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Abstract

We consider the pricing problem facing a seller of a contingent claim.

We assume that this seller has some general level of partial information,

and that he is not allowed to sell short in certain assets. This pricing prob-

lem, which is our primal problem, is a constrained stochastic optimization

problem. We derive a dual to this problem by using the conjugate du-

ality theory introduced by Rockafellar. Furthermore, we give conditions

for strong duality to hold. This gives a characterization of the price of

the claim involving martingale- and super-martingale conditions on the

optional projection of the price processes.
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1 Introduction

This paper analyzes an optimization problem from mathematical finance using

conjugate duality. We consider the pricing problem of a seller of a contingent

claim B in a discrete time, arbitrary scenario space setting. The seller has a

general level of partial information, and is subject to short selling constraints.

The seller’s (stochastic) optimization problem is to find the minimum price of

the claim such that she, by investing in a self-financing portfolio, has no risk of

losing money at the terminal time T . The price processes are only assumed to

be non-negative, stochastic processes, so the framework is model independent

(in this sense).

The main contribution of the paper is a characterization of the dual of the

seller’s price of the claim B as a Q-expectation of the claim, where Q is a

mixed martingale- and super-martingale measure with respect to the conditional

expectation of the price process, see Theorem 3.1. To the best of our knowledge,

this is a new result. The mix of martingale- and super-martingale measure is

due to the presence of short selling constraints on some of the assets, while the

conditional expectation is due to the seller’s partial information. The optimal

value of this dual problem is an upper bound of the seller’s price. To prove

this characterization, we use a conjugate duality technique. This technique

is different from what is common in the mathematical finance literature, and

results in (fairly) brief proofs. Moreover, it does not rely on the reduction to

a one-period model. This feature makes it possible to solve the optimization

problem even though it contains partial information.

Conjugate duality (also called convex duality), which is used to analyze the

seller’s problem, is a general framework for studying and solving optimization

problems. This framework was introduced by Rockafellar [28], see Appendix A

for a brief summary. For a further treatment of conjugate duality and its role

in stochastic optimization, see Shapiro et al. [33].

Some of the main features of this paper are:
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• We have a completely general filtration representing partial information.

This is in contrast to for instance Kabanov and Stricker [9], where delayed

information is used.

• The use of conjugate duality is a general approach and it provides an

efficient way of deriving the dual of the seller’s pricing problem, without

reduction to a one-period model.

• Since we use discrete time, general price processes are considered.

The use of conjugate duality in mathematical finance is a fairly recent de-

velopment. Over the last few years, Pennanen has done some pioneering work

in this area, see Pennanen [19], [20], [21] as well as Pennanen and Perkkiö [22].

King [13] and King and Korf [14] have also worked on the connection between

conjugate duality and mathematical finance. Duality theory in a broader sense

is at the core of mathematical financial theory. Various kinds of duality, such as

linear programming duality, Lagrange duality and the bipolar theorem, are used

in many areas of finance. For instance, Pinar [24], [25] applies Lagrange dual-

ity to derive dual representations for contingent claim pricing using a gain-loss

criterion. In the setting of the present paper, this Lagrange duality approach is

equivalent to our conjugate duality method. However, conjugate duality has the

advantage that it can be generalized to a continuous time setting as well. In par-

ticular, duality theory (typically, in infinite dimensions) is used in utility max-

imization, hedging, analyzing convex risk measures, consumption and invest-

ment problems and optimal stopping. Kramkov and Schachermayer [16], [17],

Karatzas and Shreve [12] and Pham [23] consider duality in utility maximization

problems. The books by Karatzas and Shreve [12] and Pham [23] also consider

duality in hedging. Pliska [26] uses linear programming duality in arbitrage-

related problems. Frittelli and Rozassa Gianin [7] apply conjugate duality to

convex risk measures. Also, Rogers considers many applications of duality in

mathematical finance, for instance in consumption, investment and hedging

problems, see Rogers [31] as well as Klein and Rogers [15]. Rogers also derives

3



Pricing contingent claims by convex duality

a pure dual method for solving optimal stopping problems, see Rogers [32].

For more on replication of claims under short selling constraints, see Cvitanic̀

and Karatzas [3], Föllmer and Kramkov [6], Jounini and Kallal [8], Karatzas and

Kou [11], Karatzas and Shreve [12] and Pulido [27].

Kabanov and Stricker [9] derive a version of the Dalang-Morton-Willinger

theorem under delayed information. They do this by generalizing a proof of

the no-arbitrage criteria from Kabanov et al. [10]. Their result is related to our

pricing result Theorem 4.3, in the sense that it involves martingale conditions on

the optional projection of the price processes. However, in contrast to Kabanov

and Stricker [9], we have completely general partial information (i.e., it does not

need to be delayed information). Moreover, we consider pricing of claims, not

arbitrage problems like in [9]. We also have short-selling constraints and our

methods, in particular the use of conjugate duality, are different than those in

[9]. Bouchard [2] and De Valliére et al. [4] also consider no arbitrage conditions

under partial information, but with transaction cost, and without short-selling

constraints like we do.

The rest of the paper is organized as follows: Section 2 introduces the finan-

cial market model and analyzes the seller’s optimization problem by deriving

a dual problem using conjugate duality. Section 3 consists of our main theo-

rem with proof, and gives an alternative characterization of the dual problem.

