emits highly conducting fluid at supersonic speeds in the range of
400kms™! to 800kms™! (Nicole Meyer-Vernet, 2007) depending on the region
of space and the type of emission, into interplanetary space (Baumjohann and
Treumann, [1996). We say supersonic when it exceeds the speed of sound, ¢, of
the conducting fluid, which is approximately 1.17 x 10*ms~!, this usually hap-
pens at a certain distance, r. = Gmg/2c¢?, where mg is the mass of the Sun
and G the gravitational constant. This distance is the critical distance from
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Figure 2.2: Earth’s magnetosphere and radiation belts (Davies, K., Iono-
spheric Radio, Peter Peregrinus, London, 1990).
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the Sun at which point its speed transcends into supersonic speed (see Brekke,
2013). This highly conducting flow is called the solar wind and it is comprised
mainly of electrons and ions. As the solar wind propagates and comes in con-
tact with the Earth’s magnetic field, it is not stopped, but rather slowed down
and deflected around it as shown in fig. 2.2l Through the frozen in concept the
particles are attached to the magnetic field lines so they cannot just escalate to
another magnetic field line such as that of the Earth’s. As a consequence of this
concept, the Earth’s magnetic field is compressed and the particles are slowed
down. Since this interaction takes place at such a high velocity, it gives rise to
a bow shock, which is a shock wave that occurs at supersonic speeds as in the
current case. This, in return, results in the particles being slowed down and their
kinetic energy being converted into thermal energy. The region that is formed as
a result of this is called magnetosheath and is just behind the bow shock region
as seen in fig. The particle density is higher in this region than in the solar
wind (Prolss, |2012).

2.1.2 Earth’s magnetic field lines and the atmosphere

Just like in the case of the Sun, we have a region called magnetopause which lies
between the magnetosheath and magnetosphere. As seen in fig. the outer
part of the planetary magnetic field is distorted, the interconnection between
the interplanetary magnetic field lines and the planetary field lines is complex
and we will not go into details as this is not the main topic of this thesis. We
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will however note that the front side of the planetary field that faces the Sun is
compressed due to the kinetic pressure from the solar wind, while the nightside
of it is stretched out far beyond the position of the Earth and into the lunar
orbit. This is called the magnetotail. Within the magnetosphere, which consists
mainly of protons and electrons, is a radiation belt, the Van Allen belt, which
stretches from 2 Rg to 6 Rg or approximately from 1000 km to 60000 km. The
belt consists of energetic electrons and protons that travel along the field lines
of the two magnetic poles and acts as a wall so that it can even halt the most
energetic electrons coming in from the Sun. The belt can be divided into inner
and outer belts, the former containing more high energy protons usually in the
order of and larger than 10 MeV and the latter containing more high energy
electrons in range 7MeV (Mikaelian, [2009)). As we have seen there are different
regions in space with different properties, the same can be said about the Earth’s
atmosphere as it consists of several layers.

Atmosphere

When it comes to Earth, we have to distinguish between the different layers of the
atmosphere as they too exhibit different properties. The main layers are: Tro-
posphere, Stratosphere, Mesosphere, Thermosphere and Exosphere. While the
four former are regarded as the neutral upper atmosphere and have a range from
10 km to 600 km, the latter, has range from 600 km to 10 000 kmm. Which as we can
already tell, coincides with the inner Van Allen belt. As the solar UV penetrates
the Earth’s atmosphere and ionises parts of the neutral atmosphere, collisions of
particles become too infrequent and thus result in a permanent ionised region
which we refer to as the ionosphere, this layer stretches from 80 km to the edge
of space well above 900 km.

At high latitudes at around 55° to 90° high energy electrons can precipitate
along the magnetic field lines down to ionospheric altitudes and this results in
the ionisation of the neutral atmospheric particles. Consequently, because of
the transition between the different energy levels, photon emission occurs, which
we refer to as the aurorae. The colours of the aurorae depend on the excited
constituents and their emission characteristics. At times when there is a strong
solar wind, the aurorae will be visible at lower latitudes as well. The ionospheric
region is usually densely packed with particles, albeit low energy in comparison
to the outer space region where we have high energy, but low density e.g. the
outer Van Allen belt. Our region of interest, LEO, as well as the outer region
GEO are summarised in fig. [2.3]

The interconnectivity of the fields and the forces of the Earth is very com-
plex and gives rise to many different hazardous regions in space for artificial
satellites. We say hazardous because significant damage can be inflicted on the
electronic and optical components of the spacecraft, measurements that are con-
ducted might entail induced background noise and spacecraft charging that could
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. GEO: 6.6 Earth radii
" Increasing Latitude High E: 1 ~ 50 keV
Low p: 0.1 ~ 1.0 cm™3

Increasing Altitude
LEO: 100 ~ 2000 km
Low E: 0.1 ~ 0.3 eV
High p: 10?2 ~ 10 cm™3

Figure 2.3: Space plasma properties in LEO and GEO.(Inspired by Beding-
field, Richard D. Leach, and Margaret B. Alexander, [1996]).

potentially lead to mission failure could occur under substantial radiation. We
went, through some of the implications the space weather has on Earth’s atmo-
sphere, i.e. the affects of solar activities, such as the solar wind and its interaction
with the Earth’s magnetic fields. A better understanding of the physics behind
the kind of interactions we have mentioned could lead us into developing and fore-
seeing the interactivity between Earth and its surrounding area in space, such as
that between the Earth’s magnetic field lines and the solar wind.

2.2 Plasma physics

In the previous section we kept referring to the medium that surrounds the Sun
and much of the space as charged gas. In this section we are going to define this
medium as plasma. It is the fourth state of matter and also the most common
form of matter in the observable universe. A plasma, as we have seen in the previ-
ous section, consists of electrons, ions and neutral atoms, usually at temperatures
above 10*K. The Sun and stars, Solar wind, Van Allen belts, magnetosphere
and the Earth’s ionosphere, etc., are all plasmas. In its stationary state it is
quasineutral, meaning there are roughly the same number of particles within the
same volume element with opposite signs (Baumjohann and Treumann, [1996).
This quasineutrality will depend on the region of space and parameters as we will
be introducing in this section. We will also elaborate on some of the different
plasmas and models.
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2.2.1 Plasma parameters

Above we mentioned that the quasineutrality will depend on the type of plasma,
thus the aforementioned volume element or the confined region of space in which
the plasma resides in, must be large enough for sufficient number of particles, yet
small enough in comparison to the characteristic length variations of the macro-
scopic parameters such as temperature and density (Baumjohann and Treumann,
1996). For the macroscopic neutrality to be upheld, the microscopic space charge
fields of the individual charge carriers must cancel each other out. The criteria
for the neutrality is that the electric Coulomb potential field of every charge, ¢

pc(r) = 47rq€0r (2.2.1)

is shielded by other charges in the plasma and takes the form of the Debye
potential

o(r) = poe o (2.2.2)
where ¢( is the permittivity in vacuum and
€0k’T
A = 2.2.3
b en ( )

is called the Debye length, where k is the Boltzmann constant, T" is the plasma
temperature and n is the plasma density. In the above we have assumed that the
ions are immobile, if we do include this minor effect then we will get the effective
Debye length

1 1 1

T f = s + Ve (2.2.4)

where for Ap; we replace the electron temperature and mass with the ion, T;
and m; (Pécseli, 2012 Baumjohann and Treumann, 1996)). Physically the Debye
length characterises the shielding distance (Pécseli, 2012). In other words, the
distance over which a balance is obtained between the kinetic energy of the
particle which tends to perturb the electrical neutrality and the electrostatic
potential energy that results from any charge separation which restores charge
neutrality. We note that ¢(r — co) — 0 and close to the charge ¢ we retain the
Coulomb potential ¢c. For the shielding to occur we require that the system be
much larger than the Debye length, otherwise there will not be sufficient space
for the shielding to occur and we are left with a simple ionised gas.

As we mentioned we require enough space for the shielding to take effect and
inside a Debye sphere, a sphere with radius Ap, the number of particles is given
by %’rnk%. From this we can deduct a dimensionless number called the plasma
parameter

A =n)3 (2.2.5)
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and it plays an important role in classifying plasma conditions of interest. For
plasmas of interest we expect A > 1 as then it will be hot and dilute. We will
come back to this later when we look into the different systems (Pécseli, 2012)).

If there happens to be some disturbance on the quasineutrality of the plasma
by some external force, the electrons are accelerated to restore the charge neu-
trality since they are far more mobile than the heavier ions. They will be in
motion around the equilibrium position, back and forth, and this results in fast
collective oscillations around the more massive ions. This oscillation frequency
is the electron plasma frequency

2
Wpe = 1| = (2.2.6)

Meo

where m, is the electron mass. Now that we have introduced the frequency,
we can argue that eq. is valid because wpe > wy;, i.e. that there is a
time interval where the electrons have reached the isothermal Boltzmann quasi-
equilibrium and we can consider the ions as immobile. This is because the time it
takes for the electrons to reach the Boltzmann equilibrium is of the order of the
Debye length divided by its characteristic velocity, under Maxwellian distribution

kT,
m

that would be the thermal velocity vy, = such that 7,, ~ WL and hence
pe

Tpe K Tpi OF that the process time for the electrons to reach the equilibrium is
far shorter than the ions.

As we outlined before, the ionosphere also contains neutral particles so that if
there are frequent charge particles and neutral particles collisions, the electrons
will be forced into equilibrium and we will no longer have plasma, but neutral
gas. In order for the electrons to remain unaffected the average time between the
collisions must be larger than the reciprocal of the plasma frequency.

2.2.2 Single particle motion

Since plasma consists of charged particles, they are heavily affected by the fields
and their motion are dependent on it. As referred to earlier, the different plasma
regions of space have different properties such as density and temperature. In the
limits where the plasma is very dilute, i.e. the particle density is low resulting in
fewer particle collisions and where they do not affect the external magnetic field
significantly, we can treat the motion of the particles individually. Our problem
is then reduced to the motion of charged particles given an initial velocity and
position. This approximation is only valid when we can neglect the collective
effect of the plasma and when the external magnetic field is much stronger than
the magnetic field produced by the charged particle motion i.e. electric current.
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Field equations

The equations of motion are basically governed by Newton’s second law, F = ma
and the Lorentz force, F = ¢[E 4+ v x BJ, which is the force experienced by a
particle moving in the presence of a magnetic and electric field. For a particle
with velocity v(t), position r(¢) and mass m we have

m—g = q[E(r(t),t) + v(t) x B(r(t),t)] (2.2.7a)
dz(tt) — (2.2.7h)

where E and B are the electric and magnetic fields respectively. There is a close
relationship between the motion of the charged particles and the fields, even
though they are strongly influenced by the fields they are also the source of the
fields. This is given by Maxwell’s equations

vV-E=L V-B=0 (2.2.8a)

OE
VXE= —E VxB= MQJ + Mggog (228b)

where J is the electric current density, p, the charge density and finally g the
vacuum permeability. Let us break down the equations. The equation to the
left side of is the Poisson’s equation and it expresses that the dielectric
displacement lines can begin or end on charges or in other words, the source of
the electric field is the electric space charge density p = e(n; — n.), the difference
between the charge densities of ion and electron (Prolss, 2012). The equation
to the right of eq. is Gauss’s law, it expresses among other things that
there exists no magnetic monopoles. The divergence of B is zero also implies that
magnetic field lines of finite length close on themselves, and those with infinite
length continuing to infinity. This is the case in majority of the physics, however,
in some cases such as in tokamak-devices the magnetic field lines continue to
wind around a torus with finite surface area (Pécseli, 2012). The left equation
of is Faraday’s law of induction and it states that rotation of an electric
field is induced by a time-varying magnetic field. Finally, the equation on the
right of [2.2.8b]is Ampere’s law. We see from the equation that the electric current
density turns out to be the source for the magnetic field and circles around the
current. In cases in which we can ignore the electromagnetic wave propagation
we can safely ignore the latter part of the right hand side eq. (2.2.8b). This is
because egpo = ¢2 hence the term will be minimal and can be neglected if no
rapid oscillations are present in the system (Baumjohann and Treumann, [1996;
Pécseli, 2012).
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Particle orbits

Determining the orbits of charged particles in an arbitrary electromagnetic field is
very complex, even if the fields are time stationary. Trying to find the trajectories
of the particles in space plasma will not be discussed here, we will however look
into some simple cases.

E|B

Let us assume that the electric and the magnetic fields are homogeneous, i.e.
B and E are constant vectors independent of the time and the spatial coordi-
nate (Pécseli, 2012). If the component of the E, Ej, is parallel to the magnetic
field then we can have an acceleration in this direction given by

V| = %EHt + vo|| (2.2.9)
r) = 5Byt + vojt + o)

where vg| and rq denotes the parallel initial velocity and position respectively.
Equation [2.2.9|is derived from the Coulomb force by integrating the equation of
motion ma = ¢E. The particle remains unaffected by the magnetic field and thus
will keep accelerating in the positive direction if it is an ion or in the negative
direction if we have an electron.

Now if we assume that there is no electric field component in the direction
of L B, then the particle will gyrate in a circular orbit with a radius set by the
initial velocity. The equation of motion becomes

dv q
—_— == B 221
dt mo 8 ( 0)
Taking the dot product with v and noting from vector calculus that v-(vxB) = 0
we obtain 4 4 )
% muv
yv=— =) = 2.2.11
YT at ( 2 ) 0 (22.11)

Since the force and the displacement are perpendicular to each other, a mag-
netic field cannot impart energy to a charged particle (Pécseli, 2012). As the
equation above states, the kinetic energy and |v, | are constant. For a particle
with constant velocity and a point mass in circular motion of radius R we have
an acceleration towards the centre as a = V—R2 with its magnitude in the direc-
tion perpendicular to the velocity vector. In a homogeneous magnetic field, the
charged particle orbit is a circle with radius r,, the Larmor radius, and an angular

frequency wy, the cyclotron frequency

qB
= — T, =
m 9 ¢B

muv

w, (2.2.12)
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Figure 2.4: Illustration of the direction of rotation of a positive and a nega-
tive charged particle with the centre of rotation being the guiding centre.

where v is the constant speed in the plane perpendicular to B. The direction
of rotation of the particle around the magnetic field depends on the charge with
the centre of the orbit called the guiding centre as shown in fig. 2.4

E1B

Now let us look at the case when E L B as in fig. 2.5 where both fields are
constant in space and time. This will be as the two previous cases added together,
on one hand you have the electric field accelerating the charged particle and on
the other hand you have the magnetic field turning the charged particle around.
The equation of motion in this case would be

d
md—‘t’ = g[E+ v x B (2.2.13)

In the previous case when there was no electric field the parallel velocity was
constant, however now we see that the parallel velocity would be

dvy _ By

2.2.14
dt m ( )

which when solved, gives us the equation of motion as given in eq. . We
initially described the affect of the two fields on the charged particle, we can
safely see it implies that the gyro centre moves perpendicular to both fields or
in other words, it drifts. The perpendicular part of the velocity gives us the

equation of motion
dVJ_

m_

dt
The appropriate frame of reference is the one moving with a constant velocity,
v, so we shift from our rest frame to this and we write the perpendicular velocity

= q[EL + v X B] (2215)
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Figure 2.5: Illustration of the E X B drift felt by a negative and a positive
charged particle across a constant homogeneous magnetic and electric field.

