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Abstract

The universe is full of stuff we cannot see, neither directly or indirectly. We do not understand the nature
of the mysterious dark matter and how it interacts with normal matter. Big Bang Nucleosynthesis (BBN)
provides one of the major evidences for the standard model of cosmology, but important questions are
yet to be answered. Using known physics we are able to predict most of the light element abundances we
observe in the universe today. However, large uncertainties are present, and there is a major discrepancy
between the predicted and observed abundance of 7Li, known as the lithium problem. Moreover, we are
confident that the standard model of particle physics is not complete. The question is whether or not
extensions to this model, and in particular extensions involving the elusive dark matter, may alter the
conditions during BBN. With high precision observations we need high precision predictions, thus the
task of predicting the primordial element abundances relies heavily on precisely measured reaction rates
and accurate numerical modeling.

In this thesis I present an updated AlterBBN, a public available code for predicting the light element
abundances with percentage precision. It has been modified to include generic dark matter candidates,
and I analyze the effect of light WIMPs with a non-vanishing constant chemical potential. The general
trend of the results is an increase in the 7Li abundance, extending the gap between the predicted and
observed value, as well as an increased favoring of neutrino coupled WIMPs compared to previous stud-
ies where the chemical potential have been neglected. I have also made additional changes to the code,
including an extension of the nuclear network and an update of six important reaction rates. This have
lowered the deuterium yield by ∼ 4.5%, now being 2.456±0.057 · 10−5, but still within the presently
suggested observational constraint. Also here we see an increase in the 7Li abundance.

Finding accurate estimates on the primordial abundances from an observational point of view is not
a trivial task. The elements have evolved since BBN ended, as they have been produced and destroyed
in stars and other astrophysical processes. The primordial deuterium abundance is an important tracer
for the conditions during BBN, and we are able to obtain precise estimates of it by analyzing absorp-
tion features in gas clouds in the line of sight to distant quasars. However, extrapolating back to zero
metallicity imposes systematic uncertainties, and for a statistically significant estimate we need many
measurements. Using the Absorption LIne Software ALIS I have conducted a measurement of the deu-
terium abundance, based on an analysis of the absorption system towards the quasar Q1009+2956 at
redshift z =2.407. This is an ongoing process and is yet to be finished. I present in this thesis the present
status of the work, as well as a PYTHON program I have written as an add-on to ALIS. This program
creates composite spectra and models for a better representation of the results from ALIS, compared to
its inbuilt plotting environment.
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Introduction

Despite observational evidence for the existence of dark matter, we do not know its identity. It has been
intensively searched for in direct detection experiments (like Xenon and LUX), particle accelerators
(LHC) and gamma rays (Fermi telescope), but without success. A new approach is to study the effects
of dark matter candidates on the chemical abundances from the Big Bang Nucleosynthesis (BBN). Pri-
mordial nucleosynthesis provides the earliest test of the standard model of particle physics, and serves
as a potential window on non-standard physics. In a brief window of time substantial amounts of the
lightest elements like 2H , 4He, 3He and 7Li were produced by nuclear fusion reactions. By comparing
predictions of the primordial abundances with observations we are able to probe the conditions in the
universe around the time of BBN, which may hint to new physics.

Early on, the total energy density of universe was dominated by that in the relativistic species. The
standard model of cosmology suggests that ∼ 69% of the universe is made up by dark energy, ∼ 26%
dark matter, with the remaining ∼5% being luminous matter [1]. The dark matter is in the most popular
models considered to be non-relativistic at the time of BBN. Moreover, at the relevant times, the dark
energy contribution to the total energy density is suppressed by that of the relativistic particles. However,
the presence of a very light dark matter particle is not ruled out, and the idea is that if such a particle
has a relativistic nature at the time of BBN, it will affect the production of the light elements. As well as
contributing to an increased energy density, the particle may annihilate during BBN and, depending on
their coupling to the standard model particles, heat the neutrinos or the photons and the e±-pairs. Our
approach is to include four generic types of WIMPs to AlterBBN, which are real and complex scalars, as
well as Majorana and Dirac fermions. In chapter 3 we discuss the effect that the different WIMP types
will have on the relic abundances of the light elements, which also depend on their mass (relativistic na-
ture) as well as their coupling to the standard model particles. The textbook assumption of a vanishing
chemical potential for the dark matter particles is also investigated by allowing for a constant value of
the degeneracy parameter φχ ≡ µχ/T . Before we get there I present an introduction to the basic physics
relevant for BBN in chapter 1, followed by a review of AlterBBN and a discussion of the changes and
updates made to the program in chapter 2, which goes beyond the implementation of new physics.

In theory, each of the light elements produced during BBN may be used as a probe of the baryon
density, which we are able to predict to less than one percent accuracy through observations of the Cos-
mic Microwave Background (CMB). In practice however, as we will discuss in chapter 1.2, deuterium
is by far the best baryometer and thus the main focus of BBN research. There are no known sources of
significant deuterium production in the universe. Any measurement of it will therefore serve as a lower
bound on the relic abundance from the BBN. Its abundance is measured in metal-poor absorption clouds
in the line of sight to distant quasars. In chapter 4 I discuss the work I have conducted in analyzing such
an absorption system, not yet arriving at a good estimate. The model fitting is done using the Absorp-
tion LIne Software (ALIS), written by R. Cooke [2]. As an attempt to improve the representation of the
results from ALIS I have written a PYTHON program for stacking the data from different observations
and the model fits for each of them, discussed in chapter 4.1 together with a short introduction to ALIS.

4



Chapter 1

Probing the BBN

Ever since the discovery of “an excess antenna temperature at λ = 7.3 cm”, made by Arno Penzias
and Robert Wilson in 1965 [3] and explained in terms of the Cosmic Microwave Radiation (CMB) by
Dicke, Peebles, Roll and Wilkinson the same year [4], the prevailing cosmological model describing the
universe from its earliest moments through its subsequent large scale evolution is the Big Bang Theory.
It is capable of describing the expansion of the universe, the observation and measurement of the CMB
[5], observations of galaxy formation and evolution (e.g. [6]), and the distribution of large-scale cosmic
structures (e.g. [7]). Moreover, it predicts the post-BBN abundances of the lightest elements produced in
observationally accessible amounts. These elements primarily include deuterium (2H), helium-4 (4He),
helium-3 (3He), lithium-7 (7Li), but also small traces of tritium (3H), lithium-6 (6Li) and beryllium-7
(7Be).

Prior to the recombination period at ∼ 380 000 years after the Big Bang, the universe was opaque
due to the interplay between photons and electrons by Thompson scattering. For this reason we cannot
directly observe any of the physical processes governing the very early universe. Instead, we must rely
on CMB measurements to indirectly observe the conditions at the earliest times, as well as simulations
of the physical processes, using both known and hypothesized physics. Joint analyses can constrain im-
portant parameters, and are used to probe new physics by for example including dark matter candidates
or sterile neutrinos in the simulations and comparing with the results from the CMB. The European
Space Agency’s Planck Surveyor satellite was launched in May 2009 and scanned the microwave and
sub-millimeter sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA
and the Planck Collaboration released the latest set of results based on data from the entire Planck mis-
sion. The results are given in 28 separate papers, all available at their website 1. An overview of the
data and results are given in ref. [5], while ref. [1] provides all results concerning the cosmological
parameters 2.

The prediction of the light element abundances is made from one of the major implications of the
Big Bang Theory; the universe once had to be much smaller than today, a hot and dense soup consisting
of radiation and elementary particles, quickly cooling due to the universal expansion. For our purpose
we do not have to start the discussion at the earliest times. After all the forces had separated, and
protons and neutrons started popping in and out of existence, the combination of high temperature and
density ensured that the collision rates were high enough to make sure that thermodynamic equilibrium
was established among the key BBN constituents: neutrinos, e± pairs, photons and nucleons (protons
and neutrons) [8], and possibly unknown weakly interacting particles. Exotic particles interacting only

1 http://www.cosmos.esa.int/web/planck/publications#Planck2015
2 There are several sets of values given for the cosmological parameters in this reference, emerging from different likelihood

estimation involving differing number of variables. For the parameters that are listed in table 4 in the Planck paper, I have
consistently used the column corresponding to the TT+lowP+lensing analysis.
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gravitationally with these constituents must be tracked separately.

In a narrow window of cosmic time the conditions were just right for hydrogen (protons) to fuse
into helium, creating small amounts of other elements in the process. Figure 1.1 shows the evolution of
the light element abundances in the first ∼ 104 seconds, and we see that most of the action happened in
a brief time interval from a couple of minutes to ∼ 20 minutes into the history of the universe. Apart
from the unstable elements 3H and 7Be decaying into 3He and 7Li respectively, the resulting element
abundances stayed basically unchanged until the onset of the first galaxies and stars several hundreds
thousands of years later. Elements heavier than 9Be was not created in significant amounts before stars
started to synthesize elements on their own, due to the bottlenecks at atomic mass numbers A = 5 and
A = 8 (see next section). The abundances predicted from BBN depends on the temperature, nucleon
density, neutrino content, neutrino-anti-neutrino asymmetry, the universal expansion rate and possible
new physics, and are largely independent of the processes that established them. The thermodynamic
equilibrium between all the BBN-relevant constituents therefore serves as an excellent starting point for
BBN calculations. [8].
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Figure 1.1: Evolution in time of the light element abundances for the most abundant nuclides during BBN. The plot is the result
from an AlterBBN run with the Standard Big Bang Nucleosynthesis (SBBN) parameters η10 =6.10, τn =880.3 and Neff =3.046
(see later discussion of these parameters).

BBN may tell us a lot about both the known and yet unknown physics of the early universe. It can
test the standard models of cosmology (section 1.1.2) and particle physics (section 1.1.1) and constrain
their parameters, as well as serving as a window on new physics. The primordial abundances of the
lightest elements is very sensitive to the conditions in the early universe, which may be altered by the
presence of non-standard particles and/or processes. This chapter will introduce the basic BBN physics,
and what we may learn from the different element abundances. In addition, a quick overview of the
present observational data and how it is obtained will be presented.
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1.1 Introduction to BBN Physics

As mentioned, we do not have to start our discussion at the very beginning; describing the unification of
the forces, the inflationary period or the transition from a pure energy-filled universe to the creation of
particles due to their interaction with the Higgs field, giving them mass. Our discussion starts as thermo-
dynamic equilibrium has been established among the standard model particles relevant for the physics
concerning BBN, soon after the “freeze-out” of the total baryon abundance. At temperatures between
∼ 1 GeV and a few hundred MeV, protons and neutrons formed through pair production of particles-
antiparticles, but immediately annihilated. Due to not yet fully understood mechanisms, instabilities in
the pair production process led to an excess of particles over anti-particles (see e.g. [9]). As the uni-
verse reached a temperature of ∼0.4 GeV this pair production gradually stopped, and all particles/anti-
particles annihilated except for the small excess of particles, which makes up all the baryons in the
universe. The universe now consisted of radiation and particles in the form of photons, hadrons and
ultra-relativistic leptons, possibly accompanied by yet unknown particles.

In the standard model of cosmology we subsume the standard model of particle physics to describe
the constituent particles in the primordial plasma and the forces acting between them. In the next section
we will briefly discuss the basics of the standard model of particle physics, followed by the basic features
of the standard model of cosmology, as well as the simplest extensions to this. Extensions involving dark
matter will be discussed in chapter 3.

1.1.1 The Standard Model of Particle Physics

Figure 1.2 shows a table of all the particles that makes up the standard model of particle physics. They
are divided into three families, vertically arranged, so that the up- and down quark, the electron and the
electron neutrino makes up family I, the charm- and strange quark, the muon and the muon neutrino
makes up family II, and the top- and bottom quark, the tau and the tau neutrino makes up family III.
The gluon is the mediator of the strong nuclear force, confining quarks into hadrons, and keeping nuclei
together in atoms. The photon is the transmitter of the electromagnetic force, and is the main contributor
to the total energy of the radiation dominated early universe. Weak nuclear interactions are caused by
the emission or absorption of Z and W bosons, which is the source of radioactive decay. The Higgs
boson, discovered in 2012 by the ATLAS and CMS experiments at CERN’s Large Hadron Collider
[10], is the quantum excitation of the Higgs field, permeating the whole universe. Due to the huge
masses of the family II and III particles (with the exception of the neutrinos) they decay into lighter
particles at temperatures corresponding to their rest mass. Thus, at times earlier than relevant to our
discussion all the charm-, strange-, top- and bottom quarks decayed into up- and down quarks. That is
why we don’t see much of these particles in our universe today. They can only be created in high energy
collisions, such as those involving cosmic rays and in particle accelerators, only to decay very rapidly.

Hadrons are a common description of all particles made up of quarks, which are held together by
the strong nuclear force. They are sub-categorized into baryons, which are made up of three quarks,
and mesons, which are made up of one quark and one anti-quark. The mesons are bosons (integer
spin) and include pions and kaons, and they are all unstable, with the longest-lived lasting for a few
hundredths of a microsecond. The baryons are fermions (half-integer spin) and consists of protons and
neutrons. Baryons with other quark-arrangements have been hypothesized, and in July 2015 the LHCb
collaboration claimed to have discovered two types of pentaquarks [11], which has an extra quark-anti-
quark pair. The only stable baryon in a free state is the proton (and the anti-proton), while the neutron is
stable only when bound within atomic nuclei. Free neutrons have an average life-time of 880.3 seconds
[12]. This number is crucial for the abundances of the elements produced during BBN, in particular the
relic helium abundance, in the way that it controls the number of neutrons available for the production
of atomic nuclei. Later in this chapter, in section 1.1.2 we will discuss this in more detail.
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Figure 1.2: Particles of the standard model of particle physics. Source: Wikipedia

The leptons are elementary particles, all fermions, and are sub-categorized into charged leptons
(electron-like leptons) and neutral leptons (neutrinos). The charged leptons consists of the electron (e−),
the muon (µ−) and the tau (τ−), along with their antiparticles, where the anti-electron (e+) is called
a positron. The electron is the lightest of the three charged leptons, whose masses are arranged as
me <mµ <mτ . The standard model of physics describes three neutrino species which are all considered
massless, despite the fact that observed neutrino oscillations require that at least two of the species must
have a non-zero mass [13]. The three neutrino species are the electron neutrino (νe), the mu neutrino (νµ)
and the tau neutrino (ντ), and even though we know from experiments that at least two of the flavors need
to have a small mass, we do not know which of them that are massive [14]. The neutrino masses stated
in figure 1.2 are therefore only experimentally inferred upper limits. Additionally, recent experiments
in both particle physics and cosmology indicates that there could be more than three neutrino species.
Although we know that the standard model neutrinos only interact through the weak force (except from
the gravitational interaction from the massive neutrinos), some experiments have been conducted that
allow, or even prefer the existence of neutrinos that do not interact through the weak force (see e.g. [14]).
Such hypothetical particles are called sterile neutrinos, and we will discuss those in detail in chapter 3.

For a more extensive discussion of the standard model of particle physics and popular extensions to
it, see the 2014 release of the Particle Data Group’s booklet [12], or visit their web-page for the latest
updates (link found in the reference).

1.1.2 The Standard ΛCDM Model of Cosmology

Our current best description of the universe is based upon the assumption of the cosmological principle.
The cosmological principle states that the universe is the same in every location (homogeneous) and in
every direction (isotropic), viewed on large enough scales, and that the same physical laws apply every-
where in the universe. On scales compared to the size of galaxies and galaxy clusters (. 10 Mpc) the
universe is obviously not homogeneous and isotropic. On such scales matter is not uniformly distributed,
rather collected in structures of varying masses and sizes. In this context, “large enough scales” thus
means scales much larger than the size of super-clusters (several hundred Mpc). With the improvement
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in measurements of the CMB anisotropies there have recent years been claims that the universe actually
may have a preferred axis (see e.g. [15]), casting doubt about the assumption of isotropy. For now,
however, our current best understanding of the universe relies on the assumption of the cosmological
principle.

The large scale dynamics of the cosmos is described by Einsteins general theory of relativity, which
relates the geometry of the universe with its matter and energy content. A wide analytic discussion of
this theory is out of the scope of this project, but see e.g. the book “The Early Universe” by Kolb and
Turner [16] for a nice review of the topic. The book covers most of the basic physics governing the early
universe, and has been used as a reference throughout this chapter. For an even more extensive analysis
of Einstein’s general theory of relativity, as well as other topics of interest, see references therein. In
this discussion it suffices to merely state the Einstein field equations, which may be contracted into the
tensor equation

Gµν ≡ Rµν −
1
2

Rgµν = −
8πG
c4 Tµν + Λgµν , (1.1)

where Gµν is the Einstein tensor and gµν is the metric of choice. Rµν is the Ricci tensor and R the
Ricci scalar, while Tµν is the energy-momentum tensor (including shear- and stress-forces) for all fields
present (matter, radiation etc.). The last term, Λ is the cosmological constant, and concerns the vacuum
energy of space. This was originally introduced by Einstein to allow for a universe that is not expanding
or contracting, since the accepted cosmological model at the time was that of a static, steady state [17]
universe. As it was realized that this model actually would lead to an unstable universe, Einstein called
the cosmological constant “the blunder of his life”. Since then, observations suggest that the universe is
expanding in an accelerating rate, which was considered proved with the discovery of a supernova type
Ia in 1998 [18]. This requires a positive value of the Λ-term in Einstein’s field equations, thus being an
essential part of the ΛCDM model. If we model the matter and energy in the universe by a perfect fluid,
we find for the zero component of the conservation of the energy-momentum tensor (∇µTµν =0)

ρ̇

ρ
= −3(1 + w)

ȧ
a
, (1.2)

where the dot means the time-derivative of the variable, and the equation of state

P = wρc2 (1.3)

is assumed, which is true for essentially all perfect fluids relevant to cosmology [19]. Its most relevant
values are

w =




0 for matter energy
1
3 for radiation energy
−1 for vacuum energy .

Integrating the equation for energy conservation (equation 1.2) yields

ρ ∝ a−3(1+w) , (1.4)

which leads to ρ∝ a−3 in a matter-dominated universe, ρ∝ a−4 in a radiation-dominated universe, and
ρ∝const. in a universe dominated by vacuum energy.

The geometric properties of a spacetime with homogeneous and isotropic spatial parts that can be
time-dependent are described by the Friedmann-Robertson-Walker (FRW) metric. Written in spherical
coordinates, this metric may be expressed as [16] 3

ds2 = −c2dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdφ2

)]
, (1.5)

3 Note the difference in sign convention between the reference and this work. In the reference, a timelike sign convention
is used while here, a spacelike sign convention is used.
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where (t, r , θ, φ) are the comoving spacetime coordinates (t is the proper time), and k is a constant
representing the curvature of the space, which has one of the values (−1, 0, 1) (negative-, zero-, pos-
itive curvature). All of the time dependence enters through the scale factor a(t), which describes the
expansion evolution of the universe. The metric applies to any metric theory of gravity, not just gen-
eral relativity, and is deduced purely on the assumptions of a homogeneous and isotropic universe. It
provides an exact solution to Einstein’s field equations, yielding the Friedmann equations [16]( ȧ

a

)2
=

8πG
3

ρ −
kc2

a2 First Friedmann eq. (1.6)

ä
a

= −
4πG

3

(
ρ + 3

P
c2

)
Second Friedmann eq. , (1.7)

where ρ and P is the total energy density and pressure respectively, including the contribution from the
cosmological constant, which we from now on will call dark energy. It is convenient to parameterize
the expansion of the universe in terms of the Hubble parameter H ≡ ȧ/a. Its present epoch value is
H0 = 100h km s−1 Mpc−1, where h is known as the “unit-less” Hubble parameter. The present best
estimate of this parameter comes from the Planck 2015 results [1] and is given as 0.6781 ± 0.0092 (1σ
4). The critical density is the density which gives a zero curvature k:

ρcr =
3H2

8πG
, (1.8)

with a present day value of ρcr,0 ≈ 1.88 · 10−29 g cm−3. It is also useful to introduce the density
parameter Ω≡ ρ/ρcr, which measures the density relative to the critical density. We may then write the
first Friedmann equation as

Ω − 1 =
k

H2a2 , (1.9)

which enables us to make the following distinctions:

ρ < ρcr ↔ Ω < 1↔ k = −1 : open universe

ρ = ρcr ↔ Ω = 1↔ k = 0 : flat universe

ρ > ρcr ↔ Ω > 1↔ k = +1 : closed universe

Observations suggest that the universe is close to flat. The Planck 2015 results [1] states that the curva-
ture density parameter Ωk =−0.005+0.016

−0.017. In the ΛCDM model it is therefore assumed that Ωk = k = 0,
and the Friedmann equation becomes

H2 ≡

( ȧ
a

)2
=

8πG
3

ρ (1.10)

= H2
0

(
(Ωb +ΩDM)a−3 +ΩRa−4 +ΩΛ

)
. (1.11)

In the last equality the equation is written out in terms of the density parameter for each field, where Ωb ,
ΩDM, ΩR and ΩΛ is the density parameter for baryons, dark matter, relativistic constituents (radiation)
and vacuum energy (dark energy) respectively. In the early universe, a is very small, and we can see that
the radiation term dominates over the other terms. This is why we may neglect the contribution from dark
energy and non-relativistic matter to the total energy density in BBN calculations. Well before the epoch
of recombination, but long after the times relevant for BBN, the non-relativistic matter term “caught up”
with the radiation term and the universe became matter-dominated. In the present epoch, dark energy
dominates the energy density budget, meaning the universe is undergoing accelerated expansion, and the
radiation term have become insignificant. According to the Planck 2015 results [1] we now estimate

Ωb,0 = 0.0484+0.0019
−0.0018 , ΩDM,0 = 0.2579+0.0116

−0.0111 , ΩΛ,0 = 0.6920 ± 0.0120 , (1.12)

4 1σ corresponds to a 68.3% level of statistical confidence. Another commonly used measure of statistical confidence is
2σ, which corresponds to a 95.5% confidence level.
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for the present day values of the density parameters, which we see add up to 1 within the stated uncer-
tainties (photons contribute about ∼10−5 today).

As the name suggest, the ΛCDM model assumes the dark matter content to be cold (non-relativistic
at the time of dark matter decoupling). It does not say that all dark matter is cold, merely that most of the
non-luminous mass in the universe is the form of relatively heavy, possibly supersymmetric particles.
Later, in chapter 3 we will discuss different types of dark matter, and look into the possibility that some
of the missing matter may be in the form of lighter particles that where relativistic or semi-relativistic at
the time of BBN, which may have affected the light element production.

1.1.3 Equilibrium Thermodynamics

In order to understand the dynamics of the universe and the interplay between its contents during BBN
it is necessary to cover some key aspects of statistical physics. As previously mentioned, we start our
BBN discussion at the time when we can consider all the key BBN constituents being in thermodynamic
equilibrium (see beginning of this chapter). This means that for all particles, the interaction rate Γ is
much higher than the expansion rate (Γ�H), and there is no net energy flow, meaning all particles share
the same temperature. It also requires that the particles maintain chemical equilibrium, which means that
the sum of the chemical potentials of reacting particles equals the sum of the chemical potentials of the
products. For example, e± pair production happens through the reaction

e− + e+ ←→ γ + γ . (1.13)

Chemical equilibrium then implies that there are no net production of electrons over positrons and that
their chemical potentials are related through µe− =−µe+ . Since the number of photons is not conserved
(e.g. double Compton scattering e−+γ←→ e−+γ+γ happens in equilibrium at high temperatures) we
know that µγ =0.

The plasma equilibrium statistics is given by the Fermi-Dirac (fermions) and Bose-Einstein (bosons)
distribution functions, which tells us what fraction of the particles is in a state with momentum p at a
given temperature T, and is given by [16]

f i (p) =
1

exp [(Ei (p) − µi )/(kBT )] ± 1
, (1.14)

where µi is the chemical potential of particle i, the plus sign is for fermions (half-integer spin), and the

minus sign is for bosons (integer spin). Ei =

√
p2c2 + m2

i c4 is the energy, and mi the rest mass of the

particle. Since Ei (p) depends only on p=
√

p2 we can write f i = f i (p). Noting that EidEi = c2pdp and
that p2 = (Ei − m2

i c4)/c2 we can calculate the equilibrium properties of the plasma [16]:

ni =
gi

(2π~)3

∫
f i (p)d3p

=
gi

2π2(~c)3

∫ ∞

mic2

(E2 − m2
i c4)1/2EdE

exp [(E − µi )/(kBT )] ± 1
(1.15)

ρic2 =
gi

(2π~)3

∫
Ei (p) f i (p)d3p

=
gi

2π2(~c)3

∫ ∞

mic2

(E2 − m2
i c4)1/2E2dE

exp [(E − µi )/(kBT )] ± 1
(1.16)

Pi =
gi

(2π~)3

∫
p2

3Ei (p)
f i (p)d3p

=
gi

6π2(~c)3

∫ ∞

mic2

(E2 − m2
i c4)3/2dE

exp [(E − µi )/(kBT )] ± 1
. (1.17)
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In the ultra-relativistic limit (mic2/kBT�1), assuming a zero chemical potential, the equations may be
approximated by [16]

ni =
giζ (3)
π2

(
kBT
~c

)3

×



1 for bosons
3
4 for fermions

(1.18)

ρic2 =
giπ

2

30
(kBTi )4

(~c)3 ×



1 for bosons
7
8 for fermions

(1.19)

Pi =
1
3
ρic2 for fermions and bosons (1.20)

where ζ (3) = 1.20206... is the Riemann zeta function of 3, and gi is the internal degrees of freedom for
particle i, which is gγ =2 for photons, ge =2 for both electrons and positrons, and gν =2Nν for neutrinos.
Since the photons are still with us at the present epoch it is useful to express the equations in terms of
the photon temperature. For the energy density this leads to

ρic2 =
π2

30
g∗

(kBT )4

(~c)3 , (1.21)

where

g∗ =
∑
i=bos.

gi

(
Ti

T

)4

+
7
8

∑
i=ferm.

gi

(
Ti

T

)4

(1.22)

is the effective number of relativistic degrees of freedom.

Approximations in the non-relativistic limit yields [16]

ni = gi

(
mi kBT
2π~2

)3/2

exp
(
µi − mic2

kBT

)
(1.23)

ρic2 = nimic2 (1.24)

Pi = ni kBT � ρic2 , (1.25)

where the latter equations justifies our use of P =0 as the equation of state for non-relativistic matter. We
note that the number density, energy density and pressure of a non-relativistic particle become exponen-
tially suppressed compared to that of the relativistic species as the temperature drops below the mass of
the particle. We interpret this as the annihilation of particles and anti-particles. At higher temperatures
these annihilations also occur, but they are balanced by pair production.

Some particles present in the early universe are at the borderline between relativistic and non-
relativistic (e.g. e±-pairs and hypothetical WIMPs). More accurate approximations in this limit are
obtained by using modified Bessel functions, and the derivation of those can be found in appendix C.

1.1.4 Entropy

For a system in thermodynamic equilibrium the entropy per co-moving volume, given by (see e.g. [16]
for derivation)

S =
a3(ρc2 + P)

T
, (1.26)

is conserved. Here we have taken V = a3 to be the volume of the system in thermodynamic equilibrium.
The conservation of entropy provides a powerful tool in the case where a particle specie annihilates and
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transfers its entropy to the remaining thermodynamic equilibrium plasma. It is useful to introduce the
entropy density, defined as

s =
S
V

=
ρc2 + P

T
. (1.27)

In the early universe the entropy content is dominated by the relativistic species, as in the case of the
energy density. Inserting equation 1.21 together with equation 1.20 and normalizing to the photon
temperature we get

s =
2π2

45
kBg∗s

(
kBT
~c

)3

, (1.28)

where

g∗s =
∑
i=bos.

gi

(
Ti

T

)3

+
7
8

∑
i=ferm.

gi

(
Ti

T

)3

(1.29)

is the effective number of relativistic degrees of freedom for entropy. Note that as long as all relevant
species are in thermodynamic equilibrium and thus share the same temperature, g∗s = g∗ (see equation
1.22.

The conservation of entropy per co-moving volume implies that dS =0, thus

sa3 = constant , (1.30)

which we also may write as g∗sT3a3 =constant, and we note that for a fluid in thermodynamic equilib-
rium s∝a−3.

1.1.5 Chemical Potential

For a system in thermodynamical equilibrium we may apply the thermodynamic identity

dU = TdS + PdV + µdN . (1.31)

This relation describes the change in internal energy in terms of the change in entropy, volume and the
number of particles, and is valid for infinitesimal, reversible processes. µ is the chemical potential, and
we see that we may define this as being the change in internal energy of the system when one more
particle is added, holding the entropy and volume fixed. That is,

µ =

(
∂U
∂N

)
S,V

. (1.32)

For charged particles (or more specifically, for particles that have a conserved charge) the chemical
potential is non-zero if the number densities of particles and anti-particles are different. That means
that for e.g. electrons/positrons, the chemical potential is a measure of the asymmetry between them.
However, for particles that have zero charge (e.g. neutrinos and WIMPs), a non-zero chemical potential
does not necessarily imply that there is a degeneracy in the number of particles/anti-particles. In section
1.1.6 we discuss the possibility that there might be a degeneracy among the neutral leptons. Similarly,
in chapter 3.3.2 we investigate the implications a non-zero chemical potential for WIMPs may have on
the primordial light element abundances. Common for both cases is that we do not have any limitations
on the value of the chemical potential, contrary to the degeneracy in the charged lepton sector. In that
case, we know that there is a non-zero chemical potential, and that it is limited by the universal charge
neutrality.
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1.1.6 Big Bang Nucleosynthesis

During the Big Bang Nucleosynthesis (BBN) the conditions (temperature and pressure) were just right
for nuclear fusions involving protons and neutrons to take place, resulting in the production of the lightest
elements. In this section we will discuss the standard model for BBN, and the simplest extensions to it.

