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Abstract
We study an extension of the Standard Model which introduces a Leptophilic
Majorana WIMP candidate and an SU(2)L scalar doublet. We calculate the
one-loop contribution for SM × ¯SM → χχ by evaluating vertex corrections in
this leptophilic model. We calculate the cross section for free quarks annihilating
into a pair of WIMPs in the photon channel for this higher order process. This
constitutes the ground work for further analyses of this process in the context of
LHC pp collisions, e.g. in monojet plus missing ET events.
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Chapter 1

Introduction

The theory describing all the known elementary particles today is the Standard
Model of Particle Physics (SM). It describes interactions between particles and
light, and also radioactive decay and nuclear binding forces. These interactions
are mediated by three different fundamental forces, namely the electromagnetic
force and the weak and strong nuclear forces. The SM seems near its completion,
as a particle compatible with the Standard Model Higgs boson was discovered
at the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at
CERN in 2012 [1, 2]

Despite the scientific triumphs of the SM, it still leaves several questions
unanswered. One example is how the presence of gravitational interactions fits
with the SM, as a quantum theory for gravity has not yet been successfully
developed. Furthermore, observations over the past 100 years of the rotational
velocity of spiral galaxies and kinematic behavior of galaxy clusters imply that
they contain more mass than the visible light can account for. This new matter
has to be uncharged under electromagnetic interactions, and is therefore known
as Dark Matter (DM).

There is no particle in the SM that can be used to explain DM. Therefore,
extensions of the SM must be studied for a quantum field theory that contains a
DM particle. Several such theories exist, Supersymmetry (SUSY) with R-parity
is one example. Some such SUSY models predict the existence of the neutralino,
which is a stable Majorana fermion and a good DM candidate. The neutralino
belongs to a larger class of DM candidates known as Weakly Interacting Massive
Particles (WIMPs). In what is referred to as the ”WIMP miracle”, such a particle
naturally provides the observed relic density of DM.

This thesis is devoted to study one such WIMP model. We extend the SM field
content with an additional stable Majorana fermion χ as the WIMP candidate
and a doublet of decaying scalar fields. In the model we study, the WIMP
can only interact with the SM leptons and with one beyond SM scalar particle.
Appropriately, this DM candidate is referred to as Leptophilic Dark Matter.
We wish to study how these DM particles can be pair produced from a collision
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2 Introduction Chapter 1

between SM particles. We therefore motivate and perform studies of the effective
coupling γ∗/Z∗ → χχ and aim to uncover its general features, i.e. what kind of
couplings we find in the effective vertex, and how the γ and Z effective couplings
to χ relate to each other. We also study the ultra-violet behavior of the vertex
corrections to this coupling and determine how they cancel.

We proceed to find the closed form expressions for the effective coupling.
Then we perform a cross section calculation using the exact form of the effective
vertex. This is in order to get a first look at the process q̄q → χχ, which is a
highly relevant process for LHC applications.

Calculation of the effective vertex for χ pair production is necessary in order
to facilitate searches for DM using particle colliders. However, for the purpose
of estimating cross sections for detection at LHC, the cross section for pair pro-
duction of χ is insufficient, as they are only interacting weakly and thus can not
be detected by the experimental apparatus. Therefore, further studies of, for in-
stance, a final state consisting of χχ+ jet and analysis of the missing transverse
momentum are needed, and we lay the groundwork for such an analysis.

1.1 Outline

The thesis is structured as follows. In Chapter 2 we give an introduction to
the field content of the SM. In order to do so we also introduce the necessary
framework of group theory and symmetries in order to highlight the guiding
principles for constructing the SM. We focus especially on the electroweak sector
of the SM, as the WIMP in our model is interacting with electroweak gauge
bosons as a higher order process. In this chapter we also introduce the Majorana
fermion field and the concept of Weyl spinors, which are important ingredients
for this leptophilic DM model.

In Chapter 3 we discuss some of the open questions left by the SM, before we
give a thorough introduction to the motivation for DM and the WIMP scenario.
We also introduce and discuss the Minimal Supersymmetric Standard Model,
a proposed extension of the SM which among other things could provide an
explanation for DM.

