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Abstract 

We consider AF flows, i.e., one-parameter automorphism groups of a unital sim­
ple AF C* -algebra which leave invariant the dense union of an increasing sequence of 
finite-dimensional *-subalgebras, and derive two properties for these; an absence of 
continuous symmetry breaking and a kind of real rank zero property for the almost 
fixed points. 

1 Introduction 

vVe consider the class of AF representable one-parameter automorphism groups of a unital 
simple AF C* -algebra (which will be called AF flows) and derive two properties, one of 
which is invariant under inner perturbations and may be used to distinguish them from 
other flows (i.e., one-parameter automorphism groups). 

We recall that a flow a of a unital simple AF C* -algebra A is defined to be AF locally 
representable or an AF flow if there is an increasing sequence (An) of a-invariant finite­
dimensional *-subalgebras of A with dense union [14], [15]. In this case there is a self­
adjoint hn E An such that at I An = Ad eithn !An for each n. Thus the local Ham'iltonfon.s 
(hn) mutually commute and can be considered to represent the time evolution of a classical 
statistical lattice model, which is a special kind of model among all the models quantum 
or classical. Consider the larger class of flows which are inner perturbations of AF-flows. 
(These are characterized by the property that the domains of the generators contains 
a canonical AF maximal abelian sub-algebra (masa), see [15, Proposition 3.1].) In [15, 
Theorem 2.1 and Remark 3.3] it was demonstrated that there are flows outside this larger 
class, but the proof was not easy. Our original aim was to show that all the flows which 
naturally arose in quantum statistical lattice models and were not obviously AF flows, 
were in fact beyond the class of inner perturbations of AF flows. vVe could not prove that 
there was even a single example and obtained only a weak result in this direction which 
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is presented in Remark 2.4. Thus we ended up presenting the two new properties of the 
AF flows mentioned in the abstract. 

The first property we derive for AF flows can be expressed as: there is no continuous 
symmetr·y breaking. If Oa denotes the generator of a general flow a, we define the e:rnct 
symmetry group for a as G0 = b E AutA I 16-n/-l =on} and the near symmetry group 
as Gi = b E AutA I /On/-l =On+ aclih for some h = h• E A}. Then it is known 
that there is a natural homomorphism of Go into the affine homeomorphism group of 
the simplex of KMS states at each temperature. vVe deduce moreover in Proposition 2.1 
from the perturbation theory of KMS states [1], that there is a homomorphism of G i into 
the homeomorphism group of the simplex of KMS states at each temperature, mapping 
the extreme points onto the extreme points. We next show in the special case of AF 
flows that if / E G0 is connected to id in Go by a continuous path, then / induces the 
identity map on the simplexes of KMS states. vVe actually show a generalization of this 
in Theorem 2.3: If a is an AF flow and / E G1 is connected to id in G 1 by a continuous 
path bt) such that /tOn/ti = Oa +ad ib(t) with b(t) rectifiable in A, then / induces a 
homeomorphism which fixes each extreme point. (Thus, if the homeomorphism is affine, 
it is the identity map. This is in particular true if IE G0 .) 

The second property we derive for the class of inner perturbations of AF flows can be 
expressed as: the almost fixed po·int algebra for a has real rank zero (see Theorem 3. 6). A 
technical lemma used to show this property is a generalization of H. Lin's result on almost 
commuting self-adjoint matrices [16]. The generalization says that any almost commuting 
pair of self-adjoint matrices, one of norm one and the other of arbitrary norm, is in fact 
close to an exactly commuting pair (see Theorem 3.1). 

vVe recall here a similar kind of property in [15] saying that the almost fixed po·int 
algebra has trivial I<1. We will show by examples that these two properties, real rank 
zero and trivial I<1 for the almost fixed point algebra, are independent, as one would 
expect. (It is not that the almost fixed point algebra is actually defined as an algebra; 
but if a is periodic, then we can regard the almost fixed point algebra as the usual fixed 
point algebra, see Proposition 3. 7. In general we can characterize any property of the 
almost fixed point algebra as the corresponding property of the fixed point algebra for a 
certain flow obtained by passing to a C* -algebra of bounded sequences modulo c0 , see 
Proposition 3.8.) 

vVe remark that there is a flow a of a unital simple AF C*-algebra such that 'D(r5a) is 
not AF (as a Banach *-algebra)(cf. [18, 19]). This ·was shown in [15] by constructing an 
example where 'D(oa) does not have real rank zero. Note that 'D(r5a) has always trivial 
Ki and has the same K 0 as the C* -algebra A. Hence real rank is still the only property 
which has been used to distinguish a with non-AF 'D( r50J On the other hand even Ko (of 
the almost fixed point algebra) might be used to distinguish non-AF flows (up to inner 
perturbations) as well as real rank and Ki as shown above. 

In the last section we will show that any quasi-free flow of the CAR algebra has the 
property that the almost fixed point algebra has trivial 1\i, leaving open the question of 
whether it is an inner perturbation of an AF flow or not and even the weaker question of 
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whether the almost fixed point algebra has real rank zero or not. 
One of the au tho rs (A. I\.) would like to thank Professor S. Sakai for discussions and 

questions concerning the first property. 

2 Symmetry 

In the first part of this section we describe the symmetry group of a flow and how it 
is mapped into the homeomorphism groups of the simplexes of I\MS states. Then in 
the remaining part we discuss a theorem on a kind of absence of continuous symmetry 
breaking for AF flows. 

In the first part A can be an arbitrary unital simple C*-algebra. Let a be a flow of A 
(where we always assume strong continuity; t r---t at(x) is continuous for any x E A), and 
c5a the generator of a. Then c5a is a closed linear operator defined on a dense *-subalgebra 
V(c5a) of A with the derivation property: c5a(xy) = c5a(x)y + xc5a(y), c5a(x)* = c5a(x*) for 
x, y E V(c5a)· We equip V(c5a) with the norm /I · 115

0 
obtained by embedding V(c5a) into 

A 0 iVh by the (non *-preserving) isomorphism x r---t ( ~ 6a~x) ) . Note that V(c5a) is a 

Banach *-algebra. (See [6, 3, 19] for the theory of unbounded derivations.) 
vVe call a continuous function u of R into the unitary group of A an a-cocycle if 

'll 8 as('llt) = 'l.ts+ti s, t E R. Then t r---t Ad 'llt oat is a flow of A and is called a cocycle 
perturbation of a. If ·u is differentiable, then the generator of this perturbation is c5a +ad ih, 
where du/dtlt=O = ih (see [14, section 1]). We define the symmetry group G =Ga of a as 

{I' E AutA 1 l'al'-l is a cocycle perturbation of a}, 

which is slightly more general than the G1 given in the introduction, so G0 i; G1 i; G = 
Ga. Then G depends on the class of cocycle perturbations of a only and is indeed a 
group: If I' E G, then /'ao- 1 = Ad 'llt at for some a-cocycle 'l.l, which implies that 

-1 Ad -1( *) I' ao = I' 'l.lt at. 