Standard Big Bang Nucleosynthesis
The baryon-to-photon-ratio:

Standard Big Bang Nucleosynthesis (SBBN) subsumes the ΛCDM model of cosmology and the
standard model of particle physics, which implies three flavors of very light, left-handed neutrinos and
their right-handed anti-neutrinos. The only free parameter in SBBN is the baryon density, parametrized
through the baryon-to-photon ratio η. It is defined as the ratio between the baryon number density nb
and the photon number density nγ , as [20]

η10 ≡ 1010 nb − nb̄
nγ

, (1.33)

where b denotes baryons and b̄ anti-baryons. After baryon - anti-baryon annihilation the excess baryons
survive and nb−nb̄→nb . The factor of 1010 is just a matter of convenient scaling, since the ratio of the
number densities is of the order of ∼ 10−9−10−10. Rewriting nb in terms of the density parameter, and
inserting for today’s value of the photon number density (using the CMB measured photon temperature
Tγ =2.725 K) the present epoch value of the baryon-to-photon ratio can be written as

η10 = 1010 nb,0
nγ,0

≈ 273.9Ωb,0h2 , (1.34)

where the factor Ωbh2 is often denoted by ωb in the literature. Note that I have dropped the index
0 for η here. Unless stated otherwise, η, or equivalently η10, refers to the present epoch value of the
baryon-to-photon ratio. It is common to write the energy density on the form Ωbh2 since one can derive
a more stringent constraint on ω than the one that follows by using the individual constraints on Ω and
h [16]. With the launch of the Planck Surveyor in 2009, and the high-quality data it has provided, the
best estimates of η now comes from CMB measurements. The presently most up to date value is the 1σ
confidence level value of ωb =0.02226 ± 0.00023 [1], leading to η10 =6.10 ± 0.06. The Planck analysis
assumes a specific relationship between the helium abundance and the the baryon density. Cyburt et
al. [21] did a marginalization over ωb and Yp (the helium mass fraction), finding their covariance and
producing likelihood functions for η. Since the 4He abundance is very weakly linked to the baryon
density, the impact of the analysis on Yp was not significant. However, the uncertainty on η was reduced
to ±0.04, which I have adopted in this project.

We may write the baryon-to-photon ratio as a function of temperature by using conservation of
entropy. In a system in thermodynamic equilibrium entropy is conserved, and is thus related to the scale
factor through s ∝ a−3 (equation 1.30). Moreover, there is no net production/destruction of particles so
the number of baryons Nb must also be conserved. This means that N ≡ a3nb ∝ nb/s = constant. By
relating the number density of photons (equation 1.18) to the entropy density in the relativistic species
(equation 1.28) we may write the baryon-to-photon ratio for an arbitrary time as

η(T ) ≡
nb
nγ
≈ 1.8g∗s (T )

(
nb (T )
s(T )

)
. (1.35)

Since nb/s = constant we finally arrive at an expression for the baryon-to-photon ratio for a given
temperature as a function of its present epoch value:

η(T ) =
g∗s (T )
g∗s (T0)

η(T0) . (1.36)
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The implication of this relation is that the baryon-to-photon ratio changes only when the entropy of the
thermal bath changes, that is, when a particle decouples or annihilates. In the standard cosmological
scenario we therefore have η(T ) =η(T0) =constant after e± annihilation.

The neutron-to-proton ratio and the neutron mean lifetime:

Above temperatures around a few MeV (∼3·1010 K) protons and neutrons are in equilibrium through
the charged current weak interactions:

νe + n ←→ e− + p

e+ + n ←→ ν̄e + p

n ←→ e− + ν̄e + p. (1.37)

Neutrons and protons are now non-relativistic, so we may use equation 1.23 to find the equilibrium ratio
between their number densities, yielding

nn

np
=

(
mp

mn

)3/2

exp

−

(mn − mp )c2

kBT


≈ e−Q/kBT , (1.38)

where Q = (mn − mp )c2≈1.293 MeV. At temperatures kBT�Q the ratio is 1:1, but as the temperature
drops, the weak interactions that interconvert neutrons and protons favors neutron decay. When the
temperature reaches ∼ 2−3 MeV these weak interactions freeze out, at a point where the neutron-to-
proton ratio is ∼ 1/6. Two-body reactions involving n, p, e±, νe and ν̄e still continue to influence the
n/p ratio, although they are not happening at a high enough rate to track the equilibrium value. As the
universe enters the nucleosynthesis era the ratio has therefore decreased to ∼1/7 [16]. Since the amount
of 4He produced during BBN by far outnumber the production of heavier elements, essentially all the
neutrons entering BBN ends up in 4He. This means that finding the primordial helium abundance is
practically equivalent to finding the number of neutrons in the universe, which is very sensitive to the
mean neutron lifetime, one of the key parameters going into BBN calculations.

The neutron lifetime rely on precise experimental measurements, and have historically been a source
of frustration for experimentalists, since its value has been very difficult to establish to a high degree of
confidence. Since the 1970’s the experimentally accepted values have fluctuated wildly in the rather large
interval of 877 − 937 seconds. In the years between 1990 and 2005 the value varied very little, settling
at 885.6 ± 0.8. However, recent years have seen a shift towards lower values, and the Particle Data
Group released in 2014 the currently accepted mean lifetime of 880.3 ± 1.1 seconds (1σ) [12], which
is the value I have used in this project. The value is an average of the seven most precise experiments
made over the recent years (the average value and a listing of the experiments used to obtain this value
is found in [12], while a full review of the experimental methods and results can be found in [22]).

Neutrino decoupling and e± annihilation:

At a temperature around T ∼ 2−3 MeV [23] [24] the weak interactions freeze out and the neutrinos
drop out of equilibrium. After decoupling, the neutrino temperature will simply evolve as Tν ∝ a−3,
where a is the universal scale factor. This is also true for the photon/e± plasma between the time of neu-
trino decoupling and e± annihilation. However, when the temperature drops below the electron/positron
rest mass energy of 0.511 MeV the e±-pairs annihilate and transfer their entropy to the remaining pho-
tons. This means that the photons will be heated relative to the decoupled neutrinos 5, and by entropy
conservation (equation 1.30) we find that post e± annihilation we have

Tν =

(
4
11

)1/3

Tγ . (1.39)

5 Note the use of relative here. The temperature of both the neutrinos and photons decrease due to the expansion and cooling
of the universe, but the photon temperature decrease less than the neutrino temperature at the time the e±-pairs annihilate.
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Here we have used that after neutrino decoupling, but before e± annihilation, the total entropy is given
by the entropy in photons and e±-pairs, and after e± annihilation (but before the universe becomes matter
dominated) the total entropy is given by the entropy in the photons. It is further assumed that the neutrino
decoupling happens instantaneously, and that the electrons/positrons are ultra-relativistic. However, the
neutrino decoupling is not an abrupt process, and the electron neutrinos (and anti-neutrinos) continue to
interact with the baryons via the charged-current weak interactions until a temperature of ∼0.8 MeV has
been reached. In the standard model of cosmology we assume a universal charge neutrality. This means
that the charged lepton asymmetry (the excess of electrons over positrons) is of the same order as the
baryon asymmetry, and the surviving electrons equal in number to the surviving protons. Via Compton
scattering processes the electrons remain coupled to the photons all the way to photon decoupling at the
Last Scattering Surface (LSS), when the temperature is low enough for electrons to bind to atomic nu-
clei, and the photons start free-streaming, which we observe today as the CMB. Since the decoupling of
the neutrinos does not happen instantaneously, some high-energy neutrinos are still in thermodynamic
equilibrium with the photons via weak interactions even after e± annihilation, and those are also re-
heated. Moreover, the temperature is now such that the electrons/positrons are not fully relativistic [23],
and these two effects will lead to a slightly higher Tν .

The neutrino sector of particle physics is not yet fully understood, and is one of the possible short-
comings of the standard model. Not only are we unable to determine the masses of the standard model
neutrinos, we also do not know if there are more species of neutrinos. In chapter 3 we will encounter the
sterile neutrino, which is a hypothetical neutrino-like particle that do not take part in the weak interac-
tions, but still have the right properties to affect BBN. Possible light WIMPs might also annihilate after
neutrino decoupling, affecting the Tν/Tγ ratio. To account for additional neutrino species or other effects
that may disturb the standard model Tν/Tγ ratio we use the notion of an effective number of neutrino
species Neff = Nν +∆Nν , where ∆Nν is the equivalent number of neutrinos ∆Nν = Nν −3. In the stan-
dard model of cosmology we include only the neutrinos that are part of the standard model of particle
physics, thus ∆Nν = 0. If we further assume instantaneous neutrino decoupling and ultra-relativistic
e±-pairs we have Neff = Nν = 3. However, the combined effect of a small departure in entropy due to
the semi-relativistic nature of the e±-pairs (contributes 0.018) and the non-abrupt neutrino decoupling is
absorbed into the definition of Neff , leading to [25]

Neff = 3 + ∆Nν → Neff = 3.046 + ∆Nν . (1.40)

It is important to note that Neff is a late-time quantity, with its value corresponding to the one as measured
from the CMB.

Element production:

In heavy stars, helium can be produced by using carbon and other metals as catalysts (e.g. the CNO
cycle), avoiding the need to produce deuterium as an intermediate step. However, since such metals
were not present in the early universe, and the density was way too low to allow for 3-body reactions to
happen, the only way of producing helium was through two-body reaction chains like

1. n + p −→ d + γ

2a. d + d −→ 3H + p 2b. d + d −→ 3He + n

3a. d + 3H −→ 4He + n 3b. d + 3He −→ 4He + p. (1.41)

Alternatively, 3He can be produced by deuterium fusing with a proton through the reaction d(p, γ)3He,
where I have introduced a new notation for describing nuclear reactions. In this description the elements
are arranged by atomic number. The comma separates the left and the right hand side of the reaction,
while the element with the largest atomic number on each side is found outside the parenthesis. A third
way of producing helium goes through the production of 7Li from 3H , and a set of the most relevant BBN
reactions can be seen in figure 1.3. Naively, one would think that these reactions would take place as
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soon as the mean photon energy was comparable to the binding energy of deuterium, just after protons
and neutrons fell out of equilibrium. However, since photons outnumber the baryons by a factor of ∼109

there were enough photons in the high-energy tail to photo-dissociate any deuterium produced before
reactions like 2a and 2b in 1.41 could take place. Consequently, helium would not be produced until
about three minutes after the Big Bang, when the photon temperature had dropped to ∼0.08 MeV. This is
called the “deuterium bottleneck” and had the consequence that the early universe nucleosynthesis was
constrained to take place between three and twenty minutes after the Big Bang [8]. Figure 1.3 shows
an illustration of the nuclear network for the elements up to 7Be, where the main reactions involved
during BBN are seen. Note that for high precision BBN calculations we need to extend the network
to include elements up to ∼ oxygen, since occasional nuclear reactions involving heavier elements do
occur. Although these elements are not produced in significant amounts they may influence the lighter
element production, and extending the network is essential for e.g. ruling out a nuclear fix to the lithium
problem (to be discussed in section 1.2).

Figure 1.3: Nuclear network of the dominant reactions taking place during BBN. Source: [26]

An approximation of the BBN relic 4He mass fraction can be obtained by assuming that all available
neutrons at the time of BBN end up in 4He. This is justified by the fact that D and 3He are produced
at the level of about 10−5 relative to hydrogen, 7Li at the level of about 10−10 relative to hydrogen, and
even less for the rest of the elements. We then have

Yp =
2(n/p)

1 + (n/p)
≈ 0.25, (1.42)

where n/p = 1/7 have been used (see discussion of equation 1.38). The reason that most neutrons
end up in a helium atom, or more precisely, why helium outnumber the rest of the BBN-produced
elements to the degree it does, is that it is the most tightly bound of the light nuclides, and that a
new bottleneck appears at 4He. This bottleneck emerges from the fact that there are no stable mass-5
nuclides, thus very few reactions manage to jump the Coulomb-suppressed mass-5 gap. Those who
do, mainly lead to the mass-7 elements 7Li and 7Be, where the latter decays into the first with a half-
life of 53.22 days. This decay is an electron capture process, and will not happen until the universe
has cooled even further, at around the start of the recombination epoch [21]. The lack of stable mass-
8 nuclides provides yet another Coulomb-suppressed gap, and ensures that insignificant amounts of
heavier elements are produced during BBN [8].
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Extensions To The Standard Big Bang Nucleosynthesis
Since the universe is radiation dominated at the times of interest, the total energy density in the first
Friedmann equation (equation 1.6) may be written in terms of the relativistic species ρR , so that ρtot =

ργ+ρe−+ρe++ρν = ρR . New particles, or generally, new physics, may lead to ρR→ ρ′R (dark radiation)
or G→G′ (modified gravity). This results in a deviation from the standard model so that H→H ′, which
may be parameterized by an expansion rate parameter S ≡ H ′/H . Since the total energy density in the
early universe is determined by the energy density in relativistic particles, deviations from the standard
cosmology (S,1) may equally well be quantified by the equivalent number of neutrinos, so that

ρR → ρ′R ≡ ρR + ∆Nν ρν . (1.43)

Prior to neutrino decoupling, photons, e± pairs and neutrinos are in thermodynamic equilibrium, and
thus share the same temperature. By combining the expressions for the energy densities with equation
1.43 and assuming that the e±-pairs are extremely relativistic and that the equivalent neutrino(s) decouple
with the standard model neutrinos, we find that [20]

ρ′R
ργ

=
43
8

+
7
8
∆Nν =

43
8

(
1 +

7∆Nν
43

)
. (1.44)

Using the Friedman equation 1.6 we can relate the expansion rate factor S directly to ∆Nν :

S ≡
H ′

H
=

(
ρ′R
ρR

)1/2

=

(
1 +

7∆Nν
43

)1/2

. (1.45)

It is common to use the effective number of neutrino species Neff to describe deviations from standard
cosmology in terms of ∆Nν , which then becomes a parameterization of anything that would change the
expansion rate. In equations 1.44 and 1.45 it is assumed that ∆Nν only consist of extra neutrinos,
that is, fermions with internal degrees of freedom g = 2. One sterile neutrino would, for example,
contribute ∆Nν = 1. In chapter 3 we will discuss Neff in the case of light WIMP candidates that need
not have these physical properties. Such contribution of radiation energy from yet unknown sources
is commonly dubbed “dark radiation”. At late times, e.g. as measured by the CMB, the contributors
to the relativistic energy are the photons, the Standard Model (SM) neutrinos, and possible equivalent
neutrinos/dark radiation. We first introduced the notion of an effective number of neutrino species in
section 1.1.6, and saw that under the assumption of SBBN, but relaxing the assumptions of instantaneous
neutrino decoupling and ultra-relativistic e±-pairs, we have Neff = 3.046. Although still in agreement
with SBBN within the uncertainties stated from CMB measurements (e.g. [1]), there have recent years
been indications that both BBN and the CMB favor values of Neff > 3.046 [27], which implies physics
beyond the Standard Model of Cosmology.

There might also be an asymmetry among the neutrinos and anti-neutrinos, and unlike the degeneracy
in the charged leptons it is not limited by the baryon asymmetry. As η is a measure of the baryon
asymmetry, the neutrino asymmetry may be quantified in the same manner: [8]

Lνα ≡
(

nνα − nν̄α
nγ

)
=

π2

12ζ (3)

(
Tνα
Tγ

)3

ξνα
*
,
1 +

(
ξνα
π

)2
+
-
, (1.46)

where ξνα ≡ µνα/kBT is the dimensionless neutral lepton chemical potential, ζ (3) ≈ 1.202 is the Rie-
mann zeta function of 3, Tνα is the temperature of neutrino flavor α and Tγ is the photon temperature.
The total neutral lepton asymmetry is thus the sum over all neutrino flavors, that is,

L ≡
∑

α=e, µ,τ

Lνα . (1.47)

The measured neutrino oscillations indicate that the standard model neutrinos reach approximate chem-
ical equilibrium before a possible degeneracy can affect BBN. This mixing allows us to assume that
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ξ ≡ ξνe = ξνµ = ξντ [28]. Any neutrino degeneracy will always have the effect of increasing the energy
density in the neutrinos, leading to ∆Nν >0. An estimate found from equating the chemical potentials is
[20]

∆Nν (ξ) =
90
7

(
ξ

π

)2 
1 +

1
2

(
ξ

π

)2
. (1.48)

This increased energy density will increase the expansion rate of the universe (equation 1.6), but the
range of |ξ | of interest to BBN is limited to such small values that any significant effect on the modified
expansion rate S is questionable. A value of |ξ | around unity would drive the observed and predicted
abundances of the elements so far apart that it is safe to assume that |ξ |�1 (see for example Ichimasa et.
al [29])6. To illustrate the negligible effect a neutrino degeneracy would have on S, we use equation 1.48
with |ξ | . 0.1 (quite unreasonable high value). This yields ∆Nν (ξ) . 0.013, which is small compared
with anticipated uncertainties in ∆Nν inferred from BBN or the CMB. Although very large compared
to the baryon and charged lepton asymmetry, one cannot exclude neutrino degeneracies of the order of
|ξ | ∼10−2. This may have a significant impact on the n/p ratio prior to BBN, through the charged current
weak interactions, modifying primarily the relic abundance of 4He [8]. Using observational constraints
on the helium-4 abundance one may obtain the allowed 1σ range of [30]

−0.008 < ξe < 0.013 , (1.49)

for the electron neutrino asymmetry. In the case of a neutrino degeneracy the n/p equilibrium value is
modified to [8]

nn

np
≈ e−Q/kBT−ξe , (1.50)

since only the electron neutrinos take part in the charged current weak interactions (see reactions 1.37).

As we learn from the above discussion the relic deuterium abundance is very sensitive to the photon-
to-baryon ratio. We saw that this also affects the helium abundance, but only indirectly. In addition, as
we discussed, the helium abundance is also very sensitive to the neutron lifetime. This is what makes
deuterium the preferred “baryometer”. By measuring the relic deuterium abundance we are actually
measuring the baryon content in the universe through the photon-to-baryon ratio. The importance of
deuterium in BBN studies is discussed in more detail in section 1.2.

1.1.7 Overview

The combined effect of a low temperature (on the order of 107 K , or ∼ 1 keV) and a low energy den-
sity and pressure ended the nuclear fusion processes after about twenty minutes of cosmic time, and
apart from some unstable elements decaying into others, the production of new elements stopped. The
mass-5 and mass-8 bottlenecks, combined with the short time-span of BBN prevented the creation of
significant amounts of stable elements heavier than mass-7, and the tight bounding of the helium nuclei
ensures that practically all neutrons end up in 4He. We learned that the n/p ratio sets an important initial
condition for BBN, its value being sensitive to essentially every known physical reaction in the early
universe. The neutron and proton masses, and consequently Q, are determined by both strong and elec-
tromagnetic interactions, while the temperature depends on weak and gravitational interactions. New
physics is therefore almost certainly prone to influence the number of neutrons available for nucleosyn-
thesis, primarily affecting the post-BBN helium abundance. Since the BBN departure of n/p from its
equilibrium value is given by the competition between the weak interaction rates and the early universe
expansion rate, as well as a possible neutrino asymmetry, the BBN relic abundance of helium serves as
the most sensitive probe of any departure from the standard model when it comes to S and ξν . Actually,

6Constraints for ξ and η from detailed comparison of calculated abundances with the observational data of 4He and D gave
a limiting interval of −4.6 · 10−2< ξνe <−0.4 · 10−2 for 6.02<η10<6.54 (2σ)
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at present, BBN provides the only window to a neutral lepton asymmetry [20].
With the best estimates of the baryon-to-photon ratio η now coming from CMB measurement, SBBN

is effectively a parameter-free theory. In addition to η, the theory relies on precise measurements of the
mean neutron lifetime τn and the effective number of neutrino species Neff . In table 1.1 I have listed the
present most up-to-date estimates of these three important parameters. The observational constraints on
Neff will be used in chapter 3, to compare the results from BBN computations where equivalent number
of neutrinos and light WIMPs are included.

Parameter Value Reference
η10 (1σ) 6.10 ± 0.04 ∗ [1]
Neff (1σ) 3.15 ± 0.23 [1]
Neff (2σ) 3.13 ± 0.62 [1]
τn (1σ) 880.3 ± 1.1 [12]

Table 1.1: Present most updated values of the baryon-to-photon ratio η10 and the effective number of neutrinos Neff as mea-
sured through the CMB, in addition to the adopted average of the mean neutron lifetime τn as determined by laboratory
experiments. Most CMB-measured values referred to in this project are taken from the TT+lowP+lensing analysis as summa-
rized in table 4 in the stated reference. This includes the present epoch value of η (found by using the measured value of Ωbh2

in combination with equation 1.34). However, the 1σ value of Neff is not stated in any tables, and I will therefore use the value
found in the abstract of the paper. The 2σ is taken from the TT+lensing analysis summarized in table 5.
∗ Error reduced from ±0.06 by Cyburt et al. [21].

In figure 1.4 we see the effect on the resulting element abundances for D, 4He, 3He and 7Li by
changing η. Note that the deuterium abundance is very sensitive to the total baryon abundance, which is
related to η through [D/H]p ∝η−1.6

10 [8]. A higher baryon density results in a more effective burning of D
(and 3He), reducing its primordial abundance. Increasing η also leads to an earlier breaching of the deu-
terium bottleneck, which means that more neutrons are available for BBN, resulting in an increased 4He
abundance. However, unlike the curves for D, 3He and 7Li, the 4He curve is not plotted logarithmically,
and this tells us that the dependence of the 4He abundance on η is rather weak (close to logarithmically).
The dependence of 7Li (and 7Be) on η is a bit more involved. As we see from the figure, the 7Li curve
has a “dip” at η10≈3.5, which reflects the two paths to mass-7 nuclei. The direct path to 7Li through 3H
dominates at low baryon density. The lithium is further synthesized to 4He, a process that happens more
rapidly with increasing baryon density. Hence the decrease of the 7Li abundance towards higher η for
low values of η. However, at even higher η, 7Be-production dominates the mass-7 budget. Most of the
7Be is synthesized to 4He, but some of it survives the BBN. The higher the baryon density, the more 7Be
survives and, as mentioned earlier, 7Be will later decay into 7Li, which explains the increase in 7Li with
increasing η, for high values of η.

It is also worth mentioning the effects that a modified expansion rate parameter S will have on the
light element abundances. Adding relativistic energy will increase the expansion rate of universe, and
this will leave less time for neutrons to decay into protons, resulting in a higher 4He relic abundance. It
will also shorten the time available for D and 3He destruction, increasing the post-BBN abundances of
these elements. Decreasing the expansion rate, on the other hand, will naturally have the opposite effect.
For the mass-7 abundances, the effect of changing the expansion rate will depend on η. Direct pro-
duction/destruction of 7Li dominates the mass-7 budget for low η (η10 & 3) [8]. A faster-than-standard
expansion leads to less destruction of the element, increasing both the 7Li and the total mass-7 abun-
dance, although there will be produced less 7Be. For higher η direct production of 7Be dominates, and
most of the contribution to the primordial 7Li comes from post-BBN decay of 7Be. A faster-than-standard
expansion rate thus leads to both element abundances being reduced.
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Figure 1.4: The figure shows the abundances of the most relevant light elements as a function of η. The plots are from a
SBBN run with made AlterBBN, with η and τn as given in table 1.1 and Neff = 3.046. The vertical band is the 1σ CMB
measured value, while the horizontal bands are the observational constraints on the element abundances (see section 1.2). For
the middle plot, the top/bottom band corresponds to the observed deuterium/helium-3 abundance. Uncertainties in the nuclear
rates (high/low rates) are shown as colored bands around the central values. Note the generally good agreement between the
observed and predicted abundances, except from the discrepancy of a factor ∼3 in the 7Li yield.

1.2 Observed Abundances

After the conditions were no longer right for sustaining further nuclear reactions, the abundances of D
and 4He remained constant until the onset of galaxy formation. As mentioned earlier, the abundances of
3He and 7Li would increase due to the decay of 3H and 7Be. Knowing the light element content in the first
galaxies will therefore serve as a window on the relic abundances from the primordial nucleosynthesis.
Any of the elements could in principle be used to constrain the cosmological parameters. However, they
have differing dependences on η and most important, their abundances have undergone very different
cosmological evolutions since the end of BBN. All the observed abundances are subject to uncontrolled
systematic uncertainties, but since they are observed in completely different astronomical objects by
different observational techniques, the errors are not correlated. Ideally we should therefore seek out to
predict all abundances and compare with the observed ones, but as we will soon discuss, good estimates
of 3He and 7Li are very hard to obtain. In the following we will go through all these elements and see
why deuterium stands out as the most ideal “baryometer” of the four.
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1.2.1 Deuterium

The low binding energy of 2.23 MeV of deuterium means that it is easily destroyed in astrophysical
processes. During the collapse of pre-stellar nebulae it is completely burned into 3He. Once the star
has ignited, deuterium will be produced by nuclear fusion. However, all of this is burned to 3He and
beyond, so during the whole lifetime of a star, the net result is that the deuterium that went into the
pre-stellar nebula is destroyed [8]. To our knowledge, there are no astrophysical sources of significant
deuterium production. This leads to a simple and monotonic post-BBN evolution of the element, where
all the deuterium we observe is of primordial origin [31]. Moreover, in regions of very low metallicity,
the observed abundance is expected to approach its primordial value since matter have been less cycled
through stars [8] [21].

The deuterium abundance is measured in absorption clouds along the line of sight to distant quasars

Figure 1.5: An illustration of the method of measuring the deuterium abundance in gas clouds in the intergalactic medium.
The absorption of light emitted from a quasar will make its imprint on the Lyman α forest. Source: http://nhmc.github.
io/research.html

(see figure 1.5). Light from the quasars are absorbed in intervening clouds, leading to a unique finger-
print from hydrogen, deuterium and other “metals” such as carbon, oxygen, silicon, iron etc. What we
measure is the absorption of deuterium relative to hydrogen, that is, the D/H abundance. These two el-
ements have a similar absorption signature, but is offset by ∼81 km/s. Practically, there are two factors
that complicate the process. First, the small offset of the absorption features can make them difficult to
separate, since they tend to blend into each other. Therefore, damped Lyman α absorbers (DLAs) are
preferred in the analysis, as the absorption in such clouds is high enough to be detected, but still low
enough to prevent a lot of blending (N (H) > 2 · 1020, but not a lot higher). Secondly, several clouds
along the line of sight might absorb and their absorption lines blend together, making the process of
identifying all the sources and separating them from one another a potentially challenging task.

Systems with a particularly simple kinematic structure are desired in analysis to avoid uncertainties
with complex, only partially resolved components. The Particle Data Group’s 2014 release of Review of
Particle Physics [12] gives the value

[D/H]p = (2.53 ± 0.04) · 10−5 ,

based on an analysis of a recently measured DLA showing 13 resolved D absorption lines, together
with 4 older measurements. A more recent re-measurement [32] of an earlier analyzed DLA, now with
significantly higher signal-to-noise reveals a value of

[D/H]p = (2.55 ± 0.03) · 10−5 .
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Since deuterium is destroyed with time, one would naturally seek to observe the element at the
highest possible redshifts, in the limit where the metallicity approaches zero. However, the farther we
observe the less photons we receive, imposing higher uncertainties on the data. This complicates the
picture, but with accurate observations over a range of redshifts we may be able to get good estimates
by extrapolating back to zero metallicity. In a recently published paper [33], Dvorkin et al. predicts a
tight correlation between the the deuterium and metal abundances in any observed region. This finding
suggest that even DLA’s that are poor in deuterium might be studied at high sensitivity for Population
III signatures and used together with samples from different environments in an extrapolation to zero
metallicity, and that this might actually yield better estimates than targeting only metal-poor environ-
ments.

In chapter 4 we discuss the process of analyzing absorption clouds in the line of sight to distant
quasars in the search for the primordial deuterium abundance. There I present the status of an analysis
of the absorption system at z =2.407 towards the quasar Q1009+2956, conducted parallel with the work
on AlterBBN. I have yet to arrive at a new precise estimate of the deuterium abundance, but hope that
this will be completed in the near future.

1.2.2 Helium-4

The 4He abundance is measured in extragalactic HII (ionized hydrogen) regions, by observing 4He and
H emission lines. In stars 4He is created from hydrogen through nuclear fusion, and subsequently used
to create heavier elements such as carbon, nitrogen and oxygen. On average, the rate of 4He production
exceeds the rate of destruction of the element, meaning that the 4He abundance increases with time. By
tracking the stellar-produced 4He as a function of metallicity, one can extrapolate back to zero metallicity
and get good estimates. There is now a large body of data on 4He and CNO from extragalactic HII
systems, meaning that the statistical uncertainty on the primordial estimate is very low. However, these
systems are very complex, and several physical parameters enter the 4He/H determination. This induces
quite large systematic errors, affecting the correlation between the helium and metal (e.g. oxygen)
abundance, making the extrapolations to zero metallicity largely model dependent. For this reason, many
differing estimates of the primordial abundance of 4He have been proposed, not all being consistent with
each other. Here I will use the estimate given by Aver et al. 2015 [34], who reports a reduction of over
50% in the uncertainty compared to previous estimates. Their estimate is

Yp = 0.2449 ± 0.004 .

