
Replacing the X Window System:
Looking at how Free Software Organizations replaces legacy code and

how new standards are being created

Vegard Torvund

MA European Studies of Science, Society and Technology (ESST)

Centre for Technology, Innovation and Culture

UNIVERSITY OF OSLO

3. November 2014

2

Student: Vegard Torvund

E-mail: vegartor@student.sv.uio.no

1. Semester University of Oslo

2. Semester IT University of Copenhagen

Specialization: Situated Analysis of Global Connections

Supervisor: Rachel Douglas-Jones

Words: 17666

Table of Contents

1. INTRODUCTION...1
1.1 CONTEXT...2
1.2 THE CASE OF X WINDOW SYSTEM, WAYLAND AND MIR...4
1.3 RESEARCH OBJECTIVE...6
1.4 THESIS STRUCTURE..7
1.5 NOTES ON MY OWN POSITION AND BACKGROUND...7
1.6 NOTES ON THE RELEVANCE OF FREE SOFTWARE IN OUR SOCIETY..8

2. EXPLORING EXISTING LITERATURE AND CONCEPTS...11
2.1 WHAT DEFINES FREE SOFTWARE..11
2.2 REVIEWING EXISTING STUDIES ON FREE SOFTWARE..13
2.3 THE RECURSIVE PUBLIC..16
2.4 PATH DEPENDENCE...18
2.5 STANDARDIZATION AND REFLEXIVE MODERNIZATION...19

3. METHODOLOGY..24
3.1 LIMITATIONS AND ETHICAL CONCERNS..27

4. EMPIRICAL CASE AND BACKGROUND...28
4.1 BRIEF HISTORY AND CHRONOLOGICAL COLLECTION OF EVENTS..29
4.2 CONTACTING THE ACTORS...33

5. EMPIRCAL ANALYSIS...35
5.1 WHY A CONTROVERSY?..35
5.2 TECHNOLOGICAL CONSIDERATIONS..40
5.3 POLITICS AND POWER OF CODE...46
5.4 THE RESULT: A MORE COMPLEX TECHNOLOGY LAYER...53

6. CONCLUSION..56

7. APPENDIX...59
7.1 QUESTIONS USED IN THE INTERVIEWS...59

8. REFERENCES..60

Illustration Index
Illustration 1: Early implementation (1989) of X Window System...4
Illustration 2: Modern implementation (2012) of X Window System...4
Illustration 3: Internet protocol suite...20
Illustration 4: The reflexive Standardization Process(Hanseth et al., 2006)..................................23
Illustration 5: X satisfaction (xkcd.com)...30
Illustration 6: Layers of technology...37
Illustration 7: Relationship between upstream/downstream..38
Illustration 8: Ubuntu release cycle (UbuntuWiki, 2014)..43
Illustration 9: Reflexive standardization Mir...55

Abstract

Organizations involved in Free Software have pioneered new ways of thinking about intellectual

property, collaboration and elaboration. These organizations are bound together in varying de-

grees, through means of technology, legal circumstances and common goals in an environment

that is in a constant cycle of change. This thesis looks at a case where actors within the realm of

Free Software are in a process of replacing one standard with a new one. The necessity of gain-

ing consensus on standard ways of enabling interaction between the technologies that they create

and maintain is something that is required for these projects in order to achieve stable points of

interaction throughout their cycles of development. The thesis investigates a case that carries

with it a controversy; the controversy is explored through interviews and online material analysis

by drawing on methods and concepts from Science and Technology studies (STS).

First, the thesis explores in which ways the organizations are tied together and what consider-

ations they make when choosing the technologies they use in their solutions. Second, it looks at

how the process of creating a new standard have initiated not only a new alternative to the ini-

tially proposed standard, but also an underlying debate on whether a standard is necessary on the

discussed layer of technology. The findings reveal how software is being used as an argument in

discussions about how distributed infrastructures should be designed and how these arguments

can be shaped by values. The thesis also serves as an example of how efforts of standardization

can be counterproductive in the sense that the end result can turn into a more complex infrastruc-

ture than what was first intended.

Key words: Free Software, open source, software innovation, software standardization, reflexive

standardization, recursive public

Acknowledges

I would not have been able to write this thesis without the help of certain people. First of all I

want to thank my supervisor Rachel Douglas-Jones, who not only quickly recognised what I in-

tended to do with the case, but whose positive attitude and valuable suggestions supported me

throughout the writing process. I also want to thank Martin Gräßlin, Clement Lefebvre and Oliv-

er Ries for their forthcoming attitude and for allowing me to make use of their time and thoughts

when interviewing them. Also a big thanks to Paul Martin Mauget Birkeli who helped me with

necessary cleaning up and polishing of the thesis.

I also want to express my gratitude toward the Free Software community, who continuously

surprises me with their great ideas and visions for the future. And lastly to my partner Iselin

Grayston, who during these months has supported me with comfort and new perspectives. This

would not have been possible without you.

1

1. Introduction

Have you ever wondered about what is happening when you type a message into your smart-

phone and send it to a person twenty thousand kilometres away from you? How many com-

puter systems does the message have to visit before it has been relayed to its receiver? What

type of systems are making sure that your message is safely transferred to your intended re-

ceiver and not someone else? In many cases, these types of questions can not be answered

with a great amount of certainty due to the complexity of the infrastructure that enables this

type of communication through what we call the internet. The internet is for many people

something that is just there for you when you need it; it has become one of our many invisible

infrastructures. Yet, some people dedicate their whole lives to the designing, managing and

developing of the systems that keep the bits and pieces of our internet together. One group

that has played a great role in the creation and development of many of the parts that consti-

tute the internet today is the people and organizations involved in Free Software projects.

Today, these software projects have extended their applicability and are being implemented

and used in our smart phones, personal computers, cars, air-plane infotainment systems,

ATM’s and even four hundred kilometres away from the Earth, inside the International Space

Station (GENIVI, 2014;Foundation, 2014;Gartner, 2014) The projects themselves are being

driven by various methods of cooperation and elaboration between many organizations, some

of which are bound together by common interests, values and goals.

This thesis will take a closer look at some of the organizations behind these projects, and

more precisely look at a case where these organizations are within a process of collaborat-

ively changing out a central part of the code which these organizations share and use in their

http://www.gartner.com/newsroom/id/2573415
http://training.linuxfoundation.org/why-our-linux-training/training-reviews/linux-foundation-training-prepares-the-international-space-station-for-linux-migration
http://www.genivi.org/about-genivi

2

projects. The same code also binds these organizations together through a common means of

association.

1.1 Context

The spawning rate of Free Software projects has during the last 25 years been increasing, and

an estimation from 2008 suggests that the total number of Free Software projects have

reached the number of 195,000 (English, 2008). If we look at one of the biggest of these pro-

jects, the Linux kernel project, the development growth of this project is observed to be “su-

per-linear”, meaning a very linear growth in terms of lines of code being written every year

(Godfrey & Tu, 2000). Combined together, all these software projects constitute a vast body

of recipes and techniques on how to process, store, send, receive and display information.

Everyone can observe Free Software projects, and everyone with the sufficient knowledge

can participate in its growth and forming. Anyone can make use of the bits and parts of this

body in their own projects, usually on the sole premise of redistributing the changes they

make back to the body.

This reuse of code, however, does cause dependency situations where some projects

become dependent on software that is being maintained by other organisations. If an organisa-

tion for some reason stops maintaining their software, the projects depending on this software

can either decide to replace this part with a substitutionary part from the Free Software body,

create their own replacement, or continue to maintain the software themselves in their own

direction, the latter is often referred to as software forking1. Software forking happens all the

time and is an central part of the evolution of Free Software (Scacchi, 2004). End user soft-

ware such as video players, text processing tools and similar applications are being forked or

replaced with newer software all the time. This process creates diversity that enables competi-
1 Forking – In software engineering used when a developer copies the source code from a project and start its

own independent project based on this code.

http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://svn-plg.uwaterloo.ca/~migod/papers/2000/icsm00.pdf
http://www.umass.edu/opensource/schweik/documents/Population_of_OSS_projects.pdf

3

tion between the software producers and a choice for the end users. To give an example, the

development of the office suite Open Office, declined around 2008 (at that point maintained

by the Sun corporation). As a result, the office suite was forked and re-released with the name

LibreOffice with new maintainers preventing the code from becoming obsolete for future

users and use cases. For infrastructural software such as protocols or core infrastructure that is

shared by several Free Software actors, the focus on standardizing is however more stressed

(Kelty, 2008). Anthropologist Christopher Kelty tells the story about the communication pro-

tocol TCP/IP and how this protocol became a de facto standard after a long and almost, as he

calls it, “religious war” against its competitor the OSI standard (Kelty, 2008 p. 166). Similar

cases can be found if looking at the so called UNIX wars in the late 1980s and early 1990s

where software engineers tried to agree on standards for the closed, but still semi-opened op-

erating-system called UNIX. These types of standardization processes can be studied both

with a strong focus on the technologies that are being changed or agreed upon, but they can

also be analysed through a more socio-technical oriented approach (Larkin, 2013). Science

and Technology Studies (STS) provide a wide set of tool kits that can be used in order to do

the latter. What I want to do in this thesis is to investigate a controversy similar to the TCP/IP

debate and by drawing on concepts from STS, try to increase our understanding about how

actors involved in such controversies decide, prioritize and act with the overall goal of con-

tributing to our understanding of how software standards are being created and replaced. The

reasons I find a standard controversy particularly appealing is because this type of process re-

veals some kind of information about what is happening when software evolves.

http://www.annualreviews.org/doi/abs/10.1146/annurev-anthro-092412-155522
http://twobits.net/pub/Kelty-TwoBits.pdf
http://twobits.net/pub/Kelty-TwoBits.pdf

4

1.2 The case of X window system, Wayland and Mir

One of the oldest projects in the collection of Free Software projects is the X Window Sys-

tem. I will refer to the X Window System, or just X, as an umbrella term for the reference im-

plementation X.org and the protocol X11. The project ordinates from Massachusetts Institute

of Technology (MIT) back in 1984 and has been maintained by the X.Org Foundation since

2004, an educational non-profit corporation that serves the purpose of maintaining an open

source implementation of the X Window System (X.org, 2014). The core functionality of X is

to draw graphics on the user's screen as well as mediating user peripherals such as mouse and

keyboards. X is being used by almost all the major Linux operating systems. In Figure 1, you

can see one of the first implementations of the X display server next to a modern implementa-

tion in figure 2.

Due to its long lifetime X has grown to be a very comprehensive project, it was also written

in a time when computing memory and storage were more limited than they are today. As a

result of this, limitations to its code base make it hard for operating system providers and oth-

ers to utilize high end performance from X, especially on the new mobile phone and tablet

Illustration 2: Modern implementation (2012)
of X Window System using Gnome3 desktop
environment

Illustration 1: Early implementation (1989) of
X Window System using twm window
manager

http://www.x.org/wiki/XorgFoundation/

5

form factors2, which would be better by off using a more lightweight3 alternative to X (Shut-

tleworth, 2010). As a result of the growing perception that X has become more or less a leg-

acy4 system, the majority of the actors who are dependent on X have indicated that they will

put their effort into a new project called Wayland created by Kristian Høgsberg, serving the

purpose of a lightweight alternative to X (Høgsberg, 2008;Jackson, 2010).

In March 2013, however, the company behind the Linux operating system called Ubuntu

announced that they wanted to go in their own direction and as a result created a second al-

ternative display server called Mir (Larabel, 2013). This decision created a huge fuss amongst

the actors supporting the first project, Wayland. The company behind Mir was then criticized

for creating unnecessary fragmentation and acting contrary to the “open source ethos”

(Dalziel, n.d.). Some have also urged developers to not accept patches that would enable sup-

port for the Mir project (Graesslin, 2014).

2 Form factor – Used in describing different physical dimensions of a computing device.
3 Lightweight – Used in emphasizing that some code are more efficient than other code, often written with

less lines or in a more efficient or intelligent way.
4 Legacy system – An old method, technology or computer program that is outdated but still used.

http://blog.martin-graesslin.com/blog/2014/03/why-the-display-server-does-matter/
http://www.concise-courses.com/security/mir-problems/
http://www.phoronix.com/scan.php?page=news_item&px=MTMxNzI
http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://hoegsberg.blogspot.no/2008/12/wayland-gets-terminal.html
http://hoegsberg.blogspot.no/2008/12/wayland-gets-terminal.html
http://hoegsberg.blogspot.no/2008/12/wayland-gets-terminal.html
http://www.markshuttleworth.com/archives/551
http://www.markshuttleworth.com/archives/551

6

1.3 Research objective

The case enables an opportunity to look at what is happening when an infrastructure is in the

process of a considerable change. The present controversy between the two different groups

of actors, which I just described, is amplifying what is at stake for each actor when they need

to decide how to manage this change. My goal is to capture some of the considerations while

they are being discussed in order to identify the motivations behind the decisions that are be-

ing made. The following research questions will be central in the investigation:

(I) In which ways are the actors in the controversy connected?

(II) What considerations do the involved actors take into account when making decisions

about which technologies they are to include in their projects?

The purpose of the first research question is to lay the groundwork for a platform where the

case can be further investigated through the second research question. Themes from STS such

as studies of infrastructure, standardization, values and politics of artefacts will be shaping

how the questions are being answered. The overall goal is to contribute with empirical find-

ings and reflections to our understanding of how Free Software evolve, and also contribute to

our knowledge about infrastructures and standardization processes.

7

1.4 Thesis structure

The thesis will be structured in three parts. First, I will present a brief literature overview of

existing research on Free Software together with an introduction of the key concepts that I

will draw on when analysing the empirical data. I will start out this chapter by briefly discuss

the idea of Free Software and clarify the term which I have chosen to use when writing about

the subject. The second part will be covering the methodology and approaches for data collec-

tion that was used when I mapped my research objects and planned out the interviews. The

two last and most substantial parts will first present the events that lead up to the controversy

chronologically; and then the empirical data will be revealed through discussions in relation

to the concepts introduced in the literature review. Lastly, I will discuss where the resulting

knowledge can be applied and conclude my findings.

1.5 Notes on my own position and background

Since this thesis will be an investigation of a controversy, I find it sensible to write some lines

about my own background and position in relation to what I will write about in this thesis.