In Chapter 4 we introduce the Leptophilic DM model, and pave the way
towards a calculation of a next-to-leading order amplitude. We calculate the
vertex correction for χ pair production via a neutral off-shell electroweak gauge
boson, γ∗ or Z. We then derive a general expression in terms of form factors.

Chapter 5 introduces the Passarino-Veltmann scheme for solving loop inte-
grals. We apply this method to find explicit expressions for the form factors.
We finalize by calculating the cross section in the γ∗ channel, before making our
conclusions.



Chapter 2

The Standard Model of Particle
Physics

In this chapter we give a description of the Standard Model (SM) of particle
physics. It is well known that the SM is not the complete theory of nature. How-
ever, after the discovery of the SM Higgs boson in 2012 [1,2] made independently
by the CMS- and ATLAS-collaborations at the Large Hadron Collider (LHC) the
SM provides a complete picture (with the exception of neutrino physics) of the
observed particles and phenomena in high energy physics.

Before delving into the SM, we state some of the most important framework
needed to understand it, including group theory and symmetries. We also mo-
tivate and state properties of Majorana fermions, which are not included in the
SM, but which is the topic of chapter 3 and 4. We also make a remark on the
mechanism of Spontaneous Symmetry Breaking before we present some details
of the SM.

2.1 Symmetries in Particle Physics

The laws of nature as we know them, are deeply connected to symmetries. Any
differentiable symmetry of a physical system corresponds to a conserved quan-
tity. The relationship between symmetries and conservations laws is described
by Noether’s theorem [3]. In particle physics the symmetries of a system or a
model, determines the interactions in the model. Before we look at the internal
symmetries of the SM we will introduce some group theory.

2.1.1 Lie Groups

Formally, a group is a set G combined with a binary operation ◦ that has to
satisfy four axioms for all elements gi ∈ G we must have

• Closed under group operation: For all gi ◦ gj ∈ G.

3
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• Associativity of ◦: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk).

• Identity element e: There exists an element e ∈ G such that e◦gi = gi ◦e =
gi

• Inverse element: For each gi ∈ G there is an element g−1
i ∈ G such that

gi ◦ g−1
i = g−1

i ◦ gi = e, where e ∈ G is the identity element.

We will, however, suppress the group operation symbol ◦, as the groups we
will discuss can be represented by sets of non-singular matrices under matrix
multiplication.1

A Lie group is, in mathematical terms, a smooth differentiable manifold. A
manifold is a mathematical object where there is an open set around each point on
the manifold that can be mapped onto RN (or CN if the manifold is complex) via
a differentiable bijection (N is then referred to as the dimension of the manifold).
This allows for calculus to be performed on the manifold. The elements in Lie
group G can be reached by successive infinitesimal transformations belonging to
the group. The infinitesimal elements of the Lie group are the elements that lie
arbitrary close to the identity. They can be written in the form

δg = 1 + iαaT a +O(α2), (2.1)

where α is an infinitesimal parameter specifying the transformation, T a are the
generators of the Lie group, and summation over a repeated index a is implied.
The generators span a vector space, this vector space together with the commu-
tation relation

[T a, T b] = ifabcT c, (2.2)

form what is called a Lie algebra. The coefficients fabc are called the structure
constants. For the Lie groups that are of interest in QFT a general group ac-
tion can be represented locally by exponentiating the generators in the following
manner

eiα
aTa . (2.3)

2.1.2 Representations of a Lie Algebra

We now turn to the concept of representations of a Lie group. For the symme-
try groups describing the internal symmetries of particle physics we are mainly
interested in two representations, namely the fundamental and adjoint represen-
tations. The elements of a Lie group G transforms elements in a vector space V ,

1That is, as subgroups of the General Linear Group GL(n,F), where F is either R or C and
n is the dimensionality of the matrices.
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we define the representation as a map from G to the set of non-singular matri-
ces that acts on V , this is the general linear group on V denoted GL(V ). We
demand that the map preserves the group structure of G, that is, the map is
homomorphism. For any gi ∈ G a homomorphism ρ on G satisfies

ρ (gigj) = ρ (gi) ρ (gj) . (2.4)

Thus, the map ρ : G→ GL(V ) is a representation of G if it is a homomorphism.
If there is another representation of G given by ρ′ : G→ GL(V ′) then ρ and ρ′ are
said to be equivalent if there is an isomorphism A such that, Aρ(g)A−1 = ρ′(g)
for g ∈ G.