vVe can check the a-cocycle property oft H l'-l ('un by 

Thus /'-1 E G. If /'1, 1'2 E G, then /'icttl'i 1 =Ad 'I.lit at for some a-cocycle 'lli for i = 1, 2. 
Since 1'11'2ctt( 1'11'2)-1 = Ad 1'1 ( 'l.l2t)1lit at, we only have to check that t r---t l'l ( 'll 2t)'llit is an a­

cocycle, which will be denoted by l'l ( 'l.l2 )1t1 . We leave this simple calculation to the reader. 
Note that G contains the inner automorphism group Inn(A) as a normal subgroup and 
each element of G/Inn(A) has a representative I' E G such that I' leaves V(c5a) invariant 
and 
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for some b = b* E A (see [14, Corollary 1.2]). 
We equip G =Go: with the topology defined by /n--+/ in G if 

(1) 1n--+1 in Aut(A) (i.e., l!rn(:r) -1(x)ll--+O for x EA), 

and 

(2) there exist a-cocycles 'lln, u such that /nO:'t/,~ 1 = Ad Unt a1, /O:'t/-l = AdutO:'t and 
llv·nt - u1ll--+O uniformly int on compact subsets of R. 

vVith this topology G is a topological group. 
Let c E R \ { 0} and w a state on A. We say that w satisfies the c-KMS con di ti on or 

is a c-KMS state (with respect to a) if for any x, y E A there is a bounded continuous 
function F on the strip Sc = { z E C I 0 ~ C:Sz / c ~ 1} such that F is analytic in the 
interior of Sc and satisfies, on the boundary of Sc, 

F(t) 

F(t + ic) 

w(xo:t(Y)), t ER, 

w(o:t(y)x), t ER. 

vVe denote by I<~ = Kc the set of c-KMS states of A. Then Kc is a closed convex set 
of states and moreover a simplex. We denote by fJ(Kc) the set of extreme points of Kc. 
Note that for w E Kc, w is extreme in Kc if and only if w is a factorial state (see [6, 19] 
for details). 

Proposition 2.1 Let A be a unital simple C* -algebra, a a flow of A, and c E R \ { 0}. 
Then there is a continuous homomorph·ism <I> of the symmetry group Ga of a into the 
homeomorphism group of Kc s·uch that <I>(r)(w) is unitar'ily equivalent to W{-

1 for each 
/ E Ca and w E Kc. Moreover <I>(r) =id for any ·inner/. 

Proof. Let r E Go: and let u be an o:-cocycle such that 10:0-1 = Ad Ut O:t. Since A 
is simple, u is unique up to phase factors, i.e., any other o:-cocycle satisfying the same 
equality is given as t r-+ eiptUt for some p E R. 

Let w E Kc. Then w1- 1 is a KMS state with respect to 10:0-1 = Ad Ut O:t. Using 
the fact that O:t = Adu; 10:0-1

, there is a procedure to make a KMS positive linear 
functional w' with respect to a, which depends on the choice of tt; formally it can be given 
as 

w'(x) = w1- 1(xutc), x EA. 

More precisely we let f3t = Ad u1 O:t and exptess the /3-cocycle u; as 

such that t r-+ Vt extends to an entire function on C [14, Lemma 1.1]. Then we define 
<I>(r, u)w as 
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(By a formal calculation we can see that this satisfies the c-KMS condition as follows: 

wrv-l(w-lcw:· (b)wv·) I lC lC W/- l (w- l C/.'U.~. l f]ic(b )uicWVic) 

w~y- 1 (w-tawv (3· (w- 1bw)) IC lC 

-l( -lb ) W/ 'W Cl:WVic , 

where we used that U.ic = f]ic(w)vi~lw- 1 and that W/-
1 is a c-KMS state for (31 = 10:0- 1

• 

See [14].) The map 
<I>(!) : w H <I>(I, u)(w)/<I>(!, u)(w)(l) 

defines a continuous map of I<c into /\-c and <I>(I, u)(w) is quasi-equivalent (hence unitarily 
equivalent) to w1- 1. (It follows from the definition of <I>(!,v) that <I>(l)(w) is quasi­
contained in w1-1, but as w-t and wvic are invertible, w1- 1 is conversely quasi-contained 
in <I>(l)(w). Since any KMS state is separating and cyclic for the weak closure, these 
states are unitary equivalent.) For any other choice 7-l~ = eiptut for ll it follows that 
<I>(!, ·u') = e-cp<I>(!, 1-l). Thus <I>(I) does not depend on the choice of ·u. For / 1 , 12 E Ga 
with a-cocycles it1, it2 respectively, it follows that 

smce 

<I>(/1, u1)(w12 1
( · u;,iJ) 

W/2
1(/1 1

( · u~,iJu;,iJ 
W/2

1111
( · u~,ic/1('u;,iJ). 

This shows that <I> is a group homomorphism. If/= Adu, then <I>(I, ua(u*))(w) = w. 
The continuity of / H <I>(!) follows from the following lemma. 

Lemma 2.2 Let ('u00 , ·u1 , u2 , ... ) be a sequence of a-cocycles such that limn--+oo lln,t = U00 ,t 

uniformly in t on every compact subset of R. Then for any E > 0 there exists a sequence 
(w00 , W1, W2, ... ) of invertible elements in A such that limn--+oo Wn = w00 , llwn - lll < E, 

and Vm,t = w;;;um,tO'.t(wm) extends to an entire function on C for rn = oo, 1, 2 ... such 
that limn--+oo Vn,z = Voo,z for any z E C. 

Proof. Define a C* -algebra B by 

B = {x = (xn)~=l I Xn EA, limxn exists} 

and define a flow /3 on B 0 f\112 by f3t = Ad U o O'.t 0 id, where U = (1 EB Un,t). We define 
a homomorphism <p of B onto A by <p( x) = lim Xn for x = ( x n) E B and note that 
<po f3t = Ad(l EB u00 ,t) o O'.t 0 id o <p. Let EE (0, 1). Since (1 EB O)n and (0 EB l)n are fixed 
by (3, there is aw E B such that llw - lll < E and 

t H f3t( ( 2, ~ ) ) 
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extends to an entire function on C (pick an entire element y for f3 close to ( ~ ~), and 

replace y by (0 0 l)n:iJ(l 0 0) 11 ). If w = (w 11 ) E B, V11 ,t = w;;tu 11 ,10:1(wn) E A, and 
v1 = (v 11 ,1.) E B, then we have that 

/3(00)-(0 0) 
t ( W 0 ) - W'Vt 0 . 

Letting w00 = Jim Wn and v00 ,1 = Jim Vn,ti the proof is complete. 

Theorem 2.3 Let A be a ·1m:ital simple AF C*-algebrn and o: an AF flow of A. Let 
(r1)tE[0,1] be a contimlD'us path in Ga such that 

for some rectifiable path (b(t))tE[O,l] in Asa- Then it follows that <I>(1o)(w) = <I>(r1)(w) for 
w E fJ(I<c)· 

Proof. Let C be a canonical AF masa in V(oa) such that oalc = 0. Let w E Kc· vVe 
note that if E denotes the projection of norm one onto C, then w = (wlc) o E, i.e., w 
is determined by the restriction wlc· (Let (An) be an increasing sequence of a-invariant 
finite dimensional subalgebras with dense union in A such that Ann C is masa in An for 

each n. Then wlAn is clearly determined by wlAnnC• and thus w is determined by wlc·) 
We first prove the theorem in the simpler case where b( t) = 0. In this case It leaves 

the C*-subalgebra B = Kernel(oa) invariant, on which w is a trace. For any projection 
e E C C B, (It( e)) is a continuous family of projections in B, which implies that /o( e) is 
equivalent to 1 1 ( e) in B. Hence w10 ( e) = w11 ( e). Since C is an abelian AF algebra, this 
implies that w1olc = w11 lc· Since they are KMS states, we can conclude that w10 = W'f1. 

