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Chapter 1

Introduction

1.1 Background

Norway has been suffering from numerous natural disasters throughout its history. To compensate
losses caused by natural disasters such as storm, flood, earthquake, avalanche or similar natural disasters,
the Norwegian National Fund for Natural Damage Assistance (Statens Naturskadefond) was first estab-
lished in 1961 by the Act on Natural Damage. However, the amounts of compensation had always been
considerably limited. Therefore, an amendment of the Act of 1961 and the Act on Insurance Contracts
was made on 8th June 1979. As a consequence, from 1st January 1980, the insurance against natural
disasters was connected to the fire insurance. Thereafter, changes in the Natural Disaster Law and the
Law of Insurance Agreements were made in 1980 [Eide, 2015]. The new Natural Disaster Insurance Law
(Lov om naturskadeforsikring) was passed in 1989. According to the law, all buildings and accessories
with insurance policies that cover fires are automatically insured against natural catastrophes. The ar-
rangement is managed by Norwegian Natural Perils Pool (Norsk Naturskadepool), which is a compulsory
coinsurance system with all Norwegian insurance companies as members. The Pool operates as a distri-
bution pool, i.e. the insurance companies still have all contact with their own policy holders, the Pool
only equalizes losses [NNP, 2016]. When natural disaster occurs, the member companies pay claims on
their policies that exceed the deductible. The remaining loss is ceded into the Pool. The total Pool
loss is then shared among the member companies according to their market share [de Seguros, 2008,
pp.121–122]. The Norwegian Natural Perils Pool not only covers losses from natural catastrophes, but
also creates a good platform for a systematic study with the different catastrophe types to prevent and
reduce risks in the near future.

1.2 Layout

In chapter 2, a general introduction of the theory and models used in the thesis will be given. Possible
distributions for the catastrophe frequency and the amounts of compensation will be introduced along
with some important properties of the distributions. For the model of the amounts of compensation,
both the parametric and the non-parametric models will be explained. Since extreme values might be
involved, an introduction of the extreme value theory will be given as well. Thereafter, the model for the
total loss will be given followed by an explanation of the bootstrap method for estimating the parameter
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uncertainties. The reserve will be introduced in the last section of this chapter along with an explanation
of the Monte Carlo simulation method. Possible sources of uncertainty will be discussed as well.

In chapter 3, the distributions for the model of the catastrophe frequency and the model of the
amounts of compensation presented in chapter 2 will be applied to the data. The modelling will be
divided into two parts. The first part is based on a common model by treating all catastrophes equally
as single incidents whereas the second part consists of several individual models based on the catastrophe
types. At the end of this chapter, a brief summary will be given discussing the best fitting distributions
and some confidence intervals of the distribution parameters will be given as well.

In chapter 4, the model for the total loss will be constructed by using the best fitting distributions
for the model of the catastrophe frequency and the amounts of compensation. Thereafter, estimates of
the reserve will be calculated from the loss model. The reserve estimate based on the common model
will be compared with the one based on a combination of the separate models.

In chapter 5, a conclusion will be given discussing which of the models should be chosen based on
the results from the previous chapters.

Some useful mathematical arguments and the R-scripts are given in the appendix at the end.
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Chapter 2

Theory and Models

In general insurance, the loss model usually consists of two components, the claim frequency and the
claim size. In this thesis, they refer to the catastrophe occurrences and the amounts of compensation.
The claim frequency is linked to the model for the claim number, i.e. the number of catastrophes. Denote
the number of catastrophes as N or N , where the calligraphic one is used at the portfolio level. The
amounts of compensation are denoted as Z. By combining the models of N and Z, we will obtain a
model for the total loss X . We assume that all Zi’s follow the same probability distribution. Moreover,
N and Zi’s are stochastically independent. In the given data, the catastrophe numbers and amounts of
compensation are aggregated values for each of J = 431 municipalities (see Section 3.1). The portfolio in
this setting therefore consists of the J municipalities.

2.1 Estimation of the Parameters

Before introducing the models, a quick explanation of how the parameters of the distributions are
estimated will be given as follows.

One of the most usual ways of parameter estimation is the maximum likelihood method. Let
X1, . . . ,Xn be some random variables. Based on some historical data x1, . . . , xn, the joint probability
mass function (pmf) or probability density function (pdf) is given by:

f(x1, . . . , xn∣θ1, . . . , θm), (2.1)

where θ1, . . . , θm are the unknown parameters that need to be estimated. The idea of the maximum
likelihood is to keep the observed values x1, . . . , xn fixed while varying the parameters so that they
maximize the joint pmf or pdf. Therefore equation (2.1) is now considered to be a function of θ1, . . . , θm,
and is called the likelihood function. In both theoretical studies and numerical computations the log-
likelihood function is often used:

L(θ1, . . . , θm) = log{f(x1, . . . , xn∣θ1, . . . , θm)} . (2.2)

If x1, . . . , xn are independent from each other, (2.2) can also be written as:

L(θ1, . . . , θm) =
n

∑
i=1

log{f(xi∣θ1, . . . , θm)} . (2.3)
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If there exits an analytical expression for the ML estimate, it can be found by taking the derivative of
(2.2) to zero:

∂L(θ1, . . . , θm)

∂θi
∣
θi=θ̂i,ML

= 0.

Otherwise, the log-likelihood function has to be maximized numerically using statistical softwares (one
of the examples is the optimize() function in R).

When the sample size is large, the ML estimator θ̂ML is a consistent estimator of θ, which means
that as the sample size increases, the estimates "converge" to the true values of the parameters being
estimated. The ML estimator is unbiased, i.e. E(θ̂ML) = θ, and has the smallest variance among unbiased
estimators under certain conditions, i.e. is asymptotically efficient (see [Lehmann, 1999]). Alternatively,
other methods of parameter estimation such as the method of moment could also be used. However, the
maximum likelihood method is usually preferable in general. The drawback of the method of moment is
that there has to be as many equations as the unknown parameters, and the solutions of the equations
are not necessarily unique and might be cumbersome to find. With the maximum likelihood method,
elementary differentiation can often be used to derive the estimates, and it also gives better estimates in
comparison to the method of moments [Bølviken, 2014, pp.238–240].

2.2 Catastrophe Frequency

The number of catastrophes will be modelled in two ways, either by a break-down into components
model, i.e. a model based on the catastrophe types, or a common model including all the catastrophe
incidents.

Denote the number of municipality as j = 1, . . . , J , the year as k = 1, . . . ,K and the catastrophe type
as i. When modelling by the catastrophe types, the number of catastrophe occurrences for the type i is
given by:

N
i
= N

i
1 + . . . +N

i
K , (2.4)

which is the aggregated occurrences in all J municipalities and during all K years. Each N i
k can be again

written as:
N
i
k = N

i
1k + . . . +N

i
Jk, (2.5)

which is the aggregated occurrences in all the municipalities in the year k.
When treating all the catastrophes equally as a single type, the total number of occurrences is given by:

N
Total

= N
Total
1 + . . . +NTotal

K , (2.6)

where the number of occurrences of each year NTotal
k can be written as:

N
Total
k = NTotal

1k + . . . +NTotal
Jk , (2.7)

which is the sum of the occurrences from all the J municipalities.
The number of occurrences can usually be well described either by a Poisson or a negative binomial

distribution. A more detailed explanation for these two distributions will be given below.
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2.2.1 Poisson Distribution

The Poisson distribution is widely-used in probability theory and statistics to model the number of
events occurring in a fixed time interval. The distribution is based on the following assumptions:

– Independence. The occurrences of catastrophes must be independent of each other.

– Homogeneity. The intensity of the catastrophes is assumed to be the same for all municipalities.

– The time period must be fixed. In our case, T = 1 year.

The probability mass function is given by:

Pr(N = n) =
λn

n!
e−λ

=
(µT )

n

n!
e−µT ,

(2.8)

with the parameter λ = µT . µ is the intensity which indicates the average occurrence of events in the
given time interval. T is known as the time of exposure which indicates the time of individual’s potential
for accidents or other losses. In our case, it refers to the time of each municipality’s potential for suffering
from the natural disasters.

An illustration of the Poisson density with different λ values is given in figure 2.1. When λ is small,
the density function tends to lie closer to 0 in the x-axis, meaning that 0 is more likely to get when
the intensity is low. In our case, it indicates a higher probability of no catastrophe occurrence per year.
As λ becomes larger, the center of the curve moves towards the right and hence more apart from 0,
meaning that it is more unlikely to get 0 when there is a high intensity. In our case, it indicates a higher
probability of suffering from the natural disasters per year. The shape of the density function changes
as λ varies, the curve is more spread-out as λ becomes larger.
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Figure 2.1: Some densities of the Poisson distribution as λ varies

The mean and the standard deviation are given by [Devore and Berk, 2007, p.145]:

E(N) = λ and sd(N) =
√
λ. (2.9)

We assume that the number of occurrences in each municipality j of the year k, Njk ∼ Poisson(λ)
with parameter λ = µT and T = 1 year. By the convolution property of the Poisson variables [Bølviken, 2014,
p.283]:

N = N1 +N2 + . . . +NJ ∼ Possion(λ1 + . . . + λJ),

where N1 ∼ Poisson(λ1), . . . ,NJ ∼ Poisson(λJ). Followed by the relation (2.5) and (2.7), the intensity µ
which describes how frequently the catastrophes occur, is assumed to be constant in all J municipalities
over all K years. Hence the number of occurrences of the year k is given by:

N
i
k ∼ Poisson(JµiT ) for catastrophe type i,

N
Total
k ∼ Poisson(JµTotalT ) for all catastrophes.

Hence, the total number of claims during K years is given by:

N
i
∼ Poisson(Aµi) for catastrophe type i,

N
Total

∼ Poisson(AµTotal) for all catastrophes, A = J ×K × T.
(2.10)

A is called the total risk exposure, which describes the municipalities’ total potential for suffering from
catastrophes. µ can be estimated for all Njk’s simultaneously, and it can be determined from historical
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data. Assume a total number of occurrences n = n1 + . . .+nM of catastrophes from historical data, with
a total risk exposure A, the Poisson probability is given by:

f(n∣µ) =
(Aµ)

n

n!
e−Aµ. (2.11)

The log-likelihood function is given by:

L(µ) = nlog(Aµ) − log(n!) −Aµ.

Differentiating with respect to µ, we get the ML estimate of µ:

µ̂ =
n

A
=
n1 + . . . + nM

A
. (2.12)

The mean and the standard deviation of µ̂ are given by [Bølviken, 2014, p.284]:

E(µ̂) = µ and sd(µ̂) =
√
µ

A
. (2.13)

2.2.2 Negative Binomial Distribution

However, it is more natural to think that certain areas have a higher risk of suffering from catastro-
phes than other places in Norway. Now consider a conditional Poisson distribution such that:

[Njk ∣λj] ∼ Poisson(λj), where λj = µjT . (2.14)

The frequency depends on the municipality, but is still constant from year to year. A common assumption
for µj is that:

µj = ξGj , Gj ∼ Gamma(α), (2.15)

where Gamma(α) is a standard Gamma distribution with mean 1 and shape α. The mean and the
standard deviation of µj are given by [Bølviken, 2014, p.287]:

E(µj) = ξ and sd(µj) =
ξ

√
α
. (2.16)

The conditional probability mass function is given by:

Pr(N = n∣µ) =
(µT )n

n!
e−µT . (2.17)

By the result from [Bølviken, 2014, p.286] and conditional probability [Ross, 2010, p.122]:

Pr(N = n) = ∫
∞

0
Pr(N = n∣µ)g(µ)dµ,

where g(µ) = (α/ξ)α
Γ(α) µ

α−1e−µα/ξ which is the density function of Gamma. This leads to:

Pr(N = n) = ∫
∞

0

(µT )n

n!
e−µT ⋅

(α/ξ)α

Γ(α)
µα−1e−µα/ξdµ

=
Tn(α/ξ)α

n!Γ(α)
∫

∞

0
µn+α−1e−µ(T+α/ξ)dµ.

Substituting z = µ(T + α/ξ) into the integral leads to:

Pr(N = n) =
Tn(α/ξ)α

n!Γ(α)(T + α/ξ)n+α
∫

∞

0
zn+α−1e−zdz,
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where the integral is Γ(n + α). Hence:

Pr(N = n) =
Γ(n + α)

n!Γ(α)
⋅
Tn(α/ξ)α

(T + α/ξ)n+α

=
Γ(n + α)

n!Γ(α)
pα(1 − p)

n
,

where p = α
α+ξT . With Γ(n + 1) = n!, the probability mass function can be now written as:

Pr(N = n) =
Γ(n + α)

Γ(n + 1)Γ(α)
pα(1 − p)

n
, (2.18)

for n = 0,1, . . . [Bølviken, 2014, p.300]. Thus, we obtain a negative binomial distribution:

Njk ∼ nbin(ξ,α), (2.19)

with parameters ξ and α. Both ξ and α are independent of j, therefore we can estimate (ξ,α) for all
Njk’s simultaneously. The parameter α comes from the Gamma distribution, and it affects the shape
of the distribution, see figure 2.2 below: the smaller the α is, the heavier tail the distribution has. In
negative binomial distribution, α is also considered to be number of successes. Therefore as α becomes
larger, the curve tends to move apart from 0, which indicates a larger number of catastrophe occurrences.

Figure 2.2: Some densities of the negative binomial distribution as α varies

The mean and the standard deviation are given by:

E(N) = ξT and sd(N) =
√
ξT (1 + ξT /α), (2.20)
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which will be deduced in appendix A.2. As α → ∞, the variance converges to the mean, which means
that the negative binomial distribution converges to the Poisson. Otherwise, the variance of the negative
binomial distribution is always larger than the mean. Therefore the negative binomial is considered to
be an extension of the Poisson that allows greater variance, and is more appropriate than the Poisson
when overdispersion happens.

In our case, assume that N1k, . . . ,NJk are independent with common distribution nbin(ξ,α). Due to
the convolution property of the negative binomial [Bølviken, 2014, p.301], the total number of occurrences
of the year k is also negative binomial distributed:

N
i
k ∼ nbin(Jξi, Jαi) for catastrophe type i,

N
Total
k ∼ nbin(JξTotal, JαTotal) for all catastrophes.

(2.21)

Hence, the total number of occurrences during K years is given by:

N
i
∼ nbin(JKξi, JKαi) for catastrophe type i,

N
Total

∼ nbin(JKξTotal, JKαTotal) for all catastrophes.
(2.22)

Parameters ξ and α can be estimated using the maximum likelihood method, the log-likelihood function
is given by:

L(ξ,α) =
M

∑
j=1

log{Γ(nj + α)} −
M

∑
j=1

log{Γ(nj + 1)} − nlog{Γ(α)}

+
M

∑
j=1

αlog(pj) +
M

∑
j=1

nj log(1 − pj)

=
M

∑
j=1

log{Γ(nj + α)} −
M

∑
j=1

log{Γ(nj + 1)} − n [log{Γ(α)} − αlog(α)]

+
M

∑
j=1

nj log(ξTj) −
M

∑
j=1

(nj + α)log(α + ξTj).

(2.23)

As Tj = 1, j = 1, . . . ,M , this simplifies to:

L(ξ,α) =
M

∑
j=1

log{Γ(nj + α)} −
M

∑
j=1

log{Γ(nj + 1)} − n [log{Γ(α)} − αlog(α)]

+ log(ξ)
M

∑
j=1

nj − nαlog(α + ξ) − log(α + ξ)
M

∑
j=1

nj .

(2.24)

This means that:
∂L(ξ,α)

∂ξ
=

1

ξ

M

∑
j=1

nj −
nα

α + ξ
−

1

α + ξ

M

∑
j=1

nj = 0,

which gives:

ξ̂ =
1

n

M

∑
j=1

nj = n̄.

Inserting ξ̂ into L(ξ,α), we obtain a function of α only:

L(α) =
M

∑
j=1

log{Γ(nj + α)} −
M

∑
j=1

log{Γ(nj + 1)} − n [log{Γ(α)} − αlog(α)]

+ log(n̄)
M

∑
j=1

nj − nαlog(α + n̄) − log(α + n̄)
M

∑
j=1

nj .

(2.25)

With the help of statistical software such as R we can optimize L(α) with respect to α numerically.
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2.3 Amounts of Compensation

The amounts of compensation can be modelled either purely parametrically or semi-parametrically
associated with the Pickand’s theorem. Descriptions of both the parametric and the non-parametric
distributions along with an explanation of Pickand’s theorem are given as follows.

2.3.1 Parametric Distributions

All parametric models for the amounts of compensation are of the form:

Z = βZ0, β > 0, (2.26)

where β is called the parameter of scale and Z0 is a standardized random variable corresponding to
β = 1. The benefit of expressing Z of this form is that if anything changes such as currency or infla-
tion, the effect can always be passed to Z0 by replacing β. In other words, the shape of the density
function always remains what it was. The proportionality is also inherited by expectation and standard
deviation [Bølviken, 2014, p.315]:

E(Z) = βE(Z0) and sd(Z) = βsd(Z0).

2.3.1.1 Log-Normal Distribution

Assume that Z = ξZ0, where Z0 = e
−σ2/2+σε for ε ∼ N(0,1). Now let Y = log(Z), i.e.:

Y = log(Z) = log(ξ) −
1

2
σ2

+ σε. (2.27)

Y ∼ N (log(ξ) − 1
2
σ2, σ2) since it is a linear combination of ε. Hence, Z is said to be log-normal dis-

tributed. The probability density function of Z is given by [Devore and Berk, 2007, p.201]:

f(z) =
1

√
2πσz

e−
(log(z)−µ)2

2σ2 , µ = log(ξ) −
1

2
σ2, z > 0. (2.28)

The mean and the standard deviation are given by [Bølviken, 2014, p.319]:

E(Z) = ξ and sd(Z) = ξ
√

eσ2
− 1. (2.29)

Assume there are historical data z1, . . . zn, and let yi = log(zi). The estimates of the mean and the
standard deviation of Y are given by:

ȳ =
1

n

n

∑
i=1

yi, sy =

¿
Á
ÁÀ 1

n − 1

n

∑
i=1

(yi − ȳ)
2
. (2.30)

By (2.27), we have the relations:

ȳ = log(ξ̂) −
1

2
σ̂2, sy = σ̂. (2.31)

Hence, the estimates of ξ and σ are given by:

ξ̂ = es
2
y/2+ȳ, σ̂ = sy, (2.32)

which are the ML estimates for ξ and σ, see [Ginos, 2009].
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Figure 2.3 below illustrates the variation of the log-normal pdfs as σ and ξ varies. The shape of the
pdf depends heavily on σ. As σ increases, the degree of skewness increases. For fixed σ, the pdf is more
spread-out as ξ increases.

