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ABSTRACT

Projections of three important seasonal rainfall parameters—total precipitation (pt), wet-day mean (mw)

and wet-day frequency ( fw)—considered to be relevant to crop agriculture were performed. Links between

large-scale climate variables and local precipitation in Tanzania were investigated during the March–May

(MAM), October–December (OND), and December–April (DJFMA) rainfall seasons. Variables found to

have strong links were used to downscale the local precipitation for three future periods; near term, mid-

century, and end of century. Downscalingmodels for pt , mw, and fw were calibrated using observed large-scale

seasonal rainfall and projected downscaled parameters were obtained based on rainfall simulations from

ensembles of GCMs. The models’ skill scores were found to be sensitive to the domain size and number of

leading EOFs used. The common EOFmethod employed in the downscaling modulated the skills depending

on the GCMs used. The spread in the rainfall projections was found to be larger in OND and moderate in

MAM and DJFMA. The multimodel mean projections in response to two RCPs (RCP4.5 and RCP8.5)

suggest a shift toward wetter (drier) conditions (pt) for OND (DJFMA) for all three periods. There is no

uniform projection for MAM; some stations are projected to feature wetter and some drier conditions. In the

midcentury and end of century, there is an increase of precipitation to about 40% for some areas gettingOND

rainfall and a decrease of precipitation up to about 10% for some areas getting MAM or DJFMA rainfall.

Generally, the magnitude of change strongly differs across the areas.

1. Introduction

Agriculture accounts for about 43% of the annual

gross domestic products (GDPs) of East African coun-

tries (Omamo et al. 2006). Yet the farming in these

countries is dominated by small holders who rely on

rainfall (United Republic of Tanzania 2014; Waithaka

et al. 2013). Rain-fed agriculture has remained the

dominant source of staple food production and the

livelihood foundation of themajority of the rural poor in

sub-Saharan Africa (Cooper et al. 2008). As a conse-

quence the sector has remained susceptible to climate

change and variability. Changes in climate between and

within the seasons (Rowhani et al. 2011) and changes in

the mean climate and the magnitudes and frequency of

the extreme events (Moriondo et al. 2011) have a sig-

nificant impact on crop yields and livelihood as well as

food security (United Republic of Tanzania 2014). It is

therefore important to have an improved understanding

of the influence of climate on agricultural production
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that is needed to cope with expected changes in tem-

perature and precipitation, and hence to minimize an

increasing number of undernourished people in food-

insecure regions (Rowhani et al. 2011).

Although some general conclusions about climate

change and their impacts have been drawn especially at

large scales, the potential damage of climate change at a

particular region or farm needs to be assessed under site-

specific conditions (Li et al. 2011). Moreover, there is an

increasing number of decision makers from different

organizations seeking climate predictions of the regional

and local changes that will impact people. Since global

climate models (GCMs) are at coarse resolution such

that they are unable to resolve features at regional or

local scales, it is therefore necessary to downscale the

GCMs in order to produce scenarios of climate change

at the scale required by impact assessment studies.

The downscaling of GCMs in Africa has received

relatively less attention as compared to other part of

the world (Hulme et al. 2005; Shongwe et al. 2011).

Moreover, existing studies on regional climate model-

ing have mostly focused on southern Africa (e.g.,

Hewitson and Crane 2006; Landman and Tennant

2000) and West Africa (e.g., Paeth et al. 2005; Penlap

et al. 2004), with very few in East Africa (e.g., Moore

et al. 2012; Taye et al. 2011). With the exception of the

statistical downscaling works done by Tumbo et al.

(2010) over Same district in Tanzania and Taye et al.

(2011) over Lake Victoria basin, previous downscaling

work already done in East Africa/Tanzania is based on

dynamical downscaling (e.g., Moore et al. 2012;

Omondi et al. 2014), with analyses given on a regional

or country level, which is too course to draw conclu-

sions on impacts at local levels. While the work of

Tumbo et al. (2010) was based on only one location in

Tanzania, in this study we also propose the use

empirical–statistical downscaling (ESD) covering dif-

ferent locations in the country representing homoge-

neous climatic zones (see, e.g., Ng’ongolo and

Smyshlyaev 2010), also using several GCMs.

The current study therefore attempts to address the

shortcomings of using coarse spatial resolution models

for assessment of climate change for impact studies

(e.g., agriculture). In particular, we aim to use ESD to

explore changes in climate at local level. We rely on the

hypothesis that the local rainfall is connected with

larger-scale conditions and that we can use GCMs to

describe the statistics of year to year variations in

seasonal precipitation in Tanzania. The objectives of

this work are 1) to assess and establish links between

large-scale circulation patterns and local precipitation

in Tanzania, 2) to develop ESD models based on the

identified links, 3) to assess the skill of the ESDmodels,

4) to create climate change scenarios using ESD

models and GCMs projections, and 5) to identify cau-

ses of the spread and differences in the multimodel

downscaled results.

Regression-based ESD utilizes systematic de-

pendency transfer functions [ y5F(x)] between large-

scale circulation (predictors) variables, x, and regional

or local climate variables, y (predictand), to derive re-

gional climate information (Leung et al. 2003). This

function is typically established through training and

validating the models using point observations and

gridded reanalysis data (Fowler et al. 2007). The derived

statistical relationships are then applied to the large-

scale climate variables from GCM projections to

estimate corresponding future local and regional char-

acteristics (climate change). Practical considerations for

developing an ESD scheme involve the selection of

appropriate predictor variables, predictor spatial rep-

resentation, domain size and location, types of transfer

functions, and definition of temporal scales such as

season (Leung et al. 2003).

The utility of ESD depends upon four assumptions:

1) high-quality large-scale and local data are available

for an adequately long period to establish robust re-

lationships in the current climate, 2) the link between

predictands and predictors is strong in order to explain

satisfactorily the local climate variability, 3) the pre-

dictor variable is well simulated by the GCM, and

4) relationships derived from recent climate remain rele-

vant in a future climate (stationarity) (Benestad 2001a;

Busuioc et al. 2001; Wilby and Wigley 2000).

The use of ESD has the advantage that 1) it is

computationally very inexpensive, 2) it can provide

information at smaller scales than the GCM-scale

output, 3) it can be used to derive variables that are

not available from regional climate models (RCMs),

4) it is able to directly incorporate observations, 5) it

provides diagnostics and insights (e.g., a picture of

how large and small scales are related), and 6) it can

be used to assess the models. The main drawbacks of

this method are that 1) ESD has underlying assump-

tions that can only be partly tested (Willems et al.