My interest in Free Software started out when one of my neighbours, who was involved in

the Mozilla Foundation told me about this new Internet browser called Firefox, which this

foundation released in late 2002. I had been using some similar products in the past but was

never aware of how these types of applications came to be or who were behind them. This

awareness changed as I read more about the Mozilla Foundation, a non-profit organization

that created software. From this point on, I started to discover more and more projects and

eventually found myself using several Free Software projects in my daily work. What I found

appealing in these was the ability in which I was able to learn how the software worked by in-

8

specting code and the ability to fix things if something was not right. As the years went by I

started to work as an IT consultant and was in this position able to apply much of what I had

learned through my previous experimenting into work practice. As a user and maintainer of

my own implementations of these various software projects, I gradually became more aware

of how they were developed in a collective effort, by subscribing to mailing-lists, engaging in

forums and participating in IRC discussions. The incentive for this participation was that I

would have a much more control of the projects that I myself used, the control was in form of

increased knowledge about the projects, being able to give my feedback and also in order to

foresee future features or the lack of them. The subscription to these channels also involved

projects that I did not necessarily use, but which I still found interesting because I could see

myself using the projects in the future.

This engagement also involves projects that I will be writing about in this thesis. That be-

ing said, I am not affiliated with any of the organizations in any way. The field of display

servers is also a new topic for me, which I had not spent much time on prior to this thesis. But

I find my prior experience very helpful when investigating a case like this since it involves

looking in similar types of media channels as well as understanding the terminology and jar-

gon used by the actors, jargon that I will do by best to translate or expand and explain where I

find it necessary and relevant for the understanding of the thesis.

1.6 Notes on the relevance of Free Software in our society

In order to comprehend the important role that Free Software plays in our society it is import-

ant to be able to think about it broadly and not always just from a one case perspective. In

Pinch & Collins two books The Golem at Large: What you should know about technology and

9

The Golem: What you should know about science, we get introduced to a creature called a

golem.

A golem is a creature of Jewish mythology. It is a humanoid made by man from clay and wa-

ter, with incantations and spells. It is powerful, and grows a little more powerful every day. It

will follow orders, do your work and protect you from the ever threatening enemy. But it is

clumsy and dangerous. A golem is not to be blamed for its mistakes; they are our mistakes. A

golem cannot be blamed if it is doing its best. But we must not expect too much. A golem,

powerful though it is, is the creature of our art and our craft (T. Pinch & Collins, 1998;Collins

& Pinch, 1993).

The golem, used as a metaphor for Science and Technology, can also be helpful when

thinking about software. In extending this metaphor we could say that software in many cases

represents the wiring of the golem's brain, it constitutes the instructions in which the golem is

able to communicate with its masters, as well as to operate its body. Thus, if there is no way

for us to review the software that we use when communicating with the golem, how can we

then be sure that the golem is following the initial order of its master?

The recent revelations by Edward Joseph Snowden has shed light on some examples of

how software can be used in order to harm its users, without the users being aware (Green-

wald, 2014). Free Software serves as one of the tools that can help to prevent matters related

to the latter, and has indeed been one of the many selling points used by Free Software advoc-

ates in the last two decades

“We now live in a world when the software industry is re-concentrating inside

mobile computing devices. The idea that you can be sold a computing device

that you can't understand, can't study, can't change, can't fix and therefore can't

http://www.alleanzaperinternet.it/wp-content/uploads/2013/06/guardian.pdf
http://www.alleanzaperinternet.it/wp-content/uploads/2013/06/guardian.pdf
http://cstpr.colorado.edu/students/envs_5110/collins_the_golem.pdf
http://cstpr.colorado.edu/students/envs_5110/collins_the_golem.pdf
http://assets.cambridge.org/97805210/12706/sample/9780521012706ws.pdf

10

prevent you from spying on you, is the advent of the industry, the GPL5 and

other FOSS6 institutions were designed to prevent”. (Moglen, 2013)

 These words by Prof. Eben Moglen spoken out in a plea before the European parliament

in June 2013 points out how the Free Software are as relevant in today’s society as before. If

we are not able to study or understand the brain of our golem, how can we then know if it is

not doing us any harm?

The properties of Free Software are however not limited to the transparency of the techno-

logy and to technology per se. This thesis will touch on some of the dynamics of how soft-

ware are being produced and how problems are solved in a collective enterprise, these ways

of distributing innovation may also be applied to other domains in addition to the software in-

dustry. Industries such as the auto-mobile industry are already trying out modulations of the

patent licensing practices that emerged together with Free Software. Here from Elon Musk,

founder of Tesla Motors: “Yesterday, there was a wall of Tesla patents in the lobby of our Palo

Alto headquarters. That is no longer the case. They have been removed, in the spirit of the

open source movement, for the advancement of electric vehicle technology” (Musk, 2014).

This trend can also be seen in other research and development industries where a focus on

open innovation is gaining attraction (Chesbrough, 2005). This development indicates that

this way of e.g., thinking about intellectual property and collaboration could also be adopted

by other types of organizations such as our institutions.

5 GPL – Genearl Public license, the most used Free Software License
6 FOSS – Free Open Source Software

http://www.teslamotors.com/blog/all-our-patent-are-belong-you
http://www.europarl.europa.eu/ep-live/en/committees/video?event=20130709-1530-COMMITTEE-JURI

11

2. Exploring existing literature and concepts

Much of the research on Free Software consists of best practices and similar research connec-

ted directly to the field of Computer Science in the form of technical analyses and white pa-

pers which describe technologies. There are however many works where the subject has been

explored by other disciplines including Economics, Innovation studies, Law studies and also

by ethnographic researchers. I will in this chapter first discuss the term and definition of Free

Software, then look briefly at what exists of previous studies on Free software in order to give

a sense of where my thesis contributes in relation to these studies. Lastly, I will move on to

explain some of the concepts used by STS scholars in studies of infrastructure and standardiz-

ation which will be applied to my case in the empirical part of the thesis.

2.1 What defines Free Software.

Free Software, Open Source Software, Libre Software, or just the initials FOSS/FLOSS/OSS,

are all being used to describe the somewhat similar phenomenon. There is an ongoing discus-

sion on which one to use, and the various uses derives from different ideological branches in

the FLOSS spectrum. The Open Source definition introduced by computer programmer Eric

S. Raymond is often associated with the more business oriented aspects which focuses on the

economic and pragmatic benefits enabled by the practice and were adopted by several com-

panies and individual people during the Dot-com bubble in the late 1990s. The name simply

refers to the opening up of a black-box and thus revealing the source (code) of a software pro-

gram (Kelty, 2008). On the other hand you have Free Software, an older term coined by an-

other programmer named Richard M. Stallman. When using the word “free”, Stallman refers

to the matter of liberty and should not to be confused with the word gratis which means to

“provide something for free.” Stallman highlights the following freedoms of software that can

http://twobits.net/pub/Kelty-TwoBits.pdf

12

be categorised as Free Software: Freedom to run, copy, distribute, study, change and improve

the software (Stallman, 1996) . These freedoms are protected by one of the many copyleft7 li-

censes such as the General Public License (GPL) which is being used by over 50 percent of

the Free Software projects around the world (Haller, 2013). The various software licenses

vary in their ability to protect these freedoms. An example where source code has been made

available but protected by an almost counter-free license can be found by reading the license

agreement for the almost 30 years old and successful operating system MS-DOS created and

released in 2014 by Microsoft (Gates, 2014). This license prohibits redistribution and use in

any other context, and even limit people from citing more than 50 lines of code in written

works. The source code itself is still open for everyone to study and can easily be misper-

ceived to be open source.

Due to the broad usage of the term “Open Source” (as exemplified in the case of MS-DOS)

I will stick to the Free Software term since the term itself covers the activities pointed out by

Stallman, and also because it is the oldest term used to describe the activity. Moreover, be-

cause Free software does not only denote the practice of making software source code avail-

able to others, the practice of sharing, managing, cooperating and writing licenses are all

activities closely connected to the term itself and some of these activities will be touched

upon in this thesis (Kelty, 2008).

7 Copyleft – the practice of using copyright law to protect computer software with various rights, such as us-
ing, modifying and distributing.

http://twobits.net/pub/Kelty-TwoBits.pdf
http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-v1-1-v2-0/
http://johnhaller.com/useful-stuff/open-source-license-popularity
http://www.google.dk/books?hl=en&lr=&id=UJlNAgAAQBAJ&oi=fnd&pg=PA1&dq=we+maintain+this+free+software&ots=bLxo7UyNhs&sig=T3co-bSkkZKJXj1KlRhgSFZYrgc&redir_esc=y#v=onepage&q=we%20maintain%20this%20free%20software&f=false

13

2.2 Reviewing existing studies on Free Software

As mentioned, previous research on Free Software can be found in various academic discip-

lines and relevant for my case are those studies that touch on innovation processes. Hippel &

Krogh have collected studies from the field of innovation and divided them into three cat-

egories: Motivations for contributions; Governance, organizations and innovation process;

competitive dynamics (Hippel & Krogh, 2006). This categorisation is helpful in order to re-

cognize where the different themes in my thesis contributes to existing studies.

In the first category which covers studies of individual incentives for contributing to Free

Software projects, M. Bergquist & Ljungberg looks at Free Software contributions as gifts in

a gift economy where the gifts in the form of code are incentivised by the desire of getting

their ideas out in circulation (2001). Others looked at the architecture itself as a factor that

generates an incentive for contributors. Modular codebases and codebases with option value8

create more opportunities for the contributors than codebases that do not (Baldwin & Clark,

2006). Both these studies are interesting because they provide a basis on what might be core

incentives and motivations for people and organizations to engage in Free Software projects;

motivations that could also explain decisions my actors need to consider.

 Another study on motivational factors for contribution looks at the relationship between

intrinsic and extrinsic motivations where they found that paid contributions and status motiv-

ated contributions lead to higher contribution levels (Roberts, Hann, & Slaughter, 2006). A

contradicting study done by Lakhani & Wolf found the opposite, namely that enjoyment-

based intrinsic motivation is the biggest driver in contribution (Lakhani & Wolf, 2005). Al-

though these studies are not directly related to what I am investigating it highlights the fact

8 Option Value - Used to describe the value of maintaining something that might be used in the future.

http://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf
http://www.jstor.org/stable/20110575
http://www.jstor.org/stable/20110584
http://www.jstor.org/stable/20110584
http://www.idi.ntnu.no/grupper/su/courses/tdt10/curricula/P2-4-bergquist01.pdf
http://www.idi.ntnu.no/emner/tdt10/curricula/P5-3-krogh06.pdf

14

that people involved in Free Software cannot be looked upon as one group or a group with a

certain set of values, as in every socio-cultural setting you will find variations, generalising

my actors could therefore potentially weaken my analysis.

In the second category where they look at Governance, organization and innovation

processes Mockus, Fielding, & Herbsleb has compared two Free Software projects with

several projects developed using traditional commercial methods of software development.

They conclude or suggest the usage of a hybrid Free Software/commercial approach to

possibly be the most efficient (2002). Yamauchi, Yokozawa, Shinohara, & Isdhida, also finds

that the organizational culture within Free Software projects challenges the traditional ways

of producing software (2000). Ferraro & O’Mahony also looked at this organizational culture

but with a focus on the different adoption of bureaucratic and democratic mechanisms in

these organizations and how governance systems hence have evolved through different views

on authority (Ferraro & O’Mahony, 2007). Others have looked at the evolutionary patterns of

how Free Software grow and evolve over time which I find very interesting since this is one

of the aspects which triggered my interest to investigate a controversy like this. (Scacchi,

2004;Godfrey & Tu, 2000). Noteworthy from Scacchis research on software evolution is that

he finds that Free Software does not seem to fit any models used when studying closed-source

software evolution patterns. This could be because Free Software projects are more dependent

on their communities and spread out globally. He writes:

“There is a growing base of data, evidence and findings from multiple studies

of F/OSS systems that indicate F/OSS systems co-evolve with their user-

developer communities, so that growth and evolution of each depends on the

other. Co-evolution results of this kind are not yet reported for closed source

systems, and it is unclear that such results will be found” (Scacchi, 2004 p.22).

http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://svn-plg.uwaterloo.ca/~migod/papers/2000/icsm00.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http://www.techforce.com.br/news/content/download/18046/70638/file/OMahonyFerraro2007AMJ.pdf&ei=mOIFU53fDsHOtQbswYGABg&usg=AFQjCNGeuEmYYN89XB4xvuHMxrFZL5uWTA&sig2=DHpvOoLgqabg_I6jEyXREA&bvm=bv.61725948,d.Yms
http://delivery.acm.org/10.1145/360000/359004/p329-yamauchi.pdf?ip=193.157.137.45&id=359004&acc=ACTIVE%20SERVICE&key=CDADA77FFDD8BE08.8BE0DFE7B528F835.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=457014189&CFTOKEN=85374285&__acm__=1399832228_4dd417e69fbadf3e078d905277e451e3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.5989&rep=rep1&type=pdf

15

He also calls for the creation of new methods to investigate Free Software evolution but

emphasizes the need for any method to be focusing on the technological regime as a major

element when modelling. A slightly different weighing than what I am intended to in this

thesis, which will be to give a great deal of attention to the social elements of the activities.

Some have also looked at how companies outsource important resources to Free Software

communities which create symbiotic relationships and increased value but also managerial is-

sues for the companies (Dahlander & Magnusson, 2005). The latter example was found in the

category of competitive dynamics and is also relevant for my case since some of my actors

are trying to combine commercial interests with cooperation with the community, which

could have an effect on the way things are being worked out.

The review at large concludes that free software contributors have pioneered new ways of

thinking about intellectual property and about how organizations innovate, while also em-

phasizing that these ideas could be adopted by economic or other social activities (Hippel &

Krogh, 2006).

With a slightly different focus, Christopher Kelty in his book Two Bits, tells a story about

how the social configurations within Free Software can be perceived, together with a historic-

al perspective of the emergence of Free Software, which includes stories about the standardiz-

ing processes of the parts that constitute our internet and the UNIX operating system, the

early building blocks of many Free Software projects today. I find both stories relevant in put-

ting my case in a historical context. Not only because the history is interesting but because it

shows how software are never built from scratch, but rather evolve from previous work in

cycles of change, a central theme in this thesis (Edwards, Jackson, Bowker, & Knobel, 2007).

In the book, Kelty also introduces us to the concept of a recursive public, a concept which I

decided to use in my analysis.

http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://www.idi.ntnu.no/emner/tdt10/curricula/P5-3-krogh06.pdf
http://www.idi.ntnu.no/emner/tdt10/curricula/P5-3-krogh06.pdf
http://www.idi.ntnu.no/grupper/su/bibliography/pdf/OpenSource/Dahlander2005.pdf

16

2.3 The Recursive public

To be able to understand why people involved in discussions and debates about the two future

alternative display servers, and why they care about it, we need to understand why people in-

volved in Free Software associates with one and another in the first place. In trying to explain

this, Kelty uses the concept of a recursive public (Kelty, 2008). This concept will serve two

purposes for my analysis, the first is to identify the associations my actors are connected

through, and the second is to create some sort of socio-technical or actor-networked order that

will be useful when I investigate the second research question.