Some densities of the log-normal as σ varies Some densities of the log-normal as ξ varies

Figure 2.3: Comparison of the log-normal densities as the parameters varies

2.3.1.2 Gamma Distribution

We assume that Z = ξG, where G ∼ Gamma(α), i.e. a standard Gamma distribution with mean 1

and shape α. The probability density function of G is given by:

f(x;α,
1

α
) =

1

(1/β)αΓ(α)
xα−1e−xα, x ≥ 0.

By pdf inversion [Casella and Berger, 2002, p.51], the probability density function of Z can be written
as:

f(z) =
(α/ξ)

α

Γ(α)
zα−1e−αz/ξ, z > 0. (2.33)

The mean and the standard deviation are given by [Bølviken, 2014, p.41]:

E(Z) = ξ and sd(Z) =
ξ

√
α
. (2.34)

Assume historical data z1, . . . , zn, the parameters can be estimated by the maximum likelihood method.
The log-likelihood function is given by:

L(ξ,α) = nαlog(
α

ξ
) − nlog{Γ(α)} + (α − 1)

n

∑
i=1

log(zi) −
α

ξ

n

∑
i=1

zi.

Differentiation with respect to ξ we obtain the ML estimate of ξ, which is given by:

∂L

∂ξ
= −

nα

ξ
+
α

ξ2

n

∑
i=1

zi = 0Ô⇒ ξ̂ =
∑
n
i=1 zi
n

= z̄. (2.35)
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Now inserting the expression of ξ̂ into the log-likelihood function, we will get a log-likelihood that only
depends on α:

L(α) = nαlog(
α

z̄
) − nlog{Γ(α)} + (α − 1)

n

∑
i=1

log(zi) −
α

z̄

n

∑
i=1

zi. (2.36)

The optimization with respect to α must be done numerically in R.
Figure 2.4 illustrates the graphs of the Gamma pdf for several (α, ξ) pairs. With the same α, the

graph is less right skewed as ξ becomes larger. With fixed ξ, the Gamma pdf is less spread-out as α
increases. However, a change in ξ shows a sharper change on the pdf.

Figure 2.4: Some densities of the Gamma distribution as ξ and α vary

2.3.1.3 Pareto Distribution

The Pareto distribution is a very heavy-tailed distribution. Random variable with a heavy-tailed
distribution takes very large values with a rather high probability. In our case, since extreme values
can be involved, the Pareto distribution could be a conservative choice for the amounts of compensation
model. Generally, the pdf of the Pareto distribution is defined as follows:

f(x) =
αxαm
xα+1

, x ≥ xm, (2.37)

where xm is the minimum possible value that x can be. In our case, we assume the smallest possible
value of x to be 1, hence (2.37) now becomes:

α

xα+1
, x ≥ 1. (2.38)

12



Let Z = β(x − 1), by inversion, the probability density function of Z is given by:

f
Z
(z) = f

X
(1 +

z

β
) ⋅∣

d

dz
(1 +

z

β
)∣

=
α

(1 + z/β)
α+1

⋅
1

β

=
α/β

(1 + z/β)
1+α , z > 0 and α,β > 0.

(2.39)

The mean and the standard deviation are given by [Bølviken, 2014, p.43]:

E(Z) =
β

α − 1
and sd(Z) = E(Z)

√
α

α − 2
. (2.40)

Estimates of the parameters can be obtained by the maximum likelihood method. The log-likelihood
function is given by:

L(α,β) = nlog(
α

β
) − (1 + α)

n

∑
i=1

log(1 +
zi
β
) .

Differentiating with respect to α for given β we get:

∂L(α,β)

∂α
= n

1

α
−

n

∑
i=1

log(1 +
zi
β
) = 0,

which gives that:
α̂β =

n

∑
n
i=1 log (1 + zi

β
)
. (2.41)

By inserting the expression of α̂β into the log-likelihood function, we get a likelihood function that only
depends on β:

L(β) = nlog
⎛

⎝

n
∑ni=1 log(1+zi/β)

β

⎞

⎠
− (1 +

n

∑
n
i=1 log(1 + zi/β)

)
n

∑
i=1

log(1 +
zi
β
)

= nlog(
n

∑
n
i=1 log(1 + zi/β)

) − nlogβ −
n

∑
i=1

log(1 +
zi
β
) − n.

(2.42)

Again, the optimization with respect to β must be done numerically in R. The sampling method used
for the Pareto is the inverse transform method, which will be justified in appendix A.3. Here the Pareto
distribution is considered to be a special case of the extended Pareto which will be explained in detail
in the following subsection.

Figure 2.5 illustrates the pdfs of the Pareto distribution for fixed β and α, respectively. As α
increases with fixed β, the degree of skewness increases as well. The degree of skewness decreases as β
increases with fixed α.
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Some densities of the Pareto as σ varies Some densities of the log-normal as β varies

Figure 2.5: Comparison of the Pareto densities as the parameters varies

2.3.1.4 Extended Pareto Distribution

The extended Pareto distribution is a generalized version of the Pareto distribution presented in
section 2.3.1.3 by setting θ = 1. There is one more parameter, θ, in the extended Pareto. Therefore it is
more flexible and hence may give a better fit to the data. The density function is given by:

f(z) =
Γ(α + θ)

Γ(α)Γ(θ)

1

β

(z/β)
θ−1

(1 + z/β)
α+θ , z > 0, α,β and θ > 0. (2.43)

The distribution of the extended Pareto is complicated, but the variable Z with parameters (α, θ, β) can
be expressed by:

Z =
θβ

α

G1

G2
, (2.44)

where G1 ∼ Gamma(θ), G2 ∼ Gamma(α) are two independent Gamma variables with mean 1. The
representation will be justified in appendix A.4. By using (2.44), the sampling is simplified.
The mean and the standard deviation are given by [Bølviken, 2014, p.324]:

E(Z) =
θβ

α − 1
and sd(Z) = E(Z)

√
α + θ − 1

θ(α − 2)
, (2.45)

which are valid when α > 1 and α > 2, respectively.
The parameters can be estimated by the maximum likelihood method. The log-likelihood function is
given by:

L(α, θ, β) =n[log{Γ(α + θ)} − log{Γ(α)} − log{Γ(θ)} − θlog(β)]

+ (θ − 1)
n

∑
i=1

log(zi) − (α + θ)
n

∑
i=1

log(1 +
zi
β
) .

(2.46)

The optimization of the log-likelihood of the extended Pareto is more complicated, and needs to be
calculated numerically.
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Figure 2.6 illustrates the variation of the extended Pareto pdfs as the three parameters vary. As
α increases with fixed β and θ, the extended Pareto distribution is more right skewed. As θ increases
with fixed α and β, the degree of skewness decreases. An increase in β yields a decrease in the degree of
skewness. A change in β shows a sharper effect on the pdfs compared to the other two parameters.

Figure 2.6: Comparison of the extended Pareto densities as the parameters vary

2.3.2 Non-Parametric Approach

When a parametric model does not describe the data well, a non-parametric model could be a
good alternative for estimating future claims. Compared to the parametric model, the non-parametric
one does not require the assumption about the distribution of the data, and is known as the empirical
distribution. The cumulative distribution function of the empirical distribution is given by:

Fn(z) =
1

n

n

∑
i=1

I(Zi ≤ z), (2.47)

where I(⋅) is the indicator function:

I(A) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if A is true

0, otherwise.

The probability density can be estimated using the Gaussian kernel method explained in appendix A.5.1.
The mean and standard deviation of Z are given by:

E(Z) =
n

∑
i=1

1

n
zi = z̄ and sd(Z) =

¿
Á
ÁÀ

n

∑
i=1

1

n
(zi − z̄)2. (2.48)
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With a large number of observations, the empirical distribution will usually be a good alternative.

2.3.3 Extreme Values

The amounts of compensation could be enormously large in our case. One of the distributions
presented above can usually fit small or moderate claim sizes well, but the probability of claims with
extreme large size could easily be underestimated by such models. The theory that has to be mentioned
when it comes to extreme value estimation is the Pickands-Balkema-de Haan Theorem, also known as
the extreme value theory. Let Z be continuous and unbounded, then the theorem states that there
exits some threshold b such that its over-threshold model to the right of the limit, say Zb, is guaranteed
to be Pareto distributed as b → ∞, regardless of what the original distribution was. Mathematically,
Zb = Z − b ∣Z > b, then the tail distribution function F̄b(z) = Pr(Zb > z ∣Z > b) can be written as:

F̄b(z) =
1 − F (b + z)

1 − F (b)
, where F (z) = Pr(Z ≤ z). (2.49)

The distribution function will be derived in appendix A.6. Now let Yb = Zb/βb, where βb is a scale
parameter depending on b. By the assumption that Z > b, the tail distribution is hence given by:

Pr(Yb > y) = F̄b(βby), (2.50)

which will also be deduced in appendix A.6. Denote the tail distribution of the Pareto model as P̄ (y/α),
where α is a parameter not depending on b and possibly infinite. Then the Pickand’s theorem states
that:

F̄b(βby)→ P̄ (y/α) as b→∞,

where

P̄ (y/α) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1 + y)−α, 0 < α <∞

e−y, α =∞.
(2.51)

Hence, Zb ∼ Pareto(α,βb) as b→∞ with finite α or is exponentially distributed when α is infinite. The
shape parameter α and the scale parameter βb depend on the original model [Bølviken, 2014, pp.325–326].

2.3.3.1 Determination of the Threshold

In practice the threshold is unknown and must be chosen. The choice of the threshold can sometimes
be tricky. It has to be high enough so that the Pareto approach in the extreme right tail would be reliable.
At the same time, due to few observations, it causes increased variance of the parameter estimates. The
point is to find a balance between bias and variance. The traditional way of threshold determination
is the so-called fixed threshold approach, i.e. the threshold is chosen before fitting the distribution.
Commonly used methods for determining the threshold are graphical diagnostics. The user needs to
graphically inspect the data and the model fit when determining the threshold. Some examples of
graphical diagnostics could be the mean excess plot, the threshold stability plot or even more usual
distribution fit diagnostics such as probability plots or quantile plots [Scarrott and MacDonald, 2012].
In this thesis, we will be using the meanExcessPlot from the {laeken} package in R.
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2.3.3.2 Mixed Model with Pareto

Assume n claims z1, . . . , zn. By Pickand’s theorem presented in section 2.3.3, above a chosen thresh-
old b, Z>b would be Pareto distributed whereas the under-threshold part, Z≤b, would follow one of the
distributions from section 2.3.1 or the empirical distribution from section 2.3.2. In other words, Z is
modelled by a mixture of two different distributions, either purely parametrically or semi-parametrically.
Assume that the probability that Z exceeds the threshold b is a small number ρ, i.e. Pr(Z > b) = ρ. A
general algorithm of simulations from the mixed model is given below:

Algorithm 1 Simulating claims by mixed models
1: Input: Some threshold b chosen by meanExcessPlot, ρ, estimates of the parameters from some

distribution in section 2.3.1 for Z≤b, Z>b − b ∼ Pareto(α̂, β̂)

2: Draw U∗ ∼ Uniform(0,1)

3: if U∗ > ρ then
4: Z∗

← Chosen distribution from section 2.3.1 % Central part
else

5: Z∗
← b + Pareto(α̂, β̂) % Extreme part

6: Return Z∗.

Extra command in line 1 is needed to sort the claims in ascending order z(1) ≤ . . . ≤ z(n) if empirical
distribution is fitted to Z≤b [Bølviken, 2014, pp.237–239].

2.4 Model for Portfolio Loss

In general insurance, the portfolio loss X is defined as:

X = Z1 + . . . +ZN , (2.52)

where N and Z1, . . . , ZN are stochastically independent. Let E(Zi) = ξz and sd(Zi) = σz, where ξz and
σz are estimated from one of the distributions presented in section 2.3. The mean and the variance of
X conditioned on N are given by:

E(X ∣N ) = E(Z1 + . . . +ZN ∣N ) =
N
∑
i=1

E(Zi) = N ξz,

Var(X ∣N ) = Var(Z1 + . . . +ZN ∣N ) =
N
∑
i=1

Var(Zi) = Nσ2
z .

(2.53)

Hence, by the rules of double expectation and variance which are deduced in appendix A.1, the mean
and the variance of X are given by:

E(X ) = E(N )ξz and Var(X ) = E(N )σ2
z +Var(N )ξ2

z . (2.54)

2.4.1 Uncertainty Evaluation Using Bootstrap

The total loss X can be estimated through parameters from Z and N . Since the parameters are
estimated, the accuracy of the estimated parameters will affect the accuracy of the total losses. An
often-used method for uncertainty evaluation is the bootstrap method, which can be used for instance
for estimating the standard error of the estimators.
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In general, the standard error of an estimator θ̂ is defined as the standard deviation of the sampling
distribution σθ̂ =

√

V (θ̂) [Devore and Berk, 2007, p.338]. It is essentially a measure of the accuracy
of the estimates. Since the standard error itself needs to be estimated as well, it yields the estimated
standard error, and is denoted by sθ̂. Consider a random sample x = (x1, x2, . . . , xn) from an unknown
probability distribution F . Let θ = t(F ) be the parameter of interest based on x. The parameter is
estimated by θ̂ = h(x), where h(⋅) is some function applied to x. Now let F̂ be the empirical distribution
with probability 1/n for each xi. A bootstrap sample x⋆ = (x⋆1, x

⋆
2, . . . , x

⋆
n) is defined to be a random

sample of n drawn from F̂ with replacement, which is the resampled version of the original x. Under
the bootstrap sample x⋆, a bootstrap replication of the θ̂:

θ̂⋆ = h(x⋆), (2.55)

is produced. Hence, the bootstrap estimated standard error sdboot(θ̂
⋆) is namely the standard error of

θ̂⋆’s from the data sets x⋆ based on F̂ [Efron and Tibshirani, 1994, pp.45–46]. Algorithm 2 below gives
a more detailed description of the bootstrap procedure for estimating the standard error sdboot(θ̂

⋆) for
the given data x.

Algorithm 2 The bootstrap for estimating standard error
1: Choose mb independent bootstrap samples x⋆1,x

⋆
2, . . . ,x

⋆
mb

, where each bootstrap sample x⋆i is drawn
with replacement from x.

2: From each bootstrap sample x⋆i , obtain a bootstrap replication of the θ̂ by:

θ̂⋆i = h(x
⋆
i ), for i = 1, . . . ,mb. (2.56)

3: The bootstrap estimate of θ̂’s standard error is given by the sample standard deviation of the mb

replicates:

sdboot(θ̂
⋆
) =

¿
Á
ÁÀ 1

mb − 1

mb

∑
i=1

(θ̂⋆i − θ̄
⋆)

2
, (2.57)

where θ̄⋆ = ∑mbi=1 θ̂
⋆
i /mb [Efron and Tibshirani, 1994, p.47].

The bootstrap sampling can also be done parametrically. Unlike the F̂ that has been drawn empirically
in the non-parametric bootstrap, F̂ is an estimate of F derived from a parametric model.

Since the bootstrap estimate of the standard error usually has relatively small bias, a small amount of
replications is usually informative [Efron and Tibshirani, 1994, p.54]. However, the calculating capacity
of the computers is much more powerful nowadays, a replication of mb = 500 or 1000 is often used.

2.5 Reserve

The reserve, denoted as qε, is important in risk assessment and is also known as the solvency
capital. The reserve ensures that the insurance and reinsurance companies are able to cover significant
losses. It also ensures policyholders that payments will be made when they fall due [ii Association, 2016].
Mathematically, it is of the form:

Pr(X > qε) = ε, (2.58)

where ε is a small number, and hence qε should be large enough to ensure that the probability that the
total loss X exceeds the amount of the reserve qε is very small. In other words, the reserve qε is the
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upper ε−percentile of the portfolio liability X .
As we are not able to get a mathematical expression for the reserve, the Monte Carlo simulation

could be a smart solution for that. It will be explained in the section below.

2.5.1 Monte Carlo Simulation

The termMonte Carlo refers typically to the process of modelling and simulating of a system affected
by randomness. The name "Monte Carlo" came from the famous Monte Carlo Casino in Monaco. The
Monte Carlo simulation was first used in the 1950s at the Los Alamos laboratories for developing the
hydrogen bomb [Thomopoulos, 2012, p.1]. Monte Carlo simulation is a good alternative when there is no
explicit expression for the statistic we are interested in. Basically, the Monte Carlo simulation evaluates
a statistic’s behavior in random samples, and uses random samples from known populations of simulated
data to track a statistic’s behavior. [Mooney, 1997, p.2].

Suppose we want to estimate some quantity `(θ), where the quantity depends on some parameter
θ. We assume that the expression for `(θ) is unknown. However, `(θ) can be written as:

`(θ) = ∫ H(x)f(x; θ)dx = E(H(X)), (2.59)

where X is a random variable with pdf f depending on the parameter θ, and H(x) is called the perfor-
mance function. Then `(θ) can be estimated by the sample mean:

ˆ̀=
1

m

m

∑
i=1

H(Xi), (2.60)

where X1, . . . ,Xm is a random sample from f(x; θ) [Rubinstein and Kroese, 2008, p.98]. The accuracy
of the estimate depends on the number of simulations m. As m → ∞, the estimate ˆ̀ should approach
` [Mahadevan, 1997, p.124].