as v, = vy, + vg and insert it into the equation of motion [2.2.15 giving us

dVL

m? = q[EJ_ + v X B + Vg X B] (2216)

dVE —

where T

0 since it’s stationary. Now if we choose v in a way that it satisfies
E, +vixB=0 (2.2.17)

Then eq. (2.2.16) becomes

d
m%ZQ[—(VEXB)—l—VLXB—l—VEXB]
dv

ot = e xBl

which we might notice is the gyration velocity eq. (2.2.10)), that describes uniform
rotation with Larmor radius r, and cyclotron frequency, w,. The full solution for
the motion of the charged particle would then be composed of three parts,

V=V, +V|+vVg (2.2.18)

the gyration, motion along the magnetic field, and the uniform drift vg. This
uniform drift is called the E cross B drift and is given by

EJ_XB
- B

which follows by taking xB of eq. (2.2.17) and simplifying. Physically, the
magnetic field cannot change the velocity of the charged particle, it is solely af-
fected by the electric field and it accelerates the charged particles in different

Vg (2.2.19)
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direction depending on their charge. Electrons are accelerated towards the neg-
ative field direction and ions towards the positive. Since we know that the ions
and electrons have different mass, they will also have different velocities (Pécseli,
2012; Baumjohann and Treumann, 1996)). In general, the higher the velocity
the smaller the radius of the curvature of trajectory and vice versa, as shown

in fig. 2.5

2.2.3 Fluid description of plasma

Now that we have established the parameters we can proceed to the fluid de-
scription of plasma. The fluid description of plasma is necessary when dealing
with solar physics such as the solar wind medium or generally any plasma system
in which the information of individual particles is unnecessary. Typical plasma
densities for ion-electron pairs are in the order of 10" cm™ (Chen, [1984) and
each of these have complicated trajectories as we investigated some of the simple
cases in the previous subsection. It would therefore impose an immensely difficult
task to follow the trajectories for each of these particles. Accordingly we confine
ourselves to macroscopic quantities such as flux, density, temperature and the
flow velocity. The plasma frequency eq. and the corresponding plasma
period 7, = 3—; is applied to an ensemble of particles and not to individual par-
ticles. We will here introduce the various conservation equations for the plasma
and the assumptions we have to make to get there. For a more in-depth analysis
of the equations here see Fitzpatrick, 2015; Shu, 2009.

Solving Maxwell’s equations gives us B and E for a given state of a plasma.
So in order for us to solve the self-consistent problem we need an equation that
gives us the plasma’s response to B and E. The fluid model allows us to have
two or more interpenetrating fluids for each species s, such that for an ion and
an electron. The fluids would then interact with each other by the generation
of the fields B and E within themselves even in the absence of collisions as the
forthcoming equations will state.

We start off with the Boltzmann transport equation (BTE) in tensor form

ofs  Ofs | Ofs
ot + Ula_l‘i + ala—vi

— Cy(f) (2.2.20)

where f, is the distribution function for the specie s, it is the actual distribu-
tion of the particles and not the probability of finding said particle in a spatial
interval (Pécseli, 2012). Cs(f) is the correlation operator of which the most im-
portant one is the collision, hence it is the collision operator for the species s.
The subscript inside the argument is omitted because usually the collision term
requires the distribution function of each colliding species (Fitzpatrick, 2015)).
Since we are dealing with plasma we can denote the acceleration term with the
Lorentz force a; = ;I (E4+v X B) and thus the flow in the velocity space under the
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Lorentz force is incompressible (Fitzpatrick, |[2015]) and we can rewrite eq. (2.2.20)

as
Ofs 0 0

— )+ — ) = 2.2.21

at + amz (fsvz) _'_ an (fsaz) Cs(f) ( )

since V - a;, = 0. We can then find the continuity equation for the species

s by taking the zeroth moment of eq. . In fact, we can find any nth
moment of the BTE by multiplying it with v and integrating it over velocity
space (Fitzpatrick, 2015). For each moment we will get a new equation, such
that the equations leading up to the second moment are given by

dps 0
— s) = 2.2.22
2t (o) =0 (22.220)
0 0
7 (Pstiis) T 5= (psttjstiis + Poij — vig) = psa (2.2.22b)
o /1 ., 3 o1 N 3
(= °p)+ L2 i (POij — 1) + S Pus + | (2.2.22
o (5lul +3P) + o [Splultu b us(Pois i)+ SPus+ | (22220

The first one, eq. , is the continuity equation or the conservation of
mass equation. In short, it tells us that the fluid mass at some local point cannot
arbitrarily vanish and reappear at a completely different point, it is continuous,
see Appendix . Next, eq. tells us that the mean momentum is a result
of the external forces applied on the fluid (the right-hand side), the viscosity
v and the pressure forces of the fluid itself P. Finally we have eq.
the energy conservation equation. We have here introduced an additional term:
the conduction heat flux F'. The detailed derivation of the conservation energy
equation can be found in Bittencourt, 2004; Shu, [2009.

As we have derived the above equations we took the moments of the BTE,
so that even though the equations in themselves are exact they unfortunately
build a hierarchy of equations that depend on each other, in other words, they
are incomplete (Bittencourt, 2004). If we examine eq. we see that we
can easily solve it once we have the flow velocity, however, the flow velocity is
found by solving eq. , but this again in return delivers us with new
unknowns such as the pressure and the viscosity. We can solve this again once
we have the solution for the next moment, the energy conservation, eq. ,
which depends on the heat flux, requiring us knowing the next higher order
moment equation. As we have already implied the equations would just evolve
into a higher order moment equation which might very well not have any physical
interpretation (Bittencourt, 2004). In order for us to cut the hierarchy at some
point we would need to express the higher order equations in terms of some of
the lower order equations, i.e. we need to find closure (Fitzpatrick, 2015).

There are two ways this can be done, either by using truncation schemes or
asymptotic schemes. The former is done by either assuming that the higher or-
der moments vanish or prescribed in terms of lower order moments (Fitzpatrick,



18 Theoretical background Chapter 2

2015). The latter is more mathematically demanding and depends on the ex-
ploitation of some small parameters such as the ratio of mean-free path between
collisions to the macroscopic variation associated with Maxwellian distribution
(Chapman-Enskog Closure) see Fitzpatrick, 2015

2.2.4 Kinetic theory

In the fluid description of plasma we used space and time as independent variables
that is to say at an arbitrary point in time ¢ in the vicinity of a position r
we characterised the plasma by its local density p, average velocity u and a
temperature T'. We assume a priori that the actual velocity distribution of a
particle to be Maxwellian within a small volume element (Pécseli, 2012)). Due to
the long range of Coulomb force, a charged particle can interact simultaneously
with other particles despite Debye shielding in effect. Now for plasmas of interest
as we have mentioned we would want the plasma parameter to be very large and
this in return results in many charged particles within a Debye sphere. The a
priori assumption comes from the central limit theorem which states that the
distribution of a sum of a large number of statistically independent variables
is approximated by such a distribution, but the theorem falls apart when we
are dealing with many charged particle interactions that happen simultaneously
which are not independent (Pécseli, 2012; Chen, [1984)).

As we have elaborated, the fluid description would be inadequate for some
applications. To solve it we require an equation that can describe time, space and
velocity variations of a distribution function f,. This equation is nothing more
than the BTE in which the right-hand side is omitted yielding us the Vliasov
equation

Ofs Ofs ﬂafs
ot vl@xi m Ov;

—0 (2.2.23)

where fs = f(x;,v;,t) is the distribution of particles of species s with mass m, in
motion under a force field F; = F'(x;,t).

Maxwell’s equations together with the Lorentz force in section section [2.2.2
are used in the following in which we define the density and current density by
integrating the distribution function f; = f(r,v,t) over velocity space

pzqu/fstV JIqu/fsvd3v

Where ¢, is the charge of the specie s.

We will later revisit the kinetic description when we exploit the numerical
methods for simulation.
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2.3 Spacecraft plasma interaction

In the previous sections we examined how different regions of space are charac-
terised by different plasma. Some were far from Earth, such as the outer Van
Allen belt and some very close to Earth such as the ionosphere and the inner
Van Allen belt. Furthermore we introduced what a plasma consists of and how
it reacts to the different fields. As the previous sections have shown, the space
environment can pose dangers to the spacecraft in various forms among them
degrading the electronics on-board and the optics. In order for us to get our
spacecrafts operational in the orbit we need to take into account these harsh
environments and their effect on our spacecraft. As spacecrafts consist of con-
ducting materials and the plasma is composed of charged particles, we can see
that there are many ways things could go wrong if it is not taken into account,
and with the recent advancements in sophisticated instruments on board the
spacecraft that use low voltage and low current, spacecraft charging has become
of utmost importance in the development of space missions.

In this section we will establish the different orbits a spacecraft can have
and then we will elaborate the different charging effects on the spacecraft in the
different space environments such as low Earth orbit (LEO) and geosynchronous
equatorial orbit (GEO). We have so far ambiguously used the word spacecraft
without specifying what type of spacecraft we can consider. As the different
plasma regions of space have different altitudes different spacecraft would need
to be designed for the different altitudes and hence, for LEO we can consider
spacecraft in the form of sounding rockets and satellites, and in GEO we can
exclusively consider satellites. As we will later see the simplifications for the
two shapes will come in the form of a cylinder and a box for the rocket and the
satellite respectively.

2.3.1 Orbital mechanics

Before studying the plasma spacecraft interactions, let us shortly examine the
different orbits obtainable by a spacecraft such as a satellite. The orbit of a
spacecraft is crucial as the situation could arise where at one point the spacecraft
is in a cold plasma region and at another, it is in a hot plasma region. This should
ultimately be taken into account at the design phase of the mission to avoid
complications that arise from the different charging processes on the spacecraft
giving rise to different surface potential. We will make use of the orbit equation
derived in detail in Appendix [A] We will here only make use of the main points.
We can easily derive an equation of motion for two bodies of mass m; and mo,
such as that of Earth and a satellite. If we assume an inertial frame of reference
with an origin that is moving with a constant velocity, then the position vectors
of the two bodies with respect to the origin of the coordinate system are ry
and ro. Then, the position vector of my relative to m; becomes r = ry — ry.
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Figure 2.6: Free-body diagram of the two bodies.

We also have the unit vector from m; to msy as G = ﬁ We know then from
Newton’s law of universal gravitation that the force between the two bodies is
directly proportional to the product of their masses and inversely proportional
to the square of the distance between them. So the force acted on mo by m; as

in fig. is given by

G G
szmﬁ%?ﬁzﬂﬁg%ﬁ (2.3.1)
Tr T

where G is the gravitational constant and we have the Euclidean norm as ||r|| =

r (Curtis, 2010).

We will use eq. (2.3.1)) together with the specific angular momentum equation
h=rxv (2.3.2)

to arrive at the orbit equation (see appendix |A|for details)

h? 1
- - 2.3.
" w1+ ecos() (2:33)

where h is the magnitude of the specific angular momentum, e is the eccentric-
ity and p = G(my + mg) = Gmyg is the gravitational parameter. Taking the
derivative of eq. 1 , ‘(11—;, and simplifying gives us the radial velocity

vy = %e sin(0) (2.3.4)

The velocity component normal to the position vector is v, = r@, where 6 is the
rate of change of the true anomaly. We also have the angular momentum h = rv
which we can derive by decomposing the velocity, v = v, 0, + v, 1, and position,
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r = ru, in eq. (2.3.2) (Curtis, 2010). By using the above relations together with
eq. (233) we gt
vy = %(1 + ecos(9)) (2.3.5)

Now we let us look at two simple cases of the motions a spacecraft can have from
what we have arrived at above.

Circular orbits

For circular orbits the eccentricity e is zero and eq. (2.3.3) becomes
h?
r=—
1

dr

However, the derivative of this is zero, 5
use the relations we had above to acquire

_ \/ﬁ
Ucircular = -
r
T —or \/f
2

Many remote sensing, imagining and navigation satellites occupy nominally
circular LEO (Curtis, 2010)). At an altitude of 183 km we have velocities at around
7800ms~!. Majority of the weather satellites and communication satellites are
in GEO with the advantage that we do not need ground tracking because the
orbital period is usually of one sidereal day which is the time it takes for Earth to
complete one rotation relative to inertial space (Curtis, 2010). Furthermore, at
that altitude most of the Earth’s surface is visible and thereby the satellites are
able to cover more surface area. Relative speeds in the orbit is around 3000 m s+
at altitudes of circa 36 000 km above Earth’s surface.

= 0. It follows that v = v, and we can

with its period being

Parabolic trajectory

In the case of a parabolic trajectory we have e = 1 and we retain the orbit
equation

B h? 1
"= 11 1+ cos(f)
When nearing 6 = 180° the denominator goes to zero so that »r — oo. The
velocity is then obtained from the specific orbital energy € = —%(1 —e?) =
¥ — & (Curtis, 2010)

21
Vesc = UV = -
r
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The reason we have written wves is because if a body is launched in a parabolic
trajectory it will drift away into infinity arriving there with zero velocity relative
to the reference mass my, therefore the velocity is also called the escape velocity.

Sounding rockets are usually launched in a parabolic trajectory with velocities
around 1 kms™! to 2kms™? to an altitude of 100 km to 1500 km above the Earth’s
surface (NASA Sounding Rockets User Handbook|[2015). Depending on the type
of rocket and mission, the rocket may, after reaching apogee, free fall back to
Earth or deploy parachute for soft landing to protect the data. This does not
mean that the parabolic trajectories are the only form of trajectories the rockets
may achieve. As the equations state a spacecrafts trajectory ultimately depends
on its velocity.

2.3.2 Sheath theory

Before we proceed further we will first introduce the different concepts in sheath
theory such as plasma sheath and the different sheath regions in space that will
affect the spacecraft charging differently.

Plasma sheath

Let us first confine ourselves to a one-dimensional model and see what happens
to a plasma in the immediate vicinity of vessel wall. When the particles, the
electrons and ions, hit the wall they recombine and are thus lost to the plasma so
we can treat the wall as a perfect sink of particles (Fitzpatrick, 2015)). Since the
thermal velocity of the electrons are much higher than the ions we will initially
have a large flux of electrons that exceed that of ions. If we start off with
an unbiased potential of the wall with respect to the plasma, the imbalance of
the flux will give rise to a negatively charged wall. This generates a potential
barrier that will then repel the electrons and reduce the influx of electrons. This
potential cannot be distributed over the entire plasma and will be confined by
Debye shielding to a layer of several Debye lengths, eq. , in thickness (Chen,
1984). We refer to this layer as a plasma sheath. Its role is to build up a
potential barrier so that the mobile particles, such as the electrons, are confined
electrostatically. The process then comes to an end once the height of the sheath
is large enough to equal the electron flux to that of ion flux at which point a
steady-state is attained (Fitzpatrick, [2015). We can also observe a pre-sheath
which has a scale larger than the Debye length in which the ions are accelerated
by a potential drop |®| > kT, /e to a definitive velocity towards the probe (Chen,
1984)).
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Sheath regions

As we examined in section at low altitudes and LEO the plasma is dense
and eq. gives us a short Debye length in the order of millimetres. This
region of space which includes the ionospheric plasma is referred to as thin sheath
regime and in contrast to this, at higher altitudes where we have sub-storms and
high-energy particles making up the hot plasma such as in GEO, we have a thick
sheath regime (Mikaelian, 2009).

