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Abstract

An important aspect in portfolio optimization is the quantification of risk.
Variance was the starting point, as proposed by Harry Markowitz in the
1950’s, but it’s obviously flawed since it measures high returns as risk. Re-
search have been done from both theoretical and logic point of view to im-
prove risk measures. The result is two different groups of measures defined
by axioms: (financial) deviation measures capturing the uncertainty, and risk
measures which attempts to measure total exposure.

I will in this thesis present an overview of new ideas about measurement
of risk. I focus especially on the work of Ralph T. Rockafellar and Stanislav
Uryasev. This include Conditional Value-at-risk (CVaR), a measure that
fulfills the axioms for a risk measure, and has the possibility to be solved
by linear programming in an optimization model. I will also present the
connected CVaR deviation. For even if risk and deviation measures are
conceptual different, newer research shows an one to one relationship given
certain conditions.

Lastly I compare mean-CVaR optimization with the traditional Markowitz
model1 to see if new methods actually has improved the performance of port-
folio optimization. This is illustrated by optimizing the stocks in the S&P100
index for two different periods. I have also timed different solvers to show
the benefits of linearization.

1The Markowitz model is also known as mean-variance optimization. Described in
detail in chapter 3
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CHAPTER 1

Introduction

Portfolio optimization

The starting point for modern portfolio optimization was the Markowitz
model by Harry Markowitz. This model was released together with the ‘’Crit-
ical line algorithm” in 1952. The critical line algorithm was the first method
to find a mean-variance optimal portfolio. In 1959 Markowitz wrote the book
‘’Portfolio selection : diversification of investments”. Some areas in finance
are still based on assumptions and methods from this book, like the Capital
Asset Pricing Model(CAPM) and behavioral assumptions.

Many have stated Markowitz article as the starting point for ‘’modern
portfolio theory”, but Markowitz have said that ‘’it’s only about portfolio
theory, because it’s nothing modern about it” (Wikipedia, 2015). Even if
he is most known for portfolio optimization and sparse matrix methods,
Markowitz actually studied economics. While defending his PhD at Univer-
sity of Chicago, the concept of mathematics in portfolio theory was so new
that he was criticized for presenting mathematics and not economics.

How to think about and measure risk have been studied more carefully
after 1952. Markowitz himself found the biggest drawback of his model.
Variance as he used as risk measure is symmetric, meaning big financial
returns is counted as "risk". He realized the need for a measure capturing
the idea of financial risk more closely. In 1997 Philippe Artzner wrote the
article "thinking coherently" where he stated axioms for what should define
a modern risk measure.

Conditional value at risk(CVaR) is one of many coherent risk measures.
It’s a measure similar to value at risk (VaR)1 which is the measure used in

1VaR and CVaR throughly defined in chapter 4 and 5
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the Basel III and Solvency II regulations, but with more information about
what happens when extreme losses occurs. In 2000 Ralph T Rockafellar and
Stan Uryasev wrote "Optimization of conditional value at risk" where they
showed an alternative method for optimizing CVaR. With their approach one
minimizes CVaR and find VaR simultaneously, and the resulting optimization
problem is on linear programming form2.

”FinTech”

FinTech is a big change going through the financial sector and stand for finan-
cial technology. As stated in (CBinsights, 2015, The Future of FinTech and
Banking) : "Global investment in financial technology or ‘FinTech’ spiked in
2014 reaching more than $12B in investment, demonstrating that the digital
revolution in the sector is well underway."

As Figure 1.1 shows, investments in FinTech have tripled in one year and
the Nordic countries are a big part of it. "IKT-Norge" held many conferences
in 2015 with FinTech as main point, and states Oslo has the possibility to
become leading FinTech hub of Europe.

The impact of these financial changes is well illustration by Vipps. It was
downloaded 100 000 times the first 10 days after launch, has changed how
we transfer money and will probably change many of the online payment
systems in the years to come.

2Optimization problem with only linear objective function and constraint. Defined in
chapter 2.
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CHAPTER 1. INTRODUCTION

(a) Global investment between 2008-
2014.

(b) European investments in 2014.

Figure 1.1: Illustrations of investment done in FinTech companies.Source:
Accenture and CB insights.
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Norway has one of the most high tech bank industry in the world, where
fund investing has been easy accessed on websites for a long time. Countries
like the US and United Kingdom have a bank industry where fund and asset
management have been expensive. It’s also not an option for many people
since most banks has a high minimum amount of money that is needed to
invest.

Distrust and dissatisfaction about the bank industry has been a major
problem after the financial crisis. Some banks invested retirement funds in
assets that where so complex that risk measures were useless, hid information
about where people’s money were invested and gave misleading information
about actual risk.

Robot advisors have therefore rapidly increased to become a big business,
especially in United States. Web sites like Betterment and Wealthfront have
questionnaires about your living situations, risk and investment horizon.

Based on your answers robots will give you financial advises, but will
let the costumers take the final investments decisions. The costs are really
low and are today at around 0.25 % of costumers investments a year in
Betterment, compared to 2-3% as have been average in traditional asset
management firms. This combined with minimum investment amount of
1$, absolute transparency and good looking websites and apps makes robot
advisors attractive compared to the regular bank industry.

Figure 1.2: Percents of people believing banks had the capability to "do the
right thing". Copyrights: Edeleman
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CHAPTER 1. INTRODUCTION

Analysis of stock prices etc needs a lot of statistical methods. Opti-
mization methods will be needed to analyze all data and conclude with a
resulting asset allocation. To understand the results from statistical analy-
sis and optimization one need some financial understanding about different
assets, financial terms and assumptions used in finance. All this background
information are in chapter 2.

Chapter 3 is based on the work of Markowitz. I present his mean-variance
model with some of the basic assumptions for this model. From this model
I defined a general risk-reward model as in "Optimal financial portfolios"
by Stoyan V Stoyanov et al. I also define "the efficient frontier" which is a
illustrative tool to compare risk-reward efficient portfolios.

Chapter 4 contains the axioms defined by Artzner and his logic behind
coherent risk measure. Risk measures are compared to deviation measures
and the connection between the two as researched by Ralph T Rockafellar

Chapter 5 takes the risk measures CVaR in the form proposed by R.T
Rockafellar and Stansley Uryasev. This is shown to be a coherent measure
of risk, and is presented in a mean - CVaR problem which can be solved
by linear programming. I further describe different constraints that can be
applied in real life optimization and different scenarios generation methods
that can be used for calculations of CVaR.

Chapter 6 is numerical illustrations of portfolio optimization. I have
optimized all the stocks in the US based index S&P100 for both the mean-
variance model and the mean-CVaR model in order to compare performance
and their efficient frontier. CVaR is dependent on the scenarios used in in
the optimization problem, and four different methods are used for scenario
generation throughout the results. Together these results should illustrate
the financial advices that one can collect through portfolio optimization.

In chapter 7 I present the graphical user interface that I have made to this
thesis. Inspired by FinTech, I made an easy to use program that downloads
latest market data, gives portfolio options like risk, return and methods for
solving. When optimization is done, the user can choose a portfolio on the
efficient frontier, and different graphs for weight allocation, performance and
histogram of VaR/CVaR together with metrics for a portfolio are shown.
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CHAPTER 2

Background theory

The main goal in portfolio optimization will always be high profit with as
little risk as possible. I will use w ∈ Rn as portfolio weights, and r as
future returns or prices. For usual optimization we would just minimize
the loss function f(w), but in this setting returns are stochastic. In other
words uncertainty will have to be taken into account and optimization needs
to be done given probabilities for different scenarios. Following are some
basic results in statistics, optimization and convexity from Devore and Berk
(2007), Vanderbei (2001) and Dahl (2010), respectively, needed to understand
the portfolio models. Financial facts, which are important to interpret the
numerical results, are from Tsay (2005).

2.1 Statistics
Descriptive statistics

The first thing to analyze in portfolio optimization is the basic statistics:
mean, variance, skewness and kurtosis. What do we expect for returns, how
high is the volatility, how do different assets correspond together? All this
matters and are often implemented into the optimization method.

For a continuous random variable (RV) X with a given density p(x) we
define the expected value as

(2.1) E(X) =

∫ ∞
−∞

xp(x)dx

where x is observed values of X. The n-th central moment is defined as
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CHAPTER 2. BACKGROUND THEORY

(2.2) E((X − E[X])n) =

∫ ∞
−∞

(x− E[X])np(x)dx

where we have variance, skewness and kurtosis defined as the second,
third and fourth moment. That is

σ2
X = E

[
(X − E[X])2

]
Skew(X) =

E [(X − E[X])3]

σ3
X

Kurt(X) =
E [(X − E[X])4]

σ4
X

Variance is one of many measures used to capture volatility in finance.
Skewness and kurtosis describes the the asymmetry and tail distribution of
a random variable. Last two are important when we want to assume returns
follows some distribution.

In finance one have a lot of historical data that can be used to calibrate a
model. Given random samples x1, . . . , xm from X, sample- mean, variance,
skewness and kurtosis are defined:

E[X] =
1

m

m∑
t=1

xt

σ2
X =

1

(m− 1)

m∑
t=1

(xt − E[X])2

skew(X) =
1

(m− 1)σ3
X

m∑
t=1

(xt − E[X])3

kurt(X) =
1

(m− 1)σ4
X

m∑
t=1

(xt − E[X])4 − 3

For mean and variance these estimations are unbiased, i.e expected value
of the estimation converges to the actual value. The same does not hold for
skewness and kurtosis which both is biased. Also note that I take regular
kurtosis minus 3. This is called excess kurtosis, and is zero for a normal
distribution.

Sample definitions taken from Tsay (2005).
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2.1. STATISTICS

Dependency

Given two independent RVs, X and Y, one are often interested in how they
are related to each other. Do they change together in same direction or
completely opposite of each other? The covariance between X and Y is
defined

Cov(X, Y ) = E[(X − µX)(Y − µY )]

=

{∑
x

∑
y(x− µX)(y − µY )p(x, y) if discrete∫∞

−∞(x− µX)(y − µY )f(x, y)dx dy if continuous

where µX is expected value for X, p(x, y) is the discrete joint probability
mass function and f(x, y) is the continuous probability density function,
closer defined in the next section. When the covariance is negative the stocks
move opposite of each other, zero means close to independent and they move
together if positive.

In portfolio optimization the covariance matrix is often used, denoted
Σ. Instead of two RVs, the input is a matrix of stock prices/returns X =
[X1, X2, . . . , XN ] for N different assets, and Σ = cov(X,X). That is, the
covariance between each element in X. The diagonal of Σ is Cov(Xi, Xi)
which is simply the variance of element i. As with the descriptive statistics
one can calculate a sample covariance matrix from historical data

Σ =
1

(n− 1)2

N∑
i=1

N∑
j=1

(xi − µX)(yi − µY )

The downside with covariance is that the magnitude isn’t comparable.
That is, covariance between two RVs can be really high, but one still don’t
know if they are more related than two other RVs with lower covariance.
Correlation, also known as standardized covariance, is another measure of
dependency. Correlation always take values between −1 and 1, where nega-
tive, zero and positive have same interpretation as in covariance. This makes
it easy to interpret and compare the results.

Correlation is defined

ρX,Y =
Cov(X, Y )

σXσY

where σi is the standard deviation for RV i.
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CHAPTER 2. BACKGROUND THEORY

Probability density functions

A probability density function (PDF) describes the probability that X be-
comes a value in the interval [a,b].
Let X be a continuous random variable. Then a PDF of X is a function f(x)
such that for any two numbers a,b with a≤b,

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

.
The graph of f(x) is called the density curve.

Even if it’s often assumed that returns are identical and independently
distributed, multivariate models are also used in finance when there is as-
sumed some sort of relationship. Capital asset pricing model(CAPM) is one
example where there is a systematic risk which influence all prices.

A multivariate distribution is described by a joint probability density
function. This function describes probabilities that X takes a value in inter-
cept of all intervals [ai, bi], given their dependency to each other.

Let X1, X2, .., Xn be continuous random variables. Then
f(x1, x2, ..xn) is the joint probability density function for X1, X2, .., Xn if for
any n intervals [a1, b1], [a2, b2], ..., [an, bn]

P [a1 ≤ X1 ≤ b1, · · · , an ≤ Xn ≤ bn] =

∫ b1

a1

...

∫ bn

an

f(x1, · · · , xn)dx1...dxn

As always with probability functions, when all limits goes to ±∞, P has to
be equal to 1 and f(x, y) ≥ 0.

The marginal distribution function for a joint distribution is given by
integrating all variables but one to infinity. For instance marginal distribution
for x1 is fX1(x1) = f(x1,∞, · · · ,∞). We call random variable independent if
the joint PDF above is just the product of the independent density functions,
i.e f(x1, · · · , xn) =

∏n
i=1 f(xi).

Cumulative distribution function

The cumulative distribution function (CDF)describes the probability that X
takes a value less than a limit x, and is the sum of PDF up to the point x.
The CDF, F(x), for a random variable X is defined:

F (x) = P (X ≤ x) =

∫ x

−∞
f(y)dy

12



2.1. STATISTICS

Given that X is continuous, then at every x where derivative F ′(x) exists,
F
′
(x) = f(x)
Similar as for PDF, the CDF for a multivariate distribution is defined

Fx1,...,xn = P (X1 ≤ x1, · · · , Xn ≤ xn)

Normal distribution

Normal distribution is widely used distribution in finance. Normal distribu-
tion forms the classic bell shape when plotted. The bell is centered around
the mean, µ, and spread with variance, σ. The probability distribution func-
tion (PDF) is given :

(2.3) f(x) =
1

σ
√

2π
exp(−(x− µ)2/2σ2)

where x and µ ∈ [−∞,∞] and σ > 0. Per definition a normal distribution
should be perfect symmetric, i.e have skewness and excess kurtosis equal 0.
We will denote a normal random variable x ∼ N (µ, σ2).

A normal distribution’s CDF is given :

(2.4) Φ(x) =

∫ x

−∞

1

2π
exp(−t2/2)dt, −∞ < x <∞

A normal distribution have two properties that are useful:

• Invariant under linear distribution: if X ∼ N(µ, σ2) and Y=aX+b,
then Y ∼ N(aµ+ b, a2σ2)

• Linear combinations of normal distributed variables are also normal:
If Xi ∼ N(µi, σ

2
i ) and Y =

∑k
i=1 aiXi then Y ∼ N(µ, σ) where µ =∑k

i=1 aiµi and σ
2 = a2

iσ
2
i .