2012), 2) strong predictor variables do not always

exist, and 3) long time series of relevant data are re-

quired to form the relationships (Jones et al. 2004;

Leung et al. 2003).

2. Data and methods

a. Study area

Tanzania (Fig. 1), one of the East African countries, is

located in the Southern Hemisphere. Its climate consists
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of two rainfall regimes; a bimodal one with rainfall sea-

sons in March–May (MAM) and October–December

(OND), and a unimodal one with a rainfall season in

December–April (DJFMA). These rainfall regimes are

controlled by the northward and southward migration

of the intertropical convergence zone (ITCZ). The bi-

modal rainfall regime is observed over the areas lo-

cated in the northern parts of the country while the

unimodal rainfall regime is more typical for the

southern, central, and western parts of the country,

coinciding with the austral summer (December–

February). The remaining months, from June to Sep-

tember and January to February (for bimodal areas)

are relatively dry.

It is widely established that rainfall over East Africa

varies in space and time (Camberlin and Philippon 2002;

Indeje et al. 2000). The variability has been linked to the

presence of local features (Indeje et al. 2000), varia-

tions in the dominant large atmospheric circulation

(Camberlin and Okoola 2003; Mapande and Reason

2005), and global warming (Schreck and Semazzi 2004).

Some circulation oscillations have been linked to the

variation of East African seasonal rainfall, ENSO

(Indeje et al. 2000; Schreck and Semazzi 2004; Kijazi and

Reason 2005; Ogallo 1988), the zonal circulation in the

equatorial Indian Ocean (Black et al. 2003; Kabanda

and Jury 1999; Marchant et al. 2007; Saji et al. 1999), the

Madden–Julian oscillation (MJO) (Mpeta and Jury

2001; Mutai and Ward 2000), and the quasi-biennial

oscillation (QBO) (Indeje and Semazzi 2000; Ng’ongolo

and Smyshlyaev 2010). ENSO alone is found to account

for almost 50% of the East African rainfall variance

(Ogallo 1988).

b. Data and choice of predictors

1) DATA

Predictand data used for the ESD model develop-

ment are daily rainfall observation records for several

stations in Tanzania (Fig. 1) obtained from Tanzania

Meteorological Agency (TMA). The time period

available for this dataset differs from station to station

with some stations going back to the 1940s and few to

the 1960s. However, for this work we used data from

1979 to 2012, which matches the MERRA data period.

Within this period, 99.9% of the daily data are avail-

able for analysis. However, quality control of the data

including inhomogeneity that could be caused by any

change to station or its operation was not performed.

Predictor variables used for correlation analysis and

hence ESD model development are the reanalysis of

monthly mean surface and atmospheric large-scale

circulation fields that were taken from the NASA’s

Modern-Era Retrospective Analysis for Research

and Applications (MERRA), available online at http://

disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl. The

MERRA time period covers the modern era of re-

motely sensed data, from 1979 to 2012. A special focus

of the atmospheric assimilation has been on the hy-

drological cycle. The reanalysis is available at a spatial

resolution of 0.58 latitude3 0.678 longitude (Rienecker

et al. 2011).

As predictor variables for downscaling future rainfall

projections we have used GCM monthly mean rainfall

simulations for the period 2006–2100. These simulations

are obtained from phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) climate change experi-

ments (Taylor et al. 2012). This dataset is available

online at http://pcmdi9.llnl.gov/esgf-web-fe/. Projection

simulations forced with two representative concentra-

tion pathways, RCP8.5 and RCP4.5 (Moss et al. 2010),

were used. These long-term integrations are initiated

from multicentury preindustrial control integration

(Taylor et al. 2012). RCP8.5 is consistent with a high

emissions scenario and RCP4.5 is consistent with a

midrange mitigation emissions scenario. The GCMs

used in this study are listed in Table 1. The set of GCMs

includes models with different spatial resolutions and

degrees of complexity. Generally, the spatial resolution

of CMIP5 GCMs roughly ranges from 0.58 to 48 for the
atmosphere component and from 0.28 to 28 for the ocean

FIG. 1. Map of Tanzania showing study sites; stations marked by

red squares represent areas with two rainy season (MAM and

OND) and those marked by red triangles represent areas with one

long rainy season (DJFMA). The station Dar es Salaam is called

Dsalaam in the skill score and projection figures.
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component (Taylor et al. 2012). In our selection, we

have included GCMs of variable resolutions from very

high to low.

2) PREDICTOR SELECTION

Potential predictor variables were selected by re-

ferring previous works on ESD and empirical seasonal

forecasting done in Africa. These are atmospheric large-

scale fields such as 850-hPa height (gpm85) (Landman

et al. 2012) and sea level pressure (SLP) (Huebener and

Kerschgens 2007; Landman and Tennant 2000; Zhao

et al. 2005). Other fields are large-scale precipitation

(Pr) (Diro et al. 2012; Greene et al. 2012) and large-scale

temperature (T2m) (Ambrosino et al. 2011; Greene

et al. 2012). We also included horizontal components of

wind (V10m and U10m) and specific humidity

(shum10m) at 10-m level.

According to Kalnay et al. (1996) and Kistler et al.

(2001), the reliability of the output variables from the

reanalysis can be classified in categories A to D, de-

pending on the relative influence of the observational

data input and the model forecast on the variable during

data assimilation. With the exception of SLP, which

is classified as a class A variable, the rest of the se-

lected variables (i.e., gpm85, V10m/U10m, T2m, and

shum10m) are considered as class B variables and Pr as a

class C variable. However, because of the scarcity of

data in the tropics (where this study is undertaken) the

relative influence of model forecast during data assimi-

lation in all variables is considered to be large as com-

pared to that of observational data input. For this

reason, all variables were given equal weight in the

predictor selection.

Spatial correlation analysis was performed between

several predictors derived from the MERRA dataset

and the predictand (station observations) to identify

predictors with strong links to the observed pre-

cipitation. Monthly large-scale variables (SLP, Pr,

gpm85, V10m/U10m, T2m, and shum10m) were tested

for their significance in describing their relationship with

the local monthly precipitation values in Tanzania. This

was done by considering different domains, rainy sea-

sons, and station locations. Pr and shum10m stand out as

showing significant links with the stations’ observed

rainfall. Since both parameters represent moisture

sources, we decided to use precipitation fields with the

advantages that 1) they represent the synoptic-scale

processes in the atmosphere including changes in air

humidity and movements of air (Linderson et al. 2004)

and 2) they carry climate change signals due to anthro-

pogenic activities (Benestad et al. 2008; Chen et al. 2006;

Wilby et al. 1998) and they represent other processes not

TABLE 1. Set of GCMs used in amultimodel ensemble projection for rainfall over Tanzania. (Expansions of acronyms are available online

at http://www.ametsoc.org/PubsAcronymList.)