In our case, the quantity ` is based on some parameter estimate θ̂, hence:

ˆ̀(θ̂) =
1

m

m

∑
i=1

H(Xi
∗
), (2.61)

where X1
∗, . . . ,X∗

m is simulated from f(x; θ̂). As m→∞, ˆ̀(θ̂) should approach `(θ̂).

2.5.2 Estimation of the Reserve

Recall the model of the total loss from section 2.4. The total loss model based on all catastrophes
is given by:

XTotal = Z
Total
1 + . . . +ZTotal

NTotal
, where

ZTotal
j = ZType1,j +ZType2&3,j +ZType4&5&9,j .

(2.62)

Similarly, the total loss model summed up by separate catastrophe types is given by:

XType i = Z
i
1 + . . . +Z

i
N i for type i, i = 1,2&3,4&5&9,

XSeparate = XType1 +XType2&3 +XType4&5&9,
(2.63)

where N = (N1, . . . ,NJ) and Z = (Z1, . . . , ZN ). Now assume that the model for N , Z≤b and Z>b de-
pend on the estimated parameters µ̂Poisson, (ξ̂Gamma, α̂Gamma) and (α̂Pareto, β̂Pareto), respectively. For
convenience, denote θ̂ = (µ̂Poisson, (ξ̂Gamma, α̂Gamma), (α̂Pareto, β̂Pareto)). We are looking for the estimate
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q̂ε = qε(θ̂). As mentioned in section 2.5.1, q̂ε has to be again estimated by the Monte Carlo simula-
tion since we lack a closed form for that. The Monte Carlo simulated reserve based on the estimated
parameters can be written as q̂∗ε = q

∗
ε (θ̂). An algorithm for the reserve estimate q̂∗ε is given below:

Algorithm 3 Monte Carlo simulation of the reserve

1: Input ML estimates µ̂Poisson, ξ̂Gamma, α̂Gamma, α̂Pareto, β̂Pareto, ρ, ε
2: for i = 1, . . . ,m do
3: Draw N̂ ∗ ∼ Poisson(Jµ̂PoissonT )

4: for j = 1, . . . , N̂ ∗ do
5: Draw U ∼ Uniform(0,1)

6: if U > ρ then
7: Ẑ∗

j ∼ Gamma(ξ̂Gamma, α̂Gamma) % Central part
8: else
9: Ẑ∗

j ← b + Pareto(α̂Pareto, β̂Pareto) % Extreme part

10: X̂ ∗
i = ∑

N̂ ∗

j=1 Ẑ
∗
j

11: Sort X̂ ∗
1 , . . . , X̂

∗
m as X̂ ∗

(1) ≤, . . . ,≤ X̂
∗
(m)

12: Return q̂∗ε ← X̂
∗
m(1−ε).

Line 3 and line 7 in algorithm 3 might be replaced by one of the other distributions presented in section 2.2
and 2.3.

Uncertainty is inevitable when estimation is involved. In our case, the possible errors involved are
as follows:

q̂∗ε − qε(θ)Ð→ Total error

q̂∗ε − q̂ε Ð→Monte Carlo error

q̂ε − qε(θ)Ð→ Estimation error.

Hence the total error can be written as:

q̂∗ε − qε(θ) = q̂∗ε − q̂ε + q̂ε − qε(θ). (2.64)

Theoretically, q̂∗ε → q̂ε as m →∞, and q̂ε → qε(θ) as n →∞, where m, n are the number of Monte Carlo
simulations and the number of observations from historical data, respectively. However, the number of
observations n is not something under our control, and it really depends on the data we got, and we
have very limited ability to influence the data. Also, the severity of the estimation error is usually larger
than the Monte Carlo error [Bølviken, 2014, pp.230–232].

Another possible source of error which is not mentioned above is the model bias, i.e. the uncertainty
of if there exists another model that fits the data even better than the one we assumed. This type of
error is difficult to quantify. Fortunately, the model bias usually does not count that much in comparison
with the Monte Carlo and the estimation error, if a reasonable model is chosen.

As presented in section 2.4.1, bootstrap method is often used for parameter uncertainty evaluation.
Along with the Monte Carlo simulation for q̂∗ε , a nested bootstrap Monte Carlo algorithm is required. A
more explicit algorithm is given below:
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Algorithm 4 The Poisson/Gamma/Pareto reserve bootstrap

1: Input ML estimates µ̂Poisson, ξ̂Gamma, α̂Gamma, α̂Pareto, β̂Pareto and A, J , T , ρ, ε
2: Draw N̂ ⋆ ∼ Poisson(Aµ̂Poisson), µ̂⋆Poisson ← N̂

⋆ % Bootstrap estimates
3: for i = 1, . . . ,mb do
4: Draw U1 ∼ Unifrom(0,1)

5: if U1 > ρ then
6: Ẑ⋆

i ∼ Gamma(ξ̂Gamma, α̂Gamma)

7: else
8: Ẑ⋆

i ∼ Pareto(α̂Pareto, β̂Pareto)

9: (ξ̂⋆Gamma, α̂
⋆
Gamma)

ML
←ÐÐ Ẑ

⋆
≤b

(α̂⋆Pareto, β̂
⋆
Pareto)

ML
←ÐÐ Ẑ

⋆
>b

10: N̂ ⋆∗ ∼ Poisson(Jµ̂⋆Poisson)

11: for j = 1, . . . ,m do
12: Draw U2 ∼ Uniform(0,1)

13: if U2 > ρ then
14: Ẑ⋆∗

j ∼ Gamma(ξ̂⋆Gamma, α̂
⋆
Gamma)

15: else
16: Ẑ⋆∗

j ← b + Pareto(α̂⋆Pareto, β̂
⋆
Pareto)

17: X̂ ⋆∗
j ← ∑

N̂ ⋆∗

j=1 Ẑ⋆∗
j

18: Sort X̂ ⋆∗
1 , . . . , X̂ ⋆∗

m as X̂ ⋆∗
(1) ≤, . . . ,≤ X̂

⋆∗
(m)

19: Return q̂⋆∗ε ← X̂ ⋆∗
(m(1−ε)).

Again, line 2, 6, 9, 10 and 14 in algorithm 4 might be adjusted accordingly depending on the distribution
fitted to the data. The total amount of simulations is m ×mb. The number of bootstrap replication
follows the rule in section 2.4.1.
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Chapter 3

Data Analysis

In this chapter, distributions presented in the previous chapter will be applied to the data. De-
scription of the data will be given first. The modelling of the catastrophe frequency and the amounts
of compensation will be separated into two sections. In the first section, data will be modelled all to-
gether. In the second section, data will be modelled separately based on catastrophe types. For the
catastrophe frequency, the Poisson and the negative binomial distribution will be fitted to the data. For
the amounts of compensation, since extreme situations may occur, a threshold will first be chosen using
the meanExcessPlot. To the data below the threshold, the log-normal, Gamma, Pareto and extended
Pareto distribution will be fitted. In the extreme right tail, the Pareto will be fitted as default to the
data. All models are fitted by the statistical software R.

3.1 Data

Data utilized in this thesis is based on the natural disasters recorded between the year 1980 and
2013 from Finans Norge. The data set consists of seven columns categorized by the date of occurrence,
municipality code, catastrophe type, event number of which the catastrophe is related to and amounts
of compensation. The event number column is numbered from 0 to 55, depending on which case the
catastrophes are related to. Catastrophes that are not related to any particular events are numbered
with 0. The catastrophe types are sorted by storm, storm surge, flood, avalanche, earthquake, volcanic
eruptions and other/unknown with number 1-6 and 9, respectively. No occurrence of volcanic eruptions
was recorded in the data.

The catastrophes that happened in the same year and same places of the same type which corre-
sponds to the third, fourth and fifth column in the data set are aggregated into the claim numbers N i

jk,
organized in a 3-dimensional array, representing the municipality with index j, the year with index k and
the catastrophe type with index i, respectively. The number of the municipalities goes from j = 1, . . . , J

with J = 431. The index of the year goes from k = 1, . . . ,K with K = 34 and the index of the catastrophe
type is given by i = 1, . . . , I with I = 6.

When modelling the amounts of compensation, the last column can be extracted directly by speci-
fying the catastrophe type from the fifth column of the data set. The amounts of compensation that are
less or equal than 3 are removed from the data set before modelling since they somehow cause strange
behaviour in the models.

22



3.2 Common Model for All Catastrophe Types

3.2.1 Claim Frequency Modelling

● Poisson distribution:
Since we have a common model for all catastrophe types, we need to sum up all i−indexes for N i

jk defined
above. By (2.12), the estimate of the parameter µtotal can by calculated by

µ̂total =
Total number of claims
Total risk exposure A

. (3.1)

As explained in section 2.2.1, since catastrophes may occur in all places during all years, the total risk
exposure is J ×K × T for J = 431, K = 34 and T = 1. Hence, by (3.1):

µ̂total =
84876

431 × 34 × 1
= 5.79.

The accuracy of the distribution can be checked through for instance a QQ-plot and a density plot. A
straight line in the QQ-plot and a coincidence of the density plots indicate a good fit. Figure 3.1 shows
the QQ-plot and the density plot of the Poisson distribution in comparison with the actual data. The
QQ-plot does not produce a straight line, and the density plot does not coincide that much with the
actual data, indicating that the Poisson distribution is not a proper model for the given data.

QQ-plot: Poisson distribution vs. All catastrophes Density plot: Poisson vs. All catastrophes

Figure 3.1: Fitting of the catastrophe frequency by the Poisson distribution
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● Negative binomial distribution:
The parameters ξtotal and αtotal are estimated numerically by the maximum likelihood method in (2.23),
the estimates of the parameters are given by:

ξ̂total = 5.79 and α̂total = 1.07.

QQ-plot: NB distribution vs. All catastrophes Density plot: NB vs. All catastrophes

Figure 3.2: Fitting of the catastrophe frequency by the negative binomial distribution

Comparing figure 3.1 from the Poisson distribution and figure 3.2 from the negative binomial dis-
tribution, we observe that the negative binomial distribution is a better model for the data since the
QQ-plot yields a straighter line and the density plot almost overlaps the actual data. The plots indicate
that the negative binomial distribution is rather a good model.

3.2.2 Claim Size Modelling

As mentioned in section 2.3.3.1, the fixed threshold approach is used for the determination of the
threshold. The choice of the threshold can be decided by the "meanExcessPlot" in R, which is an
often-used graphic method for detecting the threshold of a Pareto distribution. The mean excesses are
plotted against all claim sizes, and the tail of the plot will be almost linear if the data follows a Pareto
distribution. Therefore the starting point of a straight line would be a good choice for the threshold.
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Figure 3.3: The mean excess plot for all claim sizes

By testing several different values on the x-axis, we observe that claim size 13 898 075 can be a good
threshold for the data (see figure 3.3), i.e. all data over this threshold would follow a Pareto distribution
according to the Pickand’s theorem. By the ecdf function we find that the percentile below the thresh-
old is approximately 99.8%, which corresponds to an upper 0.2% percentile of the data.

Central part:
● Log-normal distribution:
By (2.30) the estimates of the mean and the standard deviation of log(Z) are given by:

ȳtotal = 9.96 and sytotal = 1.77.

Hence, by (2.32) the estimates of the parameters from Z are given by:

ξ̂total = 1.01 ⋅ 105 and σ̂total = 1.77.

25



QQ-plot: Log-normal vs. All claim sizes Density plot: Log-normal vs. All claim sizes

Figure 3.4: Fitting of all claim sizes by the log-normal distribution

From the QQ- and the density plots in figure 3.4, we see that the log-normal distribution is not a good
model for the data.

● Gamma distribution:
By the MLE of ξ given in (2.35) and by optimizing α̂ in (2.36) numerically, the estimates of the parameters
are given by:

ξ̂total = 1.32 ⋅ 105 and α̂total = 0.36.

QQ-plot: Gamma vs. All claim sizes Density plot: Gamma vs. All claim sizes

Figure 3.5: Fitting of all claim sizes by the Gamma distribution
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Compared to the log-normal distribution, there is a slight improvement we can see in the QQ-plot and
the density plot in figure 3.5, but the fit is still not good.

When the distribution does not fit the data well, the data could be transformed with the help of
some monotone, continuous functions so that the distribution can fit the transformed data better than
the original one. Here we try transforming the data by taking the logarithm, and assume that:

log(Z) ∼ Gamma(ξtotal,log, αtotal,log). (3.2)

With the same procedure, the estimates are now given by:

ξ̂total,log = 9.96 and α̂total,log = 31.26.

QQ-plot: Gamma vs. All claim sizes on log Density plot: Gamma vs. All claim sizes on the log

Figure 3.6: Fitting of all claim sizes on the log scale by the Gamma distribution

In figure 3.6 we see a huge improvement after the data transformation, there is almost a linear relation
in the QQ-plot, and the density plot overlaps with the actual data as well. Therefore the log-Gamma
distribution is a very good model.

● Pareto distribution:
By optimizing the log-likelihood function in (2.42) numerically we get the estimate of βtotal:

β̂total = 9.11 ⋅ 1019.

Inserting β̂total into the expression for α̂β in (2.41), the estimate for αβtotal is given by:

α̂βtotal = 6.96 ⋅ 1014.
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QQ-plot: Pareto vs. All claim sizes Density plot: Pareto vs. All claim sizes

Figure 3.7: Fitting of all claim sizes by the Pareto distribution

According to figure 3.7, the Pareto distribution is not a good model for the data. We try now the
generalized Pareto, i.e. the extended Pareto.

● Extended Pareto distribution:
Optimizing the log-likelihood function in (2.46), the estimates of the parameters are given by:

α̂total = 0.86, β̂total = 1.13 ⋅ 104 and θ̂total = 1.26.

QQ-plot: Extended Pareto vs. All claim sizes Density plot: Extended Pareto vs. All claim sizes

Figure 3.8: Fitting of all claim sizes by the Extended Pareto distribution

Compared with the Pareto distribution, the extended Pareto in figure 3.8 fits better due to the one more
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parameter. It is not a bad model for the data since the QQ-plot yields almost a straight line. However,
we prefer the log-normal distribution as it has one less parameter.

Over-threshold part:
The over-threshold part data consists of a total of 113 observation. According to the extreme value
theory, with an ideal threshold, the extreme right tail of the data should follow the Pareto distribution.
With the same procedure as in the central part, the estimates of the Pareto parameters are given by:

β̂over = 1.94 ⋅ 107 and α̂βover = 2.12.

QQ-plot: Pareto vs. Over-threshold claim sizes Density plot: Pareto vs. Over-threshold claim sizes

Figure 3.9: Fitting of the over-threshold claim sizes by the Pareto distribution

Based on the chosen threshold in figure 3.3, the Pareto distribution fits the extreme data quite well
according to figure 3.9.
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3.3 Separate Models for Different Catastrophe Types

Since the catastrophe frequency and the amounts of compensation may vary depending on the type,
they will be modelled separately. Except for catastrophe type 1, there are relatively fewer data of other
types recorded. Therefore we consider merging the data of similar catastrophe types. The catastrophe
type 2 and type 3 both belong to the flood category, therefore we put the data of these two types together.
The remaining three catastrophe types are more unusual, so they are put together as a single type.

3.3.1 Catastrophe Type 1

3.3.1.1 Claim Frequency Modelling

● Poisson distribution:
By the same procedure as in the previous section, the estimate of the parameter µ1 is given by:

µ̂1 =
Claim numbers of type 1

A
=
Claim numbers of type 1

J ×K × T

=
59437

431 × 34 × 1

= 4.06.

QQ-plot: Poisson vs. Type 1 catastrophes Density plot: Poisson vs. Type 1 catastrophes

Figure 3.10: Fitting of the catastrophe frequency of type 1 by the Poisson distribution

According to figure 3.10, the Poisson distribution is not a good enough model for the number of catas-
trophes of type 1.
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● Negative binomial distribution:
The estimates of parameters ξ1 and α1 are given by:

ξ̂1 = 4.06 and α̂1 = 1.06. (3.3)

QQ-plot: NB vs. Type 1 catastrophes Density plot: NB vs. Type 1 catastrophes

Figure 3.11: Fitting of the catastrophe frequency of type 1 by the negative binomial distribution

According to figure 3.11, the negative binomial distribution describes the catastrophe numbers of type 1
very well.

3.3.1.2 Claim Size Modelling

From the meanExcessPlot in figure 3.12 we observe that right to the claim size of 6 903 315 it
forms almost a straight line. Therefore it can be a good threshold for the claim size of catastrophes of
type 1. The over-threshold part data corresponds to an upper 0.3% percentile of the data.
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Figure 3.12: The mean excess plot for type 1 claim sizes

Central part:
● Log-normal distribution:
The estimates of the mean and the standard deviation of log(Z) are given by:

ȳ1 = 9.85 and sy1 = 1.69.

Hence the estimates of the parameters of Z are given by:

ξ̂1 = 7.88 ⋅ 104 and σ̂1 = 1.69.
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QQ-plot: Log-normal vs. Type 1 claim sizes Density plot: Log-normal vs. Type 1 claim sizes

Figure 3.13: Fitting of the claim sizes of type 1 by the log-normal distribution

According to figure 3.13, the log-normal distribution gives a bad fit to the type 1 data.

● Gamma distribution:
By the maximum likelihood method, the estimates of the parameters are given by:

ξ̂1 = 9.36 ⋅ 104 and α̂1 = 0.41. (3.4)

QQ-plot: Gamma vs. Type 1 claim sizes Density plot: Gamma vs. Type 1 claim sizes

Figure 3.14: Fitting of the claim sizes of type 1 by the Gamma distribution

Observe from figure 3.14 that the ordinary Gamma distribution does not fit the claim sizes of catastrophe
type 1 well. Therefore, we try fitting the Gamma distribution to the logarithm of the data. The estimates
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are given by:
ξ̂1,log = 9.85 and α̂1,log = 33.54. (3.5)

QQ-plot: Gamma vs. Type 1 claim sizes on the log Density plot: Gamma vs. Type 1 claim sizes on the log

Figure 3.15: Fitting of the claim sizes of type 1 on the log scale by the Gamma distribution

Figure 3.15 above shows that the log-Gamma distribution is rather a good model for the claim sizes of
catastrophe type 1.

