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Abstract

Video on demand and live streaming services have recently become a ubiquitous
form of entertainment delivery. These services provide media content for a wide
array of devices that differ in aspects such as processing power and screen size.
Ensuring a consistent viewing experience across all devices is challenging, but
adaptation mechanisms can assist with alleviating issues that stem from disparate
viewing platforms. In particular, video retargeting can adapt video content for
arbitrary screen sizes. While many exist, the majority of video retargeting tech-
niques are not suited to adapt streamed video on demand or live content concur-
rently with presentation, and very few are readily available for consumers or pro-
grammers. This thesis focuses on altering one offline video retargeting algorithm
to an online algorithm and implementing it as a part of a multimedia framework.

We present the design, implementation and evaluation of an on-the-fly video
retargeting solution for video on demand and live streaming. Our work is moti-
vated by making advanced real-time video retargeting readily available in a frame-
work that is easy to use for both consumers and application programmers. This
solution is as such implemented as a plugin in the GStreamer framework to pro-
vides video retargeting for arbitrary pipelines. We have compared and analysed
two offline state-of-the-art video retargeting algorithms with respect to perfor-
mance, memory usage and their ability to be altered for online retargeting. Based
on this analysis, we have chosen the algorithm which is best suited to be utilized
for our system - Parallelized SeamCrop.

To convert the offline algorithm to an online retargeting technique, we perform
the retargeting process on predefined segment lengths called frame windows in-
stead of processing the entire video in one session. This segmentation confounds
the global camera optimization that the algorithm performs on the video, but is
necessary to reduce memory usage and latency to acceptable levels for streaming.
To deal with the resulting presentation disparities between two frame windows
as a consequence of this separation, we perform a gradual transitional smoothing
between their views over a subset of the frames in the newest frame window. This
alteration allows the algorithm to be used for online retargeting at the cost of an
additional computational step in the smoothing and more frequent virtual camera
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movement when transitioning between frame windows.
We perform the evaluation of our plugin by using measurements on the perfor-

mance of our implementation in a real adaptive streaming scenario. Measurements
are done with different adaptive bitrate streaming techniques to demonstrate com-
patability with these techniques.

Our evaluation shows that our plugin is capable of performing video retarget-
ing at 25 FPS with different retargeting severities for several different resolutions
without exceeding a 2000 millisecond initial latency. We also show that longer
video segment sizes equate to higher retargeting rates when compared to smaller
video segment sizes, and that the computational time required by our additional
smoothing step is negligible. We have managed to reduce the width of a 640x360
resolution video with up to as much as 44% in real-time. Through these experi-
ments, we have demonstrated that our plugin is compatible with both DASH and
HLS within the context of the GStreamer framework and consequently that it is
usable for real-time adaptation of video on demand and live streaming content
with these adaptive bitrate techniques.
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Chapter 1

Introduction

In this chapter, we look at the background and motivation for this master thesis.
Section 1.1 provides background information for the thesis topic and Section 1.2
details the motivations for the thesis work. In Section 1.3 we present the require-
ments for the output of our work, while Section 1.4 describes our approach and
methods. Finally, Section 1.5 outlines the thesis in its entirety.

1.1 Background
In today’s world, video on demand and live streaming services are rapidly becom-
ing a ubiquitous form of entertainment delivery with an ever increasing growth.
Services such as Netflix and YouTube provide multimedia content to millions of
users daily through a multitude of heterogeneous devices such as smart phones,
desktop computers, laptops and tablets. The content provided by these services is
typically available in multiple formats, allowing a video on demand or live stream-
ing application to dynamically adapt to the presentation environment through a set
of adaptation mechanisms. In this context, adaptation mechanisms are processes
that alter one or more aspects of the video stream in response to environmental
characteristics such as bandwidth fluctuations or device properties.

Currently, the majority of adaptation mechanisms used for both video on de-
mand and live streaming are concerned with content delivery to ensure a consistent
viewing experience. As most modern devices differ in capabilities such as screen
size and processing power however, the quality of experience may suffer from
factors that are unrelated to delivery, such as video content that is ill suited for
presentation on the device. This can for example occur when there is an aspect
ratio disparity between the device screen and the video, or that the device screen
is simply too small to adequately present the video. The traditional approach to
this issue in a video on demand or live streaming context is to either crop the con-
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tent so that it conforms to the devices capabilities or present it in a letterboxed
format. Both of these approaches detract from the viewing experience by either
removing portions of the content or minimizing the presentation. The field of
video adaptation, specifically video retargeting, has been extensively researched
over the last decades and multiple different sophisticated approaches for adapting
content to different screen sizes without removing or obscuring important content
exist. However, few of these retargeting techniques have as of yet been widely
employed for either video on demand or live streaming.

1.2 Motivation
The majority of current video retargeting techniques are offline algorithms. In
contrast to an online algorithm, an offline algorithm requires the entire input from
the beginning to produce output, while an online algorithm can process input piece
by piece [8]. This effectively means that an offline video retargeting technique
requires the entire video to produce adapted output. In a video on demand context,
such techniques can be used to adapt video content for arbitrary screen sizes on a
server prior to delivery, but are of limited use for client side adaptation due to the
input requirement. Additionally, many of these techniques are not able to provide
concurrent adaptation and presentation, precluding them from on-the-fly content
adaptation.

While offline techniques can be used in this manner to adapt video content
for different screen sizes in advance, they are incompatible with live streaming.
Since live streamed content is continuously generated and delivered in real-time
from a source media, the video stream does not have a fixed length and cannot
be adapted by such algorithms. The vast majority of retargeting techniques are as
such of limited viability for adapting video on demand content and incapable of
adapting live streamed content.

Although some online video retargeting techniques exist, only a few of these
approaches are feasible for real-time retargeting of video on demand and live
streaming due to either technical or design limitations which negatively impact
the viewing experience. The main limiting factors are either the quality of the
output or an inability to retarget video in real-time, i.e., producing adapted output
at a rate equal to or higher than the frame rate of the video. In addition to this,
utilizing them as a consumer or programmer is difficult due to the complexities of
each method and the lack of readily available implementations.

Developing an adaptation mechanism that can perform on-the-fly online video
retargeting is as such beneficial to provide a good quality of experience regardless
of device screen size for both video on demand and live streaming content. Mak-
ing such a mechanism widely available would be valuable to bridge the gap in
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viewing experience that stems from aspect ratio differences between the content
and the viewing platform when consuming these forms of streaming media.

As multimedia applications have recently surged in popularity, we implement
this adaptation mechanism as a part of a multimedia framework to provide an
easily accessible video retargeting system to both consumers and application pro-
grammers. We have converted an offline video retargeting technique capable of
real-time video retargeting to an online algorithm and incorporated it into the
GStreamer framework as a plugin. This video retargeting plugin allows users
to adapt video streams for arbitrary screen sizes without discarding salient con-
tent. This facilitates real-time video retargeting for both video on demand and live
streaming content, on either server or client, along with the comprehensive tools
of the GStreamer framework. We claim that this adaptation mechanism enhances
the user experience when streaming video to devices with a different screen aspect
ratio than the video being streamed.

1.3 Requirements
Our principal goal is to determine if our system is capable of performing real-
time retargeting of video content in an internet streaming context. The following
requirements apply for our system:

1. Performance Our plugin should be able to perform on-the-fly retargeting
of continuously streamed video content from a remote server. It needs to
retarget videos at the same or higher rate than the frame rate of the video
being streamed, to not impact the viewing experience.

Videos produced for television or cinema typically operate at a frame rate
of at least 25 frames per second [9]. In order for our plugin to provide
retargeting support for such videos, it must be able to match this frame rate
for one or more resolutions used in video on demand streaming.

2. Latency The plugin must not incur significant latency between retarget-
ing initiation and the retargeted output of the video being streamed. View-
ers grow impatient and are more likely to abandon a video if the startup
delay exceeds 2 seconds [10], so the incurred latency should not exceed
this threshold. However, this study also shows that users are more tolerant
of latency at the onset of streaming as opposed to buffering mid stream.
Therefore our requirement is slightly flexible given an acceptable trade off
between the two, but a startup latency below 2 seconds is preferable.
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3. Resource usage The machine resource consumption of the plugin should
not be so severe as to prevent the machine from regular usage alongside
plugin operation.

4. Format independence Our plugin should be able to retarget incoming videos
regardless of their format.

5. Adaptive bitrate streaming compatibility Our plugin must be able to han-
dle adaptive bitrate streams that dynamically vary in bit rate, frame rate and
resolution. As a majority of popular video on demand and live streaming
services such as Youtube and Netflix utilize such approaches, this plugin
must be able to retarget streams received through at least one such standard.

1.4 Methods
The methods used in this thesis are design, implementation and evaluation. As this
thesis is practical in nature, the design is subject to small changes over the course
of implementation as unexpected difficulties might emerge. We investigate and
compare several state-of-the-art retargeting algorithms, choosing the algorithm
best suited for conversion to online retargeting as well as the requirements listed
in Section 1.3. We design an alteration of an offline retargeting system to facilitate
online retargeting and implement it within a plugin for a widely available multi-
media framework. The results are gathered from experiments performed with the
plugin and are evaluated by comparing average values against the requirements
for each respective metric presented in Section 5.1.

1.5 Outline
This thesis is organized as follows: Chapter 2 provides an introduction to the re-
targeting algorithms we considered to use in our system as well as the multimedia
framework and streaming techniques we utilize. Chapter 3 describes the design
and goals of our system while Chapter 4 presents the implementation of our de-
sign. The implementation is evaluated in Chapter 5 based on the requirements
presented in this chapter. Chapter 6 concludes our work and discusses issues that
can be solved in future work.

Appendix A lists the Git repository containing the source code of the GStreamer
plugin, measurement applications and the original source code of the retargeting
algorithm along with information about how to compile and deploy the plugin.
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Chapter 2

Background and Related Work

In the first part of this chapter, we analyse and detail retargeting methods that are
used for adaptation of video content, presenting two different approaches in Sec-
tions 2.1 and 2.2. Section 2.3 details the GStreamer multimedia framework we
utilize in this thesis. Finally, Section 2.4 presents techniques used for streaming
media content.

Over the past decades, many different retargeting methods have been proposed
and developed. These methods tend to differ in multiple aspects, from their core
assumptions to the techniques utilized to perform the retargeting. Despite the per-
vasive heterogeneity, most retargeting methods are variations on a set of basic
operations; either removing pixels from an image, merging the pixels of an im-
age or a combination of the two. These methods are classified as either discrete,
continuous or hybrid methods, respectively [9]. Figure 2.1 visualizes typical ap-
proaches associated with each of these methods.

The majority of modern retargeting techniques are complex approaches to
these methods. These techniques can roughly be classified as either cropping,
seam carving, warping or multioperator methods [11]. Cropping and seam carv-
ing are discrete methods as they remove pixels from an image, warping is a con-
tinuous method by merging pixels while the latter is equivalent to higher level
hybrid methods. An in-depth account of these methods is outside the scope of this
thesis [12].

Currently, there is no retargeting approach which excels in every quantifiable
aspect [13]; each approach has its own relative strengths and weaknesses. In [14],
Krähenbühl et al. present an efficient system which achieves high quality real-
time video retargeting for multiple resolutions through a combination of multiple
algorithms. However, their approach relies on interactive annotation of the video
to maintain coherence in scenes with several salient objects, otherwise degenerat-
ing to linear scaling. This annotation involves manually specifying regions of the
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Figure 2.1: Different retargeting methods. Left: Cropping (discrete). Center:
Scaling (continuous). Right: A combination of both methods (hybrid). The faded
borders illustrate the original image prior to the application of a method.

video frame that the system should regard as important; a degree of interactivity
which precludes it from use in an on-the-fly video retargeting context. To real-
ize real-time, online retargeting in a multimedia framework plugin, we require a
retargeting method which is fast, produces high quality output and does not rely
on significant user interaction during the retargeting process apart from initial pa-
rameter specifications.

While there are several offline techniques that fit these criteria, converting
them to provide online retargeting poses a set of nontrivial difficulties. Many of
these approaches rely on a global optimization for the entire video to produce a
palatable result [3][15], which is incompatible with the continuous provision and
presentation of content in either video on demand or live streaming. Additionally,
they can be quite memory intensive due to these global optimizations, requiring
considerable resources even for small videos, which is problematic for long video
sequences. Such approaches are classified as "video cube based algorithms", i.e,
algorithms operating on a large number of frames simultaneously [16]. These
techniques generally yield high quality results, but must be altered in some way
to be used for online video retargeting in a multimedia streaming context.

Based on a preliminary comparison of available retargeting algorithms, we
present and analyse two such state-of-the-art methods that provide real-time retar-
geting for multiple resolutions and can feasibly be altered to provide online video
retargeting: Parallelized SeamCrop [2] and Scalable and Coherent Video Resiz-
ing with Per-Frame Optimization [1]. These methods are described in detail in the
following sections.
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2.1 Scalable and Coherent Video Resizing with Per-
Frame Optimization

In [1], Wang et al. present a novel content-aware video retargeting method utiliz-
ing a combination of cropping and warping, developed with OpenMP to benefit
from CPU-based parallel processing. It emphasizes a balance of motion con-
sistency and shape preservation as well as scalability for high resolution videos
without compromising the temporal coherence.

This method can be separated into three sequential steps:

1. Spatial frame resizing

2. Motion trajectory analysis

3. Per-frame retargeting

2.1.1 Spatial Frame Resizing
In the first step, an individual frame is resized with the content-aware scale-and-
stretch method from [17] to preserve the per-pixel correspondence of salient ob-
jects between the original and resized frame. Preserving the pixel correspondence
is essential to maintain consistent spatial shapes of objects between the frames,
which is required for optimizing their motion pathlines in the next step. Gradient
magnitude of pixel colors, optical flow vectors and face detection is utilized to
compute the saliency map used to guide the resizing. This step only accounts for
a portion of the total retargeting as the resulting frame is transformed to a size
which may be larger than the desired width.

2.1.2 Motion Trajectory Analysis
While the previous step preserves the spatial shapes of objects, the motion in-
formation may be distorted by either stretching or compressing as each frame is
resized independently. This step corrects the motion pathlines by optimizing the
offset deformation between neighboring pathlines, encouraging the optimization
towards constant scaling. This is performed as a global optimization for the entire
video. The optimization is a combination of temporal coherence and the spatial
shape preservation from the previous step. Essentially, it attempts to strike a bal-
ance between where the object shapes are in the resized frames and where they
should be based on the original frames. The motion pathlines are visualized in
Figure 2.2.
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Figure 2.2: Optimization of motion pathlines across frames (t) and neighboring
pathlines (x). Red: original Gray: linearly scaled Green: per-frame resized Blue:
optimal. The horizontal offsets are reduced in both linear scaling as well as the
optimized pathlines [1].

2.1.3 Per-Frame Retargeting
The final step of the method consolidates the optimized pathlines into one coher-
ent video by repeating the content aware retargeting performed in step 1. In this
repeated retargeting, the locations of the pathlines for each frame are added to the
warping energy of each frame t.

These three steps constitute the primary retargeting technique in this approach.
For frames which are densely populated with prominent objects, use of this tech-
nique degenerates to linear scaling. In such cases, this approach resorts to utilizing
a cropping technique based on the one presented in [18] to perform the retarget-
ing. This technique warps the frame to a natural width, pans the virtual camera to
include the most critical region of the frame and crops the edges outside of this
critical region. The retargeting process for this technique is illustrated in Figure
2.3.

The algorithm is performed with variable grid mesh sizes, which are quad
grids overlaid on each video frame used to seed motion pathlines. A small grid
mesh size results in more precise retargeting at the cost of increased memory usage
and processing time. Conversely, a large size results in a more coarse retargeting
result but is faster and less memory intensive.

Performance The algorithm produces a consistent output rate ranging between
80-100 FPS on a PC with a Core i5 2.66 GHz CPU and 8GB of RAM.
The author does not disclose the resolution of the test sequence or the grid
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Figure 2.3: The cropping and warping process. The target video cube is depicted
in pink [1].

mesh size used for this experiment, but as they state that their technique
scales linearly with resolution this rate is likely to linearly decrease as the
resolution increases.

Alterability This algorithm relies on globally optimizing the motion pathlines for
the entire video to ensure consistent retargeting. This optimization approach
must be altered if it is to be compatible with both video on demand and live
streaming.

Memory consumption Memory usage is directly tied to the grid mesh size as
well as the pixel resolution. Each individual grid mesh size exhibits con-
sistent memory consumption for a configuration, but the memory utilized
increases considerably along with the grid mesh size. For a video with a
resolution of 688x288 pixels and 224 frames, a grid mesh size of 20x20 re-
ports a peak memory usage of 22 Mb while a 3x3 grid mesh consumes 1.2
Gb for the same case.

2.2 Parallelized SeamCrop
Parallelized SeamCrop is a retargeting algorithm aimed at real-time adaptation of
video streams, using a combination of cropping and seam carving. It builds upon
the efficient SeamCrop [3] technique, utilizing the GPU to significantly enhance
the performance of the algorithm. The algorithm reduces the dimensions of a
video cube from m × n to m’ × n, removing the least salient content from each
individual frame. Salient content in this context refers to the regions of the image
that the importance function assigns a high energy value.

The algorithm itself can be separated into three sequential phases:

1. Energy calculation

2. Cropping window path computation

3. Seam carving
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Figure 2.4: Energy values in each column are summed up first. The column cost
values are then summed up for each cropping window position before combining
them into a 2D array [2].

Energy calculation and seam carving are operations executed on the GPU, while
the cropping window computation is performed by the CPU. The algorithm per-
forms two passes on the video; once for the energy calculation and once for re-
moving the identified seams.

2.2.1 Energy Calculation
The algorithm begins by searching for an optimal cropping window path of a tar-
get size m’ over the course of the whole video. The relative energy of each pixel
is measured by way of motion saliency and gradient magnitude. Motion saliency
detects moving objects whose motion is discontinuous to the background [19]. It
is measured by comparing the difference of the pixel value between the preced-
ing, current and following frame. Gradient magnitude indicates how quickly and
in which direction the image is changing most rapidly [20], measured by normal-
izing the length of its’ gradient to [0..1]. The energy of an individual frame is
computed through a weighted combination of these measurements, favoring the
motion saliency.

These energy values effectively map the image into a two-dimensional matrix
where each pixel has an associated energy value. The values of each column in
this matrix are summed up to create an associated column cost c for each column
i = 1, ..,m. These column costs are then used to determine the total energy Wi

contained within each possible cropping window position i = 1, .., (m−m′ + 1)
for each frame. This results in a two dimensional array containing the total energy
for each possible position of the cropping window for each frame of the video.
Figure 2.4 illustrates the interactions between these computations.
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Figure 2.5: Path of the cropping window over time. Each point represents the
position of the cropping window in the corresponding frame [3].

2.2.2 Cropping Window Path Computation
A cropping window in this context is the effective video window of target size
m’ that the retargeting will produce. This window can be visualized as a virtual
camera that pans over the source video, globally optimized to contain and follow
as much of the salient content as possible throughout the length of the video. The
frame-by-frame position of this window is decided based on the energy map W
described in the previous section.

The path is searched for and identified by using dynamic programming on
the 2D array with similar restrictions as in the seam carving algorithm in order
to find the path with the maximum energy [21]. Details regarding this search
are explained in the next section. The energy of a path is the sum of the energy
values in all path positions from frame t = 0, .., T . It is determined by traversing
the W array along the time axis t, starting from and continually choosing the
maximum adjacent energy value. When the last row is reached (t = T), it has
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Figure 2.6: Left: Original image. Center: Seams found. Right: Image after
removal of seams [3].

found a path with the lowest energy cost. Backtracking from the cheapest position
in the last row yields the optimal window path through the video sequence. Figure
2.5 illustrates a possible cropping window path for a video sequence.

While the paths found by this algorithm are temporally connected, they are not
impervious to inter-frame jitter. This typically occurs when the maximum energy
values of adjacent cropping window positions oscillate back and forth, causing
the window to jump between these few positions. To mitigate the effects of this
jitter, the computed positions are smoothed with a Gaussian filter.

2.2.3 Seam Carving
Seam Carving is a technique that can be described as a form of dynamic cropping,
removing pixels of an image to obtain an image with reduced resolution. In con-
trast to cropping however, the pixel removal is not performed indiscriminately on
the borders of an image. Pixel seams, either horizontal or vertical, depending on
the desired aspect ratio, are removed from within the image itself. This removal is
based on an energy mapping of the image, such as the one described in the previ-
ous section. In the original approach, seams with lowest cumulative energy values
for each pixel are removed in ascending order until the desired image resolution
is reached. Figure 2.6 illustrates the application of Seam Carving on an image.

Each individual seam is computed by initially choosing a pixel at either the
top row or leftmost column of an energy map spanning the image. The starting
position is determined by the direction of the seam to remove and the energy of the
pixel. The pixel with the lowest value of its row or column is typically chosen, as
it marks the end of an optimal seam. This example will focus on a seam extending
from top to bottom.

From the identified starting position, the pixel with the lowest energy value
of the three adjacent pixels in the next row is chosen. This step is continually
performed until the bottom row of the image is reached, at which time a seam
has been found, and this process is repeated until enough seams have been found.
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Cropping Window Size

Extended Window Size

Seams

Figure 2.7: Interaction between seam carving, the cropping window and the ex-
tended window.

Note that a seam can move between columns, but cannot move more than once
per traversed row as this would introduce discontinuous seams.

2.2.4 Seam Carving in Parallelized SeamCrop
Parallelized SeamCrop utilizes a modified approach to the selection of seams.
When performing seam carving on video, seams have to be chosen with a temporal
concern in mind. As frames in a sequence need to be temporally coherent, each
seam depends upon the seams previously calculated in the current frame t as well
as the corresponding seam from the preceding frame t− 1. A temporal coherence
cost is used to favour seams that are in close proximity to the relevant seam in the
previous frame, linearly increasing outward from the position of said seam. The
intent is to utilize seams that are more temporally coherent rather than the optimal
ones. Choosing seams in this manner limits the introduction of artifacts within a
sequence of frames, ensuring consistent representation of objects across them.

The calculated cropping window position for a frame might remove the edges
of important visual objects despite being in the optimal position. To circumvent
this issue, the borders of the cropping window are extended by a predetermined
factor during the identification of seams. The extended width, illustrated in Figure
2.7, is expressed as m′ + ((m − m′) ∗ extendfactor). This allows the search
for seams to include as much of the salient objects as possible into the cropping
window.

Before the search for a seam commences, the energy map of the frame is re-

31



calculated for the extended cropping window. This calculation is only performed
once per frame. Each search for a new seam on the same frame utilizes the same
map, preventing duplicate use of pixels by artificially increasing the energy values
of all pixels utilized in the previous seam. Each column is assigned its own thread
so that each pixel in a row can be computed independently. Since the rows depend
on each other, every row has to wait until the previous one has finished. Once
finished, the cheapest value in the last row is identified as it marks the end of the
optimal seam.

During the search, each thread concurrently calculates seams for a given frame,
waiting until the seams they require from the preceding frame are identified. For
instance, if a seam i should be calculated for frame t, the thread yields until a
thread calculating seams for frame t − 1 has at least identified seam i + 1 be-
fore resuming. This process repeats for each frame until enough seams have been
found.

The algorithm is performed by executing each of the previously described
phases once. The degree of retargeting is determined by a retargeting factor, ex-
pressed as a float value between 0 and 1. The target width m′ is obtained by multi-
plying the original width with this factor, expressed as m′ = m ∗ retargetfactor.

Performance The output rate of this algorithm is highly dependent on two fac-
tors: video resolution and retargeting factor. The experiments in this pa-
per were performed on a PC with the following specifications: Intel i7-
3770 CPU with four cores at 3.4 GHz, 16 GB DDR3 RAM and a NVIDIA
GeForce GTX 650 TI with 1024 MB memory and 768 CUDA cores. With a
resolution of 480x270 and a retargeting factor of 25%, a retargeting rate of
52 frames per second is achieved. This rate decreases as both resolution and
retargeting factor increases. Assuming 25 frames per second, the algorithm
achieves real-time retargeting up until a resolution of 720x405 pixels with
a retargeting factor of 25%.

Alterability The algorithm performs a global optimization of the cropping win-
dow path across the entire video. In order to be compatible with video on
demand and live streaming, this optimization must be altered or replaced.

Memory consumption Memory usage is not reported in the paper, but as it re-
quires the video in its entirety to perform the retargeting, the memory con-
sumption is likely to increase linearly with the resolution of the video and
its length.
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Figure 2.8: Example GStreamer pipeline [4].

2.3 GStreamer
GStreamer is a pipeline based open-source multimedia framework that can be
used to easily create multimedia applications for a vast variety of purposes. The
core principle of GStreamers design is the creation of pipelines which define,
produce, or otherwise modify a data flow. These pipelines are formed by linking
various elements together, creating a chain of modules which operate on the data.
Elements are either included in the framework itself or provided by third party
programmers. The framework manages these elements by directing data flow
and negotiating formats between them. Despite being labeled as a multimedia
framework, it can handle any type of data stream.

2.3.1 Elements
Elements are the building blocks of a Gstreamer pipeline. Each element has a
specific behavioral pattern, where the cumulative patterns of the pipeline define
the application behaviour. In general, there are three types of elements: sources,
filters and sinks, as illustrated in Figure 2.8. Each of these types exhibit a set of
defining characteristics.

Sources

Sources are elements concerned with producing data, typically set as the first ele-
ment in the pipeline. There is a wide array of different sources for different types
of data, but their role is the same. Examples of such elements are videotestsrc,
which can produce video data in a variety of formats, audiotestsrc, which gener-
ates audio on a specified frequency and filesrc which reads data from a file.
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Filters

Filters are elements that alter received data, such as applying a visual effect to an
incoming video stream or modify the volume of an audio stream. The role of these
elements is typically to either modify the data for consumption or act as an inter-
mediary between elements that do not have any formats in common. Decoders,
muxers and protocol handling elements fall under this banner. An example of a
simple filter is the videoscale element, which scales the dimensions of a video
stream from an input resolution to a different output resolution.

Unique to filter elements is that they are linked to multiple other elements,
both upstream and downstream. This allows elements which split data streams
to forward separate streams to differing receivers. An example is the avidemux
element, which separates an AVI stream into a video stream and an audio stream.
These two streams can later be combined into a single stream with a muxer such
as the complementary avimux if desired. The ogg-demuxer element in Figure 2.8
is one such element.

Sinks

Sinks are the principal consumers of the Gstreamer pipeline. Data sent from a
source element upstream will eventually arrive at a sink element, which typically
outputs data to either a video display, sound card or harddrive. Sink elements can-
not produce data, and are as such always pipeline endpoints.

In addition to these element archetypes, we have an ancillary element type
which acts as a container for other elements.

Bins

Bins are elements used to encapsulate a set of linked elements into one logical
entity. When multiple elements are combined in this way, they are referenced as
a single unit rather than being handled individually. This is used to provide an
abstraction for a logical segment of a pipeline, such as consolidating all elements
related to a video stream into a single element. The pipeline itself is a specialized
type of bin which manages synchronization and bus messages between the con-
tained elements.