In Section 4 it is shown that there is no duality gap in the case without bor-

rowing or short-selling. By combining this with the previous results, we find a

characterization of the seller’s price involving martingale- and super-martingale

conditions. We also give a numerical example to illustrate the results. Finally,

Section 5 concludes, and poses some open questions for further research.
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2 Pricing with short selling constraints and par-

tial information

We model the financial market as follows. There is a given probability space

(Ω,F , P ) consisting of a scenario space Ω, a σ-algebra F on Ω and a probability

measure P on the measurable space (Ω,F). The financial market consists of

N + 1 assets: N risky assets (stocks) and one non-risky asset (a bond). The as-

sets each have a (not identically equal zero) stochastic price process Sn(t, ω), n =

0, 1, . . . , N , for ω ∈ Ω and t ∈ {0, 1, . . . , T} where T < ∞, and S0 denotes the

price process of the bond. We denote by S(t, ω) := (S0(t, ω), S1(t, ω), . . . , SN (t, ω)),

the vector in RN+1 consisting of the price processes of all the assets. We assume

that S0(t, ω) := 1 for all t ∈ {0, 1, . . . , T}, ω ∈ Ω, so the market is discounted.

Let (Ft)Tt=0 be a filtration corresponding to full information in the market. We

assume that the price process S is adapted to this filtration. For more on a

similar kind of framework, see Øksendal [18].

Associated with each seller in the market there is a filtration (Gt)t := (Gt)Tt=0,

where G0 = {∅,Ω} and GT = F . The filtration represents the development of

the information available to the seller. The assumptions on G0 and GT imply

that at time 0 the seller knows nothing, while at time T the true world scenario

is revealed. We assume that Gt ⊆ Ft for all t = 0, 1, . . . , T . This means that

the seller only has partial information, in contrast to Kabanov and Stricker [9],

where they use delayed information. By considering a general partial informa-

tion, we include for instance the possibility of unobserved/hidden processes for

the seller.

Let Hn(t, ω), n = 0, 1, · · · , N be the number of units of asset number n the

seller has at time t ∈ {0, 1, . . . , T−1} in scenario ω ∈ Ω. Then, the seller chooses

a trading strategy

H(t, ω) := (H0(t, ω), H1(t, ω), · · · , HN (t, ω))
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based on this information. Since the seller at each time chooses this trading

strategy based on her current information, H(t) is Gt-measurable for all t ∈

{0, 1, . . . , T − 1}. Hence, the trading strategy process (H(t))t∈{0,1,...,T−1} is

(Gt)t-adapted. Let the space of all such (Gt)t-adapted trading strategies H be

denoted by HG .

We consider the pricing problem of a seller of a non-negative F-measurable

contingent claim B (B is non-negative without loss of generality by translation).

Let I1 ⊆ {1, 2, . . . , N} be a subset of the risky assets, and let I2 = {1, 2, . . . , N}\

I1 (i.e., the compliment of I1). The seller is not allowed to short sell in risky

asset Sj , where j ∈ I1. Also, we assume that there is no arbitrage w.r.t. (Gt)t.

Let ∆H(t) := H(t)−H(t− 1). The seller’s optimization problem is:

inf{v,H} v

subject to

(i) S(T ) ·H(T − 1) ≥ B a.s.,

(ii) S(t) ·∆H(t) = 0 for 1 ≤ t ≤ T − 1, a.s.,

(iii) Hj(t) ≥ 0 for 0 ≤ t ≤ T − 1, a.s., j ∈ I1

(iv) S(0) ·H(0) ≤ v,

(1)

where v ∈ R and H is (Gt)t-adapted. Note that the inequality (iii) is the no

short-selling constraint. Hence, the seller’s problem is: Minimize the price v

of the claim B such that the seller is able to pay B at time T (constraint (i))

from investments in a self-financing (constraint (ii)), adapted (w.r.t. the partial

information) portfolio that costs less than or equal to v at time 0 (constraint

(iv)). In addition, the trading strategy cannot involve selling short in assets Sj ,

j ∈ I1 (constraint (iii)). Note that if there is a (Gt)t-arbitrage, problem (1) is

unbounded. Also, the absence of arbitrage under the full information filtration

(Ft)t implies absence of arbitrage under the partial information (Gt)t.

Note that problem (1) is an infinite linear programming problem, i.e. the

problem is linear with infinitely many constraints and variables. For more on
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infinite programming, see for instance Anderson and Nash [1] and for a nu-

merical method, see e.g. Devolder et al. [5]. However, if Ω is finite, (1) is a

linear programming problem. In this case, the problem can be solved numeri-

cally using the simplex algorithm or an interior point method, see for example

Vanderbei [35]

We will rewrite problem (1) in a way suitable for determining its dual.

Clearly, one can remove constraint (iv), and instead minimize over S(0) ·H(0).

Also, since there is no (Gt)t-arbitrage, it suffices to minimize over the portfolios

such that S(0) ·H(0) ≥ 0. Then, the pricing problem is a minimization prob-

lem with four types of constraints (S(0) · H(0) ≥ 0 is the fourth type). Now,

the problem can be rewritten so it fits the conjugate duality framework (see

Appendix A for a general presentation of conjugate duality or Rockafellar [28]).

Let |I1| denote the number of elements in I1, that is the number of assets the

seller is not allowed to short-sell in. Let p ∈ [1,∞) and the perturbation space

U be defined by

U := {u = (γ, (wt)
T−1
t=1 , (x

(j)
t )T−1

t=0, j∈I1 , z) : u ∈ Lp(Ω,F , P : R(|I1|+1)T+1)}.

Define (for notational convenience) w := (wt)
T−1
t=1 and x(j) := (x

(j)
t )T−1

t=0 .