Note that the helium abundance is popularly given as a fraction of the total baryon content, while the
other element abundances are given as the fraction of the element abundance by number to the hydrogen
abundance by number.

Although the 4He abundance is of great importance in the quest for new physics influencing the
conditions in the early universe (sensitive to practically everything that might affect the n/p ratio), its
logarithmic dependence on the baryon density makes it a rather poor baryometer. Consequently, since
the 4He abundance is very sensitive to the n/p ratio and possible new physics, while the deuterium
abundance is very sensitive to the baryon density, combining the predictions of the two provides us with
essentially all the desired information. The predictions of the other light elements therefore serves as a
mere consistency check.

1.2.3 Helium-3

As mentioned, 3He is produced in pre-stellar nebulae, by the burning of the more loosely bound deu-
terium. This new 3He could either become part of the outer layers of the star, or be a part of the fusion
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engine in the core. Inside stars, 3He is both produced and destroyed, but unlike for the case with 4He,
the net result may be that 3He is destroyed. 3He is observed via its hyperfine emission line in HII re-
gions in our own galaxy, but only a handful of observations have been made [35], and all the regions are
quite metal-rich. Even if the observed gas clouds are quite old, one might suspect that its abundance has
evolved a lot since the BBN. The inferred 3He abundances show no correlation with metallicity or loca-
tion in our galaxy, making the extrapolation to zero metallicity far too model dependent and uncertain.
Also, since the abundance of the element is less sensitive to the baryon density than the deuterium abun-
dance is, it is a poor baryometer compared to deuterium. Due to these facts it is not appropriate to use
3He as a cosmological probe. Instead, one might hope to turn the problem around and constrain stellar
astrophysics using the predicted primordial 3He abundance [36]. As for consistency check purposes we
will adopt the value

[3He/H]p = 1.1 ± 0.2 ,

taken from Bania et al. [35], as an estimate for the primordial 3He abundance.

1.2.4 Lithium-7

Lithium has a rather complex post-BBN evolution. As discussed, and similar to the case of 3He, all
the BBN-produced 7Be decays into 7Li well before stars and galaxies are created, thus the observed 7Li
abundance is actually the sum of the abundances of both mass-7 isotopes. Most of the 7Li in the interior
of stars will be burned away, but observations suggest that some of the element created in the hotter
interiors may be transported to the cooler exteriors before being destroyed [8]. In the outer layers of
the coolest, lowest-mass stars most of the element survives, and in stars undergoing the late, asymptotic
giant branch phase of evolution, 3He burning may lead to high surface 7Li abundances. This may, or may
not (depending on the stellar parameters like temperature and mass) lead to surviving 7Li being ejected
into the Interstellar Medium (ISM) as the star dies, resulting in a net increase in the lithium abundance
over the lifetime of the star. Moreover, 7Li is synthesized in non-stellar processes involving collisions
of cosmic ray nuclei (protons, α-particles and CNO nuclei) with their counterparts in the ISM. Even
though the relatively low binding energy of 7Li (11.21 MeV) means that it is easily destroyed in the hot
interior of stars, theoretical expectations, backed by observational data suggest that the overall trend is
an increase of the galactic abundance with time [8].

7Li is the most problematic of the observable BBN elements, and this may be due to its complex
post-BBN evolution. Its primordial value is deduced by observations of metal-poor galactic globular
cluster (GGC) stars and of very old, metal-poor Population II dwarf stars in the halo of our galaxy where
the lithium abundance is almost independent of metallicity, displaying the so-called“Spite plateau” [37].
Most of the halo star observations measure only elemental lithium because thermal broadening in the
stellar atmospheres exceeds the isotope separation between 7Li and 6Li. The latter is not synthesized in
stars, only in cosmic ray interactions [38], and is a factor of ∼103 less abundant than 7Li.

The constant lithium abundance evident as the Spite Plateau is interpreted as corresponding to the
BBN 7Li yield, provided that the host stars in the observations have not destroyed any of their lithium.
This is, of course, a questionable assumption, and some recent work by Cyburt et al. [21] seems to
demand that at least some halo stars have destroyed their lithium. The authors uses new observa-
tions of small and thus highly convective stars, which leads to large uncertainties when extrapolating
to zero metallicity. Disregarding these observations, and only including the ones consistent with the
Spite Plateau, the Review of Particle Physics 2014 [12] gives the value

[7Li/H]p = (1.6 ± 0.3) · 10−10 .

While the primordial abundances adopted from SBBN are in very good agreement with the observed
values for D, 4He and 3He, the SBBN-predicted abundance of 7Li is a factor ≈3 higher than its observed
value. This is known as the “lithium problem”, and a variety of suggestions have been proposed to
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remedy this discrepancy between the predicted and the observed value. The most popular explanations
are [39]:

• Inaccurate stellar modeling - As explained, the evolution of 7Li in the outer layers of stars are
quite complicated, and this is the areas from which it is observed. Complex stellar models are
required to account for all the processes involved, and there is a possibility that those are simply
not accurate enough. Stellar depletion of 7Li in the outer layers due to mixing with the inner
layers (due to convection, rotational mixing or diffusion) remains a possible solution, especially
regarding the fact that the observations are made of the oldest stars that have had the longest time
to deplete lithium in the outer layers. Additionally, there are uncertainties in the stellar parameters
(e.g. the determined abundance of 7Li is very sensitive to the assumed surface temperature of the
star) that go into the calculations. However, the lack of dispersion in the observed data and the
apparent presence of the Spite Plateau make it unlikely that this alone can explain the discrepancy.

• The nuclear rates - The uncertainties in BBN calculations are dominated by uncertainties in
the nuclear rates. Overlooked reactions or inaccurate determinations of their uncertainties may
lead to wrong BBN predictions of the abundance. Even though the abundances of D and 4He
are well determined by a mere 12 reactions, BBN codes usually include a lot more reactions
(AlterBBN includes 100), all the way up to CNO (some codes even further). The main reason
for doing so is to exclude a “nuclear solution” to the lithium problem. For example, the reaction
7Be+4He→ 11C is insignificant for the relic 4He abundance since other reactions involving 4He
dominates its production/destruction, but since the 7Li abundance is a factor ∼109 lower than the
4He abundance and since post-BBN decay of 7Be is important for the late-time 7Li abundance,
it may have a huge indirect impact on the lithium we observe. However, re-examinations of the
most important 7Li+7Be producing/destructing reactions, including 7Be(d,p)2α, 3He(α,γ)7Be and
7Be(p, γ)8Be, have more or less ruled out a nuclear fix to the problem (e.g. [39] [40]). Although
improved nuclear reaction rates and uncertainties may shorten the gap between the predicted and
observed value, it seems that it is unable to close it.

• New physics - It may well be the case that the discrepancy between the predicted and observed
abundance of 7Li is indeed real, and that the SBBN scenario is insufficient in the prediction of the
element abundances. Since we already have a very good agreement for D, 4He and 3He (bearing
in mind that the 3He abundance is inferred only from high-metallicity regions in our galaxy, and
is therefore very uncertain), including any new physics is constrained to have a larger affect on the
7Li abundance than for the other elements. There are several examples of new physics that have
the potential of influencing BBN. Later, in chapter 3, we will look into the possibility that dark
matter annihilation in the early universe may change the relic abundances of the lightest elements.
Supersymmetry provides well-motivated candidates for decaying dark matter, and although most
candidates emerging from this theory is non-relativistic and weakly interacting, one cannot ex-
clude the existence of dark matter particles that are relativistic at the time of BBN, and thus
having the potential of influencing BBN. Other suggestions range from changing cosmological
constants to non-standard cosmologies, summarized in e.g. [41].
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Chapter 2

AlterBBN

AlterBBN [42] was created by Alexandre Arbey in 2011, and is a public C program for evaluating the
abundances of the elements generated during BBN. Several similar codes exists, and with the develop-
ment of cosmology and nuclear physics comes the need for continuously updating the software. The
first real attempt to deduct numerical experiments with the “early universe fusion reactor” came with the
Wagoner code in 1969, based on a general numerical method published in 1968 by Robert V. Wagoner
[43]. This code had a number of severe drawbacks, and was difficult to use, but it set the scene for a
new era in BBN calculations. With the rapid increase in computer technology that followed, several
improvements were made, and in 1988 Lawrence Kawano published the Fortran-77 program NUC123
[44], often referred to as the Kawano code. This code has later served as a reference for most of the
preceding codes that have been published, and the underlying numerical methods are based on the ones
laid out by Wagoner in 1968.

AlterBBN is structured very similar to that of NUC123 and uses the same calculation techniques,
driven by a Runge Kutta solver to compute the set of differential equations governing the BBN. It is
also inspired by the Fortran-77 program PArthENoPE [45] published in 2007, with a similar purpose
as AlterBBN. PArthENoPE is a popular code for computing the BBN-created abundances, but uses a
separate library (NAG) for the evaluation of some special functions and algebraic operations. This
library is not included in the PArthENoPE package, and is quite expensive. The purpose of updating
AlterBBN to the same standard as PArthENoPE is therefore to have a free, open source code that can do
the same job. Moreover, some new reaction rates have been published since the release of PArthENoPE,
which I have added to the updated AlterBBN code, and described later in this chapter. The source code
for PArthENoPE can be obtained by request (but cannot be run without the NAG library), and I have
used this as a reference for the implementation of the extended nuclear network.

The latest release of AlterBBN is AlterBBN v1.4 of 28 June 2013 1. In the following I will refer
to this as the original code. The program predicts the abundances of the light elements for various
cosmological models, that can be compared to observations. It consists of five main programs which,
except from the standard cosmological model program, requires that the different free parameters are
given as input arguments. The five different programs are:

• stand_cosmo.x, which computes the abundances of the elements in the standard ΛCDM cosmo-
logical model, with a pre-defined default value of η;

• alter_eta.x, which computes the abundance of the elements in the standard cosmological model,

1 May be downloaded from http://superiso.in2p3.fr/relic/alterbbn
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with the required input argument
– η: baryon-to-photon ratio;

• alter_neutrinos.x, which computes the abundance of the elements in the standard cosmological
model, with the required input argument

– Nν : the number of neutrino families,
and the optional arguments

– ξνe : the electron neutrino degeneracy parameter,
– ξνµ : the muon neutrino degeneracy parameter,
– ξντ : the tau neutrino degeneracy parameter;

• alter_standmod.x, which computes the abundance of the elements in cosmological scenarios with
modified expansion rates and entropy contents, with the required arguments

– κρ : the ratio of dark energy density over radiation energy density at BBN time,
– nρ : the dark energy density decrease exponent,
– κs : the ratio of dark entropy density over radiation entropy density at BBN time,
– ns : the dark entropy density decrease exponent,

and the optional arguments
– Tρ : the temperature in GeV below which the dark energy density is set to 0,
– Ts : the temperature in GeV below which the dark entropy density is set to 0;

• alter_reheating.x, which computes the abundance of the elements in cosmological scenarios with
modified expansion rates and entropy contents, with the addition of entropy production. The
required arguments are

– κρ : the ratio of dark energy density over radiation energy density at BBN time,
– nρ : the dark energy density decrease exponent,
– κΣ: the ratio of dark entropy production over radiation entropy production at BBN time,
– nΣ: the dark entropy production exponent,
– Tr : the temperature in GeV below which the dark energy density and the entropy production

are set to 0.

The different parameters concerning the non-standard cosmological scenarios above will be discussed
in more detail in section 2.1.

Some changes to the original code, regarding its layout, were made prior to my work. I have built
on this modified version and made some further changes to the layout, in addition to an update of the
nuclear reactions and the inclusion of new physics.

2.1 Structure of the Original Code

A basic, general description of the BBN physics was given in section 1.1. We will now extend the
discussion to include all the relevant equations needed to compute the light element abundances, and how
they are implemented in AlterBBN. Modifications and extensions to the latest version of the program will
be discussed in section 2.2. This review is a more detailed version of that found in the AlterBBN manual
[42]. New physics that I have implemented in the program will be discussed in chapter 3. Notice that in
general expressions or definitions I try to use the standard notation of the temperature, where T is in units
of Kelvin, whereas in expressions specific for, or important for the code itself I use the dimensionless
variable

T9 =
T

109 K
. (2.1)
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2.1.1 Standard Big Bang Nucleosynthesis

Nuclear Reactions
In the original code, all the implemented nuclear reactions have evolution equations on the form

Ni
AiZi + Nj

A jZ j ←→ Nk
AkZk + Nl

AlZl , (2.2)

where Ai ≥ Aj , Al ≥ Ak , and the exothermic direction is from left to right. The abundance change of a
nuclide i is given by the sum over all forward and reverse reactions involving nuclide i, that is

dYi
dt

=
∑
j,k,l

Ni
*.
,
−

Y Ni

i Y N j

j

Ni!Nj !
Γi j→kl +

Y Nl

l
Y Nk

k

Nl !Nk !
Γkl→i j

+/
-
. (2.3)

Here, the nuclide abundance is defined as Yi = Xi/Ai , where Xi = ni/nB is the mass fraction in nuclide i
and Ai its atomic number. Ni is the number of nuclides i, Γi j→kl is the forward reaction rate and Γkl→i j

is the reverse rate (see appendix A for a brief review of the theory regarding the reaction rates). The
numerical implementation of this equation is thoroughly explained in both [43] and [46] and will not be
further discussed here.

The program tracks the evolution of 26 nuclides from an initial temperature T9, i to a final tempera-
ture T9, f . Following the numbering of AlterBBN, the nuclides that are a part of the code are
• 1: n
• 2: p
• 3: 2H
• 4: 3H
• 5: 3He
• 6: 4He

• 7: 6Li
• 8: 7Li
• 9: 7Be
• 10: 8Li
• 11: 8B
• 12: 9Be

• 13: 10B
• 14: 11B
• 15: 11C
• 16: 12B
• 17: 12C
• 18: 12N

• 19: 13C
• 20: 13N
• 21: 14C
• 22: 14N
• 23: 14O
• 24: 15N

• 25: 15O
• 26: 16O

Due to the mass-8 bottleneck explained in chapter 1, insignificant amounts of metals heavier than 9Be
were created in the Big Bang Nucleosynthesis. However, although the relic abundances of the heavier
elements are negligible even compared to that of 6Li (6Li/H ∼ 10−14), some reactions involving car-
bon, nitrogen, oxygen etc. will break the bottleneck and influence BBN through sub-sequent reactions
with the lighter elements. Including more reactions is important to rule out a nuclear fix to the lithium
problem (see chapter 1.2.4) and provides an overall better accuracy of the code.

Iteration Variables
The program time-evolves the photon temperature T9, the electron chemical potential µe parameterized
through the degeneracy parameter φe ≡ µe/kBT , and the quantity hη [43][44][47]. The latter is a lowest
order parametric representation of the baryon density (see equations 2.19 and 2.20 with discussion),
used for convenience as it is proportional to η and remains fairly constant as the universe expands, under
the assumption of adiabatic expansion. It is time-evolved from an initial value given by (initial value is
here denoted by i and is not to be confused with the nuclide number i in equations 2.2 and 2.3)

hη, i = Mu
nb, i
T3

9, i

= Mu

nγ, i
T3

9, i

ηi ≈ 33685.519 · η0

(
1 +

se± (Ti )
sγ (Ti )

)
(2.4)

where Mu is the atomic mass unit and η0 the late-time (CMB measured) value of the baryon-to-photon
ratio. The relation between the initial and late-time value of η is found from equation 1.36 through
entropy conservation. In the original code the initial ratio between the entropy of the electrons/positrons
and the photons is approximated to 7/4, assuming me→ 0. Since the e±-pairs are not fully relativistic
this imposes a small error in hη, i . At T = 2 MeV Nollett & Steigman [48] estimate that an accurate
treatment of the e± entropy gives se± a value about 2% below its relativistic approximation. In the
updated AlterBBN the assumption of me → 0 is relaxed, leading to a more accurate initial estimate of
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hη . This modification of the original code is further discussed in section 2.2.5. In the last equality
in equation 2.4 I have inserted the physical constants to reveal the AlterBBN-implemented expression,
which is in units of g cm−3 K−3. I will also do so in some other cases later, and this is done to clarify the
origin of some of the numerical factors that the reader may encounter if consulting the program code.

T9, φe and hη are used to find the density and pressure of the relevant particles, described in the
following. First, the equation of energy conservation may be written as

d
dt

(ρtota3) + Ptot
d
dt

(a3) − a3 dρtot

dt

�����T=const

= 0 , (2.5)

from which we may obtain [44]

dr
dT9

= −

dρtot
dT9

ρtot +
Ptot
c2 +

(
1

dr/dt

)
dρtot
dt

���T9

, (2.6)

where r≡ ln(a3), which incorporates the thermodynamic effect of the universal expansion on the particle
temperatures. If we assume that the neutrinos have already decoupled the total energy density and
pressure is given by

ρtot = ργ + ρb + (ρe− + ρe+ ) , (2.7)

and
Ptot = Pγ + Pb + (Pe− + Pe+ ) . (2.8)

This is needed to find the time-derivatives of the temperature:

dT9

dt
=

dr/dt
dr/dT9

, (2.9)

and the electron degeneracy parameter:

dφe
dt

=
∂φe
∂T9

dT9

dt
+
∂φe
∂r

dr
dt

+
∂φe
∂S

dS
dt
, (2.10)

where S =
∑

i ZiYi , Zi being the charge number of nuclei i. The numerical implementation of this expres-
sion requires a detailed review of the different derivatives, which will not be given here. Instead, I refer
to appendix D in Kawano 1992 [44] where all relevant information can be found. The time derivative of
hη is found by the reasoning that hη ∼ ρb/T3 ∼ 1/a3/T3 (see equation 2.19 with discussion), that is

dhη
dt

= −3hη

(
1
a

da
dt

+
1
T9

dT9

dt

)
. (2.11)

The energy density of the photons is given by the bosonic part of equation 1.19, thus

ργ =
1
c2

gγπ
2

30
(kBT )4

(~c)3 = 8.41828 · T4
9 , (2.12)

since gγ = 2. The last equality is how it is implemented in AlterBBN, and is in units of g cm−3. The
pressure is related to the density by

Pγ
c2 =

1
3
ργ . (2.13)

In the case that the neutrino asymmetry is zero, the energy density of the neutrinos is given by the
fermionic part of equation 1.19, yielding

ρν =
1
c2 gνNeff

7
8
π2

30
(kBTν )4

(~c)3 = 12.79384
[
gνNeff

π2

30
T4

9,ν

]
, (2.14)
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given in units of g cm−3. For the SBBN scenario gν = 2 and Neff = 3 or, if relaxing the assumptions
of instantaneous neutrino decoupling and extremely relativistic e± pairs, Neff = 3.046, as explained
in chapter 1.1. Any neutrino degeneracy will lead to a non-zero chemical potential and a bit more
involved evaluation of the expression in the square brackets, which will be discussed in section 2.1.2.
The neutrino temperature is found by the assumption that the baryon number is conserved, such that
nba3 = constant, combined with the requirement that the neutrinos simply redshift with the expansion
of the universe, leading to

Tν9 = T9, i *
,

hηT3
9

ρb,0
+
-

1/3

. (2.15)

Note that the assumption that Tν ∝ a−1 is true only in the standard scenario. In the presence of e.g. a
neutrino coupled WIMP the neutrinos will be heated relative to the photons as the WIMP annihilates,
and equation 2.15 is no longer valid. This will be further discussed in chapter 3.

Since the assumption of extremely relativistic electrons and positrons is not entirely accurate at the
time of BBN, one cannot simplify the expressions 1.15, 1.16 and 1.17 the same way as was done to
find the photon and neutrino densities. Inspired by the method described by Wagoner [43] and the
Kawano code [44] the expressions are approximated by using the modified Bessel functions of second
type through the definitions

L(z) =
K2(z)

z
, M (z) =

1
z

[
3
4

K3(z) +
1
4

K1(z)
]
, N (z) =

1
z

[
1
2

K4(z) +
1
2

K2(z)
]
, (2.16)

where z = mec2/kBT and Kα are the modified Bessel function of order α. Using these approximations
the expressions for the sum of the electron/positron densities and pressures then reads (see appendix C
for derivation)

ρe− + ρe+ =
1
c2

ge

π2

(mec2)4

(~c)3

∞∑
n=1

(−1)n+1 cosh(nφe )M (nz) (2.17)

Pe− + Pe+

c2 =
1
c2

ge

π2

(mec2)4

(~c)3

∞∑
n=1

(−1)n+1

nz
cosh(nφe )L(nz) (2.18)

Using that ge = 2 and that mec2 = 0.51100 MeV = 8.18700 · 10−7 erg = 8.18700 · 10−7 g cm2 s−2

(electrons and positrons), the pre-factor is equal to 3205.724 g cm−3. Note that the electron and positron
chemical potentials have the opposite sign, thus φe =φe− =−φe+ . The expressions 2.16 are further used
to approximate the derivatives of these quantities, among others, needed to compute equations 2.11, 2.9
and 2.10.

Baryon Density Derivative
The baryon density is given by the first order approximation (from equation 2.4)

ρb ≈ hT3
9 . (2.19)

This approximation is, however, not accurate enough when calculating the derivative of the baryon
density, which would drop out of equation 2.6. Including higher order terms, Wagoner [43] describes a
more complete expression for the baryon density, given by

ρb = nb

Mu +

∑
i

(
∆Mi +

3kbT
2c2

)
Yi



= hηT3
9


1 +

∑
i

(
∆Mi

Mu
+ ζT9

)
Yi


, (2.20)
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where ∆Mi is the mass excess 2 of nuclide i and ζ =1.388 · 10−4. The non-zero part of the temperature-
derivative of the baryon energy density is then

dρb
dT9

= hηT3
9 ζ

∑
i

Yi , (2.21)

while the baryon pressure is given by [44]

Pb = hηT3
9

*
,

2
3
ζT9

∑
i

Yi+
-
. (2.22)

Charged Lepton Degeneracy
The charged lepton (e±) degeneracy will depend on the electron chemical potential, which is parame-
terized through φe . Like in the case with the electron and positron density and pressure, their number
densities are approximated through the modified Bessel functions (from equation 1.15), and the expres-
sion for their difference reads

ne− − ne+ =
ge

π2

[
mec2

~c

]3 ∞∑
n=1

(−1)n+1 sinh(nφe )L(nz) . (2.23)

This can also be found by charge conservation, which gives

ne− − ne+ = NAhηT3
9 S, (2.24)

where NA is the Avogadro number, which by definition is NA = 1/Mu . Charge conservation limits the
charged lepton asymmetry to be of the same order as the baryon asymmetry, meaning that µe/kBT ∼10−9

prior to e± annihilation, which is illustrated in figure 2.1. By equating the two expressions for the
difference between the number densities of electrons and positrons, using that sinh(x)≈ x for x�1 and
inserting the dimensionless variable z =mec2/kBT , we find for the initial value of φe:

φe (T9, i ) ≈
π2

2
(kB~c)3

Mu

hη (T9, i )Yp, i
(109zi )3

1∑∞
n=1(−1)n+1nL(nzi )

≈ 3.568 · 10−5 ·
hη (T9, i )Yp, i

z3
i

∑∞
n=1(−1)n+1nL(nzi )

, (2.25)

where the subscript i means initial value, and we have used that prior to BBN the baryon budget consisted
of only protons and neutrons, thus∑

i

ZiYi = ZnYn + ZpYp = 0 · Yn + 1 · Yp = Yp . (2.26)

Initial Abundances
The initial abundances of protons and neutrons are described by the distribution functions

Yp (Ti ) =
1

1 + e−Q/Ti
, Yn (Ti ) =

1
1 + eQ/Ti

, (2.27)

where Q is the difference between the neutron and proton masses, which was encountered in equation
1.38. These values are thus naturally dependent on the neutron-to-proton ratio at temperature Ti . The
initial time is found by (approximation for T→∞ and t→0 [47])

ti = (12πGσc−2)1/2T−2
9, i ≈

(
0.09615 · T9, i

)−2 , (2.28)

where σ is Stefan-Boltzmann’s constant and G is Newton’s gravitational constant.

2 The difference between the actual mass of the nuclide and its mass number in atomic mass units.
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2.1.2 Modified Cosmological Scenarios

Several unknown physical processes may influence the evolution of the early universe. AlterBBN has
the options of modifying the number of neutrino families and impose a neutrino degeneracy among
the standard model neutrinos, in addition to modifying the expansion rate and entropy content directly.
Moreover, it can apply reheating models with a resulting entropy production. These modified cosmo-
logical scenarios influence the properties of the early universe in different ways, and in the following
we will explain the physics and how they are implemented in the program. In this discussion I will set
kB =~=c=1.

Adding equivalent neutrinos and a Non-Zero Neutrino Degeneracy
Adding equivalent neutrinos alone has the effect of speeding up the expansion of the universe through
an increased energy density. The extra radiation is absorbed into the neutrino energy density, given by
equation 2.14, through the definition of Neff (see chapter 1.1.6). Using a non-zero neutrino degeneracy,
on the other hand, will lead to a more involved calculation of the neutrino energy density. In chapter
1.1 we gave a detailed description of the neutrino degeneracy parameter ξ and explained that due to
mixing of the standard model neutrinos, one usually assumes that the chemical potential of the three
species are equal, thus writing ξ = ξe = ξµ = ξτ . However, AlterBBN gives the user the option to
provide differing values of ξe , ξµ and ξτ . We also mentioned that any contribution to the expansion rate
(S , 0) emerging from a non-zero neutrino degeneracy is very small, and is likely to yield differences
in the relic abundances smaller than the observationally imposed uncertainties. Although this may be
true we still need to keep track of it, since the combined effect of multiple small modifications to the
standard cosmology scenario may lead to significant changes in the abundances. In AlterBBN this effect
is implemented by modifying the neutrino density to [44]

ρνα,να =
1

2π2 T4
ν

∫ ∞

0
dx

x3

1 + exp(x ∓ ξνα )
, (2.29)

where it is assumed that the three species share the same temperature, and the total neutrino density is
found by summing over the three neutrino species να , α = e, µ, τ. The minus sign in the exponential
is for the neutrinos and the plus sign is for the anti-neutrinos. Integrating this expression is quite time
consuming, so that in the case of a very small neutrino degeneracy (ξ ≤0.03) the approximation [44]

ρνα + ρνα =
π2

15
T4
ν

(
7
8

+
15
4π2 ξ

2
να

+
15
8π4 ξ

4
να

)
(2.30)

is used, while the approximation [44]

ρνα + ρνα =
1

8π2 (Tνξν )4
[
1 +

(
2π2

ξ2
ν

)]
(2.31)

is used for very large values (ξ ≥30). For 0.03< ξ < 30 equation 2.29 must be integrated numerically.
The most important effect of a non-zero neutrino degeneracy is the altered neutron-to-proton ratio

through charged current weak interactions involving the electron neutrinos and anti-neutrinos. This leads
to a modification of the weak rates controlling the p↔n reaction, and the initial abundances of protons
and neutrons are changed from the ones given in 2.27 to

Yp (Ti ) =
1

1 + e−Q/Ti−ξνe
, Yn (Ti ) =

1
1 + eQ/Ti+ξνe

. (2.32)

Modified Expansion Rate
Contributions to the total relativistic energy at the time of BBN will change the expansion rate of the
universe and consequently the primordial abundances. In AlterBBN one can parameterize any such
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phenomena by adding an effective dark energy density ρD to the first Friedmann equation, which is then
modified from equation 1.6 (k = 0) to

H2 =
8πG

3
(ρtot + ρD) . (2.33)

As a parameterization for ρD the code adopts, as described in [49] [50],

ρD = κρ ρtot(T0)
(

T
T0

)nρ
, (2.34)

where kBT0 = 1 MeV. κρ is then the ratio of effective dark density over the total energy density, and
nρ = 3(1 + w) is a constant parameterizing the density behavior, depending on whether it behaves like
radiation (nρ =4), matter (nρ =3), vacuum energy (nρ =6) etc. (see chapter 1.1.2 for the definition of w,
and [49] for more information about nρ).