The symmetry group SU(N) is defined from the set of all unitary complex
N ×N matrices V such that det(V ) = 1. For a general representation of SU(N)
the dimensionality of the matrices need not be N×N , if the group is represented
by d × d matrices it is referred to as a d-dimensional representation of SU(N).
An infinitesimal SU(N)-transformation of vectors x ∈ Cd can be written as

x→ (1 + iαaT a)x, (2.5)

a = 1, . . . , N2 − 1 for SU(N)-transformations.

Here αa are real infinitesimal parameters, T a are N2 − 1 linearly independent
Hermitian matrices orthogonal to the identity, i.e. tr(T a) = 0. These matrices
satisfy a commutation relation as in Eq. (2.2) and and together they form the
Lie algebra for this d-dimensional representation of SU(N). If the generators
T a are equivalent to a representation where there they are simultaneously block
diagonal, the representation is reducible. Hence the sub blocks of the generators
T a in a reducible representation constitutes irreducible representations if they
are not reducible themselves. An irreducible representation will be denoted by r
and the generators by tar .

Associated to an irreducible representation is the conjugate representation
denoted r̄, with the corresponding generators tar̄ . If x transforms according to
Eq. (2.5) in a d-dimensional irreducible representation where T a = tar , then x∗

(let ∗ denote complex conjugation) transforms in the conjugate representation,
where the generators are tar̄ . By taking complex conjugation the infinitesimal
transformation of a vector x ∈ Cd transforming in an irreducible representation
r of a group G

x∗ → x∗
′
= (1− iαa(tar)∗) x∗. (2.6)

Thus we have the generators in the conjugate representation given by

tar̄ = −(tar)
∗. (2.7)

We can then combine group invariants by the product of a object transforming
in r with another object transforming in r̄.
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In an irreducible representation r of a group G the structure constants fabc can
always be defined such that they are completely antisymmetric with respect any
permutation of the indices a, b, c. Furthermore, there exists another irreducible
representation called the adjoint representation, where the generators taG are re-
lated to the structure constants by

(tbG)ac = ifabc. (2.8)

For SU(N) the matrices in this representation are (N2− 1)× (N2− 1) and they
satisfy the same commutation relation as tar .

The fundamental representation of the SU(N) is the simplest irreducible rep-
resentations of the group. They are the unitary matrices with determinant one
which transform N that keeps the innerproduct of complex vectors invariant. In
SM we are interested in the cases N = 2 (weak isospin) and N = 3 (Quantum
Chromodynamics). The generators for SU(2) in the fundamental representa-
tion (denoted r = 2) the proportional to the Pauli matrices, and for SU(3)
(r = 3)they are proportional to the Gell-Mann matrices. Furthermore, SU(2) is
pseudoreal, meaning that for x,y transforming in 2 (or both in 2̄) the combination
xTEy is invariant with respect to SU(2) transformations for an antisymmetric
matrix E. For SU(N) with N ≥ 3 the irreducible representations meaning that
only the combination of a vector transforming in 3 and one in 3̄ can form group
invariants.

2.1.3 Representations of the Lorentz group

The Lorentz group is also a Lie group. For a general Lorentz transformation Λ,
demanding that det Λ = 1 ensures that space is not inverted (proper, removes
parity) and Λ0

0 ≥ 1 ensures that time flows forward (orthochronous removes time
reversal) yields the proper orthochronous Lorentz group L↑+. In the set of all
proper orthochronous Lorentz transformations any infinitesimal transformation
of a four-vector xµ can be written as

δΛµ
ν = δµν −

i

2
ωρσ (Jρσ)µν +O(ω2). (2.9)