Each pipeline must contain at least one source element and a sink element
- producer and consumer. When constructing a pipeline with these elements, it
defines the behaviour of the enveloping multimedia application.
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2.3.2 Plugins
Plugins are preprogrammed sets of one or more elements that can be used in a
pipeline. An element cannot be utilized in a pipeline without first being encap-
sulated in a plugin, so a plugin is essentially a shipped version of one or more
elements. They typically encompass a specific sequence of execution with a set of
elements, but may also just contain a single basic element. As such, plugins vary
greatly in content and complexity. Plugins are distributed as dynamically linked
libraries or shared object files which can be directly plugged into a pipeline.

2.3.3 Pads
Pads are the I/O interfaces of an element, used to communicate and transfer data
between entities in the pipeline. They manage negotiation of the formats between
the elements, restricting the types of data one can produce or receive. There are
two types of pads, sourcepads and sinkpads, which fulfill the same roles as their
names indicate: sending and receiving. While elements typically have one of each,
some may have multiple of either, as in the case of filter elements. However, an
element must have at least one pad which either produces or receives.

2.3.4 Properties
The vast majority of GStreamer elements have customizable properties. These
properties are unique to each element, where they typically either alter its be-
haviour or determine its internal state. This functionality is common for all GStreamer
elements. Each element derives from a GObject, which provides the necessary
functions for setting properties via g_object_set or g_object_get in an application.

To illustrate, consider a small scale pipeline consisting of two elements: videotest-
src and autovideosink. videotestsrc produces a video stream mainly used for
testing purposes which can be customized through various properties, while au-
tovideosink is a plugin which automatically chooses an appropriate sink element
for viewing a received video stream.

In Figure 2.9 we can see two different pipelines. For the leftmost picture, we
have set the pattern property of the videotestsrc element to circular, making it
produce a circular black and white pattern. In the second picture, we set the same
property to smpte100, where it produces a color bar pattern for color testing.

2.3.5 Communication
GStreamer provides a handful of mechanisms for exchanging data and general
communication between pipeline and application as well as from one element to
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Figure 2.9: Output of two GStreamer pipelines with differing pattern properties
for videotestsrc.

neighboring elements in the pipeline. Figure 2.10 illustrates the different commu-
nication flows in a Gstreamer pipeline. A GStreamer application is an application
which creates elements, packs them together in a pipeline and plays the pipeline.
The application can influence the operation of the pipeline by sending events and
queries to elements. All communication is facilitated through the following mech-
anisms: events, queries, messages and buffers.

Events

Events are objects used for general communication between both elements and an
application and its elements. These objects can travel both upstream and down-
stream, depending on the actual event that occurred. Downstream elements might
need to notify an upstream element of some event, such as a user seeking through
a video, while upstream elements will have to notify downstream with events such
as the end of a stream. Events that travel upstream always travel out-of-band, i.e.,
travelling through the pipeline instantly, while events that travel downstream, such
as format changes, can be synchronized with the data flow.

Queries

Similar to events, queries are used to communicate between upstream and down-
stream elements. However, instead of providing information, they are used to ask
an element for specific information, such as the state of an element, the duration
of a video stream or the capabilities of the receiving element. Queries are always
synchronously answered due to the possibly time sensitive nature of the queried
information, such as querying the current position of the stream. If an element
cannot handle a query, it is sent further up/downstream until it reaches an element
that can handle it.
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Figure 2.10: Communication flows between elements in a GStreamer pipeline and
from an application to the elements in a pipeline [5].

Buffers

In GStreamer, buffers are objects used to exchange streaming data between ele-
ments. A buffer is an allocated space in memory whose location is exchanged
through pointer passing. These objects exclusively travel downstream, as a data
stream never flows from a sink element to a source element.

2.3.6 Capabilities
As previously mentioned, GStreamer can be used to stream any form of data.
While there are no restrictions imposed by the framework itself, each element is
required to describe what types of data it can handle. This information is stored
in a GstCaps structure, where ’caps’ is shorthand for capabilities. GstCaps are
contained in the pads of an element, and individual pads of an element can differ
in what types of data they support. A filter element for instance can transform
the data between its sinkpad and sourcepad, requiring separate input and output
caps. These capabilities are either statically set in the pad template or dynamically
negotiated between one element and another.

2.3.7 Negotiation
Capabilities negotiation is the process of identifying media formats that two neigh-
boring elements have in common and deciding which format to use. In some cases
there is only one common format, while other times there might be a plethora of
different options. GStreamer differentiates between three separate types of nego-
tiation.

37



Fixed Negotiation

This type of negotiation is used when an element has only one format it can re-
ceive and produce. Usually, this format is statically fixed in the code itself, which
prevents any possibility of renegotiation. The peer elements are forced to accept
this format if the pipeline is to function at all. An example of fixed negotiation is
the presence of a source element which can only produce a certain media format.

Transform Negotiation

This technique imposes a transformation between the input caps and the output
caps, where the output format depends on the input format and alternatively some
element properties. Negotiation of this type is typically used to convert between a
fixed upstream format and a fixed downstream format. Elements like decoders or
encoders are common transform negotiators that do this, while elements that only
inspect the data stream without changing the format also utilize this technique.
Such elements operate in passthrough mode, which intuitively passes the format
from the input caps to the outgoing ones.

Dynamic Negotiation

Dynamic negotiation is the most powerful negotiation technique, but entails greater
complexity. Elements utilizing this technique can convert fixed input caps re-
ceived on its sinkpad into multiple formats that can be negotiated with the next
downstream element. The sourcepad of the element will have to choose an output
format from a range of possibilities, usually one that the element downstream can
accept. Queries are used to discover the capabilities of the downstream element,
and the format is chosen thereafter. Ideally, the format that requires the least ef-
fort to produce is chosen. Examples of elements that use dynamic negotiation are
videoconvert and audioresample.

2.3.8 Negotiation Process
In Gstreamer, pads are always the driving force behind the data flow of the pipeline.
There are two separate scheduling modes that the pads can operate in: Push mode
and pull mode.

Pads operating in pull mode request data from the upstream element preceding
it, while pads in push mode directly send buffers downstream. Only sinkpads can
operate in pull mode, and conversely, only sourcepads can operate in push mode.
Data cannot flow downstream without a producing elements sourcepad pushing
data or a receiving elements sinkpad requesting data. There are advantages and
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disadvantages with both modes, but the mode to use is largely determined by the
needs of either an element or the application. Push mode is useful for situations
where data needs to be transmitted as fast as it can be produced, pull mode for
when a receiving element can’t utilize data as quickly as it is produced, requiring
control of the input flow.

The negotiation process for each of these scheduling modes is similar, where
pull mode negotiation is slightly more complex. We will focus on push mode
negotiation, as it is most prevalent.

Push mode negotiation operates as follows, illustrated in Figure 2.11:

1. Element 1 queries downstream Element 2 about the formats it can receive.
As the elements might have differing capabilities, a common format must
be identified.

2. Element 2 responds with a list of formats that it can handle.

3. Element 1 compares the formats in the returned list with its own internal
list, choosing a format that is suitable for both elements.

4. Element 1 asks Element 2 whether the chosen format is acceptable.

5. Element 2 responds with either a confirmation or rejection.

(a) If Element 2 rejects the format, Element 1 returns to step 3 to choose
a different format

6. If Element 2 accepts the format, Element 1 instructs Element 2 to prepare
to receive the chosen format.

7. Element 1 begins transmitting data.

Renegotiation

Renegotiation is initiated by a downstream element that wishes to receive a differ-
ent format from a negotiated pipeline. The catalyst for renegotiation is typically
a result of changes on the pipeline sink which cannot be handled by that partic-
ular element. An example can be that the size of the window presenting a video
changes, where the presenting element is not capable of performing the scaling
itself. A request for a new format that matches the dimensions of the new window
is sent upstream, using a RECONFIGURE event. Depending on the active nego-
tiation mode in the upstream elements, they will react differently to this event.

An element operating under fixed negotiation will drop the event, as the el-
ement is not able to alter its own format. Furthermore, since its output caps do
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Figure 2.11: Push mode capability negotiation between two pipeline elements.

not depend on any caps upstream, the event can safely be dropped. Elements op-
erating under transform negotiation will forward forward the event upstream, as
their output caps depend on the caps further upstream. When the request arrives
at an upstream element operating under dynamic negotiation, the element checks
whether it can produce the new format. If so, it restarts the negotiation process
detailed in Figure 2.11.

2.3.9 Element Structure
This section describes the basic structure of a filter element from a plugin writer’s
point of view. Most plugins are created as a subclass of a GStreamer base class that
provides supporting functionality to simplify development. The internal functions
of an element depends on the base class, but the most important functions are
listed in Table 2.1.

Capabilities

The capabilities of an element are statically assigned in a structure called a pad
template. This template defines the formats that the pads of the element can accept
or produce, the direction of the pad and the name of the pad. Each pad has an
associated template, i.e., source or sink, as the element might be able to accept
different formats than it can produce. These templates are set by the plugin writer
based on the restrictions of the element.
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Function Description
plugin_init registers the plugin with the GStreamer framework
gst_class_init one time initialization of the class
gst_init initializes an instance of the class
get_property gets a property of the element
set_property sets a property in the element
event handles incoming events
query handles incoming queries
chain handles incoming data buffers
generate_output generates output to be inserted into the pipeline

Table 2.1: Internal functions of a GStreamer filter element.

Metadata

Each element is described by additional metadata that is statically assigned during
plugin initialization. This metadata provides extra information about the element
and is comprised of four fields:

• the name of the element,
• the element type,
• a brief description of the element,
• name of the author and email address.

2.4 Streaming Techniques
There are multiple different approaches to media streaming. Traditional stream-
ing generally uses a stateful protocol such as the Real-Time Streaming Protocol
(RTSP) [6]. When a client connects to the streaming server with this protocol, the
server keeps track of the client’s state until it disconnects. Once a session has been
established, media is sent as a continuous stream of packets over either TCP or
UDP. This typically entails frequent communication between the client and server.

In contrast to traditional streaming techniques, modern streaming techniques
utilize HTTP to stream media. An important benefit of HTTP streaming is that
HTTP packets rarely have issues with passing through routers and firewalls in
comparison to traditional techniques. HTTP is stateless, where each request is-
sued by the client is handled as a standalone one-time transaction. Utilizing HTTP
for streaming is not a new concept, where HTTP progressive download is widely
used for media delivery from standard HTTP servers. However, there are multiple
disadvantages with this approach, such as lack of support for live media services,
poor bandwidth utilization and absent bit rate adaptation.
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Figure 2.12: Structure of a Media Presentation in DASH [6].

Newer approaches such as Dynamic Adaptive Streaming over HTTP [22] or
HTTP Live Streaming [23] provide stateless communication in addition to ad-
dressing the aforementioned disadvantages of HTTP progressive download [24].
Other approaches such as Adobe HTTP Dynamic Streaming [25] and Microsoft
Smooth Streaming [26] exist, but as they are proprietary they are not discussed in
this section.

2.4.1 Dynamic Adaptive Streaming over HTTP
Dynamic Adaptive Streaming over HTTP, henceforth referred to as DASH, is a
HTTP streaming protocol standard aimed at solving the complexities of media
delivery to multiple heterogeneous devices. DASH is a fairly new adaptive bitrate
streaming technique and the first of its kind to be ratified as an international stan-
dard. It supports both live and video on demand content and is currently adopted
by services such as YouTube and Netflix.

The technique breaks down media content into small file segments, alterna-
tively referred to as chunks, each containing a short interval of playback time.
These segments are made available in a variety of different encoded bit rates and
resolutions which are stored along with a media presentation description (MPD).
The MPD is metadata describing the relation of the segments and how they form a
media presentation. The media presentation referenced by the MPD is a structured
collection of encoded data of some media content, illustrated in Figure 2.12.

In DASH, the client is in full control of the streaming session, managing on-
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time requests and ensuring smooth playout of the segment sequence. Streaming
is initiated by downloading the MPD, through which the client requests segments
with HTTP GET or other partial GET methods. Each chosen segment is typically
the highest quality option that can be downloaded in time for playback without
incurring re-buffering or stalling. This permits seamless adaptation under fluctu-
ating bandwidth conditions at the client’s discretion, ensuring the highest quality
playback possible.

2.4.2 HTTP Live Streaming
HTTP Live Streaming, also known as HLS, is a HTTP streaming protocol similar
to DASH. As it was developed prior to DASH, it has served as one of the progen-
itors to the technique. While it lacks some features such as HTML5 support and
codec agnosticism when compared to DASH, it is still employed despite being
less feature rich than its more recent counterpart.

HLS consists of three parts: the server component, the distribution component
and the client software, as illustrated in Figure 2.13. The server component is
responsible for segmenting input streams into different encodings and encapsu-
lating them in a suitable format. The distribution component consists of standard
web servers that are responsible for accepting client requests and delivering the
media. The client software is responsible for requesting the appropriate media,
downloading resources and reassembling them for presentation.

As with DASH, HLS separates media content into segments of predefined
length, typically containing 10 seconds of playback content. The metadata for
these segments are stored in an m3u index file, sometimes also referred to as a
playlist file, which is functionally identical to the MPD in the DASH approach. It
specifies the location of each segment with either an absolute path name, relative
path name or a URL. Streaming is initiated by downloading this m3u manifest,
through which the client subsequently requests individual segments via HTTP
GET methods.
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Figure 2.13: Architecture of HLS [7].
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Chapter 3

Design

In this chapter, we present the design of our video retargeting plugin which re-
ceives a stream of raw video frames and produces as output retargeted frames
with altered aspect ratio and size. In Section 3.1 we describe our goals as a prod-
uct of the requirements we outlined in Chapter 1. Section 3.2 details the reasoning
behind the choice of retargeting algorithm. In Section 3.3, we combine the retar-
geting algorithm and the GStreamer framework by presenting the design of our
plugin.

3.1 Goals
Our principal goal is to make a plugin that can be directly inserted into a GStreamer
pipeline to perform on-the-fly adaptation of video on demand and live streaming
content. Through this plugin, a user is able to view adapted video content on a
screen that is smaller than the intended viewing platform of the original video.

Our first goal is to choose a retargeting algorithm that is best suited for our
requirements. The next goal is to implement and wrap the chosen retargeting
algorithm within a GStreamer plugin.

The outcome of our work is a video retargeting plugin. No knowledge other
than that of the GStreamer framework and the parameters to the plugin itself
should be required to utilize it in a pipeline or use it in future application de-
velopment.

3.2 Retargeting Algorithm
One of the tasks is to choose a suitable retargeting algorithm to perform the video
adaptation. Since our plugin should function as a wrapper for the algorithm, it
inevitably inherits the traits of the approach. As properties such as performance
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or memory usage can either make or break the plugin, careful consideration is
required.

In Chapter 2, we introduce and analyse retargeting algorithms with respect to
the requirements we presented in Chapter 1. In this section, we compare the two
algorithms with particular emphasis on alterability. We have chosen the retarget-
ing algorithm which best fulfills these requirements.

Performance Scalable and Coherent Video Resizing with Per-Frame Optimiza-
tion, henceforth referred to as SCVR, exhibits the best performance of the two
algorithms. In the paper, the technique achieves an output rate averaging approxi-
mately 80 FPS. While the resolution of the test sequence or the quad grid size for
this experiment is not reported, the rate is higher than any of the rates achieved by
the Parallelized SeamCrop approach and scales linearly with resolution. Paral-
lelized SeamCrop achieves 52 FPS for a 480x270 resolution test sequence and at
most 25 FPS for a resolution of 720x405. Despite the difference, both approaches
are viable in terms of performance as our requirement is real-time retargeting at
25 FPS for at least one resolution.

Alterability Neither of the analysed techniques are able to provide online re-
targeting without adjustments. Both approaches rely on global optimizations for
the entire video to produce the intended output, which must be altered in order
to be viable. The least invasive adjustment to these algorithms is to perform the
optimization on predefined segment lengths as opposed to the entire video. In this
respect, Parallelized SeamCrop is less problematic to customize than SCVR since
it utilizes the same retargeting approach regardless of video content. SCVR alter-
nates between a warping and cropping technique depending on the presence of
multiple salient objects in a frame, which can cause inconsistencies in the frame
composition if the global optimization is not performed for the entire video. In
contrast, the optimization performed in Parallelized SeamCrop is easier to seg-
ment as it only determines the cropping window path. Preserving the frame com-
position between segments is much simpler, as the final position of the cropping
window and its seams in the previous segment can be used to adjust the path of
the next segment, since they are guaranteed to use the same retargeting approach.

Memory consumption Without alterations to the algorithm, SCVR is more mem-
ory efficient than Parallelized SeamCrop as the memory use is constant regardless
of video length [1]. The space required depends on the quad grid size, and the
memory utilization for all quad sizes are manageable. The memory usage of Par-
allelized SeamCrop scales linearly along with the video length due to the need
to store each individual frame until the global optimization is complete, which
rapidly becomes an issue for longer video sequences. However, if the optimiza-
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Algorithm Performance Alterability Memory Consumption
SCVR 3 (3) 3

Parallelized SeamCrop 3 3 (7)

Table 3.1: Comparison of the retargeting algorithms.

tion is performed on segments as explained in the previous paragraph, the memory
utilization is reduced to the space required to store a segments length of frames.
Depending on the length of a segment and the size of each individual frame, this
alteration makes Parallelized SeamCrop viable from a memory usage perspective.

Table 3.1 displays the viability of both algorithms with respect to the prop-
erties we discuss in this section. The most important aspect to consider when
choosing which algorithm to select is whether or not it can be customized for
use for a video streaming from a remote server. If the algorithm can not be al-
tered to provide online retargeting, all other properties are irrelevant. While both
approaches can be modified for this purpose, SCVR is much more difficult to cus-
tomize than Parallelized SeamCrop. Due to this, guaranteeing output consistency
between segments with SCVR is problematic.

As Parallelized SeamCrop exhibits satisfactory performance and its memory
usage concern can be addressed by the algorithm alteration, we choose to utilize
this retargeting algorithm for our plugin.

3.3 Detailed Design
In the preceding section, we chose Parallelized SeamCrop as our retargeting algo-
rithm of choice. This section presents the design details of our GStreamer plugin,
how we integrate the algorithm with the GStreamer framework as well as the inter-
action between the two. The following subsections focus on the plugin’s relation
to other GStreamer elements, the inner workings of each individual component
and ultimately the flow of the plugin as a cohesive unit. Since most of the com-
plexity is contained within the plugin itself, the majority of these sections are
concerned with the internal structure.

3.3.1 SeamCrop Plugin
As described in Section 2.3.1, extensions to the GStreamer framework are imple-
mented as elements that can be inserted into the pipeline. These elements, either
multiple or single, are combined together into plugins which can then be loaded
by the GStreamer framework.
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Figure 3.1: Architecture of our system.

The output of our work is a GStreamer plugin containing a single element,
GstSeamCrop. This plugin is a loadable block of code, shipped as a dynamically
linked library which can be inserted into a pipeline at runtime. GstSeamCrop is
a filter element, neither sink nor source, which consumes video data sent from
upstream and produces an adapted output stream.

3.3.2 Architecture Overview
In order to retarget video content using our plugin, the host machine is required to
have a CUDA capable GPU with a compute capability higher than 2.0 as well as
the GStreamer framework installed. A CUDA capable GPU is required to utilize
the parallelization property of the retargeting algorithm, and the plugin will con-
sequently not work without it. Apart from this, our plugin only depends upon the
GStreamer framework and its libraries.

Figure 3.1 illustrates the usage of our plugin. In this figure, our plugin is used
as part of a GStreamer pipeline which utilizes either DASH or HLS to stream
content from a video on demand server. The httpsrc element requests and receives
combined video/audio segments from the server via either the MPD or the m3u
manifest depending on the streaming technique. The demuxer separates the in-
coming segments into individual streams. The decoder element decodes the video
stream into individual frames which are passed on to our plugin. Our plugin se-
quentially retargets the video frames via the GPU and passes them onwards to the
video sink for presentation.
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3.3.3 Supporting GStreamer Elements
As the plugin should be able to retarget any type of video stream, it has to be
format independent. The retargeting algorithm itself performs the video adapta-
tion on decoded and uncompressed video frames. Unless format conversions are
performed at either end of our element, raw video frames are all that it can accept
and produce. Only accepting raw frames is not particularly desirable, and there
are a couple of approaches to deal with this issue.

One way is to implement decoding and encoding within the element. This
makes the plugin more comprehensive and feature filled, but due to the vast array
of available formats, it is not feasible to provide this functionality for all format
possibilities within the confines of our project. The sheer amount of time required
for an implementation places it outside the scope of this thesis.

A second approach is to implement support for only a few encoded formats.
The workload in this approach is less comprehensive and easier to manage, but
the resulting functionality is too limited to be of considerable value. The plugin
is no longer format independent and is only usable when these formats can be
guaranteed. We consider this approach to be too inhibiting as it specializes the
functionality as opposed to generalizing it.

The last approach is to utilize decoding and encoding elements from the GStreamer
framework. As outlined in Section 2.3, GStreamer is a comprehensive and pow-
erful framework which provides a plethora of elements that we can use to pro-
vide this functionality. Plugins such as decodebin and uridecodebin can be used
to automatically choose suitable demuxer and decoder elements for an incoming
video stream out of the plugins available in the GStreamer installation. Similarly,
plugins for muxing and encoding are also great supply, providing an application
programmer with a substantial amount of flexibility when it comes to what for-
mat to produce. By surrounding our element with both a decoder and an encoder
element in the pipeline, any format concerns are effectively eliminated.

The benefit of this approach is that incoming format is no longer an issue, as
the frame is decoded upstream to a format that is readable by our plugin prior to its
arrival. Additionally, the format to produce can be chosen at will by the program-
mer through the downstream encoding element, and none of this functionality
needs to be implemented in our element. While this approach necessitates the use
of both a decoder and an encoder in the pipeline, it is both the easiest to utilize
and provides the most functionality. As the benefits outweigh the detriments, we
claim that limiting the element to accept and produce raw frames is reasonable.
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3.3.4 Caps Negotiation
In Section 2.3 we present and outline the different capability negotiation tech-
niques that are available in GStreamer. We need to determine and decide upon
which negotiation technique that best suits our needs. Considering that our plu-
gin is limited to receive and produce raw video frames, certain restrictions are
imposed on which negotiation technique we can utilize.

The following paragraphs compare the different negotiation techniques and
how they align with our plugin.

Dynamic Negotiation is the most powerful and flexible negotiation type. Since
our element is not able to produce an array of formats or to change the
format between its sink and source pads, we have no need for the complexity
dynamic negotiation provides.

Transform Negotiation is used to either impose a fixed format transformation
between the input and output caps, depending on the input format, or simply
pass data through the plugin in passthrough mode. Again, as we do not
alter the capabilities, we do not need the fixed transformation, and since our
plugin is not able to pass on arbitrary streams, passthrough is not feasible.
Consequently, neither of these use cases are a good fit.

Fixed Negotiation is the only negotiation technique that suits our plugin. Our
element only accepts and produces one format, which means it can not alter
its capabilities to either suit a downstream element or an upstream element.
As a result, renegotiation with our element is not possible; the other ele-
ments in the pipeline will have to accommodate for the format it requires.

3.3.5 Internal Plugin Design
In the preceding sections, we presented how the plugin relates to and commu-
nicates with other plugins in the GStreamer framework. This and the following
sections present the details of the internal structure, where there are multiple com-
ponents that cooperate. The structure of the plugin is separated into three main
components:

Plugin component The part of the plugin that is exclusively concerned with the
GStreamer framework.

Algorithm wrapper Code that acts as an intermediary between the plugin com-
ponent and the retargeting module.

Retargeting module Code that performs the resizing of the received video frames,
using the Parallelized SeamCrop algorithm.
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The division of the plugin into these components is based on the separation of
concerns design principle, where each component is designed to address separate
concerns [27].

The plugin component interacts and negotiates with other GStreamer elements
present in the pipeline. It passes messages and pointers to buffers sent from up-
stream to other elements downstream as well as the wrapper where necessary.
The wrapper relays the content contained in each buffer to the retargeting module
in a suitable format as well as relevant messages like end of stream and flush-
ing events. Additionally, it passes the data structures and video stream properties
necessary to initialize the retargeting module environment. These properties are
the height, width and frame rate of the video to be processed. The retargeting
module processes incoming frames to produce outgoing retargeted frames and is
essentially controlled by the plugin component through the wrapper.

The plugin component needs to have full control of the retargeting module to
adapt and respond to changes occurring in the pipeline. In contrast, the retarget-
ing module only requires a buffer space to store frames, otherwise solely reacting
to directives from the plugin component. Similarly, the wrapper does not need
to know the inner workings of either the plugin component or retargeting mod-
ule, only requiring access to the module itself. Consequently, we isolate the as
much of the internal functionality of these components as possible. Our princi-
pal reasoning behind this choice is that we wish to maintain a plugin structure
that is modular. In addition to aligning with the overall design paradigm of the
GStreamer framework, this approach enables future development of similar plu-
gins to make use of the plugin component by substituting the wrapper and the
retargeting module with minimal refactoring required.

3.3.6 Component Communication
To facilitate the transfer of both buffers and messages in this modular architec-
ture, we outline a set of functions for communication between the components.
The main operations we require functions for are initialization, frame transfer and
termination. These operations are handled by the functions described in this sec-
tion, summarized in Tables 3.2 and 3.3.

initialize

Function used to initialize the environments of the wrapper and the retargeting
module. It is invoked by the plugin component once the element capabilities have
been negotiated and the width, height and frame rate of the incoming stream has
been determined. The wrapper and retargeting module are subsequently config-
ured for these properties, allocating space for necessary structures.
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pass_buffers

Passes two GStreamer buffer pointers from the plugin component to the wrapper.
This function is required to transfer incoming frames from the plugin component
to the wrapper. One of the buffers points to an input frame of the negotiated
width and height while the other points to an allocated space where the processed
frame should be stored. The input frame is passed on from the wrapper to the
add_frame function of the retargeting module and the output pointer is stored
until the finished frame can be inserted into it.

signal_end

Notifies the wrapper that an end of stream signal has been received from the
pipeline and that the pipeline is shutting down. The wrapper invokes the cor-
responding signal_end function of the retargeting module to tear down the re-
targeting environment. The retargeting module finishes retargeting any pending
video frames before freeing the allocated space and returning, at which point the
wrapper tears down its own environment.

flush

Notifies the wrapper that a flush signal has been received from the pipeline. Sim-
ilar to signal_end, this function invokes the corresponding retargeting module
function �ush. However, instead of retargeting the remaining frames, the retar-
geting module immediately tears down its environment. This function is necessary
to quickly react to changes in the pipeline that require a rapid response, such as
seeking in the video.

run

Invoked from the wrapper to initiate the retargeting process upon reception of the
first frame. A separate thread is dispatched to execute this function, as an addi-
tional thread is required to manage the retargeting module. This function is only
called once. The reason we require a separate thread to manage the retargeting
module is explained in Section 3.3.8.

add_frame

Invoked by the wrapper to pass an incoming frame to the retargeting module, in-
serting it into the internal buffer of the retargeting module. The frame is retargeted
once all previously received frames have been processed. This function is neces-
sary to transfer incoming frames from the wrapper to the retargeting module.
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Plugin⇒Wrapper
Function Description
initialize Initializes the wrapper and retargeting module environments.
pass_buffers Hands over an input and output buffer to the wrapper.
signal_end Signals the end of the stream and tears down the wrapper envi-

ronment.
flush Flushes session specific buffers and information from the wrap-

per environment.