 The recursive public is built on the idea of a public sphere where meanings are articulated,

distributed and negotiated as a collective body that is constituted and driven by “the public”

hence open to everyone (Habermas, 1991). The other term recursive, is obtained from math-

ematics and computer science and are defined by the Oxford dictionary as “Relating to or in-

volving a program or routine of which a part requires the application of the whole, so that its

explicit interpretation requires general many successive executions.”. Kelty uses the recursive

public concept in explaining the phenomenon of free software for two reasons: first, in order

to show that this public involves the activities of creating, maintaining and changing software

and networks together with the conventional discourse that follows these activities, the people

involved in Free software projects express ideas, but they also express infrastructures through

which ideas can be expressed and circulated in new ways, thus do they not only argue about

technology, they also argue trough it; second, the recursive “depth” that free software projects

usually have, either through technical (e.g protocol and application) or legal abstractions are

reflected in the people's ability to see connections between the different layers and draw out

implications for the different layers. To give an example of such a layer: a Free Software pro-

ject may depend on another piece of software which is itself dependent on a particular operat-

http://www.google.dk/books?hl=en&lr=&id=e799caakIWoC&oi=fnd&pg=PR11&dq=+The+Structural+Transformation+of+the+Public+Sphere:+An+Inquiry+into+a+Category+of+Bourgeois+Society,+&ots=5OLJkZVWz4&sig=c24Wvw3M6YTZ3cwhPkd0akGMAUM&redir_esc=y#v=onepage&q=The%20Structural%20Transformation%20of%20the%20Public%20Sphere:%20An%20Inquiry%20into%20a%20Category%20of%20Bourgeois%20Society,&f=false
http://twobits.net/pub/Kelty-TwoBits.pdf

17

ing system or open protocol (Kelty, 2008). If we take a look at the widely used web browser

Firefox created by the Mozilla foundation as an example, this application itself is built using

libraries and tools maintained by other projects, one of these are the OpenSSL project, which

is an independent project used by several other projects (Cox, 2014). The discourse and dis-

cussion about which of these dependencies a project should choose to use is, therefore, play-

ing an important role in managing a Free Software project. This discourse can in some cases

be politically motivated driven by a certain ideology, goal, or interests, but if we look at the

actual discourse, we will find that the discussions are usually motivated by technicalities of-

ten using technical arguments to highlight arguments. An example of such argument can be

seen in a discussion on the Debian operating system mailing list where those involved discuss

the unnecessary code syntax of a particular program (Heen, 2001).

This recursive way of distributing work, but in a slightly different way can also be seen in

the context of software designed for enabling people to do collective work (Computer-suppor-

ted cooperative work) wherein the dimension of articulation work, the cooperating persons

needs to split their work into different parts, divide it amongst themselves and, after the work

is performed, regenerate it (Schmidt & Liam, 1992;Sarini & Simone, 2002). This delegation

of work is explained by Star & Strauss as: “Cooperative work interleaves distributed tasks;

articulation work manages the consequences of the distributed nature of work (..) managing

articulation work can itself become articulation work, and vice versa, ad infinitum.” (Star &

Strauss, 1999 p.10).

Also, In proposing a design theory that tackles dynamic complexity in the design for in-

formation infrastructures defined as shared, open, heterogeneous and evolving socio-technical

Information Technology capabilities Hanseth & Lyytinen uses the creation of the internet as a

reference point in creating different design rules. Information Infrastructures should be de-

http://www.google.no/books?hl=en&lr=&id=AtPrRVIKNEAC&oi=fnd&pg=PA191&dq=recursive+articulation+work+in+&ots=-FGYQTgLiG&sig=j7y_N6568PB5wz6pxCQQZu3JIRI&redir_esc=y#v=onepage&q=recursive%20articulation%20work%20in&f=false
http://download.springer.com/static/pdf/497/art%3A10.1007%2FBF00752449.pdf?auth66=1398974410_3641ee9514cc35a057b0d82bb1c369b2&ext=.pdf
http://lwn.net/Articles/453009/
http://www.openssl.org/about/
http://twobits.net/pub/Kelty-TwoBits.pdf

18

composed recursively into separate application, transport and service mechanisms that imple-

ment these capabilities as to maintain loose couplings between the connected Information In-

frastructures (2010). Information Infrastructures is shaped by both traditional and emerging

organizational structures and practices, there is both a moral and technical order which is be-

ing expressed in software, hardware and networks. A collective imagination of the proper or-

der in which to arrange these artefacts in supporting different areas of the society is being

constantly negotiated and argued both with and through the technology (Lee, Dourish, &

Mark, 2006 ; Kelty, 2008).

By reconstructing the layers in which my actors are connected, and by trying to identify

what kind of arguments the actors are expressing when creating their technologies, the

concept of a recursive public can help answer my first research question.

2.4 Path dependence

My second concept which I will make use of is path dependency. Path dependence within the

theme of Information Infrastructures often refers to the “lock-in” effect you get by depending

on certain technologies (Edwards et al., 2007). In the context of Free Software “vendor lock-

in” is usually used to describe the lack of interoperability and irreversibility when using a pro-

prietary closed-source implementation of an information system. Free Software is by many

considered as a way of reducing this type of lock-in (Ven, Vereist, & Mannaert, 2008). But if

we apply the concept to Free software projects in isolation, we might also find vendor-lock-in

situations, considered that they are built on existing code which is maintained by another or-

ganization, which in this case would act similar as a vendor would do (Ghosh, 2003). “Tech-

nological change is always path dependent in the sense that it builds on, and takes for granted,

what has gone before.” (Edwards et al., 2007 p.17) For Free Software projects this might not

http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://dxm.org/papers/toulouse2/cluster-final.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4497765
http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://twobits.net/pub/Kelty-TwoBits.pdf
http://www.ics.uci.edu/~gmark/CSCW06.pdf
http://www.ics.uci.edu/~gmark/CSCW06.pdf
http://www.palgrave-journals.com/jit/journal/v25/n1/pdf/jit200919a.pdf

19

be only true in the social dimension; it might also be enforced by the code that binds these

different organizations together (Kelty, 2008). Although the code theoretically can be

changed, it would still require resources from the organization in the form of labour that

writes code.

When economists talk about path dependency they usually look at the efficiency by com-

paring existing technologies with new ones by measuring cost and labour time (Edwards et

al., 2007). Some argue that such measurements are impossible to determine, considered that

you would need a widespread implementation of the technology in order to measure all the

real-world ramifications (Davis, 1985). Assuming that the reality is somewhere in between

these two approaches we could say that it at least can be hard for an organization to decide

between two unrealized technologies even by using other measurements. So if you are de-

pendent on a certain path, the irreversibility makes it even harder (but maybe easier for the

decision maker) (Edwards et al., 2007).

When I am analysing my case, I will take a look at to what extent decisions made by the

actors are ruled by previous decisions (what technologies these projects are built upon).

Moreover, to what extent my actors are able to steer away from those paths. The concept of

path dependence will serve as a way for me to situate myself in the position of the actor, and

draw out implications for the actor based on previous or upcoming decisions. By doing this I

will be able to review if the decisions creates lock-in situations or not.

2.5 Standardization and reflexive modernization

This case is also about how a set of standardised practices are being replaced by new prac-

tices. By using the word practice I speak of two things, first and most obvious the practices in

which the organizations exercises when producing their software, but I also speak of the prac-

http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://www.jstor.org/stable/pdfplus/1805621.pdf?acceptTC=true
http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf
http://twobits.net/pub/Kelty-TwoBits.pdf

20

tice that the software project itself or the code conducts. The practice which the projects Mir,

Wayland and the X Window System exercise can in laymen terms be explained as an “instruc-

tion for your computer to tell its monitor what colours each of the pixels should be at any

time”. Since this practice is something that many users of a UNIX like system needs, a com-

mon way of doing it has been practised and shared among creators of such systems. It is not

per se a de jure, or formal standard, imposed by law or standardization bodies as the Interna-

tional Organization for Standardization (ISO), who holds the Open Systems Interconnection

model (OSI) where many of the protocols used on the internet are characterized and defined

(ISO/IEC, 2014). It is more a case of a de facto standardization emerged through market

mechanisms and best practices amongst the actors (Hanseth, Monteiro, & Hatling, 1996, p.

411). It also differs slightly from communication protocol standards, such as those found on

the Internet protocol suite, see illustration 3. Communication protocols require all actors to

speak through the same protocol in order to be con-

nected to the same network at all times while ap-

plication standards only interact at certain points of

releases. If we look at the Internet protocol suite,

standards like TCP and IP in the different layers

have been stabilized and achieved closure over

time through processes of standardization see

(Kelty, 2008;Hanseth et al., 1996). The standards are as time goes being more and more irre-

versible since all actors and intermediaries need to achieve consensus on changes (Callon,

1991). Hanseth et al. has explored the tension between standardization and flexibility in In-

formation Infrastructures, and by flexibility they talk about the ability for the Information

System to adapt to changes and not the concept of Interpretive flexibility used in STS. “With-

Illustration 3: Internet protocol suite

http://www.unc.edu/~jbecks/comps/pdf/callon.pdf
http://www.unc.edu/~jbecks/comps/pdf/callon.pdf
http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf
http://twobits.net/pub/Kelty-TwoBits.pdf
http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf
http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=20269

21

in computer science, the term flexibility has a different meaning than the term 'interpretative

reflexibility' in STS. It denotes either (a) flexibility in allowing further changes or (b) flexibil-

ity in pattern of use.” (Hanseth et al., 1996).

If an Information Infrastructure is going to continue to live, it also has to continue to

change during its lifetime, yet there is a conflict between flexibility and standardizations

(Hanseth et al., 1996). An example of such irreversibility or lack of flexibility can be found if

looking at the process of routing the internet traffic through the IP protocol version 6, a mi-

gration from version 4, a process which has been ongoing since the mid 1990s with a limited

deployment as of 2010 (Che & Lewis, 2010). In the case of the X Window server, there is no

“physical network”, such as the internet, which keep the actors together at all times. It is more

a case where the actors agrees on points of stabilization, this being a certain version of the

software that is released, which I will explain in the empirical chapter. It is still a case where a

stabilized set of practices are being maintained by a network of actors and intermediaries and

is to some extent kept irreversible. Yet, within this network of actors two groups attempt to

secede from the old habits and create new ways of getting things done, and in this process

some of the actors have no choice but to follow either of the two directions depending on how

interconnected and dependent these actors are to the ones leading way, these are “acted” by

the network that holds them in place (Callon, 1991).

When studying standardization efforts of an electronic patient record system in Norwegian

hospitals Hanseth, Jacicci, Grusot & Aanestad looked at the standardization process through

the concept of reflexive modernization (2006). Reflexive modernization is a theory which de-

scribes a second modernization which happens after, say, a society has been modernized

(Beck, Bonss, & Christoh, 2003). The theory focuses on the side effects or unintended con-

sequences that come together with modernization processes which do not originate within the

http://tcs.sagepub.com/content/20/2/1.full.pdf
http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf
http://www.unc.edu/~jbecks/comps/pdf/callon.pdf
http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf
http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf

22

social structures themselves, but which come from outside of the social structure. The side ef-

fects trigger the “affected” actors to act directly against the situation which they have been but

in with the possible result of changing the initial structures. “While crises, transformation and

radical social change have always been part of modernity, the transition to a reflexive second

not only changes social structures but revolutionizes the very coordinates, categories and con-

ceptions of change itself” (Beck et al., 2003, p. 2). The side effects are called reflexive since

they are transmitted through the multiple networks and are finally reflected back onto what

initially triggered them, and can be a result of the opposite of what was initially intended

(Hanseth et al., 2006). A key feature in modernization is standardization, and one of the goals

is to create order in a complex situation (Hanseth et al., 2006). What Hanseth et al. finds in

their case, is that the process of standardization also generates such reflexive processes which

undermine this goal, resulting in a disordering instead of ordering of the networks. An ex-

ample from their case study when they looked at the implementation failure of a system

called DocuLive, a project that aimed to replace the paper based patient record system, show

how when trying to standardize by over emphasizing on criteria such as universality, uniform-

ity and centralization in order to achieve alignment, stabilization and closure, the end result

can turn out as the opposite of what they were trying to achieve.

“When actors tried to stabilize the standard by enrolling more actors it became

less stable. Attempts to improve fragmented records by means of one

integrated electronic paper record made the records more fragmented. The

complexity of DocuLive turned out to be on where the ordering efforts created

disorder. The side effects triggered new ones, which again were reflected back

on the origin. The standardization turned out to be reflexive and self-

destructive” (Hanseth et al., 2006, p. 13).

http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf
http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf
http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf
http://tcs.sagepub.com/content/20/2/1.full.pdf

23

Illustration 4 shows how this process flows. I will use the concept of reflexive standardization

to analyse my case, by keeping an eye open for processes that can be perceived as reflexive. If

not confirming that there is any, it will at least serve the purpose of testing the concept empir-

ically.

Illustration 4: The reflexive Standardization
Process(Hanseth et al., 2006)

24

3. Methodology

When studying infrastructures, scholars from Science and Technology Studies (STS) propose

several methodologies: Paul N. Edwards argue that one should consider how the different

scales of force, time and social organization produces different pictures of how the infrastruc-

tures is being developed. He uses the history of Internet (in its infancy called ARPANET) as

an example of how the story is being told differently from a micro, meso or macro scale of

social organizations involved in the making of the ARPANET. The understanding of only the

micro scale would not be sufficient enough to present the whole picture of this story and ex-

plains the need of a meso scale perspective by stating that the creation of large infrastructures

requires large institutions with long lifespans, enormous political, economic and social power

(Edwards, 2002). This statement was maybe more relevant in a time when communication

between individuals and flow of information was somehow more limited than it is today. In

post ARPANET time however, we have seen several examples of large world-wide spanning

infrastructures being created by a distributed network of actors without the need of any signi-

ficant political or economic power. A recent but very good example of this can be seen with

the creation of the Bitcoin network, an attempt to create a Peer-to-Peer9 Electronic Cash Sys-

tem that first started out with a couple of persons exchanging ideas on a mailing list in 2008

(Nakamoto, 2008). The computational power which this network representing is now, only 6

years of existence outperforming 500 of our supercomputers combined by a factor of 8

(Neuhaus & Polze Andreas, 2014). The building blocks of the Internet after ARPANET can

also be seen as such an example, an infrastructure which was not necessarily “created” by in-

dividuals or organizations with much power, but rather built by someone, somewhere for one
9 Peer-to-Peer – computer communication where each computer is communicating directly with other com-

puters, as opposed to communicating trough a centralised server.

http://opus.kobv.de/ubp/volltexte/2014/6816/pdf/tbhpi87.pdf
http://nakamotoinstitute.org/bitcoin/
http://pne.people.si.umich.edu/PDF/twente.pdf

25

specific purpose, then picked and reused by others. This way, the adoption degree of each part

that constitute the Internet determines which type of techniques that is being standardized, a

sort of natural selection process which includes the possibility of serendipity where new uses

of a part are later being discovered (Kelty, 2008).