Since this is true for any w E Kc, it also follows that w10
1 = w11 1

. 

vVhat we will do in the following is a modification of this argument. 
Let w E fJ(Kc)· In the GNS representation associated with w E fJ(Kc), we define a 

one-parameter unitary group U by 

Then from the c-KMS condition on wit follows that the modular operator 6. for Dw is given 
by 6. = e-cH, where His the generator of U; U1 = eitH (See [7, Proof of Theorem 5.3.10]). 
vVe define a positive linear functional w(h) on A for h = h* E A as the vector state given 
by e-c(H+Kw(h))/2f2w, i.e., 

W(h)(x) = (rrw(x)e-c(H+K..,(h))/2f2w, e-c(H+irw(h))/2f2w). 

Then wUi) satisfies the c-KMS condition with respect to 00 +ad ih. (See [1, 19] or [7, 
Theorem 5.4.4]. The relation to the previous perturbation argument in terms of cocycles 
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is as follows: The flow generated by Oa + ad ih is given as Ad u1 Cr:t, where u is the o:­
cocycle with d11.t/cltlt=D = ih, and w(h) is equal to w(w- 1 

· WVic), where u1 is expressed as 
wv1.Cr:t (w- 1) with t H v1 entire.) 

For 8 E [O, 1] let w8 = w(b(s)), which is a positive linear functional satisfying the c-I\MS 
condition with respect to the generator Oa +ad ib(8). This implies that Ws"fs is a c-I\MS 
positive linear functional with respect to 1.; 1(00 +ad ib(8)h~ = 6a. 

Let s 1, 82 E [O, 1] and define a positive linear functional VJ on A 0 Jvh by 

for a = (aij) E A 0 JW2. Then VJ is a c-KMS positive linear functional for the flow /3 of 
A 0 iVf 2 defined by 

where u~h) is the a-cocycle determined by d11.lh) / dtlt=D = ih (see [10]). The generator 6(3 
of /3 is given by 

6 (( .. )) = ( (6a + adi6(3i))(a11) 6a(a12) + ib(81)a12 - a12ib(82) ) 
13 aiJ 6a(a21) - a2iib(8i) + i6(82)a21 (6a +ad i6(82))(a22) · 

Fix £ E (0, 1/2) and a C00-function f on R with compact support such that f (0) = 0 
and f(t) = r 1/2 on [1- £, l]. Let e be a projection in C. We choose 81, 82 E [O, l] so that 

Let 
.. = ( 0 ls1(ehs2(e)) 
J; 0 0 . 

Then 

* ( 0 0 ) 
xx= 0 ls2(ehs1 (ehs2(e) 

and Sp(x*:-i:) C {O} U (1 - £, l]. Let v = xf(x*x). Then vis a partial isometry such that 

vv* = ( rs 1 ( e) 0 ) 
0 0 ' 

* ( 0 0 ) vu-- 0 "(
82

(e) · 

Since all the components of 613 (:r) are zero except for the (1,2) component and (c5a + 
adib(8))r8 (e) = 0, we have that 

llo13(x)/I /lc513(x)12ll 

llrs 1 (e)ib(8i)/s2 (e) - ls1i6(82)rs2 (e)I! 

< llb(8i) - 6(82)11· 
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Since /lo/3(:r*x)// s; 2/lb(sL) - 6(s2)/I, and 

OfJ(j(:r*x)) = 013(! }(s)eis:i"xcls) = j }(s) fu 1 
eitsx·xisoµ(:c*:r)ei(l-t)sx·.rdtds, 

it follows that 
/loµ(J(x*x))/I s; j /}(s)s/ds · /lor3(x*:c)I/. 

Thus there is a constant C > 0 such that 

By the KMS condition on cp we have a continuous function f on the strip Sc between 
S'z = 0 and S'z = c1 analytic in the interior, such that 

j(t) cp(vf3t(v*)), t E R 1 

f(t + ic) - cp(f3t(v*)v), t ER. 

Then f is differentiable on Sc including the boundary and satisfies that 

Hence it follows that 

J' ( t) 
j'(t + ic) 

cp(vf3t(of3(v*))), t ER, 

cp(f3t(of3(v*))v), t ER. 

sup /j'(z)/ s; sup /J'(z)/ ::S C'max{/lws1 /I, l/ws 2 /l}l/b(si) - b(s2)/I, 
zESc zEDSc 

which implies that 

/ws 2 (rs 2 (e)) -ws1 (rs 1 (e))/ - /J(ic) - f(O)/ 
< /c/CiVIl/b(s1) - b(s2)1/, 

where JV! = max{l/wsll I s E [O, l]}. vVe let m = min{/lwsl/ I s E [O, 1]} and choose 
to = 0 < ti < · · · tk = 1 such that 

JV! ]\If 1 
/c/C'-(1 + -)Length(b(s)1 s E [ti-11 ti])< -

4
. 

m m 

Then for any projection e E C', we subdivide each interval [ti-l1 ti] into s0 =ti-I < s 1 < 
· · · < se = ti such that 

and apply the above argument to each pair Sj_ 11 Sj to obtain that 
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Thus we have that for any projection e E C 

1

w1;-1lt;_ 1(e) _ Wt;lt;(e)I < 
Wti-l (1) wt;(l) . 

1/ () . ()/ W/w1(l)-1.v·1 _ 1 (l)/ 
-:--- Wt;_ 1 lt,_ 1 e - Wt., It; e + i ' (l) '(l) 
tn. Wt; Wt;_ 1 

1 iv! I 

< (- + -
2

)/c/C1WLength(b(s), s E [ti_ 1,ti]) 
ni m 

< 1/4. 

Let 
Wt/t 

I.Pt= Wt(l) 

and recall that I.Pt is a factorial c-KMS state with respect to a. Since I.Pt = cp1E with E the 
projection onto C and l/(l.Pt;_ 1 - cptJ/CI/ :S 1/2, we have that l/l.Pt;_ 1 - I.Pt;// :S 1/2. Hence 
l.Pt;_ 1 =I.Pt;· Thus we conclude that cp0 = cp1 or <I>(10

1)(w) = <I>(r1 1)(w) for w E 8(I<c)· 
This implies that <I>(1o)(w) = <I>(r1)(w) for w E 8(J<c) as well. 

Remark 2.4 Among the quantum lattice models, two or more dimensional, there are 
long-range interactions which exhibit continuous symmetry breaking. Let a be the flow 
generated by such an interaction and let I be an action of T which exactly commutes 
with o: and acts non-trivially on the simplex of c-KMS states at some inverse temperature 
c > 0. Suppose that a is an inner perturbation of an AF flow, i.e., 5 = Oa + adib is the 
generator of an AF flow. Since ltOlt 1 = 5 +ad i (It ( b) - b), we can conclude that t f--7 It ( b) 
is not rectifiable; thus at least b is not in the domain of the generator of 1. (Note we still 
cannot conclude that o: is not an inner perturbation of an AF flow.) 

3 Property of real rank zero 

First we generalize H. Lin's result [16] and then use it to prove that the almost fixed point 
algebra for an AF flow has real rank zero. 