Model nx ny Institute Model components Vertical layers (top)

GISS-E2-H 144 90 NASA Goddard Institute for Space Studies

(Schmidt et al. 2014)

Atmosphere 1 ocean 40 (0.1 hPa)

HadGEM2-AO 192 145 National Institute of Meteorological

Research/Korea Meteorological Adminis-

tration (Baek et al. 2013)

Atmosphere1 sea ice1 ocean1
land 1 atmosphere with

increased resolution at the

equator

38 (38 km)

CSIRO Mk3.6.0 192 96 Commonwealth Scientific and Industrial

Research Organisation in collaboration

with the Queensland Climate Change

Centre of Excellence (Rotstayn et al. 2012)

Atmosphere 1 ocean 18

NorESM1-M 144 96 Norwegian Climate Centre (Bentsen et al.

2013)

Atmosphere1 ocean1 sea ice1
land

26 (2.917 hPa)

MPI-ESM-LR 192 96 Max Planck Institute for Meteorology (MPI-

M) (Giorgetta et al. 2013)

Atmosphere1 ocean1 sea ice1
land1marine biogeochemical

47 (0.01 hPa)

CCSM4 288 192 National Center for Atmospheric Research

(Meehl et al. 2012; Subramanian et al.

2011)

Atmosphere1 ocean1 sea ice1
land

26

BCC_CSM1.1(m) 320 160 Beijing Climate Center, China Meteorologi-

cal Administration (Xin et al. 2013)

Atmosphere1 ocean1 sea ice1
land

26 (2.914 hPa)

MIROC5 256 128 Atmosphere and Ocean Research Institute

(The University of Tokyo), National

Institute for Environmental Studies, and

Japan Agency for Marine-Earth Science

and Technology (Watanabe et al. 2010)

Atmosphere1 ocean1 sea ice1
land 1 aerosols

40 (3 hPa)
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explained by the atmospheric circulation. Finally all

downscaling models were developed using the same

predictor (Pr) regardless of the season, type of statistics,

and location of the station.

c. Method

The ESD models used in this study are built in the

following steps: First, the long-term mean for each

dataset [i.e., MERRA (1979–2012) and GCMs (2006–

2100)] is subtracted from that data on each grid point,

and the two datasets are then combined along the time

axis (concatenated) to form a single dataset covering the

period 1979–2100 (see, e.g., Barnett 1999; Benestad

2001a). A bilinear spatial interpolation is then used to

convert the GCM spatial grid to be in the same grid as

that of MERRA. Second, a standard empirical orthog-

onal function (EOF) analysis (Lorenz 1956) is applied to

the anomalies of the combined dataset with the common

grid (which is now 0.58 3 0.678). The eigenvectors

(EOFs) produced from the EOF analysis represent

patterns of variability that MERRA and GCMs data

share in common. The EOF analysis applied to the

combined dataset is referred to as common EOF anal-

ysis (Barnett 1999; Benestad 2001a) and its use ensures

that the same large-scale spatial climatic patterns that

are associated with the observed local climate anomalies

are used to infer local climate changes related to the

changes in the regional climate (Benestad 2002). Third,

using a stepwise screening process based on the Akaike

information criterion (AIC) (Akaike 1974), a multiple

linear regression analyses between the predictand (i.e.,

observed precipitation) and the principal components

(PCs) of the 20 leading EOFs of the combined dataset

(MERRA1GCMs) is performed to decide the number

of PCs to be included as predictors in the final models.

During stepwise screening, a model that minimizes loss

of information in simulating the current climate (i.e.,

with minimum AIC value) is retained for downscaling

process. A leave-one-out cross-validation was then

performed to assess the prediction skill of the models.

This assessment was repeated for a test case where the

station data had been replaced by random numbers for

which there should be no skill. This assessment sug-

gested that the models were not overfit for a number of

stations and that the higher number of EOFs contained

details related to some of the stations (see Fig. 2). The

leading 20 EOFs are used because it allows more re-

gional details in predictor fields to be used in the

downscaling models especially for the MAM and

DJFMA seasons that do not show a pronounced link

with large-scale circulations. Before the model cali-

bration, the best-fit linear trend is subtracted from each

grid point in the observed predictor values (MERRA)

and from the predictand (station observations), as the

presence of a linear trend may introduce systematic

biases to the model calibration (Benestad 2001b).

However, the trends are included when the models

make predictions. The downscaling models are cali-

brated with the part of the combined PCs that repre-

sents the actual observations (i.e., MERRA), and for

future projections the downscaling is generated using

part of the combined PCs that represents the GCMs

simulations. More details of common EOF analysis and

downscaling procedures can be found in Benestad

(2007, 2001a, 2002).

d. ESD model implementation

Prior to statistical model development and hence

downscaling, small-scale variability in the large-scale

precipitation field was removed. A low-pass filter (box-

car smoother) was applied to the monthly large-scale

precipitation field (reanalysis and GCMs). The width of

the boxcar was 5 points (grid boxes) along the x and y

axes and 3/5 points (months) along the time axis for the

bimodal/unimodal climate regimes, respectively. The

motive behind spatial smoothing is to reduce noise and

capture the large-scale features. Temporal smoothing on

the other side removes the short-term fluctuations hence

emphasizes the long time fluctuations.