The proliferation of different technologies around the world does create a vast mix of tech-

nology, politics and actors in diverse configurations that do not follow scales or political map-

pings (Latour, 1993). Scales are the spatial dimensionality necessary for a particular kind of

view, whether up-close or from a distance, microscopic or planetary. The use of scales makes

us imagine a particular human behaviour through a particular type of scale, the scale is

however claimed and contested in cultural and political projects and, therefore, conjured by

the “scale makers” themselves (Tsing, 2000). And since infrastructures are so diverse, they

can be analysed in many ways, in the case of a technological system one way to analyse them

could be to understand them as networked machines (Larkin, 2013).

Since I see similarities between how these networks I just have described are being created

and how Free Software projects at large are being created, the Mir/Wayland controversy (as

also pointed out in the introduction chapter about the TCP/IP protocol) can be viewed as a

small infrastructural change performed by a network of actors.

When I decided what methods I wanted to use I attempted to take into account that scales

do not always fit the configurations of technological systems and that they can also be con-

jured by myself or the makers of the scales (Latour, 1993;Tsing, 2000). As a result I avoided

focusing too much on the different scales of political, economic and social power which Ed-

ward (2003) emphasizes.

I rather tried to looked at The X Window system as one technological artefact within an in-

frastructure. The artefact is functioning as a component or artefact which interacts with other

http://muse.jhu.edu/journals/pc/summary/v012/12.1tsing.html
http://www.annualreviews.org/doi/abs/10.1146/annurev-anthro-092412-155522
http://muse.jhu.edu/journals/pc/summary/v012/12.1tsing.html
http://twobits.net/pub/Kelty-TwoBits.pdf

26

artefacts. If one component is then removed from this infrastructure, the other components

have to adapt (Hughes, 1987). In order to identify the actors that were maintaining these arte-

facts or components and to create an assemblage of actors, I would need to trace the connec-

tions that interact with the artefact that is being replaced. This approach, known as sociology

of associations or Actor-Network Theory or just ANT, is commonly used within STS (Latour,

2005). I decided to not fully make use of this technique, but rather borrow some of the inter-

pretation methods practised by this approach when informing my readers about the objects

and concepts explained in the literature part. The purpose of this approach was to create a net-

work of actors that can be used in thinking about the case as one object of study or as a

gestalt. I did conduct an ANT analysis per se.

Since ANT treats human and non-human actors equally in a heterogeneous network of act-

ors, the non-human actors would in my case be the X window system, the Mir project and the

Wayland project (Hanseth, 1998). The process of tracing associations was done through the

interviews and through other sources (The interviewing methods will be explained in the last

part when I present the material). After the actors were identified I examined their inscrip-

tions. In the book Laboratory Life, we can read about how inscription devices are used to

transform material substances to text through describing the substance on inscription devices

(Latour & Woolgar, 1986). In my case, inscriptions were mailing lists, blog posts, meetings

from Internet Relay Chat (IRC) logs and code comments submitted by the actors to the differ-

ent code repositories10 as well as the material from the interviews that I conducted. Since the

non-human actors are written and maintained by the human actors, looking at code contribu-

tions helped me in following the author to the organization that the author represented.

10 Code repositories for both the projects are free and open for everyone to observe and comment on. Way-
land's repository can be found here, and for the Mir project here.

http://www.amazon.com/Laboratory-Life-Construction-Scientific-Facts/dp/069102832X
http://heim.ifi.uio.no/~oleha/Publications/bok.html
https://code.launchpad.net/mir
http://cgit.freedesktop.org/wayland/wayland/
http://www.f.waseda.jp/sidoli/Hughes_1987.pdf

27

What I realized in retrospect by following this approach, however, was that when drawing

too much on the concepts when analysing the material, I did actually create scales which were

conjured by the concepts that I used (cautioned by Tsing). A compensation for this potential

bias was therefore needed and addressed in the discussions.

At the same time, this is a study of a controversy which has not been resolved yet. Such

controversies have been subject to investigation by STS scholars such as Pinch and Bijker

known for their work on SCOT (Social Construction of Technologies) through looking at how

actors give technological artefacts different meanings (Interpretive flexibility), and by recon-

structing the problems each actor or in SCOT terms (relevant social groups) tries to solve

with the certain artefact, they tell a story about how the artefact was formed (T. J. Pinch &

Bijker, 1984). ANT, on the other hand, utilizes controversies in a way that lets the actors order

themselves, rather than making the actors fit in certain predefined ordered system (Latour,

2005). The tracing of associations between the actors within the controversy which I men-

tioned above is then a way of recreating this order.

I made use of the latter method in the sense that I discovered my actors through inspecting

the non-human actors, but as far as the ordering were concerned I used the recursive public

concept. I did, however discover new actors through the interviews by asking my interview

object about what persons they thought would be relevant to talk to; this led me to discover

two new actors which I was not aware of prior to the interviews.

3.1 Limitations and ethical concerns

As a result of limited access, I had to interview my actors through different means of media,

this being video, chat and email. When going through the material which these different ap-

proaches produced, I recognised a variation in how much content each method had produced.

The result was a much more comprehensive collection of data from the Mir side of the con-

http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf
http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf

28

troversy which could affect the balance of my analysis. This also meant that I had to rely

more on secondary sources when establishing material from the Wayland side of the contro-

versy which could potentially damage my understanding of the full context.

Throughout my thesis I have also built most of my empirical data on electronic sources

such as blog posts and forum comments. This raises some ethical concerns about how to refer

to my sources. All of my sources in the empirical part is publicly available material and writ-

ten by persons using their real name and not through pseudonyms. The actors which I Inter-

viewed were all asked in beforehand about if they wanted to be cited by their real name or

not, but all of them agreed that I could use their full name in the citations.

4. Empirical case and background

I was first introduced to the controversy surrounding these new display servers through the

various forum and blog posts that circulated through those shores of Internet that I spent my

time on in the period of 2012-2013. A big part of the empirical collection that was needed to

be able to understand the process would therefore require me to go back in time and reacquire

what I had been reading in the past, and from there, try to establish a chronological gathering

of events, discussions and statements from the people and organizations that were involved.

Since much of the discourse was being played out on social-media platforms, mailing lists

and similar channels with a very rapid flow of information, much of the data was buried un-

der a vast amount of new data, the task of digging through this was surprisingly harder than

what I first imagined. Luckily most of the significant events and statements had been captured

and retold by technology journalists, and reading through this coverage helped me a lot when

mapping the events to a time-line. I was also during this process re-introduced to more actors,

some of which I later decided to interview. I will in this chapter present the history and events

29

that led up to the controversy in a chronological order and explain the case in more depth by

drawing on some of the empirical material. I will also present you to the actors which I inter-

viewed.

4.1 Brief history and chronological collection of events

The first seeds of the X window system can be found in the V operating system or V-System

developed at Stanford University in the period of 1981 to 1986 (Theimer, Lantz, & Cheriton,

1985). The window system used in this operating system (then called the W Window system)

was in June 1984 used as a reference when designing the initial release of the X Window Sys-

tem (X1) by a project at Massachusetts Institute of Technology called Project Athena (MIT,

2014). The X Display Server did despite arguments against its efficiency (Gajewska, Manas-

se, & McCormack, 1990) become widely used among UNIX like operating systems (Linux,

BSD, Solaris and OS X versions prior to OS X Leopard(10.5) used by Apple computers.) and

eventually became a de facto standard. In 2014, it was still the most used display server pro-

tocol for these types of operating systems. After about 25 years of use the X window system

had grown to a comprehensive project, and its complexity seemed to cause problems for pro-

jects that wanted to build on top of it (Shuttleworth, 2010). When I asked my interview ob-

jects about their experience when working with the X Window System, Martin and Oliver

(which I will introduce to you below) answered: “X is just too old for a modern setup, too

many legacy issues” (Gräßlin, 2014) and “From an architecture perspective, it was sort of like

putting a fifth band-aid on top of a stack of band-aids” (Ries, 2014). This experience seems to

be reflected throughout the community; Illustration 5 show a meme that has been circulating

around in the Free Software community where xorg.conf refers to a file which is being modi-

fied when configuring the X Window System and reflects in a humorously way how the com-

http://www.markshuttleworth.com/archives/551
http://www.std.org/~msm/common/WhyX.pdf
http://www.std.org/~msm/common/WhyX.pdf
http://web.mit.edu/acs/athena.html
http://web.mit.edu/acs/athena.html
http://lass.cs.umass.edu/~shenoy/courses/spring05/readings/Theimer_vsystem.pdf
http://lass.cs.umass.edu/~shenoy/courses/spring05/readings/Theimer_vsystem.pdf

30

munity feel about X. The situation explains not only a lack of flexibility the actors have when

working with X, it also explains how the growing

complexity of the project have created a black box,

which the actors are unable to open, resulting in the

need for a new box.

In 2008, Kristian Høgsberg (at this point work-

ing for the company Red Hat) had started working

on the new display server protocol called Wayland

with the purpose of solving this problem (Høgsberg, 2008). In February 2012 Høgsberg re-

leased the first version of the Wayland protocol definition along with an implementation

called Weston (Høgsberg, 2012). Wayland gained attraction among projects that at this point

were supporting11 or using the X display server protocol, some of these included:

• Enlightenment (Desktop Environment)

• MESA (collection of graphics libraries used in 3D computer graphics)

• Sailfish OS (Operating system for smart-phones)

• Tizen (Operating system for smart-phones and tablets)

• GNOME (Desktop Environment)

• Qt (application framework for developing graphical user interfaces)

• GTK+ (application framework for developing graphical user interfaces)

• KDE (Desktop Environment)

• GENIVI (In-vehicle infotainment system used in cars)

• Ubuntu (Linux based operating system)

11 To support another software project either means to implement code to make the two different software pro-
grams talk together, or making plans for such changes in future releases. The support can also include labour
or financial means of support

Illustration 5: X satisfaction (xkcd.com)

http://lists.freedesktop.org/archives/wayland-devel/2012-February/002072.html
http://hoegsberg.blogspot.no/2008/12/wayland-gets-terminal.html

31

In March 2013, however, the company Canonical behind the operating system Ubuntu, who

previously had expressed support for Wayland (Shuttleworth, 2010) announced that they were

developing their own alternative to the X Window system, a display server called Mir. In an

email to the Ubuntu developers Director of Engineering in Canonical Oliver Ries wrote:

“After thorough research, looking at existing options and weighing in costs &

benefits we have decided to roll our own Display Server, Mir. None of the ex-

isting solutions would allow us to implement our vision without taking major

compromises which would come at the cost of user experience and quality. We

will be running sessions at the UDS12 to discuss questions and take feedback”

(Ries, 2013)

This announcement led to a debate around to what extent it was necessary for the Free Soft-

ware community to support two different display servers and the company was criticised for

adding unnecessary fragmentation to the Free Software ecosystem (Brown, 2013). Software

fragmentation is something that occurs when you have several actors creating their own solu-

tion to a common problem, this often results in less interoperability and the need for support-

ing more than only one project.

In responding to this critique, Canonical employee Robert Ancell who was working on the

Ubuntu project wrote in a blog post about how this additional display server actually does not

matter that much. He argues that there is another layer in the technology stack that is more

important to developers and users, namely the application framework13 used in making ap-

plications. He wrote: “display server doesn't matter much to applications because we have

pretty good tool-kits that already hide all this information from us” (Ancell, 2014). Yet, it

12 Ubuntu Developer Summit

13 Application frameworks is a set of libraries of code used when making an application with a graphical user
interface. Qt and GTK+ are some examples of such. They are also often refereed to as just tool-kits.

http://bobthegnome.blogspot.de/2014/03/why-display-server-doesnt-matter.html
http://www.gtk.org/
http://qt-project.org/
http://www.linux.com/news/embedded-mobile/mobile-linux/707710-canonicals-windowing-shift-more-than-a-mir-techie-footnote
https://lists.ubuntu.com/archives/ubuntu-devel/2013-March/036776.html
http://www.markshuttleworth.com/archives/551

32

seemed to matter for some people. In a response to this blog post, Martin Gräßlin who works

on a project called KWin14 wrote about how this situation causes problems for his project:

“Canonical created a huge problem by introducing another Display Server and

it’s affecting all of us and they are still in denial state. It’s not a simple the

toolkit will solve it. It can cause issues everywhere and that affects the devel-

opment and maintenance costs of all applications. My recommendation to ap-

plication developers is to never accept patches for this mess Canonical created.

If they want that fixed, they should do it in their downstream patches. Distro

specific problems need to be fixed in the distros. I certainly will not accept

patches for the frameworks and applications I maintain. This is not for political

reasons as it’s so often claimed, but for technical, because I cannot test the

patches” (Graesslin, 2014).

Also Aaron Saigo from the KDE project wrote a long post with arguments as to why it mat-

ters for different reasons: “Having different display systems will negatively impact different

groups of people, and at the end of each of those chains are users who are affected and there-

fore care. If we care about free software, then we need to care about those who use free soft-

ware” (Seigo, 2014). To briefly sum this up, we have the X Window system which all the act-

ors agree is or will be obsolete in the future – I have not managed to find any that disagree on

this. The creation of an alternative to X which is Wayland, led almost all of the actors to work

on supporting this new alternative. But one of the actors decides to create their own alternat-

ive to this joint effort, Mir. This decision seemed to have lit a fire within the Free Software

community, causing debate between representatives from Canonical and representatives from

other parts of the community working on other projects.

The debate raises the following issues and questions which I thought would be interesting

to investigate when analysing the material further: In which ways are the actors involved in

14 KWIn – a window manager for the desktop environment KDE

http://aseigo.blogspot.no/2014/03/more-on-why-display-server-does-matter.html
http://blog.martin-graesslin.com/blog/2014/03/why-the-display-server-does-matter/
http://www.kde.org/

33

this controversy connected? Are the actors connected only trough the technologies that they

are using or are there any other associations? The second research questions, looks at what

type of considerations the actors need to take into account when making decisions that can

lead to a controversy like this. Are there any political motivations behind them or any other

types of power mechanisms that is lurking underneath the surface? I also decided to focus on

how their decisions could affect other projects and how the actors responds to such. The

overall theme however, is about how the process may create a new standard, or whether it is a

failed standardization attempt. I will in the last part therefore focus more on the case in a

broader context with focus on how the case relates to standardization processes.