Let Y := U∗ = Lq(Ω,F , P : R(|I1|+1)T+1), the dual space of U , where

1
p + 1

q = 1. Note that y := (y1, (y
t
2)T−1
t=1 , (ξ

(j)
t )T−1

t=0,j∈I1 , y3) ∈ Y has components

corresponding to u ∈ U . Note also that u consists of four types of variables,

γ,w, (x(j))j∈I1 , and z. Each of these variables correspond to a constraint type

in the rewritten minimization problem. The same will hold for the dual variable

y. Consider the pairing of U and Y using the bilinear form

〈u, y〉 = E[u · y].

Choose the perturbation function F : HG × U → R (again, see Appendix A

for more on perturbation functions) in the following way:

(i) If B−S(T ) ·H(T −1) ≤ γ a.s., S(t) ·∆H(t) = wt for all t ∈ {1, . . . , T −1}
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a.s., −Hj(t) ≤ x
(j)
t for all t ∈ {0, . . . , T − 1}, j ∈ I1 a.s., S(0) ·H(0) ≥ z,

then let F (H,u) := S(0) ·H(0).

(ii) Otherwise, let F (H,u) :=∞.

The corresponding Lagrange function is

K(H, y) = S(0) ·H(0) + E[y1(B − S(T ) ·H(T − 1))]

+
∑T−1
t=1 E[yt2S(t) ·∆H(t)]−

∑
j∈I1

∑T−1
t=0 E[ξjtHj(t)]− E[y3S(0) ·H(0)]

if y1, ξ
j
t , y3 ≥ 0 a.s. for all t ∈ {0, . . . , T − 1} and K(H, y) = −∞ otherwise. We

can now determine the (conjugate) dual problem to the primal problem (1). By

collecting terms for each Hi(t), the dual objective function is

g(y) := inf{H : (Gt)t−adapted}K(H, y)

= E[y1B] +
∑
i∈I2 infHi(0){E[Hi(0){Si(0)(1− y3)− y1

2Si(1)}]}

+
∑
j∈I1 infHj(0){E[Hj{Sj(0)(1− y3)− y1

2S1(1)− ξ(j)
0 }]}

+
∑T−2
t=1

(∑
i∈I2 infHi(t){E[Hi(t)(y

t
2Si(t)− yt+1

2 Si(t+ 1))]}

+
∑
j∈I1 infHj(t){E[Hj(t)(y

t
2Sj(t)− yt+1

2 Sj(t+ 1)− ξ(j)
t )]}

)
+
∑
i∈I2 infHi(T−1){E[Hi(T − 1)(−y1Si(T ) + yT−1

2 Si(T − 1))]}

+
∑
j∈I1 infHj(T−1){E[Hj(T − 1)(−y1Sj(T ) + yT−1

2 Sj(T − 1)− ξ(j)
T−1)]}.

(2)

2.1 Two Lemmas

This section consists of two lemmas needed in the following presentation. We

include the proofs for completeness.

Lemma 2.1 Let f be any random variable w.r.t. (Ω,F , P ) and let G be a sub-

σ-algebra of F . Let X denote the set of all G-measurable random variables.

Then

inf
{g∈X}

E[fg] > −∞

if and only if
∫
A
fdP = 0 for all A ∈ G.
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Proof. ⇒: Assume there exists A ∈ G such that
∫
A
fdP = K 6= 0. Define

g(ω) := M for all ω ∈ A, whereM is a constant, and g(ω) := 0 for all ω ∈ Ω\A.

The result follows by letting M → +/−∞

⇐: Prove the result for simple functions. The Lemma follows by an approx-

imation argument.

�

In the next lemma the notation is the same as in Lemma 2.1:

Lemma 2.2 inf{g∈X} E[fg] > −∞ implies that inf{g∈X} E[fg] = 0.

Proof. Follows by observing that inf{g∈X} E[fg] ≤ 0 (g = 0 is feasible) and

the definition of the infimum.

�

By combining Lemma 2.2 with Lemma 2.1, it follows that inf{g∈X} E[fg] = 0

if and only if
∫
A
fdP = 0 for all A ∈ G.

There exists a feasible dual solution if and only if all the infima in equa-

tion (2) are greater than −∞. To derive the dual problem, we consider each of

these minimization problems separately and use the comment after Lemma 2.1

and Lemma 2.2. We also use that since ξ(j)
t ≥ 0 a.e. for all t ∈ {0, 1, . . . , T − 1}

and j ∈ I1, then
∫
A
ξ

(j)
t dP ≥ 0 for all A ∈ Gt for all t. Also, from the derived

dual feasibility conditions, it is sufficient to only maximize over solutions where

y3 = 0 P -a.e. Note that such a solution exists, because we have assumed that
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there is no (Gt)t-arbitrage. Hence, the dual problem is

sup{y∈Y :y1≥0} E[y1B]

s.t.

(i)
∫
A
Si(0)dP =

∫
A
y1

2Si(1)dP ∀ A ∈ G0,

(i)∗
∫
A
Sj(0)dP ≥

∫
A
y1

2Sj(1)dP ∀ A ∈ G0,

(ii)
∫
A
yt2Si(t)dP =

∫
A
yt+1

2 Si(t+ 1)dP ∀ A ∈ Gt, t = 1, . . . , T − 2,

(ii)∗
∫
A
Sj(t)y

t
2dP ≥

∫
A
yt+1

2 Sj(t+ 1)dP ∀ A ∈ Gt, t = 1, . . . , T − 2,

(iii)
∫
A
yT−1

2 Si(T − 1)dP =
∫
A
y1Si(T )dP ∀ A ∈ GT−1,

(iii)∗
∫
A
yT−1

2 Sj(T − 1)dP ≥
∫
A
y1Sj(T )dP ∀ A ∈ GT−1

(3)

where the equality constraints (i), (ii) and (iii) hold for i ∈ I2 and the inequality

constraints (i)∗, (ii)∗ and (iii)∗ hold for j ∈ I1. Note that the dual feasibility

conditions come in pairs, where the only difference is whether there is = (short

selling allowed) or ≥ (short selling not allowed).