Theorem 3.1 For every E > 0 there ·is a v > 0 satisfying the following condition: For 
any n EN and any pair a,b E (Nin)sa with I/bl/ :S 1 and l/[a,b]I/ < v there ex1:sts a pair 
a1, bi E (i\!ln)sa such that /la - a11/ < E, /lb- b11/ < E, and [a1, b1] = 0. 

If we impose the extra condition that I/al/ :::; 1 for a, then this result is due to H. Lin 
(see also [12]). Our proof is to reduce Theorem 3.1 to Lin's result. 

Lemma 3.2 Let f be a C 00 -function on R such that f ~ 0, J f(t)dt = 1, and supp j c 
(-1/2, 1/2), For any pa'ir a, b elements in a C*-algebras-algebra such that a= a*, define 

bi = / J (t)eitabe-itaclt. 
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Then it follows that 

11b - b111 < J f(t)ltjdt · 11[a., bJ11, 

11[a., biJ11 < J f(t)dt. 11[a., bJ11. 

Proof. This follows from the following computations: 

b1 - b - J f(t)(eitabe-ita - b)dt, 

- If (t) ht eisa[fo., b]e-isaclsdt, 

[a, bi] - j f(t)eita[a., b]e-itaclt. 

Remark 3.3 If we denote by Ea the spectral measure of a, then the b1 defined in the 

above lemma satisfies that 

Ea(-oo, t - 1/4] b1Ea[t + 1/4, oo) = 0 

for any t E R, [6, Proposition 3.2.43]. 

Lemma 3.4 For any E > 0 there is a v > 0 satisfying the following conddion: For any 
n EN, any pair a, b E (J\!In)sa w'ith ljbjj :S 1 and ll[a, b]jj < v, and any t ER there exists 
a projection p E iVln such that 

Ea[t + 1/4, oo) < p :S Ea(t - 1/4, oo), 

jj[a,p]ll < E, 

jj[b,p]jj < E, 

where Ea denotes the spectrnl measure associated with a. 

Proof. Let j be a C00-function on R such that 

f(t) = { 0 t :S -1/4 
1 t?:.1/4 

and j(t) ~ 2t + 1/2, 0 < f(t) < 1 fort E (-1/4, 1/4). Define a function 9N on R for a 

large N by 
9N(t) =min{/ (t), f ( VN - t/ VN) }. 

The function 9N is C00 if N - JN/ 4 > 1/ 4 and satisfies that 

{
1 tE[l/4,N-JlV/4] 

gN(t) = 0 t :S -1/4 or t?:. N + VN/4 
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If N - JFi/4 2 l!all, we have that 

.f(a) = 9N(a) = j g/v(t)eitadt, 

where 
0 

( t) 1 I ( ) -its 1 9N = 2rr. 9N "' e cs. 

Since 

we have that 
ll[b, .f(a)il ~ j jg!v(t)tjdt · ll[b, aJll· 

· ~ (t) 1 J ( ) d -itsd 1 J 1 ( ) -its itgN = -- 9N s -d e s = - 9N s e ' 
2rr s 2rr 

Since 

it follows for t -=/ 0 that: 

lim itg~v(t) - J_jf'(s)e-itscls-lim 
1 

jf'(JN-s/JN)e-itscls 
N-+oo 2rr 2rrJFl 

- J_ j J'(s)e-itscls 
2rr 

- ]'(t). 

Since the above convergence can be estimated by 

we obtain that 
ll[b, f(a)Jll ~ C'll[b, aJll, 

where 
c = J 1J'(t)lclt. 

If li[a,bJll is small enough, then ll[b,J(a)Jll is so small with llJ(a)il ~ 1 and llbll ~ 1 that 
H. Lin's result is applicable to the pair b, c = j(a). Thus we obtain bi, c1 E (J\!ln)sa such 
that 

lib - bill~ 0, lie- c1il ~ 0, [b1, c1] = 0. 

Let q be the spectral projection of c1 corresponding to (1/2, oo). Since lie- c1 il ~ 0, and 
the spectral projection of c corresponding to (0, oo) (resp. [1, oo)) is Ea(-1/4, oo) (resp. 
Ea[l/4,oo)), we have that 

Ea(-l/4,oo)q ~ q, 

Ea[l/4, oo)q ~ Ea[l/4, oo), 
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where the approximation depends only on lie- c1 IJ, which in turn depends only on II [a, b] II. 
Hence in particular E11 (-1/4, 1/4) almost commutes with q. By functional calculus we 
construct a projection q0 from Ea(-l/4, l/4)qEa(-l/4, 1/4) and set p = q0 + Ea[l/4, oo), 
which is close to q, dominates E11 [1/4, oo) and is dominated by E11 (-1/4, oo). Since 
[p, a] = [p, Ea ( -1/ 4, 1/ 4)a] = [p-q, En( -1/4, 1/ 4)a] +[q, E11 ( -1/ 4, 1/ 4) (a- f (a) /2+ 1/ 4)], 
we obtain that l/[p, a]// ::::; 21/p - qi/ + 2 suptE(-t/,1,1; 4) It - f(t)/2 + 1/4/. Since [p, b] = 
[p-q, b]+[q, b] = [p-q, b]+[q, b-bi]+[q, bi], we obtain that l/[p, b]// ::::; 21/b/l//p-ql/+2//b-b1 //. 

Hence pis the desired projection fort = 0. We can apply this argument to the pair a-tl, b 
to obtain the desired projection p for t E R. 

Lemma 3.5 For any E > 0 there exists a u > 0 satisfying the following condition: For 
any n E N, any pair a,b E (lvln).rn w-ith I/bl/ ::::; 1 and l/[a,b]I/ < u there is a fam-ily 
{Pk : k E Z} of projections in J\!fn such that 

[Ea(j - l/4,j + 1/4),pk] = o, j, k EN, 

Ea[k + 1/4, k + 3/4] 5: Pk 5: Ea(k - 1/4, k + 5/4), 

l/[a,pk]I/ < E, 

l/[b,pk]I/ < E, 

°LPk = 1, 
k 

where Pk = 0 except for a finite n'Umber of k. 

Proof. By the previous lemma we choose a u > 0 such that for a pair a, b as above, there 
are projections ek, k E Z such that 

Then we set 

Ea[k + 1/4, oo)::::; ek 5: Ea(k - 1/4, oo), 

//[a, ek]I/ < t:/2, 

l/[b, ek]I/ < e/2. 

Pk= ek(l - ek+1) = ek - ek+t· 

Then {pk} is a family of projections with L,k Pk = 1. Since 

Ea(-oo, k + .3/4] 5: 1 - ek+l ::::; Ea(-oo, k + 5/4), 

we see that {pk} satisfies the required conditions. 

Proof of Theorem 3.1 
By Lemma 3.2 we may assume that we are given a pair a, b E (Nln)sa such that 

I/bl/::::; 1, l/[a.,b]I/ < u, and Ea(-oo,t-1/4JbEa[t+l/4,oo) = 0 for any t ER, where u > 0 
is given in the previous lemma. Choosing the projections {pk} given there, we claim that 

/la - °LPkClPkll < 4e, 
k 

l/b - L PkbPkl/ < 4E. 
k 
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To prove this note that if Ii - j I > 1 then JJiaJJj = 0 = PibPj. Since 

a - LP1.:0.p1,; = LJJ1.:aJJ1.:+t + LP1.:+10.JJ1,; = L[JJ1,;,a]Jh+1 + LP1.:+i[a,pk], 
k k k k k 

and 

and similar computations hold for three other sums and for b, we get the above assertions. 
vVe then apply H. Lin's result [16] to each pair p1.:apk, p1,;bpk which satisfies 

Assuming that 2E + v is sufficiently small, we obtain a pair ak, bk in (p1.:lvlnPk)sa such that 

We set a' = Lk ak and b' = Lk b1,;. Then it follows that [a', b'] = 0 and a~ a', b ~ b' 
because of the inequality 

and a similar inequality for b, b'. This completes the proof. 