Where ωρσ = −ωσρ are infinitesimal parameters specifying the transformation

(boost, rotation or both), and (Jρσ)µν are the generators of L↑+. The span of the

generators forms the Lie algebra for L↑+, together with the commutation relation

[Jµν , Jρσ] = i (gνρJµσ − gµρJνσ − gνσJµρ + gµσJνσ) . (2.10)

The generic form of Jρσ is

J =


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 . (2.11)
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where Ki and Ji are the generators of boosts and rotations, respectively. Then
any finite boost or rotation can be written as

Λµ
ν =

(
e−

i
2
ωρσJρσ

)µ
ν
. (2.12)

The four component Dirac spinor ψ is another representation of L↑+. The gener-
ators in this representation are given in terms of the Dirac matrices γµ by

Mµν =
i

4
[γµ, γν ] , (2.13)

where the Dirac matrices must satisfy a Clifford algebra {γµ, γν} = 2gµν . The
matricesMµν satisfy the commutation relation in Eq. (2.10). An arbitrary basis
can be transformed to the chiral basis by a suitable unitary transformation of
the Dirac matrices γµ → WγµW †. In the chiral basis they are given by

γµ =

(
0 σµ

σ̄µ 0

)
. (2.14)

Where σi denotes the Pauli matrices and σµ = (1, σi), σµ = (1,−σi). In the
Weyl basis one construct the four component Dirac spinor from two-component
spinors ψL and ψR, such that a Dirac spinor can be written as

ψ =

(
ψL
ψR

)
. (2.15)

The left-handed component refers to ψL and the right-handed component refers
to ψR. We can recover the left- and right-handed components of ψ in an arbitrary
basis by

ψL/R = PL/Rψ, (2.16)

where PL = (1 − γ5)/2 and PR = (1 + γ5) are projection operators and γ5 =
iγ0γ1γ2γ3. In the Weyl basis, however, the reducibility of the spinor represen-
tation of the Lorentz algebra becomes manifest as the generators of boosts and
rotations Mµν are block diagonal

M0i = − i
2

(
σi 0
0 −σi

)
, Mij = −1

2
εijk
(
σk 0
0 σk

)
. (2.17)

Hence, that a boost or rotation of the spinor ψ can be viewed as a boost or
rotation of the two component spinors ψL/R separately as two inequivalent fun-
damental representation of the proper orthochronous Lorentz group. The spinor
ψL transforms in a the fundamental representation of the complex 2 × 2 matri-
ces with determinant one, which is the special linear group SL(2,C), while the
spinors ψR transform in the conjugate representation and these are two inequiv-
alent representations. The spinors ψL/R are called left- and right-handed Weyl
spinors, respectively. If the spinor ψL is a left-handed Weyl spinor then the spinor
−iσ2ψ∗L is a right-handed Weyl spinor.
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Weyl spinors

It is often used a specific notation for the Weyl spinors. One introduces indices
α, α̇ = 1, 2 and writes the left-handed Weyl spinor λα and right-handed Weyl
spinor χ̄α̇ as two component objects. The raising and lowering of the indices
is performed by (iσ2)αβ = εαβ, and the same for dotted indices α̇. Then a
Dirac spinor is the combination of a left- and right-handed Weyl spinor, written
generally as

ψ =

(
λα
χ̄α̇

)
. (2.18)

We have (λα)∗ = λ̄α̇. Contraction between two Weyl spinors is defined as λλ′ =
λαλ′α and for the right-handed Weyl spinors χ̄χ̄′ = χ̄α̇χ̄

′α̇. The Lorents invariant
ψ′†γ0ψ can then be written as

ψ′†γ0ψ = χ′λ+ λ̄′χ̄. (2.19)

The convention of using Weyl spinors provides a convenient formalism to describe
the four component Dirac field in the chiral basis, as the formalism ”hides” the
application of the matrix iσ2 appearing. We note that this formalism using the
block matrices occurring in γµ in Eq. (2.14) carry both dotted and undotted

indices σ̄µαα̇, σµα̇α, furthermore they are related by σ̄µα̇α = εαβεα̇β̇(σµ
ββ̇

)T which is

equivalent to applying the identity for the Pauli matrices σ2(σi)Tσ2 = −σi.
In order to represent a physical Dirac field we need to include both a separate

left-handed and right-handed Weyl spinor. It is still unclear if a single Weyl spinor
alone can be used to represent a fermion in nature. However, some collective
excitations in solids known as quasiparticles that behaves as Weyl fermions been
discovered [4].