This dual problem (3) is, like the primal problem (1), an infinite linear pro-

gramming problem. As before, if Ω is finite, it is a regular linear programming

problem which can be solved using the simplex algorithm or an interior point

method. However, this version of the dual problem is not significantly simpler

to solve than the original problem. Therefore, we will rewrite problem (3) in a

more interpretable form, which in some cases is more attractive to solve than

the primal problem.

3 The main theorem

In this section, we will show our main theorem, Theorem 3.1, which states that

the dual problem (3) is equivalent to another problem involving martingale- and

super-martingale conditions on the optional projection of the price process.

In the following, let M̄a
I1

(S,G) be the set of probability measures Q on (Ω,F)

that are absolutely continuous w.r.t. P and are such that the price processes Si
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for i ∈ I2 satisfy EQ[Si(t + k)|Gt] = EQ[Si(t)|Gt], while for j ∈ I1 they satisfy

EQ[Sj(t + k)|Gt] ≤ EQ[Sj(t)|Gt] for k ≥ 0 and t ∈ 0, 1, . . . , T − k, i.e. Q is a

mixed martingale and super-martingale measure for the optional projection of

the price process.

Theorem 3.1 The dual problem (3) is equivalent to the following optimization

problem.

supQ∈M̄a
I1

(S,G) EQ[B]. (4)

Proof. First, assume there exists a Q ∈ M̄a
I1

(S,G), i.e., a feasible solution

to problem (4). We want to show that there is a corresponding feasible solution

to problem (3).

Define y1 := dQ
dP (the Radon-Nikodym derivative ofQ w.r.t. P , see Shilling [34]),

and yt2 := E[y1|Ft] for t = 0, 1, . . . , T − 1. We prove that y1, y
t
2 satisfy the dual

feasibility conditions of problem (3).

• (iii)∗: From the definition of conditional expectation, it suffices to prove

∫
A

E[y1Sj(T )|GT−1]dP ≤
∫
A

yT−1
2 S(T − 1)dP for all A ∈ GT−1, j ∈ I1.

In particular, it suffices to prove

E[y1Sj(T )|GT−1] ≤ E[yT−1
2 Sj(T − 1)|GT−1] P -a.e.

By the definition of yT−1
2 , this is equivalent to

E[y1Sj(T )|GT−1] ≤ E[E[y1|FT−1]Sj(T − 1)|GT−1] P -a.e.

Since Sj(T − 1) is FT−1-measurable, the inequality above is the same as

E[y1Sj(T )|GT−1] ≤ E[E[y1Sj(T − 1)|FT−1]|GT−1] P -a.e.
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This is, by the tower property, equivalent to

E[y1Sj(T )|GT−1] ≤ E[y1Sj(T − 1)|GT−1] P -a.e.

By change of measure under conditional expectation, it is enough to show

E[y1|GT−1]EQ[Sj(T )|GT−1] ≤ E[y1|GT−1]EQ[Sj(T − 1)|GT−1].

This holds, because y1 ≥ 0 P -a.e. and Q ∈ M̄a
I1

(S,G).

• (ii)∗: First, we prove this for t = T −2. Note that for all A ∈ GT−2, j ∈ I1

∫
A
yT−1

2 Sj(T − 1)dP =
∫
A
E[yT−1

2 Sj(T − 1)|GT−2]dP

=
∫
A
E[E[y1|FT−1]Sj(T − 1)|GT−2]dP

=
∫
A
E[E[y1Sj(T − 1)|FT−1]|GT−2]dP

=
∫
A
E[y1Sj(T − 1)|GT−2]dP

Hence, from the definition of conditional expectation and change of mea-

sure under conditional expectation, it suffices to prove

E[yT−2
2 Sj(T − 2)|GT−2] ≥ E[y1Sj(T − 1)|GT−2]

= E[y1|GT−2]EQ[Sj(T − 1)|GT−2].

(5)

But, by the definition of y(T−1)
2 , the tower property and change of measure

under conditional expectation

E[yT−2
2 Sj(T − 2)|GT−2] = E[y1Sj(T − 2)|GT−2] = E[y1|GT−2]EQ[Sj(T − 2)|GT−2].

(6)

By combining equation (5) and (6), it suffices to prove that

E[y1|GT−2]EQ[Sj(T − 2)|GT−2] ≥ E[y1|GT−2]EQ[Sj(T − 1)|GT−2].
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This holds, since y1 ≥ 0 P-a.e. and Q ∈ M̄a
I1

(S,G). Similarly, one can

show (ii)∗ for t = 1, . . . , T − 3.

• (i)∗: Recall that G0 = {∅,Ω}. The inequality is trivially true for A = ∅.