Log-normal distribution

A slightly modified normal distribution is often used in finance, namely the
log normal distribution. A non-negative random variable X is log-normal if
Y = ln(X) is normal distributed. This gives us the PDF :

(2.5) f(x) =

{
1

σ
√

2π
exp(−(ln(x)− µ)2/2σ2) if x ≥ 0

0 if x < 0

13



CHAPTER 2. BACKGROUND THEORY

Figure 2.1: Behavior of a log-normal distribution when σ is changed. Notice
how skewness changes.

It’s important to notice that µ and σ is parameters for the normal distributed
Y, not log-normal X. For X we got E[X] = eµ+σ2/2 and σ2

X = e2µ+σ2
(eσ

2−1).
Main differences between normal and log-normal is the fact that log-

normal is always non-negative. This make it useful in pricing since negative
stock prices doesn’t make sense. For returns on the other hand, negative
values makes perfect sense and normal distribution is used.

Log-normal distribution is an example of heavy-skewed distribution. As
one can see in Figure 2.1, the main mass of the distribution is centered around
0 to 1 at the x axes, but with a long right tail. This is called positive skewness.
The skewness is controlled by σ and the distribution changes towards normal
when σ goes to zero.

Student’s t-distribution

When there a too few samples for a normal distribution, the result is often
a Student’s t-distribution. It’s symmetric and bell shaped as normal distri-
bution, but with heavier tails. Instead of µ and σ as parameters, student’s
t uses degrees of freedom, denoted v. When v is increasing, the student’s
t-distribution goes to normal. A standard student’s t-distribution has PDF

f(t) =
Γ(v+1

v
)

Γ(v
2
)vπ

(
1 +

t2

v

)− v+1
2

where Γ is the gamma function.1

1Gamma function defined as Γ(v) =
∫∞
0
tv−1e−tdt

14



2.1. STATISTICS

By using a scale parameter σ and mean parameter µ one can get a non-
standard on the formX = µ+σT where T is standard student’s t-distributed.
This makes it a more versatile than the normal distribution. See Figure 2.7
in "Study of S&P" below for example.

Empirical distribution

The empirical distribution is just a resampling of all the data that already has
occurred. The empirical cumulative distribution function (ECDF) is defined
as :

F̂ (x) =
1

N

N∑
i=1

1X≤x

where 1(·) is the indicator function andN is number of data points. Empirical
distribution is known as non-parametric distribution since one doesn’t make
any assumptions about distribution or parameters.

The nice thing with empirical distribution is that it will always follow the
data points. This makes it good for comparison and exact when there are
much data.

The drawback is that it will never take on values that haven’t happened
before. For instance in insurance, it will fit well until a certain percentile
(90th-98th) where there are a lot of data. But there could come a natural
disaster bigger than what have happened before. The empirical distribution
can’t forecast this. A solution could be a mixture with mainly empirical
distribution, but with a heavy tailed distribution over a threshold where
there are few data points.

Normal mixture distribution

Normal mixture (or Gaussian mixture) is an example of a heavy tailed dis-
tribution(high excess kurtosis). By combining two normal distributions, one
can center the main mass around mean as with normal, but let one distribu-
tion has higher variance to get more extreme values. One get a mixture on
the form:

X = (1− L)N(µ, σ2
1) + LN(µ, σ2

2)

where L is a Bernoulli variable 2, such that P (L = 1) = α and P (L = 0) =
1−α. In Figure 2.2 µ = 0, σ1 = 1 and σ2 = 10. What changes is the mixture
probability α.

2
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CHAPTER 2. BACKGROUND THEORY

Note that one could combine more than just two normal distributions.
Jump process and normal can make sense, most returns are normally dis-
tributed with big jumps representing crisis. I mention Empirical with heavy
tail above, which can be mixtured in the same way. When mixed with a
convex combination as above, one will get a resulting density function which
integrate to 1 and is non-negative.

Drawback with mixture of distributions is that α, how much of each
distribution one should combine, is hard to estimate.

Figure 2.2: Comparison between normal mixtured. µ = 0, σ1 = 1 and σ2 =
10. Same effect would happen when p is constant and σ changed.

Central limit theorem

Scenario generation is important in finance. We want to capture the effects
in real world prices through simulations. One way is to simulate data by
calibrating a distribution that capture the effects of interest to historical
prices, and draw n numbers from this to get a sample mean X̄.

To get higher accuracy and a confidence interval of X̄, one can repeat this
m times. If n are small X̄ is highly influenced by outliers, but with increased
n this sample mean goes to the mean from historical data. More specific:

Proposition 2.1. Let X1, X2, ..Xn be a random sample from a distribution
with mean µ and variance σ2. Then:

16



2.1. STATISTICS

E[X̄] = µ and σ2
X̄ =

σ2

n

From a normal distribution, the distribution of this sample mean will also
become normal distributed and a histogram will have the bell curve.

Interestingly this is also the case for non-normal distribution like the
log-normal. Sample mean tends to be more normally distributed then the
original function. The Central Limit theorem states this:

Theorem 2.1. Let X1, X2, ..., Xn be a random sample from a distribution
with mean µ and variance σ2. Then in the limit as n→∞, the standardized
versions of X̄ have the standard normal distribution. That is,

lim
n→∞

P

(
X̄ − µ
σ/
√
n
≤ z

)
= P (Z ≤ z) = Φ(z)

where Z ∼ N(0, 1).

This standardization can be done because of the invariant property of nor-
mal distribution stated above. This theorem states that many distributions
are asymptotically normal and can be approximated by normal distribution
when n is sufficiently large.

Next result that is important for sampling is the law of large numbers.
It states that the probability of sample mean converges to the actual mean
increases with sample size n. That is :

Theorem 2.2. Let X1, X2, ..., Xn be a random sample from a distribution
with mean µ and variance σ2. Then X̄ converges to µ
I) In mean square: E[(X̄ − µ)2]→ 0 as n→∞
II) In probability : P (|X̄ − µ| ≥ ε)→ 0 as n→∞ for any ε > 0

Together this will ensure us that we can get fairly accurate results if we
get scenarios based on distributions. The downside with scenarios from a
distribution is that the distribution is only an assumption. This should be
best fit, but could still be wrong compared to real life.

More on scenarios is discussed when we apply CVaR later on.
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CHAPTER 2. BACKGROUND THEORY

Figure 2.3: Central limit theorem applied to binomial random numbers with
10 trials and probability 0.5. Having 10 000 * i simulations where i ={2,5,10}.
Clearly seeing that sample mean goes towards a normal distribution when
number of simulation is increased.

Stochastic processes
For analytic finance and areas like option pricing with Black Scholes model,
stochastic processes plays an important role. Fundamental in all are the
Brownian motion and theory about random walk.

Brownian motion actually comes from field of particle physics, but have
been generalized to a function with the following properties:

1. increments b(ti)− b(ti1) is stationary

2. increments are IID - independent and identical distributed

3. ∆b = b(ti)− b(ti−1) = εi
√

∆ti where εi ∼ N (0, 1)

Here ti ∈ [0, T ] and is a partitioning of a time line where b is continuous.
A process with these properties is called either a standard Brownian or a
wiener process. Also note that if y = ε∆ti this imply that the increments are
distributed y ∼ N (0,∆ti).

In finance, property two tells ut that all changes are independent. What
have happened before can’t be used to predict the future. This is emphasized
further in property three. How much a price changes is dependent on time,
but in which direction is randomly drawn.

In analytical finance it is often assumed that prices have a martingale
property, also know as the property of "fair game". This property is defined
E[rt|rt−1, ..., rt−t] = rt−,1 or equivalent E[rt − rt−1|rt−1, ..., rt−t] = 0. Intu-
itively this says that no new information from previous event can make us
predict the future any better, and best guess of tomorrows value is the present
value. In financial time series it’s often refereed to as " historical data has
no forecasting power". See Figure 2.4 for example paths of Brownian motion
with the martingale property.

18



2.1. STATISTICS

Figure 2.4: A Brownian motion as described above, calibrated to the FTSE
index. Shows possible price paths for one year(251 random normal numbers)
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CHAPTER 2. BACKGROUND THEORY

2.2 Optimization and convexity
Convexity

Following are some basic results in the field of convexity taken from Dahl
(2010).

A set C ⊆ Rn is called convex if for any two points, x1, x2 ∈ C, the point
λx1 + (1− λ)x2 also belongs to C for all λ ∈ [0, 1]

In general we call a point x =
∑t

j=1 xjλj for λ ≥ 0 and
∑t

j=1 λj = 1 a
convex combination.

Proposition 2.2. A set C ⊆ Rn is convex if and only if it contains all
convex combination of it’s points.

Theorem 2.3. Let C ⊆ Rn be a non-empty and line-free closed convex set.
Then C is a convex hull of it’s extreme points and extreme halflines, i.e

C = conv(ext(C) ∪ exthl(C))

Convex hull is defined as the set that is spanned by all possible convex
combinations given by the points in that set. Theorem 2.3 states how this set
will be defined, and that is a combination of all extreme points and extreme
half lines.

If short-sale restrictions are added to a portfolio (all weights w > 0),
choosing stocks are exactly such a convex combination and the set of all
feasible portfolios, denoted X , is spanned of the most extreme assets. All
portfolios are a convex combination of some risky assets with high return,
and some safer assets.

Let C ⊆ Rn be a convex set. For any two vectors x1, x2 ∈ C, we call a
function f : C → R convex if

f(λx+ (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Also, f is concave if -f is convex.

In general optimization one can find a minimum solution, but not be
sure if it’s a local or global minimum point. Given that one have a convex
function, all local minimum points are also global minimum points. In other
words, it’s the optimal solution to the problem.
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As this is a thesis about portfolio optimization some basic knowledge
of different optimization models are needed. Three models are often used:
Linear programming (LP), quadratic programming (QP) and convex opti-
mization(CO). The standard formulations and models are from Vanderbei
(2001).

Linear programming

Given a cost vector, c ∈ Rn, we get the objective function on the linear
form cTx where x ∈ Rn is the variable we want to optimize. This has to be
optimized within some set defined by the matrix A ∈ Rn×n and vector b ∈ R.
A linear program (LP) on standard form is defined :

minimize cTx
subject to Ax ≤ b

x ≥ 0.

A solution x∗ of this problem is a vector that satisfies the constraints and gives
smaller solution, called objective value, than all other x. That is cTx∗ ≤ cTx
for all x. Note that minimizing cTx is equal to maximize −cTx.

For LP problems we have the simplex algorithm as the preferred option.
This is an old algorithm developed by G.B. Dantzig 1947 to solve the US air
force’s planing problems. By exploit the fact that linear constraints forms
a polyhedron, the algorithms sets active number of constraints equal rank
dimension for A (with added slack variables), and then "moves" through
different corner solutions at the boundary to a optimal solution is found.

The simplex algorithm is not a very sophisticated, but capable of handling
a lot of constraints and variables efficiently.

Quadratic programming

Quadratic programming is similar to LP, but accept a more general objective
function. A QP accepts a quadratic term given by the matrix Q ∈ Rn×n, in
addition to the linear term. On the standard form QP is defined:

minimize cTx+
1

2
x′Qx

subject to Ax ≥ b

x ≥ 0.

Since the solution set of LP is a polyhedron, there is a unique global
optimal solution. What about quadratic programming? If we assume that
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Q is a positive semi-definite, then we call it a convex QP and this provides
us with a unique optimum.

If not convex QP there is possibly many local minimums and one need
to check each one too see which is global minimum. In the Markowitz
model(minimizing variance wTΣw) the covariance matrix is positive semi-
definite 3 This makes Markowitz model a convex QP, which is why it’s easy
to find an optimal solution.

Convex QP is efficiently programmed with interior-point algorithms.

Convex programming

Both LP and QP has quite strict form for the objective function and con-
straints. Convex optimization is more general. The objective function is now
given by function c : Rn → R and constraints functions gi : Rn → R.

A convex optimization problem is on the form

minimize c(x)

subject to gi(x) ≤ 0 i = 1, ...,m

Only requirements is that c is a convex function and all constraints gi forms a
convex set. As mentioned above, the set of all stocks forms a convex solutions
set and will go under this category.

Since CO captures many different optimization models, one will choose
solution algorithm dependent on the specific model. For instance QP and LP
above are both under convex optimization, but should be solved by different
algorithms.

Karush-Kuhn-Tucker theorem

The Karush-Kuhn-Tucker theorem (KKT) is often useful in non-linear opti-
mization. This is not a model as above, but conditions a solution need to
fulfill in order to be a optimal solution. The standard form of KKT is similar
to CO above. Minimize −f(x) subject to inequality constraints gi(x) ≤ 0
for i = 1, ..,m, but in addition they add equality constraints hj(x) = 0 for
j = 1, .., l. We need to assume that the objective function f : Rn → R,
and constraints functions gi : Rm → R and hj : Rl → R are continuously

3wT Σw = wTE[(X−µX)(X−µX)]w = E[((X−µX)w)2]. Since it’s squared it’s always
greater or equal zero.
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2.3. FINANCIAL FACTS

differentiable at point x∗. Given this KKT states four necessary conditions:
stationarity, primal feasibility, dual feasibility and complementary slackness.
For KKT multipliers λi for i = 1, ..,m and µj for j = 1, ..., l the necessary
conditions are:

I) Of(x∗) = −
m∑
i=1

λiOgi(x)−
l∑

j=1

µjOhj(x
∗)

II) gi(x
∗) ≤ 0 ∀i and hj(x

∗) = 0 ∀j
III) λi ≥ 0 ∀i
IV) λigi(x

∗) = 0 ∀i

A Lagrange optimization problem is just a special case of KKT where there
are no inequalities. That is the term with Ogi disappears and results in
an easier problem. Both methods will be used in proofs of equivalence and
optimality. Starting point for both are finding first order necessary conditions
which are to solve property I).

Source: (Krogstad, 2012)

2.3 Financial facts

Financial instruments

First of, an investor could invest in different assets:

• Stock: Part of a company that is out for sale, and sold to investors as
shares. Gives buyer right to vote and dividends from company surplus.
Only maturity is when the shares are sold or company defaults.

• Derivatives: More advanced contracts that gambles on the underlying
movements in the markets. Often gives the right to sell or buy at
certain values(options) and/or time(forward contracts). Could also be
advanced contracts like credit debt swaps which gives payment if certain
companies or a number of companies goes default.

• Funds: Putting money in certain index, sectors or investor funds. An
investor with limited financial means often gets a more diversified port-
folio than when picking out single equities, or one can assume that
another portfolio manager, for instance at a bank, has more financial
insight than yourself. Could have locked position until a maturity,
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meaning it’s only possible to get money by selling in second hand mar-
ket(real estate funds typically), or funds that one can sell at any time
like stocks.