2.2 Majorana Equation and Charge Conjuga-

tion Matrix

We consider an equation of motion for a charged Dirac field who interacts with
an electromagnetic potential Aµ

(iγµ(∂µ + ieQAµ)−m)ψ = 0.

If we take the complex conjugate of this equation, we get an equation of motion
for the field ψ∗

(i(−γµ)∗(∂µ − ieQAµ)−m)ψ∗ = 0.
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We note that the (electromagnetic) charge has flipped sign, and there is a different
representation of the Dirac matrices−(γµ)∗ = −γ0(γµ)Tγ0 = −γ0(γ0γ2γµγ2γ0)γ0.
Wich we can recognize as a unitary transformation of the Dirac matrices by defin-
ing C = ηγ2γ0, where η is phase we can not yet determine.The charge conjugation
satisfies (in any basis for the Dirac matrices)

C−1 = C† = −η†γ0γ2, (2.20)

if we demand |η|2 = 1. We can thus write

−(γµ)∗ = γ0C−1γµCγ0

We can then write the equation of motion as

γ0C†iγµ(∂µ − ieQAµ)Cγ0ψ∗ −mψ∗ = 0.

Defining ψc ≡ Cγ0ψ∗ we have

iγµ(∂µ − ieQAµ)ψc −mψc = 0

It transforms as an ordinary spinor under Lorentz transformations, this makes
the terms ψTCψ and ψ̄Cψ̄T Lorentz invariant. If the field has a nonzero U(1)-
charge however these terms are not gauge invariant. Thus a U(1)-charge neutral
fermion field ψ may have a Majorana mass term

L =
1

2
ψ̄i∂
/
ψ − 1

2
mψ̄Cψ̄T + h.c. (2.21)

Here we choose the phase η = ±i, such that ψTCψ = (ψ̄Cψ̄T )†. Upon varying the
action with the Lagrangian from Eq. (2.21) with respect to ψ̄ gives the Majorana
equation:

i∂
/
ψ = mψc. (2.22)

The Majorana mass term can be suited to describe charge neutral fermions, and
thus the neutrinos could possibly have a Majorana-component in its mass term.
Observation of neutrinoless double beta decay could imply this [5].

2.2.1 Charge Conjugation in the Weyl Basis and the Ma-
jorana Field

In the Weyl basis the we have the Dirac field ψ in terms of the Weyl spinors λα
and χ̄α̇ as in Eq. (2.18). The chargec onjugated field is then [6]

ψc =

(
χα
λ̄α̇

)
. (2.23)



10 The Standard Model of Particle Physics Chapter 2

A Majorana field must satisfy the Majorana condition ψc = Cψ̄T and introduce
the Majorana spinor in the chiral basis

ψM =

(
χα
χ̄α̇

)
. (2.24)

Writing out the Lagrangian in Eq. (2.21) in terms of the left- and right-handed
components of the general Dirac field ψ in Eq. (2.18) yields

L =
1

2

(
χiσµ∂µχ̄+ λ̄iσ̄µ∂µλ−m(λλ+ χ̄χ̄)

)
+ h.c.. (2.25)

We note how the mass term is different from the Dirac mass term mDirac(χλ+λ̄χ̄).
Inserting for the Majorana spinor in Eq. (2.28) gives

.LMajorana = χiσµ∂µχ̄−
1

2
m(χχ+ χ̄χ̄) (2.26)

Where we do not add the hermition conjugate for a self-conjugate expressions,
as this will give the correct overall normalization for the Majorana field. In four
component notation the Lagrangian in Eq. (2.26) is equal to

LMajorana =
1

2

(
ψ̄M i∂

/
ψM −mψ̄MψM

)
(2.27)

2.2.2 The Quantized Majorana Field

In four component notation we describe the propagation of Majorana fermions
by the Lagrangian in Eq. (2.21). For Majorana the equation of motion is the
Majorana equation in Eq. (2.22), equivalently, the Dirac equation under the Ma-
jorana condition ψcM = ψM .