Hence, it only remains to check that E[y1
2Sj(1)] ≤ E[Sj(0)] = Sj(0) for

j ∈ I1. Note that

E[y1
2Sj(1)] = E[y1

2Sj(1)|G0]

= E[E[y1|F1]Sj(1)|G0]

= E[E[y1Sj(1)|F1]|G0]

= E[y1Sj(1)|G0]

= EQ[Sj(1)]

= EQ[Sj(1)|G(0)]

≤ Sj(0)

where the second equality follows from the definition of y1
2 and the in-

equality follows from Q ∈ M̄a
I1

(S,G). Hence, (i)∗ holds as well.

• The equality conditions (i), (ii) and (iii) follow from the same kind of

arguments, based on the definition of M̄a
I1

(S,G) and change of measure

under conditional expectation.

Hence, any Q ∈ M̄a
I1

(S,G) corresponds to a feasible dual solution, i.e. sat-

isfies the constraints of the dual problem (3).

Conversely, assume there exists a feasible dual solution y1 ≥ 0, (yt2)T−1
t=1 of

problem (3).

Define Q(F ) :=
∫
F
y1dP for all F ∈ F . This defines a probability measure

since y1 ≥ 0, and one can assume that E[y1] = 1 since the dual problem (3) is

invariant under translation. The remaining part of the proof is to show that

Q ∈ M̄a
I1(S,G), (7)
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i.e., that the dual feasibility conditions of problem (3) correspond to the condi-

tions for being in M̄a
I1

(S,G). We divide this into several claims, which we then

prove.

Claim 1: EQ[Si(T )|GT−1] = EQ[Si(T − 1)|GT−1] for i ∈ I2.

Proof of Claim 1: From the definition of conditional expectation, equation

(iii) in problem (3) is equivalent to E[y1Si(T )|GT−1] = E[yT−1
2 Si(T − 1)|GT−1].

From change of measure under conditional expectation

E[y1Si(T )|GT−1] = E[y1|GT−1]EQ[Si(T )|GT−1] (8)

and

E[yT−1
2 Si(T − 1)|GT−1] = E[yT−1

2 |GT−1]EQ[Si(T − 1)|GT−1]. (9)

By combining equations (8) and (9), (iii) is equivalent to

E[y1|GT−1]EQ[Si(T )|GT−1] = E[yt2|GT−1]EQ[Si(T − 1)|GT−1].

By considering equation (iii) for the bond and using that the market is

normalized (by assumption),

∫
A

y1dP =

∫
A

yT−1
2 dP for all A ∈ GT−1. (10)

From the definition of conditional expectation, this implies that E[yT−1
2 |GT−1] =

E[y1|GT−1]. Since y1 > 0 a.e., EQ[Si(T )|GT−1] = E[Si(T−1)|GT−1]. This proves

Claim 1.

Claim 2: EQ[Si(t+ k)|Gt] = EQ[Si(t)|Gt] for k ∈ N, i ∈ I2.

Proof of Claim 2: Let i ∈ I2. First, one can show by induction that

EQ[Si(T )|Gt] = EQ[Si(t)|Gt] for all t ≤ T, i ∈ I2, using Claim 1. Also by

an inductive argument (for i ∈ I2), this can be generalized to Claim 3.

Claim 3: EQ[Sj(T )|GT−1] ≤ EQ[Sj(T − 1)|GT−1] for j ∈ I1.

14
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Proof of Claim 3: To prove EQ[Sj(T )|GT−1] ≤ EQ[Sj(T−1)|GT−1] for j ∈ I1,

we use (iii)∗, an argument similar to that used to show Claim 1, and Claim 2.

Claim 4: EQ[Sj(T )|Gt] ≤ E[Sj(t)|Gt] for all t ≤ T and j ∈ I1.

Proof of Claim 4: Let j ∈ I1. To show that EQ[Sj(T )|Gt] ≤ E[Sj(t)|Gt] for

all t ≤ T : Note that from equation (ii)∗ of problem (3) for t+1, t+2, . . . , T −2,

it follows that

∫
A
yt2Sj(t)dP ≥

∫
A
yt+1

2 Sj(t+ 1)dP ∀ A ∈ Gt

≥
∫
A
yt+2

2 Sj(t+ 2)dP ∀ A ∈ Gt+1,

in particular ∀ A ∈ Gt

≥ . . .

≥
∫
A
yT−1

2 Sj(T − 1)dP ∀ A ∈ Gt

≥
∫
A
y1Sj(T )dP ∀ A ∈ Gt

where the final inequality uses (iii)∗ from problem (3). Hence, by the definition

of conditional expectation and change of measure under conditional expectation

∫
A

E[yt2|Gt]EQ[Sj(t)|Gt]dP ≥
∫
A

E[y1|Gt]EQ[Sj(T )|Gt]dP

From equation (ii) for the bond, we know that E[yt2|Gt] = E[y1|Gt] (see the

argument related to equation (10)), so

∫
A

{E[yt2|Gt](EQ[Sj(t)|Gt]− EQ[Sj(T )|Gt])}dP ≥ 0 ∀ A ∈ Gt. (11)

If yt2(A) ≥ 0, but not identically equal 0 a.e., this implies Claim 4, i.e.:

EQ[Sj(t)|Gt](A) ≥ EQ[Sj(T )|Gt](A) for A ∈ Gt.

If yt2(A) = 0 a.e., then Q(A) = 0, so EQ[Sj(T )|Gt](A) = 0 by convention. Hence,

since the price processes are non-negative, EQ[Sj(t)|Gt] ≥ EQ[Sj(T )|Gt]. This

proves Claim 4.

15



Pricing contingent claims by convex duality

Claim 5: EQ[Sj(t+ k)|Gt] ≤ EQ[Sj(t)|Gt] for k ∈ N, j ∈ I1.