Modified Entropy Content
The entropy content can also receive various contributions from unknown sources, e.g. from exotic
particles that annihilate during BBN and heats the photons relative to the neutrinos or vice versa. In the
original code any such contribution is parameterized in a generic way by considering an effective dark
entropy density sD , so that the energy conservation is modified from equation 2.5 to

d
dt

(ρtota3) + Ptot
d
dt

(a3) − a3 dρtot

dt

�����T=const

− T
d
dt

(sDa3) = 0 . (2.35)

In the case of no reheating, the parameterization (described in [50])

sD = κs srad(T0)
(

T
T0

)ns

(2.36)

is used, where kBT0 =1 MeV, and

srad(T ) = heff (T )
2π2

45
T3 , (2.37)

heff being the effective number of entropic degrees of freedom of radiation, κs the ratio of effective dark
entropy density over radiation entropy density, and ns a constant parameterizing the entropy behavior,
depending on whether it is radiation-like, matter-like etc. (see [50] for specific values of this). In the case
that a particle annihilates and reheats the plasma, however, there will be additional entropy production.
Arbey et al. [51] describes an evolution of the entropy production ΣD according to

ΣD (T ) = κΣΣrad(T0)
(

T
T0

)nΣ
, (2.38)

where again kBT0 = 1 MeV. κΣ is the ratio of effective dark entropy production over radiation entropy
production while nΣ describes the behavior of the entropy production, which in most reheating scenarios
will be nΣ∼−1 (see [51]). The radiation entropy production reads:

Σrad(T0) =

(
4π3G

5
geff (T0)

)1/2

T2
0 srad(T0) , (2.39)

geff being the effective number of degrees of freedom of radiation. The dark entropy density is then
found by integrating over the entropy production, as

sD (T ) = 3

√
5

4π3G
heffT3

∫ T

0
dT ′

g1/2
∗ ΣD (T ′)√

1 +
ρD

ρrad
h2

eff
(T ′)T ′6

, (2.40)

where

g1/2
∗ =

heff
√
geff

(
1 +

T
3heff

dheff

dT

)
. (2.41)
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2.2 Changes to The Original Code

The main tasks of this project were to get the nuclear network of AlterBBN up to date and to add new
physics to the code. However, working with the original code I soon realized that I had to make some
changes to the interface and layout, to facilitate the desired runs and extraction of data. Prior to my
work, some changes were made in this regard, and I have built on these modifications plus added some
more. In this section I will go through all the changes, up until the inclusion of new physics, which will
be discussed in chapter 3. The changes discussed here are

• New layout/interface, related to how the program is run. Instead of five main programs for
different cosmological scenarios, all the physics is collected into one program, with parameter
inputs given in a .ini-file. An external PYTHON program was made to execute AlterBBN. This is
very convenient in the case that we want to do multiple runs with AlterBBN, varying parameters
like the baryon-to-photon ratio, WIMP mass etc.

• Correction of the initial time when including extra relativistic degrees of freedom.

• Extension of the nuclear network, with the addition of 12 new reactions to the original 88. The
new reactions are implemented as in PArthENoPE [45].

• Updated reaction rates for six important reactions: H (n, γ)2H [52], 7Be(n,α)4He [53], 3He(α,γ)7Be
[54], 2H (p, γ)3He [55], 2H (d,n)3He [55] and 2H (d,p)3H [55].

• The initial value of the electron-positron entropy density, needed to estimate the initial value
of hη , have been corrected to account for the partial non-relativistic nature of the e±-pairs around
the time of neutrino decoupling.

In addition to these updates, a few bugs were discovered in the original version. The first one involves
the array double reacparam in the function nucl (and nucl_failsafe), where the reactions 12N (α,p)15O
and 13N (α,p)16O (reactions number 92 and 93 in the updated version) were of the wrong reaction type.
Those have been changed from type 3 to type 2 (see section 2.2.3) in the updated version. A second
error was found in the reaction rate of the reaction 3H (D,n)4He (number 30), which originally contained
a factor 1.8764462 · 109T2

9 . According to Serpico et al. [56] this should be 1.8764462 · 109T3
9 , and has

been changed accordingly in the updated version. Finally, the contribution from thermally excited levels
to the reaction 13C(p, γ)14N , which is reaction number 73 in the updated version, was wrongly added to
reaction number 72 instead. This has now been corrected.

2.2.1 New Layout/Interface

As discussed in the introduction to this chapter, the original code consists of five main programs concern-
ing different cosmological scenarios. Except from the program computing the parameter-free standard
cosmological model, using the CMB-measured value of η, they all require a various number of input
arguments. For the two programs involving dark energy/dark entropy density and entropy production,
the number of input arguments is quite large (4-6), and having to enter all those arguments for every run
can be a source of frustration. As mentioned, a modification to this layout was made prior to my work,
by Digvijay Wadekar at the University of Oslo [57]. The five main programs were compressed into two;
the first one covering stand_cosmo, alter_eta and alter_neutrinos, requiring the parameters to be given
in a separate .ini-file (named input.ini); the second one covering alter_standmod and alter_reheating,
requiring the parameters to be given in the code itself. I find it convenient to collect all parameters that
can be changed by the user in one single file, even though some of them may not be used as much as
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others. I also combined the two programs into one, making it more practical both to work with and to
use, even though the main-part of the code got a bit more involved. The addition of WIMPs (see chapter
3) was also implemented into this new, combined program. The new layout thus consists of only one
main code, primary.c, using the input file input.ini to extract parameter values given by the user.

To differ between the various cosmological models, the executable primary.x now takes one input
argument. If this argument is standard the program will collect the parameters η, τ, Nν , ∆Nν , ξνe , ξνµ
and ξντ from the input file, and use those in the computation. Although not a part of standard cosmol-
ogy, I decided to include the neutrino degeneracy parameters in this option to minimize the number of
input argument options. If the user do not want to include any neutrino degeneracy, these parameters
must therefore be set to zero. Using the argument darkdens together with the executable will modify
the expansion rate and entropy content, and concerns the parameters κρ , nρ , κs , ns , Tρ and Ts , while
the argument reheating will modify the expansion rate and add entropy production, thus concerning the
parameters κρ , nρ , κΣ, nΣ and Tr . By default, the different cut-off temperatures are set to 0, which means
that the program will take equations 2.34, 2.36 and 2.40 into consideration throughout the whole run,
but the user is free to change these parameters through the input file. To invoke simulations including
WIMPs the user may give the argument wimp. The parameters that need to be set through the input file
in this setting is the WIMP mass, the type of WIMP, its coupling to the standard model particles, and its
chemical potential. Further details of these parameters will be given in chapter 3. Finally, the user may
run the executable without giving any arguments. The program will then run the parameter-free standard
cosmology scenario with η10 = 6.10, τ = 880.3 and Ne f f = Nν = 3.046. Note that for the options dark-
dens and reheating the parameters η, τ, Nν , ∆Nν , ξνe , ξνµ and ξντ are also set through the .ini-file. A
combination of the options darkdens, reheating and wimp is possible, since there might exist interest-
ing cases where e.g. a light WIMP with specified properties is combined with extra radiation/entropy of
an unspecified nature. Beware that with this combination implemented, it is essential that all parameters
controlling the darkdens and reheating options are set to zero when a “combination-less” WIMP run
is made. For all individual options (standard, darkdens and reheating), on the other hand, none of the
parameters that are not part of the option are included in the calculation.

AlterBBN does not come with the functionality of internally varying any of the parameters that
go into the computation. Such an option is necessary if we want to study the change in the resulting
abundances by varying e.g. the baryon-to-photon ratio. Instead of modifying the program itself to do
this, I wrote an external PYTHON program for compiling and executing AlterBBN, which I have called
ARES. This interacts with the input file, and enables the user to run AlterBBN for as many times as
desired while varying a parameter of choice. The parameters that are allowed to vary is the baryon-to-
photon ratio (η), both the equivalent number of neutrinos (∆Nν) and the effective number of neutrinos
(Ne f f ) as well as all the neutrino degeneracy parameters (ξe , ξµ and ξτ), the neutron lifetime (τn), the
WIMP mass (mχ) and the WIMP electron chemical potential parameterized as a degeneracy parameter
(φχ). A switch may be used to show a plot of the light element abundances of D, 4He, 3He and 7Li as
a function of η if this is chosen as the free parameter (see figure 1.4). The results from all the runs are
written to the file alterdata.txt, which may then be used to make plots etc.

The program may also be used in the case that all parameters are fixed (single AlterBBN run). This
way the user do not have to compile AlterBBN before running, rather just execute ARES. Also, a switch
to direct the results from the terminal to the output-file alterdata.txt is included, in the case that the user
want to use those after running AlterBBN in the fixed parameter case.

ARES is executed by giving a minimum of two input arguments; the first one determining the type
of run (single or multi); the second one determining the type of cosmology (paramfree, standard,
darkdens, reheating or wimp). The paramfree option is equivalent to running AlterBBN with no input
argument, using the parameter-free SBBN scenario with η10 = 6.10, τn = 880.3 and Ne f f = Nν = 3.046.
The other options are thoroughly explained in the above discussion. The default settings are η as the
parameter to vary, with 25 values between the limits ηmin = 10−10 and ηmax = 10−9, as well as a log
distribution of the 25 points. The default settings may be temporarily changed by providing further input
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arguments. For an explanation of all the possible options, the program may be run with the one input
argument info.

2.2.2 Correction of the Initial Time

The initial time for the BBN calculation is given by equation 2.28. However, this approximation is true
only in the standard scenario. The original code includes the option of adding extra relativistic degrees
of freedom to the mix, in the form of an unspecified “dark density”. A positive value of the dark density
will contribute to an increased expansion rate, leading to less elapsed time for a given temperature than
in the SBBN scenario. It will not affect the abundances, since the dynamic variables T9, hη and φe only
depends on the time-steps and not the absolute time at where they are analyzed. However, there are
situations where we would want to keep track of the cosmic time. For example, in chapter 3 we plot
the time evolution of the photon temperature for standard and WIMP scenarios, where it is essential to
know the initial time.

The correction is based on the assumption that for high temperatures the expansion rate is inversely
proportional to the time, or H∝ t−1. This is a valid assumption at the high temperatures for our purposes,
knowing that it will not impose uncertainties on the light element abundances. The new initial time is
then given by

tnew = tSBBN
HSBBN

Hnew
, (2.42)

where tSBBN is given by equation 2.28. Note that AlterBBN does not assume H ∝ t−1 when calculating
the expansion rate, since this is not entirely true, and would impose uncertainties on the calculation of
the relic abundances of the light elements. Thus HSBBN is given by the energy densities of photons,
neutrinos, e±-pairs and baryons, while Hnew also includes the dark density. In case that we (also) want
to include WIMPs, there will be an (additional) correction factor for their contribution to the total energy
density at the starting time (see chapter 3).

2.2.3 Extension of the Nuclear Network

In table 2.6 I have listed the full nuclear network of AlterBBN, including the new reactions, (marked by
an asterisk). The change in the element abundances from extending the nuclear network can be seen in
table 2.1, where the results are obtained from SBBN runs. We see that extending the nuclear network
has a very small effect on the abundances. The largest differences are found in the estimates of D and
6Li, but we also note that the uncertainties in these two predictions have increased.

The nuclear network in the original code only consists of reactions on the form 2.2, and is not
generalized to the case of three-body reactions including three different nuclides. Amongst the new
reactions added to the program is

3He + 3H ←→ n + p + 4He , (2.43)

which includes three different nuclides on the right side. The code therefore had to be modified along
the same lines as NUC123 and PArthENoPE to cover this type of reaction as well. All reactions are now
on the form

Ni
AiZi + Nj

A jZ j + Ng
AgZg ←→ Nh

AhZh + Nk
AkZk + Nl

AlZl , (2.44)

and this leads to a simple extension of equation 2.3, which now reads

dYi
dt

=
∑

j,g,h,k,l

Ni
*.
,
−

Y Ni

i Y N j

j Y Ng
g

Ni!Nj !Ng!
Γi jg→hkl +

Y Nh

h
Y Nk

k
Y Nl

l

Nh!Nk !Nl !
Γhkl→i jg

+/
-
. (2.45)
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Org. code Ext. network
Yp ∗ 0.2472 0.2471
∆Yp † - -0.04
δYp ‡ 0.045 0.045

[D/H]p × 105 2.5730 2.5780
∆[D/H]p - 0.19
δ[D/H]p 1.40 1.56

[3He/H]p × 105 1.0240 1.0250
∆[3He/H]p - 0.10
δ[3He/H]p 4.29 3.55

[7Li/H]p × 109 0.4567 0.4546
∆[7Li/H]p - -0.46
δ[7Li/H]p 7.14 5.93

[6Li/H]p × 1014 1.1220 1.1350
∆[6Li/H]p - 1.16
δ[6Li/H]p 87.02 91.19

[7Be/H]p × 109 0.4290 0.4269
∆[7Be/H]p - -0.49
δ[7Be/H]p 7.25 5.93

Table 2.1: The resulting abundances for two different AlterBBN runs. The first run was made with the original code, while the
results from extending the nuclear network from 88 to 100 reactions are shown in the rightmost column. Both runs were made
assuming SBBN, with η10 =6.10, Nν =3.046 and τn =880.3.
* Central abundance value.
† Change in the abundance relative to the run made with the original code, given in percent.
‡ Linearly calculated abundance uncertainty, relative to the central abundance, given in percent.

Extending the program to be able to handle reactions on the form 2.43 involved modifying the function
int linearize found in the routine bbn.c. In appendix A we discuss the relevant theory for making the
extension from four to six nuclides. In table 2.2 I have listed the different reaction types found in the
updated version of AlterBBN, together with the corresponding equations for finding Γi jg→hkl (equation
A.11) and Γhkl→i jg (equation A.12). I have also given the values of the variables CN1, CN2, CN3, CN4,
CN5 and CN6, which are needed in the numerical integration of equation 2.45. This involves building
a matrix equation for the abundance changes, and the relevant steps in solving this matrix equation are
given in [44]. A detailed discussion of this is beyond the scope of this project, but since we need the
values of CN1-CN6 for the new type of reaction, I will briefly explain this step from the numerical
recipe. By comparing equation E.7 in [44] with the method used in PArthENoPE (which is the same
method as the one used in AlterBBN, except that in PArthENoPE the variables are written out in their
full form), we find that

CN1 =
NiY

Ni−1
i Y N j

j Y Ng
g

(Ni + Nj + Ng )Ni!Nj !Ng!
Γi jg→hkl . (2.46)

For CN2 and CN3 we have the same expression, only we switch i with j and i with g respectively.
Likewise, we get

CN4 =
NhY Nh−1

h
Y Nk

k
Y Nl

l

(Nh + Nk + Nl )Nh!Nk !Nl !
Γhkl→i jg , (2.47)

and we similarly switch h with k and h with l to find CN5 and CN6 respectively.
The energy output Q, and the reverse reaction coefficient Crev are calculated externally and put into

the matrix double reacparam, which is defined in the function nucl (and nucl_failsafe). The energy
output from the reaction is simply the difference in excess masses, that is

Q = Nidmi + Njdm j + Ngdmg − Nhdmh − Nkdmk − Nldml , (2.48)
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Type (Ni ,Nj ,Ng ,Nh ,Nk ,Nl )
Γi jg→hkl

f̂i jg

Γhkl→i jg

Crev f̂i jge
−11.605Q6/T9

(CN1,CN2,CN3)
Γi jg→hkl

(CN4,CN5,CN6)
Γhkl→i jg

0 (1,0,0,0,0,1) - - (1,0,0) (0,0,1)

1 (1,1,0,0,0,1) ρb 0.987·1010T3/2
9 (Yj/2,Yi/2,0) (0,0,1)

2 (1,1,0,0,1,1) ρb ρb (Yj/2,Yi/2,0) (0,Yl/2,Yk/2)

3 (1,0,0,0,0,2) - - (1,0,0) (0,0,Yl/2)

4 (1,1,0,0,0,2) ρb ρb (Yj/2,Yi/2,0) (0,0,Yl/2)

5 (2,0,0,0,1,1) ρb ρb (Yi/2,0,0) (0,Yl/2,Yk/2)

6 (3,0,0,0,0,1) ρ2
b

0.974·1020T3
9 (Y 2

i /6,0,0) (0,0,1)

7 (2,1,0,0,0,1) ρ2
b

0.974·1020T3
9 (YjYi/3,Y 2

i /6,0) (0,0,1)

8 (1,1,0,0,1,2) ρb 1.013·10−10T−3/2
9 ρ2

b
(Yj/2,Yi/2,0) (0,Y 2

l
/6,YkYl/3)

9 (1,1,0,0,0,3) ρb 1.013·10−10T−3/2
9 ρ2

b
(Yj/2,Yi/2,0) (0,0,Y 2

l
/6)

10 (2,0,0,0,2,1) ρb 1.013·10−10T−3/2
9 ρ2

b
(Yi/2,0,0) (0,YlYk/3,Y 2

k
/6)

11 (new) (1,1,0,1,1,1) ρb 1.013·10−10T−3/2
9 ρ2

b
(Yj/2,Yi/2,0) (YkYl/3,YhYl/3,YhYk/3)

Table 2.2: First column: The 12 different reaction types in the updated AlterBBN version. Second column: The number
of nuclides involved in each reaction type, according to equation 2.44. Third column: The forward reaction rate used in
equation 2.45, given by equation A.11 (divided by the tabulated reaction rate). Fourth column: The reverse reaction rate used
in equation 2.45, given by equation A.12 (divided by the tabulated (forward) reaction rate, the reverse reaction coefficient and
the exponential in the reverse rate equation, which are all common factors for all reaction types). Fifth column: The three
variables CN1, CN2 and CN3 given by equation 2.46 (divided by the forward reaction rate). Sixth column: The three variables
CN4, CN5 and CN6 given by equation 2.47 (divided by the reverse reaction rate). The reaction p↔ n (type 0) is computed in
a separate function in the routine bbnrate.c, which gives Γ as output. The rest of the weak reaction rates are independent of
temperature and tabulated as constants in the form of Γ. Hence Γ= f̂ and we do not have to use equations A.11 and A.12 for
reactions of types 0 and 3.

where dmi is the excess mass of nuclide i. While computing Crev and Q for the new reactions, I did
a consistency check on the values used in the original code, and realized that they did not entirely
correspond. Doing SBBN runs with both the original and new set of values, varying η in the range
[10−10,10−9], I found a relative difference of up to ∼ 2% for Crev and ∼ 0.2% for Q. There might be
some discrepancies between some of the input parameters in AlterBBN and how they are computed in
PArthENoPE [58]. In PArthENoPE, Crev and Q are calculated inside the program by using equations
A.10 and 2.48. It is difficult to explain a ∼2% difference in the values of Crev simply by round-offs to a
lower precision, thus I suspect that further simplifications of equation A.10 have been made to obtain the
values found in double reacparam in the original AlterBBN code. In table 2.1 I have listed the resulting
element abundances for a parameter-free SBBN run, using both the old and the new set of values for
Crev and Q, only including the original nuclear reaction network. Notice that the change in abundances
going from the old set to the new set reach a maximum of 0.5% which is well within the theoretical
uncertainties on the reaction rates. However, I do not like to impose unnecessary uncertainties where it
could be avoided, so the updated AlterBBN will use equation A.10 for the reverse reaction coefficient
together with my updated values for the energy output.

2.2.4 Updated Nuclear Rates

The task of computing the light element abundances from BBN relies heavily on the nuclear reaction
cross sections. In fact, theoretical uncertainties in the abundance predictions are dominated by uncertain-
ties imposed by the nuclear rates, except for the prediction of the 4He abundance, which is dominated by
uncertainties in the neutron lifetime and Newton’s gravitational constant [59]. In table 2.3 I have listed
the leading nuclear reactions in the predictions of the abundances (left table) and the leading nuclear re-
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actions in the predictions of the uncertainties (right table) [59]. Most of the reaction rates in the original
code regarding these reactions are taken from Serpico et al. 2004 [56], the exceptions being reaction 28
and 29 (Pisanti et al. 2007 [45]).

Reaction number Reaction

1 p←→ n

12 p(n, γ)D

20 D(p, γ)3He

28 D(D,n)3He

29 D(D,p)3H

16 3He(n,p)3H

30 3H (D,n)4He

31 3He(D,p)4He

27 3He(α,γ)7Be

26 3H (α,γ)7Li

17 7Be(n,p)7Li

24 7Li(p,α)4He

Reaction number Reaction

28 D(D,n)3He

29 D(D,p)3H

20 D(p, γ)3He

27 3He(α,γ)7Be

31 3He(D,p)4He

Table 2.3: Left table: The nuclear reactions dominating the predictions of the light element abundances. Right table: The
nuclear reactions dominating the prediction of the uncertainties. The reaction number is the number each reaction is given in
AlterBBN, as presented in table 2.6.

Recent work by Coc et al. 2015 [55] has provided more precise rates for the deuterium destruction
reactions number 20, 28 and 29, which I have added to AlterBBN. The article presents tabulated values
of the reaction rates for temperatures between 0.001 and 10 GK (see table B.3 in appendix B). For
temperatures above 10 GK I set both the reaction rates and the uncertainties to zero, which is a valid
assumption for all rates except the weak reaction(s) that transform p↔ n [60]. At high temperatures
the nuclei disintegrate as soon as they form, that is, they are in nuclear statistical equilibrium. This
means that their abundances do not depend on the reaction rates. Of course, there are small deviations
from nuclear statistical equilibrium already at temperatures ∼ 10 GK . However, since it is difficult to
measure rates at such high temperatures we often rely on extrapolations from lower temperatures, which
may impose large uncertainties on the estimates. The other extreme is that the program may run below
the tabulated temperatures, in which case I have set the rates and uncertainties for reactions number 20,
28 and 29 equal to the values corresponding to the lowest temperatures. However, there is no apparent
reason for running AlterBBN to temperatures below 0.001 GK , since BBN has run its course by then.

New data is also available for reaction rate number 12 through the work of Ando et al. 2004 [52].
This is the reaction that produces deuterium from protons and neutrons and thus a key step in the produc-
tion of the other light elements. Best-fit formulas for the reaction rate and the corresponding uncertainty
are found in appendix B. The authors report a very good agreement between their work and previous
theoretical estimations for energies below 0.1 MeV. However, at E = 0.5 and E = 1.0 MeV they find
significant differences from other theoretical estimations they are comparing with, suggesting better ex-
perimental measurements of the n/p-capture cross sections at these energies before any conclusion can
be made. Therefore I use this rate only for T9<1.5, which correspond to ∼0.13 MeV. This is right before
the deuterium bottleneck is breached, so the new rate will cover the most important stages of BBN. For
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Org. rates Rate 12 Rate 19 Rate 20 Rate 27 Rate 28 Rate 29 All new
Yp ∗ 0.2471 0.2471 0.2471 0.2471 0.2471 0.2471 0.2472 0.2472
∆Yp † - 0.00 0.00 0.00 0.00 0.00 0.04 0.04
δYp ‡ 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

[D/H]p × 105 2.5780 2.5820 2.5780 2.5290 2.5780 2.5500 2.5140 2.4560
∆[D/H]p - 0.16 0.00 -1.90 0.00 -1.09 -2.48 -4.73
δ[D/H]p 1.56 1.55 1.56 1.70 1.56 1.64 1.65 2.31

[3He/H]p × 105 1.0250 1.0250 1.0250 1.0440 1.0250 1.0260 1.0090 1.0330
∆[3He/H]p - 0.00 0.00 1.85 0.00 0.10 -1.56 0.78
δ[3He/H]p 3.55 3.55 3.55 3.63 3.55 3.60 3.56 4.54

[7Li/H]p × 109 0.4546 0.4520 0.4601 0.4712 0.5079 0.4617 0.4576 0.5383
∆[7Li/H]p - -0.57 1.21 3.65 11.73 1.56 0.66 18.41
δ[7Li/H]p 5.93 5.95 5.84 5.95 6.22 5.89 5.88 7.53

[6Li/H]p × 1014 1.1350 1.1360 1.1350 1.1130 1.1350 1.1230 1.1070 1.0810
∆[6Li/H]p - 0.09 0.00 -1.94 0.00 -1.06 -2.47 -4.76
δ[6Li/H]p 91.19 91.20 91.19 91.38 91.19 91.36 91.24 86.57

[7Be/H]p × 109 0.4269 0.4243 0.4322 0.4437 0.4784 0.4342 0.4305 0.5095
∆[7Be/H]p - -0.61 1.24 3.94 12.06 1.71 0.84 19.35
δ[7Be/H]p 5.93 5.94 5.84 5.96 6.26 5.89 5.89 7.76

Table 2.4: The change in abundances (central values) from updating the reaction rates. Second column: Reference run, same
as last run in table 2.1. Third-eight column: Adding each of the new nuclear rates separately. Ninth column: The effect of
including all six updated nuclear rates. All runs were made with the SBBN parameters η10 =6.10, Nν =3.046 and τn =880.3.
Note that the reference run in the second column is not the original code, but the one with extended nuclear network from the
last column in table 2.1. Thus the value in the second row for each “element box” must not be confused with being the overall
change relative to the original code. The overall changes are found in table 2.5.
* Central abundance value. For Yp this is relative to the total baryon abundance, while the rest is given relative to the hydrogen
abundance.
† Change in the abundance relative to the reference run in column two, given in percent.
‡ Linearly calculated abundance uncertainty, relative to the central abundance, given in percent.

Yp [D/H]p [3He/H]p [7Li/H]p [6Li/H]p [7Be/H]p
0.00 -4.55 0.88 17.88 -3.65 18.77

Table 2.5: The overall relative changes in the prediction of the primordial abundances for all the updates made to AlterBBN
regarding the nuclear network and the reaction rates.

higher temperatures I follow the suggestion from Serpico et al. 2004 [56] 3 and use the reaction rate
from Smith et al. [61].

Finally, I have updated the rates of the 7Be production/destruction reactions 3He(α,γ)7Be [54] (num-
ber 27) and 7Be(n,α)4He [53] (number 19). The authors of both papers have provided best-fit formulas
which are used here, and can be found in appendix B. However, the uncertainties for reaction number
19 are evaluated for specific temperatures, restated in table B.1, and extended to a continuous set of
temperature ranges in the code. This reaction is not listed in table 2.6, since it is not among the most im-
portant reactions for the predictions of the abundances and the uncertainties. However, although it is not
important for the predictions of deuterium and helium, it will have a non-trivial effect on the prediction
of primordial 7Li. The lithium problem can not be explained solely in terms of a “nuclear solution” (see
chapter 1.2), but more accurate nuclear reaction rates may shorten the gap between the observed and

3 This is where the previous rate for the reaction was taken from, also valid only for T9< 1.5.
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the predicted abundance. The 7Be(n,α)4He reaction is amongst the key sources of 7Be destruction [53],
which highly affects the post-BBN 7Li abundance (chapter 1.2). The original AlterBBN-adopted rate of
this reaction is from Wagoner 1969 [43]. Work done by Hou et al. 2015 [53] suggests that Wagoner
overestimates the rate by a factor of ten, and is only to be considered as an upper limit. Experimental
results regarding the rate and uncertainty of this reaction are listed in table B.1 in appendix B, together
with the best-fit parametric formula used in calculating the reaction rate. As concluded in ref. [53], the
new rate is more accurate but worsens the lithium problem by 1.2%.

The effect on the relic abundances from including the new reactions is seen in table 2.4. Be aware
that the column marked “Org. rates” is not a run made with the original code, but with the extended
nuclear network, seen in the last column in table 2.1. The overall changes in the predictions of the
primordial abundances are listed in table 2.5.

2.2.5 The Initial Electron-Positron Entropy Density

From equation 2.4 we see that we need to know the entropy density of the e±-pairs at the starting tem-
perature in order to estimate the initial value of hη . In the original code the e±-pairs are assumed to be
highly relativistic at the onset of the calculations, thus the ratio of their entropy density to the photon en-
tropy density is se±/sγ =7/4. For very high starting temperatures this is a very good assumption indeed.
However, since it is recommended to start the iterations at around neutrino decoupling (see discussion
in section 2.3), a natural starting point is for temperatures in the range T9, i ∼ 20−30. At 2.0 MeV the
entropy ratio is reduced to 6.95/4 [23] since the e±-pairs have started to become non-relativistic. In the
right panel in figure 2.1 the deuterium yield is plotted for different starting temperatures, assuming an
instantaneous neutrino decoupling temperature of 2.3 MeV. The blue solid line in the main window is the
yield results from using the corrected entropy density, while the results from using the ultra-relativistic
assumption is shown as the dashed orange line. The light blue lines on each side of the corrected yields
shows the uncertainty in the predictions, while the horizontal band correspond to the observational con-
straints. There is a ∼ 0.7% increase in the deuterium abundance for T9, i = 27, while the difference is
slightly larger using lower starting temperatures.

The correction of the initial e± entropy density is calculated using the full expressions for their en-
ergy density (equation 2.17) and pressure (equation 2.18). These equations need the electron degeneracy
parameter φe as input, which again is dependent on hη , so we have come to a full circle. However, look-
ing at the left panel in figure 2.1 we see that φe is vanishingly small at the high starting temperatures,
and we can safely set this to zero.