Table 3.2: Functions for communication between the plugin component and the
wrapper.

Wrapper⇒ Retargeting module
Function Description
run Starts the retargeting module.
add_frame Adds an image to the retargeting module’s internal buffer.
signal_end Signals the end of the stream and tears down the retargeting

module environment.
flush Flushes session specific buffers and structures in the retargeting

module environment.

Table 3.3: Functions for communication between the wrapper and the retargeting
module.
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3.3.7 Plugin Component
The GStreamer related portion of our plugin needs to facilitate use of the retarget-
ing algorithm, avoid superfluous memory copying as well as provide configurable
adaptation. As performing memory copy operations are computationally expen-
sive, reducing the amount of copies is beneficial for the overall efficiency of the
plugin. The adaptation required in a particular scenario depends on the desired
aspect ratio of the retargeted frames. To allow the user to control the degree of
retargeting, this must be configurable in the element. These requirements shape
the design of this component as a whole, and the manner in which each issue is
addressed is detailed in this section, along with additional operations that need to
be performed on behalf of the other components.

Properties

In Section 2.3.4, we described GStreamer properties and how they are used by
elements. Given that the main goal of this plugin is to provide customizable adap-
tation for both video on demand and live streams, it is crucial to be able to adapt
for different purposes. As such, we require several customizable properties in or-
der to alter the behavior of the plugin to achieve the required adaptation, such as
the degree of width reduction.

The following paragraphs name and briefly detail each property we employ in
our plugin.

Retargeting factor is the degree to which the width of the video is to be reduced.
It is represented as a number between 0 and 1, where 1 subtracted with this
factor gives the reduction in width. For example, a retargeting factor of 0.60
gives us a 1− 0.60 = 0.40 reduction in width, which can be expressed as a
width reduction of 40%. With a width of 640 pixels, the width is reduced to
640 ∗ 0.6 = 384.

Frame window size indicates how many frames the retargeting module should
process at a time, represented as an integer.

Extend window factor is by how much the cropping window should be extended
in the search for seams during the second pass of the retargeting algorithm.
As we introduce in Section 2.2.2, the cropping window is the target frame
size the that the retargeting produces. This factor extends the cropping win-
dow size during seam carving to include edges of salient objects that would
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otherwise be cut from the final frame. It is represented as a number between
0 and 1 and has the corresponding semantics as the retargeting factor.

These properties are used to configure the retargeting module that relies on infor-
mation not included in either the pipeline or the stream. While video features such
as width and height can be obtained from the pipeline stream, these characteris-
tics are plugin specific properties that need to be explicitly stated. They are set
when the plugin is initialized, either to a default value or a value provided on the
command line, but can also be set by an application programmer with the line of
code shown in Listing 3.1. These property values are passed to the wrapper when
its environment is initialized.

Listing 3.1: Setting a property on the seamcrop element.
1 g _ o b j e c t _ s e t ( gs t_ seamcrop , ’ ’ r e t a r g e t i n g −f a c t o r ’ ’ , va lue , NULL) ;

Choosing the Video Format

As outlined in Section 3.3.3, we limit our plugin to receive and produce raw video
frames. There are many different raw formats, where most of them are derived
from the pixel formats/color spaces YUV and RGB. Which color space we utilize
is not important; they are both viable and generally indistinguishable from one
another[28]. Based on this and that an in depth comparison of the different formats
within these color spaces is outside the scope of this thesis, we choose a format
that is practical for our purposes.

By utilizing a decoding and demuxing element such as decodebin, we are
able to receive most of the different formats that are available. The retargeting
module makes use of a 24-bit RGB pixel format (3 bytes per pixel) internally
when representing images, which intuitively makes this format a suitable choice
for our element.

However, during preliminary testing with this format, we were not able to
make it function properly. Caps negotiation would repeatedly fail regardless of
the RGB format requested, even with a videoconvert element placed between our
element and the decodebin element. Despite close inspection of the debug logs,
we were unable to identify the exact reason, and hence not able to find a solution.
Consequently, we chose to utilize a different format.

One of the more ubiquitous raw video formats utilized both within and outside
of GStreamer is the YUV420P/I420 format. While it is not the exact format that
the retargeting module requires, it has the advantage of being considerably smaller
in size compared to the raw RGB counterparts. As such, we have chosen to use this
format as the one we request and produce, performing the necessary conversion
between YUV420P and RGB24 within our element at both ends. This conversion
is described in Section 3.3.8.
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Parsing Stream Properties

The specific characteristics of a video stream are not available until the pipeline
upstream has been negotiated. Before the negotiation is finished, properties such
as width, height and frame rate are specified as ranges that the element will accept.
When upstream negotiation is finalized, these properties are set and manually ex-
tracted from the caps set in the final stage of the negotiation. The dimensions
of the output video we produce are then computed by multiplying the width we
extracted with the retargeting factor set during plugin initialization. Our output
capabilities are then updated to inform the next element of the video size it should
expect and downstream negotiation continues.

Since both the wrapper and the retargeting module require these properties,
their environments are not initialized until the entire pipeline is negotiated. This
is a conscious choice to postpone the reservation of resources for the retargeting
module until the pipeline is ready to transfer data, in the event that downstream
negotiation fails. As a result, their initialization takes place when the plugin re-
ceives a GST_EVENT_SEGMENT event on its sinkpad, signalling the arrival
of a data segment.

Allocating Buffers

Allocating new buffers for each single data segment to be sent is both cumbersome
and expensive. Since the size of the frame contained in each buffer is known af-
ter negotiation, it is beneficial to reuse the allocated buffer space to eliminate the
overhead associated with continually allocating new ones. To limit the allocation
overhead incurred by the plugin and in the pipeline overall, a buffer pool is allo-
cated, from which buffers are requested when needed. This pool can be local to
a single element or shared across several elements in the pipeline, where sharing
a pool has the additional advantage of zero-copy memory transfer between the
elements involved. Clearly, sharing a pool is desirable.

Before a shareable pool can be reserved, the element needs to negotiate the
properties of the pool with the next element downstream. This is separate from
the format negotiation, taking place after the format has been agreed upon. Pool
allocation negotiation is always initiated upstream; an element negotiates with
the neighboring downstream element, which in turn does the same with the next
element. Figure 3.2 visualizes the pool negotiation process between two elements.

Negotiation is initiated by transmitting an ALLOCATION query from the
source pad, where the initiator decides whether it provides or requests a pool. De-
pending on the response from the peer element, we either configure the properties
of the proposed pool or allocate a new pool with the properties that were sug-
gested. If the peer element is not able to share a pool, we reserve a pool locally.
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Figure 3.2: Negotiation of a buffer pool.

While not optimal, it saves considerable overhead compared to allocating buffers
individually over a prolonged streaming session. Once the pool is allocated by
either element, it is activated and ready to be used.

Processing Frames

When all negotiations are finished, a SEGMENT event is transmitted downstream
from the source element in the pipeline to signal that data transmission has begun.
Once this event is received, the wrapper and retargeting module are initialized.
Upon reception of a pointer to a buffer, the element claims ownership of the buffer
to ensure that the data within can be consumed. Each incoming buffer pointer
contains a frame to process. This essentially means that the preceding element re-
moves the reference count for that particular buffer, whether a pool was negotiated
or not. The buffer contents are copied when it is passed to the retargeting module,
so it is put back into the pool once the retargeting module begins processing the
data contained within.

After the relevant bookkeeping such as timestamp verification is done, the
buffer pointer needs to be passed to the wrapper. Due to the discrepancy between
the size of the space allocated for the incoming frame and the one to produce, the
input buffer space cannot be repurposed to contain the retargeted frame. Ideally,
separate buffer pools are negotiated with both upstream and downstream elements.
This omits the need to allocate new buffer space for the outgoing frame as well as
freeing the space associated with the received buffer pointer. Whether these pools
are negotiated or not, a pointer to an available buffer space from the negotiated or
internally allocated pool is requested. Both the input and output buffer pointers
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are subsequently passed to the wrapper.
In a typical GStreamer plugin, the thread which receives a buffer pointer on the

sink pad is also responsible for transmitting the output buffer pointer. It consumes
the input buffer data, produces the output and transmits it in one sequence. This
is particularly evident in the design of all the current GStreamer base classes [29].
Due to the design of our chosen retargeting algorithm, we are not able to produce
an output frame for each received frame at runtime. The underlying reasons for
this are detailed in Section 3.3.9, but in short it requires multiple frames to perform
the intended retargeting.

Waiting for the retargeting module to produce the output frame with this thread
effectively blocks the thread executing the code of the element. This frame will
never be finished unless new frames are continually passed to the module, since
the retargeting module is not able to iteratively produce output for each incoming
frame. This results in a circular dependency where new input depends on finished
output, which itself depends on new input and so forth; an instance of the classical
producer consumer problem. There are a few possible solutions to this, of variable
feasibility:

1. Redesign the algorithm to linearly produce output frames for each input
frame.

2. Transfer frame to retargeting module, yield thread and transmit the output
frame when it is produced.

The first option is a considerable undertaking which requires major alterations
to the retargeting algorithm. In addition to being outside the scope of this thesis,
the efficiency of the algorithm can no longer be guaranteed should we depart sig-
nificantly from the design presented in the original paper. As such, this solution
is too comprehensive in nature to be feasible.

Conversely, the second solution is much more manageable. The benefits of this
solution is that it allows us to preserve the core algorithm design while simultane-
ously incorporating it into a GStreamer plugin. This ensures that the efficiency of
the algorithm bears a certain resemblance to what was achieved in [2].

However, both approaches introduce a baseline of latency to the pipeline. This
latency is unavoidable as it stems from the entire process of receiving a frame
and producing an output frame, but the approaches differ in how this latency is
distributed. The first solution incurs latency on a frame by frame basis, while
latency in the second approach is the cumulative time required to process a set of
frames. Essentially, the time elapsed between the transmission of a frame from
the source element to its presentation in the sink element is shorter in the linear
solution.
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While the first is the faster option, inter-frame jitter is more likely to occur,
which is exacerbated further should the performance be too poor. The second so-
lution incurs a higher initial latency with less likelihood of inter-frame jitter due
to internal buffering. As users are more tolerant of initial latency as opposed to
recurring buffering when streaming a video [10], the viability of the second so-
lution is substantiated further. Based on this reasoning, we employ this approach
and defer transmission until the threads internal to the retargeting module have
processed and finished the frame.

When the buffers have been successfully given to the wrapper, the manag-
ing thread returns and proceeds as if the buffer pointer was transmitted, sub-
sequently taking care of other incoming frames. This is done by returning a
GST_FLOW_OK[30] value internally in the element once the frame within the
buffer is extracted. This allows the plugin component to continually supply new
input frames while the retargeting module independently processes them as soon
as they are submitted. The result is an asynchronous data flow where the output
of the plugin is bounded by the speed at which the retargeting module produces
the output.

To solve this asynchronicity, we maintain a shared asynchronous queue in the
plugin component. This queue acts as a container for finished frames, where each
entry is a buffer pointer. The wrapper is informed of the address to this queue
on initialization, through which the retargeting module will be able to continually
insert finished buffers. However, since the receiving thread that would originally
transmit the output buffer pointer has long since terminated at this time, we need
a different thread to transmit the output.

Dispatching Thread

Our solution is to explicitly dispatch a thread whose sole purpose is to transmit
buffer pointers from the asynchronous queue, sending them downstream as soon
as they become available. This thread is created at the same time that the wrap-
per and retargeting module environments are initialized. It continually transmits
buffer pointers while they are available, blocking until new ones arrive while the
queue is empty. When a buffer pointer arrives, it is removed from the queue and
transmitted immediately. As this thread is blocked while the queue is empty, the
performance impact of managing this additional thread is minimal.

3.3.8 Algorithm Wrapper
In order to make use of the algorithm in our plugin, we utilize a wrapper that the
GStreamer component and the retargeting module communicate and exchange
frames through. One of the primary reasons this component is necessary is that
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the GStreamer component and the retargeting module are written in different lan-
guages, i.e., they are not able to communicate through usual means. Additionally,
the wrapper needs to translate the incoming raw video frames into the internal
types the retargeting module requires. This wrapper is as such a fairly simple
component which acts as an intermediary between the plugin component and the
retargeting module.

To encapsulate the internal functionality of the wrapper from the plugin com-
ponent, only a handful of functions are exposed, as presented in Section 3.3.6
and Table 3.2. Most of these functions directly lead to their counterparts for the
retargeting module, which are listed in Table 3.3. However, the threads in the re-
targeting module must have access to the queue where they insert finished frames
without exposing it to the internal functions of the wrapper. To this end, an addi-
tional wrapper component is introduced.

This additional component is analogous to the reverse operation of the orig-
inal wrapper component, solely used to reconvert frames and insert them in the
reserved output buffers. This component has only one publicly available function,
putImage, which performs this operation. By separating the wrapper operations
in this manner, the retargeting module does not have access to the functions used
to manage it.

Adding Frames

When the input and output buffer pointers arrive from the plugin component,
the output buffer pointer is stored for later use and the raw video frame is ex-
tracted from the input buffer space. The extracted video frame is converted from
YUV420P to RGB24 format using the FFmpeg framework [31]. This format is re-
quired since the retargeting module uses the IplImage structure from the OpenCV
framework to represent an image, which natively uses RGB [32]. After this con-
version, each color channel for each pixel in the image is sequentially copied into
the IplImage structure, which is added to the internal buffer of the retargeting
module through the add_frame function once it is finished. This approach in-
curs a small performance penalty, but we have not found a solution to circumvent
copying the data in this step. At this time, the input buffer is no longer needed
and is dereferenced to return it to the buffer pool. Not to be confused with the in-
put/output buffers, the internal buffer in the retargeting module is of fixed length,
capable of storing a frame window size amount of frames. This internal buffer is
explained in Section 3.3.9.

Once the frame has been passed to the retargeting module, the module itself is
started. As the module must run independently of the rest of the plugin to achieve
maximum efficiency, we dispatch a new thread which manages the retargeting
portion of the plugin. The newly created thread calls the run function of the
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retargeting module, starting the retargeting process. This is only done once after
the first frame has been passed to the module.

If the internal buffer of the retargeting module is full, the thread that wants to
add a frame continually attempts this operation until space is made available. The
internal buffer is full when the current frame number is equal to the value indi-
cated by the frame-window-size property set at plugin initialization. We choose to
keep this thread waiting to prevent the plugin component from accepting too many
buffers from the preceding element, as this would most likely result in buffer over-
flow since the input production is generally faster than the output. Busy waiting
is utilized as opposed to blocking to prioritize that the retargeting module always
has frames available. This behavior and the significance of the frame window size
property is further explained in Section 3.3.9.

Writing Frames

When a thread in the retargeting module has produced a frame, it enters the addi-
tional wrapper component to add it to the asynchronous queue. The oldest stored
output buffer pointer is extracted from the queue and in reverse fashion of adding
a frame, the retargeted RGB24 frame is converted into a YUV420P frame. This
frame is subsequently written into the memory referenced by the output buffer
pointer which is then pushed onto the asynchronous queue for immediate trans-
mission by the dispatching thread.

3.3.9 Retargeting Module
In Section 2.2, we present the Parallelized SeamCrop algorithm and how it func-
tions. In this section, we detail how this algorithm is incorporated into our plugin
and explain a modification we make to the algorithm that necessary to provide
online retargeting. Since this module closely follows the flow of the original al-
gorithm, we briefly summarize it.

The Parallelized SeamCrop algorithm is split into two passes with one inter-
mediary step between them. The first pass performs an energy calculation on each
individual frame of the video, mapping the energy of each individual pixel as well
as calculating the total energy of each possible cropping window position. These
calculations are then used in the intermediary step to find the optimal path for the
cropping window throughout the video. Once this has been established, the sec-
ond pass sequentially crops each frame, identifying and removing a set amount
of seams from them to obtain retargeted frames of the desired size. This flow is
illustrated in Figure 3.3 for a video of 500 frames.

As detailed in the previous section, the module receives input from the wrap-
per and is initiated after the arrival of the first frame. For each pass, a predefined
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Figure 3.3: Flow of the original algorithm. (a) Energy and cropping window path
calculation (b) seam carving (c) presentation.
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number of worker threads are dispatched to process the individual frames, upload-
ing them to the GPU to perform the computations in parallel. Between the first
and second pass, these threads are terminated and the cropping window path com-
putation is performed on the CPU, as this calculation is not parallelizable, before
dispatching the threads again for the second pass. A more detailed description of
the threads, their operation and synchronization is included in Section 3.3.10. The
retargeting performed on each frame is determined by the retargeting factor and
the extend window factor properties described in Section 3.3.7. Finished frames
are pushed onto the asynchronous output queue provided on initialization.

In the original design of this algorithm, each pass is performed only once and
each pass is performed on the entirety of the video. Consequently, the algorithm
requires the entire video to be available on either disk or in memory throughout its
execution. For concurrent on-the-fly retargeting and presenting of a live or video
on demand stream, this is not a feasible approach, which ultimately presents a
number of issues:

Availability When receiving a video from a remote location, we do not have
access to the video in its entirety at the start of execution.

Latency Retargeted frames are not produced until the first pass and the interme-
diary step are finished, and can as such not be presented until a considerable
amount of time has passed.

Resource Usage When retargeting comprehensive videos, memory usage as a
result of buffering quickly inflates beyond acceptable boundaries. In the
original algorithm, this issue was circumvented by reading the same video
file twice, discarding input frames as soon as they had been energy mapped
or retargeted. This is possible when downloading, but exceedingly imprac-
tical, as the video would either need to be downloaded and stored on disk in
its entirety or downloaded twice.

Evidently, some alterations to the algorithm are necessary if it is to be used
for concurrent retargeting and presentation of video on demand or live stream-
ing content. If none are made, the presentation cannot begin until the video has
been buffered in memory or stored on disk in its entirety and the seconds pass of
the algorithm has begun, which would never occur in a live streaming scenario.
Our claim is that this solution is not acceptable from either a latency perspective
or resource usage standpoint should this algorithm be utilized for simultaneous
retargeting and presentation of both video on demand and live streaming content.

To illustrate, imagine you wished to use this system to watch the newest Star
Wars film on a mobile device using a video on demand streaming service. For the
sake of simplicity, assume that the video has a resolution of 854x480 pixels, a file
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size of 700 MB (5600 Mbit) and that it is downloaded at a rate of 24 Mbit/s. In this
scenario, it would take 5600/24 = 233.3 seconds or alternatively 3 minutes and
53.3 seconds to download the file in its entirety. Regardless of retargeting rate,
this is the earliest point at which the presentation can begin, which is unaccept-
able from a startup latency standpoint. Despite the surmountable resource usage
in this example, it can quickly become insurmountable, as it always requires at
least as much memory or storage space as the size of the file, which in turn also
exacerbates the startup latency further.

As for compatibility with live streaming, the video is simply never presented
as the algorithm would continuously buffer incoming frames until the live stream
ends or storage space runs out.

Based on the identified issues, we present an alteration of the algorithm that
attempts to balance each of these concerns.

Algorithm Alteration

The core dilemma in each of the issues mentioned previously is the need to per-
form each pass on the entire length of the video. This need arises from calculating
the optimal cropping window path throughout the video, which requires all frames
in the video sequence to be energy mapped. While this requirement is somewhat
integral to the overall efficiency of the algorithm, we circumvent this limitation
by segmenting the received video into windows as indicated by the discussion in
Section 3.2.

As opposed to performing each pass on the total length of the video, we per-
form the algorithm on predetermined segments of frames that we refer to as frame
windows. Rather than applying the algorithm on the total amount of frames T for
the entire video, we perform it on t frames at a time over T/t consecutive frame
windows. In this case, t corresponds to the last property we described in Section
3.3.7, frame window size. This behavior is illustrated in Figure 3.4, where a video
of 500 frames is sequentially split into windows of 100 frames, performing the
algorithm on each frame window individually.

To facilitate this, we store the incoming frames in a circular buffer. This cir-
cular buffer is the internal buffer of the retargeting module referred to over the
previous sections. The size of this buffer is determined by the frame window size
property, where the integer it represents corresponds to the amount of slots in the
buffer. When this buffer is filled, the algorithm proceeds to compute the cropping
window path and carving out seams. Once a frame is finished during the second
pass, it is copied into a reserved buffer from the GStreamer buffer pool which
passed on to the wrapper for transmission. The slot it occupies is then marked
as available and a new frame can be inserted into the buffer. Thus, the buffer is
continuously refilled as retargeted frames are produced during the seam carving
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Figure 3.4: Flow of the altered algorithm. (a) Buffering, energy and cropping
window path calculation (b) seam carving (c) presentation.
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Figure 3.5: Buffering new frames during the second pass of the algorithm. (Yel-
low) New frame (Blue) Frames being retargeted (Green) Finished frame. (1) Input
tries to add new frame, but the space is occupied; (2) frame is finished, new frame
waits until space is marked as available; (3) space is now available, new frame is
inserted.

portion of the algorithm, as illustrated in Figure 3.5. It is important to note that
the new frames that are inserted belong to the next frame window. This eliminates
the need for the entire video to be available throughout execution, allowing the
algorithm to receive and process frames concurrently as well as outputting retar-
geted frames at a much earlier stage than in the original approach. The effects of
altering the algorithm in this manner is explored in Section 3.3.12.

3.3.10 Threading
As mentioned in the previous sections, we utilize multiple threads to handle and
manage the different components of the plugin. Figure 3.6 shows a summarized
and simplified overview on how the threads interact as well as in which compo-
nents of the plugin they operate. As no threads apart from the ones originating in
the retargeting module overlap in their workflow, we avoid issues related to thread
synchronization. In contrast, the threads inside the retargeting module require
considerable synchronization.

Threading in the Retargeting Module

The individual threads in the retargeting module are managed by the thread dis-
patched from the wrapper upon submission of the first video frame. They concur-
rently perform the retargeting on separate frames within the confines of the two
parallelizable passes of the algorithm. The amount of threads that are used in the
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Figure 3.6: Simplified thread flow in the plugin. Each color represents the execu-
tion of a separate thread.

passes is configurable, but must be at least 2, as a single thread will wait forever
for the next frame, and at most 8. The managing thread determines when they
run and performs the cropping window computation as well as the smoothing be-
tween the passes. Algorithm 1 presents the pseudocode for the operation of the
managing thread.

For both passes, the managing thread dispatches the worker threads and blocks
until one of them finishes their operation, as shown in Algorithm 2. The managing
thread is notified of a finished pass via a condition variable, flagged by the first
thread that exits its internal processing loop. The processing loop of a working
thread executes until there are no more frames to process in the circular buffer, i.e,
an attempt to acquire a frame from the circular buffer yields a frame number that
exceeds frame window size. When a worker thread finishes, the last frame of the
frame window has begun processing for the current pass, which lets the managing
thread start joining the threads to finish the pass. The variable denoting the next
frame number to process is reset between passes.

The worker threads require synchronization at multiple points of their execu-
tion. The principal blocking points occur when a thread either attempts to acquire
a new frame from the circular buffer or in the second pass when it requires seams
from a previous frame which have not been found yet. Since the first pass of the
algorithm is fully parallelizable, no synchronization apart from acquiring frames
and uploading them to the GPU is required. To prevent any race conditions, the
thread locks the the circular buffer as well as the counter that indicates the frame
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1: while True do
2: run the first pass
3: calculate the cropping window costs
4: calculate the maximum energy path
5: if first_run 6= 1 then
6: smooth cropping window transition between frame windows
7: end if
8: smooth the cropping window path
9: run the second pass

10: if end_of_stream and pending_frames = 0 then
11: break
12: end if
13: first_run = 0
14: end while

Algorithm 1: Managing thread pseudocode

1: for i← 0 to number of threads do
2: DISPATCH(thread[i])
3: end for
4: WAIT(conditional variable)
5: for i← 0 to number of threads do
6: JOIN(thread[i])
7: end for

Algorithm 2: Dispatching and joining threads pre/post each pass
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to process next when retrieving a new frame. This is fairly straightforward. The
counter for the current frame is incremented before the lock is released and the
shared variables denoting whether a frame is available is updated after the GPU
synchronizes its internal stream.

During the search for seams in the second pass, each thread must verify that
the seam it requires from the previous frame has been found. The amount of
seams currently found for the previous frame is maintained in a shared variable
which is only updated when a seam has been identified. Worker threads are not
able to proceed to the next seam until the GPU has finished all seam computations
in the current CUDA stream, facilitated by the cudaStreamSynchronize function
present in the CUDA API [33]. This ensures that the threads are synchronized for
each computed seam, omitting the need for any additional mutual exclusion.

3.3.11 Event Handling
In the preceding sections, we have presented the design of our plugin in great de-
tail. In this section, we describe the different events that affect our element as well
how the data flow changes in response to them. Not all events significantly impact
the element; only a few directly affect the internal data flow and we describe them
in the following paragraphs.

Segment

AGST_EVENT_SEGMENT event is sent from the source element in the pipeline
to signal that data is ready to be transmitted. This event always occurs before any
data can be sent downstream. When it arrives on the sink pad, the wrapper and
retargeting module environments are initialized and the dispatching thread is cre-
ated.

Buffer Reception

Reception of a buffer pointer is not defined as an explicit event in the GStreamer
framework, but always occurs after aGST_EVENT_SEGMENT. The data flow
associated with this event is visualized in Figure 3.7. When input arrives on the
sink pad, the plugin claims ownership of the incoming buffer pointer to ensure
that it is consumed in this element. The thread dispatched to handle the sink
chain requests an output buffer from the negotiated pool and passes both buffer
pointers onwards to the wrapper. Upon reception of the buffers, the wrapper stores
the output buffer pointer and proceeds to convert the newly arrived frame from
YUV420P to RGB24. Should the circular buffer of the retargeting module be full,
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Figure 3.7: Internal data flow in the element for initialization and buffer reception.

it waits until space is available, otherwise it inserts the frame and returns to handle
the next incoming frame.