Proof of Claim 5: For A ∈ Gt and j ∈ I1,

∫
A
yt2Sj(t)dP ≥

∫
A
yt+k2 Sj(t+ k)dP

=
∫
A
E[yt+k2 Sj(t+ k)|Gt]dP

=
∫
A
E[yt+k2 |Gt]EQ[Sj(t+ k)|Gt]dP

=
∫
A
E[y1|Gt]EQ[Sj(t+ k)|Gt]dP

where the first inequality follows from (ii)∗ (from problem (3)) iterated and the

third equality from E[yt+k2 |Gt] = E[y1|Gt] (see the proof of Claim 4). Hence,

by the definition of conditional expectation and since E[yt2|Gt] = E[y1|Gt] ≥ 0

(because y1 ≥ 0)

∫
A

{E[y1|Gt](EQ[Sj(t)|Gt]− EQ[Sj(t+ k)|Gt]}dP ≥ 0 for all A ∈ Gt.

By a similar argument as for equation (11), Claim 5 holds, i.e.,

EQ[Sj(t+ k)|Gt] ≤ EQ[Sj(t)|Gt] for all k ∈ N, j ∈ I1.

By combining these claims, we see that Q ∈ M̄a
I1

(S,G), and the theorem

follows.

�

The version of the dual problem (4) is attractive because of its connection

to martingale measures, which are an essential part of mathematical finance

literature, see e.g. Karatzas and Shreve [12] and Øksendal [18]. Another nice

feature of the formulation (4) is that when one has found the set M̄a
I1

(S,G),

solving the problem for each new claim B may be fairly simple (depending on

structure of M̄a
I1

(S,G)) since the set does not depend on the claim. In contrast,

the primal problem (1) must be solved from scratch whenever one considers a

new claim B.
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Remark 3.2 Note that Theorem 3.1 has some similarities with Theorem 1 in

Kabanov and Stricker [9]. However, we consider the pricing problem of a con-

tingent claim instead of the no-arbitrage criterion, which is the topic of [9].

Moreover, we have short-selling constraints, which [9] do not have. Also, we

have a general level of partial information (not necessarily delayed) and the

techniques we use, in particular the use of convex duality, are different.

Kabanov and Stricker [9] also comment that, to their knowledge, their proof

of the partial information Dalang-Morton-Willinger theorem is the only one that

does not reduce the problem to a one-step model. Our technique, using convex

duality, does not rely on reduction to a one-period model either. So (to the best

of our knowledge), our method of proof must be a new way to avoid reduction

to one-period in discrete time models.

4 Strong duality

The main goal of this section is to prove that there is no duality gap, i.e., that

the value of the primal problem (1) is equal to the value of the dual problem (4).

This can be done using the following theorem from Pennanen and Perkkiö [22]

(see Theorem 9 in [22]). In order to prove strong duality, we also assume that

I1 = {0, 1, . . . , N}, i.e. that no short-selling or borrowing is allowed.

We use the same notation as in Section 2, and consider the value function

ϕ(·) as defined in Appendix A. In the following theorem, H is a stochastic

process with N + 1 components at each time t ∈ {0, 1, . . . , T − 1} and HG

denotes the family of all stochastic processes that are adapted to the filtration

(Gt)t. Also, F∞ is the recession function of F , defined by

F∞(H(ω), 0, ω) := sup
λ>0

F (λH(ω) + H̄(ω), ȳ(ω), ω)− F (H̄(ω), ȳ(ω), ω)

λ
(12)

(which is independent of H̄, ȳ). Then, we have the following theorem:

Theorem 4.1 (Theorem 9, Pennanen and Perkkio [22]) Assume there exists
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y ∈ Y and m ∈ L1(Ω,F , P ) such that for P -a.e. ω ∈ Ω,

F (H,u) ≥ u · y +m a.s. for all (H,u) ∈ RT (N+1) × R(|I1|+1)T+1, (13)

where (·) denotes Euclidean inner product. Assume also that

A := {H ∈ HG : F∞(H, 0) ≤ 0 P -a.s.}

is a linear space. Then, the value function ϕ(u) is lower semi-continuous on U

and the infimum of the primal problem is attained for all u ∈ U .

For the proof of Theorem 4.1, see [22]. Theorem 4.1 gives conditions for

the value function ϕ (see Appendix A) to be lower semi-continuous. Hence,

from Theorem A.2, if these conditions hold, there is no duality gap since ϕ(·) is

convex (because the perturbation function F was chosen to be convex).

Remark 4.2 Note that there is a minor difference between the frameworks of

Rockafellar [28] and Pennanen and Perkkiö [22]. In the latter it is assumed

that the perturbation function F is a so-called convex normal integrand. How-

ever, from Example 1 in Pennanen [19] and Example 14.29 in Rockafellar and

Wets [30], it follows that our choice of F is in fact a convex normal integrand.

The following theorem states that there is no duality gap and characterizes

the seller’s price of the contingent claim.

Theorem 4.3 Consider the setting of this paper, and assume that there is no

arbitrage with respect to (Gt)t. If the seller of the claim B has information (Gt)t

and no short selling or borrowing is allowed, she will offer the claim at the price

β := supQ∈M̄a(S,G) EQ[B]. (14)

where M̄a(S,G) is the set the set of probability measures Q on (Ω,F) that are
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absolutely continuous w.r.t. P and are such that the price processes satisfy

EQ[Sj(t+ k)|Gt] ≤ EQ[Sj(t)|Gt] for k ≥ 0 and t ∈ 0, 1, . . . , T − k.