2.3.3 Charging mechanism

In near-Earth orbits many processes can affect the spacecraft ranging from at-
mospheric pressure, space debris and cosmic rays to eclipses, but from these the
most prominent one this thesis is dedicated to is the charging process that arise
from geomagnetic storms, radiation belts, eclipses (spacecraft in Earth’s shadow
during orbit), and solar flares (Mikaelian, 2009). These can result in two types
of charging, external and internal (R. D. Leach and M. B. Alexander, [1995).
Surface charging is considered external, and dielectric, internal. Both types can
lead to electrostatic discharge (ESD) which could potentially harm the instru-
ments and/or lead to mission failure. At present however the latter has been
hard to simulate and there are still many challenges to overcome (R. D. Leach
and M. B. Alexander, [1995)). In this thesis we will confine ourselves to the study
of the former, i.e surface charging.

Spacecraft charging occurs when a spacecraft is in a region of space which
contains plasma and electric current due to electrons and ions flows to the space-
craft resulting in charge accumulation on the exposed surfaces. The surface can
either be a conducting surface or an insulating surface, in the former the charge
equilibrium is reached globally while in the latter case it is established on a point-
to-point basis. The process is visualised in fig. where electrons and ions are
shown to be accelerating towards the conducting plate. As the charged particles
hit the surface, the charge starts to accumulate on the surface and gives rise to an
electric field. This electric field decelerates like-charged particles and accelerates
opposite-charged particles thereby increasing the negative or positive current.
This accumulation process continues until the charged particles are collected to
balance the currents. This continues until charge equilibrium is reached and no
more charge accumulates. Since the capacitance is finite the process takes a finite
time and at GEO altitudes, it takes a few milliseconds (Henry B. Garrett and
A. C. Whittlesey, 2012)) to reach equilibrium or as we will soon define it, floating
potential.

Once it has reached equilibrium we can then apply Kirchhoft’s circuit law
which states that all currents coming in, equal all currents going out at every
node in equilibrium (Mikaelian, 2009)). In our case, the surface of the spacecraft
can be seen as a node in a circuit in space. This means that the surface potential,
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®, must be such that the sum of all currents must add up to zero
> I=0 (2.3.6)
J

Where 7 =1,2,3... is the counter for the different currents such as the incoming
electron current, I., incoming ion current, I;, outgoing secondary electrons cur-
rent due to the incoming ions or electrons, I, and I, respectively, photoelectron
current due to sunlight, I,,, backscattered electron current, I, or other forms
of current present such that

Let(®) = 1(®) — (L;(D) + Lie(®) + L (D) + Ipse(P) + Lp(®)) =0

where we have ® as the surface potential relative to the plasma.

Figure 2.7: Surface charging process.

(a) Charing begins (b) Charging accumulates (¢) Equilibrium reached

2.3.4 Langmuir probe theory

As aforementioned in the previous subsection and visualised in fig. some
electrons will get repelled and some collected by the surface or probe. Now we
will look at it in more detail with the Langmuir probe theory in which we will
introduce the planar probe and orbit theory for cylindrical probes.

Planar probe

Let us assume we have a strongly magnetised plasma with the plasma potential
®,, furthermore we have a probe inside the plasma with a biased potential ®.
Now there are three scenarios we can think of. The first is when the probe is
biased to the plasma potential i.e. ® = ®,. In this case there will be no plasma
sheath and the probe is in direct contact with the plasma, so all species of the
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charged particles with velocities directed towards the probe will be absorbed by
the probe with the electron current being the dominating current since we have
a higher flux of electrons than ions. Second, if the biased potential is less than
the plasma potential, & < ®,, then we will have a scenario as in fig. where
electrons are reflected, but some electrons do hit the surface so there must be a
minimum velocity the electrons must have in order to hit the surface. We can
find this ve min by conservation of energy

1 2

5"MeVe min — e®, = —ed
1
§mevg,min - e(q)p - CD)
2e(®, — ®
Veomnin = 2¢(2 — @)
me

All electrons below this velocity are reflected. Lastly, we have the scenario,
® > ®,. In this case, all electrons are absorbed and all ions reflected. In
essence, the physical definition of the plasma potential is that a particle at rest
has the potential energy ¢®, with respect to a suitable defined ground (Pécseli,
2012).

We can now write the current collected by the probe under steady state
conditions as

I, = —enA ufe(u)du (2.3.7)
L, = —enA/ ufi(u) du (2.3.8)
0

where f(u) is the electron velocity distribution function and A is the probe
surface area. The ion current is constant as long as we are in the regime, ® < ®,,
however, the current in eq. will continue to grow due to the expanding
sheath region. Thus, it is normal to neglect the ion current in this regime, unless
we have ¢ < ®,. So in order for us to detect the ion current we would need a
very large negative probe potential.

Assuming Maxwellian velocity distribution for both the electrons and ions, we
can solve the above equations to generate an analytical expression for the probe
current contributions I, and I;;, as a function of the probe potential ® (Pécseli,
2012)

_cle—ap|
L,(@) = foce T d <y (2.3.9)
IO,e aq) Z (I)p

Similarly for the ion we have

_e|e—%p|
JM@Z{Q” S (2.3.10)
_IOi 7(1) S (Dp
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Figure 2.8: Illustration of an idealised probe characteristic for a 1D model.
Dashed lines are the ion and electron contribution to the total probe current
which is depicted by the solid line. Mass ratio of m;/m. = 100. Taken (from
Pécseli, 2012, p.192).

where we have Iy, ; = i(\u|€7i>ne¢4 and we also note that we do not necessarily
require the same temperature. The total probe current I, = I, + I;;, can be seen
in fig. . When we have reached the floating potential, ®;, then eq. is
satisfied and the net probe current vanishes. For this to happen we must have
less electrons hitting the surface over time as the thermal velocity of the electrons
is far greater than that of the ion and thus it has a larger contribution to the
probe current compared to the ion. Now if we set the probe potential to the
floating potential, ® = ®4;, with respect to the plasma potential then we can
find for a Maxwellian velocity distribution

ele—ap|

1 1
Jul bnede™ T = jul Jne
kTe Temi
‘(I)fl|: hl( )
e Tim,

where normally Tem; > Tym,.. We can use the variation in @y as indicators for
variations in ®,, if we can assume that the sheath regions are in local equilibrium
with isothermal electrons (Pécseli, 2012).

In the above derivations and definitions we have assumed steady-state con-
ditions and the criteria of validity of the above is that the wave frequencies are
so long that both the ions and electrons have time to propagate through the
sheaths with negligible perturbation (Pécseli, 2012) and that the wavelengths of
the waves are larger than the probe diameter and sheath combined.
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Orbital motion limit theory (OML)

Aside from the simple geometry above we can also derive an analytical solution
for a cylindrical probe. We can assume a cylindrical probe with a radius r, < Ap
and neglecting the end effects of the probe by considering the probe being very
long thereby also neglecting parallel motion along the probe. Let us consider
ions with mass m; moving towards the attracting probe with velocity vy from one
direction with different impact parameters p such that we can base our derivation
in conservation of energy and angular momentum
1

£ = §mi(u2 +v* + w?) + q®(r) (2.3.11a)

L = muyp (2.3.11b)

where we have ®(r) as the electrostatic potential valid at r > r, and for the
angular momentum eq. we have the velocity component u = 0 (Pécseli,
2012).

We have already assumed that the probe is very long and we want the ion
velocity w, along the probe, to become immaterial so that we can integrate over
it, and this can be satisfied by symmetry as there are no forces along the probe
axis (Pécseli, |2012). Using cylindrical geometry gives us

1 dR\? do\?
“mp? = oy | [ — 2 (=2 o 2.3.12
Zm’U 2ml (dt) +R <dt) + q®(r) (2.3.12a)
do

where R = R(t) is the particle position with the corresponding velocity v. Using
the two above equations eliminating % gives for particle entering the sheath

dR v 2qP(R)

— =—|/R?*(1—- —p? 2.3.13

dt R \/ ( m;v? b ( )
The potential can either be reflecting g® > 0 or attracting ¢® < 0. The first
term inside the square root R? (1 - %&?) > ( for a full orbit to exist inside the

sheath r, < R < r, in order for us to retrieve real values of R (Pécseli, 2012). As
we can see the from the equation above there is a minimum distance, r,,, from
the particle to the probe, namely when ‘fi—lf = 0 giving us the impact parameter

2 1— 2¢®(rm)
m miv?

condition r,, < rs as shown in fig. 2.9 For an impact parameter in which the
particle marginally avoids collection we have a similar expression

2qP

2 2 p
=r>|1—

Pm P ( mwQ)

pP=r ) with the velocity determined at r = r,. This again has the
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Figure 2.9: Illustration of orbits around a cylindrical Langmuir probe. Fig-
ure a) depicts attracting potential while figure b) is the reflecting potential.
Taken (from Pécseli, 2012, p.195).

where @, is the probe potential. Ultimately we end up with two scenarios, the
reflecting q® > 0 fields and the accelerating ¢® < 0. In the former all particles
with velocities larger than /2¢®/m; will reach the probe surface. In the latter
we have two possibilities which we will denote by the critical velocity v, satisfying

T's = Ds
2
q®,
Ve =255
m; 3 =12

thus, all particles entering the sheath with v < v, will be absorbed by the probe.
If v > v, we will still have particles reaching the probe surface as long as p <
Pm < 15, if however p > p,, we will have orbit limitation in which the particles
will not reach the surface (Pécseli, 2012).

We can now derive the current equations for the two scenarios. We define the
contribution per unit probe length to a long cylinder such as the one in our case
in the interval [v,v + dv] as dI = p,,qnuvF(v)dv where n is the plasma density
and p,, is the cross-section from particle perspective. Furthermore we have the
normalised velocity distribution [ F(v) = 1. For the first scenario of reflecting
potential the cross section is given by the geometrical cross section and in the
following current equation we have omitted the constant factor accounting for
the probe surface

1(®,) = ngr, / h (1 . 2‘1@1’) vF(v) dv (2.3.14)

m;v2

where z = /2q®,/m;. For the second case we have two terms consisting of the
orbital limit and the sheath limit, the latter is when all particles with impact
parameter less than r¢ reach the probe surface. The current in this case is given
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by

I(®,) =ng [rs/ vF(v)dv + rp/ (1 - ijig) vF(v) dv} (2.3.15)
0 Ve 1
where first integral is the sheath limit contribution and the second one orbit limit
contribution (Pécseli, [2012)).
Elaborating on where we left, we can consider now a negative biased probe
for ion collection in which we assume a two-dimensional Maxwellian distribution
outside the probe sheath as (see Pécseli, [2012)

2
Um; _1my

— e 2 kT,
KT

F(v)

As once again for the first case of reflecting probe we have

_a%p
Ii = —I()e kT

where [y = 2wing+/kT;/(2mm;) and in which we have the surface of the probe as
2mrpl with { > r,. Integrating eq. (2.3.15]) for accelerating probes with ¢®, < 0

I qq>p

and assuming r, > 1, with § = 22 gives us
I, = —]0E (1 —erf (@\/ —{)) — Iye Serf <\/ —f) (2.3.16)
Tp Ts
where we have the error-function erf(x) = %r fmoo e ¥ dy. From this, one can

deduce that the collecting area of the probe is different than the geometrical
surface area (Pécseli, 2012). For £ < —1 one can simplify this further to

L=—Ip/1—¢

The corresponding formula for the electron could be arrived at in the same
way (see Allen, 1992). One could derive the same equations for a spherical
probe which might be practical in some cases where the object sizes are < Ap
but it will not be discussed here. For an explicit explanation of the derivations
above see Allen, 1992,

The probe theories above was based on the assumption of equal temperature
between the electron and ions and that the ions and electrons arrive indepen-
dently to the probe surface. If we have a case in which the temperature is not
the same i.e. T; # T, we get a negatively charged sheath around the negatively bi-
ased probe which will accelerate the ions making them arrive at velocities greater
than the acoustic velocity (Chen, 1984). This is the Bohm sheath condition for a
mathematical analysis of this see Fitzpatrick, 2015; Chen, |1984} Pécseli, 2012.
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2.3.5 Charging effects in LEO

Charging in LEO is relatively more complex than the charging that occurs in
GEO. For one we have the different layers of the atmosphere that make up LEO
and as discussed previously the particles in these layers tend to have different
density and energy. For example in ionosphere a significant charging cannot
occur, on the other hand, if we increase the latitude we end up in the polar
region where it can lead to significant charging on the spacecraft.

The Debye length is very short in these regions giving us thin sheath regime
which means the spacecraft potentials are screened more effectively from the
surrounding plasma and we will look into some of the implications of these plasma
characteristics.

Since the plasma is cold, the effects of the spacecraft motion through the
plasma become considerably more important. We cannot ignore the space charge
effects here and thus need to solve Poisson’s equation V3¢ = -E% for calculating
the potential around the spacecraft.

2.3.6 Charging effects in GEO

Once again in reference to fig. and the previous section we see that we are
dealing with a region of high energy and low density plasma. The high energy is
a result of the geomagnetic substorms, the Debye length as we have seen is also
very large in this region stretching several hundred metres (thick sheath regime).
We will note a few key differences and approximations in this region.

We can consider the spacecraft as immobile relative to the surrounding plasma,
thus the motion of the spacecraft is less important here than in LEO. Concerning
the charging, the spacecrafts can become charged up to 10000V during eclipse
and as high as 200V in sunlight (DeForest, 1972)). Since we are dealing with
several hundred metres of Debye length we can safely consider the spacecraft to
be small compared to the sheath. In contrast to LEO however, we cannot ignore
photoelectron emission by solar UV/EUV. Furthermore we can use Laplace’s
equation, V2¢ = 0 to solve the potential around the spacecraft as space charge
effects can be ignored (Mikaelian, 2009). The charging of both LEO and GEO

are depicted in fig.
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Spacecraft plasma interaction

Figure 2.10: From LEO to GEO worst case surface charging hazard level
for spacecrafts in the designated altitude and latitudes. Colourised, courtesy
of (A. Whittlesey, H. B. Garrett, and Robinson, 1992).
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Chapter 3

Methods

In this chapter we will examine the numerical approach for some of the concepts
in the previous chapter, the kind of models we have for the fluid description and
kinetic description and why one is preferred over the other. We will however
mostly focus on the particle-in-cell method, which is the main method for our
spacecraft-plasma simulation.

In the previous chapter we introduced the different space environments and
the different plasma regions. Naturally, we will here introduce the parameters
for our simulations, the DiP3D code and the implementation of the spacecrafts
in the code.

3.1 Numerical models

In the following section we will introduce the different models used in the different
plasma simulations such as MHD and ES, their strengths, their weaknesses and
which one we choose to use in our simulation and why.