The retargeting module threads continually perform the first pass on incom-
ing frames, preventing further frames from being added once a frame window size
amount of frames is received, at which point the first pass is finished. Cropping
window computations and the smoothing is subsequently performed before the
initiating the second pass. During this pass, the external thread that receives new
frames from the pipeline replaces the finished frames concurrently alongside the
retargeting process, as illustrated in Figure 3.5. When a worker thread has fully
processed a frame, it enters the second wrapper component, retrieves the oldest
stored output buffer and converts the frame back to its original format, subse-
quently adding it to the asynchronous output queue. The oldest output buffer is
always chosen as the retargeting module produces retargeted frames in sequential
order, eliminating the need for any extraneous bookkeeping with regards to or-
der. At this time, the thread responsible for transmitting output buffers wakes up,
updates the timestamps of the outgoing buffer and transmits it via the sourcepad
before returning to wait for more buffers.
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End of Stream

When a GST_EVENT_EOS is received on the sink pad from the pipeline, the
element initiates the teardown of the internal components. However, as there
might still be outstanding frames that need to be processed, the plugin component
must wait until the retargeting module has processed all remaining frames. The
plugin component notifies the wrapper that the stream has ended through the sig-
nal_end function. The wrapper informs the retargeting module of the last frame
to process through the corresponding function of the same name, after which the
thread waits for the module to finish. Once it finishes the remaining second pass,
the thread managing the module frees all allocated space in the retargeting en-
vironment and terminates. The wrapper does the same and the element is torn
down.

Flushing

Over the lifetime of the pipeline, flushing might occur via theGST_EVENT_FLUSH
event. The GST_EVENT_FLUSH event differs from GST_EVENT_EOS in
that the element must adapt to a change in the pipeline as fast as possible. There
are many different reasons for flushing, where the typical reasons are renegotia-
tions upstream or downstream as a result of a new incoming format or seeking
performed by the client downstream. Regardless, the element must free all the
memory associated with the retargeting environment to prepare for a possible new
format, as the signal does not differentiate between the reasons for flushing.

In contrast to the GST_EVENT_EOS case, the plugin component does not
wait until all pending frames are processed. Since it must adapt as fast as possible,
the retargeting module terminates as soon as it receives the signal, discarding all
currently processing frames. While this results in lost frames, the catalyst for
flushing is usually an event that favors rapid adaptation as opposed to consistent
presentation.

3.3.12 Consequences of Algorithm Alteration
In Section 3.3.9, we concluded our description of the retargeting module with
a modification to the algorithm necessary to facilitate online retargeting. Alter-
ing the algorithm in this manner does not come without certain ramifications. In
the following paragraphs, we examine and describe these effects, how they af-
fect both the algorithm and the plugin operation as well as how we deal with the
consequences that emerge.
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Figure 3.8: Cropping window differences between frame windows. (a) Without
transitional smoothing (b) With transitional smoothing.

Cropping Window Discrepancy

When segmenting the entire video into frame windows, we essentially divide the
video into many smaller videos. This inevitably affects the produced video as the
global optimization of the cropping window is no longer one contiguous path. The
path computed for one frame window will not necessarily end in the same position
as the first cropping window position computed for the next window, resulting
in a dissonant transition between them. This behavior, illustrated in Figure 3.8,
occurs since the relative importance value assigned to a pixel fluctuates between
frame windows due to either object motion or the introduction of new ones. Each
frame window is independent without any inherent knowledge of the preceding
frames. Short of redesigning the manner in which the cropping window path is
determined, this is an unavoidable consequence of our modification that needs to
be addressed.

To alleviate this issue, we introduce an additional smoothing step between the
two passes. Consider the example we presented in Figure 3.8. Before smoothing
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the computed cropping window path, the position of the last cropping window
CWt−1 in the previous frame window FWi−1 is taken into account. We do this by
smoothing the discrepancy between the two windows, gradually transitioning the
last cropping window position CWt−1 in the previous frame window FWi−1 over
to the new path over a subset of the initial frames in the next window FWi. By
utilizing a weight which initially prioritizes the position of the previous window,
we gradually transition over to the new cropping window path. Essentially, this
means that the cropping window path of the new frame window FWi is a partial
compromise between the last cropping window CWt−1 and the current path.

The product of this algorithm modification is a more pronounced virtual pan
across the video. Depending on the severity of the performed retargeting and the
size of a frame window, it is either imperceptible or distinct when compared with
the output of the original algorithm. The source material used also bears signifi-
cance, where the output of sequences with scarce movement in either camera or
motives do not differ considerably. Conversely, this also entails that the opposite
case results in a more accentuated disparity.

Aside from the dissimilarity between the output of the modified algorithm and
the original, the added virtual pan does yield a potential benefit. The increased
frequency of importance evaluation and cropping window movement allows it to
adapt to new occurrences in the content in a more expedient fashion. Admittedly,
this benefit comes at the cost of more sporadic camera movement. Depending on
the nature of the video content, this can be either advantageous or detrimental.

Regardless, a comparison of the qualitative results of the original approach and
ours is not the prime mover of this thesis; developing a GStreamer plugin capable
of performing real-time, online video retargeting for both video on demand and
live streaming is. The modification to the algorithm is as such ancillary to the
primary goal, and we claim that the presented alteration is a necessity to achieve
this with the Parallelized SeamCrop algorithm, based on the issues and arguments
we presented in Section 3.3.9.

Latency

In the context of the retargeting module, latency refers to the time elapsed from
when an input frame is received to when the retargeted counterpart is produced.
The latency introduced to the pipeline by the retargeting module can roughly be
separated into the separate passes of the algorithm, with one addition:

• buffering incoming frames,

• analyzing frames,

• computing cropping window path,
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• retargeting frames.

Assuming the input rate of frames is consistent and as least as fast as the algo-
rithm, the latency incurred by buffering is minimal. For the first frame window, the
energy calculation is performed concurrently alongside the buffering of incoming
frames. For all following frame windows, buffering and seam carving occurs si-
multaneously since new frames are added to the circular buffer once an output
frame is produced, as illustrated in Figure 3.5. As a result, the buffering latency
in the retargeting module is virtually eliminated, provided the processing rate of
the algorithm does not exceed the output rate of the producing element, which we
claim is widely feasible. The bulk of the latency is as such to be expected from
the processing time exhibited by the algorithm itself.

The latency induced by the algorithm is highly dependent on the resolution of
the incoming frames as well as the severity of the desired retargeting. In broad
terms, a high resolution incurs higher processing time in each pass while a higher
retargeting factor will mainly affect the seam carving pass of the algorithm. Their
effect on the speed of the individual passes is thoroughly explored in the original
article, and as we do not alter the either of the computationally heavy passes,
we do not detail them here to any significant degree [2]. Instead, we focus on
the latency that performing the algorithm on multiple segments introduces to the
presentation.

Since finished frames are continually produced and passed on during the sec-
ond pass of the algorithm, a video being retargeted at the same rate as the original
frame rate can be presented concurrently. Note that the retargeting rate in this
context refers to the amount of frames produced per second by the algorithm as
a whole, not solely the second pass. To enunciate, a retargeting rate equal to the
frame rate of the video entails that the second pass actually produces frames at
a higher rate, compensating for the preceding passes. Figure 3.9 illustrates this,
where the total retargeting rate is 25 frames per second while the rate of the sec-
ond pass is slightly higher at 27 frames per second. An eventual receiver will have
buffered enough frames at the end of the second pass to not be affected by the gap
in frame production introduced by swapping frame windows.

However, despite a congruent video and retargeting rate, no frames are pro-
duced when the algorithm is not operating in the second pass. This means that
the retargeting module will invariably introduce a guaranteed baseline of latency
at the start of execution. Thus, assuming the video is retargeted in real-time, the
latency introduced to the pipeline by the retargeting module boils down to the
time it takes to buffer, perform the energy calculation and cropping window path
computation for the first frame window. Compared with the original algorithm,
the initial latency incurred by our approach is much lower.
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Figure 3.9: Visual representation of retargeting rate for the second pass versus the
algorithm as a whole.

Resource Usage

The resource usage required to operate the retargeting module is greatly decreased
by the proposed alteration when compared with the original. As storing the entire
video is not necessary, only a frame window of space is required to store frames
throughout the duration of a stream. When comparing the examples we presented
in Figures 3.3 and 3.4, the memory required by our approach is 1/5 of the original.

Frame Window Size

In the exploration of the effects of the algorithm modification in this section, a
direct relationship between the frame window size, latency and resource usage
emerges. The effects of this relationship and their interactions with the other
properties are explored in Chapter 5.

3.4 Summary
The plugin is separated into 3 components: the plugin component, wrapper com-
ponent and retargeting module. The plugin component handles all aspects related
to the GStreamer framework such as negotiation, data reception, transmission
and signals. The wrapper component translates data between the plugin compo-
nent and the retargeting module. The retargeting module adapts received frames
through dynamic image retargeting.

When a frame arrives in the element, the plugin component reserves buffer
space for the output and passes both buffer pointers on to the wrapper component.
The wrapper component converts the frame contained in the input buffer space
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from YUV420P to RGB and inserts the converted frame in the circular buffer of
the retargeting module. The retargeting module performs the first pass of the
Parallelized SeamCrop algorithm on incoming frames, advancing to the next stage
of the algorithm once a frame window size amount of frames have been processed.
Once the cropping window transition is smoothed, frames are sequentially passed
back through the wrapper component for data transmission as soon as they have
been retargeted. The wrapper component re-converts the frames to YUV420P,
inserts each individual frame into a previously reserved output buffer space and
places the buffer pointer onto the output queue. The dispatching thread in the
plugin component extracts each buffer pointer, verifies the timestamp information
and subsequently transmits it downstream as soon as possible.
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Chapter 4

Implementation

In this chapter, we describe the implementation of our GStreamer plugin. Section
4.1 outlines which parts of the implementation that are presented in this chapter.
Sections 4.2, 4.3 and 4.4 describe the implementations of the plugin component,
wrapper and retargeting module.

The CUDA and C++ implementation of the Parallelized SeamCrop algorithm was
provided by Stephan Kopf, Professor at the Mannheim University. It is the imple-
mentation that was used for testing and evaluation in [2], and much of the orig-
inal source code remains unchanged. In order to utilize this implementation in
our plugin however, many alterations to the C++ code were required, such as the
modification of the algorithm presented in Section 3.3.9. These alterations are
described in Section 4.4 of this chapter. The original source code can be viewed
in the Git repository referenced in Appendix A.

Our project has been implemented as a GStreamer plugin in the C language,
which internally wraps a retargeting algorithm implemented in C++ and CUDA.
This GStreamer plugin contains one element - seamcrop, closely following the
architecture we presented in Figure 3.7. The plugin has been tested on a Linux
platform, Ubuntu 15.04. In order to use the plugin in a GStreamer pipeline, the
programmer utilizes a shared library with the seamcrop filter element.

4.1 Implementation Details
Over the following sections, we present the implementation details of the indi-
vidual components of the plugin. The most important aspects of our design are
implemented in C and C++. The presented implementation includes some addi-
tional functionality not listed here, which can be viewed from our Git repository
referenced in Appendix A.
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In order to present the essentials of our plugin in a fastidious but succinct
manner, we present the most vital subsets of the four main files we have written.
Functions that have no direct relation to the design aspects are omitted. The file
gstseamcrop.c embodies the source code for the GStreamer element in our plu-
gin, written in C. Files seamcropwrapper.cpp and bufferwriter.cpp both contain
the wrapper functionality, while seamcropcuda.cpp contains the retargeting mod-
ule, all of which are implemented in C++. Apart from seamcropwrapper.cpp and
bufferwriter.cpp, the implementation of each file is described separately.

4.2 Plugin Implementation
In Section 3.3.7, we describe the design of our plugin component operating in
the GStreamer framework. This section describes the problems we encountered
during implementation and how the most important aspects are implemented.

Initially, our plugin utilized one of the GStreamer Base Classes that are avail-
able for plugin development, specifically GstBaseTransform. The purpose of
base classes is to simplify plugin development by handling the aspects of the
GStreamer framework not directly related to the specific functionality of the plu-
gin, such as state changes, buffer allocation, caps negotiation and so forth by
making the plugin implementation a subclass of the base class. The subclass can
override much of the functionality in the base class, making this a quite flexible
option. On paper, the description of GstBaseTransform aligns perfectly with our
goals for the plugin [34]:

" This base class is for filter elements that process data. Elements that
are suitable for implementation using GstBaseTransform are ones
where the size and caps of the output is known entirely from the input
caps and buffer sizes. These include elements that directly transform
one buffer into another, modify the contents of a buffer in-place, as
well as elements that collate multiple input buffers into one output
buffer, or that expand one input buffer into multiple output buffers. "

However, there is one important issue with this base class. While GstBaseTrans-
form allows the programmer to override a subset of its functions, it does not sup-
port overriding the transmission of data. More specifically for our case, separating
the buffer submission to the wrapper and the transmission of the output is not pos-
sible as the function chain that receives and transmits a buffer pointer is hidden
from the subclass. Without this option, the deadlock we describe in Section 3.3.7
is inevitable. To remedy the situation we would need to alter the source code of
the base class itself. As the base classes are prepackaged in a GStreamer library,
altering the source code is a nontrivial task which would require repackaging the

78



library into a custom library after changing the source code. Changing aspects of
a framework is generally not desirable, as it can lead to inconsistencies with future
updates of the framework. Consequently, we abandoned this approach in favor of
a more general solution.

Since none of the higher level base classes permit this separation, we base our
plugin on the most general of the GStreamer element classes, GstElement. As a
result, the codebase for the plugin component is extensive to include the function-
ality initially provided by GstBaseTransform which is absent from GstElement.
Most of these functions are not critical to the design and are as a result omitted.
Several functions such as sink_event, sink_chain and push_output are also
left to Appendix A as they are too comprehensive to be listed in this chapter.

Initialization When initializing our element, we need to perform some addi-
tional actions which are usually handled by an underlying base class. This in-
cludes manually setting all function pointers for our pads and overriding the prop-
erty functions as well as the function to clean up our element from the GstElement.
As our element only receives and consumes one format, we define this format in
our static GstCaps template, shown in Listing 4.1. Since the capabilities are iden-
tical for both pads, only one is presented.

Listing 4.1: The capabilities of our element.
1 s t a t i c G s t S t a t i c P a d T e m p l a t e g s t _ s e a m c r o p _ s r c _ t e m p l a t e =
2 GST_STATIC_PAD_TEMPLATE ( " s r c " ,
3 GST_PAD_SRC ,
4 GST_PAD_ALWAYS,
5 GST_STATIC_CAPS (
6 " v i d e o / x−raw , "
7 " f o r m a t = ( s t r i n g ) I420 , "
8 " f r a m e r a t e = ( f r a c t i o n ) [ 0 / 1 , 2147483647/1 ] , "
9 " wid th = ( i n t ) [ 1 , 2147483647 ] , "

10 " h e i g h t = ( i n t ) [ 1 , 2147483647 ] " )
11 ) ;

plugin_init and gst_seamcrop_class_init functions are called to initial-
ize function pointers, metadata, properties and register the plugin with GStreamer
as shown in Listing 4.2. We set the pad templates in lines 9–12 and plugin meta
data on line 14. The function pointers for altering the properties are initialized
in lines 19–21 and the properties are installed with their respective limits in lines
23–36.

Listing 4.2: Initializing function pointers, meta data and properties.
1 s t a t i c vo id
2 g s t _ s e a m c r o p _ c l a s s _ i n i t ( GstSeamCropClass ∗ k l a s s )
3 {
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4 G O b j e c t C l a s s ∗ g o b j e c t _ c l a s s = G_OBJECT_CLASS ( k l a s s ) ;
5 G s t E l e m e n t C l a s s ∗ e l e m e n t _ c l a s s = GST_ELEMENT_CLASS ( k l a s s ) ;
6
7 p a r e n t _ c l a s s = g _ t y p e _ c l a s s _ p e e k _ p a r e n t ( k l a s s ) ;
8
9 g s t _ e l e m e n t _ c l a s s _ a d d _ p a d _ t e m p l a t e ( e l e m e n t _ c l a s s ,

10 g s t _ s t a t i c _ p a d _ t e m p l a t e _ g e t (& g s t _ s e a m c r o p _ s i n k _ t e m p l a t e ) ) ;
11 g s t _ e l e m e n t _ c l a s s _ a d d _ p a d _ t e m p l a t e ( e l e m e n t _ c l a s s ,
12 g s t _ s t a t i c _ p a d _ t e m p l a t e _ g e t (& g s t _ s e a m c r o p _ s r c _ t e m p l a t e ) ) ;
13
14 g s t _ e l e m e n t _ c l a s s _ s e t _ s t a t i c _ m e t a d a t a (GST_ELEMENT_CLASS( k l a s s

) ,
15 " GStreamer SeamCrop e l e m e n t " , " GStreamer SeamCrop P l u g i n " ,
16 " R e t a r g e t s v i d e o f r a me s u s i n g t h e SeamCrop a l g o r i t h m . " ,
17 " Haakon Wilhelm Ravik <haakonwr@if i . u i o . no>" ) ;
18
19 g o b j e c t _ c l a s s −> s e t _ p r o p e r t y = g s t _ s e a m c r o p _ s e t _ p r o p e r t y ;
20 g o b j e c t _ c l a s s −>g e t _ p r o p e r t y = g s t _ s e a m c r o p _ g e t _ p r o p e r t y ;
21 g o b j e c t _ c l a s s −> f i n a l i z e = g s t _ s e a m c r o p _ f i n a l i z e ;
22
23 g _ o b j e c t _ c l a s s _ i n s t a l l _ p r o p e r t y ( g o b j e c t _ c l a s s , PROP_RETARGET,
24 g _ p a r a m _ s p e c _ f l o a t ( " r e t a r g e t i n g −f a c t o r " , " R e t a r g e t i n g F a c t o r

" , " F a c t o r f o r how "
25 " much t h e v i d e o s h o u l d be r e d u c e d i n wid th . " ,
26 0 . 1 0 f , 0 . 9 9 f , 0 . 7 5 f , G_PARAM_READWRITE) ) ;
27
28 g _ o b j e c t _ c l a s s _ i n s t a l l _ p r o p e r t y ( g o b j e c t _ c l a s s , PROP_EXTEND,
29 g _ p a r a m _ s p e c _ f l o a t ( " ex tend−b o r d e r " , " Extend Border F a c t o r " ,

"How much t h e b o r d e r "
30 " o f t h e v i d e o s h o u l d be e x t e n d e d wi th d u r i n g seam c a r v i n g . " ,
31 0 . 1 0 f , 0 . 9 9 f , 0 . 2 5 f , G_PARAM_READWRITE) ) ;
32
33 g _ o b j e c t _ c l a s s _ i n s t a l l _ p r o p e r t y ( g o b j e c t _ c l a s s ,

PROP_WINDOW_SIZE ,
34 g _ p a r a m _ s p e c _ i n t ( " frame−window−s i z e " , " Frame Window S i z e " ,
35 "How many f r a me s t o r e t a r g e t a t a t ime from an incoming

s t r e a m . " ,
36 10 , 500 , 100 , G_PARAM_READWRITE) ) ;
37 }
38 s t a t i c g b o o l e a n
39 p l u g i n _ i n i t ( G s t P l u g i n ∗ p l u g i n )
40 {
41 re turn g s t _ e l e m e n t _ r e g i s t e r ( p l u g i n , " seamcrop " , GST_RANK_NONE

,
42 GST_TYPE_SEAMCROP) ;
43 }

gst_seamcrop_init initializes a new instance of the seamcrop filter ele-
ment. As shown in Listing 4.3, we start by initializing the sink pad and setting all
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the required functions before adding the pad to the element on line 4. A similar
sequence of events is performed for the source pad in lines 12–17. The source
pad is not assigned a chain function as it never receives data from a downstream
element. Lines 20–22 set the default property values, which can later be altered by
the GStreamer framework through an application or on the command line, while
lines 24–37 perform general value initializations. Finally, we acquire an output
queue in which to store retargeted frames on line 40.

Listing 4.3: Initialization of a new seamcrop instance.
1 s t a t i c vo id
2 g s t _ s e a m c r o p _ i n i t ( GstSeamCrop ∗ seamcrop )
3 {
4 seamcrop−>s i n k p a d = g s t _ p a d _ n e w _ f r o m _ s t a t i c _ t e m p l a t e (&

g s t _ s e a m c r o p _ s i n k _ t e m p l a t e , " s i n k " ) ;
5
6 g s t _ p a d _ s e t _ e v e n t _ f u n c t i o n ( seamcrop−>s inkpad ,

GST_DEBUG_FUNCPTR( g s t _ s e a m c r o p _ s i n k _ e v e n t ) ) ;
7 g s t _ p a d _ s e t _ c h a i n _ f u n c t i o n ( seamcrop−>s inkpad ,

GST_DEBUG_FUNCPTR( g s t _ s e a m c r o p _ s i n k _ c h a i n ) ) ;
8 g s t _ p a d _ s e t _ a c t i v a t e m o d e _ f u n c t i o n ( seamcrop−>s inkpad ,

GST_DEBUG_FUNCPTR( g s t _ s e a m c r o p _ s i n k _ a c t i v a t e _ m o d e ) ) ;
9 g s t _ p a d _ s e t _ q u e r y _ f u n c t i o n ( seamcrop−>s inkpad ,

GST_DEBUG_FUNCPTR( g s t _ s e a m c r o p _ q u e r y ) ) ;
10 g s t _ e l e m e n t _ a d d _ p a d (GST_ELEMENT( seamcrop ) , seamcrop−>s i n k p a d ) ;
11
12 seamcrop−>s r c p a d = g s t _ p a d _ n e w _ f r o m _ s t a t i c _ t e m p l a t e (&

g s t _ s e a m c r o p _ s r c _ t e m p l a t e , " s r c " ) ;
13
14 g s t _ p a d _ s e t _ e v e n t _ f u n c t i o n ( seamcrop−>s rcpad , GST_DEBUG_FUNCPTR

( g s t _ s e a m c r o p _ s r c _ e v e n t ) ) ;
15 g s t _ p a d _ s e t _ a c t i v a t e m o d e _ f u n c t i o n ( seamcrop−>s rcpad ,

GST_DEBUG_FUNCPTR( g s t _ s e a m c r o p _ s r c _ a c t i v a t e _ m o d e ) ) ;
16 g s t _ p a d _ s e t _ q u e r y _ f u n c t i o n ( seamcrop−>s rcpad , GST_DEBUG_FUNCPTR

( g s t _ s e a m c r o p _ q u e r y ) ) ;
17 g s t _ e l e m e n t _ a d d _ p a d (GST_ELEMENT( seamcrop ) , seamcrop−>s r c p a d ) ;
18
19 /∗ Genera l v a l u e i n i t i a l i z a t i o n s ∗ /
20 seamcrop−> e x t e n d _ b o r d e r _ f a c t o r = DEFAULT_PROP_EXTEND ;
21 seamcrop−> r e t a r g e t i n g _ f a c t o r = DEFAULT_PROP_RETARGET ;
22 seamcrop−>frame_window_s ize = DEFAULT_PROP_WINDOW_SIZE ;
23
24 seamcrop−>c a c h e _ c a p s 1 = NULL;
25 seamcrop−>c a c h e _ c a p s 2 = NULL;
26 seamcrop−>pad_mode = GST_PAD_MODE_NONE;
27 seamcrop−>gap_aware = FALSE ;
28
29 seamcrop−>p r o c e s s e d = 0 ;
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30 seamcrop−>dropped = 0 ;
31 seamcrop−>c u r _ f r a m e = 0 ;
32 seamcrop−>p r e v _ w i d t h = 0 ;
33 seamcrop−>p r e v _ h e i g h t = 0 ;
34 seamcrop−>i n p u t _ w i d t h = 0 ;
35 seamcrop−> i n p u t _ h e i g h t = 0 ;
36 seamcrop−> s t a r t e d = FALSE ;
37 seamcrop−> r e i n i t i a l i z e _ m o d u l e = FALSE ;
38
39 /∗ Queue i n which r e t a r g e t e d f r ame s w i l l be p l a c e d . ∗ /
40 seamcrop−>o u t p u t _ q u e u e = g_async_queue_new ( ) ;
41 }

read_video_props extracts the video properties of the stream by parsing
the GstCaps that was negotiated with the neighboring upstream element, as shown
in Listing 4.4. This is done prior to finishing negotiations with the downstream
element to compute the width of the frames that our element will produce. The
new frame dimensions are compared with the old on line 21 to determine whether
the capabilities differ. If they do, the retargeting module must be reinitialized for
a new frame resolution. The output width is obtained on line 27 by multiplying
the original width with the retargeting factor. Note that we enforce the computed
output width to be divisible by two on line 28. This is required by the GstVide-
oFrame structure, which internally determines the size of each buffer based on
width, height and format. Frames which do not adhere to this property are not
recognized as valid frames by the GStreamer framework.

Listing 4.4: Parsing video stream properties.
1 s t a t i c vo id
2 r e a d _ v i d e o _ p r o p s ( GstSeamCrop ∗ seamcrop , GstCaps ∗ caps )
3 {
4 g i n t denom , f r a m e r a t e ;
5 c o n s t G s t S t r u c t u r e ∗ s t r ;
6
7 seamcrop−>p r e v _ w i d t h = seamcrop−>i n p u t _ w i d t h ;
8 seamcrop−>p r e v _ h e i g h t = seamcrop−> i n p u t _ h e i g h t ;
9

10 s t r = g s t _ c a p s _ g e t _ s t r u c t u r e ( caps , 0 ) ;
11
12 i f
13 ( ! g s t _ s t r u c t u r e _ g e t _ i n t ( s t r , " wid th " , &seamcrop−>i n p u t _ w i d t h )

| |
14 ! g s t _ s t r u c t u r e _ g e t _ i n t ( s t r , " h e i g h t " , &seamcrop−> i n p u t _ h e i g h t

) | |
15 ! g s t _ s t r u c t u r e _ g e t _ f r a c t i o n ( s t r , " f r a m e r a t e " , &f r a m e r a t e , &

denom ) )
16 {
17 GST_LOG( " r e a d _ v i d e o _ p r o p s : No r e l e v a n t p r o p e r t i e s a v a i l a b l e "
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) ;
18 re turn ;
19 }
20
21 i f ( ( seamcrop−>p r e v _ w i d t h != seamcrop−>i n p u t _ w i d t h ) | |
22 ( seamcrop−>p r e v _ h e i g h t != seamcrop−> i n p u t _ h e i g h t ) )
23 seamcrop−> r e i n i t i a l i z e _ m o d u l e = TRUE;
24
25 seamcrop−> i n p u t _ f r a m e r a t e = ( ( f l o a t ) f r a m e r a t e / ( f l o a t ) denom ) ;
26
27 seamcrop−>o u t p u t _ w i d t h = seamcrop−>i n p u t _ w i d t h ∗ seamcrop−>

r e t a r g e t i n g _ f a c t o r ;
28 i f ( seamcrop−>o u t p u t _ w i d t h % 2)
29 seamcrop−>o u t p u t _ w i d t h −= 1 ;
30 }

gst_seamcrop_do_bu�erpool attempts to negotiate a buffer pool with the
downstream element, presented in Listing 4.5. As described in Section 3.3.7, we
query our downstream peer for a pool, performed on line 11. The query result is
passed to gst_seamcrop_decide_allocation, where we determine whether the
proposed pool is satisfactory or allocate our own pool should it not be suitable.
When either of these are performed, the pool and allocator are stored for use
in data transmission via the gst_seamcrop_set_allocation function. As these
functions are quite comprehensive they are not included in the listing.