Proof. We apply Theorem 4.1 in order to show that there is no duality gap

for our pricing problem:

• We first show that the set A is a linear space. We compute F∞(H(ω), 0, ω)

by choosing ȳ = 0 and H̄ to be the portfolio that starts with 1+supω∈ΩB(ω)

units of the bond and just follows the market development (without any

trading) until the terminal time. Then, we find that

A = {H : G-adapted, H(t) ≥ 0 ∀ t, S(t) ·∆H(t) = 0,

S(T ) ·H(T − 1) ≥ 0, S(0) ·H(0) ≤ 0} = {0},

where the final equality holds since we assume that there is no arbitrage

w.r.t. the filtration (Gt)t. Hence, A = {0}, which is a (trivial) linear space.

Hence the first condition of Theorem 4.1 is satisfied.

• To check the other assumption of the theorem, choose

y = (0, (0)t, (0)t,−1) ∈ Lq(Ω,F , P : R(|I1|+1)T+1),

where 0 represents the 0-function. Also, choose m(w) = −1 for all ω ∈ Ω.

Then m ∈ L1(Ω,F , P ). Then, given (H,u) ∈ RT (N+1) × R(|I1|+1)T+1:

F (H,u) ≥ S(0) ·H(0) (from the definition of F )

≥ −z (from the definition of F )

= u · y(ω) +m(ω) (from the choice of y and m).

This proves that the conditions of Theorem 4.1 are satisfied. Therefore, there

is no duality gap, so the seller’s price of the contingent claim is
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sup
Q∈M̄a(S,G)

EQ[B].

�

Remark 4.4 We remark that Proposition 4.1 in Föllmer and Kramkov [6] gives

an expression for the seller’s price of a claim with super-martingale conditions

on the price process. However, we do not consider the same problem as [6], since

we have partial information. The presence of partial information results in a

different type of martingale measure (we get a martingale- and super-martingale

measure on the optional projection of the price process) than in the paper [6].

In order to prove the strong duality in Theorem 4.3, we have assumed that

no short-selling or borrowing is allowed. This is necessary in order for the space

A to be a linear space, as required by the strong duality characterization in

Theorem 4.1. However, we have not been able to find a numerical example

where there actually is a duality gap. In the finite Ω (i.e. linear programming)

case, there will be no duality gap even when borrowing or short selling is allowed.

Hence, if there exists an example of a duality gap, it must be in the infinite Ω

case.

This leads one to believe that it may be possible to close the duality gap

in general. However, we have not found a way to achieve this through our

convex analysis of the problem. Another option is to try to close the duality

gap in the short selling case by analyzing the primal problem using Lagrange

duality, see e.g. Pinar [24], [25]. However, as this methodology is equivalent

to our convex duality approach in the discrete time setting, it seems likely that

one will run into a similar problem with linearity. This is an open problem for

further research.

Example 4.5 We illustrate the previous results by considering a simple nu-

merical example. Although the results of this paper hold when Ω is an arbitrary
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set, we consider a situation where Ω is finite. This simplifies the intuition and

allows for illustration via scenario trees.

Consider times t = 0, 1, 2, Ω := {ω1, ω2, . . . , ω5} and a market with two

assets: one bank account S0 and one risky asset S1. Assume that the market is

discounted, so S0(t, ω) = 1 for all times t and all ω ∈ Ω. Let

S1(t, ω) := X(t, ω) + ξ(t, ω),

i.e. the price of the risky asset is composed of two other processes, X and ξ.

The seller does not observe these two processes, only the prices. The following

scenario trees show the development of the processes X and ξ, as well as the price

development observed by the seller. Note that we only display the information

needed in the following calculations.
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Ω = {ω1, ω2, . . . , ω5}

ξ = 3, {ω1, ω3, ω5}

ξ = 5, {ω2, ω4}

ω1

ω5

ω3

ω2

ω4q q q
t = 0 t = 1 t = T = 2

Figure 1: The process ξ

Full information in this market corresponds to observing both processes X

and ξ, i.e. the full information filtration (Ft)t is the sigma algebra generated by

X and ξ, σ(X, ξ). However, the filtration observed by the seller (Gt)t, generated

by the price processes, is (strictly) smaller than the full information filtration.

For instance, if you observe that ξ(1) = 3 and X(1) = 4, you know that the

realized scenario is ω1. However, this is not possible to determine only through

observation of the price process S1. Hence, this is an example of a model with
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Figure 2: The process X
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S1 = 7, ω3

S1 = 4, ω5q q q
t = 0 t = 1 t = T = 2

Figure 3: The price process S1

hidden processes, which is a kind of partial information that is not delayed in-

formation.

Assume that the seller is not allowed to short-sell. In this case, the seller’s

problem (1) is to solve the following minimization problem w.r.t. v and all

(Gt)t-adapted trading strategies H:
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infv,H v

s.t.