● Pareto distribution:
Using the maximum likelihood method, the estimates of the parameters β1 and αβ1 are given by:

β̂1 = 9.92 ⋅ 1019 and α̂β1 = 1.07 ⋅ 1015.
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QQ-plot: Pareto vs. Type 1 claim sizes Density plot: Pareto vs. Type 1 claim sizes

Figure 3.16: Fitting of the claim sizes of type 1 by the Pareto distribution

The Pareto distribution does not fit the under-threshold part of the type 1 claim sizes well according
to 3.16.

● Extended Pareto distribution:
By the maximum likelihood method, the estimates of the parameters are given by:

α̂1 = 0.95, β̂1 = 1.19 ⋅ 104 and θ̂1 = 1.27.

QQ-plot: Extended Pareto vs. Type 1 claim sizes Density plot: Extended Pareto vs. Type 1 claim sizes

Figure 3.17: Fitting of the claim sizes of type 1 by the Extended Pareto distribution
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Figure 3.17 indicates that the extended Pareto distribution gives an improvement in comparison with
the Pareto. Again, we prefer the log-Gamma distribution because it has fewer parameters.

Over-threshold part:
The over-threshold part data consists of a total of 137 observations. The estimates of the Pareto param-
eters are given by:

β̂1,over = 3.85 ⋅ 107 and and α̂β1,over = 4.64.

QQ-plot: Pareto vs. Type 1 over-threshold claim sizes Density plot: Pareto vs. Type 1 over-threshold claim sizes

Figure 3.18: Fitting of the over-threshold claim sizes of type 1 by the Pareto distribution

Above the threshold we have chosen, the Pareto distribution fits the extreme right tail of the type 1
claim sizes quite well as figure 3.18 shown.

3.3.2 Catastrophe Type 2 and Type 3

3.3.2.1 Claim Frequency Modelling

● Poisson distribution:
The estimate of the parameter µ2&3 is given by:

µ̂2&3 =
Claim numbers of type 2 and type 3

A
=

19396

431 × 34
= 1.32.
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QQ-plot: Poisson vs. Type 2 and 3 catastrophes Density plot: Poisson vs. Type 2 and 3 catastrophes

Figure 3.19: Fitting of the catastrophe frequency of type 2 and type 3 by the Poisson distribution

For the number of catastrophes of type 2 and 3, according to figure 3.19, the Poisson distribution does
not fit the data very well.

● Negative binomial distribution:
The estimates of parameters ξ2&3 and α2&3 are given by:

ξ̂2&3 = 1.32 and α̂2&3 = 0.47.

QQ-plot: NB vs. Type 2 and 3 catastrophes Density plot: NB vs. Type 2 and 3 catastrophes

Figure 3.20: Fitting of the catastrophe frequency of type 2 and type 3 by the negative binomial distribution
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As figure 3.20 shown above, the negative binomial distribution describes the number of catastrophes of
type 2 and 3 very well.

3.3.2.2 Claim Size Modelling

The meanExcessPlot of the type 2 and type 3 claim sizes is given in figure 3.21 below:

Figure 3.21: The mean excess plot for type 2 and 3 claim sizes

It is not obvious which threshold we should choose from the plot, but we try b = 15 108 527 for the claim
sizes of type 2 and type 3 catastrophes. The over-threshold part data consists of 36 observations, which
corresponds to an approximately upper 0.2% percentile of the data.

Central part:
● Log-normal distribution:
The estimates of the mean and the standard deviation of log(Z) are given by:

ȳ2&3 = 10.26 and sy2&3
= 1.89.

Hence, the estimates of the parameters of Z are given by:

ξ̂2&3 = 1.72 ⋅ 105 and σ̂2&3 = 1.89.
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QQ-plot: Log-normal vs. Type 2 and 3 claim sizes Density plot: Log-normal vs. Type 2 and 3 claim sizes

Figure 3.22: Fitting of the claim sizes of type 2 and type 3 by the log-normal distribution

According to figure 3.22 above, the log-normal distribution gives bad fit.

● Gamma distribution:
By the ML method, the estimates of the parameters are given by:

ξ̂2&3 = 2.06 ⋅ 105 and α̂2&3 = 0.34.

QQ-plot: Gamma vs. Type 2 and 3 claim sizes Density plot: Gamma vs. Type 2 and 3 claim sizes

Figure 3.23: Fitting of the claim sizes of type 2 and type 3 by the Gamma distribution

The Gamma distributions gives a bad fit as we can see in figure 3.23. Now, we try fitting Gamma
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distribution on the logarithm of the data, the estimates of parameters are given by:

ξ̂2&3,log = 10.26 and α̂2&3,log = 28.81. (3.6)

QQ-plot: Gamma vs. Type 2 and 3 claim sizes on the log Density plot: Gamma vs. Type 2 and 3 claim sizes on the log

Figure 3.24: Fitting of the claim sizes of type 2 and type 3 on the log scale by the Gamma distribution

On the log scale, the Gamma distribution fits the claim sizes of type 2 and type 3 catastrophes very well
as figure 3.24 shown above.

● Pareto distribution:
By the ML method, the estimates of the parameters are given by:

β̂2&3 = 9.59 ⋅ 1019 and α̂β2&3
= 4.68 ⋅ 1014.
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QQ-plot: Pareto vs. Type 2 and 3 claim sizes Density plot: Pareto vs. Type 2 and 3 claim sizes

Figure 3.25: Fitting of the claim sizes of type 2 and type 3 by the Pareto distribution

According to figure 3.25, the Pareto distribution does not fit the claim sizes of type 2 and type 3
catastrophes well.

● Extended Pareto distribution:
The estimates of the parameters are given by:

α̂2&3 = 0.80, β̂2&3 = 1.70 ⋅ 104 and θ̂2&3 = 1.08.

QQ-plot: Extended Pareto vs. Type 2 and type 3 claim sizes Density plot: Extended Pareto vs. Type 2 and type 3 claim
sizes

Figure 3.26: Fitting of the claim sizes of type 2 and type 3 by the extended Pareto distribution
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According to figure 3.26, the extended Pareto gives a good fit to the data, but once more, we prefer the
log-Gamma distribution.

Over-threshold part:
The over-threshold part is based on 36 data observations. By the ML method, the estimates of the
Pareto parameters are given by:

β̂2&3,over = 3.44 ⋅ 107 and α̂β2&3,over = 2.45.

QQ-plot: Pareto vs. Type 2 and 3 over-threshold claim sizes Density plot: Pareto vs. Type 2 and 3 over-threshold claim
sizes

Figure 3.27: Fitting of the over-threshold claim sizes of type 2 and type 3 by the Pareto distribution

As we can see in figure 3.27, the Pareto distribution seems to fit rather well, which indicates that the
chosen threshold is adequate, but it is a little difficult to judge based on so few observations.

3.3.3 Catastrophe Type 4, Type 5 and Type 9

3.3.3.1 Claim Frequency Modelling

● Poisson distribution:
The estimate of the parameter µ4&5&9 is given by:

µ̂4&5&9 =
Claim numbers of type 4, 5 and 9

A
=

6043

431 × 34
= 0.41.
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QQ-plot: Poisson vs. Type 4, 5, 9 catastrophes Density plot: Poisson vs. Type 4, 5, 9 catastrophes

Figure 3.28: Fitting of the catastrophe frequency of type 4, 5 and 9 by the Poisson distribution

The QQ-plot in figure 3.28 indicates that the Poisson distribution does not give a good fit to the catas-
trophes of type 4, 5 and 9.

● Negative binomial distribution:
The estimates of the parameters ξ4&5&9 and α4&5&9 are given by:

ξ̂4&5&9 = 0.41 and α̂4&5&9 = 0.28.

QQ-plot: NB vs. Type 4, 5, 9 catastrophes Density plot: NB vs. Type 4, 5, 9 catastrophes

Figure 3.29: Fitting of the catastrophe frequency of type 4, 5 and 9 by the negative binomial distribution

When fitting to the number of catastrophes of type 4, 5 and 9, the negative binomial distribution seems
to give a slightly better fit than the Poisson as we can see in figure 3.29.

3.3.3.2 Claim Size Modelling

The meanExcessPlot of type 4, type 5 and type 9 claim sizes is given in figure 3.30 below:
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Figure 3.30: The mean excess plot for type 4, type 5 and type 9 claim sizes

Due to the small amount of data, it is impossible to choose the threshold based on the mean excess plot.
Simply set b to the upper 0.2% quantile, i.e. b = 8 876 982, as for the remaining catastrophe types.

Central part:
● Log-normal distribution:
The estimates of the mean and the standard deviation of log(Z) are given by:

ȳ4&5&9 = 9.93 and sy4&5&9
= 1.98.

Hence, the estimates of the parameters of Z are given by:

ξ̂4&5&9 = 1.45 ⋅ 105 and σ̂4&5&9 = 1.98.
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QQ-plot: Log-normal vs. Type 4, 5, 9 claim sizes Density plot: Log-normal vs. Type 4, 5, 9 claim sizes

Figure 3.31: Fitting of the claim sizes of type 4, 5 and 9 by the log-normal distribution

It is clear to see in figure 3.31 that the log-normal distribution is not an ideal model for the claim sizes
of catastrophe type 4, 5 and 9.

● Gamma distribution:
The estimates of the Gamma distribution are given by:

ξ̂4&5&9 = 1.57 ⋅ 105 and α̂4&5&9 = 0.33.

QQ-plot: Gamma vs. Type 4, 5, 9 claim sizes Density plot: Gamma vs. Type 4, 5, 9 claim sizes

Figure 3.32: Fitting of the claim sizes of type 4, 5 and 9 by the Gamma distribution

According to figure 3.32, the Gamma distribution does not fit the data well. Trying the Gamma on the
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logarithm of the data, the estimates of the parameters are now given by:

ξ̂4&5&9,log = 9.93 and α̂4&5&9,log = 25.24.

QQ-plot: Gamma vs. Type 4, 5, 9 claim sizes on the log Density plot: Gamma vs. Type 4, 5, 9 claim sizes on the log

Figure 3.33: Fitting of the claim sizes of type 4, 5 and 9 on the log scale by the Gamma distribution

The log-Gamma distribution describes the claim sizes of catastrophe type 4, 5 and 9 very well as fig-
ure 3.33 shown.

● Pareto distribution:
The estimates of the parameters are given by:

β̂4&5&9 = 9.22 ⋅ 1019 and α̂β4&5&9
= 5.90 ⋅ 1014.
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QQ-plot: Pareto vs. Type 4, 5, 9 claim sizes Density plot: Pareto vs. Type 4, 5, 9 claim sizes

Figure 3.34: Fitting of the claim sizes of type 4, 5 and 9 by the Pareto distribution

Observe from figure 3.34 above, the Pareto distribution gives a bad fit to the central part of the data.

● Extended Pareto distribution:
The estimated parameters are given by:

α̂4&5&9 = 0.63, β̂4&5&9 = 4.78 ⋅ 103 and θ̂4&5&9 = 1.47.

QQ-plot: Extended Pareto vs. Type 4, 5, 9 claim sizes Density plot: Extended Pareto vs. Type 4, 5, 9 claim sizes

Figure 3.35: Fitting of the claim sizes of type 4, 5 and 9 by the extended Pareto distribution
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According to figure 3.35, the extended Pareto gives a rather good fit to the data. Still, we choose the
log-Gamma.

Over-threshold part:
The over-threshold part data consists of 9 observations. By the ML method, the estimates of the Pareto
parameters are given by:

β̂4&5&9,over = 1 ⋅ 1011 and α̂β4&5&9,over = 4.28 ⋅ 104.

QQ-plot: Pareto vs. Type 4, 5, 9 over-threshold claim sizes Density plot: Pareto vs. Type 4, 5, 9 over-threshold claim sizes

Figure 3.36: Fitting of the over-threshold claim sizes of type 4, 5 and 9 by the Pareto distribution

As we can see in figure 3.36, due to the very few observations, it is difficult to judge the fit, but it does
not seem to be unreasonable.

3.4 Summary

After fitting different distributions to the number of catastrophes and the amounts of compensation,
a short summary is given as follows:

For the number of catastrophes, both in the common model and the separate models, the negative
binomial distribution always fits the data better than the Poisson. This is because that the assumed µj
in the negative binomial model is allowed to vary from municipality to municipality. An exception is
for the catastrophes of type 4&5&9 where the difference between the Poisson and the negative binomial
distribution is much smaller.

For the amounts of compensation, in the central part, the log-Gamma distribution gives excellent
fit both in the common model and the separate models. As mentioned in section 2.3.2, the empirical
distribution could be an alternative, as far as the number of observations is large. However, there is
usually larger uncertainty in estimates based on the empirical distribution than in estimates based on
the parametric models. Since we are able to find a parametric distribution that fits the claim sizes very
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well here, the empirical distribution will not be considered in our case. In the extreme right tail, the
Pareto distribution fits the data quite well, especially in the common model and the model for the data
of catastrophe type 1. In the model for the claim sizes of catastrophe type 2&3 and type 4&5&9, since
the number of observations in the extreme right tail is very few based on the thresholds we have chosen,
the Pareto does not fit as well. However, as explained in section 2.3.3.1, it is important to take into
account both the bias and the variance in the over-threshold part. By setting a higher threshold, the
Pareto distribution could fit better, but then the variance would be much larger. Contrarily, with a lower
threshold, the Pareto distribution would not fit the data well although there would be smaller variance.
We have been trying to reach a compromise between the bias and the variance, therefore we have been
left with the results as shown above.

Since it is the same distributions that fit the common model and the separate models well, we
could probably suggest the common model over the separate models. In order to judge whether the
common model can be used instead of the separate models, it is necessary to check if the parameters are
significantly different between the three separate models and the common model. If there is significant
difference, then the common model can not be used. If not, the common model is preferable due to
smaller uncertainty. The parameter difference can be checked by means of computing a confidence inter-
val based on the bootstrap estimates obtained using algorithm 2 (see section 4.2 for detailed explanation
of bootstrap confidence interval). Let the confidence level be 95%. The bootstrap estimates from the
three separate models for N are aggregated before constructing the confidence intervals. The parameter
confidence intervals of the models for N are given as follows:

Common model Compounded model

Negative binomial
ξ (5.69,5.90) (5.71,5.87)

α (1.04,1.10) (1.77,1.86)

Table 3.1: Comparison of the parameter confidence intervals of the model for N

From the table above we see that the confidence interval for ξ based on the common model almost
overlaps the one based on the compounded model. However, there is a larger difference in the confidence
interval for α from the common model and the compounded model, indicating that there is a difference
between the common and the separate models for claim numbers.

The parameter confidence intervals of the models for Z≤b and Z>b are given as follows:

Common model Type 1 Type 2&3 Type 4&5&9

log-Gamma
ξ (9.94,9.97) (9.84,9.87) (10.23,10.29) (9.87,10.00)

α (30.95,31.60) (33.14,33.95) (28.21,29.49) (24.19,26.42)

Pareto
α (1.45,4.69) (2.53,9.32 ⋅ 104) (1.12,6.70 ⋅ 104) (1.49,1.17 ⋅ 105)

β (1.07 ⋅ 107,5.43 ⋅ 107) (1.74 ⋅ 107,1 ⋅ 1011) (9.49 ⋅ 106,1 ⋅ 1011) (1.34 ⋅ 107,1 ⋅ 1011)

Table 3.2: Comparison of parameter confidence intervals of the models for Z

In the model for Z≤b, the differences between the log-Gamma parameters of the common model and the
separate models are quite large since the confidence intervals do not overlap. In the extreme part, the
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confidence intervals do overlap, indicating that there is no significant difference between the parameters
from the common model and the separate models, although the confidence intervals are quite wide
because of the few observations we have in the extreme right tail.

The parameters in the negative binomial distribution and the log-Gamma distribution are signif-
icantly different. This indicates that claim numbers and sizes from different catastrophe types behave
differently, and the common model is not suggested. The choice of the model will be discussed more in
the conclusion chapter associated with the estimated reserve and its uncertainty.
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Chapter 4

Total Loss and Reserve

In this chapter, the model for N and Z will be put together to construct the model for the total
loss X . The best fitting distributions from the previous chapter, i.e. the negative binomial and the log-
Gamma along with the Pareto distribution are applied to the data. The reserve qε will be estimated from
the loss model by means of the Monte Carlo simulations. Possible parameter errors from the underlying
models will be converted into the uncertainty assessment of the reserve using the nested bootstrap Monte
Carlo algorithm. Thereafter, the estimated reserve based on the common model will be compared with
the one based on a combination of the separate models. At the end of this chapter, a brief summary will
be given.

4.1 Total Loss and Reserve Simulation

Recall the model for the total loss based on all catastrophes from (2.62) and the loss model aggregated
by separate catastrophe types from (2.63). The negative binomial distribution is chosen for the number
of catastrophes N , and the log-Gamma distribution is chosen for the central part of the amounts of
compensation Z≤b and the Pareto distribution is supposed to be the default model for the extreme
part Z>b. The models depend on the estimated parameters (ξ̂NB, α̂NB), (ξ̂Gamma,log, α̂Gamma,log) and
(α̂Pareto, β̂Pareto), respectively. Therefore, the model for the total loss is constructed by applying line 1
to line 10 in algorithm 3 where line 3 and line 7 are modified for the negative binomial and the log-Gamma
distribution, respectively. The reserve is simulated by Monte Carlo using algorithm 3, line 3 and line
7 have been modified accordingly. The number of Monte Carlo simulations is chosen to be m = 10 000

and ε = 0.01. The uncertainty in the reserve estimates is assessed by the nested bootstrap explained in
algorithm 4, line 2, 6, 9, 10 and 14 have been modified accordingly. The number of bootstrap replications
is chosen to be mb = 1000. Hence there is a total m×mb simulations in the nested bootstrap procedure.