• Bonds: Investors can lend money to company or government, and in
return get interest rates/coupon. Interest rates and often maturity
(ending time) is written in the contract issued.

• Risk free asset: Either cash, or treasury bills issued by national banks.
A treasury bill is a contract or banknote with a certain value that one
can issue in the future, from 3 months to 10 years. The banknote
gives no coupons or rates, but is sold for a less amount than can be
withdrawn.

Portfolio allocation can be both selecting between different stocks, and choos-
ing type of assets. Derivatives needs special calculations for each type and is
not illustrated in this thesis. All other asset types has data on Yahoo and are
easy to implement in the model. Treasury bills are actually auctioned, but
one get more continuous data from second hand market(resale). (Wikipedia,
2016)

An investor will always have to decide two important factors. Time hori-
zon of investment and level of risk(risk aversion). List above goes from what
is risky to considered safe. One has a lot of individual risk factors for each
case, which is hard to capture by a general model. For instance real estate
funds. Often this is a locked position 5 to 10 years into the future, and is
called illiquid asset. This means it’s hard to sell, without loosing a lot on the
trade. Index fund or stocks on the other hand is liquid, always easy to sell.

This liquidity risk are one of many factors that is specific and needs more
financial understanding than what goes into an typical optimization model.

Contracts like treasury-bills and bonds has a maturity time. A bond
would typically has three year maturity, meaning it would pay interest rates,
called coupons, for three years before contract is terminated. It could be
possible to sell, dependent on the contract, but bonds are more illiquid than
stocks.

The main idea when allocating financial assets is diversification. Diver-
sification is a theory that the total portfolio risk is lower when investments
are spread on many assets, indexes and sectors.
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Given all investments are in one company, and it goes bankrupt, one
will loose everything. Or as we see now, oil prices is really low and the
whole sector is going down. Trough diversification an portfolio would have
invested in for instance renewable energy, which is performing good when
non-renewable is stumbling.

A safe portfolio is composed of different asset types, different kind of
risk(liquidity, volatility etc) and spread through many countries.

When buying stocks one actually invest in a specific company which in
turn can give additional profit. Earnings from stocks comes by either selling
at a higher price than when you bough them or getting dividends. Dividend is
a certain amount of the companies surplus that is paid out to the shareholders
of the company.

When collecting data for optimization I will use adjusted close prices.
This is regular prices after stock exchange is closed, but adjusted for dividend
and other similar effects.

Returns

Instead of looking directly at the price, we usually looks at the returns. A
fall of 1$ could mean a big loss in one company, but with for instance Apple
inc. which is worth around 110-120$ a share, it’s not that drastic. Returns
is change from one day to another and is easy compared between companies.

Simple return is defined Rt = Pt−Pt−1

Pt−1
= ( Pt

Pt−1
) − 1 where Pt is price of

an asset. Simple return has the advantage that it’s additive across assets.
That is

Rp
t =

∑n
i=1 πiP

i
t −

∑n
i=1 πiP

i
t−1∑n

i=1 πiP
i
t−1

=
1∑n

i=1 πiP
i
t−1

n∑
i=1

πi(P
i
t −P i

t−1) =
n∑
i=1

wiR
i
t.

Thus portfolio return are easily calculated. On the other side it’s not additive
over time, that is the geometric average doesn’t equal arithmetic average +1.

Logarithmic return on the other hand have this property. Log return is
defined as rt = log(1 + Rt) or by using prices rt = log(Pt/Pt−1). Hence ge-
ometric average becomes r̂g = 1

T

∑T
t=0 rt. But for additivity across portfolio

stocks

rpt = log(1 +
n∑
i=1

wi(e
rit − 1)) = log(

n∑
i=1

wie
rit)

which is not equal the arithmetic mean.
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Study of S&P 500

S&P is short for Standard & Poor’s. They have two indexes composed of
the biggest 100 and 500 stocks sold on NASDAQ and NYSE, both New York
based stock exchanges. Weights of the different stocks are based on market
capitalization4.

By looking at historical data from the S&P500 index(see Figure 2.5) there
seems like prices grow exponential, with some trend and fluctuating variance.
Returns on the other hand seems quite stable.

Stationarity is a important term in financial time series, and returns are
often assumed to be weakly or covariance stationary. Weakly stationary
means that the first two moments is not dependent on specific time, but only
dependent on time gaps often referred to as lags. To be able to model from
normal distribution for instance, weakly stationary is an important assump-
tion. Otherwise we would need mean and variance as a function of time, and
draw random samples for each time.

Some empirical fact about returns are worth noticing. First, the volatility
is not time invariant. Looking at Figure 2.5 there are obviously big clustering
of high volatility.

Second, there tends to be more extreme values compared to a normal
distribution. And this is correct, tests like Jarque-Bera test which uses first
four moments shows high kurtosis and skewness (see Table 2.1).

Other models are constructed to handle changing volatility, often used
are ARCH/GARCH (autoregressive conditional heteroskedasticity) models
which captures this cluster effects. That volatility is clustered also goes
against the identical and independent distributed(IID) assumption that are
the main assumption in many fields like in Black Scholes pricing.

Last, log returns are always lower than simple returns and we see they
have high difference through periods with high volatility.

Distribution of returns

When modeling financial markets one usually assume a distribution for re-
turns. When finding a model, time scale will affect the results. Returns for
one day is something else than returns for one week. Often one will convert
returns to a yearly scale for comparison, done by just multiplying mean and
variance by number of time periods in a year(52 for weekly and 252 for daily).

4Market capitalization is defined as number of shares available for public market times
the share price. Resulting in total value of the company which is at the stock market.
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(a) Plot of price development (b) Log returns

(c) Simple returns
(d) Difference between simple-
and log returns

Figure 2.5: S&P500 plots between 2010-2016

Time series facts also changes with frequency for the data. Lower fre-
quency often gives skewness closer to zero and lower kurtosis compared to
high frequency, implying that a normal distribution is often more correct with
frequency at weekly or monthly data. This is illustrated through a QQ-plot,
see Figure 2.6 and Table 2.1.

(a) Quantiles of daily log
returns

(b) Quantiles of weekly
log returns

(c) Quantiles of monthly
log returns

Figure 2.6: QQplots of log returns between 2010-2016 for S&P500 index.

In Figure 2.7 normal-, student’s t- and empirical distribution are fitted
to weekly S&P 500 data between February 2011 to February 2016. As we
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variance mean skew kurtosis
Daily 0.0238 -0.1020 0.6189 8.3882

Simple Weekly 0.0192 -0.0994 0.4195 4.9190
Monthly 0.0140 -0.1064 0.2704 3.4587
Daily 0.0237 -0.1139 0.5186 8.0912

Log Weekly 0.0191 -0.1090 0.3072 4.9190
Monthly 0.0141 -0.1138 0.1468 3.4735

Table 2.1: Descriptive statistics for simple returns and log returns based on
the S&P 500 index in period 2011-2016.

see, the normal distribution with µ = 2.5 ∗ 10−4 ≈ 0 and σ = 0.01 capture
the returns quite roughly.

Better are the more heavy tailed Student-T’s distribution. It’s actually
almost as good as the empirical distribution which follows the data almost
exactly.The empirical distribution shows a higher excess kurtosis of 2.96 and
skewness of 2.00, implying the data is non-normal.

Stating that returns not following normal distribution is quite drastic,
since models like Black-Scholes model and CAPM, which is the most used
models in financial pricing, has normal distribution as a fundamental as-
sumptions. How much error normal assumptions is causing is a big field of
study.
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Figure 2.7: Normal, student’s T and empirical distribution fitted to weekly
S&P500 data between 2011-2016.
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CHAPTER 3

Portfolio optimization

The difficulty in portfolio optimization is to predict how prices are going to
change. In behavioral economics one will look at the underlying psychology
in the markets and "bet" on certain sectors and stocks. In mathematical
finance one will try to make this process objectively trough numbers. The
important question I will look at in this thesis is how to think about and
measure risk.

The starting point to mathematically choosing a portfolio was the Markowitz
model. Harry Markowitz thought of variation in prices as the possible risk,
and used variance as a risk measure. Even if more refined methods are used
today, this model works well for illustrative purposes because it’s quite intu-
itive. All ideas in this thesis have roots in the works of Markowitz, but in a
more general matter.

Definition of the mean-variance model and the general risk-reward model
are from Stoyanov et al. (2007). Drawbacks with mean-variance optimiza-
tion are from Tsay (2005) and Investment and Financial time series courses
at École polytechnique fédérale de Lausanne.

3.1 The Markowitz model

Markowitz wanted to minimize portfolio variance given a minimum level of
expected return, denotedR∗. GivenN assets with returns r = {r1, r2, . . . , rn},
expected return, µi and variance σ2

i for i = 1, . . . , n the Markowitz model is
defined as:
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(3.1)

minimize
w

wTΣw

subject to wT e = 1

wTµ ≥ R∗

where Σ is the N × N covariance matrix for the returns r which makes
wTΣw portfolio variance and µp = wTµi the expected portfolio return. The
first constraint is to ensure an investor uses all possible capital, and the sec-
ond constraint ensures return is above the given limit.

This model can also be turned around, ie maximize return given a maxi-
mum level of risk R∗.

(3.2)

maximize
w

wTµ

subject to wT e = 1

wTΣw ≤ R∗

Even if it’s widely used the Markowitz model has some serious drawbacks.

• Estimation errors: sample mean and covariances are not necessarily
"true" parameters. By relying on wrong parameters, resulting portfo-
lio can be non-optimal. One solution is combining sample data with
experts beliefs.

• Sensitivity: small changes in parameters will have a big impact on final
portfolio. Large changes in position will give high transaction costs
which lowers returns. Experts beliefs will stabilize the parameters, and
shrinkage estimators are used to get more structured and "correct"
parameters. Also robustness techniques have been applied to make the
model less vulnerable to extreme values.

• Leveraged positions: if weights less than one is allowed, that is one short
or borrows money to invest more in other assets, the model often re-
sulting in extreme positions. The problem is, in leveraged positions the
sensitivity is even higher and there is risk in borrowing money coming
from need of security to get a loan that the model can’t calculate.

• Normality: there is an underlying assumptions that returns are normal
distributed, which is not the case in volatile periods
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• Behavioral: There are assumptions about how an investor will behave.
More precise, Markowitz assumed all investors should invest in one
specific well diversified portfolio he called the market portfolio. This is
clearly not the case in practice.

Still, the model is intuitive and one get insights in how diversifications
should be done. As an analytical tool the Markowitz model is still in use,
but often with newer methods for robustness and parameter estimations.

The efficient frontier

When choosing a portfolio we always optimize the different combination of
assets, but the weights themselves is not what investors finds most inter-
esting. What is more interesting is the characterization of possible financial
return and risk for the portfolio, and the level of risk compared to the returns.
The efficient frontier is an important tool for comparison different optimal
solution within a model, as well as comparison between models.

The weight wi is just a fraction of total value put in asset i, and for each
asset there are some beliefs / calculations about risk and return. Given a
market with n possible assets we get a portfolio w = (w1, w2, . . . , wn) ∈ Rn.
Normally the possible weights will be restricted by the investors budget and
other reality constraints. I will denote the set of all possible portfolio com-
binations as X ⊂ Rn.

What is of interest now is the mapping from weights to risk and reward.
First off, we have a reward measure R : R→ R and a risk measure ρ : R→ R.
We can now define a function f(w) = (x1, x2) where x1 = ρ(w) and x2 =
R(w). This function is the mapping f : X → R2 or from the portfolio space
to a "risk - reward" space. The image of this mapping will be denoted S and
is defined by S = {(x1, x2) ∈ R2 : x1 = ρ(w), x2 = R(w) for some w ∈ X}.

In the Markowitz model one get ρ(w) = σp and R(w) = µp. Now S
becomes a set in standard deviation - mean space. See Figure 3.1 for il-
lustration. One can see from both (3.1) and (3.2) that solution set X is
dependent on R∗ or R∗. By decreasing R∗ in model (3.1), that is require
less return, the result is a less constrained problem. From convex theory we
know this means an equal or lower objective value, which in this case means
lower risk.

By increasing R∗ from zero to highest possible return one get a set of
different optimal portfolios E = {w0(R∗) : R∗}. The efficient frontier is the
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set E = {(x1, x2) ∈ S : x1 = ρ(w0), x2 = R(w0)} for all optimal portfolios w0.
This can also be done by changing maximum risk R∗ with E{w0(R∗) : R∗}
accordingly. Intuitively this is just setting risk to investors preferences. Look
at all possible risk, and of course, the portfolio with highest rate of return at
that level of risk is preferable, which is a point on the efficient frontier.

Interestingly, model (3.1) and (3.2) are equivalent in the sense that they
produce the same efficient frontier. If one obtain σp = wT0 Σw0 given R∗ as a
solution in model (3.1), one can set R∗ = σp and the solution of wTµ will be
R∗ with portfolio weights w0. This is proven in a general matter, after the
risk-reward model is defined.

Sharpe ratio and mutual fund separation

After the portfolios on the efficient frontier is found there is the question if
all portfolios are equally optimal. Robert Sharpe defined the Sharpe ratio
as SR(w) = wTµ

wTΣw
. In the Markowitz model this gives us a ratio ‘’expected

return per unit of risk”. The portfolio with highest Sharpe ratio is called
tangency portfolio, since it’s the point where a line from origo or a risk free
rate first hits the efficient frontier.

Mutual fond separation is a theorem that is well known in finance. This
theorem states that all investors will choose a combination of a common
optimal risky portfolio and a risk free asset.

In the Markowitz model this states that all investors should choose a
portfolio on the line from risk free rate to the tangency portfolio. This implies
all investors should have the same weights on assets, but just different mix
between tangency portfolio and the risk free asset. I will quickly show this
analytical.
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Figure 3.1: The mean-variance efficient frontier for 10 stocks with risk free
option. I have marked minimum variance portfolio and tangency- /max
Sharpe ratio portfolio

First we need the Lagrange for model (3.1), given by

L(w, λ) = wTΣw − λ(R∗ − rf − (µ− rf1)Tw)

.
From this we can get the first order conditions

(3.3)

I)
∂L

∂w
=Σw − λ(µ− rf1) = 0

⇒ w =λΣ−1(µ− rf1)

II)
∂L

∂λ
=R∗ − rf − (µ− rf1)Tw = 0

By manipulating I) one get a closed form expression for the weights. This
is the essence of the mutual fond separation. w is a vector with weights
of n different assets, and by chancing the constant λ, all weights change
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proportional to each other. λ can be seen as a risk aversion parameters, that
controls mix between risk free and risky portfolio.