2.3 Iteration Parameters: General Remarks And Recommended Values

The general consensus is that Big Bang Nucleosynthesis happens between ∼ 1 MeV and ∼ 70 keV,
which are the temperatures of a more or less fully freeze-out of the weak interactions and the end of
the deuterium bottleneck respectively. The weak freeze-out is not an abrupt process, and as mentioned
in chapter 1.1.6, the freeze-out process starts already at temperatures ∼ 2−3 MeV. Enqvist et al. [62]
recommend using Tνd =2.3 MeV for the decoupling temperature when assuming instantaneous neutrino
decoupling. Starting the iteration at the time of neutrino decoupling simplifies some of the physics im-
plemented in the program, so I have decided to use T9, i =27 as the initial temperature for the calculations
in this project. In chapter 3 we will discuss the results of Nollett & Steigman [48] [25] in the light of
the implementation of light WIMPs in AlterBBN, and their calculations are based on an instantaneous
neutrino decoupling temperature of Tνd =2.0 MeV. Although the effect is very small, we see in the right
panel of figure 2.1 that the resulting deuterium abundance is somewhat sensitive to the starting temper-
ature. For unknown reasons the uncertainty seems to fluctuate a bit for differing initial temperatures,
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Figure 2.1: Left panel: The electron degeneracy parameter φe = me/T9 plotted against the temperature, with the colored
vertical bands corresponding to the times of weak n/p freeze-out and deuterium burning (effective BBN) respectively. Right
panel: The deuterium yield, plotted for different initial temperatures, assuming instantaneous neutrino decoupling at Tνd =27
(∼2.3 MeV) and SBBN. The blue solid line in the upper window is the yield from using the corrected e± entropy density, while
the dashed orange line is for the assumption of highly relativistic e±-pairs. The lighter blue lines show the uncertainty in the
predictions, which is also plotted in the bottom window. The horizontal band is the observed constraint on the primordial
deuterium abundance.

tending towards lower uncertainties for lower starting temperatures. This is shown in the bottom win-
dow in the right panel of the figure. At around 15 MeV the electrons and positrons start annihilating,
and one should avoid starting any later than this, as it would underestimate the expansion rate.

There are good reasons not to start the integration process even earlier, aside from the obvious fact
that the computational time goes down, and that not much of importance happens when all the BBN-
relevant particles are still in thermodynamic equilibrium. Starting at e.g. T9, i ∼100 the muons may still
be semi-relativistic (mµ = 105.7 MeV) and not fully annihilated. This introduces extra relativistic de-
grees of freedom and a potential error when employing entropy conservation in finding the initial value
of hη (equation 2.4). At the time of weak freeze-out, the mouns have become fully non-relativistic, and
we don’t have to take them into account. In the scenario of including light WIMPs it is necessary to
deal explicitly with neutrino decoupling, and it is therefore convenient to start the iterations right after
neutrino decoupling. Also in the standard scenario it is a useful assumption, since it simplifies the set
of equations governing the iteration. Knowing this is crucial in the case where the user would want to
start the iterations at a higher temperature. Not only is η found by conservation of entropy at the time
of neutrino decoupling, but the expression for the neutrino energy density is based on the assumption
that Tν ∝ a−1, which is strictly true only after the neutrinos have decoupled. In the case of a neutrino
coupled WIMP, however, it was necessary to promote Tν to a dynamic variable, similar to T9, since the
annihilation of the WIMP will heat the neutrinos relative to the photons. The necessary changes in this
case are discussed in chapter 3.

The initial temperature may be changed by the user through the .ini input-file, but I have found no
reason to include this option for the final temperature. I have set this to T9, f = 0.01, which corresponds
to ∼ 1 keV. By this time the BBN has ended in earnest, and the light element abundances have frozen
out (except from the decay of 3H and 7Be into 3He and 7Li respectively).

In the main function nucl a set of iteration parameters that controls the adaptive step-size for the
Runge-Kutta driver are defined. Each time-step is determined by the requirement that the abundances
and temperature do not change too much, and the controlling parameters are
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• CY - the maximum change in the abundances, (dY/dt)max ;

• CT - the maximum change in the temperature, (dT/dt)max ;

• DT0 - initial time-step;

• NITMAX - maximum number of recorded iterations;

• INC - maximum number of increments before recording.

It is important to have a set of parameters which ensures that the iteration process runs all the way from
the initial to the final temperature, otherwise the iteration may stop before the BBN has ended. As a
default, the original program uses the values CY = 0.1, CT = 0.01, DT0 = 10−4, N IT M AX = 1000
and I NC = 50 for the calculation of the abundances. However, for the uncertainty estimation the de-
fault values are CY = 0.5, CT = 0.1, DT0 = 10−2, and N IT M AX = 10, keeping INC unaltered. If the
uncertainties computed in the default scenario do not satisfy some specified conditions, the function
nucl_failsafe “kicks” in. This function is a copy of the function nucl, except that the iteration parameters
are adjusted to the values they have for the abundance calculation. In my view, the conditions for acti-
vating nucl_failsafe is too conservative if one is interested in getting a good estimate of the uncertainties.
Comparing runs where the default iteration parameters are used, with runs where the uncertainties are
analyzed with the same time-steps as for the abundance calculation, the resulting uncertainties may dif-
fer by several percent. For this reason, when the uncertainties are of interest, I will use the same set of
iteration parameters for both the abundance and uncertainty calculation. This way, we ensure that they
are analyzed at the same points. When only the abundances are of interest, the default values may just
as well be used to shorten the computation time.

2.4 Discussion

With the updates and changes of AlterBBN there have been a significant decrease in the predicted deu-
terium abundance. In the original code this was estimated to [D/H]p = 2.573±0.036 · 10−5 assuming
SBBN, while the updated AlterBBN have seen this drop by ∼ 4.5% to 2.456±0.057 · 10−5, still just
within the suggested observational constraint of 2.55±0.03 · 10−5. We also note that the lithium problem
is worsened, with a major increase in both the relic 7Li and 7Be yields. The 4He abundance was not
affected at all, still being Yp = 0.2472±0.0001, which is within the suggested observational constraint
of 0.2449±0.004. Except for 4He and 6Li there have been an overall increase in the uncertainties, with
the uncertainty in the deuterium prediction now being 2.3%, mainly arriving from the extended nuclear
network and the rates for the reactions D(p, γ)3He, D(D,n)3He and D(D,p)3H from Coc et al. [55].
It is evident that accurate nuclear rates are essential for predicting the light element abundances, as we
have seen significant impacts on the predictions and the uncertainties only by updating six of the reaction
rates.

Since the initial value of several of the parameters needed in the iteration relies on entropy con-
version at the time of neutrino decoupling, it is recommended to start the iterations here. In relaxing
the assumption of ultra-relativistic e±-pairs at the corresponding temperatures, we found an increase by
∼0.7% in the resulting deuterium yield, with a minor dependence on the initial temperature.
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nb ref reaction

1 [61] n ↔ p

2 [63] 3H → e− + ν + 3He
3 [64] 8Li → e− + ν + 24He
4 [65] 12B → e− + ν + 12C
5 [66] 14C → e− + ν + 14N
6 [64] 8B → e+ + ν + 24He
7 [65] 11C → e+ + ν + 11B
8 [65] 12N → e+ + ν + 12C
9 [66] 13N → e+ + ν + 13C
10 [66] 14O → e+ + ν + 14N
11 [66] 15O → e+ + ν + 15N

12† [52] H + n → γ + 2H
13 [43] 2H + n → γ + 3H
14 [43] 3He + n → γ + 4He
15 [67] 6Li + n → γ + 7Li
16 [56] 3He + n → p + 3H
17 [56] 7Be + n → p + 7Li
18 [68] 6Li + n → α + 3H
19† [53] 7Be + n → α + 4He
20† [55] 2H + p→ γ + 3He
21 [68] 3H + p→ γ + 4He
22 [69] 6Li + p→ γ + 7Be
23 [56] 6Li + p→ α + 3He
24 [56] 7Li + p→ α + 4He
25 [69] 2H + α → γ + 6Li
26 [56] 3H + α → γ + 7Li
27† [56] 3He + α → γ + 7Be
28† [55] 2H + D → p + 3He
29† [55] 2H + D → n + 3H
30 [56] 3H + D → n + 4He
31 [56] 3He + D → p + 4He
32 [69] 3He + 3He → 2 p + 4He
33 [56] 7Li + D → n + α + 4He
34 [68] 7Be + D → p + α + 4He

nb ref reaction

35∗ [70] 3He + 3H → γ + 6Li
36∗ [67] 6Li + D → n + 7Be
37∗ [67] 6Li + D → p + 7Li
38∗ [68] 3He + 3H → D + 4He
39∗ [68] 3H + 3H → 2 n + 4He
40∗ [68] 3He + 3H → n + p + 4He
41∗ [71] 7Li + 3H → n + 9Be
42∗ [56] 7Be + 3H → p + 9Be
43∗ [56] 7Li + 3He → p + 9Be
44 [43] 7Li + n → γ + 8Li
45 [43] 10B + n → γ + 11B
46 [67] 11B + n → γ + 12B
47 [68] 11C + n → p + 11B
48 [69] 10B + n → α + 7Li
49 [69] 7Be + p→ γ + 8B
50 [68] 9Be + p→ γ + 10B
51 [69] 10B + p→ γ + 11C
52 [69] 11B + p→ γ + 12C
53 [68] 11C + p→ γ + 12N
54 [43] 12B + p→ n + 12C
55 [69] 9Be + p→ α + 6Li
56 [69] 10B + p→ α + 7Be
57 [43] 12B + p→ α + 9Be
58 [68] 6Li + α → γ + 10B
59 [69] 7Li + α → γ + 11B
60 [69] 7Be + α → γ + 11C
61 [43] 8B + α → p + 11C
62 [67] 8Li + α → n + 11B
63 [68] 9Be + α → n + 12C
64 [44] 9Be + D → n + 10B
65 [44] 10B + D → p + 11B
66 [44] 11B + D → n + 12C
67 [68] 4He + α + n → γ + 9Be

68 [68] 4He + 2 α → γ + 12C

nb ref reaction

69 [44] 8Li + p→ n + α + 4He
70 [44] 8B + n → p + α + 4He
71 [68] 9Be + p→ D + α + 4He
72 [68] 11B + p→ 2 α + 4Be
73 [43] 11C + n → 2 α + 4He
74 [43] 12C + n → γ + 13C
75 [43] 13C + n → γ + 14C
76 [43] 14N + n → γ + 15N
77 [69] 13N + n → p + 13C
78 [68] 14N + n → p + 14C
79 [69] 15O + n → p + 15N
80 [68] 15O + n → α + 12C
81 [69] 12C + p→ γ + 13N
82 [69] 13C + p→ γ + 14N
83 [68] 14C + p→ γ + 15N
84 [68] 13N + p→ γ + 14O
85 [68] 14N + p→ γ + 15O
86 [68] 15N + p→ γ + 16O
87 [69] 15N + p→ α + 12C
88 [68] 12C + α → γ + 16O
89 [43] 10B + α → p + 13C
90 [68] 11B + α → p + 14C
91 [69] 11C + α → p + 14N
92 [68] 12N + α → p + 15O
93 [68] 13N + α → p + 16O
94 [68] 10B + α → n + 13N
95 [68] 11B + α → n + 14N
96 [43] 12B + α → n + 15N
97 [69] 13C + α → n + 16O
98∗ [72] 11B + D → p + 12B
99∗ [72] 12C + D → p + 13C

100∗ [72] 13C + D → p + 14C

Table 2.6: The updated nuclear network of AlterBBN.
∗New reaction.

†Updated reaction rate.
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Chapter 3

New Physics

The observational evidence for dark matter is overwhelming. It suggests that ∼26% of the total energy
content of the universe, or ∼84% of its total mass-energy is in the form of non-luminous matter. The flat
rotation curves in spiral galaxies, gravitational lensing effects and X-ray observations of galaxy clusters,
to mention a few, indicate that galaxies and galaxy clusters consist of more mass than the eye can see
(visit e.g. [73] or [74] for a nice review of the current observational evidence).

We group dark matter into “hot”, “warm” and “cold” candidates, depending on their relativistic
nature at the time of dark matter decoupling. As they freeze out, particle/anti-particle pairs annihilate,
heating the remaining plasma in the process. Hot dark matter are particles with the same mass scale as
neutrinos (� keV), being relativistic at the time they decouple. Due to this property they are not likely
to influence the ratio of neutrino-to-photon temperature as no entropy is released to the neutrino or
photon fluids. However, they will affect BBN through the contribution to the relativistic energy density
and thus the expansion rate of the early universe. Because of their relativistic nature, it is difficult to
explain structure formation solely in terms of hot dark matter candidates. They will tend to erase density
fluctuations on small scales, while contributing positively to large scale fluctuations. This leads to a
very slow, “top-down” structure formation process, where large galaxy clusters are formed late in the
history of the universe, before smaller structures, and this is not how we observe the history of the
universe through the CMB [75]. Although there is some debate about whether hot dark matter may
have been produced non-thermally (not in thermal equilibrium with the standard model particles in the
early universe) may explain the observed hierarchical structure formation (see e.g. [76]) in agreement
with CMB measurements, most models suggest cold dark matter candidate(s), or possibly a combined
scenario where the majority of the dark matter is cold, with a minor hot/warm contribution (see e.g.
[75] and [77]). The cold dark matter consist of particles of hundreds of MeV or heavier that are non-
relativistic and thus not influencing the expansion rate at the times relevant for BBN. Their large mass
also means that they freeze-out well before neutrino decoupling, leading to an unaltered neutrino to
photon temperature ratio (since neutrinos are in equilibrium with the photons). The presence of cold
dark matter therefore have no significant impact on the relic light element abundances. Warm dark
matter provide candidates in the mass-interval between hot and cold dark matter, and may, or may not
influence BBN, depending on their relativistic nature as they decouple from the primordial plasma. An
example of such a candidate is the earlier introduced sterile neutrinos, which is to be further discussed
in this chapter. Candidates that decouple and become non-relativistic (freeze out) in the time between
neutrino decoupling and the end of BBN will both affect the expansion rate and the neutrino-to-photon
temperature. Such candidates will leave their imprint on the light element abundances, and are therefore
of particular interest in BBN analysis.
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3.1 Dark Matter Candidates

Several dark matter candidates have been proposed as possible explanations for the missing matter (see
e.g. [78] for a short review of the most popular candidates). One of those involves MACHOs, or MAssive
Compact Halo Objects, suggesting a baryonic fix to the dark matter problem. This is a categorization
of all astrophysical objects that may be hidden from our view, like black holes, brown dwarfs and neu-
tron stars. However, observations of gravitational microlensing (the changing brightness of a distant
object due to the interference of a nearby object) caused by possible MACHOs in the Milky Way halo
has revealed that such objects can only account for a very small percentage of the non-luminous mass
in our galaxy (e.g. [79] and [80]). Baryonic solutions to the problem are in general ruled out, since
the baryonic matter density emerging from both BBN simulations and CMB measurements is not high
enough to explain the growth of the presently observed structures in the universe (e.g. galaxies, clusters,
filaments), given the smooth initial conditions observed in the CMB. Instead CMB measurements tell us
that the total mass density is about five times that of the baryonic mass density [81], suggesting that we
ought to look somewhere else for the missing matter.

The standard model neutrinos was long considered a promising dark matter candidate due to their
expectedly non-zero masses. However, experiments have shown that, although at least two of the stan-
dard model neutrinos must have a non-zero mass [13] [14], the upper limit on the masses are not enough
to explain all the missing matter [82], rather just a few percent (Ων�ΩDM). One possibility is that the
left-handed/right-handed standard model neutrinos/anti-neutrinos have yet undetected right-handed/left-
handed counterparts. The fact that neutrinos have only been observed (within the margin of error from
the uncertainty principle) with left-handed helicity, which means that the spin is anti-parallel to the mo-
menta, is unexpected from a particle physics’ point of view. All other fermions are known to have both
left- and right-handed components so it is a big puzzle that the standard model neutrinos apparently
possess this property. If left-handed neutrinos actually do exist, and they interact through the weak force
they would have to be very heavy, beyond the scope of today’s detection methods. If not, they should
have been detected by now.

Sterile neutrinos are hypothetical particles postulated in 1994 by Dodelson and Widrow [83], that
do not take part in the weak interactions but only interact gravitationally with the standard model parti-
cles. The term usually refers to neutrinos with right-handed helicity, and is therefore linked to the above
discussion. Since they are not charged under the weak interaction they may be very light and still be
beyond direct detection. They are generally considered to be quite heavy (few keV) compared to the
standard model neutrinos and may thus contribute to the BBN as equivalent neutrinos. If so, they could
be a significant contributor to the total dark matter density.

Supersymmetry (see e.g. [84] for an introduction on the topic) is a theory that has emerged from
particle physics, which imposes a supersymmetric partner for each of the standard model particles, with
a spin that differs by one half. This means that there is a fermionic equivalent for each boson, and vice
versa. For this theory to be correct there must be a spontaneous symmetry breaking at some high-energy
scale, which in general terms means that a physical system in a symmetric state is transformed to an
asymmetric state. The reason for this is that in an “unbroken” supersymmetric theory, the supersymmet-
ric partners would have the same mass and internal quantum numbers (except spin) as their equivalents.
However, if they had the same mass, they should be discovered by now. The popular description is that
the supersymmetric particles have masses that exceeds the present detection methods, and consequently
the energy scale of the symmetry breaking must be high. Spontaneously broken supersymmetry may
solve many mysteries in particle physics, including the potential of explaining the mass of the Higgs
boson and the hierarchy problem, which concerns the problem of explaining why the elementary parti-
cles have the masses they do. Actually, the 126 GeV mass of the Higgs boson discovered in 2012 [10]
is very difficult to explain solely in terms of the standard model, which suggest a much higher mass.
Supersymmetry may be able to naturally explain this mass (see [85] for a review of the Higgs mass in
the light of supersymmetry), e.g. by using the Minimal Supersymmetric Standard Model [84] (see [86]
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for a calculation of the Higgs mass in the light of this supersymmetric model), provided that the mass of
the lightest supersymmetric particle lies in the ∼ TeV range. This is within the range of today’s particle
accelerator energies which is problematic, since it means that the particle should have been discovered.
Nonetheless, the present most favored dark matter candidate, emerging as the lightest supersymmetric
particle from many models, is the neutralino, which is a mixture of several supersymmetric particles.
The lightest supersymmetric particle is usually stable and electrically neutral and is expected to interact
with the standard model particles only gravitationally and through the weak force, which is just what we
require from a dark matter candidate.

Weakly Interacting Massive Particles (WIMPs) is an generalization of dark matter candidates that
interacts very weakly with the standard model particles. The term originally arrives from supersymme-
try, implying GeV-TeV particles. If the WIMP is assumed to be a thermal relic, an upper mass bound of
∼ 340 TeV can be set, using partial wave-unitarity [87]. Attempts on finding a lower bound have been
made (e.g. [88] [89]) which suggest that WIMPs must have masses above ∼ GeV. However, this bound
may be avoided if the WIMP is kept in thermal equilibrium with, for instance, a light mediator [90]. In
this project we will look into the case of a thermally produced light WIMP, in the mass-range 0.01−100
MeV, that is coupled to a) neutrinos, or b) photons and e±-pairs (electromagnetically coupled).

3.2 Including light WIMPs in AlterBBN

The presence of a light WIMP may affect the production of the light elements, provided that it is light
enough to contribute to the relativistic degrees of freedom at the time around BBN. A WIMP that annihi-
lates after neutrino decoupling will leave its signature on Neff , through an altered late-time ratio between
the neutrino and photon temperatures. Annihilation prior to neutrino decoupling will heat the neutrinos
and photons equally much, and will further be non-relativistic during BBN. WIMPs heavier than ∼ 20
MeV will have this property, and their negligible impact on the expansion rate will leave the primordial
abundances unaltered. The annihilation of a WIMP after the end of BBN will affect Neff and the produc-
tion of the light elements through its relativistic nature during BBN. However, the impact on the relic
abundances is the same for a WIMP that annihilates around the end of BBN (mχ ∼ 0.01 MeV) and a
WIMP that annihilates much later. This means that for the purposes of its impact on the light element
production, the relevant WIMP masses lies in the range ∼ 0.01 −20 MeV. To make sure that the whole
relevant range is covered, I will do as Nollett & Steigman [48] [25] and include WIMP masses between
0.01 and 100 MeV.

The type of WIMP, its mass, and its coupling to the standard model particles are provided by the
user through the .ini-file discussed in chapter 2.2.1. Quantum characteristics like spin, and the coupling
to SM particles determines the type of particle (see e.g. [91] for a detailed analytic discussion of the
generalizations of these characteristics). In this work we restrict our analysis to spin-0 and spin-1/2
particles, but keeping it general so that other categories of WIMPs can be easily added later. This
restriction will cover the following candidates:

• Real Scalars are spin-0 bosons and self-conjugate, meaning they are their own anti-particles. This
implies that the internal degrees of freedom of real scalars are gχ =1.

• Complex Scalars are also spin-0 bosons, but not self-conjugate, leading to gχ =2.

• Majorana Fermions have spin-1/2 and are self-conjugate, thus gχ =2.

• Dirac Fermions are not self-conjugate. Being spin-1/2 fermions the Dirac fermions possess
gχ =4.
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Those are the same candidates as the ones analyzed by Nollett & Steigman in [48] and [25], where
the authors have assumed φχ = 0 throughout their work. In section 3.3.2 I will discuss the effects of
including a non-zero chemical potential for the WIMPs, but before that I will adopt the assumption of
φχ =0.

Only a few changes to the code were necessary to include the effects of light WIMPs. The WIMP
energy density ρχ contributes to the total density of the universe and thus have to be included in the
Friedmann equation (1.6), which determines the expansion rate of the universe. Depending on the
nature of the WIMP (fermion or boson), the energy density is given by the Fermi-Dirac or Bose-Einstein
distribution in equation 1.16 [48], with mass mχ and internal degrees of freedom gχ . Similarly, equation
1.17 is used to find the WIMP pressure Pχ , needed to compute the entropy of the WIMP. The WIMP
pressure and energy density integrals are approximated according to the method used for the electrons
and positrons, using the seven first terms of the well-established and accurate Bessel function expansion
(see chapter 2.1.1 and appendix C). We will allow for a non-zero chemical potential for the light WIMPs,
so that the expressions for the energy density and pressure of particles that are not self-conjugate, like
complex scalars and Dirac fermions thus becomes

ρχ = Agχ (mχc2)4
∞∑
n=1

(−1)β (n+1) cosh(nφχ )M (nzχ ) (3.1)

Pχ
c2 = Agχ (mχc2)4

∞∑
n=1

(−1)β (n+1)

nzχ
cosh(nφχ )L(nzχ ) , (3.2)

where β=0 for bosons and 1 for fermions, zχ =mχc2/kBT9, where T9 is the photon/neutrino temperature
if the WIMPs are electromagnetically/neutrino coupled, and A = 11753.913 for mχc2 given in MeV to
have the two expressions presented in units of g cm−3. In the case that the particle is self-conjugate,
like real scalars and Majorana fermions, the hyperbolic cosine factor cosh(nφχ ) must be replaced with
an exponential factor enφχ . For WIMPs like complex scalars and Dirac fermions we must count both
particles and anti-particles, which have chemical potentials with opposite signs, leading to the hyperbolic
cosine and an extra factor of 2, which is baked into the definition of gχ . Self-conjugate WIMPs, on the
other hand, are their own anti-particles, and we have only one contribution to the total energy density
and pressure.

One of the effects of the additional entropy carried by the WIMPs comes in through equation 2.6.
We see that it will depend not only on ρχ+Pχ , but also on the derivative of the WIMP energy density
with respect to the temperature. The derivation of dρχ/dT9 is found in appendix C, and is given by

dρχ
dT9

= Agχ (mχc2)4 1
T9

∞∑
n=1

(−1)β (n+1)n
[
zχ cosh(nφχ )N (nzχ ) − φχ sinh(nφχ )M (nzχ )

]
, (3.3)

where we again must replace both the hyperbolic sine and cosine with an exponential for self-conjugate
WIMPs. The other effect comes in through the conversion from the late-time to the initial value of η,
needed to compute the initial value of hη . Adding sχ (Ti ) to the total initial entropy density, equation
2.4 is therefore modified to (see equation 1.36)

hη, i ≈ 33685.519 · η0

(
1 +

se± (Ti ) + sχ (Ti )
sγ (Ti )

)
. (3.4)

In the presence of a light WIMP we must account for an increased expansion rate, influencing the cosmic
time elapsed before we start our iteration. As mentioned in chapter 2.2.2 this was not considered in the
original code, despite the fact that it comes with the option of including extra relativistic degrees of
freedom in the form of an unspecified dark density. This has been taken care of in the new version by
including correction factors for both WIMPs and extra, unspecified dark density.

In chapter 1.1 we encountered the effective number of neutrinos Neff and we saw that equivalent
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neutrinos outside the standard model gives a contribution ∆Nν . Now we will allow for a possible non-
neutrino contribution to Neff in the form of light WIMPs. It is convenient to define Neff through the late
time (Tγ→Tγ0 �me) radiation energy density, normalized to the energy density in photons alone [48]
(see definition 1.43):(

ρ′R
ργ

)
0

= 1 +
7
8


3
(
Tν
Tγ

)4

0
+ ∆Nν

(
Tζ
Tγ

)4

0


= 1 +

7
8

(
Tν
Tγ

)4

0

[
3 + ∆N∗ν

]
. (3.5)

Note that in chapter 1.1 we assumed equivalent neutrinos that decouple at the same time as the standard
model neutrinos. Here we have opened up for the possibility that this may not be the case by introducing
∆N∗ν ≡∆Nν (Tζ/Tν )4

0 ≤∆Nν , where the equivalent neutrino(s) may have a different temperature than the
standard model neutrinos. For sterile neutrinos that decouples with the standard model neutrinos ∆N∗ν
will have integer values (1 for each sterile neutrino), while for bosons that decouple with the standard
model neutrinos it will be an integer multiple of 4/7. In general however, in the case that Tζ ,Tν , ∆N∗ν
need not be an integer or integer multiple of 4/7. For the sake of simplicity we will drop the asterisk
when discussing equivalent neutrinos, so that ∆N∗ν → ∆Nν . Note that the program does not compute
∆N∗ν from an inputed ∆Nν . Rather, the value given as an input by the user of the program is in fact ∆N∗ν .
The effect of Tζ ,Tν must therefore be computed beforehand.

We now assume instantaneous decoupling of the standard model neutrinos and extremely relativistic
electrons/positrons, but later we will relax the latter assumption. We define Neff through(

ρ′R
ργ

)
0
≡ 1 +

7
8

(
4
11

)4/3

Neff . (3.6)

Equating the two expressions for (ρ′R/ργ )0 we find that

Neff = 3


11
4

(
Tν
Tγ

)3

0



4/3 [
1 +
∆N∗ν

3

]
≡ N0

eff

[
1 +
∆N∗ν

3

]
. (3.7)

In the SBBN scenario with no equivalent neutrinos we have Neff = N0
eff

. Relaxing the assumption of
extremely relativistic electrons/positrons yields N0

eff
= 3.018 [23], and further relaxing the assumption

of instantaneous decoupling of the standard neutrinos results in an increase to 3.046 (see discussion of
equation 1.40). However, the latter is true only if we disregard equivalent neutrinos or light WIMPs, and
in general N0

eff
will be a function of the WIMP mass (and its nature and coupling to the standard model

particles), thus Neff = Neff (mχ ,∆Nν ). As argued by Nollett & Steigman in [25], there are no published
detailed calculation of the neutrino phase space distribution that allows for equivalent neutrinos or light
WIMPs, and that we therefore do not know the effect it may have on Neff , but it is assumed to be
negligible. For this reason we keep the assumption of instantaneous decoupling of the standard model
neutrinos whenever we look at light WIMPs or equivalent neutrinos. On the other hand, in the standard
scenario this effect is well documented [92], and whenever there are no WIMPs included we will use a
value of 3.046 for Neff .

In the presence of a light WIMP χ, Neff depends on the nature of the WIMP (fermion or boson), its
coupling to the standard model particles and its mass mχ . Similar to the works of Nollett & Steigman
[48] [25], I will in the following consider light WIMPs that annihilate to photons and electrons/positrons
(electromagnetically coupled) or standard model neutrinos (neutrino coupled). As argued in chapter
2.3 I will assume that the neutrinos decouple instantaneously at 2.3 MeV, corresponding to a photon
temperature of T9≈27, which is chosen as the initial temperature in the AlterBBN analysis.

3.2.1 Electromagnetically coupled light WIMPs

In this scenario we assume that the light WIMPs couple to photons and e±-pairs. Right after neutrino
decoupling the contributors to the total entropy content are photons, e±-pairs and the light WIMPs. At
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late-times (but before the end of radiation domination), after the e±-pairs have annihilated and the light
WIMPs have become non-relativistic, the only contributors are the photons. By entropy conservation
(equation 1.30) we know that

a3
d stot(Tνd ) = a3

0stot(Tγ0) , (3.8)

where Tγ0 and a0 are the late-time temperature and scale factor respectively, and ad is the scale factor
at the time of neutrino decoupling. Since the standard model neutrinos decouple at Tνd , their late-time
temperature is given solely in terms of the universal expansion (redshifted according to Tν ∝ a−1). This
means that adTνd = a0Tν0, and we can write(

Tν0

Tνd

)3

=
sγ (Tγ0)

sγ (Tνd ) + se± (Tνd ) + sχ (Tνd )
=

T3
γ0/T

3
νd

1 +
se± (Tνd )
sγ (Tνd ) +

sχ (Tνd )
sγ (Tνd )

. (3.9)

Using the expression for relativistic entropy (equation 1.28), we can relate the entropy density between
photons (gγ =2) and relativistic e±-pairs (ge± =4), and between photons and light WIMPs, finding that

srel
e±

(Tνd )

sγ (Tνd )
=

7
4

and
srel
χ (Tνd )

sγ (Tνd )
=
αgχ

2
. (3.10)

The factor αgχ is given by equation 1.29, thus α = 1 for bosons and 7/8 for fermions. Note that the
entropy density of each particle specie going in to the equations above is the total entropy density of the
specie, so it is essential to count both particles and anti-particles. For the light WIMPs, this is implicit
in the definition of gχ . We then use the definition φχd ≡ sχ (Tνd )/srel

χ (Tνd ), and the equivalent for
electrons/positrons, φed , which means that we normalize the entropy density of the particle specie to the
entropy density it would have if it was to be ultra-relativistic. Thus we can write equation 3.9 as(

Tν
Tγ

)3

0
=

2
2 + 7

2φed + g̃χφχd
, (3.11)

where we have defined g̃χ ≡ αgχ± , which in our four cases becomes g̃χ = (1, 2, 7/4, 7/2) for (real,
complex, Majorana, Dirac). At Tνd =2 MeV we have φed =0.993 [23], thus we can finally write

N0
eff = 3



11
4

(
Tν
Tγ

)3

0



4/3

= 3
[

11
10.95 + 2g̃χφχd

]4/3

. (3.12)

Setting φχd = 0, which means no lights WIMPs are included, we notice that we retain our SBBN value
of N0

eff
=3.018.