Listing 4.5: Allocating a buffer pool.
1 s t a t i c g b o o l e a n
2 g s t _ s e a m c r o p _ d o _ b u f f e r p o o l ( GstSeamCrop ∗ seamcrop , GstCaps ∗

o u t c a p s )
3 {
4 GstQuery ∗ que ry ;
5 g b o o l e a n r e s u l t = TRUE;
6 G s t B u f f e r P o o l ∗ poo l = NULL;
7 G s t A l l o c a t o r ∗ a l l o c a t o r ;
8 G s t A l l o c a t i o n P a r a m s params ;
9

10 /∗ f i n d a poo l f o r t h e n e g o t i a t e d caps ∗ /
11 query = g s t _ q u e r y _ n e w _ a l l o c a t i o n ( o u t c a p s , TRUE) ;
12
13 r e s u l t = g s t _ s e a m c r o p _ d e c i d e _ a l l o c a t i o n ( seamcrop , que ry ) ;
14
15 i f ( ! r e s u l t )
16 goto n o _ d e c i d e _ a l l o c a t i o n ;
17
18 /∗ we g o t c o n f i g u r a t i o n from our peer or t h e d e c i d e _ a l l o c a t i o n

method , p a r s e them ∗ /
19 i f ( g s t _ q u e r y _ g e t _ n _ a l l o c a t i o n _ p a r a m s ( que ry ) > 0) {
20 g s t _ q u e r y _ p a r s e _ n t h _ a l l o c a t i o n _ p a r a m ( query , 0 , &a l l o c a t o r ,
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&params ) ;
21 } e l s e {
22 a l l o c a t o r = NULL;
23 g s t _ a l l o c a t i o n _ p a r a m s _ i n i t (& params ) ;
24 }
25
26 i f ( g s t _ q u e r y _ g e t _ n _ a l l o c a t i o n _ p o o l s ( que ry ) > 0)
27 g s t _ q u e r y _ p a r s e _ n t h _ a l l o c a t i o n _ p o o l ( query , 0 , &pool , NULL,

NULL, NULL) ;
28
29 /∗ now s t o r e ∗ /
30 r e s u l t = g s t _ s e a m c r o p _ s e t _ a l l o c a t i o n ( seamcrop , pool ,

a l l o c a t o r , &params , que ry ) ;
31
32 re turn r e s u l t ;
33
34 n o _ d e c i d e _ a l l o c a t i o n :
35 {
36 GST_WARNING_OBJECT ( seamcrop , " F a i l e d t o d e c i d e a l l o c a t i o n " )

;
37 g s t _ q u e r y _ u n r e f ( que ry ) ;
38
39 re turn r e s u l t ;
40 }
41 }

4.3 Wrapper Implementation
In Section 3.3.8, we describe the operational design of our wrapper for the retar-
geting module. In this section, we explain how the functionality is implemented.

The wrapper functionality is divided into two separate files to mask the internal
operation of the wrapper from the retargeting module. The seamcropwrapper.cpp
file concerns the communication between the plugin component and the retarget-
ing module, while bufferwriter.cpp solely acts as the interface through which the
retargeting module re-converts and pushes buffers onto the output queue. Hence-
forth, they are referred to as the Bu�erWriter and the SeamCropWrapper, re-
spectively.

SeamCropWrapper

To encapsulate the inner wrapper functionality from the plugin component as de-
scribed in Section 3.3.5, the C interpretation of seamcropwrapper.h is limited to
the function calls listed in Table 3.2. In the transition from design to implemen-
tation, the names of some of the functions listed in this table have been altered
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Design name Implementation name
initialize initSeamCrop
pass_buffers passBuffers
signal_end signalEndOfStream
flush flushCurrentInstance

Table 4.1: The updated names of the functions exposed to the plugin component
by the wrapper.

Design name Implementation name
run run
add_frame addFrame
signal_end endOfStreamSignal
flush stopExecution

Table 4.2: The updated names of the functions exposed to the wrapper by the
retargeting module.

to be more verbose. The new names of each function is listed in Table 4.1. The
C++ interpretation includes all of these, a class SeamCropWrapper as well as
the functions listed in Table 3.3 by including the seamCropCuda.h file. Some of
these functions also have updated names, which are listed in Table 4.2. A global
object of class SeamCropWrapper is maintained. This object contains all vari-
ables and objects related to the operation of the wrapper, omitting the need for the
plugin component to reference or store these variables directly. While it is possi-
ble to directly wrap and reference C++ objects in C, we claim that this approach
is unnecessarily cumbersome and would intertwine the different components.

Initialization Initialization of the SeamCropWrapper object is performed through
the initSeamCrop function, invoked by the plugin component. The initialization
functions are presented in Listing 4.6. Within, we allocate space for three sepa-
rate picture objects: two AVFrame[35] structures, one for YUV420P and the other
for RBG24, as well as one Image8U structure which has a native color space of
RGB24. The AVFrame objects are used for the format conversion, copying the
converted frame into the Image8U object which is inserted into the retargeting
module. Additionally, we initialize a Bu�erWriter object and the retargeting
module object, SeamCropCuda. A pointer to the writer is maintained in the
wrapper, passed to the retargeting module through the setWriter function. The
relationship between the writer and the wrapper is a unidirectional one, where
the SeamCropWrapper has access to the Bu�erWriter, but not vice versa. This
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denies the retargeting module access to the SeamCropWrapper. The image con-
version context required by passFrame is initialized on line 48.

Listing 4.6: Initialization of the SeamCropWrapper.
1
2 / / G loba l v a r i a b l e s .
3 SeamCropWrapper h a n d l e r ;
4 b o o s t : : t h r e a d seamExec ;
5
6 g i n t i n i t S e a m C r o p ( GAsyncQueue ∗ ou tp u t _qu eu e , g i n t width ,
7 g i n t h e i g h t , double f r a m e r a t e , f l o a t r e t a r g e t i n g F a c t o r ,
8 f l o a t e x t e n d B o r d e r F a c t o r , g i n t frameWindowSize ,
9 g u i n t 6 4 d u r a t i o n )

10 {
11 h a n d l e r = SeamCropWrapper ( width , h e i g h t , f r a m e r a t e ,
12 r e t a r g e t i n g F a c t o r , e x t e n d B o r d e r F a c t o r , frameWindowSize ,
13 d u r a t i o n , o u t p u t _ q u e u e ) ;
14
15 re turn h a n d l e r . g e t T a r g e t F r a m e S i z e ( ) ;
16 }
17
18 SeamCropWrapper : : SeamCropWrapper ( g i n t inWidth , g i n t i n H e i g h t ,
19 double i n F r a m e r a t e , f l o a t r e t a r g e t F a c t o r ,
20 f l o a t i n E x t e n d B o r d e r F a c t o r , g i n t inFrameWindowSize ,
21 g u i n t 6 4 i n D u r a t i o n , GAsyncQueue ∗ o u t p u t _ q u e u e )
22 : wid th ( inWid th ) , h e i g h t ( i n H e i g h t ) , f r ameRa te ( i n F r a m e r a t e ) ,
23 r e t a r g e t i n g F a c t o r ( r e t a r g e t F a c t o r ) ,
24 e x t e n d B o r d e r F a c t o r ( i n E x t e n d B o r d e r F a c t o r ) ,
25 frameWindowSize ( inFrameWindowSize ) , s t a r t e d ( f a l s e ) , c u r r e n t F r a m e

( 0 ) , cur ren tMaxFrame ( 0 )
26 {
27 t a r g e t W i d t h = wid th ∗ r e t a r g e t i n g F a c t o r ;
28 t a r g e t F r a m e S i z e = a v _ i m a g e _ g e t _ b u f f e r _ s i z e ( AV_PIX_FMT_YUV420P ,

t a r g e t W i d t h , h e i g h t , YUV420P_ALIGNMENT) ;
29
30 / / A l l o c a t e p i c t u r e f r am es .
31 pFrameYUV = a v _ f r a m e _ a l l o c ( ) ;
32 pFrameBGR = a v _ f r a m e _ a l l o c ( ) ;
33
34 / / A l l o c a t e b u f f e r o f a p p r o p r i a t e s i z e f o r pFrameBGR .
35 a v _ i m a g e _ a l l o c ( pFrameBGR−>da ta , pFrameBGR−> l i n e s i z e , width ,

h e i g h t , AV_PIX_FMT_RGB24 , RGB24_ALIGNMENT) ;
36
37 / / A l l o c a t e an image t o f i l l t h e r e c e i v e d f ram es i n t o .
38 image = b o o s t : : s h a r e d _ p t r <Image8U >(new Image8U ( width , h e i g h t ,

3 ) ) ;
39
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40 seamCropCuda = SeamCrop ( width , h e i g h t , frameWindowSize ,
r e t a r g e t i n g F a c t o r , e x t e n d B o r d e r F a c t o r ) ;

41 w r i t e r = b o o s t : : s h a r e d _ p t r < B u f f e r W r i t e r >(new B u f f e r W r i t e r (
ou tp u t _q ueu e , t a r g e t W i d t h , h e i g h t ) ) ;

42
43 / / Pass w r i t e r t o seamCropCuda .
44 w r i t e r −> s t a r t ( ) ;
45 seamCropCuda . s e t W r i t e r ( w r i t e r ) ;
46
47 / / S e t up c o n v e r s i o n c o n t e x t .
48 i m g _ c o n v e r t _ c t x = s w s _ g e t C o n t e x t ( width , h e i g h t ,

AV_PIX_FMT_YUV420P , width , h e i g h t , AV_PIX_FMT_BGR24 ,
SWS_BICUBIC | SWS_CPU_CAPS_MMX, NULL, NULL, NULL) ;

49
50 i f ( ! i m g _ c o n v e r t _ c t x )
51 BOOST_THROW_EXCEPTION( IOExcep t ion ( s t d : : s t r i n g ( " Cannot

i n i t i a l i z e c o n v e r s i o n c o n t e x t . " ) ) ) ;
52 }

Operation The main contributor to the overall execution of the SeamCrop-

Wrapper is the passFrame function. It is supported by a handful of other func-
tions, i.e., passBu�ers, passOutbuf and signalEndOfStream, that handle the or-
ganisational aspects of the SeamCropWrapper.

passBu�ers and passFrame functions are used in the transfer of video
frames from the plugin component to the retargeting module. These functions
are presented in Listing 4.7 passBu�ers is invoked by the plugin component to
transfer buffers to the wrapper component. It initiates the input buffer parsing by
calling passFrame and gives the output buffer to the writer through the passOut-
buf function.

The passFrame function converts the video frame format and inserts the frame
in the internal queue of the retargeting module. To perform the format conversion,
we utilize av_image_�ll_arrays[36] at line 15 to parse the received frame into
the allocated AVFrame and sws_scale[37] at line 20 to perform the format con-
version. The converted frame is copied pixel by pixel into the allocated Image8U
structure. This image is added to the internal queue by invoking the addFrame
function, shown in Listing 4.11. The retargeting module is started on line 46 by
dispatching a thread to invoke the startSeamCrop function. This function is min-
imal, but required as the thread needs a function handle or callable object to be
dispatched[38].

Listing 4.7: Frame conversion, buffer and frame passing.
1 void p a s s B u f f e r s ( G s t B u f f e r ∗ i n b u f , G s t B u f f e r ∗ o u t b u f )
2 {
3 h a n d l e r . passFrame ( i n b u f ) ;
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4 h a n d l e r . p a s s O u t b u f ( o u t b u f ) ;
5 }
6
7 void SeamCropWrapper : : passFrame ( G s t B u f f e r ∗ i n b u f )
8 {
9 bool seamReturn ;

10 GstMapInfo i n f o ;
11 / / E x t r a c t c o n t e n t s o f b u f f e r .
12 g s t _ b u f f e r _ m a p ( i n b u f , &i n f o , GST_MAP_READ) ;
13
14 / / F i l l p i c t u r e f rame w i t h t h e raw YUV image ( i n f o . da ta ) .
15 a v _ i m a g e _ f i l l _ a r r a y s ( pFrameYUV−>da ta , pFrameYUV−> l i n e s i z e ,
16 i n f o . da t a , AV_PIX_FMT_YUV420P , width , h e i g h t ,
17 YUV420P_ALIGNMENT) ;
18
19 / / Conver t image from YUV420P t o RGB24 .
20 i n t r e t = s w s _ s c a l e ( i m g _ c o n v e r t _ c t x , pFrameYUV−>da ta ,
21 pFrameYUV−> l i n e s i z e , 0 , h e i g h t , pFrameBGR−>da ta ,
22 pFrameBGR−> l i n e s i z e ) ;
23
24 i f ( r e t <= 0)
25 BOOST_THROW_EXCEPTION( IOExcep t ion ( s t d : : s t r i n g ( " I n p u t f rame

c o n v e r s i o n f a i l e d . " ) ) ) ;
26
27 / / S e t p o i n t e r t o b e g i n n i n g o f imageda ta .
28 u i n t 8 _ t ∗ d a t a P o i n t e r = pFrameBGR−>d a t a [ 0 ] ;
29 Image8U& img = ∗ image ;
30
31 / / Copy c o n t e n t s i n t o t h e a l l o c a t e d Image8U frame .
32 f o r ( u i n t 3 2 y = 0 ; y < h e i g h t ; y ++)
33 f o r ( u i n t 3 2 x = 0 ; x < wid th ; x ++)
34 {
35 img ( x , y , 0 ) = ∗ d a t a P o i n t e r ++;
36 img ( x , y , 1 ) = ∗ d a t a P o i n t e r ++;
37 img ( x , y , 2 ) = ∗ d a t a P o i n t e r ++;
38 }
39
40 do {
41 seamReturn = seamCropCuda . addFrame ( currentMaxFrame , image ) ;
42 } whi le ( ! seamReturn ) ;
43
44 / / S t a r t SeamCropCuda when t h e f i r s t f rame has been added .
45 i f ( ! s t a r t e d ) {
46 seamExec = b o o s t : : t h r e a d ( s t a r t S e a m C r o p ) ;
47 s t a r t e d = t rue ;
48 }
49
50 / / Update t h e frame c o u n t e r . W i l l r e s e t t o 0 when

frameWindowSize i s reached .
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51 curren tMaxFrame = ( cur ren tMaxFrame + 1) % frameWindowSize ;
52
53 g s t _ b u f f e r _ u n m a p ( i n b u f , &i n f o ) ;
54 }
55
56 void SeamCropWrapper : : p a s s O u t b u f ( G s t B u f f e r ∗ o u t b u f )
57 {
58 GstMapInfo i n f o ;
59 g s t _ b u f f e r _ m a p ( ou tbu f , &i n f o , GST_MAP_READ) ;
60 w r i t e r −>a d d B u f f e r ( o u t b u f ) ;
61 g s t _ b u f f e r _ u n m a p ( ou tbu f , &i n f o ) ;
62 }

BufferWriter

The Bu�erWriter is much simpler than the SeamCropWrapper as it is only used
by the retargeting module to write to the output queue. It is initialized and started
from the SeamCropWrapper, allocating two AVFrame objects for the frame con-
version. It has only one important function, putImage, presented in Listing 4.8.
This function converts the frame back to the received format, inserts it into an al-
located output buffer and pushes it onto the output queue, analogous to the inverse
operation of the passFrame function in the SeamCropWrapper.

Listing 4.8: Outputting a frame.
1
2 void B u f f e r W r i t e r : : a d d B u f f e r ( G s t B u f f e r ∗ o u t b u f )
3 {
4 o u t B u f f e r s . push ( o u t b u f ) ;
5 }
6
7 void B u f f e r W r i t e r : : pu t Image ( Image8U c o n s t& image )
8 {
9 G s t B u f f e r ∗ o u t b u f ;

10 GstMapInfo i n f o ;
11
12 /∗ R e t r i e v e o u t p u t b u f f e r . ∗ /
13 o u t b u f = o u t B u f f e r s . f r o n t ( ) ;
14 o u t B u f f e r s . pop ( ) ;
15
16 /∗ R e t r i e v e b u f f e r i n f o . ∗ /
17 g s t _ b u f f e r _ m a p ( ou tbu f , &i n f o , GST_MAP_WRITE) ;
18
19 /∗ W r i t e c o r r e c t a l i g n m e n t f o r t h e YUV420P image t o i n f o . da ta .

∗ /
20 a v _ i m a g e _ f i l l _ a r r a y s ( pFrameYUV−>da ta , pFrameYUV−> l i n e s i z e ,
21 i n f o . da t a , AV_PIX_FMT_YUV420P , width , h e i g h t , YUV420P_ALIGNMENT)

;
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22
23 /∗ F i l l pFrameBGR w i t h da ta from t h e p r o v i d e d image . ∗ /
24 u i n t 8 _ t ∗ d a t a P o i n t e r = pFrameBGR−>d a t a [ 0 ] ;
25 f o r ( u i n t 3 2 y =0; y< h e i g h t ; y ++)
26 f o r ( u i n t 3 2 x =0; x< wid th ; x ++)
27 f o r ( u i n t 3 2 z =0; z <3; z ++)
28 ∗ d a t a P o i n t e r ++ = image ( x , y , z ) ;
29
30
31 /∗ Conver t t h e BGR24 image t o YUV420P . ∗ /
32 i n t r e t = s w s _ s c a l e ( i m g _ c o n v e r t _ c t x , pFrameBGR−>da ta ,
33 pFrameBGR−> l i n e s i z e , 0 , h e i g h t , pFrameYUV−>da ta ,
34 pFrameYUV−> l i n e s i z e ) ;
35
36 i f ( r e t <= 0)
37 BOOST_THROW_EXCEPTION( IOExcep t ion ( s t d : : s t r i n g ( " Outpu t f rame

c o n v e r s i o n f a i l e d . " ) ) ) ;
38
39 /∗ I n s e r t o u t p u t b u f f e r i n t o queue . ∗ /
40 g_async_queue_push ( outputQueue , o u t b u f ) ;
41 c u r r e n t F r a m e ++;
42
43 g s t _ b u f f e r _ u n m a p ( ou tbu f , &i n f o ) ;
44 }

4.4 Retargeting Module Implementation
In Sections 3.3.9 and 3.3.10, we describe the design of the retargeting module
with regards to flow, threading and alteration of the algorithm. In this section, we
present how this is implemented.

Retargeting is driven by objects of the two main classes SeamCrop and Seam-
CropPipeline. The former manages the latter, where the SeamCrop object is
managed by the thread dispatched from the SeamCropWrapper. Objects of class
SeamCropPipeline are worker threads, operating solely within a shared environ-
ment.

As mentioned previously, several alterations and additions were required to
modify the original implementation for online retargeting purposes. These changes
and additions can be summarized as follows:

• replacement of input and output functionality,

• memory storage of video frames,

• frame window approach to retargeting process,
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• cropping window path smoothing between frame windows,

• accounting for seams and temporal cost between frame windows.

The original implementation reads frames from a video file and outputs them to
a separate file through the FFmpeg framework. Since it relies on files as a video
source, no intermediate storage in memory is required between the passes as a file
can simply be read twice. Once a frame has been read and uploaded to the GPU
it is discarded from main memory. This is not possible for when streaming video
from a remote location, where each frame only arrives once and must be stored
until the retargeting process has finished.

The wrapper classes SeamCropWrapper and Bu�erWriter replace the origi-
nal input and output functionality. Frames received from the SeamCropWrapper

are stored in a shared Image8U array with a size equal to the frame-window-
size property set at plugin initialization. Worker threads retrieve frames from this
shared array. A frame is removed from this array once it has been uploaded to
the GPU in the second pass of the algorithm and is subsequently replaced with a
frame from the next frame window.

The remaining alterations are described throughout this section.

Initialization SeamCrop is instantiated from within the SeamCropWrapper

object constructor. The SeamCrop constructor, presented in Listing 4.9, com-
putes all necessary data to perform retargeting, storing this information in the
static structure FrameInfo. This structure is made available to SeamCropPipeline
threads through the setFrameInfo function. It initializes the SeamCropPipeline
worker threads and allocates space for the calculation of the cropping windows
and column costs for the energy mapping. The size of a frame window is given
with the numFrames argument.

Listing 4.9: Initializing the SeamCrop object.
1 SeamCrop : : SeamCrop ( u i n t 3 2 videoWidth , u i n t 3 2 v i d e o H e i g h t , u i n t 3 2

numFrames , f l o a t r e t a r g e t i n g F a c t o r , f l o a t e x t e n d B o r d e r F a c t o r
)

2 {
3 u i n t 3 2 w = videoWidth ; / / w i d t h
4 u i n t 3 2 h = v i d e o H e i g h t ; / / h e i g h t
5 u i n t 3 2 c = 3 ; / / image c h a n n e l s ( R , G, B )
6 u i n t 3 2 f c = numFrames ; / / t o t a l f r a m e c o u n t
7
8 / / S e t f r a m e i n f o .
9 f i . vWidth = w;

10 f i . tWid th = w ∗ r e t a r g e t i n g F a c t o r ;
11 f i . eWidth = f i . tWid th + ( (w − f i . tWid th ) ∗ e x t e n d B o r d e r F a c t o r )

;
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12 f i . oWidth = w − f i . tWid th + 1 ;
13 f i . numSeams = f i . eWidth − f i . tWid th ;
14 f i . h e i g h t = h ;
15 f i . c h a n n e l s = c ;
16 f i . f rameCount = f c ;
17
18 SeamCropP ipe l ine : : s e t F r a m e I n f o ( f i ) ;
19 SeamCropP ipe l ine : : o r i g i n a l V i d e o . r e s i z e ( f i . f rameCount ) ;
20
21 f o r ( u i n t 3 2 i = 0 ; i < NUM_THREADS; ++ i )
22 scp [ i ] = b o o s t : : s h a r e d _ p t r < SeamCropPipe l ine >(new

SeamCropP ipe l ine ( i ) ) ;
23
24 columnCost = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >(new

CudaImage32FHandle ) ;
25 columnCost−> a l l o c a t e ( f i . vWidth , f i . f rameCount , 1 , 1 ) ;
26
27 croppingWindowCost = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >(new

CudaImage32FHandle ) ;
28 croppingWindowCost−> a l l o c a t e ( f i . oWidth , fc , 1 , 1 ) ;
29
30 p r e d e c e s s o r s = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >(new

CudaImage32FHandle ) ;
31 p r e d e c e s s o r s −> a l l o c a t e ( f i . oWidth , fc , 1 , 1 ) ;
32
33 cropLeftGPU = b o o s t : : s h a r e d _ p t r <CudaVectorHandle < unsigned i n t >

>(new CudaVectorHandle <unsigned i n t >) ;
34 cropLeftGPU−> r e s i z e ( f c ) ;
35
36 c r o p L e f t . r e s i z e ( f c ) ;
37
38 p r e v C r o p L e f t = 0 ;
39 f i r s t P r e S m o o t h C r o p L e f t = 0 ;
40 t o t a l R e t a r g e t e d F r a m e s = 0 ;
41 pend ingFrames = f c ;
42
43 SeamCropP ipe l ine : : se tCo lumnCos t ( columnCost ) ;
44
45 endOfStream = f a l s e ;
46 SeamCropP ipe l ine : : h a l t E x e c u t i o n = f a l s e ;
47 }

setFrameInfo sets up the shared variables used to ensure consistent opera-
tion and synchronization between SeamCropPipeline threads, shown in Listing
4.10. It initializes six arrays whose importance merit further explanation.

• originalVideo contains all raw frames received from the SeamCropWrap-

per.
• imgPresent indicates whether a frame has been added to the internal queue.
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• imgAvailable denotes whether a frame has been uploaded to the GPU in
this pass.
• imgDone specifies whether a frame has finished processing for a pass.
• seamsDone contains the number of seams currently identified for each frame.
• seams contains the seams identified for each frame.

Listing 4.10: Setting the frame info.
1 void SeamCropP ipe l i ne : : s e t F r a m e I n f o ( FrameInfo c o n s t& f i )
2 {
3 SeamCropP ipe l ine : : f i = f i ;
4 f i r s t P a s s = t rue ;
5 wraparound = f a l s e ;
6 las tFrameNumber = 0 ;
7 l a s t F r a m e O f V i d e o = f i . f rameCount ;
8 l a s t F r a m e O f S t r e a m = f i . f rameCount +2;
9

10 imgBuf fe r . r e s i z e ( f i . f rameCount +2) ;
11 i m g A v a i l a b l e . r e s i z e ( f i . f rameCount +2) ;
12 imgDone . r e s i z e ( f i . f rameCount +2) ;
13
14 i m g P r e s e n t . r e s i z e ( f i . f rameCount +2) ;
15
16 seams . r e s i z e ( f i . f rameCount +2) ;
17 seamsDone . r e s i z e ( f i . f rameCount +2) ;
18
19 i m g P r e s e n t [ 0 ] = f a l s e ;
20 i m g A v a i l a b l e [ 0 ] = t rue ;
21 imgDone [ 0 ] = t rue ;
22
23 seams [ 0 ] = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >(new

CudaImage32FHandle ) ;
24 seams [0]−> a l l o c a t e ( 1 , 1 , 1 , 1 ) ;
25 seamsDone [ 0 ] = f i . numSeams ;
26
27 f o r ( u i n t 3 2 i = 1 ; i <= f i . f rameCount ; ++ i )
28 {
29 i m g A v a i l a b l e [ i ] = f a l s e ;
30 i m g P r e s e n t [ i ] = f a l s e ;
31 imgDone [ i ] = f a l s e ;
32 seamsDone [ i ] = 0 ;
33 }
34
35 i m g A v a i l a b l e [ f i . f rameCount +1] = t rue ;
36 imgDone [ f i . f rameCount +1] = t rue ;
37 seamsDone [ f i . f rameCount +1] = f i . numSeams ;
38 }
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The SeamCropPipeline threads allocate space for their own operation since
all shared variables are instantiated in the setFrameInfo function. As this initial-
ization has not been altered it is not presented here.

Operation The retargeting process entails ample use of a wide array of func-
tions. As this number is quite comprehensive, we limit the presentation to the
most important functions we have altered. These are described in the order they
are invoked through the data flow.

addFrame adds a frame to the originalVideo frame array as shown in List-
ing 4.11. It is invoked before the retargeting module begins retargeting, as the
module has no need to begin until a frame has been added. If the module is
flushing, i.e., discarding all current frames and tearing down the environment, the
incoming frame is immediately discarded. To avoid overwriting an unfinished
frame with a new one, we refer to the imgPresent value for the frame number of
the particular frame. The value is set after the frame has been added and unset
once it has finished processing. These two operations account for the synchro-
nization required between the SeamCropWrapper and the retargeting module.