4.2 Contacting the actors

In order to acquire additional data for my analysis I decided to conduct interviews with some

of the actors involved in the debate. I wanted to talk with both sides of the controversy in or-

der to observe from both viewpoints (Venturini, 2010). Since the majority of the actors seem-

ingly was supporting the Wayland project it became crucial for me to get an interview with

someone from Canonical which is the company behind Ubuntu and the Mir project. Since the

production of Free Software projects are in many cases globally distributed, I had to propose

other means of communication than meeting in person. I initiated contact with Canonical

through an email and after some exchanges I was referred to Oliver Ries who worked as the

Head of Engineering, the department responsible for the development of Mir. Oliver was also

the person that sent out the initial announcement about Mir in March 2013 mentioned above.

Oliver was positively interested in participating in an interview and we decided to schedule a

meeting on the video chat service Google Hangouts as he was situated in Utah, USA.

Amongst the Wayland supporters I decided to contact both the GNOME Foundation and

the KDE Community. Both of these actors are developing their own Desktop Environments

http://spk.michael-flower.com/resources/DivingInMagma.pdf

34

and have both indicated support for the Wayland project through public statements and code

implementations (GNOME, 2014). I ended up getting in contact with Martin Graeßlin from

the KDE project who was positive towards answering questions. Martin had also been active

in the Mir/Wayland discourse on both his blog and the social media platform Google plus. At

the time he worked for a company called Blue Systems in Bielefeld, Germany who delivers

KDE software, and was in his position dedicated to work on KDE related software such as

Kwin, a component in the KDE project. We decided to exchange questions and answers

through email.

Additionally I contacted the founder of the Linux Mint project and asked him if he was inter-

ested in a talk, he agreed on a meeting on the Internet chat platform IRC15. The Linux Mint

project is known for delivering a mixture of different combinations of Desktop environments

and had at this point not expressed any opinions in the debate. I thought that the Linux Mint

project would add a valuable perspective since the project seemed to be agnostic in terms of

adopting either of the two display servers into their project. This perspective would also

provide a greater contribution to the second research question (II) which do not necessarily

limit itself to the controversy.

15 IRC – or Internet Relay Chat is a communication platform, often used by software developers to discuss
their work.

https://wiki.gnome.org/ThreePointEleven/Features/WaylandSupport

35

5. Empircal analysis

This chapter will provide analysis and discussions of the issues and questions that were raised

in the previous chapter. I will begin with looking at the potential underlying causes of the

controversy and investigate the question about how the organizations are connected through

the technologies that they share and cooperate on; the first section will serve as a foundation

for understanding the process defined by Prof. Steven Weber as the following:

“The open source software process is not a chaotic free-for-all where everyone

has equal power and influence. And it is certainly not an idyllic community of

like-minded friends where consensus reigns and agreements is easy. In fact,

conflict is not unusual in this community; it's endemic and in a real sense in-

herent to the open source process. The management of conflict is politics and

indeed there is a political organization at work here, with the standard ac-

coutrements of power, interests rules, behavioural norms, decision-making

procedures, and sanctioning mechanisms. But it is not a political organization

that looks familiar to the logic of industrial era political economy” (Weber,

2004, p. 3).

5.1 Why a controversy?

Weber (2004) recognises a different logic within the political organization which Free Soft-

ware organizations represents, a logic which does not look similar to what conventional

knowledge can explain. So, in order to reveal some of this logic, I will fist look at how the or-

ganizations are connected, which is my first research question.

http://brie.berkeley.edu/research/SW%20Ch.1%20Dec02.pdf
http://brie.berkeley.edu/research/SW%20Ch.1%20Dec02.pdf

36

In creating a picture of this political organization which Weber calls it, I will make use of the

concept presented in the literature part of a recursive public. According to Christopher Kelty

“A recursive public is a public that is constituted by a shared concern for maintaining the

means of association through winch they come together as a public.” (2008, p. 28). In this

case, the actors that uses the X Window system represents the recursive public, the artefact

represents one of the means, which people from different organizations maintain and care for.

Another way to think about this is to abstractly view the artefact (software project) as a writ-

ten down idea which describes how a system should work in order to achieve its goals, which

are shared by many and improved upon by some.

 To estimate how many people or organizations this particular common represents is not a

simple task, one measure, however, can be to look at the number of contributions made in the

code repository for the project. The implementation of X has during the last 10 years re-

ceived contributions in the form of code changes from 1,117 different people (Ohloh.net,

2014). These numbers give us some idea of how many people or organisations this particular

“means of association” hold together in maintaining this recursive public.

Prior to the announcement of Mir and Wayland, all my actors were connected together

through this common “mean” since they were all in some way or another leveraging the X

Window system project, they all had an interest in supporting the project and were all benefit-

ing when its code improved. All the actors were therefore dependent on the X Window system

in order to exist in their current form.

But they were also connected through other means of associations. Each layer of techno-

logy these projects utilizes can function as means of associations to other projects. Free Soft-

ware projects may share hundreds of software libraries as explained in the literature chapter

with the OpenSSL and Firefox web browser example. I have in illustration 6 created a figure

http://www.ohloh.net/p/x
http://www.ohloh.net/p/x
http://brie.berkeley.edu/research/SW%20Ch.1%20Dec02.pdf

37

which abstractly show some of the technical layers which are being used by a typical Linux

operating system. Each layer contains one or more projects which all do the same thing or

solves the somewhat same problem but in different ways. If I were to create a new operating

system myself I could mix my own set of dependent parts to build it upon. In the case of my

actors, they are therefore still connected through leveraging of the Linux kernel project at the

bottom of the figure, and most likely a lot of more parts if we were to create a more compre-

hensive illustration involving all dependencies these projects are constituted on.

Illustration 6: Layers of technology

38

When developers, my actors included, refer to their dependencies or projects that are de-

pendent on their own project, they uses the terms upstream and downstream. This term can be

used both as e verb and a noun and refers to which way the changes flows between the pro-

jects. Illustration 7 show this type of relationship between X Window System, Ubuntu and

Linux Mint. For Ubuntu the X Window System is one of their upstreams, similar for Linux

Mint Ubuntu will be one of theirs. The changes that go into the code of Ubuntu will therefore

affect Linux Mint, thus is Linux Mint talked about as one of Ubuntu's downstream projects

(Fedorawiki, 2014).

A result of this relationship,

however, is that if a set of changes

goes into one of these projects, the

developers will be able to draw

out implications for other projects

in this layering of parts. This ex-

plains why there can be disagree-

ments and controversies among

the actors. But as Kelty points out, the layers are not necessarily limited to technical layers, it

might as well also be law, regulations or physical constants (2008).

So, in order to identify a non-technical layer in the Wayland/Mir debate I decided to look

at how the different actors referred or talked about their users, which also seemed to be a cent-

ral topic of the debate.

Even though the different actors are creating products that are being used by different

groups of people, they seem to refer to their users as one group, not “our users” as you would

Illustration 7: Relationship between upstream/downstream

http://twobits.net/pub/Kelty-TwoBits.pdf
http://fedoraproject.org/wiki/Staying_close_to_upstream_projects

39

expect from traditional marketing communication in companies. Here from Roberts note on

why the display server don't matter: “I hope I've given some insight into the complex world of

display stacks and shown we have plenty of room for innovation in the middle without caus-

ing major problems to the bits that matter to users.” (Ancell, 2014).

Also from Aarons response:

“Do users care if their display system rocks? Yes, they do. It is a critical piece

in terms of reliability (e.g. stability) and performance when using a device. It

defines what can work well, what will work poorly and what can't even happen

at all when it comes to windowing systems, application performance and se-

curity. The display system places an upper bound on how great the desktop

shell and applications that run on top of it can be. We've worked with the limit-

ations of X11 for a long time, and we owe every user to deliver an awesome

display server, and that is less likely to occur with multiple projects dividing

efforts” (Seigo, 2014).

In both of these statements, it seems like they are talking about users as if they share the same

group of users.

 If some actors view their users as someone that are not only using their own products, but as

a big group of users who is shared by all the other, it would mean that if the total user base is

another layer for the recursive public to draw out implications from, actors that are progress-

ive in terms of changes should expect criticism if their changes can affect parts of the total

user base in some way or another. When I talked to Oliver from Canonical about the issues of

fragmentation he told me: “I'm always struggling with the claim that we are fragmenting it

because everybody now has to deal with Mir. If you think it sucks, then don't use it right

now.”. (Ries, 2014). By suggesting not to use Mir as a solution to the problems raised by Sei-

go about Mir, he might then be implying that the change should not affect others than the

users of Mir. If this is the case, a different perception of this non-technical layer (who are the

http://aseigo.blogspot.no/2014/03/more-on-why-display-server-does-matter.html
http://bobthegnome.blogspot.de/2014/03/why-display-server-doesnt-matter.html

40

users) could possible be an underlying cause of the controversy. This also highlights why it

matters for the Wayland supporters, but not so much for the Mir team which was another

central topic of debate.

I will in the next section go into more detail about how these implications are being con-

sidered and how they also change over time due to the development cycles that these projects

has to work with.

5.2 Technological considerations

I have described how decisions made by one actor can trigger other actors to look at implica-

tions for the Free Software community as one common group. I also touched upon how pro-

jects choose between different layers of existing technologies when creating or putting togeth-

er their product. In this section I will look more into the latter and try to reveal some of the

mechanisms that is at work when Free Software organizations manage their projects. I will

discuss what type of considerations the actors had to make when they made their decisions,

and lastly, to what extent their considerations were determined by decisions made in the past,

or put in another way, to what extent they are determined by the dependencies that the project

is built upon.

When I interviewed my actors I tried to talk about how they where managing their techno-

logies as their circumstances change over time, and how they decide which technologies to

implement in their projects.

When I asked Oliver from Canonical how they choose and manage upstream16 projects he ex-

plained:

16 Upstream – is used in software development to refer to the original author or maintainer of a software pro-
ject. As an example: Linux Mint is based on much of the codebase that Ubuntu is made of. The Linux Mint
would therefore refer to Ubuntu as one of their upstreams.

41

“So that is the big challenge for a Linux distribution such as Ubuntu or Red

Hat or similar right, the whole variety of open source projects and those are

what we consider the upstreams, they create something, then you as a Linux

Distribution take that upstream and refine it for whatever that means and make

a distribution out of that. And that is sort of challenging and different from tra-

ditional software engineering because you do not really have a lot of control

over those upstreams” (Ries, 2014).

In tackling these challenges concerning lack of control he said: “dealing with it typical

means either, lets see if we can find a good example: You pick the latest version of an up-

stream and then you look at the latest official release and the latest development release, and

then you cherry pick the fixes or the new features, so this is typically how a Linux distribu-

tion deals with upstreams.” (Ries, 2014). This was also how Clement Lefebvre from the

Linux Mint described how the process usually went on for them, which was not very surpris-

ing considering the way the projects are built on top of each other as shown earlier. If there

are no big changes in the upstream code, the need for any significant considerations is less

stressed. The organizations then just look at what are being changed in each release, and then

decide to implement the changes in their own release or not.

When looking for an example of how the process of deciding can play out I managed to

find an IRC log from a meeting held by the Engineering Steering Committee of the operating

system Fedora. Fedora is an operating system that uses the desktop environment GNOME

which are implementing support for Wayland. Fedora would here either decide to follow the

path that GNOME has chosen, which is to implement Wayland support, or do something else.

Here is a log from the IRC meeting which were held 7. May of 2014 together with an inter-

pretation below.

17:50:20 <mitr> #topic #1306 F21 System Wide Change: Wayland - https://fe-
doraproject.org/wiki/Changes/Wayland

42

17:50:23 <mitr> .fesco 1306
17:50:24 <zodbot> mitr: #1306 (F21 System Wide Change: Wayland -
https://fedoraproject.org/wiki/Changes/Wayland) – FESCo - https://fe-
dorahosted.org/fesco/ticket/1306
17:50:59 <pjones> so very +1
17:51:03 <dgilmore> +!
17:51:05 <dgilmore> +1
17:51:08 <mitr> +1
17:51:16 <notting> +1
17:51:27 <mattdm> +1
17:52:07 <t8m> +1
17:52:50 <mitr> #agreed Wayland change approved (+6)

Each line can be divided in three parts where you first have the time of when each message

is posted. Second you have the username within the two brackets, and third you have the mes-

sage. Each user name can be translated to Bill Nottingham (notting), Dennis Gilmore

(dgilmore), Peter Jones (pjones), Matthew Miller (mattdm), Tomáš Mráz (t8m) and Miloslav

Trmač (mitr) which all are members of a rotating Steering committee, a group whose mission

is to handle the process of accepting new features from their upstream projects (Fedorapro-

ject, 2014). The user <zodbot> is a programmed non-human user who is recording the meet-

ing and keeps track of the votes. In the example above zodbot first posts a link with informa-

tion of the suggested change, which in this case is to implement Wayland, each member of the

chair then votes with either +1, 0 or -1. In this case all members voted for in a process lasting

for 2 minutes. The matter has most likely been discussed in beforehand on other channels and

the purpose of the vote can be viewed as a formal way of dealing with changes, but it indic-

ates that projects that are dependent on certain technologies easily follow their upstreams

path, which in Fedoras case is GNOME, with no considerable controversy(considering the

votes 6 to 0). Path dependence is in Fedora and GNOME's case written down in the code they

use which make the decision easy given that the changes do not cause any major problems to

their project.

https://fedoraproject.org/wiki/Fedora_Engineering_Steering_Committee
https://fedoraproject.org/wiki/Fedora_Engineering_Steering_Committee

43

But if we go back and look at Linux Mint, which is built on top of Ubuntu, I found another

scenario. Since the development of Ubuntu is being done continuously, the stability of the

software varies throughout the year. If a lot of new features are implemented into Ubuntu

there will be a lot of new features that have not been fully tested and the stability will go

down, it will however stabilize over time as the users report back to the developers about

what is not working, which the developers then can implement. This “permanently beta” situ-

ation is not a phenomenon distinctive to Free Software projects, similar development cycles

exists within web development and other non-free software projects (Neff & Stark, 2002). But

the need for collaboration and timing seems to me to be somewhat unique or more important

in Free Software projects. Many Free Software projects solve this problem by planning out

dates for stable versions of their software project. Ubuntu as one example, releases two stable

versions every year, usually in April and October. And every second year they release a ver-

sion with longer support which aims to be more stable and less experimental than the twice a

year releases. In figure 8 you can see how this cycle is planned out (UbuntuWiki, 2014).

Illustration 8: Ubuntu release cycle (UbuntuWiki, 2014)

https://wiki.ubuntu.com/LTS
http://academiccommons.columbia.edu/download/fedora_content/download/ac:129215/CONTENT/2002_05.pdf

44

 Linux Mint, as mentioned before, build their product based on what Ubuntu have already

created and therefore schedule their stable releases a few months after the stabilization of

Ubuntu. Any major change to the Ubuntu code would therefore affect the Linux Mint project

when they are preparing for a new stable release.