For a flow a of a unital simple AF algebra we denote by Oa the generator of a as 
before. We introduce the following condition on a, which we may express by saying that 
the almost fixed po'int algebra for a has real rank zero. 

Condition FO: For any E > 0 there exists a v > 0 satisfying the following condition: If 
h = h* E V(oa) satisfies that llhll ::::; 1 and [[oa(h)il < v there exists a pair k = k* E V(oa) 
and b = b* EA such that f[h - kfl < E, flbll < E, (oa + adib)(k) = 0, and Sp(k) is finite. 

In the above condition let C be the (finite-dimensional) *-subalgebra generated by k. 
Then h is approximated by an element of C within distance E and fl<5alCll < 2E. 

vVe recall from [15, Proposition 3.1] that a flow a is a cocycle perturbation of an 
AF flow if and only if the domain V(oa) contains a canonical AF masa. (A maximal 
abelian AF C* -subalgebra C of a AF C* -algebra A is called canonical if there is an 
increasing sequence (An) of finite-dimensional *-subalgebras of A with dense union such 
that C n Ann A~_ 1 is maximal abelian in Ann A~_ 1 for each n with Ao= 0.) 

Theorem 3.6 Let a be a flow of a non type I simple AF C* -algebra. If V( Oa) contains 
a canonical AF masa, then the above cond-it'ion FO is satisfied, i.e., the almost fixed point 
algebra has real rank zero. 

13 



Proof. Let E > 0. We choose a v > 0 as in Theorem 3.1. 
Leth= h* E V(oa) be such that llhll:::; 1 and lloa(h)ll < v. There exists a c = c* EA 

such that llcll < min{(v-llc5a(h)ll)/2, E} and Oa+ad ic generates an AF flow. Explicitly let 
{ A11 } be an increasing sequence of finite-dimensional *subalgebras of A with dense union 
such that An C V(6a) and (60 + aclic)(A 11 ) C A 11 for each n. There exists a sequence 

{h. 11 } such that hn = h.~. E An, llh 11 ll :S 1, llhn - hll-+0, and llc5n(h - hn)ll-+O. Since 
ll(oa + adic)(h)ll < v, we have an n, h0 = h0 E An, and a= a* E An such that llholl :S 1, 
llh- holl < E, ll(ocr + adic)(ho)ll < v, and (c5a + ac\ic)IAn = adialAn. Since An is a finite 
direct sum of matrix algebras, Theorem 3.1 is applicable to the pair a, h0 . Thus there 
exists a pair a1, h1 E (An)sa such that Ila - a1ll < E, llho - hill< E, and [a1, hi]= 0. Let 
b = a1 - a+ c. Then we have that llh - h1 II < 2E, llbll < 2E, (6a +ad ib)(hi) = 0, and 
Sp(h1) is finite. 

In the special case that a is periodic, the fact that the almost fixed point algebra has 
real rank zero simply means that the fixed point algebra has real rank zero: 

Proposition 3.7 Let A a non type I simple AF C*-algebra and a a periodic flow of A. 
Then the following conditions are equivalent: 

1. Conddion FO holds. 

2. The fixed point algebra Aa ={a EA I at(a) =a} has real rank zero. 

Proof. We may suppose that a 1 = id. Suppose (1); we have to show that {h E 
A~a I Sp(h) is finite} is dense in A~a [9]. Let h = h* E Aa, E > 0, and n E N. There 
exist an h1 E V(oa)sa and b E Asa such that llh - hill < E, llbll < E, (oa +ad ib)(h1) = 0, 
and Sp(h1 ) is finite. vVe approximate h1 by an element h2 = L,f,,=-n(k/n)pk in the *­
subalgebra generated by h1, where (Pk) is a mutually orthogonal family of projections. 
vVe may assume that llh1 - h2ll :::; l/n and hence that llh - h2ll < E + l/n. Note that we 
still have that (oa +ad ib)(h2) = 0. Since llat(Pk) - Pkll:::; ltlllo(p,Jll < 2ltic, we have that 

II fo
1 

at(Pk) - Pkll < E 

for k = -n, -n + 1, ... , n. If Eis sufficiently small, then by functional calculus we induc­
tively define a projection qk E A a from (1- L,J~~n qJ) J O:tPkdt(l- L,J~~n qJ), which belongs 

to A.a, such that qk ~Pk and qk is orthogonal to L,j~~n qj· Then h3 = L,k=-n(k/n)qk ~ 
L,'k=-n(k/n)pk = h2, where the approximation is of the order of E times some function of 
n. Since h3 E A a, we reach the conclusion by choosing E > 0 sufficiently small. 

The converse implication is easy to show. 

If a is not periodic, we can still re-formulate Condition FO as follows, further justifying 
the terminology that the almost fixed point algebra has real rank zero. vVe denote by e00 

the C'* -algebra of bounded sequences in A and by c0 the closed ideal of C00 consisting of 
sequences converging to zero. Then we set A00 to be the quotient C00 /c0 . The flow a on 
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A induces a flow a on e00 by O't(:r) = (at(:t:n)) for :r = (:rn)· But since a is not strongly 
continuous (if a is not uniformly continuous), we choose the C* -subalgebra e~ consisting 
of :c E e00 with t H 3'1(:r) continuous. Since er;: ::::J Co and Co is a-invariant, a induces a 
(strongly continuous) flow on the quotient A~= e~ /c0 , which will also be denoted by a. 
Note that A~ is inseparable even if A is separable. See [13]. 

Proposition 3.8 Let A be a C*-algebrn and a a flow of A. Then the following condit?:ons 
are equivalent: 

1. Condition FO holds. 

2. The fixed po·int algebra (A~)a has real rank zero. 

Proof. Suppose (1) and let h E (A~)~a· We take a representative (hn) E C~ of h such 
that h~ = hn for all n. Taking a non-negative C'00 function f with integral 1, we may 
replace each hn by J J(t)a.t(hn)dt. Thus we can assume that hn E V(oa) and ll<5a(hn)l!--tO. 
Then for any E > 0 there exists a sequence of pairs kn E V( Oa)sa and bn E Asa such that 
llhn - knll < c:, llbnll--tO, (oa +ad ibn)(kn) = 0, and Sp( kn) is finite and independent of n. 
Hence k = (kn)+ c0 EA~ satisfies that llh - kl! :::; c:, Oa(k) = 0, and Sp(k) is finite. This 
shows that (A~)a has real rank zero [9]. 