We have already previously introduced the theoretical background and which
equations governs the plasma, namely Maxwell’s equations (see section [2.2.2)), to
which the fields are related to the charge and current density

N
4i
p=>_ v (3.1.1a)

N
. q;Vi
j= E % (3.1.1b)

in a small mesh cell V' with N particles with charge ¢; and velocity v; where
i=1,...,N. Combined with the Lorentz force, F = ¢(E + v X B), gives us the

equations of motion egs. ([2.2.7a]) and (2.2.7b]). We rewrite the above equations

33
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here for convenience

p

V-E=— (3.1.2a)
€0
V-B=0 (3.1.2b)
0B
E=— 3.1.2
V x 5 ( c)
oE
VxB= [LQJ + [LQ&OE (312d)
and the corresponding equations of motion
dv;
! p— F -1-
me (3.1.3a)
dr;
L =, 3.1.3b
=V ( )

A full blown three-dimensional simulations of the above system of equations
would require a computer with a high-level computational capacity and the com-
putational time to simulate a realistic scenario would be too long for most pur-
poses (Hockney and Eastwood, [1988). It is thus necessary to develop approxi-
mations for the above system of equations by either using a fluid model such as
magnetohydrodynamics (MHD) or a kinetic model such as the electro static ap-
proximation (ES). We will now look into these two extreme cases in more detail
and in both cases assume timescales much larger than the time it takes light to
travel across the system, this assumption allows us to eliminate electromagnetic
waves (by ignoring second term in eq. (3.1.2d))) in the system and consequently
implies that E and B fields adjust themselves instantaneously to the present
distribution of charges and currents (Hockney and Eastwood, [1988)).

3.1.1 Magnetohydrodynamics

Here we will present a model for the dynamics of a fully ionised plasma, the type
of plasma found for example in the ionosphere. This model as the name hints,
assumes the plasma as a medium which follows the fundamental laws of any
other continuum and hence is subject to equations such as Navier-Stokes, and
the continuity equation. This model is often single-fluid model i.e. we ignore that
there are two different species and instead see it characterised as one conductive
medium (Pécseli, 2012)).

In this approximation we consider a low density and low frequency plasma in
which the space scales are much larger than the Debye length and we can assume
charge neutrality and thereby ignore the right-hand side of eq. elimi-
nating the mechanism for plasma oscillations and the resulting high frequencies
related to them. In other words, we can regard the MHD plasma as a neutral
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fluid through which current flows (Hockney and Eastwood, |1988). Furthermore
the system is dominated by currents and the magnetic forces upon them and
the magnetic fields are large and imposed. From eq. the currents in the
fluid themselves produce magnetic fields while the electric field arises from the
induction effect from the time variation of B. From the above we can summarise
the equations to the much simplified version

V.-B=V.E=0

0B
V xB=u,B

The Lorentz force can be changed in terms of the conductivity o (Hockney and
Eastwood, |1988)) to

j=0[E+v X B]

where v is the bulk velocity, but if we assume that the conductivity is high and
j is finite then the above can be simplified to

E+vxB=0

If we now use eq. (3.1.2¢|) in combination with the above we retrieve the condition

0B
ot
which tells us that the magnetic flux is constant through any surface moving with
the velocity v of the fluid i.e. the magnetic lines of force are “frozen into” and
thus constrained to move with the fluid (Hockney and Eastwood, |1988)).

We can complete the MHD equations by including the Navier-Stokes equation
and the continuity equation (Pécseli, 2012))

VX (vxB)=

dp

L _-_vVv. 1.4
V- (vp) (3.1.42)
Dv .

Where we have made use of the hydrodynamic derivative % = % + v - V where
p is the mass density and p is the pressure which is related to the density by
p% = constant in which ~ is the ratio of specific heat at constant pressure to that
at constant volume (Hockney and Eastwood, [1988]).

The MHD equations described above are usually solved by finite-difference
method, which is well described in Jardin, [2010. The MHD model can further be
expanded to the two-fluid MHD in which we have to treat the ion and electron
momenta separately because of the non-negligible Hall electric field. This, among

other approximations within the MHD model are described in Jardin, 2010,
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The MHD model can either be used as a stand-alone or as a hybrid model
together with its kinetic counterpart for simulation. The former is used in sim-
ulation of fusion machines while the latter has applications within astrophysics
and space-physics e.g. the solar wind interaction with the Earth’s magnetic
dipole (Hockney and Eastwood, |1988)).

3.1.2 Electrostatic model

On the other end of the spectrum we have the electrostatic model (ES) which
involves individual particles and which deals, contrary to MHD, with plasma fre-
quency and length scales of the order of the Debye length. The physics in this
model consists of essentially two parts, the fields that are produced by the indi-
vidual particles and the motion produced as a consequence of the fields (Hockney
and Eastwood, |1988). As before, the fields are calculated by Maxwell’s equations
and the motion caused by the forces is found by the Newton-Lorentz equation of
motion (Birdsall and Langdon, 2004).

As aresult of the above we can now no longer ignore the charge separation that
can arise and we therefore retain the right-hand side of eq. . However, the
currents in this model are presumably small and thus we can set the right-hand

side of egs. ([3.1.2¢)) and (3.1.2d)) to zero, thus reducing the equations to (Hockney
and Eastwood, |1988))

v-E=-2
€o
V-B=0

VXB=VXE=0

retaining the definition of p as described in section (3.1, namely charge density.
From electromagnetism we can now introduce the electrostatic potential

E=-V¢

such that
V-E=-V.-V¢=-V%

We have thereby reduced Maxwell’s equations to the one above, Poisson’s equa-
tion. The equations for the fields in this model are thus

P

Vip = = (3.1.5)
E=-V¢ (3.1.6)
4 (3.1.7)
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as for the motion we use the Newton-Lorentz force, only that we retain Bj as a
fixed external magnetic field

dVi
m Y = B+ v, x By
dI'Z'
:Vi
dt

As we have mentioned the model follows the trajectories of the individual par-
ticles, it is therefore very well suited for particle-mesh simulations. Among the
applications it is well fitted for the study of the diffusion of plasma across a strong
magnetic field (Hockney and Eastwood, |1988). For a more in-depth analysis of
this model and development see (Birdsall and Langdon, [2004).

3.1.3 Interacting systems

We will briefly examine the two different systems, strongly coupled system and
weakly coupled system and why the later is preferred for our simulation.

Let us imagine a box with length of a Debye length, Ap. Furthermore we now
assume we can measure the local electric field in one spatial position where at
each point of the box the electric field is the superposition of the contribution
of each particle. Now if our box has few particles in it that are in constant
motion we will notice that our measurements will be very jumpy and since we
are measuring one specific point, we can see that on average there will be very
few particles coming towards or away from our measurement point. We would
thereby only measure strong effects when a particle is nearby as opposed to far
away from our measurement point. The same argument could be used for the
particles themselves, in other words, there would only be a jump in the trajectory
of the particle when a close encounter with another particle has taken place, i.e.
a collision. This is what we would call a strongly coupled system. In summary
we can say a strongly coupled system is one in which there are few particle
interactions, particle motion is determined by near neighbour interaction and in
which the Boltzmann and Klimontvich equations are valid (Lapenta, 2016} Lyu,
2014)).

For plasmas of interest we would like the plasma parametre A, eq. to be
very large, as opposed to strongly coupled systems (in which A is small). If that
is the case then we have a weakly coupled system. This system is characterised by
an extremely large number of particles in which at any given point, the number
of particles contributing to the electric field is very large (Lapenta, 2016)). As we
would anticipate, by simply averaging the effects of all the particles contributing
to the measurements, the results would come out as smooth and not jumpy.
The same applies to the trajectory of a particle, since at any time the particle
is affected by a large number of other particles. Thereby the trajectory would
come out as smooth and without jumps. As we have introduced, we could say
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that one of the main differences between a weakly coupled system and a strongly
coupled system is the mean field approximation. In summary a weakly coupled
system is one in which the motion of a particle is largely determined by the
collective behaviour of the other particles, many particle interactions, mean field
approximation is used and that the Vlasov equation is valid (Lapenta, 2016).

3.1.4 Simulation methods

For the two systems we have described in section we can implement two
different types of simulation models. For a strongly coupled system we would rely
on the particle-particle (PP) approach, which describes the motion of N particles
by conjoining Newton’s equations for each of the N particles taking as a force
acting on the particle by the sum of the effect of all the other particles.

Discretisation can be done by having a small time step At chosen such that
the particle is moved only a small distance by computing the position and velocity
of the particle and after each move the force is recomputed and a new move is
made for the particle. In three dimension we could write this as

ri.1 =1, + AtVZ
Vi1 =V, + AtF

where r is position and v the velocity of the particle. As we have mentioned
before, we would need to do the force calculation for N particles. This is the
main cost of the computation, which requires to sum over all the particles in the

system, with F being
Fn = Z an

where F,,,,, is the interaction force between two particles n and m. This model
is widely used in molecular dynamics and bimolecular studies. The number of
terms to sum to compute the force for each particle is N — 1, but since we have N
particles and only need to compute the force once for each pair we get N(N—1)/2.
The cost is thus o« N? and scales badly as N increases. We can now see why
this is a very unfavourable approach to use in a weakly coupled system where we
have an extremely large number of particles to compute the force of. Fortunately
there is a better way.

The other model is to make us of the particle-mesh (PM) method. In this
model we exploit the force-at-a-point formulation and make use of the field equa-
tions for the potential e.g. Poisson’s equation and the potential energy field.
This will result in less computation time, but also lower resolution (Hockney and
Eastwood, |1988)) than PP method.

We represent here the physical values approximately on a regular array of
mesh points and replace the differential operators such as the laplacian with a
numerical approximation for differentials such as finite-element or finite-difference
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method on the mesh (Hockney and Eastwood, [1988). The essential difference
between the PP and PM method lies in the calculation of the forces. The force
calculation of a charged-particle can be divided into three steps as (Hockney and
Eastwood,

1. Assign charge to mesh

2. Apply Poisson solver on the mesh

3. Compute forces from the mesh-defined potential and interpolate the forces

at particle positions.

The first and last step have operation counts equal to that of the number
of particles involved in the calculations while the second one depends on various
factors such as the number of mesh points and the particular form of PM scheme.
For a detailed comparison between the two methods see Hockney and Eastwood,
1988}, chap.1-5-2.

Between the two methods above the one used extensively for the studies of a
weakly coupled system is a particular form of PM, the particle-in-cell method.
We will elaborate on it in the next section, but here we will outline that we make
use of a cloud of charged point particles to diminish the close encounter force
experienced by each particle and thereby greatly reducing collisions rate. The
particles at small distances is corrected by a potential resembling the Coulomb
potential. As we mentioned in section section [3.1.3] a weakly coupled system
will have smooth measurements. In this case, however, it is not because that a
very large number of particles will average each other, but rather that effect of
the few particles near the measurement point is weak. Similarly, the trajectories
are smooth because the few near neighbours produce weak interactions and not
because each particle is surrounded by a vast number of particles.

To sum up this section we can visualise the choice of methods by looking
at fig. 3.1 summarising the models by frequency level. At high frequencies we
would be dealing with electron plasma frequency while at the lower frequency
level we have the electron-ion collision frequency

Figure 3.1: Simple diagram depicting choice of models.
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3.2 PIC

In this section we will go more in-depth in the PIC method and see how it is im-
plemented. We will take a look at how the equations in section [2.2] are conjoined
with the Vlasov equation and its numerical approach as well the implementation
and algorithm.

We have here introduced the general cycle of PIC in fig. [3.2] and we will in
this section go through each node in the cycle in depth and then shift our focus
to the DiP3D code in the coming section.

Figure 3.2: A general PIC cycle, one time step. Here, n = 1... N, is the
number of particles and ¢, j, k are the grid indices.
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The foundation of the PIC method lies in utilising the full set of Maxwell’s
equations together with the Vlasov equation described in section [2.2.4]

3.2.1 Fininte-size particles

Newtonian mechanics tells us that two particles will always feel force between
each other, but opposite direction and depending on the distance the force will
be varying in strength. If the particles pass each other, each will feel a large
force when they are close to each other. Impulses associated with such a close
encounter give rise to the collisional effects, on the other hand, once they have
passed the force will fall off with distance. In the latter region where the force falls
off the particles can interact simultaneously and this is the region of interest for
our simulation (Dawson, [1983). Thus we wish to diminish the close encounter
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Figure 3.3: Coulomb force experienced by particles in two and three dimen-
sions. (From Dawson, [1983).

(a) two dimension (b) Three dimension
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force such that we can achieve a force behaviour as in fig. |3.4, This is done
with the concept of super-particles. A super-particle is a cloud of charge point
particles which are free to pass through each other. As in figs. [3.3a] and [3.30]
the force is Coulombic when they are far apart, but when they get close the
force starts to drop off and it will be zero when the particles are exactly on
top of each other (Dawson, 1983; Birdsall and Langdon, 2004; Lapenta, 2016)).
For the computational particles that we have now described above, we would

Figure 3.4: Two-dimensional graph depicting the force experienced between
finite-sized particles of various lengths. (From Dawson, |1983).
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need grid spacing of the order of the super-particles since their charge is smeared



42 Methods Chapter 3

over a region of a finite space, and density variations cannot be resolved for
regions smaller than the size of a particle (Dawson, (1983) we would need grid
spacing about equal to the size of the particle, in other words Az ~ Ap. Since
computationally we are using fewer particles than the physical system, it will
result in reducing the potential energy for the kinetic energy. The consequence is
that correct coupling parameter is achieved by fewer particles interacting more
weakly (Lapenta, 2016]).

Now from the above we can write out the phase space distribution function
as a sum of super-particles, i.e. the distribution function of each species is given
by the superposition of several super-particles:

foe, vty = folr,vit)

For each super-particle there will be assigned a specific functional form for its
distribution. The functional form will contain several free parametres whose time
evolution will then determine the numerical solution of the Vlasov equation. The
free parametres in question will then acquire the physical meaning of position
and velocity of the super-particle p:

Fp(r, v, 1) = NpSe(r —1(8))Sv (v = v (1))

where S, and S, are the shape functions for the super-particles and N, is the
number of physical particles that are present in the element of phase space rep-
resented by the super-particle (Lapenta, Brackbill, and Ricci, 2006; Dawson,
1983). For the shape functions there are several properties of which not all are
required.

e The support of the shape function is compact, in other words it is zero
outside a small range.

e The integral results in unity:
| see-gae=1

where ¢ is any coordinate in the phase space.
e Favour of symmetry S¢(€ —&,) = S¢(§, — &)

In the normal PIC method one usually chooses the velocity space shape functions
to be Dirac’s delta
Sv(v—=vp) =6(v—vp)

This will have the advantage that the super-particles describing the particles
within the element of phase space have the same speed and thereby remain closer
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in phase space during the subsequent evolution, i.e. spatial shape function re-
mains constant in time (Lapenta, Brackbill, and Ricci, 2006).

The spatial shape function makes use of b-splines. These are given by b-splines
of some order [

b (€) = / " bo(€ — (€

such that for a grid with spacing Az in the direction = we could have S(z —
zp)bi[(x — xp)/Az], equivalently in the other directions (Lapenta, Brackbill, and
Ricci, [2006). The first-order b-spline is given by

bl(g):{u\g] if <1

0 otherwise

which is the cloud-in-cell (CIC) and £ is some arbitrary coordinate in phase
space. Generalising the above case the spatial shape function can be written as

Se(r —1,) = by <r;pr”> (3.2.1)

where Ap is the size of the super-particle or as we mentioned is more or less equal
to the grid spacing in either direction e.g. Az (Lapenta, Brackbill, and Ricci,
2006). For a more elaborate study on this topic see see Hockney and Eastwood,
1988, chap. 5. In fig. we have plotted the first three shape functions.