4.2 Reserve Comparison

Denote the estimates of the reserve based on common model as q̂∗ε,Total and the one based on separate
models as q̂∗ε,Separate. The estimates of the reserve by algorithm 3 are given by:

q̂∗ε,Total = 1.20 ⋅ 109,

q̂∗ε,Separate = 1.36 ⋅ 109.
(4.1)
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One way of measuring the uncertainty in the reserve is to compute a confidence interval. When
constructing a confidence interval, a confidence level is first selected. An often-used confidence level is
95%, which means that there is a 95% chance that the interval would include the true value. The
higher the confidence level is, the more trustworthy it is that the true value lies within the inter-
val [Devore and Berk, 2007, p.375].

The standard deviation is a measure of how spread the data is, and is another measure of uncertainty
in the reserve. A low standard deviation value indicates that the data are close to the mean value of
the data set. The sample standard deviation sdboot (q̂

⋆∗
ε ) of the mb bootstrap estimates of the reserve is

given by (2.57).
The confidence interval and the standard deviation of q̂⋆∗ε can be calculated from the results in the

nested bootstrap algorithm. Line 1 to 17 in algorithm 4 will be first run for the common model and the
separate models, respectively. Before estimating the reserve for the combined model, the estimates of
the total loss from separate models have to be aggregated. Hence we have mb sets of m estimates for the
total loss XTotal from the common model and mb sets of m estimates for the total loss XSeparate summed
up by the separate models. The bootstrap estimate of the reserve q̂⋆∗ε,Total and q̂

⋆∗
ε,Separate are derived from

the upper ε−percentile of the corresponding X .
The distribution of q̂⋆∗ε,Total and q̂

⋆∗
ε,Separate can be illustrated by a histogram plot in R.

Histogram of q̂⋆∗ε,Total Histogram of q̂⋆∗ε,Separate

Figure 4.1: Illustration of the distribution of q̂⋆∗ε,Total and q̂⋆∗ε,Separate

Neither q̂⋆∗ε,Total nor q̂
⋆∗
ε,Separate seems to be normally distributed. Therefore the confidence interval based

on a normal distribution cannot be used. Instead, a more general confidence interval based on bootstrap
percentiles can be constructed. An explanation of the bootstrap confidence interval is as follows:
Let G be the cumulative distribution of q̂⋆∗ε . Then G−1(α) = q̂⋆∗ε,(α), which is the (100 ⋅ α)th percentile of
the bootstrap distribution. Then the (1 − α)% percentile interval of q̂⋆∗ε can be written as:

(q̂⋆∗ε,L, q̂
⋆∗
ε,U) = [G−1

(α/2),G−1
(1 − α/2)]

= [q̂⋆∗ε,(α/2), q̂
⋆∗
ε,(1−α/2)] .

(4.2)
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The percentile interval presented in (4.2) is an ideal situation when the number of bootstrap replications
mb goes to infinity. In practice, when mb is finite, we sort all the bootstrap estimates in ascending order:
q̂⋆∗ε,(1) ≤ q̂

⋆∗
ε,(2) ≤ . . . ≤ q̂

⋆∗
ε,(mb). Then the (100 ⋅ α)th empirical percentile of the q̂⋆∗ε ’s is just the (mb ⋅ α)

th

value in the ordered q̂⋆∗ε ’s [Efron and Tibshirani, 1994, p.168–171]. Hence, the approximate (1−α)100%

percentile interval of q̂⋆∗ε can be written as:

(q̂⋆∗
ε,(α2 ⋅mb)

, q̂⋆∗
ε,[(1−α2 )⋅mb]

) . (4.3)

By (4.3), with 95% confidence level, i.e. α = 0.05 and the number of the bootstrap replications mb = 1000,
the bootstrap confidence interval for q̂⋆∗ε,Total based on the common model is given by:

CIq̂⋆∗
ε,Total

= (1.03 ⋅ 109,1.68 ⋅ 109) .

The standard deviation of the bootstrap estimates q̂⋆∗ε,Total is given by:

sdboot (q̂
⋆∗
ε,Total) = 1.95 ⋅ 108.

Similarly, the 95% confidence interval for q̂⋆∗ε,Separate based on the separate models is given by:

CIq̂⋆∗
ε,Separate

= (1.26 ⋅ 109,2.04 ⋅ 109) .

The standard deviation of the bootstrap estimates q̂⋆∗ε,Separate is given by:

sdboot (q̂
⋆∗
ε,Separate) = 2.48 ⋅ 108.

4.3 Summary

After comparing the bootstrap confidence intervals and the standard deviations a short summery is
given as follows:
The estimate of the reserve based on the common model is smaller than the estimate of the one based
on the separate models. The confidence interval of q̂⋆∗ε,Total is narrower than the confidence interval of
q̂⋆∗ε,Separate, indicating that the uncertainty in the reserve estimate from the common model is smaller
than the one from the separate models. The standard deviation of q̂⋆∗ε,Total is also smaller than the
standard deviation of q̂⋆∗ε,Separate. The results are not something surprising, since there are more estimated
parameters involved in the separate models, and there are more data in the common model for estimation.
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Chapter 5

Conclusion

The total loss model X consists of two components, the occurrences of catastrophes N and the
amounts of compensation Z. The amounts of compensation Z are separated by a threshold b, where the
over-threshold part Z>b is supposed to follow the Pareto distribution according to the Pickand’s theorem,
and the central part Z≤b is supposed to follow some parametric distribution. Different distributions are
tested on N and Z≤b. Both in the common model and the separate models, the negative binomial
distribution and the log-Gamma distribution give best fit to N and Z≤b, respectively. For Z>b, the
Pareto distribution describes the data rather well where a balance between the model bias and the
variance has been taken into account. The reserve qε, which is the upper ε-percentile of the total loss X ,
is estimated through the Monte Carlo simulation. Possible sources of uncertainty have been discussed
and evaluated with a combination of the bootstrap Monte Carlo scheme.

The reserve estimate from a combination of the separate models is larger than the one from the
common model. In general insurance, when it comes to the reserve estimation, it is very important not
to underestimate the reserve. It is always better to risk overestimating rather than to risk underestimating
the reserve since it would not be as a big crisis for insurance companies to have some extra fund (not too
much either) as a shortage of fund. For the estimation uncertainty, according to the confidence intervals
and the standard deviations computed in the previous chapter, the reserve estimate based on the separate
models has a larger uncertainty than the one from the common model, which is not unexpected. Thus,
the choice of the model is based on the following arguments:

– The confidence intervals of the distribution parameters given in section 3.4 indicate a significant
difference of the parameters in the separate models and the common model.

– Although the uncertainty in the reserve estimate based on the separate models is larger than the
one based on the common model, it is more "correct" to have a higher reserve estimate to ensure
that the Pool is able to cover significant losses under worst-case situations.

– The six catastrophe types have already been merged into three larger groups. In this way, the
uncertainty in the underlying models has already been reduced under modelling.

In conclusion, on the premise that our models are reasonable and correct, the risk of the Pool should be
evaluated by a break-down into catastrophe type model. However, we would suggest merging the similar
catastrophe types for reduced uncertainty.
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Appendix A

Mathematical Arguments

A.1 The Double Rules of Expectation and Variance

The double rules of expectation and variance are useful tools when finding expectation and standard
deviation of a conditional distribution. The conditional distribution is defined as follows: assume a
random variable Y given X = x when X and Y are continuous, the conditional probability density for Y
is then given by:

fY ∣X(y∣x) =
f(x, y)

fX(x)
.

Hence,
f(x, y) = fX(x)fY ∣X(y∣x), (A.1)

which is the joint density function of (x, y). The mean and the variance of a conditional distribution
depends on the variable that one conditions on. The conditional mean and variance of Y given that
X = x can be written as:

ξ(x) = E(Y ∣X = x) and σ2
(x) = Var(Y ∣X = x),

By (A.1) the expected value of a random variable Y can be written as:

E(Y ) = ∫

∞

−∞
∫

∞

−∞
yf(x, y)dydx = ∫

∞

−∞
(∫

∞

−∞
yf(y∣x)dy) f(x)dx = ∫

∞

−∞
ξ(x)f(x)dx.

We observe that the latter integral is just the E[ξ(x)] by definition. Therefore, we have that:

E(Y ) = E[ξ(x)]. (A.2)

For the variance, by the general definition of variance, Var(Y ) = E(Y 2) − [E(Y)]2. Conditioning on X
on both sides yields that:

Var(Y ∣X) = E(Y 2
∣X) − [E(Y ∣X)]

2. (A.3)

By taking the expectation on both sides yields that:

E[Var(Y ∣X)] = E[E(Y 2
∣X)] −E{[E(Y ∣X)]

2
} (A.4)

By the law of iterated expectation, E(Y ) = E(E(Y ∣X)). Hence, (A.4) can be written as:

E[Var(Y ∣X)] = E(Y 2
) −E{[E(Y ∣X)]

2
} (A.5)
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By taking the variance on E(Y ∣X), we have:

Var(E(Y ∣X)) = E{[E(Y ∣X)]
2
} − {E[E(Y ∣X)]}

2

= E{[E(Y ∣X)]
2
} − [E(Y )]

2.
(A.6)

Add (A.5) and (A.6) together, the E{[E(Y ∣X)]2}-term is vanished, hence:

E(Y 2
) − [E(Y )]

2
= E[Var(Y ∣X)] +Var(E(Y ∣X)), (A.7)

which the left side of the equation is just Var(Y ). Therefore, the variance of Y is now given by:

Var(Y ) = E[σ2
(X)] +Var[ξ(X)]. (A.8)

The rules of double expectation and variance can be proved to hold for discrete variables as well, and
they have been used several places in the thesis.

A.2 The Mean and Standard Deviation of the Negative Bino-

mial Distribution

Recall from (2.9) that:
E(N ∣µ) = Var(N ∣µ) = λ = µT.

By the conditional expectation and variance in (A.2) and (A.8) combined with (2.16) :

E(N) = E[E(N ∣µ)] = E(µT ) = E(µ)T = ξT

and
sd(N) =

√
E[Var(N ∣µ)] +Var[E(N ∣µ)]

=
√
E(µT ) +Var(µT )

=

√

ξT +
ξ2

α
T 2

=
√
ξT (1 + ξT /α).

A.3 Inverse Transform Method

The motivation of the inverse transform method is that we want to simulate a random variable X
from its cumulative distribution function F , i.e. to generate X such that:

Pr(X ≤ x) = F (x), x ∈ R. (A.9)

Let F be a strictly increasing and continuous distribution function. Define X = F −1(U) (which is the
inverse of the equation F (X) = U), where U is uniform distributed on the interval [0,1]. Since F is
increasing, we have that:

{F −1
(U) ≤ x}⇔ {U ≤ F (x)}.

Hence:
Pr(F −1

(U) ≤ x) = Pr(U ≤ F (x))
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Using the fact that 0 ≤ F (x) ≤ 1 and the CDF of a uniform distribution FU(x) = x, we have:

Pr(U ≤ F (x)) = F (x).

Thus, we have a simple general sampling technique using the uniform distribution [Sigman, 2010].
The cumulative distribution function of the Pareto distribution in section 2.3.1.3 is given by:

F (x) = 1 − (1 + x/β)
−α
, x > 0. (A.10)

Set F (x) = u and solve for x, we get the inverse CDF:

F −1
(u) = β{(1 − u)

−1/α
− 1}, (A.11)

which is used for sampling the Pareto random variables.

A.4 A Representation of the Extended Pareto

For showing the representation in (2.44), a little transformation is needed here:
Let Z = X/Y where X and Y are independent and positive random variables with density functions
g1(x) and g2(y), respectively. We have then:

F (z) = Pr(Z ≤ z) = Pr(
X

Y
≤ z) = Pr(X ≤ zY )

= ∫

∞

0
Pr(X ≤ zy)g2(y)dy.

By differentiating with respect to z, we get the density function of Z:

f(z) = F ′
(z) =

∂

∂z
∫

∞

0
Pr(X ≤ zy)g2(y)dy

= ∫

∞

0
(
∂

∂z
Pr(X ≤ zy)) g2(y)dy,

(A.12)

where
∂

∂z
(Pr(X ≤ zy)) =

∂

∂z
FX(zy) = F ′

X(zy) ⋅ y = g1(zy) ⋅ y.

Hence, (A.12) can be now expressed by:

f(z) = ∫
∞

0
g1(zy) ⋅ y ⋅ g2(y)dy. (A.13)

Let X = θG1 and Y = αG2, where G1 and G2 are Gamma distributed with mean 1 and shape θ and α,
respectively. Then g1(x) = x

θ−1e−x/Γ(θ) and g2(y) = y
α−1e−y/Γ(α). By substituting x = y(1 + z) in the

integral:

f(z) =
zθ−1

Γ(θ)Γ(α)
∫

∞

0
yα+θ−1e−y(1+z)dy

=
zθ−1

Γ(θ)Γ(α)

1

(1 + z)
α+θ ∫

∞

0
xα+θ−1e−xdx.

Using the fact that Γ(s) = ∫
∞

0 ts−1e−tdt, we obtain:

f(z) =
Γ(α + θ)

Γ(θ)Γ(α)

zθ−1

(1 + z)
α+θ ,

[Bølviken, 2014, p.335], which is on the form of the extended Pareto distribution.
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A.5 Kernel Density Estimation

For estimating the probability density non-parametrically, a histogram is the simplest way to go.
The histogram is constructed by dividing the intervals of the data into sub-intervals, which also known
as "bins". Each time when the data falls into a particular sub-interval, a block of bandwidth of the
sub-interval is then placed on top of it. The main concern here is that the smoothness of the histogram
depends on the bandwidth. With a smaller bandwidth gives a smoother histogram than the one with
large bandwidth. Another problem is the choice of end points of the bins. Different choice of end points of
bins could yield a total different estimate for the density. Therefore the choice of both the bandwidth and
the end point can be quite tricky. The kernel density estimators are an improvement over the histogram
since it is independent of the end points of the bins, but still depends on the bandwidth [Duong, 2001].

Let X be a random viable with continuous distribution and density function f(x) = d
dx
F (x). A

natural estimate of F (x) is the empirical distribution function:

F̂ (x) =
1

n

n

∑
i=1

1{Xi≤x}. (A.14)

Consider a discrete derivative:

f̂(x) =
F̂ (x + h) − F̂ (x − h)

2h
, for some h > 0. (A.15)

By definition of (A.14), the right side of the equation can also be written as:

1

2hn

n

∑
i=1

1{x−h≤Xi≤x+h} =
1

2hn

n

∑
i=1

1{ ∣Xi−x∣h ≤1}, (A.16)

where the right side of the equation above can be written as :

1

2hn

n

∑
i=1

1{ ∣Xi−x∣h ≤1} =
1

hn

n

∑
i=1

k(
Xi − x

h
),

where

k(u) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2

∣u∣ ≤ 1

0 ∣u∣ > 1,
(A.17)

which is the uniform density function on [−1,1].
Therefore, the general form of the kernel density estimator is defined as:

f̂(x) =
1

hn

n

∑
i=1

k(
Xi − x

h
), (A.18)

where k(⋅) is a non-negative function that integrates to 1. It is called a kernel smoothing function which
sums the component smoothing functions for each data value to produce a smooth, continuous density.
The parameter h is the bandwidth, which controls the degree of smoothing [Hansen, 2009, pp.2–3].
Possible choices of kernel functions are the normal, triangular, biweight, Gaussian ect.. Here we are
using the Gaussian kernel kφ(u) = 1√

2π
e−u

2/2.

A.5.1 Gaussian Kernel Method

Assume Ẑ to be the empirical distribution and define:

Ẑh = Ẑ + hsε, (A.19)
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where h ≥ 0, ε ∼ N(0,1) and s is the sample standard deviation. Hence:

Pr(Ẑh ≤ z∣Ẑ = zi) = Φ(
z − zi
hs

) . (A.20)

Thus,

Pr(Ẑh ≤ z) =
1

n

n

∑
i=1

Φ(
z − zi
hs

) , (A.21)

where Φ(z) = ∫
z

0 f(y; 0,1)dy is the standard normal integral. By differentiating, the density function
f(Ẑh) is given by:

f(ẑh) =
1

n

n

∑
i=1

1

hs
ϕ(
z −Zi
hs

), where ϕ(z) =
1

√
2π
e−z

2/2. (A.22)

A.6 Derivation of the Tail Distribution Function of Z

Recall that Zb = Z − b given Z > b. Then the tail distribution function F̄b = Pr(Zb > z ∣Z > b) is given
by:

F̄b(z) =
Pr(Zb > z ,Z > b)

Pr(Z > b)

=
Pr(Z − b > z ,Z > b)

Pr(Z > b)

=
Pr(Z > z + b)

Pr(Z > b)

=
1 −Pr(Z ≤ z + b)

1 −Pr(Z ≤ b)

=
1 − F (z + b)

1 − F (b)
, where F (z) = Pr(Z ≤ z).

(A.23)

Recall that Yb = Zb/βb, the tail distribution function Pr(Yb > y) is given by:

Pr(Yb > y) = Pr(
Zb
βb

> y∣Z > b)

= Pr(
Z − b

βb
> y∣Z > b)

=
Pr (Z−b

βb
> y,Z > b)

Pr(Z > b)

=
Pr(Z > yβb + b)

Pr(Z > b)

=
1 − F (yβb + b)

1 − F (b)
.

By (A.23), the tail distribution function Pr(Yb > y) = F̄b(βby).