The amount invested in the risk free asset, w0, is the amount not put in
stocks. That is w0 = 1 − 1Tw. The tangency portfolio on the other hand
consist of risky assets only. Using this fact one get w0 = 1− 1Tw = 0⇒ 1 =
1Tw. Imposing this in the equation by multiplying II) with 1 gives

(3.4)

1Tw =1TλΣ−1(µ− rf1) = 1

⇒λ =
1

1TΣ−1(µ− rf1)

⇒wtan =
Σ−1(µ− rf1)

1TΣ−1(µ− rf1)

where wtan was found by putting λ in expression for w in (3.3). Now all in-
vestors has expected return on the form µP = λwtanµ+ (1− λ)rf dependent
on risk aversion.

As mentioned Markowitz model is an good illustration, but now I want to
illustrate a general model. One call equation (3.2) the mean-variance(MV)
problem and is one of many possible reward - risk models with Sharpe ratio
as the natural reward - risk ratio.

3.2 General reward-risk model

To ensure there exists a solution for a risk - reward model some requirements
are needed. ρ : R→ R is a risk measure which needs two properties: Positive
homogeneous and sub-additive. Together these properties ensure that ρ is
a convex function. The reward measure R : R → R needs to be a positive
homogeneous and concave function. When reward and risk functions have
these properties we know from the theory about convexity and optimization
that there exists a solution to the reward - risk model.

The general reward - risk optimization model is defined:

(3.5)

minimize
w

ρ(wT r − rf )

subject to wT e = 1

R(wT r − rf ) ≥ R∗

Lb ≤ Aw ≤ Ub
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or similar

(3.6)

maximize
w

R(wT r − rf )

subject to wT e = 1

ρ(wT r − rf ) ≤ R∗

Lb ≤ Aw ≤ Ub

where as before, R∗ and R∗ is limits for return and risk respectively.
The returns are changed to excess returns by subtracting a benchmark

rate or risk free rate rf . Putting in mean as return function and variance as
risk measure gives us the original Markowitz. But we will also use measures
as VaR and CVaR as ρ.

The constraints Lb ≤ Aw ≤ Ub is general financial constraints I will
illustrate later on. This could for instance limit one asset to never account
for more than 20% of the portfolio value by setting wi ≤ 0.2. Lb and Ub are
vectors in Rk and A some matrix in Rn×k.

As in mean-variance optimization, (3.5) and (3.6) are not equivalent in the
sense that they have exactly the same problem set. But by varying minimum
return and maximum risk, one get the exact same efficient frontier.

The following theorem with proof is as in (Krokhmal et al., 2002, The-
orem 3, p 32). The proof sketched in this article is a bit lacking, so some
supplementary details are from Krogstad (2012).

Theorem 3.1. Let us consider risk function ρ(w) and reward function R(w)
dependent on decision vector w, and problems:

min ρ(w) s.t R(w) ≥ R∗, w ∈X
max R(w) s.t ρ(w) ≤ R∗, w ∈X

Suppose the inequality constraints have internal points. Varying R∗ and
R∗ traces the efficient frontier for the two problems. If ρ(w) is convex and
R(w) is concave and the set X is a convex set, then the two problems generate
the same efficient frontier.

Proof. Since this is non-linear programming we need a optimal solution to
fulfill the necessary conditions defined by the Karush-Kuhn-Tucker theo-
rem(KKT) 1. For the problems above these conditions become:

1For definitions see 2.2

36



3.2. GENERAL REWARD-RISK MODEL

(KKT 1)
λ0ρ(w∗) + λ1 (R∗ −R(w∗)) ≤λ0ρ(w) + λ1 (R∗ −R(w))

⇒ ρ(w∗)− µ1 (R(w∗)) ≤ρ(w)− µ1 (R(w))

µ1 (R(w∗)−R∗) =0, µ1 ≥ 0, w ∈ X .

(KKT 2)
−λ0R(w∗) + λ1 (ρ(w∗)−R∗) ≤− λ0R(w) + λ1 (ρ(w)−R∗)
⇒ −R(w∗)− µ2 (ρ(w∗)) ≤−R(w)− µ2 (ρ(w))

µ2 (ρ(w∗)−R∗) =0, µ2 ≥ 0, w ∈ X .

For both (KKT 1) and (KKT 2) there are three line with equation and
inequalities. The first line is the necessary condition for w∗ to be a optimal
solution. The second line is the first line transformed to an easier form by
equivalent transformation. The third line is the complementary slackness
condition of KKT.

The clue for the form of KKT as written in (Krokhmal et al., 2002, The-
orem 3, p 32) is that X is a convex set. From Krogstad (2012) there is
an alternative KKT definition H.E Krogstad calls "convex KKT". Given
the feasible domain is a convex set, as assumed in this theorem, the KKT
necessary conditions is in addition also sufficient conditions, and an optimal
solution can be proven to be an global optimal solution.

With this in mind we get that if w∗ is a (global) optimal solution of
model(3.5), then we know it satisfies the conditions defined by (KKT1). By
setting R∗ = ρ(w) we see that (KKT2) is satisfied by setting µ2 = 1

µ1
,

assuming µ1 > 0. Implying that w∗ also is a solution for model (3.6), since
it satisfies the necessary, and sufficient, conditions given by (KKT2).

Similarly, if w∗ is a optimal solution in model (3.6) with µ2 > 0 we can
set R∗ = R(w) in (KKT1). Now w∗ is a optimal solution when µ1 = 1

µ2
since

all conditions in (KKT1) is satisfied.

This proves that there are multiple way to define a portfolio optimization
problem, independent of what kind of measures that is used for return and
risk. But that doesn’t mean they are computationally equal. Even if they
finds the same solution there could be big differences speed as I will show
when I compare algorithms in chapter 6.

37



CHAPTER 4

Risk measures

What is risk? A normal thought is that it’s uncertainty connected to future
prices. Then it’s arguable that if an assets is guaranteed to go up with either
5$ or 10$ there will be uncertainty, but not risk since it’s a sure gain. Risk
is an idea of how much uncertainty there is within an asset or portfolio in
combination with how exposed an investor is for losses. That is, how probable
is it for an investor to get big losses.

A good measure should be able to use statistical data in an possible
complex way, but also have some financial intuition. This chapter consists
of axioms for deviation measures, and axioms for risk measures made to
capture financial risk in a mathematical way. As it turns out, deviation
and risk measures are closely related given certain properties. Both sets of
definitions and their connections are from Rockafellar et al. (2006).

4.1 Deviation measures

In the following axioms some formalities are needed. As before f(w, r) is
a loss function which is dependent on random variable r. For the financial
market there exists a large number of different scenarios for all assets. Each
scenario, or state of the market, is detonated ωi and is part of a collection of
all possible scenarios denoted Ω.

Once a state has happened we get r(ω) which is constant. But the prob-
lem in portfolio optimization is the uncertainty which depending on which
state the world is going to be in. When historical data are used for scenario
generation, all earlier states r(ωi) is possible with a finite number of scenarios
(ω1, . . . , ωn) with related probabilities (p1, . . . , pn).
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Trough this thesis I will definedX = X(w, ω) = f(w, r(ω)). X is therefore
in the following definitions a loss. When X is defined as gain or payoff
function, the axioms will look much the same, but some will have different
sign.

As in Rockafellar et al. (2006) X is considered to be a random variable
with a probability measure and sigma algebra, and that it’s a bounded func-
tion with well defined variance and mean. Technically this gives us that X is
a random variable in L2(Ω,F , P ).

Definition 4.1. A (coherent) deviation measure is a function L2 :→ [0,∞]
with following properties:

D1. Shift invariant: D(X + C) = D(X) + C for all X and constant C

D2. Positive homogeneity: D(0) = 0 and D(λX) = λD(X) for all X and
all λ > 0

D3. Subadditivity: D(X +X ′) ≤ D(X) +D(X ′) for all X,X ′

D4. Positivity: D(X) > 0 for all stochastically processes and D(X) = 0 if
X is constant.

A deviation measure is how much a observed value deviate from a certain
level. This could be standard deviation which measures how much observed
values deviates from the mean, or median absolute deviation which measures
dispersion from the median in absolute terms.

This deviation tells something about the uncertainty connected to an out-
come of RV X. Both measures mentioned have a common property that is
not in the list above: symmetry.

As I showed in section 2.3, returns tends to be asymmetric and heavy tailed.
So how does this affect deviation measures? This means a symmetric measure
doesn’t necessarily capture risk in a good matter. In Markovitz’s model this
leads to suboptimal portfolios, since high gains isn’t a ‘’risk”, but actually
preferable.

Already in 1953 Markowitz knew this and suggested a measure called
‘’semivariance” which didn’t recognize big gains as risk, and started searching
for other ways to quantify risk.
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4.2 Risk measures
Risk measures and deviation measures are much alike. The conceptual dif-
ference is described above. In addition deviation measures usually capture
uncertainty on the whole set, while risk measures focus on the probability
for heavy downside/losses. The first is always positive, intuitively negative
dispersion doesn’t make sense. While risk measures looks at the probability
for losses to be higher than a certain threshold value, and negative value
means one can invest more while still be above threshold. This threshold
could be for instance the Basel III capital requirements.

Definition 4.2. A coherent risk measure is a function R : L2 → (−∞,∞]
which satisfy:

R1. Translation invariant: R(X +C) = R(X) +C for all X and constant
C

R2. Positive homogeneity: R(0) = 0 and R(λx) = λR(X) for all X and
all λ > 0

R3. Subadditivity: R(X +X ′) ≤ R(X) +R(X ′) for all X,X ′

R4. Monotonicity: For all outcomes X and X’ where X ≥ X ′, we have
R(X) ≥ R(X ′)

Semivariance as Markowitz suggested is one example of risk measure de-
fined

σ2
+ = E[(X − E[X])2

+] = ||(X − E[X])+||22
where we have || · || as the p-norm : ||X||p = (E[|X|]p)1/p, and (·)+ means
only positive values i.e, max(0, X − E[X]).

Further we got more risk averse measures in worst case risk, widely used
in robust optimization. This is defined

WCR(X) = supX

.
Both attempts to capture the asymmetry of finance, and only measures

the downside of financial returns. New methods and standards are applied
and we have a new group of risk measures.

The first proposal axioms for risk measures where without subadditiv-
ity. The axioms above describes a ‘coherent measure of risk’ according
to Artzner and Delbaen (1997). Notice that since R(λX + (1 − λ)X ′) ≤
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R(λX) +R((1− λ)X ′) = λR(X) + (1− λ)R(X ′) all coherent risk measures
are also convex risk measures.

In “Thinking coherently”(Artzner and Delbaen, 1997) defines these axioms
from a practical point of view. Their approach is building on when a risk or
position is acceptable. A risk averse investor would have less acceptance for
risk, but also smaller requirements for returns than a risk loving investor.

Acceptance set is defined as the set of all positions resulting in an accept-
able risk, and defined as an intersection of what is acceptable for different
point of views(investor, regulator etc). The result are four axioms that de-
fines what they all think is acceptable. One of the axioms for acceptable risk
are that the acceptance set needs to be convex, which we can prove that are
the case with both coherent and convex risk measures.

Artzner et al. then defined coherent risk measure trough logic based on
acceptance sets. Intuitively, they interpreted the number ρ(X) as the number
that should be put in a risk free asset in order to make a position X to lay in
the acceptance set when positive. When negative how much one can invest
in risky asset to go from an acceptable to unacceptable position. In other
words, ρ is in many ways a measure of capital requirement which needs to be
satisfied if one should invest in the portfolio, and is acceptable when ρ ≤ 0.

In this sense the axioms above means:

• Translation invariant consider the case where a total future value of
X−m is given, where m is certain payoff, but X is stochastic loss. The
total capital requirement is decreased with m since it doesn’t hold risk
and can be set outside of the risk function.

• Positive homogeneity states that if one increases a position in X the
risk is increased proportionally.

• Subadditivityy tells us that investing in different assets will result in
equal or less risk. Or as (Artzner and Delbaen, 1997) states: “a merger
does not create extra risk ”.

• Monotonicity tells that if one have two future values (random variables)
where it’s know that one outcome has higher loss than the other, X ≥
X ′, then the required capital will be higher for this random variable,
R(X) ≥ R(X ′). This because it has higher downside.

• Convexity describes the diversification effect. Instead of risking every-
thing in X or Y, one take a fraction (λ) in each. By investing everything
in X one get ρ(X) and similar for Y. Thus a combination of both will
give equal or less risk by definition of convexity.
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4.3 The connection between risk and devia-
tion

As we see the axioms for deviation and coherent risk measures are quite sim-
ilar, and research have tried to establish a connection between the two. Risk
measures have the benefit of better financial intuition and made explicit for
risk. The consequence is that a risk measure usually only uses a part of the
dataset which increases error.

In Rockafellar et al. (2006) a fifth axiom was added to the definition of
coherent risk:

R5. : R(X) > E[−X] for all nonconstant X.

called strict expectation boundness.
Rockafellar et al. showed that when a risk measure fulfilled R1-R3 and

R5 they had a one to one connection to deviation measures given:

R(X) = D(X)− E[X](4.1)
D(X) = R(X − EX)(4.2)

If risk measure R(X) is found trough 4.1, then it is a coherent measure of
risk if and only if D(X) is upper range dominated. Upper range dominated
mean that the deviation always has to be smaller than the difference between
the mean of position X and the maximum connected to position X, D(X) <
supX − E[X] for all X. In other words, highest loss is higher than highest
return which often is the case in the financial market.

In practice we get for instance that standard deviation, ||X − E[X]||2
will be connected to a "standard deviation risk" measure defined as ||X −
E[X]||2 − E[X], and with more refined risk measures there will also follow
more capable deviation measures1.

4.4 Value at risk and Conditional value at
risk

Definition 4.3. Given a stochastic variable r with decision vector w, we want
to find the smallest number ζ such that the probability that loss X = f(w, r)

1For proofs see Rockafellar et al. (2006) and for more about risk and deviation measures
seeKrokhmal et al. (2011)
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exceeds ζ is no more than (1-α) where α ∈ (0, 1)

V aRα(r) = inf(ζ ∈ R : P (X ≥ ζ) > 1− α)

Note that X is a change of value over a certain time period. This could
for instance be the loss over a 10 day period which is f(w, r) = Vt+10 − Vt,
where Vt is total value of the portfolio. If calculation of VaR gives 100 000$
for α = 0.95 and loss function as described, this intuitively means that losses
above 100 000$ over a 10 day period could happen once every twentieth
period.