Predictors for model calibration are PCs of the 20

leadingEOFs that represent the actual observation part of

the combined dataset (i.e., MERRA). These 20 leading

PCs undergo stepwise screening process in a regression

method to select potential predictors that will be included

in the final downscaling model. For future projections,

predictors are PCs of the EOFs that were retained from

the stepwise screening process but that represent the

GCM simulations part of the combined dataset. Pre-

dictands are parameters that were calculated from the

daily rainfall but aggregated in to seasonal basis for an

individual local station and for each rainy season (i.e.,

MAM, OND, and DJFMA). The examined parameters

are as follows: 1) frequency of wet-day occurrence ( fw),

henceforth wet-day frequency [this parameter explains

how frequently it rains in a season; it is calculated as the

fraction of number of wet days (nw) to the total number of

days (na) in a season and it is measured in fraction (of

counts)]; 2) seasonal total rainfall (pt), henceforth total

rainfall, the sum of rainfall amounts for all wet days in a

season (measured in mm); and 3) wet-day mean (mw),

which is calculated as the total rainfall (pt) divided by

total number of wet days (nw) in a season; the wet-day

mean is equivalent to daily rainfall intensity (measured in

mmday21). Wet days are described as number of data

points with rainfall $ 1mmday21 while all days include

days with valid recordings (i.e., rainfall $ 0).
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Changes in these parameters were calculated by

comparing future 30-yr climate periods (near term 5
2010–39; midcentury 5 2040–69; and end of century 5
2070–99) to a baseline climate period (1979–2012), both

extracted from the downscaled scenario time series.

Each downscaled value was obtained from individual

run using a GCM that is either forced with RCP4.5 or

RCP8.5. The outputs from each run were combined

together (tabulated) and further statistical analysis (e.g.,

mean, median, percentiles) was performed. The down-

scaling analysis and graphics processing are performed

in the R environment (http://www.R-project.org/) by

using the empirical statistical downscaling packages

clim.pact (Benestad 2004) and ggplot2 (Wickham 2009).

These packages are open source and free.

3. Results

Since rainfall regimes across Tanzania vary signifi-

cantly in space and time and since projections also vary

widely between seasons and regions, results are pre-

sented for each season but for both emission scenarios

combined for ease of discussion. Throughout the dis-

cussion the ESD models will be referred to simply as

models and global climate models will be referred to

as GCMs.

a. ESD models skill score using reanalysis data

The skill of themodels discussed here is the coefficient

of determination (abbreviated R2). This tells how much

of the variance of the dependent variable (predictand) is

explained by the regression line (expressed as percent-

age). The skill of themodel may be influenced by several

factors such as a weak relationship between predictor(s)

and predictand, poor quality of the data (station obser-

vation and reanalysis), the design of the empirical model

used, the size of the predictor domain, and many others.

In this study, as in previous statistical downscaling

studies (Benestad 2002), the predictor domain size was

found to influence the skill of the model. When a larger

FIG. 2. Prediction skill (correlation) of the downscaling models as a function of EOFs used.

Results are for theONDseason. The prediction skill is established by performing a correlation test

between independent (observed values not used in the model calibration) and predicted values.

Each station has 12 models developed from 6 GCMs forced by either RCP4.5 or RCP8.5. The

color code numbers 1–6 aremodels developed from theGCMsBCC_CSM1.1, CCSM4,GISS-E2-

H, HadGEM2-AO, MPI-ESM-LR, and NorESM1-M that are forced with RCP4.5 and numbers

7–12 are models developed from the same GCMs but forced with RCP8.5. The solid gray circles

indicate the prediction skills for the downscaling models developed from the above GCMs but

when station data have been replaced by random numbers for which there should be no skill.
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domain was used, the model skill was generally found to

be lower than when a small domain was used. Only in a

few cases the opposite was detected, for some stations

and particular seasons. According to Benestad (2002) it

is tricky to find the optimum downscaling domain, as the

domain needs not to be too large or too small. As op-

posed to our finding, the study of Yang et al. (2013)

found that different predictor domains had less influ-

ence on the projected monthly rainfall over Taiwan. For

our downscaling we have chosen the domain 68N–188S,
158–608E.
The choice of number of the leading EOFs used in the

regression analysis also showed a significant impact on

the final downscaling models’ skill. When eight leading

EOFs were passed through the stepwise-screening pro-

cess in the regression analysis, the models’ skill was

generally weaker than when 15 or 20 leading EOFs were

used. This was found for all rainfall parameters and for

all seasons. It is most noticeable in the DJFMA season

and for mw values (Fig. 3). In fact, for one station

(Dodoma) there is no model selected for mw when the

leading eight EOFs are used, implying that there was no

correlation between these eight spatial fields and the

station precipitation. This could be because local rather

than large-scale processes, not captured by the first eight

leading EOFs, are dominating in this case. Based on the

above considerations and the cross-validated test results

we decided to use 20 leading EOFs as an initial pool to

be used by a stepwise screening.

b. The overall skill score of the models under the
common EOF strategy

The algorithms in our EOF analyses are constrained

to patterns (EOFs) that are common in both sets of data

and their corresponding PCs that are used for model

calibration. The skills of the models differ with respect

to the particular GCM used (Fig. 4) as each GCM uses

specific assumptions and formulations of processes in

addition to having different resolution. As a result,

GCMs may yield different responses to the same

FIG. 3. Stacked bar plots for different stations and seasons showing skill scores (R2) of the

downscaled models based onMERRAdata. Bars in pink were obtained when 20 leading EOFs

are used in regression analysis and those in light blue were obtained when 8 leading EOFs were

used. In each station category, fw 5 wet-day frequency, pt 5 total precipitation, and mw 5 wet-

day mean.

1 MAY 2016 MTONGOR I ET AL . 3237



external forcings (anthropogenic and natural) and also

represent internal climate variability differently. Gen-

erally, the highest skill score (between 70% and 95%) is

shown for pt and fw for OND; exceptions are Dar es

Salaam (Dsalaam in Fig. 4) andMwanza (pt) whose skill

ranges between 50% and 75%. Skill of 50% and up to

90% is depicted for the MAM and DJFMA seasons for

pt and fw. In particular Same and Kigoma have lower

skill for pt, and Mwanza has lower skill for fw. Wet-day

mean (mw) showed a wide range of skills from very low

(25%) to very high (;80%) for all seasons for specific

locations.