3.2.2 Integration of the equations of motion

The choice of a scheme for the particle mover is perhaps one of the most crucial
aspects of the simulations. Let us imagine a problem in which 100000 particles
may have to be run for 10000 time steps, this means the equations of motion
must be integrated 10° times. That will require a lot of computation time and
thereby running such a program on a rented supercomputer can quickly become
costly if one does not consider the right scheme (Birdsall and Langdon, 2004)).

There are two type of schemes: explicit and implicit. In an implicit scheme
we would calculate the particle velocity from an already calculated field while in
an explicit scheme we use only the old force from the previous time. The later
scheme is thus faster and simpler, but requires smaller time-step (At). Schemes
like the Runga-Kutta family of methods are implicit and therefore not suited for
our problem at hand. Among the explicit methods, the Leapfrog method and the
Boris method are the most frequently used ones and these are the ones we will
inspect.
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Figure 3.5: The three first b-splines.
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Leapfrog scheme

The two first-order differential equations that we need to be integrated which we
have described in section 2.2.2] and written here as

dv

— =F 3.2.2
mg (3.2.2)

dr

- — 2.

=" (3.2.3)

where F' is the force which might consist of the electric and magnetic force. De-
scritising the above equations by using finite-difference method for each particle
1 we yield

Vn+% — Vn+%
i 7 o Fn+1
A T
R e
At

as depicted in fig. [3.6) which shows the method’s time centring. As mathematically
described above, velocities are defined by half-integral time-level while positions
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and fields are defined at integral time-level. There are thing to evaluate regarding

Figure 3.6: Illustration of the integration method used in the Leapfrog
scheme. Velocity is evaluated at half times while position at integral time

steps.
lo 2" 1y tg 123 tg
Iy V% I g ro g

this method. First, the initial condition for the velocity and position at t = 0
must be such that it fits the flow as we will push back v(0) to v(—%!) by using the
initial F' calculated (Birdsall and Langdon, 2004). Second, the energy calculated
from the velocity and field i.e. kinetic and potential energy, must be adjusted at
the same time (Birdsall and Langdon, 2004). When it comes to accuracy we have
two sources, round-off errors and truncation errors, both of which are local errors.
The former arises due to finite word-length of words within a computer and the
later is caused by descritisation of continuous variables. The leapfrog method is a
second-order accurate approximation to the equations of motion described above.
For an elaborate examination of the method in terms of accuracy, stability and
the relativistic approach see Hockney and Eastwood, 1988 Grigoryev, Vshivkov,
and Fedoruk, 2002; Jardin, 2010.

Boris scheme

In magnetised plasma simulation the Boris method is the dominant method of
choice which has been examined thoroughly in Qin et al.; 2013 in which they
show it conserves the phase-space volume. The equations we start with are the

same as the one in Leapfrog namely eqgs. (3.2.2)) and (3.2.3). Only here we have
F = ¢(E + v x B) as the Lorentz force. The left-hand side is kept as in the

3 el
Leapfrog scheme while the magnetic term is centred by averaging v; "2 and v; 3
such that eq. (3.2.2) is written as
n+% n+% n+% n+%
V. — V. q; V. + V.
-t =" |E++——XxB 3.2.4

One could decompose the above into three scalar equations and solve them
simultaneously for each component of the axis or to subtract the drift velocity
from v there are quite a few ways (see Birdsall and Langdon, [2004). The most
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Figure 3.7: Diagram from which tan(6/2) is obtained. (Recreated from Bird-
sall and Langdon, 2004, p.60).

v Xt

common way is by separation of the electric and magnetic forces by substitution
of

n+3 + QiEg

S 2 =y 3.2.5
R (3250)
n+ld _ GEAt
2=y — — 3.2.5b
Vit oy - B2 (32.50)
into eq. (3.2.4) which will cancel out E and leave us with
vi—v % (v +v7)xB (3.2.6)
At le ! !

describing the rotation. For computation we add half the electric impulse to
the previous computed velocity by using eq. (3.2.5a) to obtain v~ then ro-
tate by eq. (3.2.6) to obtain v and finally add the remaining electric im-

3

2

pulse eq. (3.2.5b)) to obtain the new computed velocity, V?Jr

Implementation-wise we would like to find a vector v’ bisecting the angle
formed between pre- and post-rotation velocity. This angle of rotation 6 as
shown in fig. [3.7] is given by

tan| = | = — —

or in vector form

t=-b - = —
tan(2) —

Now as we have assumed an arbitrary direction of B and v we can write the
bisector vector which is produced by the incrementation of v~ (Birdsall and
Langdon, [2004) and which is perpendicular to both (vt —v~) and B as

vV=v +v Xt
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Furthermore, to satisfy the requirement that the magnitude of velocity remains
constant in the rotation we must have a vector s parallel to B, and (vt —v7) is
parallel to v/ X B such that we yield

vi=v +v Xs
where
2t
Ty
The method is well documented in Qin et al., |2013 and the relativistic ap-
proach is covered in Birdsall and Langdon, 2004

3.2.3 Integration of the field equations

In the frame of the electro-static model section together with the equa-
tions egs. (3.1.5) to (3.1.7). One common way to descritise the equations is by
use of finite-difference method which we will do here in two dimensions, however,
three dimensional is straightforward (Birdsall and Langdon, 2004). By using the
five-point stencil on the grid as shown in fig. then eq. becomes

Pj—1k = 205k + Pjt1k n Gik-1 = 205k + Djkr _ Pik
Ax? Ay? €

There are many methods one can use to solve the above equation, many of which
are discussed in Hockney and Eastwood, |1988] chap.6. The equation can be
solved for all types of boundary conditions including one in which we have a
biased-potential on the spacecraft.

(3.2.7)

Figure 3.8: 5-point stencil illustrated in 2D.

ij+1
(] (]
(]

(] (]

In the case of eq. (3.1.6) we can descritise it by using the two-point stencil
for each direction as

 Oj1k — DLk
(B = P71 (3.2.8)
(B,)yp = 241~ Oiden (3.2.8b)

2Ay
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The fields and potentials are located at the same points. As fig. shows we
will weight the fields back to the particles by using a weighting scheme.

3.2.4 Weighting

From fig. [3.2] we see that there are two parts we are still missing in our calculation,
namely the charge density on the discrete grid points and the force at the particles
on the grid points. The former is obtained by using the particle positions and
the latter is yielded by the calculated fields (Birdsall and Langdon, 2004). The
scheme for the weighting is usually chosen to be the same for both the density
and force calculations to avoid the occurrence of a self-force, see Birdsall and
Langdon, 2004, chap.10-11.

We have already visited the particle shapes in section and mentioned the
CIC scheme. The CIC is also the one used in our code for the charge assignment
and we will here elaborate on it. For the zero-order weighting what we essentially
do is count the number of particles within a grid distance about the jth grid point
which is £Az/2 in the z direction and assign that number to that grid, hence
the name, nearest-grid-point (NGP). This is illustrated in fig. as the first
plot. Computationally, this scheme is fast since in one-dimension only one grid
is looked up to assign the particle to (Birdsall and Langdon, 2004), but it is also
very noisy because of the jumps given rise to by particles passing through a grid
boundary.

For most purposes a first-order, CIC, weighting is adequate. By using CIC we
reduce the noise level, but increase the computation time as a result of looking
up two grid points for each particle (in one-dimension). In 2D, for a spatial
grid which has grid points (X, Y;) with grid spacing Az in the = direction and
similarly in the y direction, we can weight the charges at the point (z,y) by

(Xji1 = 2)(Yiy1 — 9)

Pik = Pe AxAy

o @ =X)Men —y)
Pi+1,k = Pe AzAy

o X 2y — V)
Pjk+1 Pec A.Z'Ay

| = X) =Y
p]+1,k+1 pC A.TAy

where p. = ¢;/(AxAy) is the charge density uniformly filling a grid (Birdsall and
Langdon, [2004)).

Computationally before the weights are calculated and the charges assigned,
the nearest left-hand grid point j is located first, therefore, z; > X; always. We
have illustrated the above method together with NGP in fig. 3.9 In summary
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Figure 3.9: Charge assignment for linear weighting in 2D. The coloured areas
assigned to their dedicated nodes, i.e. a to A, b to B etc. with the red dot
indicating the particle (Inspired by Birdsall and Langdon, 2004, p.309).

we can find the grid charge density p; with a shape function S(X; — z;) by using
the charges ¢; at z; from

p; = p(X;) = Z%‘S(Xj — ;)

where the shape function S can be any other than the CIC we have above or
NGP. Having found the charge density we can then use it to find the force on
the particle by interpolation from the grid electric field as

F,=qAr) ES(X; — )

J

in which we will use the same shape function as above. There is nothing holding
us back from using different shape functions, however, it can lead to a gravitation-
like instability and gives rise to a self-force as mentioned before (Birdsall and

Langdon, [2004]).

3.2.5 Charging model

The charging model to calculate the spacecraft floating potential is incorporated
in our simulation by using the classical capacitive matrix method (Hockney and
Eastwood, . Simply, the surface charging is calculated directly from the
deposited charges on the surface. The technique involves the pre-calculation of
a capacity matrix C that will relate the potential and charge on a number of
points in the interior.
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Capacitance matrix

We start by noting the electric potential ¢ and the charge density p can be related
by a matrix A as

Ny
PiZZA¢j¢j7 i=1,..., N,
j=1

where ¢ and j are the indices of the grid points and N, is the total number of
grid points (Hockney and Eastwood, |1988)). In the same manner, inversly, we
can calculate ¢ as

Ng
¢Z:ZB”[)], izl,...,Ng
j=1

such that B = A%

During the redistribution, there are no changes in the charges inside and out-
side of the body, only ps which is assigned on the body surface is changed (Yohei
Miyake and Usui, [2009). As a result the correction relation of the electric poten-
tial, d¢g, to the charge density, dps, is given by

Ns
6¢8’i:ZBij5pS,j7 izl?"'aNs
Jj=1

where N; is the number of grid points on the surface and as such Ny < Nj.
Further we note that the equipotential is applied on the conductive surface, thus
even though ¢ is also subject to change outside the body, we constrain ourselves
by the condition of the equipotential and focus only on the potential values on
the surface grid pointsi.e., 1 =1,..., N.

Next we introduce the matrix B’ as the upper-left block of the matrix B.
Then the specialised capacitance matrix C for the grids on the surface can be
obtained by C = B/~!. Finally the relation between d¢, and dp, is given by

Ns
(5,05#-:2(3@5@557]-, ’i:l,...,NS.
7j=1

A direct way to arrive at the capacitance matrix is to place a unit charge
on each grid point on the conductive surface with zero charge on the other grid
points and solve for the potential. The potential values on the grid points form
the elements of one column of the inverse capacity matrix B’ and we repeat the
process until all elements are found and lastly the capacitance matrix is found
by C = B’~! (Hockney and Eastwood, [1988; Yohei Miyake and Usui, 2009).



Chapter 4

Numerical experiments

In the following chapter we will take into account the previous chapters and more
specifically target the problem at hand, namely satellite and rocket simulations
by using the DiP3D code. We will here introduce the object implementation,
experiment set-up, results, and discuss both cases and finally, future work that
needs to be done and improvements.

4.1 Experiment set-up

For the simulations that we will be doing we will be using the code DiP3D (Miloch,
2006)) which is a PIC program written in C designed to simulate dust and electric
probes immersed in plasma. The program reads an input.txt file that states
the parameters for the simulation to be run and produces .dat files containing
information for several plasma properties; potential and kinetic energy of the
species, density of the species and electric fields for all axes (Miloch, [2006]).

We will be using the code and implement an object marking algorithm for
easier object implementation to make geometries of the shape of a rocket, repre-
sented by a rigid cylinder, and of a satellite, represented by a box, easier. At the
end we present the parameters for each of the experimental case.

4.1.1 Object implementation

DiP3D already contains several geometrical shapes hard-coded and ready to be
used in the simulations, we would however like to be able to make use of any rigid
shape that does not alter in the z-direction. For this we have used the so-called
polygon-fill algorithm to mark an arbitrary object.

A simple case, a box, contains eight corners, to implement the object we would
write the eight coordinates of the eight corners into a .txt file which would be
read by the file grid.c in the program. The coordinates are then stored in an
array and the essential idea is to mark the object on the grid by using the corner

o1
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Figure 4.1: The marking of an object of length 5x5 on a 16x16 grid.
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coordinates. The geometry of the object is on the grid points such that the way
we mark the object is shown in fig.

We check if the coordinates of the corner of the object is on the grid by
scanning the grid in all three directions and matching the grid coordinates with
the object coordinates. If that is the case and the corner coordinates are on the
grid then compare the next corner coordinate of the object with the previous
and mark with a specific colour or in the numerical case with a number, thus we
have outlined the edges and corners of the object. Next we would like to mark
the surface and the inside of the object, this is the part that is performed by the
polygon-fill algorithm.

Polygon-fill algorithm

First we introduce the pseudo-code of the polygon-fill. The concept depends
on the point-in-polygon algorithm (Foley et al., which is used in order to
determine whether a point resides inside a polygon or not. The polygon-fill is
done in three parts:

1. Render a row of pixel or in our case, scan one row of the grid which have
the same y-coordinate.

2. Loop through the polygon in a clockwise or anti-clockwise direction to find
the threshold-crossing nodes i.e. the grid nodes that coincide with the
polygon coordinates and store them in an array.

3. Sort the array in increasing x-coordinates.
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Figure 4.2: Polygon-fill steps, from ray tracing to filling.

/= 7=
s 4%‘447?1 @

(a) Ray tracing (b) Sorting (c) Filling

4. Fill between the intersecting grid points of the sorted array.

The process is illustrated in fig. [4.2]

We will here also introduce a pseudo-code, algorithm [1| for the polygon-fill,
the code itself written in C is given in Appendix As written in the pseudo-
code, we depend on the x, y and z coordinates provided to us by the .txt file in
form of an array. The coordinates for the object can be generated in a number
of ways depending on the geometry of our object. In our case we generate the
cylinder coordinates by using the midpoint-circle algorithm and adding to it the
height of the cylinder.

4.1.2 Simulation parameters

For the simulation we make use of the parameters given in table[f.]l ~ We had an
electron charge to mass ratio of —1.758 500 x 10" C/kg and an ion charge to mass
ratio of 3.520 000 x 108 C/kg. The electron mass was set to 9.111112 x 1073 kg
and the ion mass was set to 4.551 673 x 102 kg. This gives us a mass ratio of
m;/me == 500. For testing purposes we started with a grid size of 64 then for
the full simulation went to a 128 grid size. The corresponding system dimension
is denoted by L in all directions. Having input the system dimension and grid
size we can calculate the grid spacing to be L/grd size ~ 0.002 344 m. Most of
the parameters were taken from the various sources as given in section such
as Bedingfield, Richard D. Leach, and Margaret B. Alexander, [1996. At 128 we

Table 4.1: Simulation parameters.