A monetary value is often used when describing VaR, but loss function
with returns instead of prices, like f(w, r) = vt+10

vt
− 1 is also used. VaR is

then a percentage of the portfolio value that can be lost with probability α,
and one can multiply VaR with total value to get a monetary value.

Since VaR in many cases lacks sub-additivity, new measures have been
proposed to take it’s place. Especially conditional value at risk have nice
features.

Definition 4.4. For a loss X and a confidence level α we define conditional
value at risk(CVaR) as

CV aR(r)α = E[X|X ≥ V aRα]

=
1

1− α

∫ 1

α

V aRu(r)du

Expected shortfall, average VaR and expected tail loss is describing the
same thing as CVaR, but defined in slightly different ways. All measures see
what values to expect given that the loss is greater than VaR. When distri-
bution function of r is continuous, as assumed here, they’re all equivalent.

4.5 Comparison
VaR

• Industry standard in finance and is used as requirement in Basel. Much
because of it’s ease of use and intuitiveness.

• Can be estimated parametric when a distribution is assumed.

• More numerical stable to outliers than CVaR. Extreme event tends to
be hard to measure and therefore gives higher errors. VaR discard
many of these values.
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Figure 4.1: Illustration of VaR and CVaR on histogram of returns. Note that
V aR ≤ CV aR.

• Not a coherent measure of risk, lacks sub-additivity.

• When there is correct data in tail and there is many extreme events,
VaR can be misleading since the extreme events aren’t used in calcula-
tion.

• Since VaR lack sub-additivity it’s not convex and therefore harder to
use in optimization problems

• Less stable than CVaR when α is changed. Small changes in α can
leads to big jumps, since all information in the tail is discarded.

CVaR

• A coherent risk measure, implying it’s easy to use in optimization prob-
lems.

• Measuring all heavy losses, and optimization with CVaR as risk mea-
sure therefore has more control of extreme losses than VaR

• Can be linearized when there are generated scenarios.

• Often lacking data in the tails can imply unreliable models.
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• Little data and the us of all extreme values leads to higher sensitivity
to estimation errors than VaR.

VaR is today industry standard in both finance and insurance, mostly
because it’s easy to understand and compute. Mathematically and in an
optimization model it’s not that convenient. Basel have been criticized for
using VaR as standard, and Embrechts et al. (2014) goes as far as saying
‘’Value-at-Risk can destabilize an economy and induce crashes”.

Most criticism is connected to the fact that it’s not sub additive and thus
not a coherent risk measure. This is the property that states that one can
diversify and thus get smaller risk by having a portfolio of many asset from
different classes. That VaR doesn’t capture sub additivity is easily shown by
a jump process.

Jump processes often happens for derivatives that gambles on if a com-
pany defaults or not. Given two equal bonds with a small probability, for
instance 3 %, for default which comes with a big loss or zero otherwise. For
both bonds the 95% VaR is zero, since the probability for default are lower
than 5%. Given these default happen independently, the chance for both
going default is 0.1%, that one defaults is 5.82%, and none 94%. But then
the VaR is increased to a big loss and not zero as before when combined
because of the increased probability for one bond going default.

More relevant for this thesis is the fact it’s not convex (convexity shown
by using sub additivity above) and behave badly in an optimization prob-
lem. As we know convexity gives an unique optimal solution, and by lacking
convexity optimization of VaR can give multiple optimums.

There are cases where VaR is coherent, and that is when returns follows
an elliptical distribution. Normal distribution is one example of elliptical dis-
tribution, and it can be shown that in this case mean - VaR analysis yields
the same results as with mean - variance analysis. But then it’s not necessary
to use the computational harder mean - VaR model. 2

There are many features that makes CVaR a better risk measure than VaR.
From a financial point of view it gives more secure decisions. VaR don’t say
anything about what happens given a extreme loss, but CVaR will in such
case give a number of how much a firm can loose, taken all information into
account. From a mathematical point of view CVaR is convex for given level
α which makes it easy to optimize.

2For proof and more details of elliptical distributions see Landsman and Valdez (2003)
and easy proof for normal distribution see Rockafellar and Uryasev (2000).
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The methods used for comparing VaR and CVaR are criticized. Many
compare VaR and CVaR at a given level α, but they often are at two dif-
ferent places in the distribution(for illustration see 4.1). In general one have
V aRα ≤ CV aRα, and thus VaR is in a more stable part of the distribution.
But one can always find α1 such that CV aRα = V aRα1 .

Some criticism and results are found in Uryasev et al. (2010). Clearly the
longer out in the tail a threshold gets, the more unstable it is. Uryasev et al
found cases where CV aR0.95 = V aR0.99 which is in a more unstable region
than V aR0.95.

As a conclusion between the two, and especially with stability in mind they
stated "Thus, one should analyze properties of the dataset on which com-
putations are based, with particular focus on the model for the tails of the
distribution, before deciding to insert constraints on VaR or CVaR, as none
of them is “better” than the other". Which is interesting since many sees
CVaR as superior in terms of mathematical properties, but evidently not
always in practice.

4.6 VaR- and CVaR deviation

Ralph T. Rockafellar have been behind much of the research of CVaR, the
study of connections between risk and deviation measures, and is behind the
one to one connection.

He have also developed CVaR deviation which he describes as promising.
This because he in Rockafellar et al. (2006) shows it can directly replace
standard deviation as deviation measure in most of the concepts developed
by Markowitz like mutual fond separation, the Markowitz model and the
Sharpe ratio.

Remember the connection (4.2) and with VaR and CVaR as risk measures
we get the associated deviation measures :

Definition 4.5.

R(X) = V aRα(X) ←→ D(X) = V aRα(X − E[X])

R(X) = CV aRα(X) ←→ D(X) = CV aRα(X − E[X]) = CV aR4α (X)

Notice that CVaR is a coherent risk measure and is strictly expectation
bounded, implying that the CVaR deviation is a coherent deviation measure.
VaR on the other hand fails on sub-additivity and monotonicity in certain
cases. Meaning the VaR deviation is not fulfilling the axiomatic definition of
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a deviation measure.

The CVaR deviation has become increasingly of interest because of new
methods connected to this measure. Sarykalin et al. (2008) states that "An-
other coherent deviation measure in the basic sense is the so-called Mixed
Deviation CVaR, which we think is the most promising for risk management
purposes."

Mixed CVaR deviation is a convex combination of CVaR where different
levels of α gets weighted. That is

Mixed− CV aR4 =

∫ 1

0

CV aR4α (X)dλ(α)

where λ is a weighting measure on (0, 1) and total measure 1. Now, instead
of just a risk parameter λ one can define a total risk profile by weighting
λ different for each α. Making it possible for more complex and structured
models of optimization.

Each different deviation and risk measure described in this chapter are
possible to use as ρ in the reward - risk model, but with the drawbacks
described for non coherent measures.
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CHAPTER 5

Mean - CVaR optimization model

Now I want to illustrate how reward-risk analysis could look like beside
Markowitz. As before, r ∈ Rn equals returns and w ∈ X is the portfolio
weights with loss function f(w, r).

Formulations connected to measures and probability is on the same form
as in Krokhmal et al. (2002). For convenience I will assume returns have
a probability distribution, defined as p(r), but this can be avoided. See
(Rockafellar and Uryasev, 2002).

The cumulative distribution function for p(r) can be used to set ‘maximal
acceptable level of loss’. Given a portfolio with weights w we can change the
loss threshold, ζ, to get a cumulative distribution function

(5.1) Ψ(w, ζ) =

∫
f(w,r)≤ζ

p(r)dr.

where Ψ(w, ζ) is continuous because of the assumptions of p(r)being contin-
uous, which in turn gives a convenient way to defining VaR and CVaR.

VaR will in this setting get the following definition which is equivalent to
definition 4.3.

(5.2) ζα(w) = min{ζ ∈ R : Ψ(w, ζ) ≥ α}

which again changes the CVaR definition to

(5.3) φα(w) =
1

1− α

∫
f(w,r)≥ζα(w)

f(w, r)p(r)dr
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5.1 Methods of Rockafellar and Uryasev

The main reason I present the second definition of both VaR and CVaR
comes from Rockafellar and Uryasev (2000). Instead of optimizing VaR and
CVaR directly, they define a similar function which is possible to linearize.
They also prove that a solution to this function optimize CVaR and finds
the resulting VaR simultaneously. The proof behind this function is quite
extensive, and can be found in the appendix of their article.

Definition 5.1. Given ζα(w) and φα(w) defined as in (5.3) and (5.5) we
define the function Fα(w, ζ) on X × R as

(5.4) Fα(w, ζ) = ζ + (1− α)−1

∫
r∈Rn

[f(w, r)− ζ]+p(r)dr

where [a]+ meaning max(0, a).

When it comes to optimizing F and it’s properties, Rockafellar and Urya-
sev prove the following theorem.

Theorem 5.1. As a function of ζ, Fα(w, ζ) is convex and continuously dif-
ferentiable. The α−CVaR of the loss associated with any w ∈ X can be
determined by the formula

(5.5) φα(w) = min
ζ∈R

Fα(w, ζ)

In general one will always get the following

ζα ∈ arg min
ζ∈R

Fα(w, ζ) and φα(w) = Fα(w, ζα(w))

where ζα is the V aRα.

Also in a minimization problem this holds , implying we can work directly
with F (w, ζ) in a risk-reward model. The functions above will be equivalent
in the sense that they end at the same solution. A optimum (w∗, ζ∗) for
minw∈X φα(w) will also be optimum for min(w,ζ)∈X×R Fα(w, ζ). Since we have
assumed continuous distribution for the losses, ζ∗ will be unique and equal
V aRα, and CV aRα is the minimum value. For proof of this see Krokhmal
et al. (2002).

Now we have efficient way to use CVaR as a risk in optimization prob-
lem,and model (3.6) can be turned into a mean-CVaR problem.
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(5.6)

minimize
(w,ζ)∈(X×R)

Fα(w, ζ)

subject to wT e = 1

wTµ ≥ R∗

Lb ≤ Aw ≤ Ub

or alternatively

(5.7)

maximize
(w,ζ)∈(X ,R)

wTµ

subject to wT e = 1

Fα(w, ζ) ≤ R∗

Lb ≤ Aw ≤ Ub

Now we got an example of reward-risk model with concave (linear) reward
and convex risk. This means an convex solution set and convex programming
can get the optimal solution for each choice of maximum risk limit R∗ and
minimum return limit R∗. Varying these gives an efficient frontier as in the
Markovitz case.

The underlying trouble about CVaR is that one need to compute a lot of
scenarios. This means there are both a lot of constraints and variables that
need to calculated and a efficient algorithm is crucial.

When applied an specific sampling, one can get an discrete version of
F (w, ζ). This will be given

F̃α(w, ζ) = ζ + (1− α)−1

J∑
j=1

πj[f(w, rj)− ζ]+

and is proven to be convex and piecewise linear given that the continuous
function is linear w.r.t w in Krokhmal et al. (2002).

The scenarios, rj, can be sampled from either a parametric distribution
with parameters calculated from earlier returns, or an empirical distribution.
I will present some methods for scenario generation, but will first focus on
the technical details of the model.

The non-linear term [f(w, rj)−ζ]+ = max(f(w, rj)−ζ, 0) is now the only
term left preventing this model to be LP. The solution is to replace it with
auxiliary variables zj. By defining F̃α(w, ζ) = ζ + (1 − α)−1

∑J
j=1 πjzj and
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adding the constraints zj ≥ f(w, rj) − ζ and zj ≥ 0 one will get the same
results as with [f(w, rj)− ζ]+. This is all possible when scenarios are gener-
ated, and resulting in a LP problem given that the loss function f(w, rj) is
linear with respect to w.

We end up with a linear representation of model (5.7)

(5.8)

maximize
(w,ζ,z)∈(X×R×RJ )

wTµ

subject to wT e =1

ζ +
1

1− α

J∑
j=1

πjzj ≤ω

−wT r + ζ ≤zj for j = 1, ..., J

0 ≤zj for j = 1, ..., J

Lb ≤ Aw ≤Ub

and similar for the risk-reward alternative. The loss function used is simply
f(w, r) = −wT r which is the negative of the amount gained from the port-
folio.

The first constraint is to ensure that all money are used, so that all
weights sum to 1. Note that one of these assets could be risk free.

The second constraints are the CVaR constraint. By using the J different
scenarios, ζ will end up as VaR, and then take average over this quantile to
calculate the CVaR. In this context where returns are used, R∗ = ω ∈ (0, 1).
Interpretation now is percent of portfolio value that is lost in the 1−α worst
scenarios.

When optimized with prices as input, this restriction will typical be frac-
tion of initial portfolio value. That is ωpTw0 where p is the prices today and
w0 is initial weights. Implying CVaR will now be interpreted as monetary
value of portfolio portfolio one maximum can loose in the α worst cases.

Setting ω = 0.15 and α = 0.95 means that one will maximum loose 15% of
portfolio value at the average 5% worst scenarios. By increasing the fraction
at risk,ω, one will get the efficient frontier as in the MV model.

The third and the fourth constraints are to ensure the model optimize
over the 1− α worst cases, and are technical described above.
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5.2 Possible constraints

For now Lb ≤ Aw ≤ Ub has just been k possible constraints. What kind of
constraints that is applied variates greatly with the portfolio manager and
to whom the portfolio belong. For instance, private managers would be open
to leveraged position1, while this would be illegal for many pension funds
because of the higher risk. A pension fund would try to follow a benchmark
index closely, while a private manager would try to beat the benchmark with
more extreme positions. All these differences can be captured through these
constraints.

Position constraints
These are different constraints that affect position/weights directly. For in-
stance, one could say w ≥ 0 to remove short-positions. Making borrowing
money (investing in risk free asset with negative value) impossible.

Second option is to say that one stock could not account for more than
20% of the portfolio value, by setting wi ≤ 0.2 for all assets i. This is one
possible way to ensure a diversified portfolio.

Benchmark/ information ratio constraint
Information ratio is telling how much a portfolio differs from a chosen bench-
mark. This could for instance be a portfolio trying to beat the S&P 500
index, but with much of the same volatility. Mathematically information
ratio is defined as rP−rB

V ar(rP−rB)
2. In this setting rP is the portfolio return, and

the benchmark return rB.
The information ratio gets low if variance between portfolio returns and

benchmark returns are high. Which often implies more risk since one goes
against the market in order to get higher returns. If one get significant higher
returns with low volatility, the information ratio is high.