61



Appendix B

R-scripts

Codes for the catastrophe frequency modelling:

library(MASS)

library("laeken")

library(fitdistrplus)

library(actuar)

library(evir)

data=read.table("/Users/yuexu/Documents/Master Thesis/natur_dnb.txt")

day=data[[1]]

month=data[[2]]

year=data[[3]]

kommunenr=data[[4]]

skadetype=data[[5]]

event=data[[6]]

fasts=data[[7]]

aar <- unique(year)

kommuner <- sort(unique(kommunenr))

skadetyper <- sort(unique(skadetype))

antskader <-array(dim=c(length(kommuner),length(aar),length(skadetyper)))

for(i in 1:length(kommuner))

{

indi <- which(kommunenr == kommuner[i])

for(j in 1:length(aar))

{

indij <- which(year[indi] == aar[j])

for(k in 1:length(skadetyper))

{

indijk <- which(skadetype[indi[indij]] == skadetyper[k])

antskader[i,j,k] <- length(indijk)

}

}

}

###############################################################

###Catastrophe frequency modelling based on all catastrophes###

###############################################################

antskadertot <- apply(antskader,c(1,2),sum)

n <- length(antskadertot)

#

#1. Poisson distribution

#

lambda_tot <- sum(antskadertot)/n # 5.792002

p <- (1:n-0.5)/n
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qpar <- qpois(p,lambda_tot)

plot(qpar,sort(antskadertot)) # QQ-plot

# Comparison of the probability density

phat <- c(sum(antskadertot == 0),tabulate(antskadertot))/n

plot(0:50,phat[1:51],pch=’_’,col="red")

points(0:50,dpois(0:50,lambda_tot),pch=’_’,col="blue")

legend(x="topright",legend=c("Total_claim_frequency","Poisson_distr."),col=c("red","blue"),lty=c(1,1))

#

#2. Negative binomial distribution

#

NBtotal <- fitdist(sort(antskadertot),"nbinom") # Maximum likelihood estimation

# Parameters:

# estimate Std. Error

# size 1.069890 0.01495271

# mu 5.791611 0.05034247

xi_tot <- 5.791611

alpha_tot <- 1.069890

prob_tot <- alpha_tot/(alpha_tot+xi_tot) # 0.1559265

nbpar <- qnbinom(p,alpha_tot,prob_tot)

plot(nbpar,sort(antskadertot)) # QQ-plot

# Comparison of the probability density

plot(0:50,phat[1:51],pch=’_’,col="red")

points(0:50,dnbinom(0:50,alpha_tot,prob_tot),pch=’_’,col="blue")

legend(x="topright",legend=c("Total_claim_frequency","Negative_binomial_distr."),col=c("red","blue"),lty=c

(1,1))

######################################################

###Catastrophe frequency based on catastrophe types###

######################################################

#############

###Type 1:###

#############

type1 <- antskader[1:431,1:34,1]

n1 <- length(type1)

#

#1. Poisson distribution

#

lambda1 < - sum(type1)/n1 # 4.056026

p1 <- (1:n1-0.5)/n1

qpar1 <- qpois(p1,lambda1)

plot(qpar1,sort(type1))

phat1=c(sum(type1 == 0),tabulate(type1))/n1

plot(0:50,phat1[1:51],pch=’_’,col="red")

points(0:50,dpois(0:50,lambda1),pch=’_’,col="blue")

legend(x="topright",legend=c("Claim_frequency_type1","Poisson_distr."),col=c("red","blue"),lty=c(1,1))

#

#2. Negative binomial distribution

#

NBtype1=fitdist(sort(type1),"nbinom") # MLE

# Parameters :

# estimate Std. Error
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# size 1.063813 0.01640653

# mu 4.055916 0.03649612

xi1 <- 4.055916

alpha1 <- 1.063813

prob1 <- alpha1/(alpha1+xi1) # 0.207787

nbpar1=qnbinom(p1,alpha1,prob1)

plot(nbpar1,sort(type1))

plot(0:50,phat1[1:51],pch=’_’,col="red")

points(0:50,dnbinom(0:50,alpha1,prob1),pch=’_’,col="blue")

legend(x="topright",legend=c("Claims_frequency_type1","Negative_binomial_distr."),col=c("red","blue"),lty=c

(1,1))

##############################

###Type 2 and type 3 merged###

##############################

type2 <- antskader[1:431,1:34,2]

type3 <- antskader[1:431,1:34,3]

type23 <- type2+type3

n23 <- length(type23)

#

#1. Poisson distribution

#

lambda23 <- sum(type23)/n23 # 1.323598

p23 <- (1:n23-0.5)/n23

qpar23 <- qpois(p23,lambda23)

plot(qpar23,sort(type23))

phat23=c(sum(type23 == 0),tabulate(type23))/n23

plot(0:45,phat23[1:46],pch=’_’,col="red")

points(0:45,dpois(0:45,lambda23),pch=’_’,col="blue")

legend(x="topright",legend=c("Claim_frequency_type2_and_type3","Poisson_distr."),col=c("red","blue"),lty=c

(1,1))

#

#2. Negative binomial distribution

#

NBtype23 <- fitdist(sort(type23),"nbinom")

# Parameters:

# estimate Std. Error

# size 0.4686309 0.009411731

# mu 1.3236635 0.018587379

xi23 <- 1.3236635

alpha23 <- 0.4686309

prob23 <- alpha23/(alpha23+xi23) # 0.2614698

nbpar23 <- qnbinom(p23,alpha23,prob23)

plot(nbpar23,sort(type23))

plot(0:40,phat23[1:41],pch=’_’,col="red")

points(0:40,dnbinom(0:40,alpha23,prob23),pch=’_’,col="blue")

legend(x="topright",legend=c("Claims_frequency_type2_and_type3","Negative_binomial_distr."),col=c("red","

blue"),lty=c(1,1))
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######################################

###Type 4, type 5 and type 9 merged###

######################################

type4 <- antskader[1:431,1:34,4]

type5 <- antskader[1:431,1:34,5]

type9 <- antskader[1:431,1:34,6]

type459 <- type4+type5+type9

n459 <- length(type459)

#

#1. Poisson distribution

#

lambda459 <- sum(type459)/n459 # 0.4123789

p459 <- (1:n459-0.5)/n459

qpar459 <- qpois(p459,lambda459)

plot(qpar459,sort(type459))

phat459=c(sum(type459 == 0),tabulate(type459))/n459

plot(0:35,phat459[1:36],pch=’_’,col="red")

points(0:35,dpois(0:35,lambda459),pch=’_’,col="blue")

legend(x="topright",legend=c("Claim_frequency_type4_type5_and_type9","Poisson_distr."),col=c("red","blue"),

lty=c(1,1))

#

#2. Negative binomial distribution

#

NBtype459 <- fitdist(sort(type459),"nbinom")

# Parameters:

# estimate Std. Error

# size 0.2812828 0.009034710

# mu 0.4125248 0.008335132

xi459=0.4125248

alpha459=0.2812828

prob459=alpha459/(alpha459+xi459) # 0.405419

nbpar459=qnbinom(p459,alpha459,prob459)

plot(nbpar459,sort(type459))

plot(0:35,phat459[1:36],pch=’_’,col="red")

points(0:35,dnbinom(0:35,alpha459,prob459),pch=’_’,col="blue")

legend(x="topright",legend=c("Claims_frequency_type4_type5_and_type9","Negative_binomial_distr."),col=c("

red","blue"),lty=c(1,1))

Codes for the amounts of compensation modelling

###################################

###Compensation amounts modelling###

###################################

#Remove claim sizes that are smaller than 3:

fasts_new <- fasts[fasts > 3]

probs <- c(seq(0,0.9,.05),seq(0.9,0.99,.001),seq(0.99,0.999,.0001))

quantile(fasts_new,probs=probs)

meanExcessPlot(fasts_new,probs=probs,interactive=TRUE)

abline(v=13898075,col="red")

#From this point the observations form almost a straight line:

#$x0

#[1] 13898075

#$k
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#[1] 113 # Number of observations over the threshold

#attr(,"class")

#[1] "paretoScale"

#Find the corresponding quantile

fhat <- ecdf(fasts_new)

fhat(13898075)

#[1] 0.9984016 # 0.2% over-threshold part

fasts_new_c <- fasts_new[fasts_new <= 13898075] # Central part data

##################

###Central part###

##################

#

#1. Log-normal distribution

#

n_tot <- length(fasts_new_c) # 70582

mu_tot <- mean(log(fasts_new_c)) # 9.955264

sigma_tot <- sd(log(fasts_new_c)) # 1.770335

xi_lognorm_tot <- exp(sigma_tot^2/2+mu_tot) # 100942.6

p <- (1:n_tot-0.5)/n_tot

qpar <- qlnorm(p,mu_tot,sigma_tot)

plot(qpar,sort(fasts_new_c)) # QQ-plot

fhat_tot <- density(fasts_new_c,from=0,to=3e5) # Density of the data

# Comparison of the density function:

plot(fhat_tot,type="l",xlab="",ylab="",main=NA,xlim=c(0,3e05),ylim=c(0,5.5e-5),col="red")

lines(1:3e5,dlnorm(1:3e5,mu_tot,sigma_tot),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_all_central","Log_normal_distr."),col=c("red","blue"),lty=c(1,1))

#

#2.Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z))) # Log-

likelihood function

xihat <- mean(fasts_new_c) # 131928.6

optimal <- optimize(llminus,c(1,1e20)*xihat/sd(fasts_new_c),z=fasts_new_c)

alphahat <- optimal[[1]] # 0.3641549

p <- (1:n_tot-0.5)/n_tot

qgam <- xihat*qgamma(p,alphahat)/alphahat

Zgam <- xihat*rgamma(n_tot,alphahat)/alphahat

plot(qgam,sort(fasts_new_c)) # QQ-plot

#Comparison of the density

plot(fhat_tot,type="l",xlab="",ylab="",main=NA,ylim=c(0,4e-5),col="red")

lines(density(Zgam,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_all_central","Gamma_distr."),col=c("red","blue"),lwd=1,lty=c(1,1))

#Try transformation by taking logarithm to the data

#

#2.1 Log-Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat_log <- mean(log(fasts_new_c)) # 9.955264

optimal <- optimize(llminus,c(1,1e20)*xihat_log/sd(log(fasts_new_c)),z=log(fasts_new_c))

alphahat_log=optimal[[1]] # 31.25975

p <- (1:n_tot-0.5)/n_tot

qgam_log <- xihat_log*qgamma(p,alphahat_log)/alphahat_log

Zgam_log <- xihat_log*rgamma(n_tot,alphahat_log)/alphahat_log
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plot(qgam_log,sort(log(fasts_new_c)))

fhat_log <- density(log(fasts_new_c),from=0,to=20) # Density of the log data

plot(fhat_log,type="l",xlab="",ylab="",main=NA,col="red")

lines(density(Zgam_log,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_all_central_log","Gamma_distr."),col=c("red","blue"),lty=c(1,1))

#

#3. Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e20),z=fasts_new_c);

betahat <- o[[1]]; # 9.108538e+19

alphahat <- 1/mean(log(1+fasts_new_c/betahat)) # 6.956652e+14

p <- (1:n_tot-0.5)/n_tot;

qpar <- betahat*((1-p)**(-(1/alphahat))-1)

Zpar <- betahat*(runif(n_tot)**(-1/alphahat)-1)

plot(qpar,sort(fasts_new_c))

plot(fhat_tot,type="l",xlab="",ylab="",main=NA,ylim=c(0,3.5e-5),col="red")

lines(density(Zpar,from=0),col="blue")

#lines(1:5e5,dpareto(1:5e5,alphahat,betahat),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_all_central","Pareto_distr."),col=c("red","blue"),lwd=1,lty=c(1,1)

)

#

#4. Extended Pareto distribution

#

llminus <- function(s,z){t=exp(s);

l_1=-lgamma(t[1]+t[2])+lgamma(t[1])+lgamma(t[2])+t[2]*log(t[3]);

l_2=-(t[2]-1)*mean(log(z))+(t[1]+t[2])*mean(log(1+z/t[3]));

l_1+l_2;

}

o <- optim(c(1,0.7,log(mean((fasts_new_c)))),llminus,z=fasts_new_c)

alpha_expar <- exp(o$par[1]) # 0.8557846

theta_expar<- exp(o$par[2]) # 1.257528

beta_expar <- exp(o$par[3]) # 11271.97

W <- beta_expar*rgamma(1e5,theta_expar)/rgamma(1e5,alpha_expar)

b <- 13898075

ind <- which(W > b) # Count the indices over the threshold

W <- W[-ind] # Data under the threshold

Z <- W[1:n_tot]

plot(sort(Z),sort(fasts_new_c))

dExPareto <- function(z,alpha,theta,beta)

{

gamma(alpha+theta)/(gamma(alpha)*gamma(theta))*z^(theta-1)/(beta^theta*(1+z/beta)^(alpha+theta))

} # Density function of the extended Pareto

z <- 1:(3e5)

plot(fhat_tot,type="l",xlab="",ylab="",ylim=c(0,4.5e-05),main=NA,col="red")

lines(z,dExPareto(z,alpha_expar,theta_expar,beta_expar),col="blue")

legend(x="topright",legend=c("Claim_size_all_central","Extended_Pareto_distr."),col=c("red","blue"),lwd=1,

lty=c(1,1))
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#########################

###Over-threshold part###

#########################

fasts_new_e <- fasts_new[fasts_new > 13898075]-13898075 # Over-threshold data

#

#Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e12),z=fasts_new_e);

betahat_e <- o[[1]]; # 19350799

alphahat_e <- 1/mean(log(1+fasts_new_e/betahat_e)) # 2.119329

n<- length(fasts_new_e); # 113

p <- (1:n-0.5)/n;

qpar_e <- betahat_e*((1-p)**(-(1/alphahat_e))-1)

Zpar_e <- betahat_e*(runif(n)**(-(1/alphahat_e))-1)

plot(qpar_e,sort(fasts_new_e))

plot(density(fasts_new_e,from=0),main=NA,col="red",ylim=c(0,6.5e-08))

lines(density(Zpar_e,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_all_over_threshold","Pareto_distr."),col=c("red","blue"),lwd=1,lty

=c(1,1))

##########################

###Claim size of type 1###

##########################

new_claim1 <- subset(data,fasts>3)

fasts1 <- new_claim1[new_claim1$V5==1,]

new_fasts_tp1 <- fasts1[[7]]

probs <- c(seq(0,0.9,.05),seq(0.9,0.99,.001),seq(0.99,0.999,.0001))

quantile(new_fasts_tp1,probs=probs)

meanExcessPlot(new_fasts_tp1,probs=probs,interactive=TRUE)

abline(v=6903315,col="red")

#From this point the observations form almost a straight line:

#$x0

#[1] 6903315

#$k

#[1] 137 # Number of observations over the threshold

#attr(,"class")

#[1] "paretoScale"

#Find the corresponding quantile

Fhat_tp1 <- ecdf(new_fasts_tp1)

Fhat_tp1(6903315)

#[1] 0.9973011 # 0.3% over-threshold

fasts_tp1_c <- new_fasts_tp1[new_fasts_tp1<=6903315] # Central part data
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################

##Central part##

################

#

#1. Log-normal distribution

#

n1 <- length(fasts_tp1_c) # 50625

mu1 <- mean(log(fasts_tp1_c)) # 9.852738

sigma1 <- sd(log(fasts_tp1_c)) # 1.686393

xi_lognorm1 <- exp(sigma1^2/2+mu1) # 78802.36

p1 <- (1:n1-0.5)/n1

fhat1 <- density(fasts_tp1_c,from=0,to=3e5)

qpar1 <- qlnorm(p1,mu1,sigma1)

plot(qpar1,sort(fasts_tp1_c))

plot(fhat1,type="l",xlab="",ylab="",main=NA,xlim=c(0,250000),ylim=c(0,5.5e-5),col="red")

lines(1:3e5,dlnorm(1:3e5,mu1,sigma1),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type1_central","Log_normal_distr."),col=c("red","blue"),lty=c(1,1)

)

#

#2. Gamma distribution

#

llminus <- function(alpha,z)-alpha1*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat1 <- mean(fasts_tp1_c) # 93638.03

optimal <- optimize(llminus,c(1,1e12)*xihat1/sd(fasts_tp1_c),z=fasts_tp1_c)

alphahat1 <- optimal[[1]] # 0.4109333

p1 <- (1:n1-0.5)/n1

qgam1 <- xihat1*qgamma(p1,alphahat1)/alphahat1

Zgam1 <- xihat1*rgamma(n1,alphahat1)/alphahat1

plot(qgam1,sort(fasts_tp1_c))

plot(fhat1,type="l",xlab="",ylab="",main=NA,ylim=c(0,4e-5),col="red")

lines(density(Zgam1,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type1_central","Gamma_distr."),col=c("red","blue"),lty=c(1,1))

#

#2.1 Log-Gamma distribution

#

llminus <- function(alpha,z)-alpha1*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat1_log <- mean(log(fasts_tp1_c)) # 9.852738

optimal <- optimize(llminus,c(1,1e12)*xihat1_log/sd(log(fasts_tp1_c)),z=log(fasts_tp1_c))

alphahat1_log <- optimal[[1]] # 33.54351

p1 <- (1:n1-0.5)/n1

qgam1_log <- xihat1_log*qgamma(p1,alphahat1_log)/alphahat1_log

Zgam1_log <- xihat1_log*rgamma(n1,alphahat1_log)/alphahat1_log

plot(qgam1_log,sort(log(fasts_tp1_c)))

fhat1_log <- density(log(fasts_tp1_c),from=0,to=20)

plot(fhat1_log,type="l",xlab="",ylab="",ylim=c(0,0.28),main=NA,col="red")

lines(density(Zgam1_log,from=0),col="blue")

legend(x="topright",legend=c("Claim_size_type1_central_log","Gamma_distr."),col=c("red","blue"),lty=c(1,1))

#

#3. Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)
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}

o <- optimize(llminus,c(1,1e20),z=fasts_tp1_c);

betahat1 <- o[[1]]; # 9.923929e+19

alphahat1 <- 1/mean(log(1+fasts_tp1_c/betahat1)) # 1.072477e+15

p1 <- (1:n1-0.5)/n1;

qpar1 <- betahat1*((1-p1)**(-(1/alphahat1))-1)

Zpar1 <- betahat1*(runif(n1)**(-(1/alphahat1))-1)

plot(qpar1,sort(fasts_tp1_c))

plot(fhat1,type="l",xlab="",ylab="",main=NA,ylim=c(0,4e-5),col="red")

lines(density(Zpar1,from=0,bw=20000),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type1_central","Pareto_distr."),col=c("red","blue"),lwd=1,lty=c

(1,1))

#

#4. Extended Pareto distribution

#

llminus <- function(s,z){t=exp(s);

l_1=-lgamma(t[1]+t[2])+lgamma(t[1])+lgamma(t[2])+t[2]*log(t[3]);

l_2=-(t[2]-1)*mean(log(z))+(t[1]+t[2])*mean(log(1+z/t[3]));

l_1+l_2;