We observe that N0
eff

is effectively a function of the WIMP mass, mχ , since φχd is a function of
sχ (Tνd ), which again is a function of ρχ (mχ ) and Pχ (mχ ). In figure 3.1, N0

eff
(mχ ) is plotted for WIMP

masses in the range 0.1 to 100 MeV for both electromagnetically (EM) and neutrino coupled WIMPs,
while in figure 3.2 Neff (mχ ) is plotted in the same mass range for a Majorana fermion only and with
three different values of ∆Nν . The horizontal gray strips are the 1σ and 2σ confidence limits from the
CMB respectively (see table 1.1). For the EM coupled WIMPs we notice a lower limit on the WIMP
mass for ∆Nν = 0 at ∼ 5 − 10 MeV, depending on the nature of the WIMP. Allowing for equivalent
neutrinos we see that this lower limit is shifted towards lower WIMP masses but imposes an upper limit
if we add enough equivalent neutrinos. For the case of neutrino coupled WIMPs we see that the lower
limits on the WIMP mass is ∼ 2 MeV lower than in the EM coupled WIMP scenario, and that in this
case the combination with equivalent neutrinos is less favored than in the EM coupled case. I refer to
the Nollett & Steigman papers [48] and [25] for a more extensive discussion of these plots.

3.2.2 Neutrino coupled light WIMPs

For WIMPs that annihilate to neutrinos there are two possibilities: 1) The WIMP may heat the standard
model neutrinos but not any equivalent neutrinos or 2) it may heat both. The usual assumption is that the
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equivalent neutrinos are very weakly coupled to the standard model neutrinos and thereby the neutrino
coupled WIMPs. This is likely the situation in the case of sterile neutrinos, which by definition do
not take part in the weak interactions. The difference between the two cases is so small anyway, that
e.g. in the case of 0 ≤ ∆Nν ≤ 1 it is invisible on the scale of figure 3.2 [25], and we see from this
figure that larger values of ∆Nν are disfavored. In this work I will make the same assumption, so unless
stated otherwise, whenever I talk about neutrino coupled WIMPs I refer to the case where the WIMPs
are coupled only to the standard model neutrinos. However, the nature of hidden neutrino species, if
they exist, are by definition not known. Therefore it would not make much sense just to include the
case of WIMPs that couple solely to the standard model neutrinos. Both cases are thus implemented in
AlterBBN, and discussed in this section.

We start with the situation that the WIMPs heat only the standard model neutrinos. The annihilation
of the WIMPs will affect the late-time Tν/Tγ-ratio (neutrinos are heated relative to the photons). In
this case the neutrino temperature post decoupling is not simply given by Tν ∝ a−1 anymore. Instead
we need to look at the individual entropy conservation for WIMPs+neutrinos (sνχ) and photons+e±

(sγe±). The procedure of finding Neff based on entropy conversion was given in the discussion of the
electromagnetically coupled WIMPs. Here, we just state the results, which for WIMPs that only couple
to standard model neutrinos is [25] [23]

N0
eff = 3



11
4

(
Tν
Tγ

)3

0



4/3

= 3.018
[
1 +

4g̃χφχd
21

]4/3

. (3.13)

Note that in this case Neff = N0
eff

+3.018(1+∆Nν/3), contrary to the case of electromagnetically coupled
WIMPs, where Neff = N0

eff
(1+∆Nν/3). In the case of WIMPs that heat both the standard model and

equivalent neutrinos the expression becomes [25]:

N0
eff = 3.018

[
1 +

4g̃χφχd
21 + 7∆Nν

]4/3

. (3.14)

Here Neff = N0
eff

(1+∆Nν/3), like in the case of electromagnetically coupled WIMPs.

Since the entropy of the light WIMPs is transferred to the neutrinos during their annihilation process,
the task of computing the neutrino temperature becomes a bit more involved. In the case that the WIMPs
annihilate only to the standard model neutrinos, the temperature of the equivalent neutrinos are found by
their scaling with the baryon density, just as before, and given by equation 2.15. The shared neutrino and
WIMP temperature, on the other hand, is promoted to a dynamic variable, just as the photon temperature.
This means that equation 2.6 is now split into two separate quantities, dr/dT9 and dr/dTν9, which are
individually time-evolved. The former now only includes the photons, e±-pairs and the baryons, while
the WIMPs are incorporated in the latter, together with the neutrinos. The quantity dr/dTν9 requires
that we know the derivative of the neutrino energy density with respect to the neutrino temperature.
This have been implemented as an individual function in the module omega.c, alongside the function
for calculating the neutrino energy density. With the separation of the neutrino and equivalent neutrino
temperatures, these functions becomes dependent on both temperatures.

3.3 Results

We will now discuss the effects from including light WIMPs, first by comparing a selection of plots
with the ones found in the Nollett & Steigman papers concerning electromagnetically coupled [48] and
neutrino coupled [25] WIMPs, assuming a zero chemical potential. Then we will go a step further and
analyze the effects that a non-zero chemical may have on the relic abundances.
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Figure 3.1: N0
eff

, the value of Neff for ∆Nν = 0, as a function of the WIMP mass for WIMPs that annihilate to photons and e±

pairs (lower set of curves) and those that annihilate to the SM neutrinos (upper set of curves). Four different types of WIMPs
have been analyzed, and they are real scalars (solid lines), complex scalars (long dashes), Majorana fermions (short dashes)
and Dirac fermions (dash-dot). The horizontal bands are the 1σ (lighter gray) and 2σ (darker gray) ranges of the Planck
CMB 2015 values [1] of Neff (see table 1.1).
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Figure 3.2: The two panels show Neff as a function of the WIMP mass for an electromagnetically coupled Majorana WIMP
(left panel) and a neutrino coupled Majorana WIMP (right panel), for ∆Nν =0 (solid), 0.5 (long dashed) and 1 (short dashed)
equivalent neutrinos.

3.3.1 Assuming a Zero WIMP Chemical Potential

Since the release of the Nollett & Steigman papers there have been an update on the CMB measured
value of Ωbh2 and the recommended value of the mean neutron lifetime. The updated values (given in
table 1.1), as well as the modified initial temperature for the iterations will impose differences between
the results here and those found in the Nollett & Steigman papers. I have run AlterBBN with the same
settings as these papers and found a very good agreement for all four elements. There are small differ-
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ences, likely due to differing reaction rates1 and the fact that the authors of the papers have implemented
Coulomb, radiative and finite-nucleon-mass corrections to the weak rates. The latter will mainly affect
the amount of neutrons available for BBN and thus the resulting 4He abundance, while the former are
prone to affect all element abundances. Going from the Nollett & Steigman adopted value of η10 =6.026
to the updated value of η10 =6.10 will not influence the 4He abundance much, since this is only logarith-
mically dependent on the baryon-to-photon ratio. However, it will lower the deuterium yield by ∼ 2%
and also affect the resulting 3He and 7Li abundances. The new and higher value of the neutron lifetime
(updated from 880.1±1.1 to 880.3±1.1) will lead to more available neutrons at BBN, resulting in a
higher 4He yield. However, the change is so small that is has a negligible effect on the results.

Comparing figures 3.1 and 3.2 with the corresponding figures found in the Nollett & Steigman
paper discussing neutrino coupled WIMPs [25], we see that they are practically identical. This ensures
us that the expressions for the WIMP energy density and pressure are implemented correctly (trusting
that Nollett & Steigman are right!). The abundance predictions for different WIMP masses using the
updated code may be seen in figures 3.3 (electromagnetically coupled) and 3.4 (neutrino coupled). It is
here assumed that ∆Nν = 0. For both electromagnetically and neutrino coupled WIMPs we see that in
the presence of light WIMPs with masses mχ & 20 MeV the abundance yields are unaltered relative to
the SBBN scenario. Such high mass WIMPs annihilate before or in the earliest stages of neutrino de-
coupling and will not affect the late-time neutrino-to-photon temperature ratio, nor will their high mass
contribute significantly to the radiation density during BBN.

WIMPs with masses in the range me . mχ . 7 MeV will annihilate after or at the end of neutrino
decoupling but before BBN, thus leading to an altered late-time neutrino-to-photon temperature ratio
compared to the case of SBBN. Electromagnetically coupled WIMPs reduce this ratio and lead to a
slower expansion at fixed Tγ . This leaves more time for deuterium and 3He destruction at the end of
BBN, reducing their relic abundances, while one of the main end products of this destruction process,
7Li, naturally increases its abundance. A mχ & 2 MeV WIMP will mostly have annihilated and become
non-relativistic before the time of n/p weak freeze-out. Through the effect of a reduced neutrino-to-
photon temperature ratio the expansion is slower compared to SBBN at fixed Tγ , but also the weak
rates are slower, inhibiting proton conversion to neutrons even before n/p freeze-out. The weak rates
depend on the neutrino temperature, and colder neutrinos will slow down the rates. However, they do
not slow n → p and p → n conversion rates equally [48]. Colder neutrinos actually suppress proton
destruction more than they suppress neutron destruction, leading to less neutrons present than in the
case of a higher neutrino temperature. These effects nearly cancels, but we see that there is a somewhat
lower relic abundance of 4He for WIMP masses in the range 2 . mχ . 20 MeV due to less available
neutrons at BBN. For even lower WIMP masses the direct effect on the relativistic density results in an
increased expansion rate compared to SBBN at fixed Tγ , reducing the time available for neutron decay.
This increase in neutrons available at BBN leads to an increase in the resulting abundance of 4He. If
the WIMP annihilates after BBN has ended it will affect BBN only through its direct contribution to the
relativistic energy, increasing the expansion rate. This will tend to raise the abundances of deuterium
and 3He, while decreasing the 7Li yield. However, since such WIMPs have not yet annihilated, the value
of η will be lower than in the SBBN case, or in the case that the WIMPs annihilate before BBN has
ended. This will have the effect of lowering the abundances of deuterium and 3He, while increasing the
7Li abundance. We see from figure 3.3 that this is the leading effect for WIMP masses mχ .0.1 MeV.

In the case of neutrino coupled WIMPs the effect on the 4He yield is that any WIMP mass (below
the limit of ∼ 20 MeV) will drive the abundance up compared to the case of SBBN (no WIMP). Since
the WIMPs annihilate to neutrinos the neutrino-to-photon temperature ratio will increase, in contrast
to electromagnetically coupled WIMPs. This will speed up the weak rates in addition to contributing
directly to the relativistic energy density. For electromagnetically coupled WIMPs the effect on the
weak rates and the energy density nearly canceled, but here they will add up. The increased expansion
rate relative to SBBN, for fixed Tγ , during BBN will leave less time for deuterium and 3He destruction,

1 I do not know what reaction rates Nollett & Steigman uses, and how large their nuclear network is, but their papers was
publish before some of the reaction rates updated here was made available, so there must be at least a few differences.
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Figure 3.3: Resulting abundances of 4He and D as a function of WIMP mass for electromagnetically coupled WIMPs. The
gray solid and gray dashed lines show the Nollett & Steigman results for Majorana and Dirac respectively. The colored lines
shows the results from an AlterBBN run with η10 =6.026, Neff =3.018, τn =880.1 and no equivalent neutrinos. For the D and
3He abundances the ordering for mχ→ 0 is, from bottom to top: Dirac, complex, Majorana, real. For 4He and 7Li the order
is switched. The colored horizontal bands show the observational limits discussed in chapter 1.2. Note that the observational
limit on 7Li is 1.6 ± 0.3 · 10−10, being outside the plotting range.

leading to higher relic abundances of these two elements. Since 7Be is still being produced at the end of
BBN, a faster expansion will lead to a decrease in its abundance and, conversely, a decrease in the 7Li
abundance. WIMPs that annihilate after BBN will have a reduced effect on the resulting abundances.
If the WIMPs are still present at the end of BBN the effect is a decrease of the speed-up effect, since if
they had already annihilated, the expansion would be faster. This means that the yield curves for mχ→0
tend towards their value for mχ→∞.

We note that in the case that the WIMP is electromagnetically coupled the 7Li yield will increase for
all WIMP types and masses, compared to the SBBN scenario. Since the opposite is true for neutrino
coupled WIMPs, the gap between the observed and predicted primordial abundance of the element is
reduced. The effect is biggest for a 0.2 . mχ . 4 MeV Dirac WIMP, in which case the 7Li yield is
reduced by ∼ 25%. However, this is still 2.5 times the observed value, thus BBN in the presence of a
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Figure 3.4: Resulting abundances of 4He and D as a function of WIMP mass for neutrino coupled WIMPs. The colored lines
shows the results from an AlterBBN run with η10 = 6.026, Neff = 3.018, τn = 880.1, and no equivalent neutrinos. For the 4He,
D and 3He abundances the ordering for mχ→ 0 is, from top to bottom: Dirac, complex, Majorana, real. For 7Li the order is
switched. The colored horizontal bands show the observational limits discussed in chapter 1.2. Note that the observational
limit on 7Li is 1.6 ± 0.3 · 10−10, being outside the plotting range.

light WIMP does not seem to be able to fix the lithium problem.

The effect that a light WIMP has on the expansion rate is fully understood from figure 3.5, where the
time elapsed since the big bang singularity is plotted against the photon temperature for electromagnet-
ically coupled (left panel) and neutrino coupled (right panel) Majorana WIMPs with different masses.
This is very nearly the same as plotting the inverse of the expansion rate. The time is normalized to the
time elapsed in the SBBN scenario (no WIMP), thus a ratio of unity indicates the same evolution as in
SBBN. Similarly, a ratio greater or lower than unity indicates a slower or faster evolution respectively.
Here we have assumed ∆Nν = 0 as well. We see that a light WIMP will contribute directly to the ex-
pansion rate while it is still relativistic, and that this leads to a faster evolution than in the SBBN case.
After the WIMP has annihilated to photons and e±-pairs (left panel), the ratio of the neutrino-to-photon
temperature decreases, which leads to a slower evolution than in the SBBN scenario. We see that as the
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Figure 3.5: Time elapsed since the Big Bang singularity for electromagnetically coupled (left panel) and neutrino coupled
(right panel) Majorana WIMPs with with masses between 0.01−10 MeV, normalized to the time elapsed in the SBBN scenario,
for the photon temperatures relevant for BBN. We have here set ∆Nν = 0. The colored vertical bands correspond to the
approximate temperature intervals for deuterium burning and weak n/p freeze-out respectively. A time ratio higher than unity
indicates a slower expansion than in the SBBN scenario, while the opposite is true for a lower ratio.

WIMP mass increases, its effect on the time evolution becomes smaller and smaller. A WIMP heavier
than ∼ 20 MeV will mostly annihilate before neutrino decoupling, not affecting the neutrino-to-photon
temperature at late times. Although there is still a small effect from the contribution to the total relativis-
tic energy density for WIMPs with masses around 20 MeV, this effect is diluted for even heavier WIMPs
because of their non-relativistic nature at the times of interest. The results of Nollett & Steigman for
electromagnetically coupled WIMPs with masses mχ =0.01 and 0.1 are shown as gray solid and dashed
lines respectively. They are hard to distinguish from the AlterBBN results, so we may conclude that the
agreement is good.

In the case that the WIMPs are coupled to the neutrinos the expansion will always be faster than in
the SBBN scenario, since they will increase the neutrino-to-photon temperature ratio by annihilation,
as well as contribute directly to an increased energy density. If the WIMPs annihilate after BBN the
effect on the expansion rate through an increased neutrino-to-photon temperature ratio is delayed and
the expansion is slower compared to the slightly heavier WIMPs that annihilate before or during BBN.

The results of including light WIMPs are well summarized by combining figures 3.1 and 3.2 with
figure 3.6. The latter shows the joint 4He vs D yields plotted for a Majorana WIMP with masses between
0.01 and 100 MeV, and for three different values of ∆Nν (0, 0.5 and 1). The blue solid line shows the
yields in the mχ → ∞ limit, and the left side of this line corresponds to electromagnetically coupled
WIMPs, with masses decreasing towards the upper left corner. The continuation of the yield lines over
to the right side of the blue solid line marks the mχ→∞ limit for neutrino coupled WIMPs, with masses
decreasing towards the mχ → 0 limit as they again touch the blue line. Also shown are the yields for
electromagnetically coupled WIMPs with the same mass as the electron, as well as joint 1σ and 2σ
joint confidence intervals for the observed 4He and deuterium abundances. The combined confidence
intervals are found by finding the points (x,y) that satisfies(

x
σx

)2

+

(
y

σy

)2

= s , (3.15)

where s is given by the confidence level. Looking up tables of χ2 distribution we find that for 2 degrees
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Figure 3.6: The joint Yp and D yields for WIMP masses in the range 0.01 to 100 MeV, for Nν = 0,0.5 and 1.0, assuming a
Majorana fermion. Starting from mχ→0 in the top left corner we move along the yield lines for electromagnetically coupled
WIMPs, until the mχ→∞ limit is reached as they touch the blue solid line. Continuing on the other side of that line, we move
from the mχ→∞ limit for neutrino coupled WIMPs, until they again touch the blue solid line, at a higher value of Yp , in the
mχ → 0 limit. Also included are the yields found by varying Nν , setting the WIMP mass equal to the electron mass (green
dashed line), and the best fit mass for an electromagnetically coupled WIMP (mχ = 8 MeV) found by Nollett & Steigman (red
dashed-dotted line). The shaded gray ellipses correspond to the joint Yp and D observed confidence intervals (1σ and 2σ).

of freedom:
P(s < 6.18) = 1 − 0.317 = 0.683 (1σ) (3.16)

and
P(s < 2.296) = 1 − 0.045 = 0.955 (2σ) . (3.17)

Thus the width and height of the ellipse is 2σx
√

s and 2σy
√

s respectively, where s = 6.18 for 1σ and
s = 2.296 for 2σ. For σx and σy I have used the uncertainty in the observed deuterium (0.03) and 4He
(0.004) abundances respectively (see chapter 1.2).

The figure is to be compared with figure 13 in the paper of Nollett & Steigman concerning neutrino
coupled WIMPs [25]. The yield lines are shifted a bit to the left compared to their work because of
the higher value of η used to produce figure 3.6, as well as the effect from updating the reaction rates.
Another important difference from their work is the updated observational constraints on D and 4He,
and in particular the constraint on 4He, which is significantly lower compared to their work.

Summing up the conclusions from their work, they find that an electromagnetically coupled light
WIMP slightly favors mχ ∼ 8 MeV for a Majorana type WIMP (also marked in figure 3.6, with a
red dashed line), with small variations depending on the type of WIMP. However, the mχ →∞ limit,
equivalent to no light WIMP, still remains a good fit. A sufficiently light WIMP (mχ ≈5−10 MeV) that is
electromagnetically coupled favors ∆Nν >0 and allows one fermionic sterile neutrino (∆Nν =1), but not
two. Neutrino coupled WIMPs, on the other hand, allows ∆Nν = 0, but disfavors ∆Nν & 0.5. Excluding
unphysical, negative values of ∆Nν the best fit for a neutrino coupled WIMP is mχ ≥ 35 MeV, which
is equivalent to no WIMP at all. Only in the case that the light WIMP is a real scalar, mχ �me is not
strongly ruled out.

We see that the updated results have significantly altered the best fits in the Nollett & Steigman
discussion. They now favor much smaller WIMP masses, both in the electromagnetically and neutrino
coupled case. This has made a neutrino coupled WIMP more prone to affect the primordial abundances,
and an electromagnetically coupled WIMP in combination with ∆ν = 0 is now even further disfavored.
Monte-Carlo parameter estimations have not been conducted in this project, and is necessary for making
any further conclusions regarding best fit WIMP masses and the connections to different values of ∆Nν .

57



0.01 0.1 1 10 100
mχ (MeV )

2

3

4

5

6

7
N

ef
f

EM coupled

ν coupled

∆Nν = 0.0

φχ = 0.0

φχ = 0.1

φχ = 0.3

φχ = 0.5

0.01 0.1 1 10 100
mχ (MeV )

2

3

4

5

6

7

N
ef

f

EM coupled

ν coupled

∆Nν = 1.0

φχ = 0.0

φχ = 0.1

φχ = 0.3

φχ = 0.5

Figure 3.7: The effective number of neutrinos in the presence of a complex scalar with different values for a constant chemical
potential. The left panel shows the results for ∆Nν = 0, while in the right panel we have added one equivalent neutrino. The
colored horizontal bands correspond to the observational 1σ and 2σ constraints on Ne f f , where the values from table 1.1
have been used.

For now we note that the updated results seem to tend towards a better fit for neutrino coupled WIMPs,
and in general a stronger disfavoring of ∆Nν >1.

The differences between a Majorana fermion and a complex scalar is too small to be noticeable on
the scale of figure 3.6, as we might have expected from figures 3.1, 3.3 and 3.4. Since Majorana particles
are self-conjugate I find it more interesting to consider complex scalars or Dirac fermions when we in
the following will discuss the effects of including a non-zero chemical potential for the WIMPs.

3.3.2 Adding a WIMP Chemical Potential

The canonical textbook assumption of a negligible WIMP chemical potential is here investigated through
the effect that a relaxation of this assumption may have on the production of the light elements during
BBN, as well as its impact on the late-time ratio between the neutrino and photon temperature, quantified
through Neff . Dark matter candidates are generally assumed to possess zero charge, or else they would
interact electromagnetically with photons today and be easier detectable. Thus, a non-zero chemical
potential in the dark sector is not necessary linked to any asymmetry between particles and anti-particles
(see chapter 1.1.5). For particles that are not self-conjugate however, a chemical potential may point
to an asymmetry, contrary to self-conjugate particles which, from the property of being their own anti-
particles, by definition can not have any asymmetry. For this reason the most interesting cases are that
of a Dirac fermion and a complex scalar.

In chapter 2.1.1 we saw that we are able to derive two expressions for the total number density of
electrons and positrons; one through their distribution function (equation 2.23), dependent on φe; and
one through the assumption of universal charge conservation (equation 2.24), dependent on the baryon
density. This enables us to time-evolve the electron degeneracy parameter, an evolution that in the case of
SBBN is seen in figure 2.1. For dark matter however, we are unable to make such an assumption without
prior knowledge of the annihilation cross-section of the dark matter particle. This might be interesting
to look into in the future, by allowing for specific dark matter particles. Looking at at the left panel of
figure 2.1 we see that the electron degeneracy parameter φe ≡ µe/T is constant as long as the electrons
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Figure 3.8: The resulting abundances in the presence of an electromagnetically coupled complex scalar with different values
for a constant chemical potential, assuming ∆Nν =0. The colored horizontal bands correspond to the observational constraint
on the abundances, as discussed in chapter 1.2.

are in thermal (and thus chemical) equilibrium with the rest of the plasma. However, as they start to
become non-relativistic and annihilate, φe evolves quite drastically. After all the positrons are gone, the
chemical potential loses its meaning since it is a result of the asymmetry in the electron/positron number
densities. The constant value as the electrons have become fully non-relativistic is due to a numerical cut-
off, preventing the equations 2.17 and 2.18 from suffering from overflow. If there is a WIMP chemical
potential and this stems from an asymmetry in the particle/anti-particle number densities, there will be
a similar evolution in the WIMP degeneracy parameter as the particles annihilate. However, allowing
for a changing WIMP chemical potential was out of the scope of this project, so we restrict ourselves to
constant values here.

We notice from figure 3.7 that a chemical potential will have the effect of increasing the effective
number of neutrinos if the WIMP is neutrino coupled, resulting from the fact that the energy density
of the WIMP increases compared to the case where its chemical potential is zero. Since the WIMP is
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Figure 3.9: The resulting abundances in the presence of a neutrino coupled complex scalar with different values of a constant
chemical potential, assuming ∆Nν = 0. The colored horizontal bands correspond to the observational constraint on the
abundances, as discussed in chapter 1.2.

coupled to the neutrinos but not the photons and e±-pairs, the neutrino neutrino-to-photon temperature
will be higher, leading to an increase in Neff . For an electromagnetically coupled WIMP the effect is
that the photon temperature will increase compared to that of the neutrinos and Neff will consequently
decrease.

No equivalent neutrinos
The effect on the resulting light element abundances of D, 4He, 3He and 7Li, assuming ∆Nν = 0, is
illustrated in figures 3.8 (electromagnetically coupled) and 3.9 (neutrino coupled). For an electromag-
netically coupled WIMP with a non-zero chemical potential the tendency is that for all WIMP masses
that may affect the resulting abundances, the abundances are driven further away from their observa-
tional constraints than in the case of φχ = 0. We see that some masses are still allowed for relatively
high chemical potentials when considering the 4He and 3He abundances alone. However, considering
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the deuterium abundance, any positive value for the chemical potential is less favored than φχ = 0 for
any WIMP mass. For a neutrino coupled WIMP we see that a chemical potential corresponding to
φχ &0.4 is consistent with the observed deuterium abundance for a small range of WIMP masses, where
the allowed mass-range increases with increasing φχ . Looking at the effect on the 4He abundance how-
ever, we see that although an increasing chemical potential pushes its value towards the observational
constraint for mχ . 1 MeV, the shift is not enough to make it compatible with the observations. It is
however, interesting to see that with an increasing chemical potential, we are able to obtain a deuterium
yield compatible with the observations for very light WIMPs (mχ .1 MeV).

The observational constraint on the 3He yield is so conservative that any of the values analyzed are
within the bounds for a neutrino coupled WIMP. Looking at both the resulting 3He and 7Li abundances
we recognize the same tendency as in the D yield; a chemical potential corresponding to φχ ≈ 0.5 for
small WIMP masses is equivalent to the mχ→∞ limit.

Allowing for Equivalent Neutrinos
In figure 3.10 the combined D and 4He yields are plotted for a complex scalar with the same mass-range
as in figures 3.8 and 3.9, for ∆Nν =0 (solid lines) and ∆Nν =1.0 (dashed lines). The results are shown for
φχ = 0, 0.3 and 0.5. The blue solid straight line illustrates the mχ→∞ limit, and is not to be confused
with the φχ = 0.5, ∆Nν = 0 line. Also included is the mχ = me line for electromagnetically coupled
WIMPs, in addition to the mχ = me yield for a φχ = 0.5, ∆Nν = 0 neutrino coupled WIMP, illustrated
with a black dot. The fact that this coincides with the mχ →∞ limit for ∆Nν = 1 WIMPs is a mere
coincidence.
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Figure 3.10: The combined [D/H]p and Yp yields for three different constant degeneracy parameters (φχ = 0.0, 0.3 and 0.5)
for a complex scalar. The solid yield lines correspond to ∆Nν = 0, while the dashed ones correspond to ∆Nν = 1. The blue
solid straight line illustrates the mχ→∞ limit and the green dashed line shows the yields for an electromagnetically coupled
WIMP with mχ =me and varying ∆Nν and φχ . Also, the mχ =me yield is shown as a black dot for a neutrino coupled WIMP
for ∆Nν = 0 and φχ = 0.5. The gray-shaded ellipses correspond to the joint [D/H]p and Yp 1σ and 2σ confidence intervals
respectively.

We observe that the mχ→0 limit for the neutrino coupled WIMPs extend beyond the mχ→∞ line
as the chemical potential is increased to significant values. As suspected from the individual constraints
analyzed in figure 3.9, small WIMP masses (mχ <me) are still not strongly favored, although the fit has
become better. It is very interesting to note, however, that by using the Nollett & Steigman observational
bound on the 4He yield, small WIMP masses now fall inside the 2σ constraint also for a complex scalar
and a Majorana fermion, provided that ∆Nν = 0 and the chemical potential is high enough (φχ ≈ 0.5).
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This is in contrast to the Nollett & Steigman results, where a mχ <35 MeV neutrino coupled WIMP was
strongly ruled out, except for a small allowance for a mχ�me real scalar.

Without doing any parameter estimations we may still conclude that adding a chemical potential to
electromagnetically coupled WIMPs will not provide any better fit than the φχ =0 case. In the neutrino
coupled case however, we see an increased favoring of small WIMP masses with an increasing chemical
potential. Using the Nollett & Steigman-adopted bounds on the 4He yield this makes an interesting case
in combination with the shift in the D values due to the update of η and the reaction rates, since small
neutrino coupled WIMP masses now become more favored.
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Chapter 4

A New Measurement of the Primordial
Deuterium Abundance

In chapter 1.2 we learned that due to its high sensitivity to the total baryon density and its rather simple
post-BBN evolution, the deuterium abundance is of particular interest when probing the early universe.
There we also briefly discussed the general approach of measuring the primordial abundance of the el-
ement. Light emitted from distant quasars may be absorbed in intervening gas clouds before it reaches
our telescopes, and gives us information about the elemental composition of the absorption system. We
are particularly interested in Damped Lyman α absorbers (DLAs) since the absorption in such systems
are high enough to be detected but still low enough to provide distinctive absorption features.