Grid size L At tonax n N, AD Cs T.]T;
m S S m~—3 m Mach
Cylinder 128 0.3 2.38E-9 6.38E-5 2E11 2E6 7.43E-03 1.9 10
Box 128 0.3 6.28E-10 6.28E-5 2E11 9E6 7.43E-03 1.9 10
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Algorithm 1 Polygon-fill with bubble sort

1: function SCANROW (corners, ngx, ngy, voxel, newN)

2 for J <— 0,ngy do > Build a list of nodes in nodeX
3 for ¢ < 0, corners do

4: ifyy <J and y;>J or y;<J and y <J then

5 nodeX + (2 + (J — )/ (5 — i) (25 — 1))

6: end if

7 end for

8 10

9: while i < nodes — 1 do > Sort using Bubble sort
10: if nodeX; > nodeX;,; then

11: swap < nodeX;

12: nodeX; <— nodeX; 1

13: nodeX; 1 < swap

14: else

15: 1 1+1

16: end if

17: end while

18: for ¢ < 0,nodes do > Fill between the nodes
19: if nodeX; > ngx then break
20: end if
21: if nodeX;;; > 0 then
22: if nodeX; < 0 then
23: nodeX; < 0
24: end if
25: if nodeX,;; > ngzr then
26: nodeX;.1 < ngx
27: end if
28: for I < nodeX;,nodeX,;;; do
29: voxel(1,J) < newN > fil in with the desired value
30: end for
31: end if
32: end for
33: end for

34: end function

had around 2 partiles per cell in the case of the cylinder and 4 particles per cell
in the case of the box. The velocity is found from section from which then
we use the sound speed in plasma

T.+ 3T,
C, = Tt 5T (4.1.1)

my;
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which gives us then the velocity in Mach number

v
M=—
Cs
where v is the spacecraft velocity. At an altitude of 400 km above Earth we have
a velocity of 7668 ms~!. The parameters are then inserted into the input.txt

file and read by the program.

4.2 Results

We here present the results of the two cases mentioned above. Both simulations
were run on a supercomputer on two nodes. We will look at the potential, particle
density and other possible properties of the interaction between the plasma and
the objects. The results below were retrieved by using ParaView, an open-source
program for interactive, scientific visualisation. This was done by converting the
.dat files to .raw files which could be read by the program to plot the data. In
the figures we will see a clear Mach cone trailing the object as a result of the
supersonic speed. The angle between the edge of the Mach cone and the line
through the centre of the spacecraft is called the Mach angle.

All the figures in the following subsections are conceived from ParaView and
are thus subject to some restrictions. Notably, the ranges of the axis are given
in grid length, which corresponds to 128 grid points in all domain directions
unless otherwise stated, see table 4.1/ for the parameters. Furthermore, the figures
presented here are taken from the last time step, we will specify it more clearly
if necessary or it deviates from it.

The plasma frequency, eq. , can be fetched from the calculated data
set and has the value w, = 2.522745 x 10"s™! for the electron and, w, =
1.128 687 x 10%s~! for the ion. Subsequently we can use the values to find
the plasma period for the two species by using 7 = 27/w, yielding us 7, =
249 x 107"s and 7, = 5.57 x 107%s, corresponding to the electron and ion
plasma period respectively. Additionally, the simulation time was around 30000
iterations for the cylinder and around 100000 iterations for the cube. We start
averaging and save data after every 500 time step, this gives us 3.1 x 10~7s and
1.15 x 107 %s for the box and cylinder respectively.

4.2.1 Cylinder

In fig. we present the potential across the cylinder with » = 16 positioned
near the centre in the grid at grid point 60. The figure shows the average potential
at the last time step corresponding to ¢t = 6.307 x 10~°s. We have sliced it in the
middle across the z-axis. The direction of the flow is in the positive z-direction
with the plasma potential set to OV, however, as the colour bar shows in fig.
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there are some fluctuations above zero potential as a result of the numerical noise
given rise to by the number of finite sized particles per cell. The flow around the

Figure 4.3: Cross-section of potential along z-axis and the corresponding
potential profile around two opposite sides of the cylinder.
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object is also asymmetric and can be seen more clearly in fig. in which we
have the potential in the y-axis and z-axis is the direction of flow i.e. along the
positive z-direction. We have here plotted the potential along the two opposite
sides of the cylinder in which the red line in the figure shows the potential across
the right side of the object in fig. at grid point 76 and the blue line shows the
potential on the left side of the cylinder at grid point 44. The details of fig.
show that there are some fluctuations behind the object as well in front. There
is also a significant drop in potential signifying the negatively charged surface of
the cylinder.

The potential dip shown in fig. is on the surface, however, if we now take
a potential cut across the centre of the cylinder at » = 0 corresponding to grid
point 60 in which we have the largest cross-sectional area in the direction of the
flow we get the plot as in fig. [f.4a] Where the axis are the same as in fig. with
z-axis in the figure being in the direction of the flow corresponding to the z-axis
in the simulation. The minimum negative potential in the figure has the value
® = —0.476803V and the maximum value ® = 0.0106371V. The maximum
value corresponding to the plasma potential, which ideally should be zero (Shul
and Pearton, [2000). We previously outlined that we have taken the last time
step for plotting, assuming that the system has reached steady state and that
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Figure 4.4: Potential across the middle of the rocket along the flow and the
negative potential profile over time.
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floating potential.

the potential variations are minimum. This is indeed the case as seen in fig.
which shows the minimum potential over time reaching the steady state and
affirming that our last time step is indeed in the steady state phase.

Grid along Y

60 100 120

0 20 40 80

120 120

110 110
<

100 100

oy
-0.100 -0.083 -0.055 -0.028 0 0.011

Figure 4.5: The Mach angle approximated, by shifting the potential for
easier visualisation of the Mach cone edges.

The wake structure behind the object is also clearly visible in fig. forming
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Figure 4.6: Density of ions and electrons around cylinder
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a significant potential fluctuation behind the rocket. As a result of the velocity
difference between ions and electrons we therefore see some positive potential
behind the spacecraft. Since we are dealing with supersonic velocities we expect
to be able to determine a Mach angle from the figures given and indeed by
shifting the potential in fig. to make the Mach cone more clear and using
the outer edge we can approximate the Mach angle. The angle is found by
using the measurement tool in GIMP (GNU Image Manipulation Program) and
is presented in fig. The figure dimensions are the same as in fig. with
corresponding axes labelling. The difference being the shifted potential for clearer
indication given by the colourbar making the wake formation more clear.

The density for the charged particles is shown in fig. where we have the
density for the electron in fig. and for the ion in fig. both in the same
domain and axis length. Particularly of interest is the fluctuations of the ion
density behind the object and as mentioned before, we see there is a number of
ions accumulated behind the object as a result of the velocity difference. In fig. [4.7]
we have plotted the cross-section view of the density across the middle of the
cylinder and once again we see the ion density profile having high fluctuations.

We also observe an induced electric dipole moment if we look at the total
density An = n; — n. data which has been made to look more clear in fig.
Where we have adjusted the density range to go from minimum to zero for a
more visual clarity. The impact surface of the object shows a larger negative
density than than the back of the object as a consequence of the flow hitting
the object in the front and thus accumulating negative charge on the surface.
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Figure 4.7: Ion and electron density profile.

This had previously been observed in 2D (Miloch, 2006). The negative charge
is also visible around the object, as a result of the shape of the object and the
trajectory of the electrons, but to a lesser degree. This total density data that
showed accumulation of negative charged particles in the front of the object can

Figure 4.8: Total density and the electric field along the direction of flow,
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be further elaborated by the electric field data given here along the z-axis, in
the direction of flow with similar dimensions and labels as fig. [£.3a] The plot
in fig. shows the electric field data along the z-direction and we see here a
very strong electric field in the upstream as compared to the downstream. The
electric field is essentially a reflection of the potential surrounding the spacecraft
given by V® = —E, albeit along the direction of flow as in fig. [£.8b]

4.2.2 Box

Since we are dealing with similar parameters in both simulations we expect to see
similar results, particularly when it comes to the minimum value of the potential
and Mach angle. The box has different dimensions than the cylinder, it is smaller
in dimensions and almost near the thick sheath limit. As it should be, we see
similar results starting with the potential data as shown in fig. with a similar
potential range as in the previous case. In this case however, the wake is much
sharper forming around the object as a result of the size of the object and the
rigidity of its clear edges and corners. The corresponding asymmetry can be seen
in fig. similar with the previous case the asymmetry is taken at the two
opposite edges of the box, the left edge at grid point 59 and the right edge at 70,
thus showing off the potential variation in the direction of the flow on the surface
of those two edges. Furthermore the minimum potential in this case has the value

Figure 4.9: Potential distribution and potential profile around the edges.
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Figure 4.10: Potential cut along the direction of the flow through the centre
of the object and the negative potential profile over time.
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® = —0.456 539V which is very close to that of the cylinder, however given the
dimensions of the box it deviates slightly. In comparison to the cylinder there is a
significant rise in the potential behind the object and this can be seen in fig.
together with the dip in potential. The minimum potential that is reached has
been averaged over previous time-steps as we previously have mentioned and as
such the potential plots that are given here, just as in the case of the cylinder,
are the averaged potential. We have in fig. plotted the minimum potential
over the simulation period and we can see that at the last time step we have
already attained steady state.

As previously mentioned, since both simulations are run with M = 1.9 we
expect to see a similar Mach angle as in the cylinder case and indeed that is the
case as shown in fig. The potential in the figure has been shifted to the same
range as in fig. and it shows a sharp cone edge compared to the cylinder case
which made it easier to approximate the Mach angle by using GIMP. The density
variations can be seen in fig. [f.12] where we have the density variation data for the
last time step at t = 1.0362 x 1075 s for both the electrons and ions. As it was
with the previous case, we see a vivid accumulation of positive charges behind
the object and lots of fluctuations around it in fig. [£.12b In fig. we have
plotted the ion and electron density profile across the middle of the box in the
direction of the flow. We see a peak in the ion density profile arising right behind
the object, the ion focus point. When plotting the density data and adjusting
the range we get fig. which shows us the total density An = n; —n, where
we have adjusted the range of the charge per meter cubed for more clarity. The
figure has been sliced in the middle and a few grid points to each side to bring
the object in focus. We see a peak in the negative potential on the corners of
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Figure 4.11: The Mach angle approximated, by shifting the potential for
easier visualisation of the Mach cone edges.

(a) Electron density variation. (b) Ion density variation
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Figure 4.12: Density variations for both electrons and ions.
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the box arising due to the flow and the shape of the object. Compared to the
more refined object in section where we saw a rise in the negative potential
in the upstream part, we here see it in all corners.

Figure 4.14: Total density and electric field in the y-z plane.
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The potential gradient reflects itself in the electric field, fig. just as in
the cylinder case. The anisotropic property of the electric field is less apparent
here than in the previous case, particularly when it comes to the magnitude where
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we do not see a peculiar shift in in the electric field, i.e. the difference between
the negative and positive poles are less than in the case of the cylinder.

4.3 Discussion

We have presented the results in section 4.2|and we will here elaborate and discuss
the results obtained. We will look into previous work done that correspond with
the current results obtained and look into similarities and differences between
the two cases and the previous studies done.

4.3.1 Previous work and comparison

The first results we presented in section [4.2] showed figs. and for the two
cases we had simulated. In both cases we observed the wake structure, floating
potential, electric field in upstream and downstream, and asymmetry, the latter
being a result of the fluctuations raised by numerical errors.

Observations and connection with theory

In the case of the cylinder we had anisotropic potential where the potential had
different values around the object, particularly inside the wake. The same had
been observed in the case of the box. In both cases this anisotropic potential
was reflected again in the density of the two objects. For the cylinder we could
observe the depletion of electron and ions in figs. and Looking at the
density for the electron we see a decrease in electron density inside the wake as
well as in the upstream, which forms the sheath. On the opposite charge, the
ions in fig. [£.6D] we see an almost zero density inside the wake as well as around
the object in the upstream as well as downstream. The reason for this occurrence
lies in the mobility of the electrons as compared to the ions. The electrons have
much larger velocity and thus able to penetrate the wake formation while the
ions are heavier and this leads to a depletion in the region of the wake. We
essentially have a sink of particles as the particles are absorbed by the object
and this effect can be observed in both cases as evident in figs. 4.6al [4.6b| [4.12a
and for the cylinder and box respectively. As the density of the electrons
build up inside the wake while there are still ions outside of the wake, an induced
electric field is initiated. This is the ambipolar electric field and it causes the
forthcoming electrons to slow down and in which case only high velocity electrons
can penetrate the wake. This is on par with the theory we revised in section [2.3.2
and the corresponding illustration of the process in fig. which showed the
charge accumulation on a wall.

However, in the case of the box, we have a region of ion focusing right behind
the object. This can be explored in more detail by referring to the potential
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profile, and the density profile for the ions cut through the middle of the box
in figs. 4.10al and [4.12bl In figs. [4.10al and 4.12b| there is a sharp rise in the
ion density and potential respectively, occurring at around grid point 70 along
the z-axis, which is right behind the object. This effect could not be observed
in detail while looking at the density profile of the cylinder in fig. [£.7] This is
likely due to the difference in the geometry of the objects. The box is a cube of
equal length in all directions, while the dimensions of the cylinder are different
and the geometry is smoother in terms of grid resolution. Another factor that
could have affected the rise of an electron wake behind the rocket covering the
ion focusing region could be the flow velocity relative to the object size. At
higher velocities we would perhaps expect to see a much stronger wake around
the rocket, however, that would be unrealistic as velocities above the one used in
the simulations would put us below LEO as can be calculated from the equations

in section 2.3.11

Despite the differences in the wake structure, we discover some fluctuations
in the density profile for the cylinder as well and it varies greatly towards the
end of the grid, while in the box case, it seems to stabilise and follow the density
profile of the electron in terms of amplitude. The fluctuations could be a result
of the numerical inaccuracy in terms of number of particles per cell since as we
have mentioned in table we run the simulations with only a few million of
particles. Another important thing to notice here is as we mentioned in sec-
tion [4.2| we write the data after every 500 iterations, this has implications on
the fluctuations for it is related to the plasma period of the ions and electrons
which we wrote in the previous section. Now, the data is being saved every 500
iterations which corresponds to 3.1 x 10~"s and 1.15 x 107%s for the box and
cylinder respectively. Since we have a plasma period of 7,; = 5.57 x 107%s for
the ion and 7, = 2.49 x 107" s for the electron we notice that in both cases we do
not save the data before a full ion plasma period has been reached. This could be
one of the reasons why we see a significant fluctuations in the ion density profiles
in both simulations as compared to the electron where the amplitude is more or
less steady as given by the numbers above it reaches a full electron plasma period
before the data is saved. Had we run the simulations with drastically more par-
ticles, we would expect to see predictable fluctuations in the data. However, the
results would not differ too far away from our current data set, as in the present
simulations, we are solving the field equations by using the five-point stencil as
described in section and the values are thus averaged. Using more particles
would also drive the simulation towards the fluid description.