When I asked Clement about how Ubuntu's Mir decision was affecting their project he told

me: “We're considering sticking to the Long Term Support for the next 4 releases. So that

would postpone any need for us to look into this for a whole 2 years.” (Lefebvre, 2014). So

this would be an example of how the usual process explained earlier by Oliver and Clement is

interrupted and requires the project to make further considerations. In this case the Linux

Mint developers decided to skip three releases of Ubuntu and freeze it for two years which

usually is done every six month when a new release of Ubuntu is released. The Linux Mint

developers thus postponed their need to act on the changes for two years. In relation to path

dependence this could be viewed as a way of taking over the control of the direction that they

are headed towards. But only as a temporary solution considering that the software needs to

eventually change in order to stay alive (Hanseth et al., 1996). Staying alive in the context of

Free Software domain usually means to stay relevant and used by the actors who keep the

code alive by use, modifying and redistributing of the code. But it does show how big impact

changes in upstream code can have for dependent Free Software projects.

For Ubuntu when looking at Wayland as a potential upstream, considerations led to another

way of dealing with this:

“So when we where looking at Wayland in it self as a protocol and trying to

see if it matches our designs and like, you know we have or Mark has his vis-

ion in his mind of what he wants to do for the phone and where computing or

personal computing should be in two years and four years and so we have cer-

tain designs that are partially public and partially are just in Mark's head still

http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf

45

as a part of his vision. So, we took that sort of as a set of requirements, and we

are looking at what is already implemented and what is sort of defined in Way-

land and how easy it is for us to fulfil our requirements from a design perspect-

ive. So that was one of the first criteria that we applied, our finding was that

while a lot of the things were there, we thought that a couple of things might

be missing, and then it is an open-source project, so what we could do is, you

could collaborate with the upstream development team and get it in, but a

problem that of few that we had or still have with Wayland is that it runs into

similar issues like X” (Ries, 2014).

So in this case the engineering group receives a set of design requirements from the decision

maker (Mark) which is sponsoring the development. The engineering group then looks at

which projects are available and finds Wayland, which have some limitations that are similar

to the limitations that they have experienced when working with the X Windows System. The

limitations are further explained as:

“if you think of where X is running right with a use case fulfilment that is

large, that is mostly because X is very extensible right, lo s of extensions, anytt -

body can write to X and then you can put it onto your microwave or whatever.

But, the extensibility also comes with a price which is a lot of incompatibility”

(Ries, 2014).

And “So, with Wayland we feared a similar situation, or our concern was that something sim-

ilar would happen because Wayland stately I think, says it wants to be a multi-purpose Dis-

play Server.” (Ries, 2014). When looking into the future, based on what they know about

Wayland today, they fear that Wayland would run into the same problems (which I will dis-

cuss later) that the X Window system ran into. In order to avoid this scenario they decided to

create their own path instead of following the path that their dependencies suggested them to

follow, which were to use Wayland.

46

To summarise this, my findings show that Free Software projects have at least three different

ways of managing the unstable environment of being reliant on other projects, or to manage

the path which they are determined towards as a result of building their product on top of oth-

er projects:

1. Create an alternative project if the path is contradicting with the needs of the software

or goals of the organization in charge, as shown when Ubuntu decided to create Mir.

2. Decide to not implement changes in order to postpone the need for making a decision,

as Clement from the Linux Mint project described.

3. Implement the changes, and adapt to the changes, or as Oliver expressed: include the

changes into your own project and refine them, which is how they typically manage

upstream projects.

So, the concept of path dependence seems to play a role in terms of their need to take action

when the path is changed, the organizations still have the possibility to steer away from the

suggested or decided path. In Linux Mint's case at the expense of an outdated code base, and

for Ubuntu at the expense of what it takes to create an alternative. This indicates that the no-

tion of path dependence does not play a significant role from a code perspective even though

the projects are built on top of each other and thus dependent on each others work. It played a

much lesser role than what I first anticipated before conducting the interviews. That said, oth-

er factors such as economic, labour and political might play a bigger role in this than the code

itself, which will I will discuss in the next section.

5.3 Politics and power of code

Although the development of Mir had already started at the time this interview took place,

Oliver and the Ubuntu team did not seem to exclude the possibility of changing their minds

and use Wayland instead. If the implementation of Wayland would turn out to work for them

47

then he saw no reason for them to not use it: “At the end of the day, code wins, right. If the

implementation is just super awesome and if the architecture is great we probably would be

OK to take that overhead and friction in collaboration because there is a lot of work already

out there that we could base on” (Ries, 2014). This brings out not only how strong mandate

the code itself seems to have to when actors consider technologies, but it also highlights how

some developers have a pragmatic attitude to the technologies they are working with. If one

technology is better suited to fulfil a purpose that their own project also tries to fulfil, there

seems to be no reason to not use the better one, even if it means giving up the development of

their own project. This might sound like a bold observation in favour of technological determ-

inism, but I want to emphasise that a certain technology is only viewed as better relative to

how many problems the technology solves for the particular actor. In SCOT as an example,

each relevant social group have various types of problems they want to solve, the solution to

their problems are being reflected in the design of the artefacts that are being created. Thus,

the artefacts will also be shaped by the sociocultural norms and values that the actors hold

(Pinch & Bijker, 1984). Another concept which Pinch & Bijker focuses on is the concept of

design flexibility (or interpretative flexibility); how the artefacts has different meanings and

interpretation depending on which actor you ask, such an observation can be found when

looking at how my actors value the various projects differently. When Oliver says that

something works better for Ubuntu, a project that aims to be a modern operating system

which can be used on computers, smart-phones and tablets, this “better” does not seem to be

the same for Clement from Linux Mint, a project which aims for a stable and more conservat-

ive operating system focusing mostly on computer desktop support. “When Mint goes more

conservative, it will work better, but will be less exciting to people who want to run the very

latest” (Lefebvre, 2014). These different set of values are also reflected by the total prolifera-

http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf

48

tion of Free Software projects where as an example the GNOME desktop environment fo-

cuses more on simplicity while KDE on functionality. “The philosophies are distinct, with

GNOME tending towards minimalism and KDE towards what might be called 'completism'”

(Byfield, 2014).

 So, the considerations that the organisations need to take seems to be focused on choosing

the right technology that would best suit their project in delivering what the projects aims for,

or in SCOT terms “Solving the problems for the relevant social groups” (Pinch & Bijker,

1984). If the technology is not available, they create it themselves if they have the required re-

sources.

This pragmatic way of solving problems for their own projects would create a more di-

verse collection of Free Software projects and does not seem very compatible with making

standards that can be shared among the actors. When I asked my interview objects about

standardizations and diversity Martin told me: “I consider the needless diversity as a huge

problem for Free Software in general” (Gräßlin, 2014). Clement had a more two sided view,

“Well, I like when things work. So I suppose I like both. Without standards

you couldn’t run Cinnamon outside of Linux Mint or KDE in Ubuntu etc. too

many things would break. If everybody coded their thing on their side and

didn't care about standards, in a matter of years we'd lose compatibility. With

that said, I believe in getting things done.” (Lefebvre, 2014).

Here, Clement points out the importance of standards in relation to his project and how stand-

ards enables a variety of use cases for the project that he is working on. At the same time he

puts some emphasis on the power of “getting things done” which I interpret to mean being

pragmatic in terms of creating something without focusing too much on cooperation with oth-

er actors (e.g. agree on a standard way of doing things.) Oliver's response was also twofold

http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf
http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf
http://www.datamation.com/open-source/kde-desktop-vs.-gnome-apps-the-great-paradox-1.html

49

 “I think standards are important, at the lowest applicable level. Standards and

diversity sort of conflict in varied tensions. Where you have things standard-

ized you wont have much diversity. I think as an open source community it is

important for us to standardize on low level components like kernel interfaces

or even like, you can go higher and talk about qt which is a standardized set of

API's that we are building on.(..) So I think this is my stands on standardiza-

tions and diversity. Standardization is important on a lower level and if you do

it this way it allows you a lot of diversity on top of that.” (Ries, 2014).

Oliver also recognizes the tension between the two, but at the same time he suggest to

agree on standardizing on only some layers on the technology stack. The kernel layer is one

of the layers he suggests being standardized, which is the lowest layer in this case. Also qt

which is found in the tool-kit layer I illustrated back in illustration 6. So by creating Mir, the

Ubuntu team is expressing this view by using their voice through the technology they create

instead of arguing in beforehand about how they think the infrastructure should look. This

type of activity is also observed by Kelty and was one of the characteristics he used when de-

scribing the recursive public. “geeks use technology as a kind of argument, for a specific kind

of order: they argue about technology, but they also argue through it. They express ideas, but

they also express infrastructures through which ideas can be expressed (and circulated) in new

ways” (Kelty, 2008, p. 29). The idea or argument which the Ubuntu team expresses can be in-

terpreted in two ways: One way is to look at it as an argument against the need for a multi-

purpose display server standard, which Wayland represents. Another way can be to look at it

as an objection to the process itself; the overhead and friction in collaborating which Oliver

described caused too much insecurity for the Ubuntu team.

From a de facto standardization perspective this case also brings out some of the dynamics in

the creation of standards which is not ruled by a central body. The process described also

http://twobits.net/pub/Kelty-TwoBits.pdf

50

share some similarities with how the Internet Engineering Task Force (IETF) worked out

standards through their Requests for Comments (RFC) system which Steve Crocker de-

veloped in 1969 to help specifying the standards of ARPANET (Hauben, 2010). IETF is

however an organization that works out formal standards, while Free Software standards are

more often formed through the cultivation, distribution and use, de facto standards are thus

being formed in a more organic way than say standards worked out by a centralized group of

people. Principles such as putting the code above other means of power seems however to be

shared between the two different processes, as expressed at an IETF conference: “We reject

kings, presidents and voting. We believe in rough consensus and running code” (Clark, 1992).

So, in such an environment, code can also be power, and in this case the power is used in ar-

guing how the infrastructure should look.

This also means that for Canonical, a strong commercial actor with incentives for making

strategical decisions which will help them to stay alive as a commercial organization, the mo-

tivation behind creating Mir could also be motivated by the benefits of controlling a part of

the infrastructure which they build their product upon. Here from Oliver:

“We have a goal and that's sort of selfish but that is because we are a company

right, and like RedHat and everybody else who wants to make money we try to

not incur overhead that would not get us to our goal, so we thought that collab-

oration was a bit difficult.” (Ries, 2014).

The notion that code can serve as a way of enacting power or control is not an unfamiliar

view, especially not within the domain of proprietary software. Free Software is in contrast

usually considered as a counter measure against various types of power. Prof. Lawrence

Lessig expresses this view in his book Code v2. “(..) whatever side you are on in the 'free vs.

proprietary software' debate in general, in at least the context I will identify here, you should

http://www.ietf.org/old/2009/proceedings/prior29/IETF24.pdf
http://pages.infinit.net/jbcoco/Arpa-Arpanet-Internet.pdf

51

be able to agree with me first, that open code is a constraint on state power” (Lessig, 2006, p.

139). His argument is followed by examples of voting systems used in presidential elections,

and how some parts of such systems should be open in order to allow transparency hence

diminishing the risk of abuse by those controlling the system.

But, in the Free Software context, the potential power abuse which Lessig talks about is

non-existent due to the licensing and open design of Free Software itself. Nonetheless, there

still seems to be power mechanisms at play. In Bergquis & Ljungberg's study, they also

looked at power mechanisms, and found that motivations behind getting contributions out in

circulation were a way for Free Software actors to guaranteeing on the quality of the code,

and drew a parallel between this activity and how contributions in research communities can

be viewed as gifts in the form of scientific knowledge (2001). When Oliver and his team

looked at the process of the Wayland development they looked at how easy it was for contrib-

utors to “get something into the Wayland project”. They concluded that it would not be easy

for them to achieve their goals by following the process that they observed. This evaluation

show that there are a different weights of power present between the persons in charge of a

software projects and its external contributors. As one of the responsibilities of being a main-

tainer of a project is to accept changes (patches), this mandate can also be used to control

what types of changes goes into a project by rejecting the changes. The maintainer will there-

fore to some extent be able to influence the design process of the artefact which is being cre-

ated. An actual example of this use of power can be seen in an accepted patch submitted by

the Mir team to one of Intel's X driver projects. Intel is one of the supporters and funders of

Wayland, and the project itself is developed through Free Software principles. The patch was

first accepted by the developers, but then rejected with a note saying “We do not condone or

support Canonical in the course of action they have chosen, and will not carry Xmir patches

http://www.idi.ntnu.no/grupper/su/courses/tdt10/curricula/P2-4-bergquist01.pdf
http://codev2.cc/download+remix/Lessig-Codev2.pdf
http://codev2.cc/download+remix/Lessig-Codev2.pdf

52

upstream -The Management” (Wilson, 2013). The note signed by “The Management” indic-

ates that someone higher up in Intel's organization chooses to act to prevent the patch from

being accepted in order to control the development most likely due to political reasons.

Oliver's interpretation of this event was: “That was sort of the funny thing right where you

have the collaboration on the engineering level someone responsible for the code, thought the

patch was OK, but then when it sort of reached the corporate political level, all of a sudden

they came to burn it hot” (Ries, 2014). This example can also serve as an example of how the

different scales of social organizations which Edwards (2002) focuses on, is important to be

aware of when constructing an image of how artefacts or infrastructures are being created.

Both older and recent studies have, according to Bijker, avoided the focus on power in the

process of technological development, not because the phenomenon is not identifiable, but

since such explanations do not offer very much insight in terms of explaining the actual

process (1997, p. 11). The observation of the use of power which the Intel representative

demonstrated does at least for my case serve as something that is tangible and identifiable

when trying to observe how the artefact (in this case Mir) is being created. In order to prove

this we need to know what the differences in outcome would be if the patch was accepted or

not, or rather what it would mean for the artefact. A simplified version of the purpose of the

patch was to enable the possibility of running old applications created for the X Window

System on top of Mir when using a video-driver17 produced by Intel. It would in other words

determine in what way two pieces of software interact with each other, which would have

made a great difference in terms of how the artefact could have been designed.

 My argument is therefore that the artefacts themselves end up as a reflection of how these

organizations are connected, together with the values the organizations inhabit, and if there
17 Video-driver: a code library that is designed to operate a hardware device, in this case the hardware that is

connected to video monitors.

http://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fcstpr.colorado.edu%2Fstudents%2Fenvs_5110%2Fbijker.pdf&ei=5A4KVJPNDYXIyAOZooDQBg&usg=AFQjCNHWPZHLFI4HiKb8jX8-VQdJkvHu-g&sig2=-Qd8PiCea6V4ckszfSiPXA&bvm=bv.74649129,d.bGQ
http://pne.people.si.umich.edu/PDF/twente.pdf
http://cgit.freedesktop.org/xorg/driver/xf86-video-intel/commit/?id=58a7611

53

are power mechanisms present, they will also be reflected in the design of the artefacts. This

also means that the artefacts can be used as tools to shape the Free Software infrastructure,

both in terms of software architecture but also the relations between the actors. So, although

some scholars have made observations about how the Free Software community is more or

less political agnostic in the sense of denying any traditional political association (Kelty,

2008;Colman, 2004), there seems to be politics at play between the actors inside the com-

munity.