This measure is used to compare performance between portfolio man-
agers, and is for some funds limited to ensure a portfolio follows the market
in terms of risk.

Transaction cost constraint
One issue with active portfolio management3 is transaction cost. One could

1Leveraged position is synonymous to short position. Means borrowing money to invest
more heavily in stocks

2More on information ratio in Kidd (2011)
3Active portfolio management means frequent trading with every change. Passive port-

folio management means one choose some promising assets, which is kept for a longer
period.
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easily set up an algorithm that solved for a ”optimal portfolio" every minute,
but in real life the stock exchange takes some basis points4 for each trade.

This can be solved either by checking if expected returns increases above
total cost when the position is changed or set a maximum amount of costs
for on reallocation.

Given an initial portfolio w0 with pricesp, there is an cost per trade de-
noted c, we can implement a maximum total cost constraint on the form
by

cpT
N∑
i=1

|wi − w0
i | ≤ κpTw0

That is the differences in value of initial position and new position have to
be less than some fraction κ of the portfolio value, or just number a M .

Another option is the balancing cost constraint as Krokhmal et al. (2002)
uses with CVaR optimization. That is the total value of a initial portfolio
have to be equal the total value of a optimized portfolio minus the cost.
Technical

pTw0 =
N∑
i=1

cipi|wi − w0
i |+ pTw

Both these constraints are non-linear, but can be linearized by taking
∑N

i=1 |wi−
w0
i | and change to

∑N
i=1(u+

i + u−i ) with wi − w0
i = u+

i + u−i and where
u+
i , u

−
i ≥ 0 for all i.

In practice fonds tend to have for instance weekly/monthly reallocation
combined with constraints to minimize cost.

41 basis point = 0.01%
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5.3 Scenario generation

As mentioned in the comparison between VaR and CVaR, how accurate the
tail model is are of great importance for the accuracy of CVaR. The scenar-
ios rj with associated scenario probability πj is therefore important. There
are many methods for scenario generation, and I will present some of the
conclusions from Guastaroba et al. (2009).

Mainly one can use two type of methods: parametric and non-parametric.
Parametric is more used when there are less data points, and makes it pos-
sible to generate as many scenarios as needed. The downside of parametric
scenario generation is that one need to assume a distribution and fit this
model to data. Multivariate normal distribution is popular, but as discussed
in the background theory, this go against much empirical evidence about
returns. There is in general no "correct" distribution for returns.

Non-parametric generation methods don’t have this problem. They have
in common that there is no need to assume a distribution, but reuses histori-
cal returns. The assumptions with non-parametric is that historical values is
relevant in describing future returns. Again a strong assumptions that goes
again empirical research of return series.

Historical data is the easiest scenario generation method and is much used.
Each data point gathered for a stock is a possible realization with equal
possibility, that is πj = 1

m
∀j where m is number of data points. Possi-

ble alternatives are a simple rolling window average over all data to remove
extremities or using for instance two weeks price gap for return(" 10 day
return"), ie rj = P t+10

P t
− 1 to get a two week investment problem.

Bootstrapping is a simple resample methods similar to historical data. The
method randomly picks out numbers of the data set as historical, but then
replaces the number. Meaning all numbers are equally probable with same
probability, but one scenario can happen more than one time. The result is
that number of samples, B, can be larger than number of data points.

This is useful when there are few data points, and in non-parametric
bootstrapping none assumption about distribution is made. The problem
with bootstrapping in finance is that one assume the data to be independent
and identical distributed, in other words uncorrelated. As we have seen, this
is not the case in practice.

Block bootstrapping is a possible solution when data are correlated. Instead
of drawing samples from the entire set, the data set is split into b different
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5.3. SCENARIO GENERATION

"blocks" of data. Each containing k = m
b
different numbers. The idea is that

each block should be uncorrelated to each other, but not necessarily within
each block.

This will make the resampled data to keep much of the correlation and
structure within the time series of one stock, which is not the case when one
pick numbers from the whole set randomly. Block size b have to be balance
between correlation across different assets and correlation within the single
asset. The optimal size isn’t unique, but one have certain methods to find b
which is close to optimal.

Monte Carolo simulation is the parametric alternative. By assuming the
returns follow some distribution fitted to the data points one can easily draw
as many numbers as necessary and repeat this to get a confidence interval of
random numbers. Multivariate normal and multivariate student’s t distribu-
tion are often used.

When considering numerical stability and sample size, some continuous
parametric distributions can give an explicit solution for VaR and CVaR.
For multivariate normal this using the fact that rP ∼ N (wTµ, σP ) where
σP = wTΣw, one can get a standardized normal random variable rP−wTµ

σP
∼

N (0, 1) . Now we get that

V aRα = qασP − wTµ

CV aRα =
σP

α
√

2π
exp

(
−(V aRα)2

2

)
− wTµ

One can find similar expression for multivariate t distribution. For more see
(Ch. 6 p.213 in Rachev et al., 2008)

The conclusion in Guastaroba et al. (2009) is that block bootstrap on average
has the best performance. This is tested through four different periods in
the stock market. "Up-up","up-down","down-up" and "down-down" where
up and down means stock market as whole (big index) goes up and down.

Interestingly, student’s t outperformed normal distribution in down peri-
ods, where market was heavy tailed, but was usually outperformed by normal.
Indicating normal distribution may not be a bad assumptions after all.

On the other hand, when market is normally distributed the resulting
optimal portfolios are equal to the mean-variance optimal portfolios. This
can easily be seen in the the explicit solution above. Given that minimum
return limit is binding, that is wTµ = R∗ then σP = wTΣw is the only
term with w. So minimizing CVaR or VaR is then the same as minimizing
portfolio variance.
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CHAPTER 5. MEAN - CVAR OPTIMIZATION MODEL

CVaR was proposed especially to capture downside risk more correctly
than variance, and assuming normal distribution, student’s t or any other
symmetric distributions is somewhat to go against this purpose.

5.4 Performance measures
In the mean-variance model the natural reward-risk ratio was called Sharpe
ratio, and was used to find the portfolio with most reward for each unit of
risk. With both VaR and CVaR we have similar ratios, but extended to risk
measures. For CVaR, and the one relevant for comparison with Sharpe in
this case, is the STARR ratio(Stable Tail Adjusted Reward Ratio). Following
are ideas and definitions from Stoyanov et al. (2007) and Rachev et al. (2008).

General reward risk- ratio is and the STARR ratio is defined as

Definition 5.2.

RR(w) =
E(wT r)

ρ(wT r)

STARR(w) =
wTµ

CV aRα(wTµ)

The issue with STARR ratio compared to Sharpe ratio is the difference
between a risk- and a deviation measure. While standard deviation is strictly
positive (unless RV X is a constant) CVaR can become both zero and neg-
ative. Since CVaR satisfied R5, stating CV aR(wT r) ≥ −E[wT r] which in
turns imply 0 ≤ −CV aR(wT r) ≤ E[wT r], CVaR can become negative when-
ever portfolio returns are positive. In fact, a negative CVaR is actually very
good performance, but makes the STARR ratio negative. Two solutions are
possible:

I) Split between non-negative and negative values. Rank negative as bet-
ter than positive.
II) Use a linearized form of STARR.

On a general form a linearized risk reward ratio is on the form

LRR(w, λ) = E[wT r]− λρ(wT r)

LSTARR = wTµ− λCV aRα(wT r)

λ is interpreted as a risk aversion parameter. Both issues in the regular
STARR ratio is now fixed. Negative CVaR gives higher score, and higher
ratio is better without the need for any categorization.
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5.4. PERFORMANCE MEASURES

In Stoyanov et al. (2007) optimization of this ratio is implemented into the
linear mean- CVaR model(5.8). For comparison with mean-variance model,
I will stick with the full efficient frontier instead of the single portfolio re-
sulting from max STARR method. For instance in a trading algorithm, the
complete efficient frontier is of less interest and a max STARR portfolio will
be computational much easier.
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CHAPTER 6

Results from portfolio optimization

In this section I will show some results from mean-variance and mean-CVaR
optimization. First I will show some differences in the efficient frontier be-
tween mean-variance and mean-CVaR portfolio, and when they give the
same result. Secondly I want to look at how different scenario generation
techniques will affect allocation and overall performance of the portfolios
compared to each other.

Next I will compare some methods that can be used to optimize the
mean-CVaR model with focus on computational time. Lastly I show the
differences in computational effort when optimizing return with respect to
risk or minimize risk with respect to return.

Mean - CVaR optimization

Period 2011 - 2016

I have based the following optimization results on weekly data of all stocks
in the US based S&P 100 index in the period May 16. 2011 to May 16. 2016.

All optimizations are done with four different methods for CVaR: histor-
ical returns, block bootstrapping of historical returns, multivariate normal
distribution and multivariate t distribution. All optimization of CVaR is
done with α = 0.95.

There are much variation in the efficient frontier for different type of sce-
narios, as we can see from Figure 6.1, with the biggest difference being how
extreme the tail is. The right endpoint at the efficient frontier, given that
short sale is restricted, will always be a portfolio consisting of one single
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stock. More precise, the stock with highest returns. This means CVaR is
calculated by the tail for that single asset. In a portfolio with multiple assets
there will be more scenarios in the tail, which makes CVaR less sensitive to
the extreme random numbers.

The biggest difference at lower levels of risk is in the multivariate t distri-
bution. It predicts more risk earlier at the frontier, but also higher returns
towards the right endpoint.

Since multivariate t is a heavy-tailed normal distribution this is expected.
It’s symmetric with heavier tails, resulting in both higher returns and risk.
Again, this is somewhat against empirical findings, which shows higher losses
than returns, i.e asymmetric behavior described in section 2.3. For further
research and asymmetric distribution could give interesting results.

The normal distribution actually shows higher risk than historical returns.
Because of the asymmetry and the heavy tails implied by empirical findings
in the market, this should be the other way around. Implying that the years
2011 to 2016 have been years with high returns and low risk.

Normal is still closer to historical compared to the bootstrapping and
multivariate t at higher levels of risk.

It’s important to note that this is just one round of sample generation. There
are some variation within each scenario method that could change the results,
which will be shown in the next section.

In Figure 6.2 I compare CVaR efficient frontiers with the efficient frontier
from mean-variance(MV) optimization in a plot with standard deviation as
risk. In this figure it’s clear that the CVaR efficient frontier that is based
on historical data is really close the MV efficient frontier, and thus almost
mean-variance effective. At lower risk there is actually less difference in terms
of variance than in CVaR for different types of scenarios, and at higher risk
levels there is the same tendencies as in Figure 6.1.
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CHAPTER 6. RESULTS FROM PORTFOLIO OPTIMIZATION

Figure 6.1: Effective frontier for CVaR optimization with different scenario
generating technique in mean-CVaR space. Based on data of S&P100 stocks
in the period 16. May 2011- 16. May 2016.

Figure 6.2: Effective frontier for CVaR optimization with different scenario
generating techniques and MV optimization in mean-standard deviation
space. Based on data of S&P100 stocks in the period 16. May 2011- 16.
May 2016.
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Period 2006 - 2011
Since 2011 to 2016 was years with less downside risk than normal, I chose to
analyze the years 2006 to 2011 as well. In this period the market went into a
financial crisis through 2008-2009. The S&P100 went rapidly up in 2006 and
2007, but then went down from 724.40$ to 348.21$ in the period October 1.
2007 to 1. February 1. 2009. After reaching bottom at the beginning of 2009
the index increased and by 1. of April 2011 the price was back above 2006
levels.

Because of the heavy losses and skewness in the market, CVaR should be
more suited to measure risk during this period compared to variance. Some-
what surprisingly, the results of optimizing CVaR and variance are again
really similar.

The effective frontier in mean-CVaR space is plotted in Figure 6.3. Multi-
variate t which was somewhat misplaced in good times, is now following the
historical closely and predicts downsides in the market better than both boot-
strapping and normal distribution. Normal distribution is to "optimistic"
and predicts lower risk and higher returns that what actually is the case, as
theory should suggest.

Also interesting is the fact that one could get much higher returns during
the period with crisis than when the whole market went up. This probably
comes from the fact that smaller stocks was more volatile and many investors
searched for more secure and stable stocks.

Since the S&P 100 is composed of the 100 biggest and most established
stocks in the US, these stocks would perform significantly better than smaller
stocks and the market as whole. For instance the price for a stock in Amazon
went from 33.78$ to 202.56$ in this period, and this is the stock with third
highest return.

Looking at Figure 6.4, we see that the CVaR optimization with historical
returns is surprisingly mean-variance efficient in periods of crisis as well. All
frontiers are so close that randomness within the scenario generating tech-
niques could change a conclusion. Bottom line is that optimization with
CVaR is close to mean-variance efficient, but in theory more capable in de-
scribing the actual financial risk.
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CHAPTER 6. RESULTS FROM PORTFOLIO OPTIMIZATION

Figure 6.3: Effective frontier for CVaR optimization with different scenario
generating technique in mean-CVaR space. Based on data of S&P100 stocks
in the period 16. May 2006- 16. May 2011.

Figure 6.4: Effective frontier for CVaR optimization with different scenario
generating techniques and MV optimization in mean-standard deviation
space. Based on data of S&P100 stocks in the period 16. May 2006- 16.
May 2011.
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Mean-CVaR performance

That the efficient frontiers are close implies that the weight allocation are
somewhat similar. Most alike was weight allocation from mean-variance and
CVaR portfolio with scenarios from multivariate normal distribution. This
is what theory states and is clear from the performance results. All have
similarities with which assets is chosen, but also differs quite much at lower
levels of risk.

Maximum STARR ratio was found at around 5.5% CVaR during the pe-
riod 2006-2011. Above this threshold there was little variation in allocation,
and almost identical performance with the exception of multivariate t. Fig-
ure 6.5 shows one safe portfolio, CVaR limit at 3%, and the portfolio where
most had maximum STARR ratio with CVaR around 5.5%.

The performance of a portfolio based on weight allocation from the non-
parametric scenario generation techniques performed best, and multivariate
t worst of the CVaR models. Mean-variance usually performed worse than
CVaR optimization, but not because of less downside. It’s actually when
market goes up that a portfolio based on CVaR perform better. One reason
for this is that variance "punishes" returns as well as losses, and it would be
interesting to test with semi-variance as proposed by Markowitz.
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(a) CVaR less than 3% portfolio

(b) CVaR less than 5.5% portfolio

Figure 6.5: Performance of a portfolio in the period 20. May 2006 to 20.
May 2011.
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Out of sample performance test

An investor will always analyze the historical data to make an investment
for the future. In the following results weights are based on optimization of
the data from 2006-2011, and kept in the period 2011 to 2016. By looking
at the performance of keeping these stocks in this period which is outside of
the historical data, one will get a sort of "out of sample" test. The results
are illustrated in Figure 6.6.