}

o <- optim(c(1,0.7,log(mean((fasts_tp1_c)))),llminus,z=fasts_tp1_c)

alpha1_expar <- exp(o$par[1]) # 0.9464847

theta1_expar <- exp(o$par[2]) # 1.27438

beta1_expar <- exp(o$par[3]) # 11881.65

W1=beta1_expar*rgamma(1e5,theta1_expar)/rgamma(1e5,alpha1_expar)

b1 <- 6903315

ind1 <- which(W1 > b1)

W1 <- W1[-ind1]

Z1 <- W1[1:n1]

plot(sort(Z1),sort(fasts_tp1_c))

z1 <- 1:(3e5)

plot(fhat1,type="l",xlab="",ylab="",main=NA,ylim=c(0,5e-5),col="red")

lines(z1,dExPareto(z1,alpha1_expar, theta1_expar,beta1_expar),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type1_central","Extended_Pareto_distr."),col=c("red","blue"),lwd

=1,lty=c(1,1))

#########################

###Over-threshold part###

#########################

fasts_tp1_e <- new_fasts_tp1[new_fasts_tp1>6903315]-6903315

#

#Pareto

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e12),z=fasts_tp1_e);

betahat1_e <- o[[1]]; # 38509614

alphahat1_e <- 1/mean(log(1+fasts_tp1_e/betahat1_e)) # 4.636787

n <- length(fasts_tp1_e);

p <- (1:n-0.5)/n;

qpar1_e <- betahat1_e*((1-p)**(-(1/alphahat1_e))-1)

Zpar1_e <- betahat1_e*(runif(n)**(-(1/alphahat1_e))-1)
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plot(qpar1_e,sort(fasts_tp1_e))

plot(density(fasts_tp1_e,from=0),col="red",ylim=c(0,9e-08),main=NA)

lines(density(Zpar1_e,from=0),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type1_over_threshold","Pareto_distr."),col=c("red","blue"),lwd=1,

lty=c(1,1))

#################################

###Claim size oftype2 and typ3###

#################################

new_claim <- subset(data,fasts>3)

fasts2 <- new_claim[new_claim$V5==2,]

new_fasts_tp2 <- fasts2[[7]]

fasts3 <- new_claim[new_claim$V5==3,]

new_fasts_tp3 <- fasts3[[7]]

new_fasts_tp23 <- c(new_fasts_tp2,new_fasts_tp3)

probs <- c(seq(0,0.9,.05),seq(0.9,0.99,.001),seq(0.99,0.999,.0001))

quantile(new_fasts_tp23,probs=probs)

meanExcessPlot(new_fasts_tp23,probs=probs,interactive=TRUE)

abline(v=15108527,col="red")

#From this point the observations form almost a straight line:

#$x0

#[1] 15108527

#$k

#[1] 36 # Number of observations over the threshold

#attr(,"class")

#[1] "paretoScale"

#Find the corresponding quantile

Fhat23 <- ecdf(new_fasts_tp23)

Fhat23(15108527)

#0.9977321 # 0.2% over-threshold

fasts_tp23_c <- new_fasts_tp23[new_fasts_tp23<=15108527]

##################

###Central part###

##################

#

#1. Log-normal distribution

#

n23 <- length(fasts_tp23_c) # 15838

mu23 <- mean(log(fasts_tp23_c)) # 10.26194

sigma23 <- sd(log(fasts_tp23_c)) # 1.893885

xi_lognorm23 <- exp(sigma23^2/2+mu23) # 172016

p23 <- (1:n23-0.5)/n23

qpar23 <- qlnorm(p23,mu23,sigma23)

fhat23 <- density(fasts_tp23_c,from=0,to=3e5)

plot(qpar23,sort(fasts_tp23_c))

plot(fhat23,type="l",xlab="",ylab="",main=NA,xlim=c(0,250000),ylim=c(0,5e-5),col="red")

lines(1:3e5,dlnorm(1:3e5,mu23,sigma23),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type2_and_type3_central","Log_normal_distr."),col=c("red","blue"),

lty=c(1,1))
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#

#2. Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat23 <- mean(fasts_tp23_c) # 205825.5

optimal <- optimize(llminus,c(1,1e12)*xihat23/sd(fasts_tp23_c),z=fasts_tp23_c)

alphahat23 <- optimal[[1]] # 0.3421276

p23 <- (1:n23-0.5)/n23

qgam23 <- xihat23*qgamma(p23,alphahat23)/alphahat23

Zgam23 <- xihat23*rgamma(n23,alphahat23)/alphahat23

plot(qgam23,sort(fasts_tp23_c))

plot(fhat23,type="l",xlab="",ylab="",ylim=c(0,2.5e-05),main=NA,col="red")

lines(density(Zgam23,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type2_and_type3_central","Gamma_distr."),col=c("red","blue"),lty=c

(1,1))

#

#2.1 Log-Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat23_log <- mean(log(fasts_tp23_c)) # 10.26194

optimal <- optimize(llminus,c(1,1e12)*xihat23_log/sd(log(fasts_tp23_c)),z=log(fasts_tp23_c))

alphahat23_log <- optimal[[1]] # 28.81373

p23 <- (1:n23-0.5)/n23

qgam23_log <- xihat23_log*qgamma(p23,alphahat23_log)/alphahat23_log

Zgam23_log <- xihat23_log*rgamma(n23,alphahat23_log)/alphahat23_log

plot(qgam23_log,sort(log(fasts_tp23_c)))

fhat23_log <- density(log(fasts_tp23_c),from=0,to=20)

plot(fhat23_log,type="l",xlab="",ylab="",ylim=c(0,0.25),main=NA,col="red")

lines(density(Zgam23_log,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type2_and_type3_central_log","Gamma_distr."),col=c("red","blue"),

lty=c(1,1))

#

#3. Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta <- 1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e20),z=fasts_tp23_c);

betahat23 <- o[[1]]; # 9.585355e+19

alphahat23 <- 1/mean(log(1+fasts_tp23_c/betahat23)) # 4.678934e+14

qpar23 <- betahat23*((1-p23)**(-(1/alphahat23))-1)

Zpar23 <- betahat23*(runif(n23)**(-(1/alphahat23))-1)

plot(qpar23,sort(fasts_tp23_c))

plot(fhat23,type="l",xlab="",ylab="",main=NA,ylim=c(0,2e-5),col="red")

lines(density(Zpar23,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type2_and_type3_central","Pareto_distr."),col=c("red","blue"),lwd

=1,lty=c(1,1))

#

#4. Extended Pareto distribution

#

llminus <- function(s,z){t=exp(s);

l_1=-lgamma(t[1]+t[2])+lgamma(t[1])+lgamma(t[2])+t[2]*log(t[3]);
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l_2=-(t[2]-1)*mean(log(z))+(t[1]+t[2])*mean(log(1+z/t[3]));

l_1+l_2;

}

o <- optim(c(1,0.7,log(mean((fasts_tp23_c)))),llminus,z=fasts_tp23_c)

alpha23_expar <- exp(o$par[1]) # 0.798279

theta23_expar <- exp(o$par[2]) # 1.083934

beta23_expar <- exp(o$par[3]) # 16987.06

W23 <- beta23_expar*rgamma(1e5,theta23_expar)/rgamma(1e5,alpha23_expar)

b23 <- 15108527

ind23 <- which(W23 > b23)

W23<- W23[-ind23]

Z23<- W23[1:n23]

plot(sort(Z23),sort(fasts_tp23_c))

z23 <- 1:(3e5)

plot(fhat23,type="l",xlab="",ylab="",main=NA,ylim=c(0,4e-5),col="red")

lines(z23,dExPareto(z23,alpha23_expar,theta23_expar,beta23_expar),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type2_and_type3_central","Extended_Pareto_distr."),col=c("red","

blue"),lwd=1,lty=c(1,1))

#########################

###Over-threshold part###

#########################

fasts_tp23_e <- new_fasts_tp23[new_fasts_tp23>15108527]-15108527

#

#Pareto

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e12),z=fasts_tp23_e);

betahat23_e <- o[[1]]; # 34391349

alphahat23_e <- 1/mean(log(1+fasts_tp23_e/betahat23_e)) # 2.446868

n <- length(fasts_tp23_e); # 36

p <- (1:n-0.5)/n;

qpar23_e <- betahat23_e*((1-p)**(-(1/alphahat23_e))-1)

Zpar23_e <- betahat23_e*(runif(n)**(-(1/alphahat23_e))-1)

plot(qpar23_e,sort(fasts_tp23_e))

plot(density(fasts_tp23_e,from=0),ylim=c(0,4e-08),col="red",main=NA)

lines(density(Zpar23_e,from=0),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type2_and_type3_over_threshold","Pareto_distr."),col=c("red","blue

"),lwd=1,lty=c(1,1))

#############################################

###Claim size of type 4, type 5 and type 9###

#############################################

new_claim <- subset(data,fasts>3)

fasts4 <- new_claim[new_claim$V5==4,]

new_fasts_tp4 <- fasts4[[7]]

fasts5 <- new_claim[new_claim$V5==5,]

new_fasts_tp5 <- fasts5[[7]]

fasts9 <- new_claim[new_claim$V5==9,]

new_fasts_tp9 <- fasts9[[7]]
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new_fasts_tp459 <- c(new_fasts_tp4,new_fasts_tp5,new_fasts_tp9) # 4059

probs <- c(seq(0,0.9,.05),seq(0.9,0.99,.001),seq(0.99,0.999,.0001))

quantile(new_fasts_tp459,probs=probs)

meanExcessPlot(new_fasts_tp459,probs=probs,interactive=TRUE)

abline(v=8876982 ,col="red")

#From this point the observations form almost a straight line:

#$x0

#[1] 8876982

#$k

#[1] 9 # Number of observations over the threshold

#attr(,"class")

#[1] "paretoScale"

#Find the corresponding quantile

Fhat459 <- ecdf(new_fasts_tp459)

Fhat459(8876982)

#0.9977827 # 0.2% over-threshold

fasts_tp459_c <- new_fasts_tp459[new_fasts_tp459<=8876982]

###################

###Central part:###

###################

#

#1. Log-normal distribution

#

n459 <- length(fasts_tp459_c) # 4050

mu459 <- mean(log(fasts_tp459_c)) # 9.933211

sigma459 <- sd(log(fasts_tp459_c)) # 1.976607

xi_lognorm459 <- exp(sigma459^2/2+mu459) # 145320.7

p459 <- (1:n459-0.5)/n459

qpar459 <- qlnorm(p459,mu459,sigma459)

fhat459 <- density(fasts_tp459_c,from=0,to=3e5)

plot(qpar459,sort(fasts_tp459_c))

plot(fhat459,type="l",xlab="",ylab="",main=NA,xlim=c(0,200000),ylim=c(0,7e-5),col="red")

lines(1:3e5,dlnorm(1:3e5,mu459,sigma459),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_central","Log_normal_distr."),col=c("red","

blue"),lty=c(1,1))

#

#2. Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat459 <- mean(fasts_tp459_c) # 157480.4

optimal <- optimize(llminus,c(1,1e12)*xihat459/sd(fasts_tp459_c),z=fasts_tp459_c)

alphahat459 <- optimal[[1]] # 0.3332724

p459 <- (1:n459-0.5)/n459

qgam459 <- xihat459*qgamma(p459,alphahat459)/alphahat459

Zgam459 <- xihat459*rgamma(n459,alphahat459)/alphahat459

plot(qgam459,sort(fasts_tp459_c))

plot(fhat459,type="l",xlab="",ylab="",ylim=c(0,2.5e-05),main=NA,col="red")

lines(density(Zgam23,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_central","Gamma_distr."),col=c("red","blue")
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,lty=c(1,1))

#

#2.1 Log-Gamma distribution

#

llminus <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z)))

xihat459_log <- mean(log(fasts_tp459_c)) # 9.933211

optimal <- optimize(llminus,c(1,1e12)*xihat459_log/sd(log(fasts_tp459_c)),z=log(fasts_tp459_c))

alphahat459_log <- optimal[[1]] # 25.24475

qgam459_log <- xihat459_log*qgamma(p459,alphahat459_log)/alphahat459_log

Zgam459_log <- xihat459_log*rgamma(n459,alphahat459_log)/alphahat459_log

plot(qgam459_log,sort(log(fasts_tp459_c)))

fhat459_log <- density(log(fasts_tp459_c),from=0,to=20)

plot(fhat459_log,type="l",xlab="",ylab="",ylim=c(0,0.25),main=NA,col="red")

lines(density(Zgam459_log,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_central_log","Gamma_distr."),col=c("red","

blue"),lty=c(1,1))

#

#3. Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e20),z=fasts_tp459_c);

betahat459 <- o[[1]]; # 9.216166e+19

alphahat459 <- 1/mean(log(1+fasts_tp459_c/betahat459)) # 5.900676e+14

qpar459 <- betahat459*((1-p459)**(-(1/alphahat459))-1)

Zpar459 <- betahat459*(runif(10000)**(-(1/alphahat459))-1)

plot(qpar459,sort(fasts_tp459_c))

plot(fhat459,type="l",xlab="",ylab="",main=NA,ylim=c(0,2.5e-5),col="red")

lines(density(Zpar459,from=0),main=NA,col="blue")

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_central","Pareto_distr."),col=c("red","blue"

),lwd=1,lty=c(1,1))

#

#4. Extended Pareto distribution

#

llminus <- function(s,z){t=exp(s);

l_1=-lgamma(t[1]+t[2])+lgamma(t[1])+lgamma(t[2])+t[2]*log(t[3]);

l_2=-(t[2]-1)*mean(log(z))+(t[1]+t[2])*mean(log(1+z/t[3]));

l_1+l_2;

}

o <- optim(c(1,0.7,log(mean((fasts_tp459_c)))),llminus,z=fasts_tp459_c)

alpha459_expar <- exp(o$par[1]) # 0.6263603

theta459_expar <- exp(o$par[2]) # 1.4741

beta459_expar <- exp(o$par[3]) # 4778.121

W459 <- beta459_expar*rgamma(1e5,theta459_expar)/rgamma(1e5,alpha459_expar)

b459 <- 8876982

ind459 <- which(W459 > b459)

W459 <- W459[-ind459]

Z459 <- W459[1:n459]

plot(sort(Z459),sort(fasts_tp459_c))

z459 <- 1:(3e5)

plot(fhat459,type="l",xlab="",ylab="",main=NA,xlim=c(0,2.5e5),ylim=c(0,5.7e-5),col="red")
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lines(z459,dExPareto(z459,alpha459_expar,theta459_expar,beta459_expar),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_central","Extended_Pareto_distr."),col=c("

red","blue"),lwd=1,lty=c(1,1))

##########################

###Over-threshold part:###

##########################

fasts_tp459_e <- new_fasts_tp459[new_fasts_tp459>8876982]-8876982

#

#Pareto distribution

#

llminus <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

}

o <- optimize(llminus,c(1,1e12),z=fasts_tp459_e);

betahat459_e <- o[[1]]; # 999990662494

alphahat459_e <- 1/mean(log(1+fasts_tp459_e/betahat459_e)) # 42783.79

n <- length(fasts_tp459_e);

p <- (1:n-0.5)/n;

qpar459_e <- betahat459_e*((1-p)**(-(1/alphahat459_e))-1)

Zpar459_e <- betahat459_e*(runif(n)**(-(1/alphahat459_e))-1)

plot(qpar459_e,sort(fasts_tp459_e))

plot(density(fasts_tp459_e,from=0),ylim=c(0,4.5e-08),col="red",main=NA)

lines(density(Zpar459_e,from=0),col="blue",main=NA)

legend(x="topright",legend=c("Claim_size_type4_type5_and_type9_over_threshold","Pareto_distr."),col=c("red"

,"blue"),lwd=1,lty=c(1,1))

Codes for the bootstrap and Monte Carlo:

mb <- 1000 # Bootstrap replication

m <- 100000 # Number of MC simulation

epsilon <- 0.01

J <- 431

K <- 34

##############

###All data###

##############

#

#Bootstrap of the estimates from the negative binomial distiribution

#

alpha_tot <- 1.069890 # ML estimate

xi_tot <- 5.791611 # ML estimate

n <- J*K

NB_tot <- matrix(rnegbin(n*mb,mu=xi_tot,theta=alpha_tot),n,mb)

llminusNBin <- function(alpha,n)

{

xi=mean(n)

-mean(lgamma(n+alpha))+lgamma(alpha)-alpha*log(alpha)-mean(n*log(xi)-(n+alpha)*log(alpha+xi))

}

xihatstar_NB <- 1:mb*0
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alphahatstar_NB <- 1:mb*0

for (i in 1:mb)

{

xihatstar_NB[i]=mean(NB_tot[,i])

optimal_star=optimize(llminusNBin,c(0.0000001,100),n=NB_tot[,i])$min

alphahatstar_NB[i]=optimal_star

}

#Confidence intervals for the estimates:

xihatstar_NB_CI <- c(quantile(xihatstar_NB,0.025),quantile(xihatstar_NB,0.975))

#(5.690591 5.897511)

alphahatstar_NB_CI <- c(quantile(alphahatstar_NB,0.025),quantile(alphahatstar_NB,0.975))

#(1.040933 1.101031)

#

#Bootstrap of the estimates from the Gamma distribution on log scale for

#the central part and from the Pareto for the extreme part

#

n_tot <- length(fasts_new)

b <- 13898075

rho <- 0.002 # 0.02% over-threshold part.

xihat_log <- 9.955264

alphahat_log <- 31.25975 # ML estimate

betahat_e <- 19350799

alphahat_e <- 2.119329

U <- matrix(runif(n_tot*mb),n_tot,mb)

llminusLGamma <- function(alpha,z)-alpha*(log(alpha)-1)+lgamma(alpha)+alpha*(log(mean(z))-mean(log(z))) #

Log-likelihood function of the Gamma distribution

llminusPareto <- function(beta,z)

{

alphahatbeta=1/mean(log(1+z/beta));

-log(alphahatbeta/beta)+(1+1/alphahatbeta)