Suppose (2). If Condition FO does not hold, we find an c: > 0 and a sequence (hn) 
in V(Oa)sa such that l!hnll = 1, ll6a(hn)ll--t0, and such that if k E V(oa)sa and b E Asa 
satisfy that llh - kl! < c:, llbll < c:, and Sp(k) is finite, then (oa +ad ib)(k) =I= 0. Since 
h = (hn) + c0 E A~ belongs to (A~)a, we have a k E (A~)~a such that llh - kl! < E 

and Sp( k) is finite. By choosing an appropriate representative (consisting of projections) 
for each minimal spectral projection of k, we find a representative (kn) of k such that 
k~ =kn, Sp(kn) = Sp(k), and l!oa(kn)ll--tO. This is a contradiction. 

We recall here a condition on a flow a considered in [15]. 

Condition Fl: For any c: > 0 there exists a v > 0 satisfying the following condition: If 
u E V(oa) is a unitary with !loa(u)ll < v there is a continuous path (ut) of unitaries in A 
such that 'I.to= 1, 1t1 = u, 'Llt E V(oa), and ll<Sa(ut)ll < E fort E [O, l]. 

In the above condition we can choose the path ( 1lt) to be continuous in the Banach 
*-algebra V(oa)· vVe express this condition by saying that the almost fixed point algebra 
for a has trivial I<1 . What we have shown in [15] is that if a is an inner perturbation of 
an AF flow then the above condition holds. Actually by using the full strength of Lemma 
5.1 of [2], one can show that the following stronger condition holds: 

Condition Fl': For any c: > 0 there exists a v > 0 satisfying the following condition: If 
u E V ( o a) is a unitary with 11 Oa ( u) II < v there is a rectifiable path ( 1lt) of uni taries in A 
such that u0 = 1, u 1 = u, llt E V(oa), l!oa(ut)ll < c: fort E [O, 1], and the length of (ut) is 
bounded by C, where C is a universal constant (smaller than 37f + E for example). 

Then one can show the following: 
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Proposition 3.9 Let A be a unital C*-algebra and a a flow of A. Then the following 
conditions are equivalent: 

1. Condition F 1' holds. 

2. The tmitary gro·1tp of the .fi:ced po·int algebra (A~)a is path-wise connected,· moreover 
any ·unitary is connected to 1 by a cont'in:1w·us path of unita.ries whose length is 
bounded by a universal constant. 

We will leave the proof to the reader. 

Remark 3.10 If A is a unital simple AF C'* -algebra, one can construct a periodic flow 
a of A, by using the general classification theory of locally representable actions [4], such 
that the almost fixed point algebra for a has real rank zero but does not have trivial K 1. 

Proposition 3.11 Let A be a unital simple AF C* -algebra. Then there exists a flow a 
of A such that T>( Oa) is AF and the almost fixed point algebra for a does not have real 
rank zero but has trivial K 1 (i.e. 1 FD holds but not Fl). 

Proof We shall use a construction used in the proof of 2.1 of [15]. Let (An) be an 
increasing sequence of finite-dimensional *-subalgebras of A such that A= UnAn and let 
An = E9J~ 1 Anj be the direct sum decomposition of An into full matrix algebras Anj. Since 
K 0 (An) ~ zkn, we obtain a sequence of ]{0 groups: 

where Xn is the positive map of K0 (An) = zkn into K0 (An+ 1) = zkn+i induced by the 
embedding An C An+l· Since K 0 (A) is a simple dimension group different from Z, we 
may assume that minij Xn(i, j)--+oo as n--+oo. 

By using (An) we will express A as an inductive limit of C'*-algebras An@C'[O, 1]. First 
we define a homomorphism CfJn,ij of Anj@ C[O, 1] into Anj@ Nix.n(i,j)@ C'[O, 1] as follows: 
If i = j = 1 then 

( )( ) ( 
X.n(l,1)-2 ·( t + e ) 

CfJn, 11 x t = X t) E9 E9 e=:o X ( l l) _ l , 
Xn , 

otherwise 

( 
X.n(l,1)-1 t + e 

C/)n,ij x)(t) = E9e=o x( /. (1 1) ). 
Xn , 

Especially CfJn,ij(:r) is of diagonal form in the matrix algebra over Anj@ C'[O, 1]. Then 
embedding 

E9J~1Anj iSl Nlx.n(i,j)@ C'[O, 1] 

into An+l,i iSl C'[O, 1], ( CfJn,ij) defines an injective homomorphism CfJn : An @C'[O, 1 ]--+ A. 11 +1@ 
C'[O, 1]. Then it follows that the inductive limit C'*-algebra of (An@C'[O, 1], CfJn) is isomor­
phic to the original A; we have thus expressed A as UnBn where Bn = A11 @C'[O, 1] C Bn+l 
[11]. 
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We will define a flow or one-parameter automorphism group a of A such that a 1(B11 ) = 
Bn and a 1/ 8 n is inner, i.e., a is locally representable for the sequence (Bn)· First we define 
a sequence (H11 ) with self-adjoint Hn E An C) 1 C Bn inductively. Let H1 E At 0 1 C B1 
and let H11 = Hn-1 +Li Lj hn,iji where 

h~.ij = hn,ij E 1 (2) i\!f\n-i(i,J) 01 C An-1,j () Jvf:i.n-i(i,j) 0 1 C Bn. 

We define at/Bn by Ad eitfl,. /Bn· Since a1 /Bn =Ad eitfl,.+ 1 /Bn from the definition of Hn+I • 
( O't / Bn) defines a flow a of A. 

We fix H1 and hnij in the following way: l/hniJI/ :::; 1/2 except for hntl which is defined 
by 

hntl = 1EB0 EB''. EBE 1®iV!Xn-1(1,1)01 c Ant® C[O, l]. 

We will show that the a defined this way has the desired properties. 
Let x be the identity function on the interval [O, 1] and let Xn = l®x E l@C[O, 1] C B 11 • 

To show that 'D(r5a) is AF, it suffices to show that for each x 11 , there exists a sequence 
(hm)m>n such that hm = h":n E Bm, Sp(h.m) is finite, and l/x 11 - hml/oa --+0 as m--+oo. For 
a sufficiently large m > n, the image <fJmn(Xn) of Xn in Bm = Am ® C[O, 1] is almost 
constant as a function (into the diagonal matrices in Am n A~) on [O, 1] except for one 
component, which is x and appears through the first component of <fJkll for n :::; k < m. 
\/Ve will approximate this component x by a self-adjoint element with finite spectrum by 
using the part appearing through the components of <fJkll other than the first; they are the 
direct sum of l\ll = I1k==-n1(Xk(l, 1) -1) components xet/), e = 0, 1, ... , l\ll -1. There is a 
standard procedure to approximate the sum of these Jvl + 1 components by a self-adjoint 
element k with finite spectrum [2]. Since Hm - Hn ism - non the support projection of 
x and 0 on the support projections of the other components, the I/ · 1/ 0" norm of k is of 
the order of ~wn ~ 0. (All the spectral projections of k are just constant at each point 
of [O, 1] perhaps except for a pair of projections, whose eigen-values are different only by 
the order of l/J\ll, and which are of the form: 

( 
cos2 e cos e sin e ) ( sin 2 e - cos e sin e ) 

cos e sin e sin 2 e ' - cos e sin e cos2 e 

in the space spanned by the support projection of :i.: and one of the support projections 
of the other i'vl components, where e is a function in t E [O, 1] which changes from 
-7r/2 to 7r/2 quickly near the point in problem. This implies that l/r5a(k)I/ ~ ~-:;/ and 
l/:i.: 11 - kl/ ~ l/iVl for the parts of k, x 11 - k in question.) This concludes the proof that 
'D(6a) is AF. 