5.4 The result: A more complex technology layer

If we try to scale out, and look at the Wayland project as a collective effort by the supporting

actors to move towards a new standard, the project has succeeded by consolidating almost all

of the actors who uses the X Window system. But is it a success in terms of a standardization

effort if the goal was to reduce the complexity represented by X? As Oliver explained, the

main reason for them to create their own display server was because they thought that the

Wayland project were heading in a direction which would cause much the same problems as

the X Window system. The problems with X described by Oliver were “maintainability and

then the extensibility were like really key considerations in making the decision to move

away from X” (Ries, 2014). This view is shared by the Wayland team, on their website they

point out what they think is the problem with X: “The problem with X is that... it's X. When

you're an X server there's a tremendous amount of functionality that you must support to

claim to speak the X protocol, yet nobody will ever use this.” (Wayland, 2014). The Ubuntu

team did not feel comfortable that these problems were addressed by creating another multi-

purpose display server. The problems they recognised were however not limited to the defini-

tion or implementation of Wayland itself, but to the process of collaboration. The process was

http://wayland.freedesktop.org/faq.html#heading_toc_j_0
https://evols.library.manoa.hawaii.edu/bitstream/handle/10524/1583/09_pdfsam_aq_cultures_opensources.pdf?sequence=1
http://twobits.net/pub/Kelty-TwoBits.pdf
http://twobits.net/pub/Kelty-TwoBits.pdf

54

construed by Oliver to include unnecessary friction, which the Ubuntu project could not af-

ford to deal with in order to solve their problem, he explained:

“So, we looked at mailing lists and we looked at submissions and how the pro-

cess was, how the community was engaging with contributors and how easy it

was for an external contributor to get something into Wayland. And we didn't

feel comfortable. (..) If we go into a project and say 'This is what we would

like to do' our fear was that we would end up in endless discussions about how

this feature that we would really want for Unity would apply to KDE and

Gnome and all the other Desktop Environments and we would just spend a lot

of time in, there would be a lot of friction in getting things done into the pro-

ject, that friction would not necessarily benefit us” (Ries, 2014).

So, after evaluating the process in which way the Wayland project handled code submissions

from the different actors, they concluded that the process would lead to discussions about

how their changes would cause implications for other projects like KDE and GNOME. These

discussions were considered as friction which would slow down the process of solving their

initial problem (replacing the X Window system). And as a result of this they created their

own replacement. If we were to compare this process to the reflexive standardization process

which Hanseth et al describe in their case about the DocuLive ERP system, the most striking

similarity is that when adding more actors to the process, the standard became less stable

(1996). The more projects involved would cause more requirements to be discussed and in the

end this adds up to the complexity of the process it self, but presumably also to the protocol

definition, although this is not something I have looked at in this thesis. The defection of

Ubuntu from the Wayland collaboration do however not add to the complexity to the Wayland

project per se, but it adds to the complexity of the display server layer. I have in illustration 9

modified Hanseth et al.'s illustration to make it fit with my case.

http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf

55

As more actors join the Wayland project, more implications needs to be discussed,

resulting in both more requirements that goes back into the project and a more complex

project. And as a side effect of this, one actor decides to create its own with intentions to

reduce the complexity (at least for themselves). The end result is a display server layer with

more disordering, which can be viewed as a meta-change within the infrastructure (Beck et

al., 2003). This also changes the social coordinates in which the display server layer

previously were managed by the Free Software Community, which is what you would expect

as a result of a second modernization or reflexive standardization (Hanseth et al., 2006).

Going back to Pinch and Bijker's example of how social values forms artefacts, and being

aware of that values change over time, the transformation of the working relations of those

who maintain the systems also changes over time (Pinch and Bijker,1984;Cohn, 2013;Ferraro

& O’Mahony, 2007) This type of change in both infrastructure and social relations could thus

possibly be a reflection of a shift in values and principles in the Free Software community at

large, and might be one of the consequences from the possible fact that Free Software is

Illustration 9: Reflexive standardization Mir

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http://www.techforce.com.br/news/content/download/18046/70638/file/OMahonyFerraro2007AMJ.pdf&ei=mOIFU53fDsHOtQbswYGABg&usg=AFQjCNGeuEmYYN89XB4xvuHMxrFZL5uWTA&sig2=DHpvOoLgqabg_I6jEyXREA&bvm=bv.61725948,d.Yms
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http://www.techforce.com.br/news/content/download/18046/70638/file/OMahonyFerraro2007AMJ.pdf&ei=mOIFU53fDsHOtQbswYGABg&usg=AFQjCNGeuEmYYN89XB4xvuHMxrFZL5uWTA&sig2=DHpvOoLgqabg_I6jEyXREA&bvm=bv.61725948,d.Yms
http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf
http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf
http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf
http://tcs.sagepub.com/content/20/2/1.full.pdf
http://tcs.sagepub.com/content/20/2/1.full.pdf

56

becoming more used in commercialised environments (Fosfuri, Giarratana, & Luzzi,

2008;Dahlander & Magnusson, 2005).

6. Conclusion

I have in this thesis explored how organizations who are involved in the making of Free

Software are connected, what considerations they make when deciding on technologies, and

by looking at a controversy within a process of standardization studied how the process can

be shaped by values and reflexive mechanisms. I made use of the notion of a recursive public

in order to answer my first research question, which was to find out in what ways my actors

were connected. What the answer to the first question revealed was that not only where they

connected through the technologies which they were all using in their own projects, they were

also connected through the users of their systems. This observation helped me understand not

only how they were connected but also gave some answers to how their actions could cause

controversy between the other involved parties. The technologies which they all use acts as

intermediaries between these organizations and also affects the path in which the respective

software projects evolve. By situating myself in the position of the actors which I interviewed

and through the perspective of path dependence I also found that although their paths is to

some extent determined by their previous choices of technology, there are ways for them to

take control over this situation. Their path dependence was not as important as anticipated

but the concept was useful in order to answer my second research question, which also led to

a discussion on what kind of mandate the code represented when the actors made

http://www.idi.ntnu.no/grupper/su/bibliography/pdf/OpenSource/Dahlander2005.pdf
http://www.jstor.org/stable/25146180?
http://www.jstor.org/stable/25146180?

57

considerations. The code seemed to have a strong mandate when my actors chosen what

technologies they were to use in their projects, but what problems the code solved depended

on what the respective actor viewed as relevant for their own projects. This finding supports

Pinch & Bijker's model of how artefacts are being created by solving problems for the

relevant social groups. For my case, this perspective help us to understand how software

evolves over time (1984).

From a standardization perspective, the creation of Wayland as a multi-purpose display

server seems to have caused an unintended amount of complexity, mostly for the

collaboration process. This situation led one of the actors to create an alternative (Mir). This

two folding of directions which the two alternative display systems adds to the overall

complexity of display servers and can thus be explained as an end result of a reflexive

standardization process, where the creation of Mir can be viewed on as an unintended

consequence of the initial standardization effort. The creation of Mir also serves as a good

example of how Free Software organizations creates software as arguments as opposed to

debating in order to express themselves in how they think infrastructure should look like.

In retrospect, I also had to ask myself: what is there to be learned from this case and where

do the thesis contribute to existing knowledge about standardization processes? The case

provides insight about where you could expect friction when trying to balance commercial

activities with community driven practices in a symbiotic like relationship. It also provides an

example as to what could occur if standards are created which does not find the correct

balance between what would enable actors to innovate on top of standards and what prevents

them to do so.

Given the fact that software is still a relative new craft in our society, I think there is a lot

to question in terms of how software is currently being implemented and used in various con-

http://www.ihs.uw.edu.pl/wp-content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf

58

figurations throughout our society today. At the same time, there is lot to learn from those

who work on the edges, and by taking note from activities such as those described in this

case, organizations in our society could leapfrog much of the errors and mistakes that these

organizations are experiencing; errors and mistakes that come as a result of being pioneers in

a new paradigm of how things are done.

59

7. Appendix

7.1 Questions used in the interviews.

The questions were used as a template during the interviews and not followed chronologic-

ally. They were also modified slightly to fit with the different roles of the interview objects.

• Fist, could you just start introducing yourself and tell me something about your role in
Canonical and a little about what working in your position mean?

• How does Canonical monitor, analyse and evaluate upstream projects? And how much
does the experience vary when working with the different upstream projects.

• Could you say something about why the X Window system is insufficient in terms of
delivering the Ubuntu experience.

• Maybe you could say something about why you decided to jump off Wayland and
start on your own replacement to X.

• Are there any other actors are involved in the making of Mir display server apart from
Canonical?

• How much do you pay attention to the responses from the community or others during
the development of Mir?

• Do you see any other organizations in the future utilizing Mir in their own projects in
the future?

• Is it reasonable to draw a parallel to a case of standardization ownership, similar to the
UNIX wars in the 80/90s?

• Could you say something about what kind of critique that have been addressed to-
wards canonical in the Mir/Wayland flame war.

• Are your team trying to avoid such comments in order to stay focused on your work
or does it affect your motivation(both ways)?

• Are you aware of any ethos within the FLOSS community that fosters less fragmenta-
tion between the different projects?

• What do you prefer the most in FLOSS in general, diversity or standardization?

• Do you know of any actor you consider more important than others when it comes to
the future of either Mir or Wayland or Xorg? That I maybe should contact?

60

8. References

Ancell, R. (2014, March 24). Why the display server doesn’t matter. Retrieved from

http://bobthegnome.blogspot.de/2014/03/why-display-server-doesnt-matter.html

Baldwin, C. Y., & Clark, K. B. (2006). The Architecture of Participation: Does Code

Architecture Mitigate Free Riding in the Open Source Development Model.

Management Science. Retrieved from http://www.jstor.org/stable/20110584

Beck, U., Bonss, W., & Christoh, L. (2003). The Theory of Reflexive Modernization.

Retrieved from http://tcs.sagepub.com/content/20/2/1.full.pdf

Bergquis, M., & Ljungberg, J. (2001). The power of gifts: organizing social relationships in

open source communities. Blackwell Science Ltd. Retrieved from

http://www.idi.ntnu.no/grupper/su/courses/tdt10/curricula/P2-4-bergquist01.pdf

Bijker, W. E. (1997). Of Bicycles, Bakelites, and Bulbs - Toward a Theory of Sociotechnical

Change. MIT Press. Retrieved from http://www.google.no/url?

sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&u

rl=http%3A%2F%2Fcstpr.colorado.edu%2Fstudents

%2Fenvs_5110%2Fbijker.pdf&ei=5A4KVJPNDYXIyAOZooDQBg&usg=AFQjCNH

WPZHLFI4HiKb8jX8-VQdJkvHu-g&sig2=-

Qd8PiCea6V4ckszfSiPXA&bvm=bv.74649129,d.bGQ

Brown, E. (2013, March 6). Canonical’s Windowing Shift: More than a Mir Techie Footnote.

Retrieved from http://www.linux.com/news/embedded-mobile/mobile-linux/707710-

canonicals-windowing-shift-more-than-a-mir-techie-footnote

61

Byfield, B. (2014). KDE Desktop vs. GNOME Apps: The Great Paradox. Retrieved from

http://www.datamation.com/open-source/kde-desktop-vs.-gnome-apps-the-great-

paradox-1.html

Callon, M. (1991). A sociology of monsters: Essays on power, technology. Retrieved from

http://www.unc.edu/~jbecks/comps/pdf/callon.pdf

Chesbrough, H. (2005). Open Innovation: A new paradigm for understanding indusrial

Innovation. Oxford University press.

Che, X., & Lewis, D. (2010). IPv6: Current Deployment and Migration Status. International

Journal of Research and Reviews in Computer Science (URRCS). Retrieved from

Current Deployment and Migration Status

Clark, D. (1992). Proceedings of the Twenty-Fourth Internet Engineering Task Force. MIT,

Cambridge. Retrieved from

http://www.ietf.org/old/2009/proceedings/prior29/IETF24.pdf

Cohn, M. L. (2013). Lifetimes and Legacies: Temporalities of Sociotechnical Change in a

Long-Lived system. University of California, Irvine.

Collins, H., & Pinch, T. (1993). The Golem: what everyone should know about science.

Cambridge University press. Retrieved from

http://cstpr.colorado.edu/students/envs_5110/collins_the_golem.pdf

Colman, G. (2004). The Political Agnosticism of Free and Open Source Software and the

Inadvertent Politics of Contrast. University of Chicago. Retrieved from

https://evols.library.manoa.hawaii.edu/bitstream/handle/10524/1583/09_pdfsam_aq_c

ultures_opensources.pdf?sequence=1

Cox, M. J. (2014). About the OpenSSL Project. Retrieved from http://www.openssl.org/about/

Dahlander, L., & Magnusson, M. G. (2005). Relationships between open source software

companies and communities: Observations from Nordic firms. Science Direct

62

Research Policy. Retrieved from

http://www.idi.ntnu.no/grupper/su/bibliography/pdf/OpenSource/Dahlander2005.pdf

Dalziel, H. (n.d.). Oh no, not Mir problems for Ubuntu? Retrieved from http://www.concise-

courses.com/security/mir-problems/

Davis, P. (1985). Clio and the Economics of QWERTY. American Economic Association.

Retrieved from http://www.jstor.org/stable/pdfplus/1805621.pdf?acceptTC=true

Edwards, P. N. (2002). Infrastructure and Modernity: Force, Time, and Social Organization in

the History of Sociotechnical Systems. Retrieved from

http://pne.people.si.umich.edu/PDF/twente.pdf

Edwards, P. N., Jackson, S., Bowker, G., & Knobel, C. (2007). Understanding Infrastructure:

Dynamics, Tensions, and Design. Retrieved from

http://cohesion.rice.edu/Conferences/Hewlett/emplibrary/UI_Final_Report.pdf

English, B. (2008). Are projects hosted on Sourceforge.net Representative of the population

of Free/Open Source Softare Projects?. Retrieved from

http://www.umass.edu/opensource/schweik/documents/Population_of_OSS_projects.p

df

Fedoraproject. (2014). Fedora Engineering Steering Committee. Retrieved from

https://fedoraproject.org/wiki/Fedora_Engineering_Steering_Committee

Fedorawiki, F. (2014). Staying close to upstream projects. Retrieved from

http://fedoraproject.org/wiki/Staying_close_to_upstream_projects

Ferraro, F., & O’Mahony, S. (2007). The Emergence of Governance in an Open Source

Community. Retrieved from http://www.google.com/url?

sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http

%3A%2F%2Fwww.techforce.com.br%2Fnews%2Fcontent%2Fdownload

%2F18046%2F70638%2Ffile

%2FOMahonyFerraro2007AMJ.pdf&ei=mOIFU53fDsHOtQbswYGABg&usg=AFQj

63

CNGeuEmYYN89XB4xvuHMxrFZL5uWTA&sig2=DHpvOoLgqabg_I6jEyXREA&

bvm=bv.61725948,d.Yms

Fosfuri, A., Giarratana, M. S., & Luzzi, A. (2008). The Penguin Has Entered the Building:

The Commercialization of Open Source Software Products. Organization Science.