Listing 4.11: Adding a frame to the internal queue.
1 bool SeamCrop : : addFrame ( unsigned i n t frameNum , c o n s t b o o s t : :

s h a r e d _ p t r <Image8U> &image )
2 {
3 i f ( SeamCropP ipe l i ne : : h a l t E x e c u t i o n )
4 re turn true ; / / Module i s f l u s h i n g .
5
6 i f ( SeamCropP ipe l i ne : : i m g P r e s e n t [ frameNum ] )
7 re turn f a l s e ; / / The frame ca nn o t be added y e t .
8
9 i f ( ! SeamCropP ipe l ine : : wraparound )

10 SeamCropP ipe l ine : : o r i g i n a l V i d e o [ frameNum ] = b o o s t : :
s h a r e d _ p t r <Image8U >(new Image8U ( f i . vWidth , f i . h e i g h t , f i .
c h a n n e l s ) ) ;

11
12 / / Adds image t o o r i g i n a l V i d e o [ ] .
13 F i l t e r : : r e s i z e (∗ image , ∗ SeamCropP ipe l ine : : o r i g i n a l V i d e o [

frameNum ] ) ;
14 SeamCropP ipe l ine : : i m g P r e s e n t [ frameNum ] = t rue ;
15
16 re turn true ;
17 }

run begins the retargeting process. This function is presented in Listing
4.12. It is the implementation of the algorithm we presented in Algorithm 1,
dispatching threads for each pass and determining the cropping window for each
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frame window. In the original implementation, this function is only executed once
for the entire retargeting process. In this altered version, each loop iteration cor-
responds to retargeting one frame window. The loop within this function executes
until either all frames have been processed and endOfStream is set by the Seam-
CropWrapper, or if haltExecution is set. endOfStream is set when the EOS
signal is received in the plugin component, while haltExecution is set upon re-
ception of the FLUSH signal. Since the majority of structures are allocated as
shared pointers, dereferencing them is sufficient to deallocate the reserved space
[39]. These structures are dereferenced in lines 49-52 by assigning the shared
pointers a new, empty pointer.

Listing 4.12: Main loop of the retargeting module.
1 void SeamCrop : : run ( )
2 {
3 SeamCropP ipe l ine : : s e t C r o p L e f t (& c r o p L e f t ) ;
4 SeamCropP ipe l ine : : s e t P r e S m o o t h C r o p L e f t (& f i r s t P r e S m o o t h C r o p L e f t

) ;
5
6 whi le ( t rue ) {
7 i f ( SeamCropP ipe l i ne : : h a l t E x e c u t i o n )
8 break ;
9 t o t a l R e t a r g e t e d F r a m e s += pend ingFrames ;

10
11 r u n _ p a s s 1 ( ) ;
12
13 / / C a l c u l a t e c r o p p i n g window pa th .
14 SeamCropCuda : : ca l cu la t eCos tCropp ingWindowTime (∗ columnCost−>

g e t D a t a D e s c P t r ( ) ,
15 ∗ croppingWindowCost−>g e t D a t a D e s c P t r ( ) , f i . tWid th ) ;
16 SeamCropCuda : : c a l c u l a t e M a x E n e r g y P a t h (∗ croppingWindowCost−>

g e t D a t a D e s c P t r ( ) ,
17 ∗ p r e d e c e s s o r s −>g e t D a t a D e s c P t r ( ) , ∗ cropLeftGPU−>

g e t D a t a D e s c P t r ( ) ) ;
18 cropLeftGPU−>g e t D a t a ( c r o p L e f t ) ;
19
20 / / Smooth t r a n s i t i o n be tween frame windows .
21 i f ( SeamCropP ipe l i ne : : wraparound )
22 s m o o t h T r a n s i t i o n ( ) ;
23
24 / / Smooth t h e c r o p p i n g window pa th .
25 s m o o t h S i g n a l ( ) ;
26
27 / / S w i t c h o p e r a t i o n from f i r s t t o second pass .
28 SeamCropP ipe l ine : : n e x t P a s s (PASS_TWO) ;
29
30 r u n _ p a s s 2 ( ) ;
31
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32 i f ( ( endOfStream && pendingFrames == 0) | | SeamCropP ipe l ine : :
h a l t E x e c u t i o n )

33 break ;
34
35 SeamCropP ipe l ine : : n e x t P a s s (PASS_ONE) ;
36 }
37
38 / / F i n i s h e d . R e s e t a l l s t r u c t u r e s f o r a p o t e n t i a l new run .
39 f o r ( i n t i = 0 ; i < f i . f rameCount ; i ++)
40 {
41 i f ( i < NUM_THREADS)
42 scp [ i ] = b o o s t : : s h a r e d _ p t r < SeamCropPipe l ine > ( ) ;
43
44 SeamCropP ipe l ine : : o r i g i n a l V i d e o [ i ] = b o o s t : : s h a r e d _ p t r <

Image8U > ( ) ;
45 SeamCropP ipe l ine : : i m g P r e s e n t [ i ] = f a l s e ;
46 SeamCropP ipe l ine : : wraparound = f a l s e ;
47 }
48
49 columnCost = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle > ( ) ;
50 croppingWindowCost = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle > ( ) ;
51 p r e d e c e s s o r s = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle > ( ) ;
52 cropLeftGPU = b o o s t : : s h a r e d _ p t r <CudaVectorHandle < unsigned i n t >

>() ;
53 }

doStu� is the arbitrarily named operational function of the SeamCropPipeline
threads. It loops execution until there are no remaining frames to process in the
current frame window. To prevent the acquisition of a frame that has not been
added yet, readNextFrame is continually called until one is available. On suc-
cess, the thread proceeds; on failure, it yields. This function is described in Listing
4.14. By calling cudaStreamSynchronize after a frame has begun uploading to
the GPU, we ensure that the frame upload is complete before a thread can operate
on it. As a frame cannot be processed until both the preceding and succeeding
frame is present on the GPU, each thread must yield until this has come to pass.
A frame is removed from the GPU once the previous, current and next frame are
finished. The first frame to exit the loop notifies the managing SeamCrop object
that the pass is nearing completion.

Listing 4.13: Operational loop of a SeamCropPipeline thread.
1 void SeamCropP ipe l i ne : : d o S t u f f ( )
2 {
3 i f ( l a s t F r a m e O f V i d e o < f i . f rameCount &&
4 ! imgDone [ l a s t F r a m e O f V i d e o + 1 ] )
5 {
6 /∗ When p r o c e s s i n g t h e l a s t f rame window ,
7 s e t s t h e l a s t a c t u a l f rame on s t r ea m end .
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8 Otherwise , t h e l a s t t h r e a d w i l l w a i t f o r e v e r
9 f o r a frame t h a t n e v e r a r r i v e s . ∗ /

10 i m g A v a i l a b l e [ l a s t F r a m e O f V i d e o +1] = t rue ;
11 imgDone [ l a s t F r a m e O f V i d e o +1] = t rue ;
12 }
13
14 i f ( imgDone [ 1 ] | | h a l t E x e c u t i o n )
15 {
16 cond . n o t i f y _ o n e ( ) ;
17 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
18 re turn ;
19 }
20
21 / / P r o c e s s i n g loop .
22 whi le ( t rue )
23 {
24 i n t 3 2 _ t t = readNextFrame ( ) ;
25
26 / / A t t e m p t t o read n e x t f rame u n t i l i t i s a v a i l a b l e .
27 whi le ( t < 0 ) {
28 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
29 t = readNextFrame ( ) ;
30 i f ( h a l t E x e c u t i o n )
31 t = 0 ;
32 }
33 i f ( t == 0 | | h a l t E x e c u t i o n )
34 break ; / / No more f r am es t o p r o c e s s .
35
36 / / Upload frame t o t h e GPU.
37 imgBuf fe r [ t ] = b o o s t : : s h a r e d _ p t r <CudaImage8UHandle >(new

CudaImage8UHandle ) ;
38 imgBuf fe r [ t ]−> p u t (∗ readFrameCPU , s t r e a m ) ;
39
40 / / Ensure t h a t t h e frame i s up loaded b e f o r e p r o c e e d i n g .
41 c u d a S t r e a m S y n c h r o n i z e ( s t r e a m ) ;
42 i m g A v a i l a b l e [ t ] = t rue ;
43
44 / / A l low t h e frame t o be o v e r w r i t t e n .
45 i f ( ! f i r s t P a s s )
46 i m g P r e s e n t [ t −1] = f a l s e ;
47
48 whi le ( ! ( i m g A v a i l a b l e [ t −1] && i m g A v a i l a b l e [ t ] && i m g A v a i l a b l e

[ t + 1 ] ) ) {
49 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
50 i f ( h a l t E x e c u t i o n )
51 break ;
52 }
53
54 i f ( f i r s t P a s s )
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55 p r o c e s s I m a g e _ p a s s 1 ( ( u i n t 3 2 ) t ) ;
56 e l s e
57 p r o c e s s I m a g e _ p a s s 2 ( ( u i n t 3 2 ) t ) ;
58
59 imgDone [ t ] = t rue ;
60
61 / / See i f a f rame can be removed from t h e GPU.
62 f o r ( u i n t 3 2 i = 1 ; i <= l a s t F r a m e O f V i d e o ; ++ i )
63 i f ( imgDone [ i −1] && imgDone [ i ] && imgDone [ i + 1 ] )
64 imgBuf fe r [ i ] = b o o s t : : s h a r e d _ p t r <CudaImage8UHandle > ( ) ;
65 }
66 }

readNextFrame attempts to retrieve a frame from the originalVideo array.
This is one of the few functions in which an explicit mutex is utilized to maintain
synchronization. A boost::unique_lock ensures singular access to the function.
If the desired frame is absent, the process returns and subsequently yields until it
becomes available. Should the counter exceed the frame window size, there are
no more frames to process and the thread exits the processing loop.

Listing 4.14: Retrieving a frame from the internal queue.
1 i n t 3 2 _ t SeamCropP ipe l ine : : readNextFrame ( )
2 {
3 b o o s t : : u n i q u e _ l o c k < b o o s t : : mutex > l o c k ( mutex ) ;
4
5 i f ( las tFrameNumber >= l a s t F r a m e O f V i d e o )
6 re turn 0 ;
7 e l s e i f ( ! i m g P r e s e n t [ las tFrameNumber ] )
8 re turn −1;
9

10 / / Frame i s a v a i l a b l e .
11 readFrameCPU = o r i g i n a l V i d e o [ las tFrameNumber ] ;
12
13 las tFrameNumber += 1 ;
14 re turn l as tFrameNumber ;
15 }

processImage_pass1 and calculateEnergy functions are the core func-
tions in the first pass of the algorithm. They are fairly sparse as the actual cal-
culations are performed by the CUDA implementation. Energy values for the
preceding and following frames are included in the energy calculation provided
the frame is neither the first nor the last frame of the frame window.

Listing 4.15: Energy calculation.
1 void SeamCropP ipe l i ne : : p r o c e s s I m a g e _ p a s s 1 ( u i n t 3 2 t )
2 {
3 c a l c u l a t e E n e r g y ( t ) ;
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4 cuda−>addColumnCost (∗ t o t a l S a l i e n c y −>g e t D a t a D e s c P t r ( ) , ∗
columnCost−>g e t D a t a D e s c P t r ( ) , t −1) ;

5 }
6
7 void SeamCropP ipe l i ne : : c a l c u l a t e E n e r g y ( u i n t 3 2 t )
8 {
9 CudaImage8UDataDesc r ip to r c o n s t ∗ prevFrame = imgBuf fe r [ t ]−>

g e t D a t a D e s c P t r ( ) ;
10 cuda−>c o m p u t e G r a d i e n t (∗ prevFrame , ∗ g r a d i e n t −>g e t D a t a D e s c P t r ( ) )

;
11
12 CudaImage8UDataDesc r ip to r c o n s t ∗ nextFrame = prevFrame ;
13
14 i f ( t < l a s t F r a m e O f V i d e o )
15 nextFrame = imgBuf fe r [ t +1]−> g e t D a t a D e s c P t r ( ) ;
16 i f ( t > 1 )
17 prevFrame = imgBuf fe r [ t−1]−> g e t D a t a D e s c P t r ( ) ;
18
19 cuda−>f i n d M o t i o n S a l i e n c y (∗ prevFrame , ∗ nextFrame , ∗

m o t i o n S a l i e n c y−>g e t D a t a D e s c P t r ( ) ) ;
20 cuda−>smooth (∗ m o t i o n S a l i e n c y−>g e t D a t a D e s c P t r ( ) ) ;
21
22 cuda−>m e r g e S a l i e n c y (∗ m o t i o n S a l i e n c y−>g e t D a t a D e s c P t r ( ) , ∗

g r a d i e n t −>g e t D a t a D e s c P t r ( ) , ∗ t o t a l S a l i e n c y −>g e t D a t a D e s c P t r
( ) ) ;

23 }

smoothTransition performs the transitional smoothing between cropping
windows of two different frame windows as visualized in Figure 3.8, executed
after the first pass is finished. This function, presented in Listing 4.16, is crucial
to maintain presentation consistency between frame windows. The position of
the last cropping window is stored in prevCropLeft by the managing SeamCrop
object upon completion of the smoothSignal function. This position is compared
with the first cropping window position calculated for the next frame window.

The cropLeft value for each cropping window is smoothed by utilizing the
importanceWeight variable which initially favors the previous window position.
This importance gradually abates until the cropping window path eventually fol-
lows the one that was originally computed. This smoothing is only performed if
the disparity between the left cropping position of both windows exceeds a dis-
tance of two pixels. More pronounced disparities result in a jagged transition
between the two frame windows.

Listing 4.16: Transitional smoothing.
1 void SeamCrop : : s m o o t h T r a n s i t i o n ( )
2 {
3 i n t d i f f = p r e v C r o p L e f t − c r o p L e f t [ 0 ] ;
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4 i f ( d i f f <= 2 && d i f f >= −2)
5 {
6 / / D i f f e r e n c e i s n e g l i g i b l e . No need t o smooth t h e

t r a n s i t i o n .
7 f i r s t P r e S m o o t h C r o p L e f t = p r e v C r o p L e f t ;
8 re turn ;
9 }

10
11 f l o a t weigh t edPrevCrop ;
12 f l o a t weightedCurCrop ;
13 f l o a t i m p o r t a n c e W e i g h t = (1 / ( f l o a t ) SeamCropP ipe l i ne : :

l a s t F r a m e O f V i d e o ) ;
14
15 f o r ( u i n t 3 2 i = 0 ; i < SeamCropP ipe l i ne : : l a s t F r a m e O f V i d e o ; ++ i )
16 {
17 / / G r a d i e n t smoo th ing be tween t h e c r o p p i n g window p o s i t i o n s .
18 we igh tedPrevCrop = p r e v C r o p L e f t − ( p r e v C r o p L e f t ∗ ( i ∗

i m p o r t a n c e W e i g h t ) ) ;
19 weigh tedCurCrop = c r o p L e f t [ i ] ∗ ( i ∗ i m p o r t a n c e W e i g h t ) ;
20 c r o p L e f t [ i ] = we igh t edPrevCrop + weigh tedCurCrop ;
21 }
22 f i r s t P r e S m o o t h C r o p L e f t = c r o p L e f t [ 0 ] ;
23 }

smoothSignal and de�neBorders functions smooth the cropping window
differences within the transitional path we computed. smoothSignal performs
repeated smoothing on the path to make the perceived camera motion palatable,
while de�neBorders determines whether the calculated position exceeds the edges
of the original video frame. Should the cropping window position for a frame be
too far to one side, additional seams are removed from the opposing side equal to
the amount of pixels outside the boundary. Both of these functions are presented
in Listing 4.17.

Listing 4.17: Intra-path smoothing and border definition.
1 void SeamCrop : : s m o o t h S i g n a l ( )
2 {
3 u i n t 3 2 c o n s t f c = SeamCropP ipe l ine : : l a s t F r a m e O f V i d e o ;
4
5 f l o a t ∗ n e x t = new f l o a t [ f c ] ;
6 f l o a t ∗ p rev = new f l o a t [ f c ] ;
7
8 i f ( n e x t == NULL | | p r ev == NULL)
9 BOOST_THROW_EXCEPTION( Run t imeExcep t ion ( " Out o f memory . " ) ) ;

10
11 f o r ( u i n t 3 2 i = 0 ; i < f c ; ++ i )
12 p rev [ i ] = c r o p L e f t [ i ] ;
13
14 / / gauss−based average , r e p e a t e d ;
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15 f o r ( u i n t 3 2 r e p e a t = 0 ; r e p e a t < 100 ; r e p e a t ++)
16 {
17 f o r ( u i n t 3 2 i = 0 ; i < f c ; ++ i )
18 i f ( i == 0)
19 i f ( ! SeamCropP ipe l ine : : wraparound )
20 n e x t [ i ] = ( p r ev [ i ] + p rev [ i + 1 ] ) / 2 . 0 f ; / / ( i + ( i +1) ) / 2
21 e l s e
22 n e x t [ i ] = p rev [ i ] ;
23 e l s e i f ( i < fc −1)
24 n e x t [ i ] = 0 . 2 5 f ∗ p rev [ i −1] + 0 . 5 f ∗ p rev [ i ] + 0 . 2 5 f ∗ p rev [

i + 1 ] ; / / ( 0 . 2 5 + 0 . 5 + 0 . 2 5 )
25 e l s e
26 n e x t [ i ] = ( p r ev [ i ] + p rev [ i −1]) / 2 . 0 f ;
27
28 f l o a t ∗ tmp = prev ;
29 p rev = n e x t ;
30 n e x t = tmp ;
31 }
32
33 f l o a t smoothWeight = (1 / ( f l o a t ) SeamCropP ipe l i ne : :

l a s t F r a m e O f V i d e o ) ;
34
35 f o r ( u i n t 3 2 i = 0 ; i < f c ; ++ i )
36 c r o p L e f t [ i ] = d e f i n e B o r d e r s ( ( u i n t 3 2 ) ( p rev [ i ] + 0 . 5 f ) , i ,

smoothWeight ) ;
37
38 / / Remove s m a l l one−p i x e l j i t t e r s .
39 f o r ( u i n t 3 2 i = 1 ; i < f c ; ++ i )
40 i f ( c r o p L e f t [ i −1] == c r o p L e f t [ i +1] && c r o p L e f t [ i ] != c r o p L e f t

[ i + 1 ] )
41 c r o p L e f t [ i ] = c r o p L e f t [ i −1];
42
43 / / S t o r e t h e l a s t p o s i t i o n t o t r a n s i t i o n be tween frame windows

.
44 p r e v C r o p L e f t = c r o p L e f t [ fc −1];
45
46 d e l e t e p rev ;
47 d e l e t e n e x t ;
48 }
49
50 u i n t 3 2 SeamCrop : : d e f i n e B o r d e r s ( u i n t 3 2 c r o p L e f t , u i n t 3 2 curFrame ,

f l o a t smoothWeight )
51 {
52 u i n t 3 2 c o n s t w = f i . vWidth ;
53 u i n t 3 2 c o n s t ew = f i . eWidth ;
54 u i n t 3 2 c o n s t tw = f i . tWid th ;
55
56 i n t e x t r a S p a c e = ( ew − tw ) / 2 ;
57
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58 i f ( SeamCropP ipe l i ne : : wraparound )
59 {
60 / / T r a n s i t i o n i n g be tween windows .
61 i n t a d j u s t e d S p a c e = e x t r a S p a c e ∗ ( curFrame ∗ smoothWeight ) ;
62
63 i f ( ( ( i n t ) c r o p L e f t ) − a d j u s t e d S p a c e <=0)
64 c r o p L e f t = 0 ;
65 e l s e i f ( ( c r o p L e f t − a d j u s t e d S p a c e ) > (w − ew − 1) )
66 c r o p L e f t = w − ew − 1 ;
67 e l s e
68 c r o p L e f t = c r o p L e f t − a d j u s t e d S p a c e ;
69 } e l s e
70 {
71 i f ( ( ( i n t ) c r o p L e f t ) − e x t r a S p a c e <= 0)
72 c r o p L e f t = 0 ;
73 e l s e i f ( ( c r o p L e f t + tw + e x t r a S p a c e ) >= w−1)
74 c r o p L e f t = w − ew − 1 ;
75 e l s e
76 c r o p L e f t = c r o p L e f t − e x t r a S p a c e ;
77 }
78 re turn c r o p L e f t ;
79 }

nextPass function alters and resets the shared variables and structures nec-
essary to operate in the next pass, shown in Listing 4.18. Both passes need
to clear the imgAvailable and imgDone shared variables to proceed, while the
first pass additionally needs to reset seamsDone for a new frame window. The
value of �rstPass determines which pass to execute in the doStu� function while
wraparound indicates the switch to a new frame window.

Listing 4.18: Switching between passes.
1 void SeamCropP ipe l i ne : : n e x t P a s s ( i n t passMode )
2 {
3 sw i t ch ( passMode )
4 {
5 case PASS_ONE :
6 f i r s t P a s s = t rue ;
7 wraparound = t rue ;
8 seamsDone [ 0 ] = f i . numSeams ;
9 break ;

10 case PASS_TWO:
11 f i r s t P a s s = f a l s e ;
12 break ;
13 }
14 las tFrameNumber = 0 ;
15
16 f o r ( u i n t 3 2 i = 1 ; i <= f i . f rameCount ; ++ i )
17 {
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18 i m g A v a i l a b l e [ i ] = f a l s e ;
19 imgDone [ i ] = f a l s e ;
20 i f ( passMode == PASS_ONE)
21 seamsDone [ i ] = 0 ;
22 }
23 }

processImage_pass2 is the final and most important stage of retargeting
where the actual cropping and seam carving is performed. This function is pre-
sented in Listing 4.19. On the first frame window, this function proceeds normally
as it would in the original implementation. When transitioning between frame
windows, it takes the seams computed for the final frame in the previous frame
window into account, as shown on line 24. These seams are stored in prevSeams
on line 74, to be used for the initial seam computation of the next frame window.
Without accounting for these seams, the temporal consistency between the seams
computed for each frame are lost, resulting in rapid expansion or compression of
objects or scenery when transitioning between frame windows. When a frame is
finishied, it is passed to the putImage function of the Bu�erWriter on line 79.

Listing 4.19: Cropping and carving seams.
1 void SeamCropP ipe l i ne : : p r o c e s s I m a g e _ p a s s 2 ( u i n t 3 2 t )
2 {
3 u i n t 3 2 c o n s t numSeams = f i . numSeams ;
4
5 seams [ t ] = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >(new

CudaImage32FHandle ) ;
6 seams [ t ]−> a l l o c a t e ( f i . numSeams , f i . h e i g h t , 1 , 1 ) ;
7
8 CudaImage8UDataDesc r ip to r c o n s t& or igFrame = ∗ imgBuf fe r [ t ]−>

g e t D a t a D e s c P t r ( ) ;
9 CudaImage8UDataDesc r ip to r c o n s t& frameData = ∗ frame−>

g e t D a t a D e s c P t r ( ) ;
10 Cuda Image32FDa taDesc r ip to r c o n s t& e n e r g y D a t a = ∗ energy−>

g e t D a t a D e s c P t r ( ) ;
11 Cuda Image32FDa taDesc r ip to r c o n s t& tmpEnergyData = ∗ tmpEnergy−>

g e t D a t a D e s c P t r ( ) ;
12 Cuda Image32FDa taDesc r ip to r c o n s t& fwdEnergyData = ∗ fwdEnergy−>

g e t D a t a D e s c P t r ( ) ;
13 Cuda Image32FDa taDesc r ip to r c o n s t& o p t i m a l C o s t D a t a = ∗

o p t i m a l C o s t−>g e t D a t a D e s c P t r ( ) ;
14 Cuda Image32FDa taDesc r ip to r c o n s t& p r e d e c e s s o r s D a t a = ∗

p r e d e c e s s o r s −>g e t D a t a D e s c P t r ( ) ;
15 Cuda Image32FDa taDesc r ip to r c o n s t& seamsData = ∗ seams [ t ]−>

g e t D a t a D e s c P t r ( ) ;
16
17 whi le ( seamsDone [ t −1] < numSeams )
18 {
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19 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
20 i f ( h a l t E x e c u t i o n )
21 re turn ;
22 }
23
24 Cuda Image32FDa taDesc r ip to r c o n s t& prevSeamsData = ( wraparound

&& t == 1) ? ∗prevSeams−>g e t D a t a D e s c P t r ( ) : ∗ seams [ t−1]−>
g e t D a t a D e s c P t r ( ) ;

25
26 c a l c u l a t e E n e r g y ( t ) ;
27
28 unsigned i n t& c u r C r o p L e f t = (∗ c r o p L e f t ) [ t −1];
29
30 cuda−>cropImage8U ( or igFrame , f rameData , c u r C r o p L e f t ) ;
31 cuda−>cropImage32F (∗ t o t a l S a l i e n c y −>g e t D a t a D e s c P t r ( ) ,

ene rgyData , c u r C r o p L e f t ) ;
32
33 cuda−>computeForwardEnergy ( f rameData , fwdEnergyData ) ;
34
35 i n t 3 2 c r o p O f f s e t = 0 ;
36 i f ( t > 1 )
37 c r o p O f f s e t = ( ( ∗ c r o p L e f t ) [ t −2] − c u r C r o p L e f t ) ;
38 e l s e i f ( wraparound )
39 c r o p O f f s e t = ( ( ∗ preSmoothCropLef t ) − c u r C r o p L e f t ) ;
40
41 f o r ( u i n t 3 2 seamID = 0 ; seamID < numSeams ; ++seamID )
42 {
43 bool copyEnergy = t rue ;
44
45 whi le ( seamsDone [ t −1] <= seamID )
46 {
47 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
48 i f ( h a l t E x e c u t i o n )
49 re turn ;
50 }
51
52 i f ( t > 1 | | wraparound )
53 copyEnergy = cuda−>addTempora lCoherenceCos t ( energyData ,

tmpEnergyData , prevSeamsData , seamID , c r o p O f f s e t ) ;
54
55 i f ( copyEnergy )
56 ∗ tmpEnergy = ∗ e ne rg y ;
57
58 cuda−>computeCostWidth ( tmpEnergyData , fwdEnergyData ,

o p t i m a l C o s t D a t a , p r e d e c e s s o r s D a t a ) ;
59 cuda−>markSeamWidth ( o p t i m a l C o s t D a t a , energyData ,

p r e d e c e s s o r s D a t a , seamsData , seamID ) ;
60 / / n e c e s s a r y t o p r e v e n t t h e n e x t t h r e a d from r e a d i n g t h e

seam i n f o t o o soon .
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61 c u d a S t r e a m S y n c h r o n i z e ( s t r e a m ) ;
62
63 seamsDone [ t ] = seamID +1;
64 }
65
66 cuda−>removeSeams ( f rameData , ∗ f i n a l F r a m e−>g e t D a t a D e s c P t r ( ) ,

seamsData ) ;
67 f i n a l F r a m e −>getImage8UData (∗writeFrameCPU , s t r e a m ) ;
68
69 whi le ( ! imgDone [ t −1])
70 b o o s t : : t h i s _ t h r e a d : : y i e l d ( ) ;
71
72 / / M a i n t a i n a p o i n t e r t o t h e seam da ta o f t h e f i n a l f rame i n

t h i s r e t a r g e t i n g window .
73 i f ( t == l a s t F r a m e O f V i d e o )
74 prevSeams = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle >( seams [ t ] ) ;
75
76 seams [ t −1] = b o o s t : : s h a r e d _ p t r <CudaImage32FHandle > ( ) ;
77
78 / / Pass t h e f i n i s h e d image t o t h e w r i t e r .
79 w r i t e r −>put Image (∗writeFrameCPU ) ;
80 }
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Chapter 5

Evaluation

In this chapter, we evaluate the performance and usage of our video retargeting
plugin. Section 5.1 presents the goals of our evaluation. In Section 5.2, we discuss
the evaluation techniques we employ to evaluate the technical aspects. The metrics
we use for the evaluation are described in Section 5.3. Parameters and factors that
influence or affect the operation and results are presented in Section 5.4. Our
evaluation setups are presented in Section 5.5 and Section 5.6 presents the results
of the experiments. Finally, in Section 5.7 we discuss the results presented in
Section 5.6.