Suppose that for any c > 0 there exists a pair of self-adjoint elements h, b E A such 
that //hi/ :::; 1, I/bl/ < E, l/x1 - h// < E, (6a +ad ib)(h) = 0, and Sp(h.) is finite, where x1 
is the element of B1 defined above. Since UmBm is dense in 'D(6a), we may suppose that 
h E Bm for some rn. The image <fJmi(x1) in Brn n A~ is diagonal and there is a component 
:r, whose (one-dimensional) support projection will be denoted by Q. Leth= Li XiPi be 
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the spectral decomposition of h and define a function ei by ei(t) = Qpi(t)Q. Then we 
have that 

It - L r\ei(t)I < E, t E [O, l]. 

Since 

we obtain that 

Since 

L ei(o) < 2E. 
,\>l/2 

1 1 1 
1 - E < 2= /\ei(1) < 2 L ei(1) + L ei(1) = 2 +? 2= e.i(1), 

,\9/2 ,\;>1/2 ~ ,\;>1/2 

we get 
L ei(1) > 1 - 2E. 

,\;>1/2 

Thus the projection p defined by 

p= L Pi 
,\;>1/2 

satisfies that llQp(O)Qll < 2E and l!Qp(l)Qll > 1 - 2E. If E < 1/4, there must be a point 
t E [O, 1] such that llQp(t)Qll = 1/2. Then since Qp(t)(l - Q)p(t)Q + Qp(t)Qp(t)Q = 
Qp(t)Q, we have that llQp(t)(l - Q)ll = 1/2. Since (Hm - H 1)Q = (m - l)Q and 
ll(Hm - Hi)(l - Q)ll Sm - 3/2, we get that 11<\-~(Qp(l - Q))ll = llQoa(P)(l - Q)ll ~ 1/4. 
But since (oa +ad ib)(h) = 0, we had that lloa(P)ll S 2llbll < 2E. For a small E > 0 this 
is a contradiction. Thus we obtain that the almost fixed point algebra does not have real 
rank zero. 

Let u be a unitary in V(oa) such that Oa(u) ~ 0. Since UmBm is dense in V(oa), we 
may suppose that u E Bm =Am® C[O, 1]. Since Hm E Am® 1, the condition Oa(u) ~ 0 
implies that ll[it(t), Hm]ll ~ 0 for all t E [O, l]. Define a continuous path (us) of unitaries 
in Bm by us(t) = u((l-s)t). This path runs from ·u to the constant function u1 : t H u(O) 
with the estimate lloa(us)ll S llc5a(u)ll· By 4.1 of [15], there is a continuous path (vs) of 
unitaies in Am from u(O) to 1 such that [v8 , Hm] ~ 0. This concludes the proof that the 
almost fixed point algebra has trivial K 1. 

4 The CAR algebra 

Let A = A(H) be the CAR algebra over an infinite-dimensional separable Hilbert space 
H; we denote by a* the canonical linear isometric map of H into the creation operators 
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in A, [7, Section .5.2.2.1]. Note that A, as a C'*-algebra, is isomorphic to the UHF algebra 
of type 2=. When U is a one-parameter unitary group on H, we define a Row o of A by 

which will be called the quasi-free Row induced by U. If we denote by H the generator of 
U, i.e., U1 = eitff, the generator Oa of a satisfies that 

Oa(a·(~)) = ia*(HO, ~ E 'D(H) 

and the *-subalgebra generated by a*(~), ~ E 'D(H) is dense in the Banach *-algebra 
'D(6c.J If H is diagonal, i.e., has a complete orthonormal family of eigenvectors, then o: 
is an AF flow; moreover it is of of p·itre prod'Uct type in the sense that (A, o:) is isomorphic 
to ( J\!l2oo, (3), where (3 is given as 

where {/\n, n E Z} are the eigenvalues of H. If His not diagonal, o: acts on a part of A 
in an asymptotically abez.ian way; so we can conclude that o: is not an AF flow. See [7, 8, 
18] for details. 

Proposition 4.1 If o: is a quasi-free flow of the CAR algebra A= A(H), then the almost 
fixed po-int algebra for o: has trivial K 1 . 

Proof. vVe use the notation given before this proposition and let Ebe the spectral measure 
of H. Let E > 0 and let 'l.l E 'D(6a) be a unitary such that llO'a(u)I! < E. Since the *-
subalgebra P generated by 

a*(O, ~ E LJE[-n,n]H 

is dense in 'D(oa), we can approximate u by :r E P. Let A1 be the (abelian) von Neumann 
algebra generated by Ut = eitH, t E R. We may approximate u by x in a *-subalgebra P 1 

generated by a*(6), a*(6), ... , a*(~n), where all ~i E E[-N, N]H for some N. vVe may 
further impose the following conditions on 6, ... , ~n: 

1. ll~dl = 1 for all i. 

2. For i =/= j, J\/l~i 1- J\/l~j. 

3. Denote by Si the smallest closed subset of R such that E(Si)~ = ~· Then either Si 
is a singleton or an infinite set. 

The condition 1 is trivial and the condition 3 is easy to obtain. To make sure the condition 
2 holds we may argue as follows. Starting with 6, ... , ~n let e1 be the projection onto 

J\/1~ 1 . Then~~ = 6 = e 1 ~ 1 , ~~ = e1:r2 , ... , ~~ = e 1 ~n all belong to e1H on which J\/le1 is 
a maximal abelian von Neumann algebra. Thus there are a finite number of unit vectors 
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·ry 11 , ... , 17 1m in e 1 H such that the linear span of ''lti 's approximately contains all ~j and 
JVl·T?ii l. JVl1JlJ for i =I j. We apply the same argument to the remaining (at most n - 1) 
elements (1 - e1)6, (1 - ei)6, ... , (1 - ei)~n in (1 - ei)H which is left invariant under 
JVI. Next, let e2 be the projection onto Jvl(l - ei)6 (assuming this is non-zero). Note 
that e2 .S 1 - e1. We find a finite number of unit vectors ·ry2j in e2'H whose linear span 
approximately contains e2(1-ei)6 = (l-ei)(~, e2(1-e1)6 = e26, ... , e2(l-ei)~n = e2~n 
such that M ·172i l. JVI ·ry2J for i =I j. Note that JVI ''hi l. Jvl 172j for all i, j. Repeating this 
procedure we obtain a finite number of unit vectors C%) satisfying the condition 2 whose 
linear span approximately contains the vectors ~ t, ... , ~n. 

Since the *-algebra P 1 is isomorphic to lv/2,, by [7, Theorem 5.2.5], we may further 
assume that :r is a unitary. We express x as 

x = L aµva*(p,)a(v), 
µv 

where fl - (p1 , ... , fle) and v ranges over the subsequences of (1, 2, ... , n) and a*(p) 
denotes 

a*((µi)a*(~µ2 ) • • · a*(~µe) 

with a(v) = a*(v)*. (If pis the empty sequence, then a*(p) = 1.) Note that the coefficients 
aµv are unique; hence the condition that xis a unitary can be read from (aµv) only, i.e., 
if we replace 6, ... , (n by a different orthonormal family 771 , ... , 1Jn and define x by the 
same formula with a* (p) = a* ( 7]µ 1 ) · • ·a* (rJµJ, then x is still a unitary. 

Let 

''li = H~i - (H(il~i)~i . 