} # Log-likelihood function of the Pareto distribution

alphahatstar_gamma <- 1:mb*0

xihatstar_gamma <- 1:mb*0

betahatstar_e <- 1:mb*0

alphahatstar_e <- 1:mb*0

for (i in 1:mb)

{

n_c=sum(U[,i] > rho)

Zstar_c_log=xihat_log*rgamma(n_c,alphahat_log)/alphahat_log

xihatstar_gamma[i]=mean(Zstar_c_log)

optimal_star=optimize(llminusLGamma,c(1,1e20)*xihatstar_gamma[i]/sd(Zstar_c_log),z=Zstar_c_log)

alphahatstar_gamma[i]=optimal_star[[1]]

Zstar_e=betahat_e*(runif(n_tot-n_c)**(-1/alphahat_e)-1)

optimalstar_e=optimize(llminusPareto, c(1,1e12),z=Zstar_e)

betahatstar_e[i]=optimalstar_e[[1]]

alphahatstar_e[i]=1/mean(log(1+Zstar_e/betahatstar_e[i]))

}

#Confidence intervals of the parameters

xihatstar_gamma_CI <- c(quantile(xihatstar_gamma,0.025),quantile(xihatstar_gamma,0.975))

#(9.942354 9.967597)
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alphahatstar_gamma_CI <- c(quantile(alphahatstar_gamma,0.025),quantile(alphahatstar_gamma,0.975))

#(30.94986 31.60475)

alphahatstar_e_CI <- c(quantile(alphahatstar_e,0.025),quantile(alphahatstar_e,0.975))

#(1.449022 4.687899 )

betahatstar_e_CI <- c(quantile(betahatstar_e,0.025),quantile(betahatstar_e,0.975))

#(10746208 54251868)

#

#MC simulation of the reserve based on the common model: (w/o bootstrap)

#

Nhat <- rnegbin(m,mu=J*xi_tot,theta=J*alpha_tot)

Xhat <- 1:m*0

for (i in 1:m)

{

U=runif(Nhat[i])

n_c=sum(U>rho)

n_e=sum(U<=rho)

Z_c=exp(xihat_log*rgamma(n_c,alphahat_log)/alphahat_log)

Z_e=b+betahat_e*(runif(n_e)**(-1/alphahat_e)-1)

Xhat[i]=sum(Z_c)+sum(Z_e)

}

qhat <- sort(Xhat)[(1-epsilon)*m]

#1202608596

#

#Nested bootstrap Monte Carlo, negative binomial, log-Gamma and Pareto

#

m1<- m*mb

Xhatstar <- 1:m1*0

ind <- rep(1:mb,m) # replicate 1 to mb for m times

Nhatstar <- rnegbin(m1,mu=J*xihatstar_NB,theta=J*alphahatstar_NB)

for (j in 1:m1)

{

U=runif(Nhatstar[j])

n_c=sum(U>rho)

n_e=sum(U<=rho)

Z_c=exp(xihatstar_gamma[ind[j]]*rgamma(n_c,alphahatstar_gamma[ind[j]])/alphahatstar_gamma[ind[j]])

Z_e=b+betahatstar_e[ind[j]]*(runif(n_e)**(-1/alphahatstar_e[ind[j]])-1)

Xhatstar[j]=sum(Z_c)+sum(Z_e)

}

Xhatstar <- matrix(Xhatstar,byrow=T,m)

qhat_star <- apply(Xhatstar,2,sort)[m*(1-epsilon),]

#Percentile confidence interval for the reserve estimate

qhat_star_CI <- c(quantile(qhat_star,0.025),quantile(qhat_star,0.975))

#(1029884064 1677384667)

#Standard deviation of qhar_star

qhatstar_sd <- sd(qhat_star)

#195428602

############

###Type 1###

############

#

#Bootstrap of the estimates of NB
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#

alpha1 <- 1.063813

xi1 <- 4.055916

NB1<- matrix(rnegbin(n*mb,mu=xi1,theta=alpha1),n,mb)

xihatstar1_NB <- 1:mb*0

alphahatstar1_NB <- 1:mb*0

for (i in 1:mb)

{

xihatstar1_NB[i]=mean(NB1[,i])

optimal1_star=optimize(llminusNBin,c(0.0000001,100),n=NB1[,i])$min

alphahatstar1_NB[i]=optimal1_star

}

#

#Bootstrap of Gamma on log scale for the central part and Pareto for the extreme part:

#

n1 <- length(new_fasts_tp1)

b1 <- 6903315

rho1 <- 0.003

xihat1_log <- 9.852738 # ML estimate

alphahat1_log <- 33.54351 # MLE

betahat1_e <- 38509614

alphahat1_e <- 4.636787

U1 <- matrix(runif(n1*mb),n1,mb)

alphahatstar1_gamma <- 1:mb*0

xihatstar1_gamma <- 1:mb*0

betahatstar1_e <- 1:mb*0

alphahatstar1_e <- 1:mb*0

for (i in 1:mb)

{

n1_c=sum(U1[,i] > rho1)

Zstar1_c_log=xihat1_log*rgamma(n1_c,alphahat1_log)/alphahat1_log

xihatstar1_gamma[i]=mean(Zstar1_c_log)

optimal1_star=optimize(llminusLGamma,c(1,1e20)*xihatstar1_gamma[i]/sd(Zstar1_c_log),z=Zstar1_c_log)

alphahatstar1_gamma[i]=optimal1_star[[1]]

Zstar1_e=betahat1_e*(runif(n1-n1_c)**(-1/alphahat1_e)-1)

optimalstar1_e=optimize(llminusPareto, c(1,1e12),z=Zstar1_e)

betahatstar1_e[i]=optimalstar1_e[[1]]

alphahatstar1_e[i]=1/mean(log(1+Zstar1_e/betahatstar1_e[i]))

}

#Confidence intervals for the parameters:

xihatstar1_gamma_CI <- c(quantile(xihatstar1_gamma,0.025),quantile(xihatstar1_gamma, 0.975))

#(9.837348 9.868828)

alphahatstar1_gamma_CI <- c(quantile(alphahatstar1_gamma,0.025),quantile(alphahatstar1_gamma,0.975))

#(33.14042 33.94620)

alphahatstar1_e_CI <- c(quantile(alphahatstar1_e,0.025),quantile(alphahatstar1_e,0.975))

#(2.529495 93210.694254)

betahatstar1_e_CI <- c(quantile(betahatstar1_e,0.025),quantile(betahatstar1_e,0.975))

#(17384278 999987492939)

#

#MC-estimate for the total loss

#

Nhat1 <- rnegbin(m,mu=J*xi1,theta=J*alpha1)
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Xhat1 <- 1:m*0

for (i in 1:m)

{

U=runif(Nhat1[i])

n_c=sum(U>rho1)

n_e=sum(U<=rho1)

Z_c=exp(xihat1_log*rgamma(n_c,alphahat1_log)/alphahat1_log)

Z_e=b1+betahat1_e*(runif(n_e)**(-1/alphahat1_e)-1)

Xhat1[i]=sum(Z_c)+sum(Z_e)

}

#

#Nested bootstrap Monte Carlo

#

m1 <- m*mb

Xhatstar1 <- 1:m1*0

ind <- rep(1:mb,m) #replicate 1 to mb for m times

epsilon <- 0.01

Nhatstar1 <- rnegbin(m1,mu=J*xihatstar1_NB,theta=J*alphahatstar1_NB)

for (j in 1:m1)

{

U1=runif(Nhatstar1[j])

n1_c=sum(U1>rho1)

n1_e=sum(U1<=rho1)

Z1_c=exp(xihatstar1_gamma[ind[j]]*rgamma(n1_c,alphahatstar1_gamma[ind[j]])/alphahatstar1_gamma[ind[j]])

Z1_e=b1+betahatstar1_e[ind[j]]*(runif(n1_e)**(-1/alphahatstar1_e[ind[j]])-1)

Xhatstar1[j]=sum(Z1_c)+sum(Z1_e)

}

Xhatstar1 <- matrix(Xhatstar1,byrow=T,m)

#######################

###Type 2 and type 3###

#######################

#

#Bootstrap estimates of NB:

#

alpha23 <- 0.4686309

xi23 <- 1.3236635

NB23 <- matrix(rnegbin(n*mb,mu=xi23,theta=alpha23),n,mb)

xihatstar23_NB <- 1:mb*0

alphahatstar23_NB <- 1:mb*0

for (i in 1:mb)

{

xihatstar23_NB[i]=mean(NB23[,i])

optimal23_star=optimize(llminusNBin,c(0.0000001,100),n=NB23[,i])$min

alphahatstar23_NB[i]=optimal23_star

}

#

#Bootstrap of Gamma on log scale for the central part and Pareto for the extreme part.

#

n23 <- length(new_fasts_tp23)

b23 <- 15108527

rho23 <- 0.002
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xihat23_log <- 10.26194

alphahat23_log <- 28.81373

betahat23_e <- 34391349

alphahat23_e <- 2.446868

U23 <- matrix(runif(n23*mb),n23,mb)

alphahatstar23_gamma <- 1:mb*0

xihatstar23_gamma <- 1:mb*0

betahatstar23_e <- 1:mb*0

alphahatstar23_e <- 1:mb*0

for (i in 1:mb)

{

n23_c=sum(U23[,i] > rho23)

Zstar23_c_log=xihat23_log*rgamma(n23_c,alphahat23_log)/alphahat23_log

xihatstar23_gamma[i]=mean(Zstar23_c_log)

optimal23_star=optimize(llminusLGamma,c(1,1e20)*xihatstar23_gamma[i]/sd(Zstar23_c_log),z=Zstar23_c_log)

alphahatstar23_gamma[i]=optimal23_star[[1]]

Zstar23_e=betahat23_e*(runif(n23-n23_c)**(-1/alphahat23_e)-1)

optimalstar23_e=optimize(llminusPareto, c(1,1e12),z=Zstar23_e)

betahatstar23_e[i]=optimalstar23_e[[1]]

alphahatstar23_e[i]=1/mean(log(1+Zstar23_e/betahatstar23_e[i]))

}

#Confidence intervals for the parameters

xihatstar23_gamma_CI <- c(quantile(xihatstar23_gamma,0.025),quantile(xihatstar23_gamma,0.975))

#(10.23328 10.29375)

alphahatstar23_gamma_CI <- c(quantile(alphahatstar23_gamma,0.025),quantile(alphahatstar23_gamma,0.975))

#(28.20578 29.48510)

alphahatstar23_e_CI <- c(quantile(alphahatstar23_e,0.025),quantile(alphahatstar23_e,0.975))

#(1.117826 66996.247717)

betahatstar23_e_CI <- c(quantile(betahatstar23_e,0.025),quantile(betahatstar23_e,0.975))

#(9491445 999999486470)

#

#MC-estimate for the total loss

#

Nhat23 <- rnegbin(m,mu=J*xi23,theta=J*alpha23)

Xhat23 <- 1:m*0

for (i in 1:m)

{

U=runif(Nhat23[i])

n_c=sum(U>rho23)

n_e=sum(U<=rho23)

Z_c=exp(xihat23_log*rgamma(n_c,alphahat23_log)/alphahat23_log)

Z_e=b23+betahat23_e*(runif(n_e)**(-1/alphahat23_e)-1)

Xhat23[i]=sum(Z_c)+sum(Z_e)

}

#

#Nested algorithm

#

m1 <- m*mb

Xhatstar23 <- 1:m1*0

ind <- rep(1:mb,m) #replicate 1 to mb for m times

epsilon <- 0.01

Nhatstar23 <- rnegbin(m1,mu=J*xihatstar23_NB,theta=J*alphahatstar23_NB)

for (j in 1:m1)
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{

U23=runif(Nhatstar23[j])

n23_c=sum(U23>rho23)

n23_e=sum(U23<=rho23)

Z23_c=exp(xihatstar23_gamma[ind[j]]*rgamma(n23_c,alphahatstar23_gamma[ind[j]])/alphahatstar23_gamma[ind[j

]])

Z23_e=b23+betahatstar23_e[ind[j]]*(runif(n23_e)**(-1/alphahatstar23_e[ind[j]])-1)

Xhatstar23[j]=sum(Z23_c)+sum(Z23_e)

}

Xhatstar23 <- matrix(Xhatstar23,byrow=T,m)

##############################

###Type 4, type 5 and type9###

##############################

#

#Bootstrap estimates of NB

#

alpha459 <- 0.2812828 # MLE

xi459 <- 0.4125248 # MLE

NB459 <- matrix(rnegbin(n*mb,mu=xi459,theta=alpha459),n,mb)

xihatstar459_NB <- 1:mb*0

alphahatstar459_NB <- 1:mb*0

for (i in 1:mb)

{

xihatstar459_NB[i]=mean(NB459[,i])

optimal459_star=optimize(llminusNBin,c(0.0000001,100),n=NB459[,i])$min

alphahatstar459_NB[i]=optimal459_star

}

#Sum up the bootstrap estimates from the separate models

xihatstarNB_sum <- xihatstar1_NB+xihatstar23_NB+xihatstar459_NB

alphahatstarNB_sum <- alphahatstar1_NB+alphahatstar23_NB+alphahatstar459_NB

#Confidence interval for the bootstrap estimates

xihatstarNB_sum_CI <- c(quantile(xihatstarNB_sum,0.025),quantile(xihatstarNB_sum,0.975))

#(5.707675 5.870024)

alphahatstarNB_sum_CI <- c(quantile(alphahatstarNB_sum,0.025),quantile(alphahatstarNB_sum,0.975))

#(1.771981 1.855504)

#

#Bootstrap of Gamma on log scale for the central part and Pareto for the extreme part.

#

n459 <- length(new_fasts_tp459)

b459 <- 8876982

rho459 <- 0.002

xihat459_log <- 9.933211 # MLE

alphahat459_log <- 25.24475 # MLE

betahat459_e <- 999990662494 # MLE

alphahat459_e <- 42783.79 # MLE

U459 <- matrix(runif(n459*mb),n459,mb)

alphahatstar459_gamma <- 1:mb*0

xihatstar459_gamma <- 1:mb*0

betahatstar459_e <- 1:mb*0

alphahatstar459_e <- 1:mb*0

for (i in 1:mb)
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{

n459_c=sum(U459[,i] > rho459)

Zstar459_c_log=xihat459_log*rgamma(n459_c,alphahat459_log)/alphahat459_log

xihatstar459_gamma[i]=mean(Zstar459_c_log)

optimal459_star=optimize(llminusLGamma,c(1,1e20)*xihatstar459_gamma[i]/sd(Zstar459_c_log),z=Zstar459_c_

log)

alphahatstar459_gamma[i]=optimal459_star[[1]]

Zstar459_e=betahat459_e*(runif(n459-n459_c)**(-1/alphahat459_e)-1)

optimalstar459_e=optimize(llminusPareto, c(1,1e12),z=Zstar459_e)

betahatstar459_e[i]=optimalstar459_e[[1]]

alphahatstar459_e[i]=1/mean(log(1+Zstar459_e/betahatstar459_e[i]))

}

#Confidence intervals for the parameters

xihatstar459_gamma_CI <- c(quantile(xihatstar459_gamma,0.025),quantile(xihatstar459_gamma,0.975))

#(9.873799 9.996240)

alphahatstar459_gamma_CI <- c(quantile(alphahatstar459_gamma,0.025),quantile(alphahatstar459_gamma,0.975))

#(24.19066 26.41963)

alphahatstar459_e_CI <- c(quantile(alphahatstar459_e,0.025),quantile(alphahatstar459_e,0.975))

#(1.49066 117445.41127 )

betahatstar459_e_CI <- c(quantile(betahatstar459_e,0.025),quantile(betahatstar459_e,0.975))

#(13392616 999999936547 )

#

#MC-estimates for the total loss

#

Nhat459 <- rnegbin(m,mu=J*xi459,theta=J*alpha459)

Xhat459 <- 1:m*0

for (i in 1:m)

{

U=runif(Nhat459[i])

n_c=sum(U>rho459)

n_e=sum(U<=rho459)

Z_c=exp(xihat459_log*rgamma(n_c,alphahat459_log)/alphahat459_log)

Z_e=b459+betahat459_e*(runif(n_e)**(-1/alphahat459_e)-1)

Xhat459[i]=sum(Z_c)+sum(Z_e)

}

#Sum up the total loss from the separate models

Xhat_tot <- Xhat1+Xhat23+Xhat459

#MC-estimate for the reserve based on the separate models

qhat_tot <- sort(Xhat_tot)[(1-epsilon)*m]

#1357399177

#

#Nested algorithm

#

Xhatstar459 <- 1:m1*0

Nhatstar459 <- rnegbin(m1,mu=J*xihatstar459_NB,theta=J*alphahatstar459_NB)

for (j in 1:m1)

{

U459=runif(Nhatstar459[j])

n459_c=sum(U459>rho459)

n459_e=sum(U459<=rho459)

Z459_c=exp(xihatstar459_gamma[ind[j]]*rgamma(n459_c,alphahatstar459_gamma[ind[j]])/alphahatstar459_gamma[

ind[j]])

Z459_e=b459+betahatstar459_e[ind[j]]*(runif(n459_e)**(-1/alphahatstar459_e[ind[j]])-1)

Xhatstar459[j]=sum(Z459_c)+sum(Z459_e)

}

Xhatstar459 <- matrix(Xhatstar459,byrow=T,m)
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#Sum up the bootstrap MC estimates of the total loss from the separate models and #calculate the

corresponding reserve

Xhatstar_tot <- Xhatstar1+Xhatstar23+Xhatstar459

qhat_star_tot <- apply(Xhatstar_tot,2,sort)[m*(1-epsilon),]

#Confidence interval of the bootstrap MC estimates of the reserve based on a #combination of the separate

models

qhatstar_tot_CI <- c(quantile(qhat_star_tot, 0.025),quantile(qhat_star_tot, 0.975))

#(1262036311 2044171444)

#Standard deviation of the bootstrap MC estimates of the reserv based on a #combination of the separate

models

qhatstar_tot_sd <- sd(qhat_star_tot)

#248308341
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