5.1 Goals
The primary goals for our evaluation is to demonstrate that our plugin can be used
for real-time, online video retargeting of video content provided by an adaptive
streaming technique. We evaluate the performance of our video retargeting plugin
in relation to the requirements we presented in Section 1.3.

• Goal 1: To determine if our plugin can be used for real-time retargeting of
video content, we analyze the frame rate produced by the element for var-
ious input streams. As the frame rate of a video determines the playback
rate, the output rate of our element is required to match or exceed the frame
rate of the video for seamless concurrent playback. The minimal require-
ment is to support real-time retargeting of a video presented at 25 frames per
second for a resolution of at least 640x360 pixels with a retargeting severity
of 25%. Additionally, we investigate the impact of the step we introduced
to the algorithm in Section 3.3.9, comparing the total time spent performing
the step with the total running time of the algorithm.

• Goal 2: Ramesh et. al. show that a startup latency exceeding 2 seconds
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when streaming results in increased viewer abandonment [10]. We inves-
tigate whether a startup latency less than 2 seconds is feasible for multiple
resolutions and retargeting factors. As the delay introduced by our element
is added to the overall startup latency, it should ideally be lower. However,
as our element is intended for deliberate use, we claim that an added latency
of this magnitude is tenable. The minimal requirement is as such to sat-
isfy this latency requirement for at least one evaluation factor configuration
which satisfies the previous goal. We use the results of this investigation
and the previous to determine whether the implemented solution is useful
for multiple configurations.

• Goal 3: We evaluate the CPU and memory load of the GStreamer plugin
to determine the consumption of available machine resources. The CPU
load should be considerable due to the threading aspect of our element, but
should not on average consume more resources than the equivalent of 6
cores operating at full capacity. The memory load should be consistent for
a specific configuration of the evaluation factors, and we examine whether
this is the case to identify possible memory leaks.

• Goal 4: We investigate whether the plugin is compatible and efficient with
adaptive bitrate streaming systems. As these streaming techniques are widely
utilized, our plugin must be able to receive and retarget video streams from
applications using them for both versatility and general compatibility. We
evaluate this by retargeting separate streams utilizing these techniques, ex-
amining whether our element properly handles dynamic capability changes.

5.2 Evaluation Approach
When performing an evaluation of the solution to a problem, there are three dif-
ferent approaches that need to be considered. These approaches are modeling,
simulation and measurement [40].

Modeling is a theoretical approach which presents a mathematical model and
calculates the performance for a specific solution. This approach is viable for
simple solutions, but as the complexity of the solution increases, so does the com-
plexity of the model.

Simulation is the approach of testing a solution within a controlled, simulated
environment. When performing simulations, factors within the environment that
have an impact on the simulation are controlled and accounted for. If executed
correctly, repeated simulations with the same parameters will always yield the
same results. Simulation is viable if a solution relies on a small number of factors
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and is simple to implement in a simulation environment. Conversely, accurate
simulations are difficult to achieve if they depend on many different factors.

Should simulation be too difficult due to an excess of uncontrollable factors
and dependencies, a final option is to perform measurements. Measurements are
performed on an implementation of the solution in a real environment. As a result
of this environment, measurement results can exhibit a great deal of variability
due to the presence of uncontrollable factors. Unlike simulations, reproducing the
same results can be difficult. While the impact of these factors can be reduced to
a minimum, they will inevitably affect the measurements made.

Each of these approaches have their own respective benefits and detriments
and can be chosen based on an array of factors, such as the metrics being analyzed
or the complexity of the evaluation. Modeling or simulating the CPU load, for
example, is problematic due to many uncontrollable factors. Similarly, memory
load shares these difficulties as factors such as excessive buffering can lead to
inflated memory usage. As such, we utilize the measurement approach when
evaluating both CPU usage and memory load.

Since DASH and HLS streaming is inherently complex and prone to frequent
changes, it is difficult to simulate due to the sheer variety of factors involved.
Accounting for all these factors is problematic, making it difficult to ascertain
the generalizability of any results obtained from simulations. For the same rea-
sons, utilizing the modeling approach is likely to result in an exceedingly complex
model of dubious accuracy.

Due to these difficulties, we also utilize the measurement approach when eval-
uating the retargeting rate and latency. However, to ensure comparable evalua-
tions, we require the ability to control all the evaluation factors involved in this
process. This is problematic, as support for DASH and HLS in the GStreamer
framework is still in its relative infancy when it comes to managing the incoming
stream. Plugins for parsing DASH/HLS streams such as dashdemux and hlsde-

mux do not offer functionality for either requesting an input resolution or limiting
the available bandwidth to trigger this resolution change. As a result, the res-
olution of an incoming DASH/HLS stream can not be controlled through these
elements.

In an attempt to circumvent this limitation, we tried to utilize a separate tool,
wondershaper, to limit the bandwidth on our network interface of choice. Since
stream resolution is associated with varying degrees of available bandwidth, where
more bandwidth generally correlates to a better transmitted video resolution, the
intent was to trigger resolution adaptation by throttling or increasing the available
bandwidth. This assumption is correct, but provoking specific resolutions in this
manner proved to be unreliable at best, rendering this approach inadequate.

Consequently, we make use of two additional elements in the GStreamer pipeline
of the experiments. These elements are used to control the incoming video resolu-
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tion without interfering with the DASH/HLS stream itself, allowing us to perform
measurements without resorting to limited simulations or modeling. These ele-
ments as well as how the experiments are performed are detailed in Section 5.5.

5.3 Evaluation Metrics
We evaluate the GstSeamCrop plugin against an assortment of separate perfor-
mance metrics. These metrics are CPU-load, memory load, retargeting rate and
latency. Each metric and its accompanying analysis approach is described in the
following sections.

5.3.1 CPU Load
CPU load is measured by utilizing the top command in UNIX. This command
measures CPU load in percentage of the available CPU time. By using top, we
measure both the seamcrop element as well as the presentation of the video. It is
important to note that top measures the CPU load of an application by reporting
the percentage it uses each core, where each core can be utilized up to 100%. For
multi-threaded applications, the reported number is as such the total percentage
sum of the cores used, which on a CPU with multiple cores can exceed 100%. In
the case of a quad-core CPU, a multithreaded application can yield up to 400%
CPU usage.

When measuring the CPU load using top, we need to ensure that we obtain a
correct average. To do this, we start the top tool at the same time as we initialize
the streaming GStreamer pipeline we wish to measure. As it is not possible to
separate the impact our plugin in the pipeline from the pipeline itself in the same
measurement, the CPU load is measured as the load of the application running the
pipeline in its entirety. To approximate the impact of our plugin, we compare the
measured CPU load with the CPU load of an identical pipeline without the pres-
ence of our plugin. The GStreamer pipeline is run for a set duration, after which
top is stopped. The beginning and end of the measurement includes the CPU load
for setting up and tearing down the GStreamer pipeline. As these measurements
do not reflect the actual average CPU load of the application, we omit them by ig-
noring the 10 first and last seconds of the measurement time. This prevents these
outlying measurements from impacting the calculation of the average CPU load.

5.3.2 Memory Load
Similar to CPU load, memory load is measured by utilizing the top tool, as it also
reports the memory load percentage of an application. This measurement reports
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the percentagewise share of physical memory used by a process [41]. The mea-
surement is initialized and performed by the same measuring process described in
the previous section.

5.3.3 Retargeting Rate
There are multiple ways we can measure the retargeting rate. One possibility is to
isolate and measure the operation of the retargeting module alone. This omits the
impact of both the plugin component as well as the algorithm wrapper, produc-
ing the tightest measurement of the retargeting rate exhibited by the retargeting
module.

The other option is to measure the buffer transmission rate on the source pad
of the element. As we described in Section 3.3.9, the output of the element is
bounded by the rate at which the retargeting module can produce it. Since each
buffer contains one retargeted frame, counting the amount of buffers sent per sec-
ond is analogous to the retargeting rate of the element in its entirety.

We choose to utilize the first option, as it is the most viable measurement of the
retargeting rate of our element. While the second option gives a realistic reflection
of the retargeting rate, it can be deceptive as it is susceptible to extraneous factors
impacting the input rate. Additionally, the GStreamer framework synchronizes
the transmission of buffers against the pipeline clock and the rate of the video
itself, which can restrict the element to output a fixed frame rate. This makes it
a less viable approach, as factors outside of our control can exhibit an artificial
impact on the reported rate.

There is an argument to be made for including the operation of the plugin
component as well as the wrapper when examining this rate. However, we claim
that their impact is so minute as to be insignificant for the overall retargeting rate
of the element as they only directly affect the retargeting rate during the first frame
window of a session.

When measuring the retargeting rate, we utilize 5 separate measurement timers:
one for each of the separate operations and one for the algorithm as a whole. These
operations are the first pass, transitional smoothing, cropping window computa-
tion and the second pass. Each of the timers encapsulate the operations, starting
when the task begins, pausing when it is finished and ending when the final frame
window is processed. This way, we can observe how much of the time spent
retargeting is attributed to each of the different tasks in addition to the overall
processing time.

Since the first frame window is required to buffer incoming frames during the
first pass, the operation during this frame window is slower than all subsequent
frame windows. Including the measurements from this frame window confounds
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Figure 5.1: Measuring internal element latency.

the retargeting rate, and is as such omitted from the final calculation. The retarget-
ing rate is therefore computed as RetargetingRate = Frames−FrameWindowSize

RetargetingT ime
.

5.3.4 Latency
In a GStreamer pipeline, latency is defined as the time elapsed between buffer
transmission from the source element and buffer reception in the sink element.
We differentiate between two types of latency: internal and external. External
latency stems from extraneous factors such as network bandwidth and internal
latency originates within each element by virtue of processing the input stream.
To investigate the delay our element introduces to the pipeline, we measure the
internal latency of our element.

The internal latency is effectively the cumulative processing time required to
adapt an incoming frame to an altered output frame. We define this latency as the
time difference between reception and transmission of each individual frame. This
approach is beneficial as it mitigates the effects that the external latency exhibits
on the plugin by computing the internal latency on a per-buffer basis as opposed
to a total running time. To do this, we utilize the pipeline clock, obtaining time
stamps through the gst_clock_get_time function at the points shown in Figure 5.1.

The most vital aspect of the internal latency to measure is the initial latency
induced by the element. This latency is the cumulative time from reception of
the first frame of the first window to the transmission of the first frame in said
window. We differentiate between initial latency and start-up latency, as the for-
mer is the latency induced by our element while the latter is a measure of the
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total time between the initiation request and beginning of the presentation. The
internal latency is important because this is the only time during plugin operation
where output frames are not produced as well as the only time that the operation
of the plugin component/wrapper directly impedes the retargeting process. As re-
targeting begins immediately upon submission of the first frame, the retargeting
module must wait for the following frames to arrive until it can proceed. For all
subsequent frame windows, buffering is performed concurrently with frame pro-
duction. Due to this, we measure the latency incurred for the first frame window
to examine the latency our element adds to the pipeline. As the internal latency
for all subsequent frame windows never exceeds the initial latency due to contin-
uous frame production, the initial latency is the effective latency exhibited by the
element.

Another important latency aspect of our element is the reinitialization time
of the retargeting module. As each resolution change occurring in the pipeline
results in a reinitialization of the retargeting environment, this operation invariably
results in additional latency. Such resolution changes can be quite frequent when
streaming under variable bandwidth conditions, and as each change is associated
with this added time, it is pertinent to investigate.

These two aspects of the element latency are measured in the following man-
ner:

Initial latency is measured as t40− t10 for the first frame window. The measure-
ments t2 and t3 are used to investigate the latency distribution during this
window, where t2n − t1n and t4n − t3n account for the time spent by the
plugin component/wrapper for each frame.

Reinitialization latency is measured as t1n − t4n−1 where n is the first frame of
the first window after reinitialization and n − 1 the last frame of the last
window prior to reinitialization.

5.4 Evaluation Factors
During the evaluation of GstSeamCrop we modify a set of factors to investigate
the effect changing the factor has on the results. The factors we employ are frame
window size, retargeting factor and resolution, as detailed in Table 5.1. Each of
these factors are described over the following sections.
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Retargeting factor 15% 25% 50%
Frame window size 50 100 200
Resolution 640x360 854x480 1280x720

Table 5.1: Factor variations during the evaluation.

5.4.1 Frame Window Size
As presented in Section 3.3.9, frame window size is the amount of frames the
plugin stores and processes concurrently. We vary between a small, medium and
large frame window size to observe the impact this factor has on the memory load,
latency and retargeting rate of the element. This size is not principally restricted
by anything other than available memory and initial latency, but to avoid inten-
tionally exceeding the startup latency threshold presented in Section 5.1, we do
not utilize a window size larger than 200 frames.

5.4.2 Retargeting Factor
Similar to the frame window size factor, we use three different configurations for
the retargeting factor, ranging from slight to severe. By varying this parameter,
we examine the retargeting rates that our element is capable of for various input
resolution configurations to determine if real-time retargeting is possible for that
particular configuration. Two of these factors are taken from Rubenstein et al.
[42], where factors of 25% and 50% are regarded as considerable resizing. The
configurations we utilize correspond to situations where there is a slight, medium
or significant discrepancy between the incoming aspect ratio and the ratio desired
for the presentation. We examine the effect this factor has on latency and retarget-
ing rate.

5.4.3 Resolution
We utilize multiple instances of the same input stream with different resolutions.
We vary this parameter to examine its impact on latency, memory load and retar-
geting rate. Since we utilize a variation of the Parallelized SeamCrop algorithm,
we do not explicitly investigate resolutions exceeding 1280x720, as these are un-
likely to be retargeted in real-time [2]. The resolutions used for this evaluation
factor are chosen based on their ubiquity within VoD contexts; all have an in-
herent aspect ratio of 16:9 and are widely utilized. Testing them should provide
enough information about the impact of resolution on the retargeting rate.
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Operating
system

Ubuntu 15.10 64 bit

CPU Intel Core i7-2600 CPU @ 3.40GHz x 8 Cores
GPU NVIDIA GeForce GTX 750 Ti, 2048 MB memory, 640 CUDA

cores
Memory 8 GB

Table 5.2: Technical specifications of the testing node.

5.5 Evaluation Setups
We utilize four evaluation setups to analyze the performance of our plugin in rela-
tion to the evaluation factors and goals. These setups are DASH streaming, Initial
latency, Reinitialization latency and HLS streaming, each measuring different as-
pects of the evaluation metrics. The experiments in the setups described in this
section are performed on a node with the hardware specifications listed in Table
5.2. For all experiments, we utilize 4 worker threads in each pass of the algo-
rithm, as this offered the most consistent performance during preliminary testing.
Additionally, since we do not vary the extend window factor, we utilize a window
extension of 20% for all experiments as the same value was used in [3].

Three of the setups detailed in this section utilize a DASH stream providing
a video with a resolution of 1280x720. We utilize a DASH stream as opposed
to a HLS stream for these setups, as preliminary testing with the dashdemux

and hlsdemux elements revealed that the latter was prone to more errors causing
the pipeline to crash, regardless of our elements presence. To evaluate that our
element is compatible with HLS, the last setup performs experiments on one HLS
test sequence. Each setup and how the evaluation is performed is detailed in the
following sections.

5.5.1 DASH Streaming
In this setup, we utilize our element in a pipeline during a real video streaming
scenario. Figure 5.2 presents the flow of the experiments we perform. The exper-
iments in this setup are used to measure the following metrics:

• CPU load,

• memory load,

• retargeting rate.
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Figure 5.2: Visual representation of each experiment performed in setup 5.5.1.

Each video resolution is streamed for a total of 90 seconds, at which time a
resolution change is initiated. This results in a stream which dynamically alters
the resolution during runtime without shutting down the pipeline. We choose to
stream each resolution for 90 seconds to obtain long term averages for each of the
evaluation metrics.

For each of the experiments, we vary the resolution, retargeting and frame
window size factors between the values presented in Table 5.1. Each experiment
corresponds to one permutation of a retargeting factor and a frame window size
performed on all resolutions, and every configuration is measured. The retargeting
rate measurements are performed independently for each resolution to obtain the
performance metrics for each individual combination of the evaluation factors.

The CPU load and memory load are measured over the course of each experi-
ment with a one-second sampling rate. As the top tool is started at the same time
as the GStreamer pipeline, the individual load reports can be directly attributed
to each configuration. To obtain the CPU load as well as memory load averages,
we omit the first and last 10 seconds of each configuration to eliminate the effects
of reinitialization resulting from the resolution changes. Omitting 10 seconds is
sufficient to avoid confounding the averages while still providing ample measure-
ments for a representative average.

As explained in Section 5.2, we are not able to directly influence the resolu-
tions we receive from the DASH stream. We work around this issue by forcing
specific capabilities in the pipeline prior to our element. To do this, we employ two
extra elements in the pipeline: videoscale and caps�lter. The resulting pipeline is
presented in Listing 5.1.

Listing 5.1: The core pipeline used for the DASH streaming experiments.
1 g s t−l aunch −1.0 u r i d e c o d e b i n ! v i d e o s c a l e ! c a p s f i l t e r ! queue !
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Figure 5.3: Scaling incoming frames prior to the seamcrop element.

seamcrop ! queue ! xv images ink

At each predetermined resolution change time, we alter the caps property of
the caps�lter element. This forces a new capability negotiation through theCAPS
event, where the result is that the videoscale element scales the incoming frames
to the resolution specified in the property we set. These events are identical to the
CAPS events sent by the dashdemux element when the resolution of the source
stream changes. It is important to note that this event does not alter the resolution
of the actual stream received from the remote location, but changes each indi-
vidual frame locally to adhere to the capabilities we require for our experiments.
Figure 5.3 illustrates a snapshot of the pipeline with the videoscale and caps�lter
elements.

Performing this resolution change through the CAPS event does not interfere
with the pipeline events originating from the dashdemux element present in the
uridecodebin. All events are forwarded downstream to our element, including
upstream CAPS events that are rendered ineffectual by the caps�lter element. By
doing it in this manner, we can ensure that a specific set of resolutions are passed
to our element at predetermined points of operation, facilitating the comparability
of the results while simultaneously demonstrating compatibility with the DASH
technique within the GStreamer framework.

5.5.2 Reinitialization Latency
In this setup, we perform frequent input resolution changes to measure the reini-
tialization latency exhibited by the element. As each resolution change prompts
a reinitialization of the retargeting environment, we measure this latency to deter-
mine the impact it delay it incurs on resolution changes. This latency is measured
as the time elapsed between the transmission of the last frame of the previous
resolution to the reception of the first frame for the new resolution.
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Figure 5.4: Resolution change flow of the experiments performed in 5.5.2.

The experiments are performed in the same manner as the in previous setup
with the same evaluation factor variations. Figure 5.4 visualizes the sequence of
these alterations. Each resolution segment is streamed for 30 seconds, where the
order of the resolution changes varies over the course of the stream. The stream
is run for a total of 270 seconds to alter between each resolution 3 times. Altering
the resolution frequently also serves to examine the operation of our plugin for
recurring dynamic pipeline changes.

5.5.3 Initial Latency
In this setup, we perform an initialization of each configuration 10 times to obtain
the average initial latency exhibited by the individual evaluation factor configu-
rations. This is performed to see what effect the evaluation factors have on the
initialization time. Unlike the previous setups, each experiment initializes a new
stream for each resolution. The measurements are presented in Section 5.3.4 .

In addition to this measurement, we also investigate the internal distribution
of this latency to see how it can be attributed to each of the components involved.
This is done to identify the main contributing factors to this latency. The initial
latency stems from the cumulative time required to perform the following opera-
tions:

• receive and add frames to the retargeting module,

• perform the first pass on the frame window,

• compute and smooth cropping window,
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• seam carve and send the first frame.

To determine the impact of the plugin component, wrapper and retargeting
module, we measure the total time spent for each one in these experiments. For
receiving and adding a frame, we utilize the time stamp measurements t1 and t2
as presented in Figure 5.1, adding together the individual time stamp differences.
The first measurement of t4− t3 is also included. This accounts for the time spent
by the plugin component and the wrapper. For the remaining operations in the re-
targeting module, we measure the internal time from when the worker threads are
started until the first frame has left the retargeting module. These measurements
are averaged for all experiments performed for each configuration. Comparing
these averages with the latency measurement yields the average latency distribu-
tion.

To determine how much of the processing time exhibited by the retargeting
module can be attributed to buffering and frame allocation, we compare this initial
retargeting average with the corresponding average without buffering for the same
factor configurations, obtained from the experiments detailed in Section 5.5.1.

5.5.4 HLS Streaming
In this setup we perform real streaming scenarios similar to those described in
Section 5.5.1, utilizing the HLS technique. The purpose of these experiments is
to verify that our element is compatible with the HLS streaming technique for
the same configurations we use to evaluate the DASH streaming scenario. As
such, the pipeline employed for these experiments is identical to the one presented
in the previous sections, barring the substitution of the dashdemux element for
hlsdemux.

Each experimental configuration is run for the same duration as their DASH
equivalent. We perform measurements of latency and retargeting rate in order to
compare performance with the DASH streaming experiments. We do not measure
CPU and memory load in these experiments as the choice of streaming technique
has no bearing on these measurements.

The resolution of the frames provided by the HLS stream is 1024x448 as we
were unable to locate a HLS stream providing a resolution equal to 1280x720 that
could be utilized for our experiments. However, as we scale the incoming frames
to match the resolutions we require for the evaluation of our element, the results
are comparable and should not be significantly dissimilar.
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Configuration

Factor 1 2 3 4 5 6 7 8 9

Frame window size 50 100 200 50 100 200 50 100 200
Retargeting factor 0.85 0.85 0.85 0.75 0.75 0.75 0.50 0.50 0.50

Table 5.3: Evaluation configurations used for the retargeting and frame window
size factors.

5.6 Evaluation Results
This section presents the results of the experiments described in Section 5.5, per-
formed on the testing node listed in Table 5.2. To perform the internal measure-
ments, we utilize modified versions of gstseamcrop.c, seamcropwrapper.cpp and
seamcropcuda.cpp, initializing the GstSeamCrop element with a new property,
measurement. We have also implemented a configurable GStreamer application,
evaluationseamcrop.c, which performs the resolution changes. These files can
viewed in the Git repository referenced in Appendix A.

To simplify the presentation of the results, each configuration of frame window
size and retargeting factor is attributed a number. The configurations and their
corresponding number assignment can be viewed in Table 5.3. The following
sections examine the results for each evaluation metric in turn.

5.6.1 Retargeting Rate
In this section, we investigate how varying the resolution, retargeting factor and
frame window size affects the retargeting rate exhibited by the element.

DASH Experiments

Table 5.4 presents the results obtained from the experiments described in Section
5.5.1.

When examining the rates in the Initial row with the Overall row, performance
during the first frame window is consistently lower than for subsequent frame
windows in all configurations. This confirms the prediction we made in Section
3.3.12 that the retargeting rate for the first window is slower than the rest as the
first pass needs to wait for new frames to arrive. This impacts the retargeting rate
as the processing rate of the first pass is higher than the input rate.

We can see that both retargeting factor and frame window size impact the out-
put rate of the element, where the retargeting severity has a directly adverse effect
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Configuration

Resolution 1 2 3 4 5 6 7 8 9

640x360
- Initial 47.31 49.94 48.33 33.57 31.72 27.64 18.84 18.88 18.67
- Overall 52.60 51.15 53.29 34.95 34.51 35.32 19.48 20.60 21.68
854x480
- Initial 24.85 25.31 25.60 17.17 16.45 16.41 9.56 9.59 9.61
- Overall 29.74 29.37 31.17 19.79 19.85 21.02 10.69 11.71 13.01
1280x720
- Initial 10.99 10.83 11.19 7.49 7.45 7.26 4.01 4.32 4.05
- Overall 13.31 13.92 15.26 8.87 9.15 10.83 5.07 5.81 7.60

Table 5.4: Average frames per second (FPS) generated by the element for each
resolution and configuration in the DASH experiments. The Initial row shows the
average rate for the first frame window while Overall denotes the average for all
subsequent frame windows.

on the frame output production. This stems from the fact that a higher retarget-
ing factor requires more processing due to an increase in the number of seams
to remove. This effect is exacerbated further by increasing the frame resolution,
where configurations with both the highest resolution and retargeting severity, i.e.
1280x720 resolution and 50% pixel removal, yield the poorest performance.

Contrary to the retargeting factor, an increase in the frame window size ap-
pears to have a beneficial impact on the retargeting rate. This is particularly evi-
dent when comparing the configurations with the highest frame window size, i.e.,
3, 6 and 9, with their smallest counterparts, 1, 4 and 7. Every configuration with
a frame window size of 200 unequivocally outperforms all configurations with a
size of 50, regardless of retargeting factor or frame resolution.

Evidently, it appears that as the size of the computations increases, a higher
frame window size results in a higher retargeting rate. This is explained by better
overall utilization of the GPU and the parallelization property of the algorithm.
When the frame window size is large, each pass of the algorithm can run for
a longer time and thus process more frames in parallel, yielding a higher perfor-
mance benefit. Additionally, longer passes equate to less overhead associated with
performing the algorithm multiple times in succession, however miniscule.

This pattern is however not present for all configurations, as the performance
of configurations with a low resolution and retargeting factor do not linearly in-
crease alongside the frame window size. For resolutions of size 640x360, a frame
window size of 50 fares better than a frame window size of 100 when the retar-
geting severity is 15%, and to a lesser extent, 25%. This pattern can also be seen
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Configuration

Resolution 1 2 3 4 5 6 7 8 9

640x360 55.15 56.63 58.40 36.45 36.49 39.08 20.25 20.78 22.38
854x480 30.01 30.43 32.61 19.74 20.28 21.63 11.28 11.86 13.05
1280x720 13.17 13.79 15.01 8.82 9.34 10.55 5.08 5.64 6.71

Table 5.5: Average frames per second (FPS) generated by the element for each
resolution and configuration during the HLS experiments.

for a resolution of 854x480, but only for the case with a retargeting percentage
of 15%. The performance increase of utilizing the largest window size for these
configurations is also less pronounced.