If 1Ji =f. 0 let ~i+l/2 = 11dll7Jill and otherwise let ~i+l/2 = 0. Let I be the subsequence of 
{1, 3/2, 2, ... , n + 1/2} with (c =f. 0. Then the vectors (c, c E I form an orthonormal 
family. Since H(i = (H~il~i)~i + ll7Jill~H1/2, Oa(:i:) is of the form 

where a,T are subsequences of I. Again the norm lloa(x)ll can be read from (bO'r) only. 
Note that (bO'r) depends only on (aµv), (H~d~i), and llH(i - (H~d~i)~·dl· 

By using Lemma 4.2 below, if Si is not a singleton, we will find a continuous path of 
(fo)o::;t<l of unit vectors in ;vl~i c H such that (iO = ~i, 

(Hfojfo) = (H~d~i), 

l!Hfo - (Hfolfo)fo)ll = llH~i - (H~d~i)~dj, 

and supp fo shrinks to a three point set as t-71, where supp~ is the smallest closed subset 
S of R with E(S)~ = ~· And we set ~i+i;2 ,t = ci(Hfo-(Hfolfo)fo), where ci is a positive 
normalizing constant. If Si is a singleton, we set fo = ~i· By using fo, 1 .S i .S n instead 
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of ~i, we define :r1 E A by the same formula as x. Then we have that (:ci)09< 1 is a 
continuous family of unitaries with :c0 = :c satisfying 

CTT 

where a,T are subsequences of I and a*(a),a(r) are now defined by using ~ct. c EI 
instead of ~c· Hence it follows that llc5a(:ct)ll = llc5a(:r)ll < E. 

We will show that for a t 0 close to 1 there is a b = b* E A such that llbll < c:/2 
and c5a +ad ib leaves a finite-dimensional *-subalgebra containing x 10 invariant, and such 
that ll(c5a +ad ib)x 10 II is sufficiently small. Then by [5] we can deform x 10 to 1 in that 
*-subalgebra keeping the norm estimate along the path. 

Suppose that t0 is sufficiently close to 1. If Si is a singleton, we set T)il = ~i; otherwise 
we choose three unit vectors T/ii, T)iz, 77i3 in J\/l~i such that ~ito is a linear combination of 
77i/s and supp 7lij is contained in a sufficiently small neighborhood of some Sij E Si, where 
si1 , si2 , si3 are all distinct. Let Pij be the projection onto the space spanned by T)ij, HT)ij 
and define an operator Tij such that ~j = PijTijpij = Tij and Tij7lij = (sijl-H)T)ij· Then 
it follows that the projections Pij are mutually orthogonal and llTiJ II ::; 211 ( Sij 1 - H)T)ij II, 
which is assumed to be very small. Let ~ = "£} Tij and T = "E-i Ti, where we set Ti = 0 
if Si is a singleton. Then llTll = sup llTdl, rank(T) ::; 6n, and ( H + T)rJij = Sij7lij. We 
may suppose that Tr(ITI) < c:/2. Note that the derivation of A corresponding to T is 
inner and given as ad ib, where b = "£ ,\a*((i)a((i), if ((i) is a complete orthonormal set 
of eigenvectors of T with (,-\) the corresponding eigenvalues; T(i = Ai(i· If P 2 denotes the 
*-algebra generated by a* ( T/ij), then P 2 is left invariant under the derivation corresponding 
to H + T, which is c5a +ad ib. Hence there is an h = h* E P 2 such that ( c5a +ad ib) IP2 = 
ad ihlPz. Since llbll = TrlTI < c:/2, we have that 

II ad i h ( x to ) 11 < 2 E. 

If E is sufficiently small, we have by 4.1 of [15] a continuous path (Yt) of unitaries in P 2 

such that 
ad ih(yt) ~ 0. 

Since llc5a(Yt) II ::; I lad ih(yt) II + E, this completes the proof. 

Lemma 4.2 Let S be a compact infin·ite s'Ubset of R and v a probabildy meas'Ure on S 
with s'Upport S. Let H be the m:ultipl'ication operator by the ident-ity function x H x on 
L 2 (v). If~ E L 2 (v) has norm one, there exists a contimw·us path (~t)o<t<l of 'Un-it vectors 
in L 2 (v) such that ~o = ~. (H~1l~1) and llH~t- (H~1l~1)~1ll = (llH~tll 2 

_:::: l(H~1l~t)l 2 ) 1 l 2 are 
constant in t, and supp ~t shrinks to a three-po-int set as t-+ 1. 

Proof. Since both (H~IO = fs :rl~(x)l 2dv and 

llH~ - (H~l~)~ll 2 = l x2 l~(:r) l2clv - (j~ :rl~(:r) lc!v) 2 
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depend only on the modulus l~(;r)I, we first choose a continuous path (~do<t<t of unit 
vectors in L2 (v) such that ~o = (, l~1 (:r)I = l~(:r)I, and ~i(:r) = l~(:r)I. Thus we may 
suppose that ~(:i.:) 2:: 0. 

Let a= min S, b =max S, and 

c r :c ~ ( :e) 2 cl{/ ( :c) ' J, 
v r :e 2 ~(:c) 2 clv(:i:) - c2

, ls 
where c is the mean of x and v is the variance of x with respect to the probability measure 
~(x) 2 clv. Then it follows that a< c <band 0 < v < (b-c)(c-a). (Note that a probability 
measure clµ on [a, b] with J :ccl{t = c can be approximated by a discrete measure 

ti - C • C - Si I: /\(--oSi + --ot;), 
i ti + Si ti + Si 

where Ai > 0, l::i Ai = 1 and a < Si < c < ti < b, whose mean is c and whose variance is 
l::i Ai(ti - c)(c- si)). vVe find three distinct points s 1 , s 2 , s 3 in S such that the convex set 

3 

{L AiOs; I Ai > 0, L Ai = 1} 
i=l 

contains a probability measure with mean c and variance v. (For example, if c E S we 
may take s 1 = a, s 2 = c, s 3 = b; otherwise set t 1 = max{ s E S I s < c} and t2 = min { s E 

S I s > c}. Then there are three of the four points a, t 1 , t2 , b satisfying the requirement. If 
(b-c)(c-ti) < v, we may set s 1 =a, s 2 = t 1, s 3 = b; otherwise if (t2 -c)(c-a) < v we may 
set s 1 =a, s 2 = t 2 , s 3 = b; otherwise we may set s 1 = a, s 2 = t 1 , s3 = t 2 .) Then for any 
E > 0 we can find a positive measurable function g on S with supp g c Ui( si - E, si + e) n S 
such that 

Define ~t E L2 
( v) by 

j g(x)clv = 1, 

j xg(x)dv = c, 

j x2g(x)dv = v + c2
. 

~1 (:r) = ((1 - t)~(x) 2 + tg(:r)) 1l 2
. 

Then ((t)o:::;t:::;t defines a continuous path of unit vectors in L2 (v) from ~ to J9 such that 

(H~tl~t) = (H~I~), 

llH~t - (H~tl(t)~tll = llH~ - (H~!~kll. 

and supp(~1 ) c ui( Si - E, si + e) n S. Continuing this argument with ~ = J9 and a smaller 
E, we ·will eventually obtain a continuous path (~1 )o:::;t<t with the required properties such 
that n1 us>tSllPP~s = {s1 , s2 , s3}. This completes the proof. 
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