Parallel with the updating of AlterBBN I have conducted an analysis of the absorption system to-
wards the quasar Q1009+2956 (also known as J101155+294141) at redshift z = 2.407, with the aim
of measuring its deuterium content. Due to a complex structure of absorption lines, contaminated by
a number of blends from other systems, it has proven difficult to arrive at a satisfactory model for the
system. In particular, absorption features from a system at redshift z = 2.429 is found to blend with
the spectra from the system at z = 2.407, resulting in problems of identifying the redshift and dynamic
broadening of the absorption lines. The efforts have resulted in the development of a computer code,
written in PYTHON, that improves the plotting environment of the software used to fit the absorption
lines. This combines the spectra and model fits for different observations, removing possible contami-
nations to the data and re-binning all spectra to the observation with the highest resolution. The different
data is weighted by their errors, resulting in a better representation of the real structure of the system
analyzed. In this chapter I will discuss this add-on to the absorption line software used, and the present
status of the analysis of the absorption system at z =2.407.

4.1 Computational Tools

4.1.1 ALIS

The absorption systems are modeled by a Voigt profile for each of a number of discrete absorbers. The
software used is ALIS [2], a PYTHON program developed by R. Cooke, which uses a modified ver-
sion of the MPFIT package [93]. MPFIT employs a Levenberg-Marquardt least-squares minimization
algorithm to derive the model parameters that best fit the data (i.e. the parameters that minimize the
difference between the data and the model, weighted by the error in the data). ALIS has the advan-
tage of being able to fit an arbitrary emission profile for the quasar whilst simultaneously fitting to the
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absorption from the Damped Lyman-α system (DLA). Any uncertainty in the continuum is therefore au-
tomatically folded into the final uncertainty in the D/H ratio. The model parameters to be fitted for each
velocity component are the redshift (z), the column density (log(N ) with N in cm−2), and the dynamic
line broadening b (in km s−1). The dynamic broadening is a combination of turbulent motion in the gas
an thermal broadening of the lines, given by

b2 = 2σ2 = b2
turb + 2kBT/m , (4.1)

where σ is the Gaussian velocity dispersion of the gas, T its temperature, and m is the mass of the atomic
species. For all the transitions, the atomic data compiled by Morton 2003 [94] is used.

4.1.2 A New Program for Stacking the Data

The plotting environment in ALIS does not have the functionality of stacking data from different ob-
servations, rather each transition of each observation is plotted individually. The individual data may
contain bad data (e.g. bad pixels) or suffer from loss of data or other contaminations, and this may e.g.
mimic structure where there is none. Such data usually come with large errors, and is consequently
given a small weight in the minimization process of ALIS. However, for the program to work properly,
it is essential to make good initial guesses of the line structure, and although bad data do not influence
the χ2 much it is still evident on the individual plots. For illustration purposes it is therefore convenient
to combine all the observational data and fitting models of each transition into one composite spectrum.
This helps us to get a better picture of the real structure of the absorption features, as well as reducing
the number of plots.

For this reason I have written an external PYTHON code for the purpose. The code does not interact
with ALIS, other than collecting the final model fit results as well as the observational data going into
the fitting process. Using the Barak environment [95] for PYTHON, both the observational data and the
model fits are stacked (including the continuum and the zero level), wighted by their error, and presented
as seen in the right panel of figure 4.1. The wavelengths are represented as velocity offsets relative to
the main absorption line (in km s−1), and the plots of the metal and Lyman transitions separately share
the same x-axis, for an easier comparison of the structure. The stacked fitting model is plotted over the
stacked data points, with the residuals (the difference between the model and the data) and the error in
the observational data alone also included. The size of the residual bar is normalized to the mean size of
the residuals and is therefore an indicator of how good the fit for the specific transition is. The error bar
(at the bottom of the plots) is included as a hint to where in the fitting interval the main focus should be
directed to arrive at a good fit. Small errors combined with large residuals will lead to a large χ2, while
large errors combined with the same residuals will not be as important in the calculation of χ2. Thus,
in the case that the residuals are quite small, the χ2 may still be significantly affected if the error in the
data is also very small.

All absorption lines are named according to the name they are given in the ALIS input file. For each
transition, the user of ALIS must provide a unique ID corresponding to each of the observations covering
that transition. The external stacking program demands that the correct transition name is part of this ID
to be able to combine the relevant observations for that transition, but the atomic mass may be omitted
(a minimum is e.g. SiII1193). The remaining part of this ID is written in the top right corner of the
plots, and should therefore provide information about the specific observation (e.g. the full ID should be
something like vltSiII1193). This way, the plots provide information on which observations that go into
the stacking.

The stacking program also provide plots of the individual observations, since it is often informative
to analyze these as well. The design is the same as for the stacked plots, but I have changed the color of
the residual bar to be able to distinguish them from each other.

In figure 4.1 I have shown as an example the Al II 1670 transition in the z =2.407 system. In the left
panel all three observations that have been used in fitting the absorption lines in this transition are plotted
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Figure 4.1: Example illustration of how the stacking program works, using the Al II 1670 transition in the z = 2.407 system
analyzed in this chapter. Left panel: Individual plots of the three observations that go into the fitting of the transition structure.
Right panel: Plot of the composite spectrum and model fit. The stacked model is the blue line plotted over the stacked data.
The very dim dashed gray lines correspond to the flux-values 0.0 and 1.0, while the zero-level and continuum are plotted as
dashed green and blue lines respectively. The error in the observational data is plotted at the bottom (also stacked), while the
residuals are the red lines plotted over the khaki-colored box above the spectrum. The size of the box is normalized to the mean
of the residuals. At the very top we find the line IDs for the metal lines, representing each of the absorption lines used in the
fitting, plotted as turquoise dash-dotted lines. Hydrogen (1H) lines are represented by orange dashed lines and deuterium lines
(2H) by blue dash-dotted lines, but neither are found in this example plot. The IDs of the observations that go into the fitting
of the transition are printed in the top right corner, while the name of the transition itself is found in the left top corner. The
vertical axis shows the normalized flux, and the horizontal axis represents the velocity offset relative to the central redshift,
given in km s−1.

individually. As we see the three observations have different resolutions. In the stacking program the
data from the observations with the smallest resolution are re-binned on the highest resolution data set
(here kcksar). In this case the kcksar observation has the smallest error of the three and is consequently
given the largest weight in the χ2 minimization process of ALIS, as well as in the stacking. Thus the
stacked plot to the right resembles this the most. In the kckste and vlt observations we observe that there
are some irregularities. The most prominent ones are found at ∼−70 km s−1 (between lines d and f in
kckste) and at ∼ −40 km s−1 (two irregularities between lines f and g in vlt). The latter two may lead
us to think that there is an absorption line (left irregularity) and the total lack of one (right irregularity)
respectively, when in fact the other kcksar and kckste observations point to the opposite. By stacking the
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three plots, the two KECK observations are given a much larger weight and we see that in the stacked
plot the irregularities in the vlt observation are completely washed away. This program makes a pow-
erful tool in detecting the true structure in an absorption system, and is handy for illustration purposes.
However, there is a limitation to it that I have not yet been able to reconcile.

If an observation that goes into the analysis is missing data for some wavelength ranges, the stacking
process results in the combined error being very large (since the error in the missing data points is set
to be very large). This results in the combined residuals for these data points being essentially zero,
regardless of the residual vale for the remaining observations. The stacking program allows for a cut-off

of the interval for the individual observations, removing the wavelengths in question from the stacking
process. However, the interval must still be continuous, so the cut-off have to include all wavelengths
to the left or right of the reduced interval. For example, two observations have a continuous set of data
points in the interval [4100,4105], and a third set of data is included that are missing data in the interval
[4100,4102]. Then this third set may be included with a reduced interval [4102,4105]. However, if the
missing data is e.g. in the range [4102,4103], then the stacking program is not able to stack only the
observations which have data in that range. Of course, ALIS have no problem handling this eventuality,
since all observations are fit individually. However, it is worth noting that this is a limitation of the
stacking program.

4.2 Observational Data

The observations that have been used are listed in table 4.1. They include two observations from the
archives of the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory1, as well as
one observation from the archives of Ultraviolet and Visual Echelle Spectrograph (UVES) at VLT2.
The spectra have been normalized to the quasar emission continuum (KECK: [96], VLT: [97]), and
it is assumed that the continuum shape does not change abruptly over small ranges compared to the
absorption lines. Originally, a fourth set of newly released data (Tytler) from the Keck HIRES instrument
was included. However, it did not seem to be fully normalized, and the main absorption feature for all
the included Lyman transitions and all but three of the metal transitions was contaminated by several
discontinuities. For the VLT observation there exist no data on the Lyman series, thus all Lyman fits are
made using only the Sargent and Steidel data. The VLT data has been treated as in Riemer-Sørensen et
al. 2015 [32].

We cut off an interval corresponding to a velocity offset of ∼±200 km/s for the metals and ∼±400

Date Primary Instrument Settings ∗ Resolving Observation
investigator power time [ks]

2005-04-30 Sargent Keck HIRES 0.861′′, 3101/5980 Å 47700 4x3.0
2005-05-31 Steidel Keck HIRES 1.148′′, 3101/5983 Å 71600 4x1.8
2007-06-05 Murphy VLT UVES 1.000′′, 4159/6210 Å 45000 3.0

Table 4.1: Observational data used in the model fitting.
∗ Slit width and blue/red wavelength limit.

km/s for the Lyman transitions to simplify the fitting process. The specific intervals varies a bit for each
transition, to make sure that we include everything that may affect the model fitting. Ideally we would
want the interval to extend to the unabsorbed continuum on both sides of the interval, but we see that
this is difficult to achieve for some of the transitions. To account for any uncertainty in the emission

1 http://www2.keck.hawaii.edu/koa/public/koa.php
2 http://archive.eso.org/cms.html
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continuum modeling3 I have added a flat continuum to the Voigt profile model around all absorption
lines. In the case that the unabsorbed continuum is available on both sides of the interval we allow for
a slope on the continuum (C II 1334, Al II 1670, Ly β, Ly δ), otherwise we keep the slope fixed at zero.
Due to different settings for the different observations the spectra might be shifted relative to each other.
We allow for this possibility by adding the shift as a free parameter to each of the observations.

4.2.1 Lyman Series

Figure 4.2: The first eight transitions in the Lyman series for the absorption system. The hydrogen line of the main absorber
at z = 2.407 is shown as a red solid line, while the red dashed line shows the corresponding deuterium line. The Sargent have
been is used for this illustration.

I have chosen to include the first eight Lyman transitions in the analysis, plotted in figure 4.2 using
the Sargent data. In this figure the central hydrogen line is illustrated by a solid red line, while the
corresponding deuterium line, offset by 82.9 km s−1, is shown as a dashed red line. For the rest of the

3 This is a process done by the publishers of the data
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series, there is not enough information in the spectra to arrive at a good fit.

4.2.2 Metal Transitions

Figure 4.3: The most promising metal transitions for the absorption system. The red solid line shows the location of the main
absorber at z = 2.407, label as line a (labels are marked only in the top plot). The asymmetry of the main absorption feature
suggests that there are more than one absorber present. Two other absorption features, clearly showing the presence of at least
two lines in each, are found at z∼2.4058 (c) and z∼2.4074 (k) and illustrated by a blue and orange dashed line respectively.
The Sargent data have been used for this illustration.

In figure 4.3 I have plotted the most promising metal transitions using the data from the Sargent
observation. We see that apart from the central absorption feature around the central line at z = 2.407
there are two more features that can be identified in all transitions, one at z∼2.4058 and one at z∼2.4074
(although they are present in Si II 1304 the absorption is so low that the features are barely distinguishable
from the continuum). The central absorption feature is illustrated by a solid red line and labeled as line
a, the feature to the left is illustrated by a dashed blue line and labeled as line c, and the feature to the
right is illustrated by a dashed orange line and labeled as line k. The asymmetry of the three features
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also tells us that they are made up by at least two absorbers each.

4.3 Analysis

The ultimate goal of the fitting process is to determine the correct column density of 1H and 2H for all
absorption lines that are part of the system we examine, which requires precise estimates of the redshift
and dynamic broadening of the lines as well. Looking at figure 4.2 we see that with this many lines
present it is impossible to accurately determine these parameters only by analyzing the Lyman absorption
features. The column densities of 1H and 2H are generally much higher than the column densities of the
different metals, thus the real structure is easier to observe in the metal absorption features. For this
reason we want to include as many metal transitions as possible.

4.3.1 Fitting the Metals

In Si II 1193, C II 1036 and Si II 1260 there are some additional structure to the immediate left and
right of lines c and k respectively, which suggest that they might be contaminated by at least one blend.
Also the two III-transitions at the bottom of figure 4.3 are clearly submission to several blends. For
C II 1036 the flux reaches approximately continuum to the immediate right of line k before showing
a Lyman-like behavior for higher wavelengths. The wavelengths here do not coincide with any of the
Lyman-transitions for the system at z = 2.407, nor the system detected at z = 2.429, suggesting that
another system may be blending in with our data. Cutting the fitting interval at the point where the
flux reaches approximately continuum to the right of line k gives a good fit for this absorption feature,
combined with the other metal transitions. However, for the features around lines c and a we need to
include one blend in each, in addition to a blend to the left of c to make it compatible with the other
metal transitions. Looking at the behavior of the flux for this transition, it obviously do not reach the
continuum before wavelengths much shorter than the feature around line c, so it does indeed seem likely
that this transition is contaminated with a continuous set of blends.

For the transition Si II 1193 it seems that the central absorption feature is unaffected by any blends,
and that the problem is confined to the features around c and k. Including two blends to the left and right
of these features seem to reconcile the problem, without affecting the absorption features too much.
For the transition Si II 1260 however, the whole fitting interval seem to be affected by blends, which is
evident from looking at the area between a and k. The blending does not lower the flux by much, but
lead to a constant reduction over the whole interval, masking the information needed to fit the transition.
Attempts to include this transition led to a much poorer fit of the area around the central absorption line
(a) in the other transitions, suggesting that the redshift and dynamic broadening of the blend is not well
determined. Consequently, this transition was left out of the analysis. The same constant lowering of the
flux is evident at the left wing for the transition Si III 1206. However, fitting this problematic area with
two blends gave good agreement with C II 1334, C II 1036 Si II 1193 and Al II 1670 without affecting
the metal structure around the c line. C III 977 have a very complex blend structure as well. Trying to fit
this it was evident that at least one blend is present around line c, and the whole structure is so saturated
that it is difficult to nail down its position. This large saturation also leads to a uncertain determination
of the other lines. In the attempt to fit this transition it became clear that the extra structure around
3326.5 Å, as well as the blend to the immediate left of line c, resembles metal lines. This suggests that
absorption from another system is blending in with C III 977, since these lines are not evident in any
other transition.

We note that the continuum is reached on each side of the cut-off interval for all the Si IV and C
IV-transitions. However, fitting these transitions alone, I found that the two Si IV-transitions (Si IV 1393
and Si IV 1402) were not compatible with each other. The feature around k shows a much larger column
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density for Si IV 1402 than for Si IV 1393, which cannot be explained without imposing blending, since
they are of the same ion and should have similar column densities. An identical problem was apparent
also in the central absorption feature. Note the short energy gap between the two Si IV-transitions.
By coincidence, this corresponds to a velocity offset from z = 2.407 that coincides with the system at
z =2.429, with the consequence that the absorption from Si IV 1393 in the latter and the absorption of Si
IV 1402 in the former is observed at almost the exact same wavelengths (see figures 4.3 and 4.10). The
extra absorption of Si IV 1402 in z = 2.407 is actually due to absorption of Si IV 1393 in z = 2.429, and
information of the real structure of Si IV 1402 is lost.

Combining Si IV 1393 with the two C IV-transitions also led to a considerably poorer fit than using
C IV 1548 and C IV 1550 alone. When including both II -and IV-transitions we need to remember
that the ionization energies for the two ionization levels are very different. This means that depending
on the temperature of the system there might be a considerably different amount of absorption for II

-and IV-ions. In table 4.2 I have listed the ionization energies for the levels I, II, III and IV for the
relevant elements in the analysis, and we note that the ionization energies for Si IV and C IV also differ
significantly. Combining C IV 1548 and C IV 1550 with the II-transitions led to a poor fit, and it seems
like the ionization levels contain a rather different structure. The major issue with the C IV-transitions
however, is that the main absorption line (a) seem to have a vanishing column density, i.e. it is too cold
to lead to significant absorption of these transitions. The prospects of adding too much complexity to
the model, and the lack of absorption of the main line led to a removal of all IV-transitions.

Element Atomic mass ∆E1 ∆E2 ∆E3 ∆E4

H 1.01 13.60 - - -
D 2.01 14.51 - - -
C 12.01 11.27 24.39 47.89 64.50
Al 26.98 6.00 18.83 28.45 119.99
Si 28.09 8.16 16.34 33.49 45.14

Table 4.2: The ionization energies for the elements relevant for the model fitting. ∆Ei is the ionization energy for the ith
ionization level in units of eV, while the atomic mass is in units of g mol−1.

The masking of Si IV 1402 by the absorption of Si IV 1393 in z = 2.429 was not discovered before
until very recently, and I have not had the time to analyze it further. For the problem of fitting the rest
of the IV-transitions, there is no obvious blending from the z = 2.429 system. However, there have not
been enough time to analyze this system properly. In addition, some other systems with the potential of
blending with z = 2.407 was discovered alongside with the detection of the z = 2.429 system. Suffice to
say, those need to be analyzed properly before an accurate model of z =2.407 may be achieved.

There is not as much absorption for Al II 1670 as for the other II-transitions, but except for one line
in the area between a and k there is still enough information to fit the remaining lines. For Si II 1304
however, the lack of information led to problems in fitting it with the rest of the Si II-transitions, so I had
to leave this out as well.

Starting with the Simplest Transitions
Keeping in mind that there are some important issues to be resolved before an accurate estimate of the
deuterium abundance in z = 2.407 may be found, I continue by presenting the, for now, best model of
the spectra from the system, while highlighting the main problems. It is a generally good idea to start
with the transitions that seem to have the simplest structure, and that are absent of blends. Moreover,
since the different ionization levels may be represented very differently, it is wise to try to determine the
basic structure solely by fitting II-transitions. Later, when this is satisfactory determined, we may add
III- and IV-transitions to see if there are some extra lines, not evident in the II-transitions. Figure 4.4
shows the best fit of the two simplest transitions. The continuum is reached on both sides of the fitting
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interval and there is no sign of any blends in the proximity of the main structure. However, we see that
a considerable amount of lines is needed to reveal the basic structure.
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Figure 4.4: The best fit of the two simplest transitions, both devoid of any blends. They provide a good starting point for further
fitting, since the basic structure is easily determined in the absence of blends.

Investigating the Structure in III- and IV-transitions
Without making any attempts to optimize the fit, I have added the transitions Si III 1206, C III 977, C IV

1548 and C IV 1550 to the basic model, and the result is seen in figure 4.5. The model parameters in
this fit have been fixed, since the purpose is to see how well the structure found in the basic fit applies
to other transitions, as well as search for structure in the III- and IV-transitions that may not be evident
in the II-transitions. Fixed parameters are labeled with capital letters in ALIS and illustrated accordingly
by the external stacking program. Looking at the C IV-transitions we observe that although the central
absorption feature seem to have a good fit, the residuals are very high, caused by the low error in the
data. Adding more lines slightly improved the fit, but it is obvious that they contain some additional
structure, making it difficult to accurately determine the model parameters. The area around the main
absorption line is particularly problematic, which is best fit with a vanishing column density. However,
including an additional line to the right of k did fix this part of the spectrum, and was consistent with the
rest of the transitions, as well as improving the fit in Si III 1206. Although the two C IV was removed,
this additional line was kept in the further analysis.

There are obviously several blends in the C III 977-transition, and the large saturation of the absorp-
tion lines results in large uncertainties in the dynamic broadening. What is interesting though, is that the
structure between ∼−120 and ∼−240 km s−1 is best fit with metal lines. In particular, there is obviously
a line to the left of line b. Trying to fit this transition, while keeping it consistent with the other transi-
tions, b gets an unphysical dynamic broadening (T ≈ 3 ·105 K and bturb > 20 km s−1) without imposing
an extra line here. Moreover, an identical problem was recognized in the Lyman transitions at about the
same redshift, suggesting that there might be structure here that is part of the system. However, there is
a lack of information about this line in the other metal transitions, which causes concern. Looking at the
additional structure to the left of this line, it is not unlikely that it is part of another system that blends in
at this wavelength, and that the problems in the Lyman transitions are also simply due to a random blend.
A more thorough analysis of potential blending systems need to be carried out to be able to determine
the structure of this transition. Consequently, C III 977 was left out of the analysis, and the additional
lines assumed to be metal absorption from another system blending in with the system at z =2.407.
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Figure 4.5: Here we have added two III- and two IV-transitions to search for structure that are not evident in the II-transitions.
The reason for the capital letters in the absorption line labels are due to a fixing of the redshift in this fit. The purpose here is to
spot differences for the ionization levels, thus the all the model parameters (redshift and dynamic broadening) from the basic
model in figure 4.4 have been fixed. No attempt to optimize the fit have been made here, and I have omitted obvious blends in
C III 977.

Fitting the Full Metal Model
As mentioned earlier in this section we had to remove Si II 1260 and Si II 1304 from the fit, the former due
to problematic blends. Combining Si II 1304 with Si II 1193 lead to a poor fit in the central absorption
feature. This may be due to the lack of information for several lines in Si II 1304 (the amount of
absorption is too low). In the worst case there is something wrong with the fit of Si II 1193. However,
this transition lead to a better fit with C II 1334 and Al II 1670 than Si II 1304 do, so I have decided
to discard the latter. The Si II 1526 transition was not compatible with any other lower-ionized metal
transitions. Looking at figure 4.3 there seems to be some additional structure in the same area as the
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Figure 4.6: C II 1036 and Si II 1193 added to the basic model from figure 4.4. The transition Si III 1206 was first included,
helping identifying some extra structure. Due to problems in the absorption feature around the k line and a vanishing column
density for the main absorption line (a) this was later removed, but keeping the extra structure, fixing the line parameters to
the ones fitted here. The lines labeled l and n here was not included in the subsequent fitting, imposing too much degrees of
freedom to the model. The lines might just be blends, since they are not clearly recognized in the other transitions. The form
of the l line suggest that it is indeed a metal line. However, fitting it with the Lyman transitions favored the absence of a line
at this redshift by leading to vanishing 1H and 2H column densities. Note that the labels of blends not identified as part of
the system including the main absorption line is written below the residual box, to better separate the two differing types of
absorption lines. All blend labels for the metal transitions start with the same two letters, blend metal, while the third letter is
unique for each individual line.

lines f and g from the fit in figure 4.4. We mentioned a suspected extra structure here. However, any
attempt to combine Si II 1526 with Si II 1193 and the two basic transitions failed. Consequently, this
transition was also removed.

In figure 4.6 one can see the result from fitting the four II-transitions C II 1334, C II 1036, Si II 1193
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and Al II 1670, in addition to Si III 1206. The latter has a great concordance with the former four in the
central and left absorption features. One additional line was needed around the main absorption line,
which resulted in a better fit for all transitions. Due to the inclusion of this transition we were able to
determine the redshift of lines f and g more accurately. The fact that those have a higher absorption in
Si III 1206 reveals that the temperature in this part of the system is quite high compared to e.g. the main
absorption line a. However, the extra structure around the k line requires two extra lines, in addition to
a line at ∼90 km s−1. We already suspected an extra line to the immediate right of the k-line due to the
apparent asymmetry in this absorption feature, particularly evident in the higher ionization levels. The
line n might well be a blend, since it is not obviously present in any other transition. The presence of
two extra lines in the absorption feature around the k line led to a “over-fitting” of the other transitions,
imposing large uncertainties and unphysical values for one of the four lines (the line this happened for
varied from run to run due to the uncertainties in the dynamic broadening). Moreover, since Si III has
a larger ionization energy than the II-metals, the cold a line was also here fitted to a vanishing column
density after a few runs. In the final model I have therefore removed the Si III 1206-transition, while
keeping the line labeled m in figure 4.6 (relabeled l in the following).

4.3.2 Tying the Parameters

It is essential to try to identify lines that have similar dynamic broadening parameters to get a best
possible picture of the real structure, as well as reducing the number of degrees of freedom in the model.
The lines d, f and g was best fit with a temperature of ∼ 2 ·104 K, and were all tied. However, the bturb
of line d seems to be a bit lower than the other two, and was kept free. The same applied to the lines h, i
and a. The temperatures was best fit to ∼0.8·104 K for all of them, but the bturb of line a was much lower
than the other two, letting it be kept free. Although not very different from d, f and g, line b showed
both a bit higher thermal and turbulent broadening, thus I have not tied it to the other three. The rest of
the lines are consistent with a thermal broadening of ∼1·104 K, however, they show slight differences in
turbulent broadening.

The fact that finding reasonable similarities in the full dynamic broadening proves difficult, may
point to a weakness of the model. We seek to find a simple model as possible that is able to describe
the structure of the system. However, even including only four metal transitions the structure seem to be
much more complex than we are able to describe with our 11 absorption lines.

4.3.3 Adding the Lyman Transitions

In figures 4.7, 4.8 and 4.9 the full, present best model is shown. The Lyman transitions comes with a
series of blends, which combined with the uncertain line structure in the metal transitions have caused
serious problems in determining the real structure of the system. Actual Lyman absorptions that are part
of the system are labeled starting with the same five letters, blend lyman common, ending with a unique
letter for each of the lines. Other blends that are identified in individual transitions might come from
metal or hydrogen absorption in other intervening systems. Those are labeled starting with the letters
blend lyman, followed by a unique letter for the transition in question (a for Lyman α, b for Lyman β

and so on), ending with a unique letter for the individual blend. The common blends blcomd and blcomf
are easily identified. However, the three others are not that easily determined, and it is unclear if there
actually are three blends here or if its due to some extra line structure. We also take note of the problem
at around −140 km s−1, where an additional blend has been included. Fitting the blend with a fixed
zero thermal line broadening, one would expect a bturb around 20 − 25 km s−1. However, it insists on
having a bturb < 10, consistent with a metal absorption in the system. Moreover, looking at the Lyman β

fit, it is clear that something is missing in the area where a corresponding deuterium line would fall. A
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Figure 4.7: All metal transitions part of the present best model.

potential metal line was indeed discovered in C III 977 at about the same redshift, as mentioned earlier.
However, it was not recognized in any of the other transitions and is thus probably due to blending. The
fact remains that more work have to be conducted in analyzing all potential blending systems before the
model can be fully determined.

The group of blends between −260 and −400 km s−1 in Lyman α has been identified as Si III 1206
absorption in the system at z = 2.429. This transition, along with the other metal transitions as the ones
analyzed for z = 2.407 are plotted in figure 4.10, and we recognize the Lyman α structure from the
system z =2.407 in the spectrum for Si III 1206, which is highly affected by the broad Lorentzian wings
of the Lyman α absorption.
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Figure 4.8: The first four of the eight Lyman transitions included in the analysis.
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Figure 4.9: The last four of the eight Lyman transitions included in the analysis.
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Figure 4.10: Spectra taken from the system towards z = 2.429, for the same transitions that are most prominent in the system
of our analysis. Based on this we are able to successfully identify the group of blends in Lyman α as Si III 1206, and we may
conclude that the main reason for our problems in arriving at a good model is a major blending with this system.
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4.4 Discussion and Outlook

Unfortunately, the line absorption structure of the system at z =2.407 turned out to be a lot more complex
than first anticipated. Detecting an absorption system at z = 2.429 at a late stage in the process, there
was not enough time available to investigate this further. The next step would naturally be to conduct a
parallel analysis of the two systems to accurately determine all absorbers that may influence the system
at z =2.407, as well as searching for other systems that may produce blending. A solid base model have
been produced, but the uncertainty in the column densities of 1H and 2H are so high that we are unable
to produce a precise estimate of the deuterium abundance at the present time. This high uncertainty is
due to a poor determination of the redshifts and dynamic broadening of the different absorbers, as well
as the number of absorbers itself. We hope to be able to better determine this when the blending systems
have been further analyzed.
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Chapter 5

Conclusion

The main focus of this thesis was to get AlterBBN up to date, and include generic WIMP candidates to
the program. By extending the nuclear network from 88 to 100 reactions and implementing new and
updated reaction rates for the six reactions p(n, γ)D, D(p, γ)3He, D(D,n)3He, D(D,p)3H , 3He(α,γ)7Be
and 7Be(n,α)4He, we saw in chapter 2.2 that the deuterium yield was reduced by ∼ 4.5%, with the
uncertainty in the prediction increasing from 1.4% to 2.3%. The prediction of the 4He abundance was
not significantly altered, while the effect on 3He was only a 0.88% decrease. However, the 7Li yield
saw a major 17.9% increase due to the updates, extending the gap between the predicted and observed
value, further disfavoring a nuclear fix to the lithium problem. Strongly linked to the value of the
primordial 7Li abundance, the effect on the 7Be yield was of a similar size. The significant increase
in the uncertainty of the deuterium yield is part due to the extension of the nuclear network (∼ 0.16),
but most of it arrives from updating the reaction rates. Each and one of the updates do not contribute
much, as seen in table 2.4. The new values are reportedly more accurate than previous estimates for the
most relevant temperatures for BBN (. 2 MeV), resulting in more precise estimates of the light element
abundances. However, the uncertainties in the extrapolation to higher temperatures are obviously higher
than in previous measurements. The full nuclear network is a complex system of a large number of
inter-dependent reactions, thus small contributions from several sources may arise from updating all six
reactions, leading to a significant total increase. This effect is enhanced by the fact that the validity range
of the new reactions differ slightly from the old ones.