A distinct observation we have omitted so far from the discussion is the po-
tential dip across the spacecraft which can be seen in the cut potential profile
across the middle of the objects in the direction of the flow in figs. [4.4al and [4.10a]
for the rocket and satellite respectively. We had previously revised this potential
dip in section as floating-potential and we briefly touched upon it in sec-
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tion [4.2] In the case of the cylinder in the previous section we yielded the value
® = —0.476803 V as the minimum for the potential, and this value correspond
to the floating-potential. We can now verify this by using the theory and the
floating-potential equation discussed in section [2.3.4] Since we are dealing with
the cylinder, we can approximate the floating potential analytically by noting
that the rocket is in the thin sheath regime and thus its dimensions is much
larger than the Debye length. This allows us to use the planar sheath theory
from section and the modified floating potential equation that accounts for
the potential drop in the pre-sheath, yielding us

]{?Te m;
by =— | 1 d 4.3.1
f 2e {n27rme+ 1—’_ 0 (43.1)
= —0.537114V (4.3.2)

where @ is the plasma potential and is set to zero in our simulations (Shul and
Pearton, [2000). Which is very close to the numerical result obtained from the
simulation with a difference of |[A® | = 0.060311V. The difference is a result of
the analytical result being considered in the stationary case, in other words, in
the case where there is no flow M = 0. In the case of the box, it might perhaps be
different as the dimensions of the box is different. The box has a length of ten grid
points in each direction corresponding to a length of 0.023 44 m and comparing
this with the Debye length used in the simulation which has the value 0.007 43 m
we see that it might actually lie in the border between thin and thick sheath
region. The object is still larger than the Debye length and as such we should
retain a similar value as in the case of the cylinder. In section [4.2.2| we noted the
minimum negative potential for the box being ® = —0.456 539 V and we see that
the floating potential for both the cylinder and the box does not deviate greatly
from the analytical value with a difference of only |[A® | = 0.080 57V in the case
of the box despite the supersonic flow in the simulation and the eligibility of the
analytical expression in the region. Were the dimensions of the box shorter than
the Debye length then we would have to use the OML theory for verifying the
floating potential as described in section [2.3.4]

Examining the potential for both cases we see a very different potential dis-
tribution behind the object. In the cylinder case there is a lot of fluctuations
behind the object, as we discussed, resulting from the numerical errors while in
the case of the box we see a significant rise in the potential. This ion focus re-
gion forming right behind the box, as evident in fig. [£.9a] arises not only due to
geometry, but also the temperature. For large temperature ratios, as in our case,
where we have % = 10 this is to be expected as it results in different thermal
velocities of the f)articles and hence also different charge accumulation in differ-
ent regions. For the region of interest to us, LEO, we would have a temperature
ratio of approximately 2, however, because of the appeal of analysable results
we have taken the temperature ratio as given in table Had we taken the
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more realistic temperature ratio we would not have had the observable results
provided in section [£.2] particularly when it comes to the ion focus region and
distinct wake structure.

We wrote in section L1.2] that we had a mass ratio of around 500 and this has
been chosen for performance reasons. The real mass ratio between an ion and an
electron is around 1836 (Graff, Kalinowsky, and Traut, |2016|). As reviewed above,
the time scale that needs to be resolved is typically the electron plasma period,
but since we have ions in our simulations it results in an additional longer time
scale of the order of the ion plasma period. The plasma periods are proportional
to the square-root of the mass, i.e. w, x y/m (Bret and Dieckmann, [2010).
Thus, applying a more realistic mass ratio would have resulted in a much longer
simulation time.

In both simulations we use a flow speed of M = 1.9 and since we are in
supersonic regime we expect to see a Mach angle of

1
p=sin~* (M) = 0.55

which converts to 32°. We had approximated this angle by using GIMP in the
previous section and the approximation seems to fit well with the theoretical
result, particularly for the box as there was a clearer Mach cone. It should
however be noted that by using GIMP we approximated the angle graphically
and thus it could digress by one or two degrees from the theoretical value.

The electric field for the two objects arising due to the charge distribution
which causes the anisotropic potential distribution can be seen in figs. [4.8b}
and for the cylinder and box respectively. The upstream part of the cylin-
der has significantly stronger field than the downstream and this can be seen
again in the total density, fig. [4.8a where the upstream has significantly more
negative charge density than the downstream. We would expect to find the same
in the case of the box, however, since the geometry is different we find that the
electric field does not digress much in the case of the box, and this is mirrored in
the charge density of the box in fig. where we see that the charge density
only occurs at the corners of the object and not on the edges of the upstream and
downstream. Since we are using Cartesian grid we have build our geometry as
described in section by using the corners and are accordingly also subject to
restrictions in the resolution, particularly when it comes to the cylinder. Given
the above restrictions we cannot avoid corners even in the case of the cylinder
which is why we can recapture the same charge density on the corners as seen
in fig. [£.84] The reason for the irregular distribution of the charge density lies
also in the interaction of the flow around a refined or rigged object such as in our
case.

Since our simulations are in the ES regime with no external magnetic field,
it is far from the reality that is space. Had we included magnetic field in our
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simulation, as the magnetic field described in section we would have yielded
very different results. Not only would the trajectory of the particles now be
different, but they would be subject to the electromagnetic drift as described
in section [2.2.2] that is if the fields were perpendicular to each other. This
complexity could give rise to a different wake structure because of the magnetised

electrons that drift with v = EggB that follows from the electromagnetic field.

Correspondence with previous studies

The upstream part of the cylinder had more negative potential than the down-
stream as a consequence of the flow and the roughness of the object as observed
in the box case where we had clear negative potential in the corners. This elec-
tric dipole moment had previously been observed in 2D (Miloch, [2006)). There is
also depletion of ion density observed in the wake as seen in figs. |4.6b| and |4.12b|
which also has been shown in the studies of Y. Miyake et al., 2013; Wojciech J.
Miloch, 2010. It is not only the ions that seem to be depleted in the wake, there
is also depletion of electron density due to the ambipolarity of the electric field
which results in acceleration of the electrons farther from the wake. In a paper
describing the wake and the corresponding potential published by Eriksson et al.,
2006/ in which an electrostatic wake model is discussed affirms our findings in of
the results above. The Mach cones observed in this thesis in which the object
is larger than the characteristic Debye length has been studied by Allen, [2013]
Even though the paper is based on gas dynamics theory and discusses the trun-
cation of the Mach cone as a consequence, it does compare it with the PIC codes
that have affirmed similar findings, still, we would like to argue that the Mach
cone shape and the corresponding inner cones that arise are not only dependent
on the temperature ratio, but also the shape of the object.

The anisotropic charging taking place in both the cylinder /rocket and box /satel-
lite case aligns with the previous studies conducted in this field which has been
observed by Y. Miyake et al., [2013; Wojciech J. Miloch, 2010 and others (Marc-
hand et al., 2014). The central theme in the same references is also the wake
formation behind the objects, varying in scale ranging from dust particles (Woj-
ciech J. Miloch, 2010)) to the Moon (Holmstrom et al., 2012)), albeit in the latter
work, a hybrid model was used which omitted some of the kinetic properties.
In all the works we see similar observations when it comes to the Mach cone,
potential, and ion focusing despite the different scales used in the simulations for
different problems.

An important aspect of the simulation that we cannot neglect is of course the
spacecraft charging leading to error in measurements. As we have seen in the
result there is a significant wake forming behind the spacecraft. Had the space-
craft had Langmuir probes, or booms, used for measurements this would have
caused errors in the measured data as a consequence of the wake disturbance
on the surrounding plasma environment. This effect has been studied previously
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by N. Meyer-Vernet, 1976/ and simulations done by using the PIC have also been
carried out by Y. Miyake et al., 2013, the latter showing the effects of the wake
arising from the wire booms and the consequences it has on the electrostatic wake
that is formed behind the spacecraft. The study done by N. Meyer-Vernet, |1976
show that as the spacecraft propels and spins in the plasma with the wire booms
on the sides measuring plasma properties, there will be modulation. In references
to the previous section we saw that different regions gave rise to different poten-
tials around the spacecraft. In this scenario if we had booms on the sides of the
spacecraft for measurement it would be subject to modulation by the crossing of
the wire booms into the region of the wake. In the case of steady state with no
wake the modulation would not be observed since we would be subject to equal
potential in all directions, as contrary in the case of having a wake structure.
The Cluster satellite had experienced modulation specially in the polar region.
Papers related to the Cluster are published by Y. Miyake et al., 2013; Eriksson
et al., 20006,






Chapter 5

Summary and conclusion

In this chapter we will summarise this thesis and go swiftly through the results
obtained and finally conclude and ignite some ideas for future works.

5.1 Summary

In the first part of the simulation we presented the results obtained from the two
different cases. Concerned with the geometry and dimensions of our objects we
examined how their shapes affected the physical properties of the spacecrafts in
plasma such as the potential, density, electric field and the aerodynamic structure,
the wake, and its property, the Mach angle.

We examined the potential across the spacecrafts and discovered how they
deviated from one another. For the rocket we examined the potential across the
rocket and how a sheath is formed in the upstream and downstream by the elec-
trons. The sheath was more thin in the upstream than the downstream, partially
because of the wake structure forming behind it, but also because of the geometry.
The same was observed in the case of the satellite where the sheath formation of
negatively charged particles formed around the satellite. In the case of the latter
though the thickness of the sheath was more or less equal in the upstream and
downstream of the satellite. This could be observed by examining the electric
field around the box in the direction of the flow. The bipolar electric field that
originated from the anisotropic potential field had virtually equal intensity both
in the upstream and downstream in the case of the satellite while the balance
was more unequal in the case of the rocket. This was a consequence of the ion
focusing forming behind the satellite as compared to the rocket case in which we
had a electron wake formation as seen in fig. and thereby leaving no room
for the ion focusing to form. We mentioned that a factor for this could have been
the object dimension relative to the flow velocity together with the temperature
ratio. We know from previous work that the temperature ratio defines the wake
structure and specially the ion focusing region as studied by Wojciech J. Miloch,
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2010; Allen, 2013.

We further studied the wake around the two spacecrafts and how distinct it
was in the case of the satellite than in the case of the rocket. Notably, there was
a larger area of electron wake in the case of the rocket than in the case of the
satellite which can be seen in figs. [4.6a] and [4.12a The basis of the observation
was assigned to the geometry, dimension and flow, as these played larger roles
when it came to the other properties such as the ambipolar electric field and
potential. A consequence of this was the depletion of ions inside the wake and
this could be observed in the density data as given in figs. 4.6b| and [4.12b]

The depletion of ions inside the wake and the concentration of electrons inside
the wake gives rise to a charge separation which forms an ambipolar electric
field. This field will cause the forthcoming electrons to slow down or accelerate
depending on the direction. Overall though, the total force on the particles would
be zero as there is an equal force imposed by the ions outside the wake.

The ambipolar electric field and the anisotropic potential field has been ob-
served by others, specially when it comes to the influence of the electrostatic wake
on wire booms as employed by spacecrafts such as Cluster. Papers covering the
wake formation around booms are published by Y. Miyake et al., 2013} Eriksson
et al., 2000, The anisotropic potential that arises can have different effects on a
spacecraft as the we covered in section which includes spacecraft charging
leading to damage, and modulation in measurements. The modulations are well
covered by N. Meyer-Vernet, (1976 in which he examines the cause of the modu-
lation by noting that during the spinning of the spacecraft the wire booms may
enter the region of the wake which maintains a different potential than the region
outside of the wake. In other words, the modulations arise from the rotation of
the rocket and the direction of the booms through the wake structure forming
behind the spacecraft.

5.2 Conclusion and future work

The simulations performed in this thesis by using the newly implemented algo-
rithm for the object building seemed to play well with the original code as was
written by Miloch, 2006. We examined two cases in the simulation corresponding
to a rocket and a satellite in a LEO environment and studied some of the physics
of the plasma on the spacecraft. We affirmed some of the foreseen results as pre-
dicted by the theory and previous works, such as the floating potential, electric
field, wake structure and ion focusing region. We realised in the simulations that
the object geometry played a very large role in the formation of the wake and
charge distribution around the object. Specifically we discovered how different
the electron wake structure was between the two cases and how intricate it would
be if a magnetic field was involved.

The anisotropic potential giving rise to the electric field was very different in
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the two cases which also gave rise to very different wake formations one completely
void of any ions, fig. [£.6] and the other containing a focused ion region fig. .12
We suspected the cause being the flow velocity in the case of the rocket and in
the case of the satellite we would suspect the lack of a large electron wake being
the dimension of the box.

Despite the fluctuations in the various data set by only using 2 x 10° to
9 x 10° number of particles, we arrived at reasonable results. Increasing the
particles would have helped in smoothing the result variations, it would however
not improved our results significantly. Instead we would liked to have saved
the data at shorter intervals corresponding to the ion plasma period such that
we could perhaps minimise the fluctuations and thus see if there indeed is an
ion wake structure further behind the object or not. When it comes to the
parameter of the simulations, they were chosen as close to the LEO environment
as possible, despite some of the evident differences in terms of temperature ratio
and mass ratio that were chosen as prescribed for performance reasons. It would
be interesting to see if we could include the full photoemission effect that takes
place in the GEO region and perform a simulation related to that. A problem
would be the flow velocity as in GEO we have spacecraft velocity equal to the
rotational velocity of the Earth, but we covered in section[2.3.3]that bulk charging
could occur during shadows, but for this we would need to expand the code further
to include this effect and research into this area is still in its infancy.

Geometry wise the algorithm can be improved to include variations in the z-
axis such that we could build more complex geometries by linking it to an external
CAD program. Another approach would be to actually read the data file from an
external CAD program such as AutoCAD. Ideally it would be better to rewrite
the code to make use of finite-element method instead of finite-difference on a
Cartesian grid as it is here. This would allows us to expand get detailed analysis
of very complex and realistic shapes. The use of FEM to simulate complex
shapes in plasma has already proven to coincide with experiments performed in
laboratory to simulate ion thrusters and even spacecrafts. Some of the research
has already been published by D. Han, Wang, and He, [2016; Daoru Han et al.,
2016.

Nevertheless the present code is very well established when it comes to the
study of the dust particles in space plasma and has previously been covered by
the original author of the code in W. J. Miloch et al., 2009, If we however wish
to expand the code into more intricate regions and include complex geometries
we should research into other methods such as those mentioned above.






Appendix A

Derivation of the orbit equation

Newton’s law of universal gravitation is given by

G G
r T

which defines a force acting on a body with mass ms by a body with mass m;. We
note that since we are using inertial coordinate system we can easily differentiate
the position vector r without consideration for the derivative of each axes of the
coordinate system. By applying Newton’s second law on the body with mass,
ma, we get

G
r
By Newton’s third law of action-reaction we have F15 = —F5; thus for the body
of mass m; we have
G
T G = gty (A.0.3)
r

We can then solve the above equations by multiplying eq. (A.0.2) with m; and
eq. (A.0.3) with ms then subtracting the second equation from the first, yielding
us

o UL S L T, b (A.0.4)

eq. describes the motion of my relative to m;. We have here defined
the gravitational parameter p = G(m; + my) or in the case of Earth-satellite
i = Gmg, where mg is the Earth mass, we have omitted the satellite mass
as it is negligible. We have to note that we have made assumptions in the
derivation such as the bodies being spherically symmetric with uniform density
and that there are no other forces acting on the bodies except the gravitational
force. (Vallado, [2001]).