The high skill obtained in the OND season indicates

that the interannual variance for pt and fw in the cali-

bration period (1979–2012) is well explained by the fit-

tedmodels (see, e.g., Fig. 5). Themodel (fit in the figure)

FIG. 4. Plots showing skill scores (R2) of the downscaling models (calibrated) based on common EOFs ofMERRA1GCMs simulations

for the period 1979–2012. For each station colors indicate individual model skill. The skills are for three rainfall seasons, (left) MAM,

(middle) OND, and (right) DJFMA, and they are presented for three rainfall parameters: (top) total rainfall, (middle) wet-daymean, and

(bottom)wet-day frequency. ForMAMandOND, colors numbered 1–6 aremodel skills derived from the commonEOFs ofMERRAand

the GCMs BCC_CSM1.1, CCSM4, GISS-E2-H, HadGEM2-AO, MPI-ESM-LR, and NorESM1-M that were forced with RCP4.5,

and numbers 7–12 are model skills obtained from common EOFs of MERRA and same GCMs but forced with RCP8.5. For DJFMA

season colors numbered 1–8 are model skills derived from the common EOFs of MERRA and the GCMs BCC_CSM1.1,CCSM4, GISS-

E2-H,HadGEM2-AO,MPI-ESM-LR, NorESM1-M, CSIROMk3.6.0, andMIROC5 that were forcedwithRCP4.5 and numbers 9–16 are

model skills obtained from common EOFs of MERRA and same GCMs but forced with RCP8.5.
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has well reproduced the observed total rainfall (R2 5
85%) and the wet-day frequency (R2 5 94%). Year-to-

year variability and the maximum values recorded are

well represented in the model. Analysis of residuals of

regression for the period 1979–2012 (not shown) that

were computed using least squares regression analysis

depicted a slight linear trend (although not statistically

significant) for OND. This was found for all stations and

all GCMs used formw, but only for three stations (Arusha,

Bukoba, and Mwanza) and for some GCMs for fw. In

accordance with Hanssen-Bauer et al. (2003), such a

trend may be due to the fact that models do not satis-

factorily reproduce the observed fluctuations in these

rainfall parameters.

In some stations, seasons and rainfall parameters

models have shown to have very low prediction skills

(see, e.g., Fig. 2), but still this cannot be associated with

the model overfit; rather, other factors such as inability

of MERRA and GCMs to simulate large-scale features

are responsible. In this regard, we can generally say that

the goodness of the model (skill) and its prediction skill

as shown in Fig. 2 is specific to location, season, and to

some extent parameter. However, even with the high

skill of the downscaling models identified here, we are

left with uncertainty in the downscaling of the future due

to uncertainties in the GCM calculated precipitation.

c. Downscaled scenarios

Results presented here are downscaled multimodel

ensemble scenarios for specific locations and seasons.

The multimodel mean and the spread in projections

from individual models are presented. The reason for

this approach is that large wetting or dryingmay occur to

some locations even if themultimodel mean has lost that

signal. Moreover, the multimodel mean alone may be

misleading especially when used for decision making

(e.g., for adaptation purposes where the range of out-

comes needs to be taken into account). The multimodel

ensemble mean projection for individual stations and

seasons in this study is still considered as the most likely

outcome. Results are given in Figs. 6–8 for the three

rainfall parameters for individual stations, seasons,

FIG. 5. Time series plot for Arusha station during OND showing simulated (dashed blue) vs

observed (black) values for (top) total rainfall, (middle) wet-day mean, and (bottom) wet-day

frequency. The red line represents the trend of observed values.
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and periods, including the variability between models

(whisker plots). Their corresponding magnitudes of

change are expressed in percentages. Figure 9 gives a

picture of the spatial distribution of the multimodel

mean projections in all three parameters across the

country.

1) PROJECTION FOR 2010–39

The spread in pt projection is depicted for all seasons

and for all stations (Fig. 6) as depicted in the box-and-

whisker plots. The largest spread in projection is de-

picted in OND (notice the difference in scales between

FIG. 6. Box-and-whisker plots showing percentage change of 30-yr seasonal mean of themultimodel ensemble downscaled scenarios for

(left) MAM, (middle) OND, and (right) DJFMA for the period 2010–39. Changes are presented for three rainfall parameters: (top) total

rainfall, (middle) wet-day mean, and (bottom) wet-day frequency. The boxes represent the interquartile range with the upper and lower

hinges of the box corresponding to the first and third quartiles (the 25th and 75th percentiles), the horizontal line in the middle gives the

median, and the red squares are the multimodel mean projections. The whiskers extend from the hinge to the highest value that is within

1.5 times the interquartile range of the hinge (box). Data beyond the end of thewhiskers are outliers and are plotted as points. Each station

presented inMAMandONDhas 12models developed from 6GCMs (Table 1 excludingMIROC5 andCSIROMk3.6.0) and 2RCPs (i.e.,

RCP4.5 and RCP8.5), while each station presented in DJFMA season consist of 16 models obtained from the combination of 8 GCMs

(Table 1) and 2 RCPs. Note the difference in scales between the seasons in the figure.
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the seasons in the figure) where individualmodels project

more than 100% increase, namely Dar es Salam, Tanga,

and Morogoro. Dar es Salaam is the only location with

wetter condition as depicted by all models. This is ac-

companied by an increase in fw. The multimodel mean

projection showswetter conditions (pt) forDar es Salaam,

Same, Morogoro, Arusha, Musoma, and Bukoba during

OND and they are accompanied by an increase in fw only

(Musoma andArusha),mw only (Bukoba), or both (Same,

Morogoro, and Dar es Salaam)

Ensemble projections of pt are not uniform for MAM

even for stations situated in the same climatic zone

(e.g., the northeastern highland, represented by Arusha

and Same). Almost all models project a decreasing pt for

Arusha, with a robust signal of drier conditions which is

backed up by the projected decrease inmw. Amajority of

models indicate increasing rainfall for Same, Dar es

Salaam, and Morogoro.

In the one rainy season (DJFMA) region there are

many stations that are projected to get lower total pre-

cipitation in the ensemble mean. For most stations the

wet-day mean increases, resulting in lower wet-day fre-

quency at all stations. About 50 percentile of models

indicate increasing rainfall (pt) for Mtwara and Tabora.

FIG. 7. As in Fig. 6, but for 2040–69.
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2) PROJECTION FOR 2040–69

The change for this period (Fig. 7) also shows a large

scatter in projected pt, again in particular during OND.

A majority of models point to wetter conditions as

does the multimodel mean projection for all stations,

both in terms of total precipitation and frequency, but

still with an increase in wet-day mean (except for

Arusha). In extreme cases, individual models are

suggesting up to more than 100% increase of total

rainfall for, for example, Dar es Salaam andMorogoro,

for the near-term projection.

In the MAM projections there is less, but still sub-

stantial, spread in pt . A majority of models point toward

drier conditions for most stations (Arusha, Bukoba,

Mwanza,Musoma, and Tanga), accompanied by decrease

of both fw and mw. Otherwise increase in pt is depicted for

Dar es Salaam, Morogoro, and Same, and it is accompa-

nied by an increase in fw. As for near-term projections, a

robust signal toward lower total precipitation (pt) is in-

dicated for Arusha, along with decreasing mw.