3H1(1, ω1) +H0(1, ω1) ≥ B(ω1)

9H1(1, ω2) +H0(1, ω2) ≥ B(ω2)

5H1(1, ω3) +H0(1, ω3) ≥ B(ω3)

8H1(1, ω1) +H0(1, ω1) ≥ B(ω4)

4H1(1, ω3) +H0(1, ω3) ≥ B(ω5)

H0(1, ω1)−H0(0) + 7
(
H1(1, ω19−H1(0))

)
= 0

H0(1, ω3)−H0(0) + 5
(
H1(1, ω3)−H1(0))

)
= 0

H0(1, ω2)−H0(0) + 9
(
H1(1, ω2)−H1(0))

)
= 0

Hj(0) ≥ 0, Hj(1, ωi) ≥ 0 for j = 0, 1, i = 1, 2, 3

H0(0) + 6H1(0) ≤ v

(15)

where H1(1, ω1) = H1(1, ω4) and H1(1, ω3) = H1(1, ω5) due to H being (Gt)t-

adapted. This is a linear programming problem which can be solved using the

simplex algorithm. Note that the simplex algorithm is a duality method, which

leads to a dual problem equivalent to the one we have derived in Section 3. An

advantage with solving this problem directly is that we get the trading strategy

H explicitly. However, a downside with solving problem (15) directly is that for

each new claim B, the problem must be solved from scratch. This is not the case

when solving the dual problem instead. From Theorem 4.3, the dual problem for

the price of the claim is:

sup
Q∈M̄a(S,G)

EQ[B] (16)

where M̄a(S,G) is the set of absolutely continuous probability measures making

the price process S1 a (Gt)t-conditional super-martingale (and S0, but this is
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trivial since the price processes are discounted). In order to solve this problem,

we must find the set M̄a(S,G). By using the definition of M̄a(S,G), we get

a system of linear inequalities to solve. By solving these, using for example

Fourier Motzkin elimination, we find that

M̄a
1(S,G) = {Q = (q1, q2, . . . , q5) : 0 ≤ q3 ≤ 6

21 , 0 ≤ q4 ≤ 1− q3,

0 ≤ q5 ≤ 1− q3 − q4, 0 ≤ q1 ≤ 1− q3 − q4 − q5 and q2 = 1− q1 − q3 − q4 − q5}
(17)

Hence, given some claim B, one can solve the problem (16) for the set in

(17) in order to find the seller’s price. When one would like to find prices for

several claims B1, B2, . . . , Bm, solving the dual problem is simpler than solving

the primal LP problem since the set M̄a(S,G) is the same for all the claims.

5 Conclusions

In this paper, we have shown how convex duality can be used to obtain pricing

results for a seller of a claim who has partial information and is facing short

selling constraints in a discrete time financial market model. This gives new

results, which are summarized in Theorem 3.1 and Theorem 4.3.

It seems natural that these results can be generalized to a model with con-

tinuous time, possibly using a discrete time approximation. However, this may

be quite technical.

A Conjugate duality and paired spaces

Conjugate duality theory (also called convex duality), introduced by Rockafel-

lar [28], provides a method for solving very general optimization problems via

dual problems.

Let X be a linear space, and let f : X → R be a function. The minimization

problem minx∈X f(x) is called the primal problem, denoted (P ). In order to
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apply the conjugate duality method to the primal problem, we consider an

abstract optimization problem minx∈X F (x, u) where F : X × U → R is a

function such that F (x, 0) = f(x), U is a linear space and u ∈ U is a parameter

chosen depending on the particular problem at hand. The function F is called

the perturbation function. We would like to choose (F,U) such that F is a

closed, jointly convex function of x and u.

Corresponding to this problem, one defines the optimal value function

ϕ(u) := inf
x∈X

F (x, u) , u ∈ U. (18)

Note that if the perturbation function F is jointly convex, then the optimal

value function ϕ(·) is convex as well.

A pairing of two linear spaces X and V is a real-valued bilinear form 〈·, ·〉

on X × V . Assume there is a pairing between the spaces X and V . A topology

on X is compatible with the pairing if it is a locally convex topology such

that the linear function 〈·, v〉 is continuous, and any continuous linear function

on X can be written in this form for some v ∈ V . A compatible topology

on V is defined similarly. The spaces X and V are paired spaces if there is

a pairing between X and V and the two spaces have compatible topologies

with respect to the pairing. An example is the spaces X = Lp(Ω, F, P ) and

V = Lq(Ω, F, P ), where 1
p + 1

q = 1. These spaces are paired via the bilinear

form 〈x, v〉 =
∫

Ω
x(s)v(s)dP (s).

In the following, let X be paired with another linear space V , and U paired

with the linear space Y . The choice of pairings may be important in appli-

cations. Define the Lagrange function K : X × Y → R̄ to be K(x, y) :=

inf{F (x, u) + 〈u, y〉 : u ∈ U}. The following Theorem A.1 is from Rockafel-

lar [28] (see Theorem 6 in [28]).

Theorem A.1 The Lagrange function K is closed, concave in y ∈ Y for each
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x ∈ X, and if F (x, u) is closed and convex in u

f(x) = sup
y∈Y

K(x, y). (19)

For the proof of this theorem, see Rockafellar [28]. Motivated by Theorem A.1,

we define the dual problem of (P ),

(D) max
y∈Y

g(y)

where g(y) := infx∈X K(x, y).

One reason why problem (D) is called the dual of the primal problem (P )

is that, from equation (19), problem (D) gives a lower bound on problem (P ).

This is called weak duality. Sometimes, one can prove that the primal and dual

problems have the same optimal value. If this is the case, we say that there is

no duality gap and that strong duality holds. The next theorem (see Theorem

7 in Rockafellar [28]) is important:

Theorem A.2 The function g in (D) is closed and concave. Also

sup
y∈Y

g(y) = cl(co(ϕ))(0)

and

inf
x∈X

f(x) = ϕ(0).

(where cl and co denote respectively the closure and the convex hull of a func-

tion, see Rockafellar [29]). For the proof, see Rockafellar [28]. Theorem A.2

implies that if the value function ϕ is convex, the lower semi-continuity of ϕ is

a sufficient condition for the absence of a duality gap.
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