Nollett & Steigman [48] [25] have previously analyzed the same WIMP candidates as the ones
analyzed in chapter 3 here. They found that electromagnetically coupled WIMPs slightly favor mχ ∼ 8
MeV if the WIMP is a Majorana fermion, while the best fit for a neutrino coupled WIMP is mχ ≥ 35
MeV, equivalent to no WIMP at all. In chapter 3.3.1 we used their results to confirm the success of
the light WIMP updates to AlterBBN, and we saw that the results for a complex scalar is not very
different from that of a Majorana fermion. Using the new Planck value of the baryon-to-photon ratio
[1] leads to a ∼ 2% reduction in the deuterium yield compared to their work. Due to the extension of
the nuclear network and the new reaction rates implemented in AlterBBN the deuterium yield is further
reduced. This have the effect of shifting the results of Nollett & Steigman towards a better favoring of
neutrino coupled WIMPs, lowering the best fit mass for electromagnetically coupled WIMPs. Although
no parameter estimations of the best fit WIMP masses have been conducted here, the tendency is evident.
However, estimating the parameters is something that have to be done in order to draw any further
conclusions.

A constant chemical potential was added to the WIMP candidates in chapter 3.3.2, finding that the
parameterized chemical potential must be φχ & 0.1 to have any additional effect on the light element
abundances compared to the case where φχ is assumed to be zero. For all types of WIMPs and for both
the electromagnetically and neutrino coupling to the standard model particles the effect was to further
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enhance the lithium problem, regardless of the value of φχ . Adding a chemical potential we saw that for
a complex scalar, very small masses became increasingly favored with an increasing chemical potential
for a neutrino coupled WIMP. For electromagnetically coupled WIMPs, on the other hand, the fits did
not seem to improve at all. The next step would naturally be to include the new results in Monte-Carlo
chains to find confidence limits on the WIMP masses, allowing for different values of the chemical
potential and the number of equivalent neutrinos. This way we would also include the uncertainty on
the prediction of the abundances into the considerations.

The task of probing the early universe by analyzing the primordial abundances created during BBN
relies heavily on precise measurements of the actual element yields. The simple post-BBN evolution of
the deuterium abundance, combined with its large sensitivity to the baryon density, precisely measured
through the CMB, makes this element the best probe of BBN. The present status of a measurement of
the deuterium abundance in a z = 2.407 system towards the quasar Q1009+2956, conducted alongside
with the update of AlterBBN, was discussed in chapter 4. The system has a complex absorption line
structure, and the detection of another system at z = 2.429 was found to produce several blends in
the absorption features, complicating the fitting process. A PYTHON program was developed with the
purpose of creating composite spectra and models, and acts like an external add-on for the software used
in the analysis. By stacking the data from different observations, the error-weighted composite spectra
produced by the program simplifies the task of identifying absorption lines. A joint modeling of the two
absorption systems is needed to arrive at a precise estimate of the deuterium content in the z = 2.407
system, but was out of the scope of this project. However, this is an ongoing process, and we hope to
present some results in the near future.
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Appendix A

A Short Review of the Theory Behind the
Nuclear Reaction Rates

We will now go through a minimum of the theory needed to understand the initialization of the matrix
equation built from equation 2.45, which is made in the function int linearize. The extension of the
nuclear network made it necessary to implement a new type of reaction (see chapter 2.2.3). Here we
will derive general formulas for Γi jg→hkl and Γhkl→i jg needed for the implementation of equation 2.45,
which are valid for any of the reaction types, except for the weak reactions. This discussion is based on
the work of Wagoner [43] and Fowler, Caughlan, Zimmerman [98]. The latter also presents an equation
that is specific for the case of reactions of the type 2.43. To arrive at a general expression that covers all
possible arrangements of 2.44 I have combined information from the two mentioned articles, together
with some useful information from Serpico et al. [56] (appendix E). For a broader introduction to the
subject of nuclear reactions I recommend the book Nuclear Physics in Stars by Iliadis [99].

Many textbooks only consider the general case of two-body reactions,

i + j ←→ k + l , (A.1)

where i and j are the incoming nuclides and k and l are the resulting nuclides (in the case of a photo-
ionization process one of the resultants is a photon). In this case the forward reaction rate is defined as

f i j→kl =
nin j

(1 + δi j )
〈σv〉i j→kl reactions cm−3s−1 , (A.2)

where ni and n j are the number densities of the reactants, and 〈σv〉i j→kl is the product of the cross
section and the velocity, averaged over the appropriately normalized velocity distribution. The factor
with the Kronecker delta δi j covers the possibility that i and j might be the same type of nuclide. To
allow for three incoming and/or resulting nuclides we have to extend to the case

i + j + g ←→ h + k + l . (A.3)

It is now convenient to use a terminology where one or more of the reactants/resultants are zero, and
instead write the forward reaction rate as

f i jg→hkl =
nNi

i nN j

j nNg
g

Ni!Nj !Ng!
〈σv〉i jg→hkl , (A.4)

where Ni is the number of nuclides of type i. The reaction rates found in nuclear data catalogs are
usually on the form f̂ =N

Nin−1
A

〈σv〉 [56], where Nin = Ni + Nj + Ng is the total number of incoming
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nuclides, and NA = 6.023 × 1023 is Avogadro’s number. To get the full interaction rate we also have to
multiply with ρNin−1

b
[43] [98], resulting in the definition of

Γi jg→hkl ≡ (ρbNA)Nin−1〈σv〉i jg→hkl , (A.5)

which goes into equation 2.45. In [99] we find that the forward and reverse rates are defined as (for the
simpler case of i+ j↔ k+ l)

NA〈σv〉i j→kl =

(
8

πmi j

)1/2
NA

(kBT )3/2

∫ ∞

0
Ei jσi j→kle−Ei j /kBT dEi j (A.6)

NA〈σv〉kl→i j =

(
8

πmkl

)1/2
NA

(kBT )3/2

∫ ∞

0
Eklσkl→i je−Ekl /kBT dEkl , (A.7)

where mi j is the reduced mass of the i and j nuclide and Ei j is the center of mass energy of the forward
rate (and conversely for the reverse rate expression). This book also defines the relation between the
cross sections of the nuclides to be

σkl→i j

σi j→kl
=

gigj

gkgl

p2
i j

p2
kl

(1 + δkl )
(1 + δi j )

, (A.8)

where gi = (2Ji +1) and Ji is the spin of the appropriate nucleus. p is the “reduced momentum” of the
incoming nuclides and is p = 2mE for massive particles and p = Eγ/c2 for photons. In the case of three
incoming and/or resulting nuclides/photons we may write the relation between the reverse and forward
rates as (see both [43] and [98])

N
Nout−1
A

〈σv〉hkl→i jg

N
Nin−1
A

〈σv〉i jg→hkl

=
f̂hkl
f̂ i jg

=N −NA

(
Nh!Nk !Nl !
Ni!Nj !Ng!

)
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,
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i g
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j g
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-
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,

ANi
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+/
-

3/2

×

(
MukBT

2π~2

)3N/2

e−Q/kBT , (A.9)

where Q is the total energy release of the reaction, Nout is the number of outgoing nuclides, and N =

Ni+Nj+ Ng−Nh−Nk−Nl = Nin−Nout . We define a reverse reaction coefficient, specific for each reaction,
as

Crev ≡

(
Nh!Nk !Nl !
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, (A.10)

where we have used that the atomic mass can be written as Ai =mi/Mu , where Mu =N −1
A =1.66 ·10−24 g

is the atomic mass unit and mi is the rest mass of nuclide number i. By using equation A.5 we obtain

Γi jg→hkl = ρNin−1
b

f̂ i jg→hkl (A.11)

Γhkl→i jg = ρNout−1
b

f̂ i jg→hklCrev × 0.987 · 1010NT3N/2
9 e−11.605Q6/T9 , (A.12)

where Q6 is the energy release in MeV . AlterBBN computes the forward rates f in the routine bbnrate.c,
using tabulated reaction rates f̂ , while the reverse rates are computed in the function int linearize using
equation A.12. Note that the reaction rates f computed in bbnrate.c are multiplied with ρNin−1

b
in int

linearize before they are used to calculate the abundance change through Γi jg→hkl in equation 2.45.
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Appendix B

New Reaction Rates and Uncertainties

Six of the reaction rates and their corresponding uncertainties in AlterBBN have been updated. Relevant
information on the experimental results from [52] (p(n, γ)D), [53] (7Be(n,α)4He), [54] (3He(α,γ)7Be)
and [55] (D(p, γ)3He, D(D,n)3He, D(D,p)3H) is presented below. The reaction number in each caption
refers to the number the reaction is given in AlterBBN and as listed in table 2.6.

Reaction number 12: p(n, γ)D

Ando et al. [52] provide best-fit formulas for the reaction rate (in cm3s−1g−1) and the uncertainty:

f̂ = 44216.0
1 + 3.75191T9 + 1.92934T2

9 + 0.746503T3
9 + 0.0197023T4

9 + 3.00491·10−6T5
9

1 + 5.4678T9 + 5.62395T2
9 + 0.489312T3

9 + 0.00747806T4
9

(B.1)

δ f̂

f̂
= 0.00449213

1 + 3.08947T9 + 0.13277T2
9 + 1.66472T3

9

1 + 2.75245T9 + 1.40958T2
9 + 0.8791T3

9

. (B.2)

Reaction number 19: 7Be(n,α)4He

The experimental results from Hou et al. [53] is summarized in table B.1. The authors provide a best fit
formula for the reaction rate, with an error less than 0.4% for temperatures 0.1 − 5 GK :

f̂ = exp(−17.8984 + 0.2711T−1
9 − 23.8918T−1/3

9

+ 62.2135T1/3
9 − 5.2888T9 + 0.3869T5/3

9 − 22.6197 ln T9) . (B.3)

The uncertainties are taken from table B.1 since no parametric equation is provided.

Reaction number 27: 3He(α,γ)7Be

The best-fit formula of this reaction, given by Cyburt et al. [54], is

f̂ = exp(a0 + a2T−1/3
9 + a6 ln T9)

(
1 + n1T2/3

9 + n2T4/3
9

)(
1 + d1T2/3

9 + d2T4/3
9

) , (B.4)

where the fit parameters are a2 =−12.82707707, a6 =−2/3, and the rest is given in table B.2. There are
different fit parameters corresponding to the central, low and high values, where the latter two are used
for the uncertainty calculations.

Reaction number 20, 28 and 29: D(p, γ)3He, D(D,n)3He and D(D,p)3H
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No parametric equations are presently available for the three new rates from Coc et al. [55]. How-
ever, the reaction rates and their corresponding uncertainties are implemented according to the tabulated
experimental results from the paper, which are presented in table B.3.

T (GK) Present Wagoner Ratio
0.1 (9.6 ± 8.3) ·105 7.7·106 0.13
0.2 (1.7 ± 1.3) ·106 1.5·107 0.11
0.3 (2.3 ± 1.7) ·106 2.3·107 0.10
0.4 (2.9 ± 2.0) ·106 3.1·107 0.09
0.5 (3.5 ± 2.2) ·106 3.9·107 0.09
0.6 (4.2 ± 2.4) ·106 4.6·107 0.09
0.7 (4.9 ± 2.6) ·106 5.4·107 0.09
0.8 (5.6 ± 2.8) ·106 6.2·107 0.09
0.9 (6.4 ± 2.9) ·106 6.9·107 0.09
1.0 (7.2 ± 3.1) ·106 7.7·107 0.09
1.5 (1.2 ± 0.7) ·107 1.2·108 0.10
2.0 (1.7 ± 0.4) ·107 1.5·108 0.11
2.5 (2.1 ± 0.4) ·107 1.9·108 0.11
3.0 (2.5 ± 0.5) ·107 2.3·108 0.11
3.5 (2.9 ± 0.5) ·107 2.7·108 0.11
4.0 (3.2 ± 0.5) ·107 3.1·108 0.10
4.5 (3.4 ± 0.5) ·107 3.5·108 0.10
5.0 (3.5 ± 0.5) ·107 3.9·108 0.09

Table B.1: Copy of table II in ref. [53], showing the new rate with uncertainties for temperatures ranging from 0.1 to 5.0 GK.
They are compared with the old rate from Wagoner [43], and the fourth column shows the ratio between the two.

Parameter Low Central High
a0 15.531721 15.609867 15.679639
n1 −0.100208 −0.020178 0.037757
n2 0.235187 0.211995 0.196645
d1 0.114322 0.255059 0.353050
d2 0.373802 0.338573 0.316019

Table B.2: Fit parameters for reaction number 27, 3He(α,γ)7Be from ref. [54].
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D(p, γ)3He D(D,n)3He D(D,p)3H
T (GK) reac. rate f.u reac. rate f.u reac. rate f.u

0.001 4.815·10−14 1.038 1.142·10−8 1.011 1.173·10−8 1.011

0.002 6.409·10−9 1.038 5.470·10−5 1.011 5.609·10−5 1.011

0.003 4.525·10−7 1.038 3.021·10−3 1.011 3.092·10−3 1.011

0.004 4.896·10−6 1.038 3.732·10−2 1.011 3.814·10−2 1.011

0.005 2.444·10−5 1.038 2.212·10−1 1.011 2.257·10−1 1.011

0.006 8.086·10−5 1.038 8.546·10−1 1.011 8.707·10−1 1.011

0.007 2.078·10−4 1.038 2.505·100 1.011 2.549·100 1.011

0.008 4.499·10−4 1.038 6.066·100 1.011 6.164·100 1.011

0.009 8.619·10−4 1.038 1.278·101 1.011 1.297·101 1.011

0.010 1.506·10−3 1.038 2.424·101 1.011 2.458·101 1.011

0.011 2.450·10−3 1.038 4.237·101 1.011 4.290·101 1.011

0.012 3.767·10−3 1.038 6.936·101 1.011 7.016·101 1.011

0.013 5.531·10−3 1.038 1.077·102 1.011 1.088·102 1.011

0.014 7.816·10−3 1.038 1.600·102 1.011 1.615·102 1.011

0.015 1.070·10−2 1.038 2.291·102 1.011 2.310·102 1.011

0.016 1.425·10−2 1.038 3.179·102 1.011 3.202·102 1.011

0.018 2.366·10−2 1.038 5.667·102 1.011 5.698·102 1.011

0.020 3.659·10−2 1.038 9.310·102 1.011 9.343·102 1.011

0.025 8.753·10−2 1.038 2.504·103 1.011 2.502·103 1.011

0.030 1.701·10−1 1.038 5.301·103 1.011 5.276·103 1.011

0.040 4.476·10−1 1.038 1.568·104 1.011 1.549·104 1.011

0.050 8.915·10−1 1.038 3.369·104 1.011 3.307·104 1.011

0.060 1.510·100 1.038 6.013·104 1.011 5.868·104 1.011

0.070 2.302·100 1.038 9.527·104 1.011 9.246·104 1.011

0.080 3.265·100 1.038 1.390·105 1.011 1.343·105 1.011

0.090 4.392·100 1.038 1.912·105 1.011 1.837·105 1.011

0.100 5.676·100 1.038 2.513·105 1.011 2.404·105 1.011

0.110 7.109·100 1.038 3.190·105 1.011 3.039·105 1.011

0.120 8.685·100 1.038 3.938·105 1.011 3.737·105 1.011

0.130 1.040·101 1.038 4.753·105 1.011 4.493·105 1.011

D(p, γ)3He D(D,n)3He D(D,p)3H
T (GK) reac. rate f.u reac. rate f.u reac. rate f.u

0.140 1.224·101 1.038 5.631·105 1.011 5.304·105 1.011

0.150 1.420·101 1.038 6.568·105 1.011 6.165·105 1.011

0.160 1.628·101 1.038 7.559·105 1.011 7.072·105 1.011

0.180 2.076·101 1.038 9.691·105 1.011 9.011·105 1.011

0.200 2.565·101 1.038 1.200·106 1.011 1.110·106 1.011

0.250 3.941·101 1.038 1.842·106 1.011 1.682·106 1.011

0.300 5.505·101 1.038 2.555·106 1.011 2.309·106 1.011

0.350 7.225·101 1.038 3.318·106 1.011 2.974·106 1.011

0.400 9.076·101 1.038 4.119·106 1.011 3.663·106 1.011

0.450 1.104·102 1.038 4.946·106 1.011 4.371·106 1.011

0.500 1.310·102 1.038 5.792·106 1.011 5.089·106 1.011

0.600 1.748·102 1.038 7.517·106 1.011 6.543·106 1.011

0.700 2.212·102 1.038 9.260·106 1.011 8.001·106 1.011

0.800 2.700·102 1.038 1.100·107 1.011 9.448·106 1.011

0.900 3.207·102 1.038 1.272·107 1.011 1.087·107 1.011

1.000 3.729·102 1.038 1.442·107 1.011 1.228·107 1.011

1.250 5.093·102 1.038 1.850·107 1.011 1.565·107 1.011

1.500 6.522·102 1.038 2.235·107 1.011 1.882·107 1.011

1.750 8.000·102 1.038 2.595·107 1.012 2.181·107 1.012

2.000 9.517·102 1.038 2.932·107 1.012 2.461·107 1.012

2.500 1.265·103 1.038 3.546·107 1.013 2.976·107 1.013

3.000 1.587·103 1.038 4.093·107 1.014 3.440·107 1.014

3.500 1.914·103 1.038 4.585·107 1.014 3.863·107 1.014

4.000 2.244·103 1.039 5.031·107 1.015 4.251·107 1.015

5.000 2.905·103 1.040 5.816·107 1.016 4.946·107 1.016

6.000 3.557·103 1.042 6.488·107 1.017 5.552·107 1.017

7.000 4.194·103 1.044 7.072·107 1.018 6.077·107 1.018

8.000 4.812·103 1.046 7.583·107 1.018 6.529·107 1.018

9.000 5.410·103 1.047 8.037·107 1.018 6.912·107 1.018

10.000 5.988·103 1.049 8.437·107 1.018 7.228·107 1.019

Table B.3: Copy of table XII in ref. [55], showing the new rates and the corresponding uncertainties on rate 20 (D(p, γ)3He),
28 (D(D,n)3He) and 29 (D(D,p)3H). Note that the uncertainties are given as the log-normal distributed error f.u
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Appendix C

Accurate Expressions for the Number
Density, Energy Density and Pressure of
WIMPs

The derivation of equations 2.17, 2.18 and 2.23 from equations 1.15 - 1.17 is not documented in the
AlterBBN manual, nor in the description of the Wagoner or Kawano codes. In his book “An Intro-
duction To The Study Of Stellar Structures”, S. Chandrasekhar [100] derives the distribution functions
for electrons and positrons in terms of the modified Bessel functions (chapter 5). The implementation
of WIMPs in the AlterBBN code requires the distribution functions also for massive bosons, since we
explicitly look at real and complex scalar candidates. In the following I will derive these expressions,
motivated by the method of Chandrasekhar. For completeness, I will also derive the general expressions
for fermions, which is needed to include the fermionic WIMPs.

The motion of a particle through spacetime may be described by hyperbolic coordinates in a space-
time (Minkowski) diagram, as described by Einstein’s special theory of relativity. In these terms, the
Lorentz factor γ = 1/

√
1 − (u/c)2, where u is the velocity of the particle, is parameterized as

γ = cosh θ , (C.1)

where θ is the rapidity, defined as the hyperbolic angle in the Lorentz transformation expressions. Squar-
ing the momentum 3-vector p = γmu, where m is the rest mass of the particle, solving for (u/c)2 and
substituting into the Lorentz factor yields

p
mc

=

√
γ2 − 1 =

√
cosh2 θ − 1 = sinh θ . (C.2)

The energy-momentum relation reads

E2 = (pc)2 + (mc2)2 , (C.3)

and inserting C.2 we can express the total energy in terms of hyperbolic coordinates as

E = mc2 cosh θ . (C.4)

Noting that the derivatives become
dp = mc cosh θdθ (C.5)

and
EdE = pc2dp = (mc2)2 sinh θ cosh θdθ , (C.6)
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and using the earlier established relations z ≡ mc2/kBT and φ ≡ µ/kBT , we are now equipped to write
the distribution functions of a particle in a more convenient way:

n = A
∫ ∞

mc2

(E2 − m2c4)1/2EdE
exp [(E − µ)/(kBT )] ± 1

= A(mc2)3
∫ ∞

0

sinh2 θ cosh θdθ
exp [z cosh θ − φ] ± 1

(C.7)

ρc2 = A
∫ ∞

mc2

(E2 − m2c4)1/2E2dE
exp [(E − µ)/(kBT )] ± 1

= A(mc2)4
∫ ∞

0

sinh2 θ cosh2 θdθ
exp [z cosh θ − φ] ± 1

(C.8)

P =
A
3

∫ ∞

mc2

(E2 − m2c4)3/2dE
exp [(E − µ)/(kBT )] ± 1

=
A
3

(mc2)4
∫ ∞

0

sinh4 θdθ
exp [z cosh θ − φ] ± 1

(C.9)

Here A = g/2π2(~c)3, and to proceed further it is convenient to expand the denominator in series of
e−z cosh θ+φ . We thus have to distinguish between fermions and bosons.

For fermions we have to expand the expression (ez cosh θ−φ + 1)−1 in an infinite series. Choosing
x = e−z cosh θ+φ , the easiest procedure is to first expand f (x) = (x + 1)−1, which results in

f (x) ≈ 1 − x + x2 − x3 + O(x4) . (C.10)

We then transform back to our original expression by multiplying f (x) by x, that is

1
ez cosh θ−φ + 1

= x f (x)

≈ x − x2 + x3 − x4 + O(x5)

=

∞∑
n=1

(−1)n+1enφe−nz cosh θ . (C.11)

For bosons the procedure is identical, only now we expand the expression (ez cosh θ−φ − 1)−1. Multi-
plying the result this time with −x, we finally arrive at

1
ez cosh θ−φ − 1

=

∞∑
n=1

enφe−nz cosh θ . (C.12)

These series expansions are the part that separates fermions from bosons in the final expressions for their
various distribution functions, and we see that the only difference is the factor (−1)n+1 in the sum.

The time has come to introduce the modified Bessel functions of type two, which are defined as

Kα (z) =

∫ ∞

0
e−z cosh θ cosh αθ dθ . (C.13)

We can now use the relations

sinh2 θ cosh θ =
1
4

(cosh 3θ − cosh θ) (C.14)

sinh2 θ cosh2 θ =
1
8

(cosh 4θ − 1) (C.15)
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to write the distribution functions for the number density and the energy density as

n = A(mc2)3
∞∑
n=1

(−1)β (n+1)enφ
∫ ∞

0
e−nz cosh θ

[
1
4

(K3(nz) − K1(nz))
]

dθ

= A(mc2)3
∞∑
n=1

(−1)β (n+1)enφ
[
1
4

(K3(nz) − K1(nz))
]

ρc2 = A(mc2)4
∞∑
n=1

(−1)β (n+1)enφ
∫ ∞

0
e−nz cosh θ

[
1
8

(cosh 4θ − 1)
]

dθ (C.16)

= A(mc2)4
∞∑
n=1

(−1)β (n+1)enφ
[
1
8

(cosh 4θ − 1)
]
, (C.17)

where β distinguishes between fermions (β = 1) and bosons (β = 0). Finding the pressure distribution
requires a bit more involved analysis, since we can not simply write sinh4 θ only in terms of cosh αθ.
The trick is to perform integration by parts, by first doing a change of variables through x = cosh θ,
giving us ∫ ∞

0
e−nz cosh θ sinh4 θ dθ =

∫ ∞

1
e−nzx (x2 − 1)3/2 dx , (C.18)

remembering that sinh2 θ = cosh2 θ − 1, and using that cosh 0 = 1 and limθ→∞ cosh θ → ∞. Using
integration by parts, defining

u = (x2 − 1)3/2 → du = 3(x2 − 1)1/2x dx, dv = e−nzx → v = −
1
nz

e−nzx ,

we find that∫ ∞

1
e−nzx (x2 − 1)3/2 dx = −

1
nz

e−nzx (x2 − 1)3/2
�����

∞

x=1
+

3
nz

∫ ∞

1
e−nzx (x2 − 1)1/2x dx . (C.19)

Evaluation of the lower and upper boundary in the first part yields 0, while substituting back to the
variable θ in the last part results in the expression having the desired form. Thus we have showed that
we can write ∫ ∞

0
e−nz cosh θ sinh4 θ dθ =

3
nz

∫ ∞

0
e−nz cosh θ sinh2 θ cosh θ dθ . (C.20)

Now we can apply relation C.15 to get the expression of the pressure density on the form

P = A(mc2)4
∞∑
n=1

(−1)β (n+1)

nz
enφ

∫ ∞

0
e−nz cosh θ

[
1
4

(cosh 3θ − cosh θ)
]

dθ

= A(mc2)4
∞∑
n=1

(−1)β (n+1)

nz
enφ

[
1
4

(K3(nz) − K1(nz))
]
, (C.21)

The different Bessel functions (different orders) are related though the recurrence formula

Kα+1(z) − Kα−1(z) =
2α
z

Kα . (C.22)

Thus
K3(nz) − K1(nz) =

4
nz

K2 , (C.23)

and by also finding K4(nz) − K2(nz) and K2(nz) − K0(nz) we are able to show that

K4(nz) − K0(nz) =
2
nz

[3K3(nz) + K1(nz)] . (C.24)
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Using these results, together with the earlier defined relations of equation 2.16, we arrive at the final
expressions for the number density, energy density and pressure distributions for fermions and bosons:

n =
g

2π2

[
mc2

~c

]3 ∞∑
n=1

(−1)β (n+1)enφL(nz) (C.25)

ρc2 =
g

2π2

(mc2)4

(~c)3

∞∑
n=1

(−1)β (n+1)enφM (nz) (C.26)

P =
g

2π2

(mc2)4

(~c)3

∞∑
n=1

(−1)β (n+1)

nz
enφL(nz) (C.27)

These are general expressions for both fermions and bosons, where

β =



0 for bosons
1 for fermions

We now see where the expressions for the sum of electron and positron energy density and pressure
(equations 2.17 and 2.18) and the difference in the electron and positron number density (equation 2.23)
come from. Recalling that the electron and positron chemical potentials are related through φe− = −φe+ ,
and using the hyperbolic relations

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
, (C.28)

it is straight forward to obtain these expressions.

In the presence of a light WIMP we also need the derivative of the energy density with respect
to the temperature (see chapter 3.2). In the absence of a chemical potential for the WIMPs the only
dependence on the temperature in equation C.26 is through z, and the calculation amounts to finding the
derivative of M (nz) with respect to T9. However, we will allow for a non-zero chemical potential, which
means that also φχ is dependent on T9. For the derivative of the e± energy density this contribution has
been neglected (by the author of AlterBBN), on the basis of the assumption of a small φe throughout
the analysis. However, this is not entirely true, evident from figure 2.1. Moreover, since there are
no constraints on a hypothetical WIMP degeneracy we will include this term in the derivative of the
WIMP energy density. The WIMP degeneracy parameter φχ ≡ µχ/kBT9 is a unit-less parameterization
of the WIMP chemical potential, similar to the definition of φe , which leaves the process of finding
the derivative of the exponential in equation C.26 a straight forward one. By the definition of M (z) in
equations 2.16 we find that

d
dT9

M (nz) =
dz
dT9

d
dz

[
1
nz

(
3
4

K3(nz) +
1
4

K1(nz)
)]

= −
z

T9

{
−

1
nz2

[
3
4

K3(nz) +
1
4

K1(nz)
]

+
1
nz

[
3
4

d
dz

K3(nz) +
1
4

d
dz

K1(nz)
]}

. (C.29)

Differentiating equation C.13 for α=1 and 3, and inserting in the above equation we get

d
dT9

M (nz) =
1

nzT9

[
3
4

K3(nz) +
1
4

K1(nz)
]

+
1
T9

[
3
8

K4(nz) −
3
8

K0(nz)
]

+
1
T9

[
1
2

K2(nz) +
1
2

K0(nz)
]
, (C.30)

and using equation C.22 we finally arrive at

d
dT9

M (nz) =
1
T9

[
1
2

K4(nz) +
1
2

K2(nz)
]

=
z

T9
nN (nz) . (C.31)
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The full expression thus becomes

d
dT9

ρc2 =
g

2π2

(mc2)4

(~c)3

1
T9

∞∑
n=1

(−1)β (n+1)nenφ
[
zN (nz) − φχM (nz)

]
. (C.32)
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