A majority of models show drier conditions (pt) for

DJFMA for most stations, but the signal of change is weak

as compared to other seasons (between 0%and 10%). This

FIG. 8. As in Fig. 6, but for 2070–99.
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change is directly supported by the decrease in fw. How-

ever, about half of themodels projectwetter (pt) conditions

for Tabora and Mtwara accompanied by increasing mw.

3) PROJECTION FOR 2070–99

The change for this period is shown in (Fig. 8). Again,

the largest changes are found during OND. In this pe-

riod there is a clear and robust signal toward wetter

conditions (pt) for most stations, except Morogoro and

Tanga where about 50 percentile is below zero. In the

ensemble mean, the increase in the total precipitation in

this period is due to an increase in both fw and mw. Al-

though there is large scatter in the model projections for

MAM,Dar es Salaam andMorogoro and to some extent

Same show a clear signal of increasing total rainfall,

which is backed up by the increase of fw (Dar es Salaam

FIG. 9. Multimodel mean for downscaled local rainfall change derived from the CMIP5 GCMs experiments under RCP4.5 and RCP8.5

(combined). Changes are expressed as changes relative to the control period 1979–2012. All models are given equal weight in the cal-

culation of the multimodel mean. Stations with double dots represent areas spanning two rainy seasons—(left) MAM and (right) OND—

and stations with a single dot indicate areas with one long rainy season (DJFMA). Note the difference in scale under each map.
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and Morogoro) and mw (Same) . While the projection of

pt over two stations (Mwanza and Bukoba) in the lake

zone seems to be uncertain (i.e., boxes cross the zero

line) the other station (Musoma) shows a clear signal

toward a dry condition, mostly due to lower rainfall

intensity (mw).

For DJFMA, a clear signal of decreasing pt (repre-

sented by all models) is depicted at Songea, a station in

the southern part of the country. This is due to lower

frequency ( fw) and intensity (mw). A majority of models

show drier conditions (pt) for almost all stations, except

the western part of the country (Kigoma and Tabora)

andMtwara (south) where the model projections spread

through the zero line. However, the signal of change in

the multimodel-mean projection is weak as compared to

other seasons (between 0% and 20%). The projected

dry condition (pt) is attributed to a decrease in fw in all

stations and accompanied by either increase or decrease

in mw at individual stations.

For all three periods, a significance test for projected

changes in rainfall parameters was performed. It showed

that some downscaling models provided a significant

change (at 5% significant level; t test) especially for the

periods 2040–69 and 2070–99 while some did not show

any significance. It varied between the GCMs used,

RCPs, stations, and downscaled parameters. Therefore,

the multimodel projection presented here represents a

combination of changes that are statistically significant

and those that are not.

4. Discussion

We have found spatial variability in model skill for all

seasons and rainfall parameters investigated. The vari-

ability is likely due to the fact that different areas have

different local factors that modulate the rainfall pat-

terns. The skill scores are in general quite high, but weak

skill scores found in some cases may suggest that local

processes play an important role. Ideally we would ex-

pect the skill of the models in a particular station to be

equal for all GCMs used, since models are developed by

using observations (reanalysis vs station observations),

which are the same for all common EOF setups. How-

ever, the difference and spread depicted is probably a

reason that the AIC selected variable numbers of pre-

dictors and different common EOFs for individual

models whose corresponding PCs represent different

fluctuations. For demonstration, Table 2 shows the co-

efficients of EOFs selected for two pairs of neighboring

stations situated in different homogeneous climatologi-

cal regions, the northeastern highlands (Arusha and

Same) and northern coast (Tanga and Dar es Salaam).

We show results for these stations as they showed a

remarkable difference in model skill scores and pro-

jections for MAM despite being in the same homoge-

neous climatological zone. From Table 2 we can see

that a few EOFs are selected by AIC that were common

for neighboring stations, but the rest are independent

(i.e., they vary between the stations). Even with similar

EOFs selected, the coefficient values that describe the

contribution of each EOF in explaining variability in the

local precipitation are also different in magnitude and

sign. Another feature depicted in the table is that some

models are developed with a large number EOFs and

some with a minimal number.

The number and type of EOFs picked by AIC in the

regression analysis for a particular station may partly

explain the differences in the depicted variable models

skill scores, and the weights (regression models co-

efficients) may explain the remaining part of the vari-

able skill together with the spread in GCM projections.

The analysis of the time evolution (PCs) of the spatial

modes (EOFs) (Fig. 10) used in the regression demon-

strated that 1) the PCs of individual EOFs differs de-

pending on the GCM used (see Fig. 10, first and third

panels in both columns) and 2) models consist of PCs

that do not share a common trend (see Fig. 10, second

and fourth panels in both columns). The PC part of the

GCMs’ projections underestimates the amplitude and

the periodicity of the time evolution of these spatial

modes (especially for lower-order EOFs) as compared

to the observed period (Fig. 10, first and third panels in

the left column). However, the PCs for higher-order

EOF (Fig. 10, first and third panels in the right column)

are more like noisy fields and their evolution indicates

comparable amplitude and the periodicity between the

observed (reanalysis) and the GCM part. These no-

ticeable behaviors in the PCs suggest that the spread in

projections based on individual GCMs will even change

between various projection periods.

We can therefore conclude that the spread and dif-

ferences in projections can be explained by three factors

that arose from the downscaling processes: 1) the num-

ber and type of EOFs picked by AIC in the regression

analysis, 2) the weights of the regression coefficients,

and 3) the trends in the individual PCs. In addition to

these factors, the climate system noise and the un-

certainty in emission scenarios are expected to cascade

to the regional climate projection even with perfect

GCMs used for downscaling (Mitchell andHulme 1999).

However, there is no clear evidence that the differences/

spread in skill score can explain the differences/spread

in projections. As an example, the OND season, which

showed a remarkable spread in projections in all three

periods, for pt in particular, has very small differences in

skill scores, but the opposite is true for DJFMA.
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Further analysis of GCMs’ area mean precipitation

(Fig. 11 and Table 3) shows that there is no clear evi-

dence that difference in GCMs simulations of rainfall

over the downscaling domain can cause a noticeable

spread in the rainfall projection, a spread that is espe-

cially large for OND for some stations. Table 3 can also

be used to explain why there is no remarkable difference

in projected changes between the three periods ana-

lyzed; the annual mean rainfall simulated by individual

GCM over the downscaling domain is nearly the same

for different periods of projection.