Again non-parametric scenario generating techniques have the best perfor-
mance, but interestingly mean-variance and normal based CVaR allocation
performs better at the end of the period.

For the safe portfolio multivariate t performed best. Also in test with
more strict probability level, α = 0.99, multivariate t often did better than
the others because of its heavy tails. For higher level of risk multivariate t
was surprisingly off multiple times, which leads to bad performance in both
in and out of sample.

The performance for multivariate t illustrated is representative for my
total impression of multivariate t. It could be capable, but is often too much
affected by extreme events leading to sub optimal portfolios. From my point
of view, basing investment decision on a combination of normal distribution
and bootstrapping or historical would be an more reliable option.

It is hard to come to an final conclusion because of the randomness con-
nected to each scenario generation methods. All portfolios shows similarities
and CVaR doesn’t show any immediate advantages over variance out of sam-
ple. With the simplicity of the Markowitz model, one can understand why
it’s a tool many uses. Combined with robustness of mean and covariance it’s
still a strong competitor to newer risk-reward models.

On the other hand, measures building on the ideas of controlling extreme
events are still emerging. Measures like mixed-CVaR could control absolute
loss by setting α close to 1, CVaR at multiple probability levels and expected
value of all losses by setting α close to 0.5 simultaneously. This in one measure
that can be applied directly to the general risk-reward models presented in
this thesis.

CVaR as measure is made to capture the asymmetry in the market, but in
this thesis only symmetric distribution are used. Block-bootstrapping should
have similar skewness as the market, but other asymmetric distribution could
improve the performance of a portfolio optimized with CVaR compared to
variance.

65



CHAPTER 6. RESULTS FROM PORTFOLIO OPTIMIZATION

An important precision is that this is by no mean a backtest. For instance
by changing allocation weekly to maximize STARR ratio through the same
period would probably give an different result entirely. As stated in Rachev
et al. (2008), backtesting with CVaR optimization have several difficulties.

What is done in this experiment is allocating once based on historic data
and keep that allocation for five years.

(a) CVaR less than 3% portfolio

(b) CVaR less than 5.5% portfolio

Figure 6.6: Performance of a portfolio in the period 20. May 2011 to 20.
May 2016.
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Consistency within a distribution

When drawing scenarios from a distribution or through bootstrapping there
is always some randomness, even if sample size is large. The question is if
this randomness is so big that it will impact the investment advices one get
from a portfolio optimization.

I have not compared the numerical precision of the CVaR calculated, which
one can do by measuring the fluctuations of CVaR compared with the explicit
solutions for a parametric distribution. This is already done in (p.219 Rachev
et al., 2008) with sample size varying from 500 to 100 000 for CV aR0.99.
Based on this result I chose 20 000 as sample size, as a sweet spot between
computational effort and precision/stability of CVaR.

In these numerical results I’m more interested in the complete efficient
frontier and weight allocation at multiple levels, than precision of CVaR for
the different methods.

The weight allocation plots connected to each method, show three of the
five optimization runs. This type of plot shows how the allocation changes
from start point to end point at the efficient frontier. The "risk level" is
based on the 10 return limits(R∗ in model (5.6)) that is used to calculate the
efficient frontier, and goes from lowest CVaR at 1 to highest possible CVaR
at 10.

I have taken five runs of optimization with independent random samples
from one scenario generating technique, and seen differences in the efficient
frontier and weight allocation.

There are three assets with 27.6%, 27.9 and 28.0% expected annual re-
turn in the historical data. That the difference is so small results in all three
changes between having the highest mean return after random samples are
generated. This is the case for all methods.

The block bootstrapping technique is illustrated in Figure 6.7.Overall it is a
stable method with resulting efficient frontiers that are close too each other.
The weight allocation is consistent at the first seven risk levels, but with
a tendency to be less diversified than the parametric sampling methods at
higher levels of risk.

The multivariate normal samples produce more or less the same efficient
frontier as can be seen in Figure 6.8. Also the weight allocation is really
consistent, even at risk level 8 and almost 9.
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(a) The efficient frontier (b) Weight allocation

Figure 6.7: Five optimization runs with samples from block bootstrapping.

(a) The efficient frontier (b) Weight allocation

Figure 6.8: Five optimization runs with samples from multivariate normal
distribution.

With samples from a multivariate t the variation is somewhat bigger. Look-
ing at Figure 6.9, there are greater differences in the efficient frontier, even
at the beginning, and the weight allocation changes more between risk level
7 to 9.

Notice that the allocation suggested from this optimization gets more as-
sets on lower risk level compared to normal distribution and block-bootstrapping.
This could be from the fact that all assets have heavier tails, and the bigger
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uncertainty results in a more diversified portfolio to lower CVaR.
From theory about diversification this should suggest lower risk and better

performance, which was not the case. This could mean there is something
specific with the dataset used, which makes multivariate t perform badly in
this optimization, but not in general.

(a) The efficient frontier (b) Weight allocation

Figure 6.9: Five optimization runs with samples from multivariate t distri-
bution.
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Algorithm comparison

I have used three different methods for solving the mean-CVaR optimization
problem. The first method, which is the one implemented in my portfolio in-
terface, is the prebuilt PortfolioCVaR method. By default this method uses a
general solver called fmincon with a sequential quadratic programming(SQP)
algorithm Mathworks calls "state of the art" in non-linear optimization.

Only requirement for this algorithm is smooth object function and con-
straint. Mathworks defines SQP as a medium-scale algorithm, meaning it
stores all information and works on full, dense matrices. A bit more on al-
gorithms built into Matlab are discussed in chapter 7 and full details can be
found in MathWorks (2016).

The second method I used was to manually manipulating objective func-
tion and the constraint matrix into the form needed by a LP solver. This
form is quite strict. Recall that a LP on standard form is defined as:

minimize cTx
subject to Ax ≤ b

Aeqx = beq

x ≥ 0.

where the first and the second constraint is just the coefficient matrix A split
into inequality and equality constraints. For a LP solver A, b, Aeq and beq as
well as lower and upper bounds are needed on this exact form. Looking at
problem (5.8), we have to optimize the weights as well as ζ and auxiliary
variables z. All these have to be one vector x with corresponding constraints
added to one big matrix A.

My starting point was the objective function, i.e to maximize the expected
return, µTw. The solver takes one row given by cT = [µ1 . . . µN 0 0 . . . 0]
as input. Defining the decision vector x as x = [w ζ z]T resulting in x
being a (N + 1 +J)× 1 vector where N is the number of assets, and J is the
number of scenarios. Now we get that cTx =

[
µTw + 0ζ + 0T z

]
The equality constraint in this system is

∑N
i=1wi = 1. With x defined as

above, one get Aeq = [1 . . . 1 0 0 . . . 0] with beq = 1.
The CVaR constraint is the sum ζ + 1

(1−α)J

∑J
j=1 zj which should be less

than some limit ω. Defining β = 1
(1−α)J

one get A1 = [0 . . . 0 1 β . . . β]
with b = ω.

The main part is the system of auxiliary variables defined by Rockafellar
and Uryasev, wT rj + ζ ≤ zj where rj is the scenarios generated. To get the
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LP form A has to be defined A = − [r1 . . . rN 1 e1 . . . eJ ] which should be
less than b = [0 . . . 0]T . Here 1 is a J × 1 row vector and ei is the i’th column
of the identity matrix of size J × J . ri is a row vector containing all the J
scenarios for asset i.

Lower and upper bound is inserted in the solver separately. For Matlab
code see section 8.2.

The last method I used was the package "Yalmip" which choose the best
solver and fix constraints on proper form. This allows for constraints and
variables on a more flexible form, and can call a series of different solvers
outside the Matlab environment.

The state of the art solution is CPLEX developed by IBM, but because of
registration and license issues I chose the competitor MOSEK optimization
software. In benchmarks MOSEK is around 20% slower than CPLEX at big
LP problems1.

The problem was set with scenarios for the hundred stocks in the S&P100
index with weekly data from the period 15.may 2011 to 15.may 2016. For his-
toric sampling this meant optimization of 262 scenarios, while the other three
methods had 20 000 samples. As one can see from table 6.1, the differences
in time used is quite big.

CVaR
object

Min
CVaR
Yalmip

Max
returns
Yalmip

Min
CVaR
LP

Max
returns
LP

Historic 3.5318 1.1713 1.6466 0.0527 0.1319
Bootstrapping 27.8168 4.0663 9.4258 3.9046 7.1356
Normal 24.9924 6.2656 9.2793 3.5759 7.5853
Student’s t 31.0501 7.3863 10.0983 4.1916 8.6097

Table 6.1: Mean time of ten optimization runs with drawing random numbers

The built in MatLab portfolio routine is quite fast with few stocks, and
have been close when I have been analyzing the German DAX index with
30 stocks. But when problem complexity is increased, LP solvers are much
faster than the general optimization routines when applied to a LP problem.

As shown above, it’s around 20 seconds slower than LP problems. Show-
ing that the theory of Rockafellar and Uryasev makes an important difference.
The PortfolioCVaR object works well for smaller illustrative problems, and

1See http://plato.asu.edu/ftp/lpsimp.html for updated benchmark of different solvers
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makes more defined error messages compared to my own method. This is
the reason I have used this in my interface.

For an investor that wants analysis of many stocks, together with other
more complicated financial instruments, a special implemented system has
to be made. This is where linearization is of great importance.

Between the two methods used for LP, Yalmip was for a long time the fastest
method ans has many positive aspects. The code when programming with
Yalmip get much more readable and ideas for constraints are straight for-
ward to implement without any manipulation, see section 8.2. It’s also more
general, meaning it’s quick to change solver if one for instance wants to add
non-linear constraints.

The negative side with Yalmip is that the procedure is more hidden.
When I started with the pure LP method with standard routines the total
time was above 3-4 minutes. Trough optimization of the code it’s now the
fastest. Similar optimization could possibly be done to the Yalmip method
to make a specialized version, but is hard when there are so much that is
happening internally in Yalmip.

For the LP method I chose to use MOSEK’s linprog2 solver that replaces
Mathworks’ version. When optimizing with the regular linprog it took be-
tween 122 and 178 seconds to solve the problem compared to never above 15
seconds with MOSEK . Which illustrates well why firms like MOSEK and
IBM can sell pure optimization software.

By looking at the time differences between max return versus min CVaR
it’s clear that even if they give the same efficient frontier, they are different
in computational effort. With historical scenarios the difference are quite
small. This is not surprising since the number of scenarios and stocks are
quite similar, but when there are 20 000 scenarios the difference is consider-
able.

This difference is not one special case for one run. It has occurred when
I have changed index, number of stocks, frequency and scenarios. The first
thought that came to mind was difference in decision variables or rows in
coefficient matrix A. Rule of thumb for dual-simplex iteration is m to 3m
where m is number of rows in A3. But both problems are of the same size.
Matrix A in this numerical illustration has 20 001 rows and 20 099 columns,
and with only the first constraint (A1 in the code) different.

2Name of LP solver that comes in the Matlab optimization toolbox
3Rule of thumb from Leon (2002)
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Further I checked number of iterations which actually was less for max-
imizing return (17 iterations) than minimizing CVaR (22 iterations). I can
just conclude that there is something within the computational work for each
iterations or in how long the solvers use in phase 1 of simplex where one finds
initial feasible solution. Further work is outside of this thesis.

73



CHAPTER 7

Portfolio optimization interface

My goal have been to implement all theoretical aspects of this thesis, in a way
that should be comprehensible for someone with background in economics. I
learned object oriented programming by reading Mathworks book "Creating
graphical user interfaces(GUI)" and the webinars that are on their website.
All code is available on https://github.com/johalnes.

When making a GUI the way of thinking about programming is somewhat
different than mathematical scripting. Functions are often linked to certain
graphical objects, with rules of name and when they are called. See chapter
8.1 for more directly connected to GUI programming.

To illustrate the extent of a GUI, my little program counts 125 objects of
twelve different types(button,editable text, tables etc). Each with multiple
functions and properties, individual to each type of object. Total program-
ming will count between 2-3 000 line of codes for three separate user interfaces
that are connected in one main interface.

My workflow have been something like this:
The first step was to make a sketch of classes and functions needed. I

ended up with two main files. One for the GUI itself and one portfolio
object, PortObj.m, which take prices etc as input and does all the financial
calculations within the class, as well as initialize the portfolio functions pre-
programmed in Matlab.

The second step was to make the graphical interface with buttons and
other objects. For this I have used inspiration and some code from the
mean-variance portfoliotool made on a webinar at Mathworks.com.
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The next step was writing the code for each object in the interface and
initialize the connected calculations in PortObj. This was the absolute hard-
est part since not all ideas made in the sketch made sense when programmed,
and continuous changes had to be made.

The final step was to get all plots and tables to show the results of all
calculations that was made in the third step.

The second to the final step was divided for each page. I made the
import page, checked that everything worked like I wanted, then moved to
the portfolio setting page and so forth.

Page 1 - Data import

The first step in portfolio optimization is getting data. The GUI has possi-
bility for downloading the latest market data from Yahoo or importing from
excel spreadsheet.

The user can choose time period, data frequency and how missing data
should be treated when downloading from Yahoo.

The imported prices are shown in a table and there are two ways to fur-
ther inspect the data. Either by visualizing price and returns as time series or
in a distribution plot where different possible distributions are plotted with
a histogram of historic returns (see Figure 7.2). The distribution plot can be
used to make an idea of how scenarios should be generated later on.

In the distribution plot there is also a table with numbers of how well the
distribution fits the data. This is the negative log-likelihood resulting from
parameter estimation, together with Akaike information criterion (AIC) and
the Bayesian information criterion(BIC).

Information criterion is used in model selection and is defined by two
terms: the log-likelihood and a penalty term. The idea is that a lot of param-
eters may fit the data more closely, but too many gives over-parametrization1.
With a penalty for each parameter added an information criterion will find
a model with a good combination of fit and number of parameters.

The difference between AIC and BIC is that the later has more heavy
penalty which usually result in less parameters. For the distributions added
in this plot, over-parameterization is not an issue since all has 3 or less, and
the likelihood will be the dominating term. In for instance ARMA modeling
this difference is more relevant.

Note that none of these numbers can’t say anything about goodness of

1Over-parameterizations to specified to a dataset, which leads to bad out of sample
results and possible unnecessary calculations.
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fit in total. They are just numbers that give sense relative too each other for
a specific data set, and each data sets gives numbers of different magnitude.