Retrieved from http://www.jstor.org/stable/25146180?

Foundation, L. (2014, June 2). Linux Foundation Training Prepares the International Space

Station for Linux Migration. Retrieved from http://training.linuxfoundation.org/why-

our-linux-training/training-reviews/linux-foundation-training-prepares-the-

international-space-station-for-linux-migration

Gajewska, H., Manasse, M. S., & McCormack, J. (1990). Why X Is not Our Ideal Window

System. Retrieved from http://www.std.org/~msm/common/WhyX.pdf

Gartner. (2014). Gartner Says Smartphone Sales Grew 46.5 Percent in Second Quarter of

2013 and Exceeded Feature Phone Sales for First Time. Retrieved from

http://www.gartner.com/newsroom/id/2573415

Gates, B. (2014). MS DOS v1.1 and v2.0 (Version v1.1). Retrieved from

http://www.computerhistory.org/atchm/microsoft-research-license-agreement-msdos-

v1-1-v2-0/

GENIVI. (2014). About GENICI. Retrieved from http://www.genivi.org/about-genivi

Ghosh, R. A. (2003). Clustering and Dependencies in Free/Open Source Software

Development: Methodology and Tools. IDEI/CEPR Workshop on "Open Source

Software:. Retrieved from http://dxm.org/papers/toulouse2/cluster-final.pdf

GNOME, W. (2014). Complete the GNOME Wayland port. Retrieved from

https://wiki.gnome.org/ThreePointEleven/Features/WaylandSupport

Godfrey, M. W., & Tu, Q. (2000). Evolution in Open Source Softare: A Case Study. Retrieved

from http://svn-plg.uwaterloo.ca/~migod/papers/2000/icsm00.pdf

64

Graesslin, M. (2014). Why the Display Server Does Matter [Blog]. Retrieved from

http://blog.martin-graesslin.com/blog/2014/03/why-the-display-server-does-matter/

Gräßlin, M. (2014, May 7).

Greenwald, G. (2014). NSA Prism program taps in to user data of Apple, Google and others.

Retrieved from http://www.alleanzaperinternet.it/wp-

content/uploads/2013/06/guardian.pdf

Habermas, J. (1991). The Structural Transformation of the public sphere - an inquiry into a

category of Bourgeois Society. MIT Press. Retrieved from

http://www.google.dk/books?

hl=en&lr=&id=e799caakIWoC&oi=fnd&pg=PR11&dq=+The+Structural+Transforma

tion+of+the+Public+Sphere:+An+Inquiry+into+a+Category+of+Bourgeois+Society,

+&ots=5OLJkZVWz4&sig=c24Wvw3M6YTZ3cwhPkd0akGMAUM&redir_esc=y#v

=onepage&q=The%20Structural%20Transformation%20of%20the%20Public

%20Sphere%3A%20An%20Inquiry%20into%20a%20Category%20of%20Bourgeois

%20Society%2C&f=false

Haller, J. T. (2013). Open Source License Popularity. Retrieved from

http://johnhaller.com/useful-stuff/open-source-license-popularity

Hanseth, O. (1998). Understanding Information Infrastructure. Universitetet I Oslo, Senter

for Informasjons Teknologi. Retrieved from

http://heim.ifi.uio.no/~oleha/Publications/bok.html

Hanseth, O., Jacicci, E., Grisot, M., & Aanestad, M. (2006). Reflexive Standardization: Side

Effects and Complexity in standard making. Retrieved from

http://heim.ifi.uio.no/~oleha/Publications/misqsi3979r2.pdf

Hanseth, O., & Lyytinen, K. (2010). Design theory for dynamic complexity in information

infrastructures: the case of building internet. Journal of Information Technology.

65

Retrieved from http://www.palgrave-

journals.com/jit/journal/v25/n1/pdf/jit200919a.pdf

Hanseth, O., Monteiro, E., & Hatling, M. (1996). Developing Information Infrastructure: The

Tension Between Standardization and Flexibility. SAGE Publications. Retrieved from

http://www.ics.uci.edu/~andre/informatics223s2009/hansethmonteirohatling.pdf

Hauben, M. (2010). The history of ARPA leading up to the ARPANET. Columbia University.

Retrieved from http://pages.infinit.net/jbcoco/Arpa-Arpanet-Internet.pdf

Heen, T. F. (2001). A few observations about systemd. Retrieved from

http://lwn.net/Articles/453009/

Hippel, E. von, & Krogh, G. von. (2006). The Promise of Research on Open Source Software.

Retrieved from http://www.idi.ntnu.no/emner/tdt10/curricula/P5-3-krogh06.pdf

Høgsberg. (2012). [ANNOUNCE] Wayland and Weston 0.85.0 released. Retrieved from

http://lists.freedesktop.org/archives/wayland-devel/2012-February/002072.html

Høgsberg, K. (2008). Wayland gets a terminal. Retrieved from

http://hoegsberg.blogspot.no/2008/12/wayland-gets-terminal.html

Hughes, T. P. (1987). The Evolution of Large Technological Systems. Book: The Social

Construction of Technological Systems. Retrieved from

http://www.f.waseda.jp/sidoli/Hughes_1987.pdf

ISO/IEC, 7498-1:1994. (2014). Information technology -- Open Systems Interconnection --

Basic Reference Model: The Basic Model. Retrieved from

http://www.iso.org/iso/catalogue_detail.htm?csnumber=20269

Jackson, A. (2010). Fedora representive discussing the move to Wayland on Fedora mailing

list. Retrieved from https://lists.fedoraproject.org/pipermail/devel/2010-

November/145273.html

Kelty, C. (2008). Two Bits - The cultural significance of free software. Duke University Press.

Retrieved from http://twobits.net/pub/Kelty-TwoBits.pdf

66

Lakhani, K. R., & Wolf, R. G. (2005). Why Hackers Do What They Do: Understanding

Motivation and Effort in Free/Open Source Softare Projects. Retrieved from

http://ocw.mit.edu/courses/sloan-school-of-management/15-352-managing-

innovation-emerging-trends-spring-2005/readings/lakhaniwolf.pdf

Larabel, M. (2013). Ubuntu Announces Mir, A X.Org/Wayland Replacement. Retrieved from

http://www.phoronix.com/scan.php?page=news_item&px=MTMxNzI

Larkin, B. (2013). The Politics and Poetics of Infrastructure. Bamard College, Columbia

University. Retrieved from http://www.annualreviews.org/doi/abs/10.1146/annurev-

anthro-092412-155522

Latour, B. (1993). We have Neer Been Modern. Harvard University Press.

Latour, B. (2005). Reassembling the social.

Latour, B., & Woolgar, S. (1986). Laboratory Life: The Construction of Scientific Facts.

Princeton University Press. Retrieved from http://www.amazon.com/Laboratory-Life-

Construction-Scientific-Facts/dp/069102832X

Lee, C. P., Dourish, P., & Mark, G. (2006). The Human Infrastructure of Cyperinfrastructure.

Proceedings of the ACM Conference on CSCW. Retrieved from

http://www.ics.uci.edu/~gmark/CSCW06.pdf

Lefebvre, C. (2014, April 10). Interview with founder of Linux Mint Clement Lefebvre.

Lessig, L. (2006). Code version 2. Basic Books. Retrieved from

http://codev2.cc/download+remix/Lessig-Codev2.pdf

MIT, wiki. (2014). Athena history (1983 - present) from A to Z. Retrieved from

http://web.mit.edu/acs/athena.html

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two Case Studies f Open Software

Developmen: Apache and Mozilla. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.114.5989&rep=rep1&type=pdf

67

Moglen, E. plea for Free Software before the European Parliament (2013). Retrieved from

http://www.europarl.europa.eu/ep-live/en/committees/video?event=20130709-1530-

COMMITTEE-JURI

Musk, E. (2014, June 12). All our Patent are Belong to You. Retrieved from

http://www.teslamotors.com/blog/all-our-patent-are-belong-you

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from

http://nakamotoinstitute.org/bitcoin/

Neff, G., & Stark, D. (2002). Permanently beta: Responsive organization in the internet era.

Retrieved from

http://academiccommons.columbia.edu/download/fedora_content/download/ac:12921

5/CONTENT/2002_05.pdf

Neuhaus, C., & Polze Andreas. (2014). Cloud Security Mechanisms. Technische Berichte Nr.

87 Des Hasso-Plattner-Instituts Für Softwaresystemtechnik an Der Universität

Potsdam. Retrieved from http://opus.kobv.de/ubp/volltexte/2014/6816/pdf/tbhpi87.pdf

Ohloh.net. (2014). X.Org Project Summary. Retrieved from http://www.ohloh.net/p/x

Pinch, T. J., & Bijker, W. (1984). The Social Construction of Facts and Artefacts: or How the

Sociology of Science and the Sociology of Technology might Benefit Each Other.

Social Studies of Science. Retrieved from http://www.ihs.uw.edu.pl/wp-

content/uploads/2012/10/The-Social-Construction-of-Facts-and-Artefacts.pdf

Ries, O. (2013, March 4). taking Unity to the next level. Retrieved from

https://lists.ubuntu.com/archives/ubuntu-devel/2013-March/036776.html

Ries, O. (2014, April 11). Interview with Director of Engineering at Canonical on Google

hangout.

Roberts, J. A., Hann, I.-H., & Slaughter. (2006). Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A Longitudinal

68

Study of the Apache Projects. Management Science. Retrieved from

http://www.jstor.org/stable/20110575

Sarini, M., & Simone, C. (2002). Recursive articulation work in Ariadne: The alignment of

meanings. Retrieved from http://www.google.no/books?

hl=en&lr=&id=AtPrRVIKNEAC&oi=fnd&pg=PA191&dq=recursive+articulation+w

ork+in+&ots=-

FGYQTgLiG&sig=j7y_N6568PB5wz6pxCQQZu3JIRI&redir_esc=y#v=onepage&q=

recursive%20articulation%20work%20in&f=false

Scacchi, W. (2004). Understanding Open Source Software Evolution. Retrieved from

http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf

Schmidt, K., & Liam, B. (1992). Taking CSCW seriously. Kluwer Academic Publishers.

Retrieved from http://download.springer.com/static/pdf/497/art

%253A10.1007%252FBF00752449.pdf?

auth66=1398974410_3641ee9514cc35a057b0d82bb1c369b2&ext=.pdf

Seigo, A. (2014, March 24). More on why the display server does matter. Retrieved from

http://aseigo.blogspot.no/2014/03/more-on-why-display-server-does-matter.html

Shuttleworth, M. (2010). Mark Shuttleworth » Blog Archive » Unity on Wayland. Retrieved    

from http://www.markshuttleworth.com/archives/551

Stallman, R. (1996). Free Software, Free Society - selected Essays of Richard M. Stallman.

Retrieved from http://www.google.dk/books?

hl=en&lr=&id=UJlNAgAAQBAJ&oi=fnd&pg=PA1&dq=we+maintain+this+free+sof

tware&ots=bLxo7UyNhs&sig=T3co-

bSkkZKJXj1KlRhgSFZYrgc&redir_esc=y#v=onepage&q=we%20maintain%20this

%20free%20software&f=false

Star, S. L., & Strauss, A. (1999). Layers of Silence, Arenas of Voice: The ecology of Visible

and Invisible work.

69

Theimer, M. M., Lantz, K. A., & Cheriton, D. R. (1985). Preemptable Remote Execution

Facilities for the V-System. Computer Science Department, Stanford University.

Retrieved from

http://lass.cs.umass.edu/~shenoy/courses/spring05/readings/Theimer_vsystem.pdf

Tsing, A. L. (2000). Public Culture volume 12. Retrieved from

http://muse.jhu.edu/journals/pc/summary/v012/12.1tsing.html

UbuntuWiki. (2014). LTS - Long term support. Retrieved from https://wiki.ubuntu.com/LTS

Ven, K., Vereist, J., & Mannaert, H. (2008). Shouldd you adopt Open Source Software? IEEE

Computer Society. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=4497765

Venturini, T. (2010). Diving in Magma - How to explore Controversies with Actor-Network

Theory. Retrieved from http://spk.michael-flower.com/resources/DivingInMagma.pdf

Wayland, F. (2014). Wayland FAQ. Retrieved from

http://wayland.freedesktop.org/faq.html#heading_toc_j_0

Weber, S. (2004). The Success of Open Source. Retrieved from

http://brie.berkeley.edu/research/SW%20Ch.1%20Dec02.pdf

Wilson, C. (2013). xorg/driver/xf86-video-intel (Version 2.99). Retrieved from

http://cgit.freedesktop.org/xorg/driver/xf86-video-intel/commit/?id=58a7611

X.org, A. (2014). About the X.org Foundation. Retrieved from

http://www.x.org/wiki/XorgFoundation/

Yamauchi, Y., Yokozawa, M., Shinohara, T., & Isdhida, T. (2000). Collaboration with Lean

Media: How Open-Source Software Succeeds. Retrieved from

http://delivery.acm.org/10.1145/360000/359004/p329-yamauchi.pdf?

ip=193.157.137.45&id=359004&acc=ACTIVE

%20SERVICE&key=CDADA77FFDD8BE08.8BE0DFE7B528F835.4D4702B0C3E

70

38B35.4D4702B0C3E38B35&CFID=457014189&CFTOKEN=85374285&__acm__

=1399832228_4dd417e69fbadf3e078d905277e451e3

	1. Introduction
	1.1 Context
	1.2 The case of X window system, Wayland and Mir
	1.3 Research objective
	1.4 Thesis structure
	1.5 Notes on my own position and background
	1.6 Notes on the relevance of Free Software in our society

	2. Exploring existing literature and concepts
	2.1 What defines Free Software.
	2.2 Reviewing existing studies on Free Software
	2.3 The Recursive public
	2.4 Path dependence
	2.5 Standardization and reflexive modernization

	3. Methodology
	3.1 Limitations and ethical concerns

	4. Empirical case and background
	4.1 Brief history and chronological collection of events
	4.2 Contacting the actors

	5. Empircal analysis
	5.1 Why a controversy?
	5.2 Technological considerations
	5.3 Politics and power of code
	5.4 The result: A more complex technology layer

	6. Conclusion
	7. Appendix
	7.1 Questions used in the interviews.

	8. References