Regional climates are very complex due to processes

that vary significantly with location and therefore re-

spond differently to changes in global- to regional-scale

influences (Christensen et al. 2013). Small-scale physical

features within the country are expected to enforce a

complex pattern of projected rainfall in different cli-

matological zones even without the interaction with

large-scale phenomena.Hilly areas with steep slopes, for

example, enhance observed mean rainfall, especially

during wet seasons (Oettli and Camberlin 2005). In

Lake Victoria basin, on the other hand, the climate

(rain) is induced by the lake/land breeze and the sur-

rounding topography, which results in uneven distribu-

tion of rain over this area, with the western part of the

basin receiving more rainfall than the eastern part

(Anyah et al. 2006). But with the increased influx from

the large-scale flow, a different story unfolds, especially

for the eastern part. This phenomenon is consistent

with the results from the current study during the pe-

riod 2070–99 (MAM and OND seasons). There is a

remarkable difference between projection of mw for

Musoma and Mwanza (stations situated to the east and

south of the lake respectively) as compared to a coun-

terpart station in the western part of the Lake Victoria

basin (Bukoba).

Anomalous low-level westerly flow (OND) and east-

erly flow (MAM) are projected at the end of twenty-first

century (2041–60) (Cook and Vizy 2013). This suggests

that even with strong influx of moisture from the Indian

Ocean to the eastern part of the country (MAM), more

moisture is expected to be transported to the Congo

basin and leave the country dry. Moreover, more

moisture influx from the Congo basin is expected during

OND, when enhanced moisture convergence is ex-

pected over the country and hence more rain. Thus,

changes in wind flows may partly explain projected

wetter conditions for the OND season and decreased

total rainfall for a majority of stations receiving rains

during MAM as depicted by the majority of models in

the current study, and in the period 2040–69 in

particular.

A positive phase of the Indian Ocean zonal mode

(IOZM) that is associated with excessive OND rains

over East Africa is projected by the CMIP5 GCMs

(Shongwe et al. 2011). This condition is consistent with

TABLE 2. Regression coefficient values for the EOFs selected in in the downscaling models using stepwise screening process. The

presented values are for total precipitation in MAM and for models forced with RCP4.5. Empty boxes indicate that the EOF was not

selected in that model; Dar stands for Dar es Salaam.

Regression model coefficients

CCSM4 NorESM1-M

EOFs Tanga Dar Same Arusha Tanga Dar Same Arusha

EOF1 6.10 3.73 8.73 9.33

EOF2 2.66 4.62 10.63

EOF3 23.25 26.33

EOF4 210.32 23.41 24.56 212.77 23.61 25.88

EOF5 6.28 5.85 26.33

EOF6 17.83 12.69 7.85 7.58 4.72

EOF7 8.96 11.81 9.61 16.54 28.07 29.94

EOF8 17.51 5.68 11.24

EOF9 29.81 14.31 8.46 215.19 6.25

EOF10 24.70 25.93 23.35

EOF11 43.21 17.79 6.31

EOF12 15.33 10.85 28.08 38.76 5.16 12.18

EOF13 27.58 8.84 25.45 29.00

EOF14 26.23 22.21 12.06 7.73

EOF15 213.71 19.67 7.98 218.91 214.15

EOF16 8.53 13.51 218.68

EOF17 229.31 232.90 220.25

EOF18 34.77 29.50 11.93 12.80 217.86 29.77 27.29 5.95

EOF19 6.71 210.45 210.52 28.30 14.42 20.44

EOF20 219.59 210.48 24.45 214.71 20.01
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the projected OND wetter conditions identified in this

study. Global warming, on the other hand, has been

directly linked to recent changes in mean rainfall

(Giorgi et al. 2011) in relation to either change in fw or

mw (intensity) (Benestad 2013). Under global warming,

the increase in precipitation intensity is driven by the

greater atmospheric moisture holding capacity and the

increase (decrease) in mean precipitation is driven

by a correspondingly higher (lower) increase in sur-

face evaporation (Giorgi et al. 2011). The response of

these rainfall parameters to the global warming explains

the thermodynamic effects of the Earth–atmosphere

FIG. 10. Temporal evolution (PCs) and their corresponding trends for the leading EOFs used in the downscaling analysis, showing the

PCs for the (left) low-order and (right) higher-order EOFs. The PCs are smoothed by using 10-yr running averages. The PCs are forMAM

and for RCP4.5. The vertical dotted red line separates observation from the projection parts of the data. The downscaling domain used is

68N–188S, 158–608E.
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FIG. 11. OND seasonal variation of area mean rainfall (mmday21) as simulated by different GCMs. Themean is calculated as the average

of precipitation values in the downscaling domain (68N–188S, 158–608E).
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interactions whose impact is considered to be global and

to a lesser extent regional.

However, we should keep in mind that not all climatic

zones will experience similar changes and thus the cur-

rent study yields large spatial variability in the projected

changes in the rainfall parameters. Thus there is no

uniform projection for areas characterized by complex

topographical features such as that of Tanzania (see also

Taye et al. 2011).

This study compliments previous studies in climate

analysis and projection in the region of studymaking use

of different approaches, such as different downscaling

methods (statistical or dynamical), predictors, observa-

tions (parameters and observation periods), time scale

in analysis (e.g., seasonal or annual), and driving GCMs.

For example, Akurut et al. (2014) found an increasing

annual rainfall over the Lake Victoria basin for middle

and end of this century, and these changes are attributed

to an increase in mw and not fw. This is not the case as

depicted in this study for different areas in the basin on a

seasonal basis. In Musoma as an example, increase in pt

for OND is attributed to increase in fw and notmw. In the

same area, rainfall is projected to increase by up to 30%

for some areas in OND whereas it is expected to de-

crease by up to 5% inMAM. The study of Shongwe et al.

(2011) over East Africa found projected wetter condi-

tions with more intense wet seasons (OND and MAM)

and less severe droughts for the period of 2050–2200.

Similar results are depicted in the current study;

projected wetter conditions (pt) are predicted due to

both an increase in precipitation intensity (mw) and an

increased frequency of rainy days ( fw) at the end of the

century (2070–99), for all stations receiving OND sea-

sonal rains. For a station-specific comparison, the results

of the current work are in agreement with that of Tumbo

et al. (2010) for the Same station during MAM and

OND seasons and the periods 2040–69 and 2070–99.