Missing data occur when a stock is added or removed from a index or
other reasons for a stock being temporarily stopped for sale, and happens
quite often. One possibility is to remove the date from all stocks, but this
could remove relevant information. By using linear or cubic extrapolation
or spline for the missing data one can get more data points for use in the
optimization problem.

Figure 7.1: Page 1 of the portfolio interface.

(a) Price and return development (b) Distribution plot

Figure 7.2: Illustrated with data for BMW in the period 9. May 2011 to 9.
May 2016.
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Page 2 - Portfolio settings

At page two of the interface are settings connected to the portfolio. The first
step is to choose what kind of returns that should be used. Either simple,
logarithmic or exponential weighted returns. Last is to emphasize recent re-
turns more than old. I.e,

∑n
i=1 λ

iRT−i for λ ∈ (0, 1) and is equal logarithmic
return when λ = 1.

The second step is to choose risk measure. Either variance, CVaR for a
given α or both compared. CVaR is minimized for the probability level set,
but one can examine the CVaR any probability level, α, in the result page
to get a better overview of the tail risk.

The next step is to decide what type of scenarios that should be used. All
scenario methods discussed in chapter 5.3 except bootstrapping are possible
choices, all but historical data with 20 000 samples.

I chose to use block bootstrap with a method that finds optimal block
size. The reason for this choice is that block size 1 is chosen if the returns
are independent and identical distributed, but since empirical evidence shows
otherwise single bootstrapping could be flawed.

The estimation of block size is according to Politis and White (2004) and
coded by Andrew Patton. Politis and White propose an algorithm based on
analyzing the significance of the autocorrelation2.

By assuming a sample mean X̄ will become asymptotically normal (cen-
tral limit theorem) the long run variance can be estimated σ2

N = V ar(
√
NX̄N)

and they show this variance as an expression based on the autocorrelation.
They find an analytical expression of block size b that minimizes the mean
square error of the long run variance, σ2

∞.

The last step is to decide portfolio constraints. "Default constraint" is the
constraints defined in model 5.8. That is weights sum to one (all available
capital are used) and that the weights have to be positive.

Further constraints can be specified by activating a separate panel. When
tracking error or turnover constraints is used an initial portfolio have to be
chosen. Available quick options are equally weighted portfolio and a risk
parity portfolio. In an equally weighted portfolio all assets are weighted 1

2Autocorrelation is describing how correlated values within a random process is at dif-
ferent times, for instance a highly autocorrelated price series will imply that an increase in
prices today mean the prices is likely to continue to increase the day after. Autocorrelation
for a set start time, but different ending times will tell how long a change in this time will
impact the process.

77



CHAPTER 7. PORTFOLIO OPTIMIZATION INTERFACE

divided by number of stocks. This is a naive implementation corresponding
to the idea that stock market is completely random and analysis can’t be used
to predict a "optimal" portfolio. Equally weighted portfolios have actually
performed quite well historical and in many cases outperforms their index.3

Risk parity is an idea from the 1990’s that have grown in popularity
after the financial crisis in 2008-2009. The idea is to focus on risk/volatility
instead of returns and then use a leveraged position to get a acceptable level
of returns. In my implementation the weights are the inverse of their standard
deviation, wi = 1

σi
, but normalized by dividing by

∑N
i=1

1
σi
.

If a custom initial portfolio is wanted, the table are editable and each
stock can be adjusted individually.

Figure 7.3: Page 2 of the portfolio interface.

Page 3 - Optimization settings

All settings connected to optimization is set at this page. MatLab have three
built-in solvers for the PortfolioCVaR object: fmincon, quadprog and linprog.

Fmincon is a general convex optimization solver, and is the default solver
for portfolios in MatLab. Both constraints and objective value can be non-
linear and fmincon can therefore handle all kind of portfolio constraints.
Fmincon can use two different types of algorithms for portfolios. Sequential
quadratic programming (SQP) is the default algorithm.

3See thecollegeinvestor.com/8610/equal-weighted-funds-outperform-benchmark-
indexes/ for an analysis on equally weighted funds that increases in popularity.

78



It works by iteratively looking at the Lagrangian function for the opti-
mization problem. In each iteration the Hessian matrix4, H, for the La-
grangian is calculated and as a start point the gradient of the objective value
is used. One get a quadratic program which finds optimal direction,d, subject
to the Lagrange constraints. By updating the Hessian matrix and optimizing
direction one get a sequence of quadratic problems on the form dTHd that
converges to optimal solution. For further details see MathWorks (2016).

SQP is what MathWorks calls a medium-scale method. This means it
stores all previous solutions, which can drain memory in large problems.

The Interior-point algorithm is more suitable for solving large scale prob-
lems, and is more memory efficient. Interior methods follows a path within
the set instead of solving boundary problems, and converges towards optimal
solution. This is the default solver for fmincon outside the portfolio objects.

The reason for it not being standard in portfolio optimization is that it get
slightly inaccurate results in some settings. In my program this inaccuracy
was enough to impact the efficient frontier, resulting in sub-optimal portfo-
lios. In addition it was actually slower in many cases than the medium-scale
methods.

Quadprog is a quadratic program solver with it’s own algorithms. It re-
quires the problem to be a quadratic programming problem, and thus more
restricted than fmincon, but solves the problem much more efficient.

Because of limitations in the different algorithms, interior point is the
only algorithm in quadprog general enough for optimization of CVaR. The
interior point algorithm works as with fmincon, but need constraints to be
convex where fmincon excepts all constraint types.

Linprog is the linear programming solver in Matlab. This solver is known to
be slower than for instance CPLEX, and the speed is one of the reasons Mat-
lab have set fmincon as default. For LP interior point method is an option,
but with the inaccuracy as for the same algorithm in fmincon.

The most famous LP algorithm is the simplex method and is an algorithm
that finds solutions at the boundary points of the feasible region. When there
are none direction at the boundary that gives a better solution, optimum is
found.

4The Hessian matrix is the square matrix with second order partial derivatives of a
function. Note this assumes that objective function and constraints are twice differentiable.
When this is the case Dahl (2010) states that the Hessian is a positive semi-definite, which
gives a convex QP as introduced in the background theory.
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Both quadprog and linprog uses a cutting plane method called "Kelley’s
method". Cutting plane methods are often used in optimization of integer
problems, but is in this settings used to get convex set on a polyhedron
form. This works by making an linear relaxation, that is splitting the fea-
sible set into smaller sets by linear inequalities. By solving each of these
regions, checking optimality and then again split into smaller regions on get
a sequence of optimization problems that converges to the optimal solution.

With this cutting plane method linprog actually performed better with
interior points. One reason could be that interior point methods in the
beginning quickly converges to optimal solution where simplex goes to a
boundary solution which not necessarily is in the optimal direction. This
could imply less cuts and therefore less time needed.

Figure 7.4: Page 3 of the portfolio interface.

Page 4 - results

This page is identical to the Portfoliotool created on one of Mathworks’
webinars, but with modifications in the underlying calculations to show the
theory connected to CVaR. It shows the efficient frontier first, calculated
from 10 different portfolios with different level of risk and return. When a
portfolio is chosen, the results for that specific portfolio are shown. This
includes graphs of weights, performance of the portfolio against benchmark
and VaR/CVaR, as well as the portfolio statistics.
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I have calculated CVaR, STARR ratio and Sortino ratio5 and graph of
CVaR beside the metrics coded by Mathworks for the mean-variance model.

When the user chooses to compare variance and CVaR, the efficient fron-
tier is plotted with return as y-axis and standard deviation as x-axis. This
implies that the mean-variance frontier always will look most optimal when
α is at 95% or higher. The user can with this setting only choose the mean-
variance portfolios are the only portfolios, and therefore get statistics from
from. When CVaR is chosen alone, one will have CVaR as x-axis and get
statistics for the CVaR optimal portfolios.

Figure 7.5: Page 4 of the portfolio interface.

5Same definition as Sharpe, but with lower semi-deviation instead of standard deviation
as Markowitz suggested.
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CHAPTER 8

Appendix

8.1 Main GUI concepts
Matlab comes with a great tool for graphical user interface(GUI) program-
ming called GUIDE. This is a easy, "what you see, is what you get" program
that makes a Matlab class with all necessary code for design. Three objects
are sent between all functions in a Matlab GUI:

• hObject : the graphical object to the current function.

• handles: a collection of all the properties for all objects within the GUI.
Used to change all properties like data in a table, color for all objects
etc.

• eventdata: collection of all events that happens in the GUI.

Together these three functions holds all information and makes the user
interface. The one crucial for understanding GUI programming is "handles".

The handles is the complete GUI structure/hierarchy. It stores all objects
and all information. Each different type of graphical object (button, but-
ton group, editable text etc1) have describing properties that can be edited.
Most obvious are size and color, but also options like visibility2 or if a button
is active are important. See Figure 8.1 for all properties describing a small
button in a group.

1SeeMathWorks (2015) for all types of objects
2For better user experience certain objects can be invisible until for instance a choice

is made.
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Figure 8.1: An example of all properties connected to a button.

Besides describing properties, each object has multiple functions to de-
scribe its behavior. Following are some function common for most objects.

• An OpeningFnc is telling what an object should to when the GUI is
started. This could be that some buttons are disabled until certain
actions have been made, or setting default values in text fields.

• A CallbackFnc is telling what an object should do when activated.
For instance in a pop up-menu" which has multiple options, this is
started each time the user changes option or when a button is pressed.
Generally all actions connected to a object is in this function.

• A buttonDownFcn is started each time a mouse button is pressed when
above an object. This could for instance be to reset a graph/axis when
one click on it.

For a complete list of functions see page 219 in MathWorks (2015).
Following are some code from the GUI where one type duration for

stocks(editable text field object):

1 function edit_duration_Callback(hObject, eventdata, handles)
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2 % hObject handle to edit_duration (see GCBO)
3 % eventdata reserved − to be defined in a future version of MATLAB
4 % handles structure with handles and user data (see GUIDATA)
5

6 duration=str2double(get(handles.edit_duration,'String'));
7 if isnan(duration) || isempty(duration) || (duration <= 0) || (duration > 10)
8 duration = 5
9 set(handles.edit_duration,'String','5');

10 set(handles.edit_stop,'String',datestr(today,24));
11 set(handles.edit_start,'String',datestr(today−365.25*duration,24));
12 else
13 set(handles.edit_stop,'String',datestr(today,24));
14 set(handles.edit_start,'String',datestr(today−365.25*duration,24));
15 end

In all functions, Matlab automatically creates descriptions of input. No-
tice that the eventdata is for future versions of Matlab. There have been a
lot of improvements in GUIDE and other features connected to building in-
terfaces and apps the last couple of years. With this is seems like MathWorks
has more plans connected to interface programming.

The property called "tag" is an important concept. This is the name
of a object in the interface which connects it with different functions. In
the first line above one see this is a Callback function connected to the ob-
ject "edit_duration" which is the text field’s tag. I collect what the user is
writing with get(handles.edit_duration,’String’), but since this is in string
format a conversion to number is needed to use it in calculations. Again
notice that handles stores all information and to collect the information one
uses handles.”tag”.

Since this interface should be general a lot of testing is used to ensure the
input is on a correct form. In the duration text box I check if the user have
written a number with text(five instead of 5), only blank, negative or to big
duration. If any of these test fails the text field and date fields are put back
to default.

If the number is legal start and stop time are set to match the given
duration. This calculated in years from the current day. If other dates than
today is used this can be edited in the date fields.

The edit_duration is a really simple function, but one see that in order
to build a user friendly interface all objects needs to be updated and con-
nected. Which is all done with the commands handles, get, set and trough
the tag.

84



8.2. CODE

8.2 Code
Mean-CVaR with Linprog

1 function [wMin,VaR,Return]=maxRetPort(S,CVaR_Lim,alpha)
2

3 [N,M]=size(S);
4

5 %Matrix manipulation to get on LP form
6 A1 = sparse([zeros(1,M),1 ,1/(1 − alpha)*1/N*ones(1, N)]);
7 A2 = −S;
8 A3 = −ones(N,1);
9 A4 = −speye(N,N);

10 A = sparse([A1; A2 A3 A4]);
11 Aeq =sparse([ones(1,M) zeros(1, N +1)]);
12 b = sparse([CVaR_Lim; zeros(N,1)]); beq = [1];
13

14 %Upper and lower bound
15 UB = sparse([ones(1,M) +Inf*ones(1,N+1)]);
16 LB = sparse([zeros(1,M) zeros(1, N+1)]);
17

18 %Ojbective : Maximize return for given level CVaR
19 objfun=−sparse([mean(S) zeros(1,N+1)]);
20

21 %Optimizing with MOSEK LP solver
22 options = mskoptimset('Simplex','on');
23 [w,fval,exitflag,out]= linprog(objfun,A,b,Aeq,beq,LB,UB,[]);
24

25 %Getting wanted results from optimization solution
26 wMin=w(1:M); VaR=w(M+1); Return=−fval;

See the use of Mosek solver and the use of Matlab’s ”sparse” commands3.
When I first wrote this code, I used regular dense matrices. With 20 000
samples it took Matlab 8 to 9 seconds to just make a negative identity matrix,
and it took 10 seconds to make the coefficient matrix A in the LP problem.
By just adding sparse commands and use "speye" to create the identity
matrix this total time went down to around 0.08 seconds.

3Skips zeros and only works with non-zero elements.
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Mean-CVaR with Yalmip

1 function [wMax,VaR,Ret]=MaxRetPort_Y(S,Mu,CVaR_lim,alpha)
2

3 [N,M]=size(S);
4 w=sdpvar(M,1); z=sdpvar(N,1); R=sdpvar; zeta=sdpvar(1);
5

6 C1=[sum(w) == 1];
7 C2=[z >= −S*w − zeta];
8 C3=[zeta + (1./((1−alpha)*N)) * sum(z) <= CVaR_lim];
9 C=[C1, C2, C3,w>=0,z>=0];

10

11 obj=Mu' * w;
12

13 opt=sdpsettings('Solver','mosek','verbose',0);
14 optimize(C,obj,opt);
15

16 wMax=value(w); VaR=value(zeta); Ret=value(obj);

In Yalmip sdpvar stand for symbolic decision variables and is declared for
optimization. As one can see, the constraints is on the exact same form
as model (5.8). Yalmip is superior in readability and simplicity, with each
variable optimized instead of one long matrix. Combined with for instance
CPLEX it’s a powerful tool for optimization in Matlab.
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