There are a few potential explanations for this behavior. As low resolutions
with a lesser degree of width reduction exhibit less computational load, it is possi-
ble that the benefit of a higher frame window size does not manifest until the size
exceeds a threshold after which more available frames equates to a higher retar-
geting rate. This is unlikely, but offers a probable explanation for this behavior.

Alternatively it can stem from inherent variance either as a result of inefficient
computations for the frame window size of 100 or a volatile input rate. These
options are more plausible, where fluctuations in bandwidth impacting the input
rate offers the most credible explanation. Investigating the performance trade off
between frame window size and computational load is interesting but is left for
future work due to time constraints.

HLS Experiments

Table 5.5 shows the results obtained from the experiments detailed in Section
5.5.4.

The results of these experiments are similar to those obtained from their DASH
equivalents. There are minor differences in the reported retargeting rates, but the
majority of these fluctuations are not so significant as to indicate an appreciable
performance difference between the streaming techniques. However, the results
of the HLS experiments do exhibit a higher retargeting rate for most of the con-
figurations, particularly for configurations 1, 2 & 3 with a resolution of 640x360.
This pattern is most prevalent for smaller combinations of retargeting factor and
resolution, diminishing as both increase. Since the retargeting rates for these 3
configurations are over twice as fast as the presentation rate in both setups, it is
conceivable that the actual output rate exceeds the input rate for the DASH ex-
periments. As the DASH/HLS experiments utilize different input streams, the
reported disparities are likely to stem from the input rate differences.
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When comparing the rates for the individual configurations, it is interesting to
note that in these experiments, an increase in the frame window size uniformly
yields a higher retargeting rate. This result corroborates the explanation that the
input rate is the most contributing factor to the observed variance in the retarget-
ing rates.

The experiments indicate that an increase in both retargeting factor and reso-
lution results in a slower retargeting rate, while increasing the frame window size
produces a faster retargeting rate overall. Across all experiments, the impact of
the transitional smoothing step introduced to the algorithm never exceeds 0.02ms
for any configuration. This added computational impact is so minute as to be in-
significant to the overall retargeting rate of the algorithm. A frame window size
of 200 appears to yield a performance increase between ∼0.5–3.25 frames per
second for all configurations when compared with their resolution and retargeting
factor equivalents that utilize a size of 50. This increase is also present between
frame window sizes of 50 and 100, albeit less prominent.

Regardless of this performance increase, our element is not able to retarget at
25 frames per second for any configurations with a retargeting factor of 0.50 in
either of the streaming setups. For a retargeting factor of 0.75, only the smallest
resolution achieves acceptable output rates, but does so for all three frame window
sizes. With the lowest retargeting factor, 0.85, the two smallest resolutions yield
acceptable retargeting rates across all frame window sizes.

5.6.2 Latency
In this section, we examine how the evaluation factors impact the initial latency
and reinitialization latency induced by the element.

Initial Latency

Table 5.6 shows the average initial latency incurred by each configuration, mea-
sured as described in Section 5.5.3.

From this table it is evident that as the frame window size increases, so does
the initial latency. Between the configurations, the frame window size is doubled
from either 50 to 100 or 100 to 200. The latency increase is most pronounced
between configurations where the frame window size is increased by 100, i.e., 2-3,
5-6 and 8-9, which is to be expected as the amount of frames added is higher. This
is particularly evident between configurations 5-6 as well as 8-9 for the 1280x720
resolution. However, while an increase in frame window size leads to higher
overall initial latency, doubling the window size for a resolution does not linearly
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Configuration

Resolution 1 2 3 4 5 6 7 8 9

640x360 222.6 514.6 1016.9 236.7 436.1 898.7 243.5 453.4 978.7
854x480 416.2 836.4 1545.6 493.4 818.0 1642.4 448.3 804.4 1404.8
1280x720 860.5 1222.4 2654.9 865.3 1419.8 3515.8 901.7 1435.9 3274.8

Table 5.6: Average initial latency in milliseconds induced by the element for each
evaluation factor configuration. Each measurement is the elapsed time from re-
ception of the first frame to its transmission during the first frame window.

Configuration

Resolution 1 2 3 4 5 6 7 8 9

640x360
- DASH 180 292 633 172 366 1657 211 383 1027
- HLS 181 319 952 182 598 1123 885 361 987
854x480
- DASH 398 841 1345 470 966 1879 672 1177 2293
- HLS 288 736 1806 353 794 1585 507 1619 1099
1280x720
- DASH 913 1934 2891 939 1427 3541 1360 1396 4021
- HLS 891 1369 2731 621 1787 3550 743 1746 4333

Table 5.7: Initial latency in milliseconds induced by the element for each evalua-
tion factor configuration during the HLS and DASH experiments.
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Figure 5.5: Relative latency increase between configurations with different frame
window sizes, based on average initial latency.

lead to a doubling of the initial latency. The pattern roughly correlates to a ∼1.5–
2.5 times increase in the initial delay for each doubling of the frame window size,
as shown in Figure 5.5. It is likely that this variance is a side effect of a volatile
input rate.

An overall increase in latency also present when increasing the resolution
within each configuration. When comparing the results of the different resolu-
tions within a configuration, the relative latency difference is similar to that of
increasing the frame window size.

Interestingly, among configurations with identical retargeting factor, a lower
resolution with a large frame window size performs comparably to a higher res-
olution with a smaller window size in the previous configuration. The latency
difference among these cases can be as low as 5 ms or as high as ∼300 ms, but
mostly range between 30–150 ms. While not identical, the measurements suggest
that increasing either the resolution or the frame window size results in a similar
increase in the overall initial latency.

Table 5.7 presents the initial latencies reported by the DASH and HLS exper-
iments. When compared with the averages presented in Table 5.6, there is a great
deal of variability as they are single measurements as opposed to averages, but for
most configurations they are within expected ranges.
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Initial Latency Distribution

Figure 5.6 shows comparisons of the average processing time for the first pass,
cropping window computation/smoothing and seam carving one frame with the
average initial retargeting time exhibited by the retargeting module. From these
figures, it becomes apparent that the vast majority of the time elapsed is spent
waiting for new frames to arrive.

(a) 640x360 (b) 854x480

(c) 1280x720

Figure 5.6: Average retargeting latencies for producing the first frame of a win-
dow. Shows both the average latency overall (green) and initial latency (blue).

Apart from the considerable time differences between the separate resolutions,
the ratio between the average time spent and the initial time spent is quite con-
sistent for each retargeting factor configuration. This is because the retargeting
factor does not significantly impact this measurement. It is most relevant during
the seam carving portion of the algorithm, which is only performed once for each
individual measurement of the initial latency. In every measurement, the impact
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Frame window size

Resolution 50 100 200

640x360 70.83% 75.43% 77.83%
854x480 65.54% 72.15% 72.97%
1280x720 73.80% 74.85% 80.06%

Table 5.8: Average percent of the initial latency spent waiting for incoming
frames. This percentage is obtained by comparing the average retargeting time
in the absence of buffering and frame allocation with the retargeting time spent
during the initial latency.

of adding and sending a frame, i.e., the total effective time spent by the plugin
component, is consistently <1% of the total initial latency. This impact is negligi-
ble, further indicating that the input rate and the frame window size are the main
contributing factors to the initial latency exhibited by the element.

Table 5.8 shows the average percentage time spent buffering and allocating
frames during the initial latency for each resolution and frame window size. It is
interesting to note that for the 854x480 resolution, the buffering impact for each
frame window size configuration is lower than for the other resolutions. We do not
have a clear explanation for why this is occurs, as variance in the most prominent
external factor, bandwidth, would result in worse performance.

Reinitialization Latency

As the retargeting environment is required to be reinitialized on each resolution
change, it invariably introduces some latency in addition to the initial latency ex-
hibited by the element. Figure 5.7 presents the average reinitialization time for
each resolution. Each of these measurements are calculated as the time difference
between the transmission of the last frame from the previous resolution setup to
the reception of the first frame in the next. Since the frame window size did not ex-
ert any apparent effect on the reinitialization time, the average is calculated from
all measurements for each resolution.

The reinitialization latency is quite small for all resolutions, increasing in time
taken along with an increase in the resolution. This increase is explained by the
need to allocate more space for larger resolutions. While the apparent latency in-
duced by the reinitialization is not significant, it can have an appreciable impact
depending on the new configuration. Consider the first configuration for a res-
olution of 640x360 presented in Table 5.6. In this case, since the initial latency
is quite small, the reinitialization latency does add 1/10 additional time to the
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Figure 5.7: Average reinitialization time per resolution.

overall latency. However as the resolution or retargeting severity increases, the
proportional impact of reinitialization decreases significantly.

5.6.3 CPU load
Figure 5.8 shows the CPU load of the application running the pipeline for the
separate configurations.

Section 5.3.1 describes that a multithreaded application is able to utilize >100%
of the total CPU resources due to the presence of multiple cores, where each core
can be utilized 100%. This is evident in the results. We observe that the CPU
usage of the application is fairly consistent, ranging between 496% at the least
and 529% at the most. The application running the pipeline consistently utilizes
the total capacity of 5 cores or more, with the exception of configuration 8 for res-
olution 1280x720 which uses less than the sum resource total of 5 cores. Whether
each core is used to their total capacity is not known as top calculates this percent-
age from the individual utilization of each core. Distributions such as either 100%
utilization of 5 cores or 65% of 8 cores or similar are possible.

The CPU of our testing node contains 8 cores, which corresponds to a max-
imum usage of 800%. Considering this, the application consumed between 62-
66.125% of the total CPU resources when running the experiment pipelines. This
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Figure 5.8: Average percentage (%) of total CPU resources utilized by each reso-
lution for each configuration.

resource consumption is explained by the use of multiple threads in our element,
6 of which are explicitly dispatched.

Since four threads are dispatched to perform retargeting during each of the
two passes of the algorithm, it is very likely that these threads account for most of
the resources consumed. Each of these threads can utilize up to 100% of one core,
with a combined resource consumption of up to 400% in total. The retargeting
process performed by each thread is very CPU intensive, as each frame is copied
between main memory and the GPU once per pass. Due to this, it is reasonable
to assume that these threads frequently utilize one core each to its fullest during
their operation.

For the rest of the application, it is likely that the remaining CPU utilization
stems from the thread dispatching outgoing frames and the thread receiving in-
coming frames. Each received frame is copied from its GStreamer buffer into the
memory allocated in the retargeting module environment, which is an expensive
operation in terms of processing.

As for the impact of the evaluation factors, we can observe that as the degree
of retargeting increases, the overall CPU usage for each frame window size con-
figuration tends to decrease. This can be explained by less efficient parallelization
during the second pass of the algorithm when the retargeting severity is high, since
each thread spends more time waiting for seams to be computed on the GPU. Each
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thread yields while waiting for the required seam to be identified which results in
less overall use of the CPU.

From this, we would expect that the CPU utilization when increasing the frame
window size within the retargeting factor configurations would also gradually de-
crease. However, the results defy this expectation. The CPU load exhibited by
configurations with a frame window size of 100 is significantly lower than their
counterparts that utilize the same retargeting factor, regardless of video resolu-
tion. The load differences between frame window sizes of 50 and 200 also exert
a degree of variability, either increasing or decreasing, but both are consistently
higher than for a frame window size of 100.

We do not know the cause of this behavior. This may be a result of an external
factor influencing the element, but this is unlikely as the pattern appears to be
consistent across all of the experiments. Alternatively it is possible that it is a
result of inefficient threading in our implementation. This offers an explanation
for the apparent decrease in performance observed for configurations 2 & 5 with
a resolution of 640x360 in Table 5.4. However, as the pattern persists for the
higher resolutions and retargeting factors that do not exhibit this behavior as well,
it is difficult to identify the cause. Investigating the cause for this performance
discrepancy is left for future work.

To ascertain how much of the CPU load can be attributed to our element,
we performed three additional experiments of the CPU load on the pipeline pre-
sented in Listing 5.1, removing our element. Each experiment scaled the incom-
ing stream to the different resolutions as done in the rest of our experiments. The
resulting average is a CPU utilization of 19.15%, meaning that our element on av-
erage accounts for∼96% of the total CPU resources consumed by the application.

5.6.4 Memory Load
Figure 5.9 presents the average memory load exhibited by the application for each
configuration.

In this figure we can see that there is a clear relationship between the frame
window size, resolution and the induced memory load, where an increase in either
results in higher memory load. This is as expected, since both storing more frames
as well as frames of higher resolution requires more storage space. The amount
of resources required for each resolution escalates proportionally along with the
frame window size.

While varying the retargeting factor does not have a significant impact on
these measurements, it does appear to result in decreased average memory usage
when increased. This decrease is exaggerated further when the frame window
size is increased along with it. To illustrate, the difference in average memory
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Figure 5.9: Average percentage (%) of physical memory utilized by each resolu-
tion for each configuration.

load between configurations 9 & 3 for a resolution of 1280x720 is 1.9%. This
pattern is also present for the smaller resolutions, but to a lesser degree.

This is explained by the decreased size of the frames produced by the element.
In configuration 9 with a resolution of 1280x720, an individual raw YUV420P
frame is 1.3824 MB in size prior to retargeting. The size reduction of the retar-
geting is directly correlated with the retargeting factor. When retargeting with a
severity of 50%, the size of each retargeted frame is effectively halved, reduc-
ing this size to 0.6912 MB. Compared with the produced frame size of 1.17504
MB for configuration 3, which has a retargeting severity of 15%, the difference
is clearly visible. The memory required to store the incoming frames is identical,
but the memory required to store generated output frames is decreased by 35%,
explaining the apparent reduction in memory load.

This pattern is prevalent between all retargeting factor configurations regard-
less of resolution or frame window size, but is less pronounced for lower resolu-
tions with low frame window sizes. This behavior, coupled with the fact that less
output frames are concurrently present in configurations with a higher retargeting
factor due to a slower retargeting process, results in less overall memory usage.
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5.7 Discussion
In this section, we demonstrate that the results presented in Section 5.6 meet the
requirements of the evaluation goals presented in Section 5.1. We also discuss
the usefulness and limitations of our implementation. Each evaluation goal is
examined to demonstrate that we have fulfilled it.

Our first goal is to demonstrate that GstSeamCrop can be used to retarget
a video stream with a resolution of at least 640x360, a frame rate of 25 frames
per second and a retargeting factor of 0.75 in real-time. Section 5.6.1 shows that
with a retargeting factor of 0.75, our element is able to retarget incoming video
frames with a resolution of 640x360 at a rate of ∼35 frames per second. This
satisfies the minimum requirement of 25 frames per second for this configuration,
surpassing the requirement with 10 additional frames retargeted per second. As
the performance exceeds this requirement, it is possible to satisfy the presentation
rate of 25 frames per second for even greater resolutions or retargeting factors,
but it is restricted to retargeting severities below 25% should the resolution ex-
ceed 854x480. The impact of the additional smoothing step we introduce to the
algorithm is negligible, never exceeding a processing time beyond 0.02ms for any
configuration.

Our second goal is that the initial latency induced by our element is required
to be less than 2000ms. Section 5.6.2 shows that the average initial latency for
most of the configurations incur acceptable delays. Only configurations with a
frame window size of 200 and a resolution of 1280x720 exceed this threshold on
average, whose retargeting rates are not otherwise satisfactory. The evaluation
factor configurations which satisfy the previous goal are guaranteed to satisfy the
initial latency requirement as long as the frame window size does not exceed 200.
For a resolution of 640x360 with a frame window size of either 50, 100 or 200,
the average initial latencies are within acceptable margins, ranging between 236-
898ms. As these values are well below the threshold, higher frame window sizes
are also likely to yield acceptable latencies and possibly higher retargeting rates.

Our third goal is to investigate the CPU load of our element and verify that the
memory consumption is consistent across differing configurations. Section 5.6.3
shows that our element utilizes between ∼62-66% of the total resources available
on the 8-core CPU of the testing node, depending on the evaluation factor con-
figuration. On an 8-core CPU, 6 cores operating at full capacity corresponds to
75% of the total processor resources. The load induced by our element does not
surpass this threshold.

Section 5.6.4 shows that the memory load induced by our element is consis-
tent between the differing configurations. The experiments yielding these results
were run for a considerable duration, during which no unexplanatory increases in
memory consumption emerged.
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Configuration Results

Resolution Retargeting factor Frame window size Initial latency Output rate

640x360 0.56 300 1797ms 25.01 fps
854x480 0.79 280 1834ms 25.17 fps
1280x720 0.94 190 1975ms 25.16 fps

Table 5.9: Highest evaluation factor configurations that yield a retargeting rate of
at least 25 frames per second that do not exceed an initial latency of 2000ms.

Our last goal is to establish that our plugin is compatible with the DASH/HLS
streaming techniques. The experiments described in Sections 5.5.1–5.5.3 have
been performed using the DASH technique through use of the dashdemux ele-
ment. Section 5.5.4 performed streaming experiments utilizing the HLS stream-
ing technique through the hlsdemux element. Results of both experimental setups
yielded similar results. Our element properly adapted to pipeline events originat-
ing from either of the elements during these experiments and no issues or incom-
patibilities surfaced during the evaluation. We consider these results sufficient to
satisfy the goal.

5.7.1 Optimal Factor Configurations
In the previous paragraphs, we demonstrated that our plugin is usable for real-
time retargeting of video content provided by an adaptive streaming technique,
with respect to the requirements presented in Section 5.1. In this section, we
present the optimal factor configurations that can be achieved for the three separate
resolutions on our testing node and discuss the viability of our element for these
resolutions. Table 5.9 presents the highest retargeting severity we were able to
achieve for each of the resolutions that satisfy a presentation rate of 25 frames per
second and an initial latency below 2000ms.

In these additional experiments we attempt to identify an optimal trade off
between frame window size, retargeting factor and resolution that satisfies Goal 1
and Goal 2. As described in Section 5.6, a larger frame window size is generally
correlated with a higher retargeting rate at the cost of increased initial latency.
Since most configurations in our experiments yield an initial latency far below the
requirement, we increase the frame window size until the initial latency threshold
is reached and adjust the retargeting factor until the output rate hovers just above
25 frames per second.

From this table we can see that our element provides ample adaptation for
frames with a resolution of 640x360, able to reduce the width by a maximum of
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44%. This amount is quite considerable, and in the majority of cases a retargeting
factor in this range is adequate to provide a presentation in the desired aspect ratio.
However, the usefulness diminishes as the resolution increases. For a resolution of
854x480, the reduction is limited to a maximum of 21%. This is less universally
viable, but nonetheless useful for lesser adaptations. For the highest resolution,
only a 6% reduction in width is feasible to provide real-time retargeting. This
amount is so small as to be relatively imperceptible when compared with an unal-
tered presentation, making the element considerably less useful for resolutions of
this size.

The reason for this rapid decrease in viability for higher resolutions is a com-
bination of an increase in the amount of pixels to inspect per frame and the amount
of seams to remove. From lowest to highest resolution, each frame consists of ei-
ther 230400, 409920 or 921600 pixels. Between 640x360 and 854x480, there are
approximately 1.78 times more pixels to process per frame, and from 854x480 to
1280x720 there are approximately 2.25 times more. A frame with a resolution of
1280x720 has in total 4 times as many pixels as a frame of 640x360.

To illustrate further, a frame with a width of 1280 pixels needs to remove 320
seams with a retargeting factor of 0.75. Compared to a frame with a width of
640 pixels, which only has to remove 160 seams for the same retargeting factor,
it has to remove double the seams while also inspecting 4 times as many pixels.
As a result, it takes a considerable amount of time to find and remove seams from
frames with a high resolution for the same retargeting factor.

Consequently, the usefulness of our plugin depends on the degree of retarget-
ing required and the resolution of the video. If considerable adaptation is required,
the resolution must be small. In the opposite case, the resolution requirement sub-
sides, but the benefit of the retargeting also diminishes.

5.7.2 Limitations
As we have investigated in this chapter, our element is able to provide satisfactory
retargeting rates for a small variety of configurations, constrained by the reso-
lution of the incoming frames and the degree of retargeting. Providing ample
retargeting in real-time for resolutions higher than 854x480 is not feasible on the
hardware of our testing node. Additionally, each resolution change incurs both a
reinitialization latency as well as the initial latency for that particular evaluation
factor configuration. This added latency is detrimental to the viewing experience,
especially when streaming under variable bandwidth conditions. These are the
two primary limitations of our implementation.

An immediate solution to deal with both limitations is to enforce a specific res-
olution in the pipeline prior to our element that is guaranteed to yield a retargeting
rate that is greater than or equal to the presentation rate for the chosen retarget-
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ing factor. While the scaled frames will not necessarily match the resolution of
the incoming stream, it does ensure that our element is able to retarget efficiently.
This can be done in the same manner as in our experiments by including both a
videoscale and a caps�lter element in the pipeline.

The benefit of this solution is that changes in resolution as a result of band-
width fluctuations do not incur a reinitialization of the retargeting environment.
The drawback is that it requires the programmer to have prior knowledge of the
plugin and hardware limitations as well as rely on additional elements in the
pipeline.

A permanent solution would be to extend the the plugin to automatically
choose a suitable resolution that results in an acceptable output rate, which would
overcome both limitations. This is however left for future work.
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Chapter 6

Conclusion

In this chapter, we conclude our work and discuss the product of this master thesis.
Section 6.1 presents our contributions. In Section 6.2, we discuss improvements
that can be explored in future work.

6.1 Contributions
We have designed and implemented a video retargeting system that provides on-
line retargeting of video in real-time. The main aim of our work was to real-
ize advanced video retargeting for video on demand and live streaming content
within a widely available multimedia framework for use in a ubiquitous comput-
ing paradigm. We have analysed two state-of-the-art offline retargeting techniques
and picked the one best suited for our system based on the requirements presented
in Section 1.3. We have chosen the Parallelized SeamCrop algorithm as the re-
targeting technique for adapting video frames and wrapped its functionality in a
plugin for the GStreamer multimedia framework.

Our principal contribution is the GStreamer plugin implementation of the Par-
allelized SeamCrop algorithm which can be used to adapt an incoming video
stream to match the screen aspect ratio of a given device in real-time. The GStreamer
plugin design allows the element to be inserted in arbitrary video streaming pipelines
to provide customizable video resolution adaptation. By implementing the retar-
geting system as a part of the GStreamer framework, any video format that has
a decoding element available in the framework can be adapted while also mak-
ing the system available for a large community of users. As the design of our
plugin is modular, future retargeting algorithms can easily be implemented in the
GStreamer framework with our plugin code by replacing the modules concerned
with the specific retargeting algorithm.

We have presented an alteration of the Parallelized SeamCrop algorithm which
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allows it to be used for online retargeting. This alteration separates retargeting
of a video into smaller segments, smoothing the differences between them with a
virtual camera pan, allowing the video to be presented and retargeted concurrently
once the first segment has been processed. Additionally, the memory requirement
of the algorithm is also reduced, utilizing a fixed amount of memory as opposed
to linearly increasing along with the video length.

We have implemented this design and evaluated it in Chapter 5. In this eval-
uation, we have demonstrated that the plugin can be used for real-time video
adaptation with two modern streaming techniques, but is limited to resolutions
below 854x480 should extensive adaptation be required. This limitation however
depends on the underlying hardware, where hardware more powerful than our
testing node is likely to achieve better results. Since the evaluation has been per-
formed in a real streaming environment, the results are applicable to real world
scenarios.

6.2 Future Work
We separate potential future work into two categories. The first category relates
to the implementation of the retargeting plugin itself. The second category is
concerned with the Parallelized SeamCrop algorithm.

6.2.1 SeamCrop Plugin
Our plugin implementation is fairly basic, and there are multiple ways in which
the functionality could be extended or improved upon. In Section 5.7.2 we men-
tioned a few approaches that would be beneficial. As the plugin is restricted to
certain resolutions for real-time retargeting, extending the plugin to automatically
choose an appropriate resolution based on its limitations would solve several is-
sues. This would simplify the usability of the plugin by removing its dependence
on other GStreamer elements as well as guaranteeing real-time retargeting for any
video stream. Additionally, this would prevent reinitialization of the retargeting
environment as a result of resolution changes, eliminating the associated latency.

Plugin performance could be improved by reducing the amount of both mem-
ory copy operations and format conversions. Each frame that arrives is converted
from YUV420P to RGB, copied, retargeted, copied and subsequently converted
again. Identifying a solution which eliminates one or both of these necessities
would improve the performance of the plugin overall.

Other functionality that would improve usability would be to add properties
for either aspect ratio or output resolution to the element. Retargeting in the cur-
rent implementation is performed based on a retargeting factor specified at initial-
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ization. This factor determines the output resolution based on the input resolution,
performing a percentage reduction in width. Supplementing this option by allow-
ing direct assignment of either aspect ratio or output resolution would simplify the
use of the plugin.

6.2.2 Parallelized SeamCrop
Performing a qualitative comparison of output from the altered and the original
algorithm would be interesting to ascertain the impact of our alteration on the
produced video. As the alteration of the algorithm was a secondary concern in
this thesis, we do not explore the disparities between them. Investigating the qual-
itative difference introduced by separating the global optimization into bounded
windows would be beneficial to determine its effect on the algorithm’s efficiency
with regards to output quality.

The transitional smoothing we perform between the separate frame windows
can also be improved. Our approach performs a gradual transition which statically
pans the virtual camera between the frame windows. This movement can at times
seem unnatural, especially when the distance between the cropping window views
is considerable. Improving this transition by introducing a more dynamic camera
pan based on the pixel distance and frame window size would be beneficial to
make the perceived camera movement more natural.

Exploring other approaches to separating the video could potentially yield
worthwhile improvements. Segmenting the video based on scene detection rather
than a predetermined window size could omit the impact of segmenting the global
optimization and reduce camera movement. This could be achieved by analyzing
the energy maps of two adjacent frames computed during the first pass of the al-
gorithm. As compositionally differing scenes do not require temporal consistency
between seams or cropping windows when transitioning, retargeting each individ-
ual scene separately could feasibly result in higher quality output. Optimizing the
cropping window path for individual scene compositions would yield the optimal
path for each particular scene rather than a weighted compromise between sev-
eral. Maintaining an upper bound to scene length would counteract scenes that
would otherwise either introduce significant mid-stream latency or consume too
much memory.
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Appendix A

Source Code

The source code of the GstSeamCrop plugin can be downloaded from the Git
repository at http://github.com/HaakonRav/GstSeamCrop. This repository includes
the GstSeamCrop plugin, measurement applications, experiment results and the
original source code of the Parallelized SeamCrop algorithm. The source code is
released under the GNU General Public License 3.

The measurement applications are included to allow to facilitate effortless
replication of the experiments with the same metrics and factor configurations.
This permits comparing other results with the results presented in this thesis.

The repository includes a README file which gives instructions on compiling
and running the plugin as a part of a GStreamer pipeline
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