Before proceeding, we shortly review the specific angular momentum as it is
constant and independent of mass (Curtis, 2010; Vallado, 2001). This can easily

1)
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Figure A.1: Cone-section showing the different possible orbits (modified
from GitHub by Ridlo W. Wibowo).

be verified by taking xr of eq. (A.0.4)

i

r><r+r><ﬁr:() (A.0.5)
the latter term vanishes as r x r = 0 and furthermore we know from the product
rule of differentiation & (r x #) = F x # + 1 X I = r x I We can see that we can
insert the above derivative into eq. (A.0.5)), but then the result would be zero,
thus the internal quantity must be a constant, h. In other words, % =0, or

r x I = constant Curtis, [2010. Rearranging and substituting eq. (A.0.5)) and we

will have

h=rxv (A.0.6)

which means that at any given time the two vectors r and v lie in the same
plane and their cross product is perpendicular to that plane and for a satellite
its motion is always confined to this plane, the orbital plane. (Vallado, 2001;
Curtis, 2010)) Most of the relevant orbits can be looked at by the intersection of
a plane and a cone as in fig. By which we can derive the conic sections:
circle, ellipse, parabola and hyperbola. Kepler’s first law states that planets orbit
in an ellipse, one of the conic sections. The two-body equation describes
the path of a small body orbiting a larger body, thus we can derive a trajectory

equation that describes these motions. We cross eq. (A.0.4) with eq. (A.0.6)

Fxh+Lrxh=0 (A.0.7)
T
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By using the same argument as the one during the specific angular momentum
the first term is then simply

%(th):i‘xh

because h = 0. For the second term we substitute eq. 1} into eq. 1'

and we note from vector calculus the cross product identity r x (r x v) = r(r -
v) — v(r - r). By using these and simplifying we get

p . W d <r>
—(rxh) ==rr——~v=—pu—(-
7’3( ) r2 r Fae\r
where we have identified the quotient rule for the last part. Now that we have
an expression both for the first and second term we can substitute the two into

eq. (A.0.7) and produce

d . d/r
Integrating both sides gives us
) r
rxh-— po= C (A.0.9)

where the vector C is an arbitrary constant of integration having dimensions g
and lies on the orbital plane since the right-hand side is normal to the angular
momentum (Vallado, 2001; Curtis, 2010). Now we take -h of the above equation
and

(fxh)-h—p--h=C-h
T

Both the first and second term of the left-hand side vanish as a result of per-
pendicularity and we retrieve C - h = 0 this means that C is perpendicular to h
which is normal to the orbital plane. We can now rearrange eq. (|A.0.9) and get

r rxh
r 0

(A.0.10)

where e = % is the eccentricity vector. To get the scalar of this we take the -r

of the above equation and employ the vector identity r- (f x h) = ()r x ) - h =
h - h = h?, resulting in

h2

r+r-e=—

"

h2

r 4+ recos(d) = —



78 Derivation of the orbit equation Chapter A

where we have made use of the dot product definition. Rearranging the above
once again and we retrieve the orbit equation

R

T ) (A.0.11)

here 6 is the true anomaly (Curtis, 2010) i.e. the angle between the eccentricity
vector and the variable position vector. An important parameter in eq. is
the eccentricity, e, which indicates the orbit’s “roundness” or its deviation from
begin a circle. What we have derived describes the path of the body msy around
my relative to m; e.g. a satellite around Earth. It is essentially a mathematical
statement of Kepler’s first law which we have extended beyond an ellipse to any

cone section as in fig. [A.1]



Appendix B

Derivation of Boltzmann
moments

We have the BTE as

Ofs 0
ot o

(fsvi) + a%(fsai) = Cy(f) (B.0.1)

where we are using the tensor notation where z; for i = 1,2,3 and s denotes
species. To find the corresponding equations; the continuity equation, momentum
equation and energy conservation equation, we take the moments of the above.
We define the moments by multiplying the distribution function with velocities
and integrating over the velocity space (Fitzpatrick, 2015).

In the subsequent derivations we wish to extract time evolution of the mass
density, the fluid velocity and the specific internal energy, denoted by p,u and
e respectively. To find these we have to multiply eq. with £(v) where &

represents any constant of power of v, which for the above will be

E=m E=v &= %m|v|2 (B.0.2)

and then integrating over all v. Any linear combinations of the above will work
too. We will also note that

[ecunav=o

in which £ is a conserved quantity in a collision such that the above is valid in a
non-relativistic regime involving short-range forces. In other words, collisions do
not contribute to any time rate of change of any of the above conserved quantities
during the collision process.
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The continuity equation

Multiplying eq. - with f mgv) and we obtain

e 3
at/ms‘fsd

We cannot perform much simplification to the current equation, however, if we
denote a new term namely the number density (Fitzpatrick, |2015]) ng,

st /fs i, U5, t (B.0.4)

which is the number of particles in the velocity space and the corresponding mass
density ps = msns. The average of an arbitrary quantity such as @) is given by

1
= _/Qfs(xz; U,“t)dSU
Ng
such that substituting ) with v; yields

patis(ait) = pulus) = [ ofilamnon ) a0 (B.05)

where wu; ; is the flow velocity. We can now simplify eq. (B.0.3) by recognising
the above two such that the first term is simply

0 3 Ops
a/msfsdv— 8t

v; v =

v; v + / aimsfsa,- Bv=0 (B.0.3)
Uy

and the second term

(psuz S)

furthermore the third term of eq. - ) becomes

// V - (asfs) d%—// (asfs)dA =0

Here we have applied the divergence theorem where dA is the surface area of
the velocity space, furthermore we have assumed that f; — 0 as v — oo since
fs vanishes faster than any power of v. Gathering the above having applied
the collision conversation law we initially mentioned, we retrieve the continuity
equation (Fitzpatrick, 2015)

Ops + i
The equation implies that local matter content due to fluid flow occurs in a
continuous fashion. The mass flows thereby in a well-defined manner across the

surface of the volume as opposed to disconnected in which it would disappear
suddenly and reappear in some completely different region.

(psuz’,s) =0 (BOG)
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The momentum conservation equation

We multiply eq. (B.0.1) with £ = m4v; to obtain
a/f d?v + 8/]’ d*v + /8f dPv=0 (B.0.7)
ms— [ fov;d°v +my— [ fovv; v +my | — fovja; d°v = 0.
ot ’ Ox; ! ov;" "

From the previous case we can already recognise the first term as

0 , D
a/msfsvjd v = E(;Osuj,‘s’)

For the second term we introduce the relative velocity ws = v — us such that (see
Fitzpatrick, 2015

0 0
%(Ps@j%)) = %(psui,suj,s + ps(wisw;s))

the inner term ps(w; sw; ) denotes the pressure tensor which depends only on
the random velocity of the particles (Shu, [2009)). It is convenient to rewrite it as

1
ps<wz’,swj,8> = gps<|Ws|2> — Po;; — p8<wi78wj,8>

The first term on the RHS is the pressure P = 3 ps(|ws|?) and the second term is
the viscous stress tensor v = Pd;; — ps(w; sw; s) where ¢;; is the Kronecker delta.
For the third term in eq. we make use of the divergence theorem together
with the previous argument that f; — 0 as v; — oo to obtain

msai/ [%(Ujfs) - (5ijf5:| d*v = —a;6; /msfs d*v = psa; (B.0.8)

Setting the pieces together yields

0 0

o7 (Pstiis) + 5 (psttsttis + Poij — vij) = psa;

Which is the momentum equation that tells us that the time derivative of a con-
served quantity together with the divergence of a flux equals a source term (Shu,
2009).

The energy equation

To find the energy equation we multiply eq. with £ = %m|v|2. For a
detailed derivation of the following see Shu, 2009. The general idea is however
to make use of the divergence theorem and conservation of collision energy, mass
and momentum to yield

3

(1 . oM 5 3
(B.0.9)
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where F; = p(wi%|w|2> is the conduction heat flux. The above equation states
that the total fluid energy density is the sum of a part due to p,|u|®, which is the
bulk motion, and a part due to random motions pe = %P. The flux of the energy
in the ith direction consists of (%ps|u|2)ui, (pe + P)u; and —u;v;; corresponding
to the mean velocity, enthalpy, and the viscous contribution respectively (Shu,
2009).



Appendix C
Code

C.1 polyfill.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "const.h"

4

5  #define min(a,b) (((a)<(b))?(a): (b))

6 #define maz(a,b) (((a)>(b))?(a): (b))

7

8 /*

LS — —

10 The following function will scan and fill the region of

11 the object, boundary, and outside as desired.

12 z: array of z-coordinates

13 y: array of y-coordinates

14 voz: zero 3D array with index sorting provided by iz (0,7, 7,k)
15 corners: number of corners for the desired region of confinment
16 maz_corners: the maxzimum number of corners the object could have
17 ngx: number of grid points in the x direction

18 ngy: number of grid points in the y direction

19 newN: the new number you would like to replace the previous number with
20 z: z direction coordinate.

21 - - - - - - -

22 */

23 void scanFill(int #*x, int *y, int *vox, int corners, int max_cormers,int ngx, int ngy,int
< newN, int z){

24 int nodes, nodeX[max_corners], gridX, gridY, i, j, swap ;

25 // Scan through the grid in the y-direction.

26 for (grid¥=0; gridY¥<ngy; gridY¥++) {

27

28 // Butld a list of nodes.

29 nodes=0; j=corners-1;

30 for (i=0; i<cormers; i++) {

31 if ( (y[il<(double) gridY && y[jl>=(double) gridY) ||
—  (y[jl<(double) gridY && y[i]l>=(double) gridY¥)){

32 nodeX [nodes++]=(int)
—  (x[il+(gridY-y[i])/(y[j1-y[i]) *(x[j1-x[i1));

33 ¥

34 j=1i;

35 ¥

36

37 // Bubble-sort the nodes.
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83

556
557
558
559
560
561
562
563
564
565
566

Chapter C

while (i<nodes-1) {

if (nodeX[il>nodeX[i+1]1) {
swap=nodeX[i]; nodeX[i]=nodeX[i+1]; nodeX[i+1]=swap;

if (1) i-—;
}
else {

i++; 3
}

Fill in between the nodes.
(i=0; i<nodes; i+=2) {
if (nodeX[i 1>=ngx) break;
if (nodeX[i+1]> 0 ) {
if (nodeX[i 1< 0 ) nodeX[i 1=0 ;
if (nodeX[i+1]> ngx) nodeX[i+1]=ngx;
for (gridX=nodeX[i]; gridX<nodeX[i+1]; gridX++){
vox [ix(0,gridX,gridY,z)]=newN;
}

// Finding the maz and minimum value of an array

84 Code
i=0;
/7
for
}
}
}
int amax(int *arr,int elements){
int i, max;
max = 0;
for (1 = 0;

i < elements; ++i ){

if (arr[il>max){

return max;

}

max=arr[il;

int amin(int *arr,int elements){

int i, min;

min = ngx_MAX;

for (i = 0;

i < elements; ++i ){

if (arr[il<min){

}

return min;

min=arr[i];

C.2 grid.c (modified part)

int
int
int
int
int
int

ilevoxeli=0;
flag=0;
done=0;
ii,jj,kk;
corners=240;
in, s;

corner_x=ivecmem(0,corners-1);
corner_y=ivecmem (0, corners-1);
corner_z=ivecmem(0,corners-1);
//read in the coordinates from file



567
568
569

570
571
572
573
574
575
576
577
578
579
580
581
582

583

584

585

586
587
588

589
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591
592
593

594

595

596
597
598
599
600
601
602
603

604

605

606

607

608

609

610

611

612

613

Section C.2 grid.c (modified part)

—

L&

FILE *coor = fopen("cylinder_z50.txt", "r");
for (in = 0; in < corners; ++in){
fscanf (coor, "%d %d %d", &corner_x[in], &cormer_y[in],
&corner_z[in]);
}

fclose(coor);

/7 == == ---Object marking starts here-———-——-———————————————-——-
// Here we construct the box around the object
// for later versions might need to substitute
// box with an bigger sized object outline.
int le=corners-1; //last element
int *xbox, *ybox;
int boxcorners = 4;
xbox = ivecmem(0,boxcorners-1);
ybox = ivecmem(0,boxcorners-1);
xbox[0] = amin(corner_x,corners/2)-bufzone;
ybox [0] =amax (corner_y, corners/2)+bufzone;
xbox[1] = amax(corner_x,corners/2)+bufzone;
ybox [1]=amax (corner_y,corners/2)+bufzone;
xbox[2] = amax(corner_x,corners/2)+bufzone;
ybox[2]=amin(corner_y,corners/2)-bufzone;
xbox[3] = amin(corner_x,corners/2)-bufzone;
ybox[3]=amin(corner_y,corners/2)-bufzone;

for (kk = 0; kk < ngz; ++kk){
// The following loop will initialise the outline marking of the
boz
if ( (kk>=amin(corner_z,corners) && kk<=amax(corner_z,corners))){
for (ii = 0; ii < ngx; ++ii){
for (jj = 0; jj < ngy; ++jji){
for (s = 0; s < boxcorners; ++s){
if ( ((ii>=min(xbox[s],xbox[le]))
&& (ii<=max(xbox[s],xbox[lel)) && (jj==ybox[s]) )|
(((ii==xbox[s]) &&
(jj>=min(ybox[s],ybox[1le])) && (jj<=max(ybox[s],ybox[lel)))) ){
phivoxel[ix(0,ii,jj,kk)]
=1;

le=s;

}

// The line will fill the outlined boz with the value 1

scanFill(xbox, ybox, phivoxel, boxcorners,
4,ngx,ngy,1,kk);

// The line will fill all of the object incl. edges and
inside with value 3

scanFill(corner_x, corner_y, phivoxel, corners/2,
corners,ngx,ngy,3,kk) ;

// Changing the walue of the edges to have the value 2
for (ii = 0; ii < ngx; ++ii){
for (jj = 0; jj < ngy; ++jj)d{
for (s = 0; s < corners; ++s){
if (
((ii>=min(corner_x[s],corner_x[lel)) && (ii<=max(corner_x[s],corner_x[le])) &&
(jj==corner_yl[s]) )|
(((ii==corner_x[s]) &&
(jj>=min(corner_y[s],corner_y[lel)) && (jj<=max(corner_yl[s],corner_y[lel)))) ){
phivoxel [ix(0,ii,jj,kk)]
= 92;
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le=s;

}
}
// The following will mark the boz in the z dir.
if ((kk>=amin(corner_z,corners)-bufzone &&
kk<amin(corner_z,corners)) || (kk<=amax(corner_z,corners)+bufzone &&
kk>amax (corner_z,corners))){
scanFill(xbox, ybox, phivoxel, boxcorners,
4,ngx,ngy,1,kk) ;

}
// This one will mark the surface at min maz z dir.
if (kk==amin(corner_z,corners) || kk==amax(corner_z,corners)){

scanFill(corner_x, corner_y, phivoxel, cormers/2,
corners,ngx,ngy,2,kk) ;

for ( ii = 0; ii < ngx; ++ii){
for ( jj = 0; jj < ngy; ++jj){
for ( kk = 0; kk < ngz; ++kk){
if (phivoxell[ix(0,ii,jj,kk)]1==2){
ilevoxeli++;

}

FILE *objmarktest = fopen("obj_mark_test.txt","w");

//TEST: print it on screen for

int ko;

for (ko = amin(corner_z,corners); ko < amax(corner_z,corners)+1; ++ko){

for(ii=0; ii<ngx; ii++)

{
for(jj=0; jj<mgy; jj++)
{
// printf("%d ", phivozel[iz(0,1,575,10)]);
fprintf (objmarktest,"’%d",phivoxel[ix(0,ii,jj,ko)1);
}
// printf("\n");
fprintf (objmarktest, "\n");
}
}
fclose(objmarktest) ;

printf("ilevoxeli %d \n", ilevoxeli);
getchar();
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