5. Summary and conclusions

We have investigated possible changes in the sea-

sonal pt, mw, and fw using regression-based ESD. The

analysis is performed for the three periods 2010–39,

2040–69, and 2070–99. Apart from the inherited un-

certainty from the GCMs used in the downscaling

processes, the design of the empirical models used in

this study can be used to explain the differences/spread

in models skills and projections in rainfall parameters.

With the sample of GCMs used in this study, our anal-

ysis of the downscaled climate scenarios suggests that

precipitation changes will vary across Tanzania. Spatial

differences in projected climate will be experienced as it

is portrayed by the observed climates (Camberlin and

Philippon 2002).

Surface inhomogeneity in EastAfrica and Tanzania in

particular makes the spatial structures of projected

rainfall even more complex, especially in MAM. There

is no uniform sign of change depicted by multimodel

projection across different areas; therefore, drawing a

conclusion of a uniform change for a region with het-

erogeneous surfaces is not possible. This demands the

provision of location-specific climate analysis. In the

near-term projection, Dar es Salaam has shown a unique

wetter condition (pt) for OND as depicted by all models.

In end-of-century Morogoro (MAM), Bukoba and

Same (OND), and Songea (DJFMA) also indicated a

robust signal toward wetter (MAM and OND) and drier

(DJFMA) conditions. In the remaining cases the likely

future condition is determined by the majority of models

pointing toward either wetter or drier conditions,

although a few models point toward the opposite condi-

tion or do not show changes at all. The spread in pro-

jections was found to be larger in 2010–39 (e.g., in

DJFMA and OND) and reduced slightly in 2040–69 and

2070–99, and it was nearly constant for MAM. A large

spread in the period 2010–39 can be associated with the

internal fluctuations in the climate system, which are ex-

pected to be more pronounced for the near-term pro-

jections than the effects of external forcing such as

greenhouse gas increases (Collins et al. 2013).

In this study, there is no uniform conclusion re-

garding the magnitude of change in projected rainfall

TABLE 3. Annual area-mean rainfall simulated by different

GCMs. The mean is calculated as the average of precipitation

values in the downscaling domain (68N–188S, 158–608E) and is

presented for different periods of projections. Very small differ-

ence in simulated rainfall means between the periods can be

identified. Some differences are statistically significant (at 5%

significant level; t test) while some are not.

Area mean total rainfall (mmday21)

Model 2010–39 2040–69 2070–99

BCC_CSM1.1.rcp45 3.94 3.97 4.00

BCC_CSM1.1.rcp85 4.05 4.03 4.16

CCSM4.rcp45 4.73 4.75 4.85

CCSM4.rcp85 4.65 4.91 4.83

GISS-E2-H.rcp45 4.21 4.18 4.27

GISS-E2-H.rcp85 4.18 4.16 4.16

HadGEM2-AO.rcp45 3.86 3.84 3.97

HadGEM2-AO.rcp85 3.91 3.91 4.03

MPI-ESM-LR.rcp45 3.47 3.45 3.44

MPI-ESM-LR.rcp85 3.40 3.43 3.61

NorESM1-M.rcp45 4.57 4.46 4.44

NorESM1-M.rcp85 4.54 4.54 4.44

CSIRO Mk3.6.0.rcp45 3.38 3.31 3.33

CSIRO Mk3.6.0.rcp85 3.33 3.31 3.42

MIROC5.rcp45 4.08 4.01 4.02

MIROC5.rcp85 4.14 4.12 4.19
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parameters (see, e.g., Fig. 9). The projected increase in

total rainfall in OND, for example, is due to the in-

creasing frequency of wet days ( fw) (in most stations

and for all projection periods) and more intense pre-

cipitation events (mw) (for some stations). For DJFMA,

projected decreasing total precipitation is due to de-

creasing frequency of wet days (all stations and for all

projection periods) and less intense precipitation

events (only for some stations and for the periods 2040–

69 and 2070–99 in particular). Although the western

part of the country (Kigoma, Tabora, and Mbeya) is

projected to be drier (pt), the multimodel ensemble

indicates an increase in intense precipitation events.

ForMAM,with the exceptionofDar es Salaam,Morogoro,

and Bukoba, the increase (decrease) in total pre-

cipitation is accompanied by increasing (decreasing)

intense precipitation events (mw). In the exceptions

mentioned the increase (decrease) in total precipitation

is accompanied by increasing (decreasing) frequency of

wet days ( fw). Themagnitude of change also differs from

area to area. As an example, in the northeastern high-

lands Same shows an increase of about 50% of OND

precipitation toward the end of the century, while

Arusha shows only an increase of about 20%. Likewise,

Same has an increase of about 1% of MAM pre-

cipitation toward the end of the century, while Arusha

shows a decrease of about 15%.

Increased total rainfall ( pt) as a result of increased

frequency of wet days ( fw) alone can be important in

maintaining soil moisture and hence good conditions

for crops and pastures. From our results this condition

is expected to be featured for some areas getting

MAM rains (e.g., Dar es Salaam and Morogoro).

When increased pt is a result of increasing mw or both

mw and fw, growing conditions might be worsened due

to short episodes of heavy rainfalls and related floods.

Such extreme events are expected to cause a signifi-

cant challenge to the agriculture sector, the economy,

and the food security at the local level (United

Republic of Tanzania 2014) and to other sectors sen-

sitive to wet and dry extremes such as water resource

management and construction industries (e.g., roads,

dams for hydroelectric power). From our results this

condition is expected to be featured largely for areas

getting OND rains especially in the end-of-century

time frame.

Decreasing total rainfall (pt) as a result of decreasing

frequency of wet days ( fw), either alone or in combi-

nationwith thewet-daymean (mw), implies a higher risk of

long dry spells or drought. From our results such con-

ditions are expected to be featured in the areas spanning

one rainy season (DJFMA) and in some areas getting

MAM rains (e.g., Bukoba and Tanga for all projection

periods and Musoma and Mwanza in the near term and

at midcentury). However, a few areas getting DJFMA

season rains (e.g., Kigoma, Tabora, and Mbeya) may

experience some episodes of heavy and damaging rains

and as a result of projected increasing heavy rainfall

events (mw) during this season. The related impacts may

include damage to crops, which in turn will affect the

growth and harvests. This consequence may cause

famine outbreaks and hence threaten the livelihoods

of many.
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