Ettore Majorana found a basis for the Dirac matrices in where the components
of these are purely imaginary [7]. In this basis the Dirac equation has only real
coefficients and therefore well suited for discussing real solutions to the Dirac
equation, i.e. fields satisfying ψ = ψ∗, which in an arbitrary basis translates to
ψ = ψc [8].

The free Majorana field (i.e. the solution to Eq. (2.22) where ψM = ψcM) can be
represented by the Fourier expansion [8, 9]

ψM(x) =
∑

s=±1/2

∫
d3p

(2π)3

1√
2Ep

[
bspu

s(p)e−ipx + bs†p v
s(p)eipx

]
. (2.28)

Where bsp are Fourier coefficients, Ep =
√
m2
χ + p2, and us(p) and vs(p) are so-

lutions to the momentum-space Dirac equation. The Majorana condition forces
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the fourier coefficients to be complex conjugate of each other. Complex conjuga-
tion for the Fourier coefficients is denoted in by a †, since these will be particle
creators and annihilators upon quantizing ψM . We get the quantized Majorana
field by imposing the commutation relations for the Fourier coefficients{

brp, b
s†
q

}
= (2π)3δrsδ(3)(p− q). (2.29)

The free vacuum |0〉 can get excited to a one particle state by applying
√

2Epb
†
p

to it. We then denote

|p, s〉 =
√

2Epb
s†
p |0〉 . (2.30)

We will suppress the spin-index and denote a one-particle excitation of the free
vacuum by |p〉0, and a multiparticle state by

n∏
i=1

√
2Epib

si†
pi
|0〉 = |p1〉0 ⊗ . . .⊗ |pn〉0 ≡ |p1, . . . ,pn〉0 . (2.31)

When multiple creation operators excite the vacuum, the order in which they act
is important due to the anti commutation relation. Furtheremore any interchange
of two particle creation operators in Eq. (2.31) will change the overall sign, which
is consistent for a set of particles obeying Fermi-Dirac statistics. For an outgoing
Majorana particle we define the contraction

ψM(x)|q〉0 ≡ ψM(x)|q〉0
= e−iqxu(q) |0〉 .

(2.32)

And we also have

ψ̄TM(x)|q〉0 ≡ ψ̄TM |q〉0
= e−iqxv̄T (q) |0〉 .

(2.33)

Contrary to Dirac fermions, where the expansion corresponding to Eq. (2.28) has
distinct operators since it is not subjected to the Majorana condition.
We will use the Feynman rules for fermions as in [Ref Peskin], Feynman rules for
Majorana fermions are also taken from [9].

2.3 Non Abelian Gauge Theory

All interactions in the SM relies on the principle of exploiting the gauge symme-
tries of the theory. We start out by considering N free Dirac fields with the same
mass m. They are described by the Lagrangian

L0 = ψ̄a
(
δabi∂
/
− δabm

)
ψb, (2.34)
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where we we have introduced the multiplet (ψa) = (ψ1, . . . , ψN)T . In Eq. (2.34)
we have for clarity included the summation indices a, b = 1, . . . , n which we will
omit from now on and refer to ψ as the multiplet of Dirac fields. Lagrangian in
Eq. (2.34) is invariant under the transformation in the fundamental representa-
tion of SU(N). By applying the exponential map we can write a V ∈ SU(N)
as

V = eiθjtj , (2.35)

where the θj’s are real constants, and the summation index j runs from 1 to
N2−1. The n×n matrices tj are the generators in the fundamental representation
of SU(N). The generators span a n2 − 1 dimensional vector space which forms
the Lie algebra for SU(N) together with the commutation relation

[ti, tj] = ifijktk (2.36)

The gauge parameters θj are real numbers for a global SU(N) transformation. We
get a local SU(n)-transformation by making θj functions of spacetime θj → θj(x).
If we transform the multiplet under a local SU(N) transformation in Eq. (2.34)
the kinetic term will pick up an extra term

L0
SU(n)→ ψ̄

(
i∂
/
−m

)
ψ + V †i∂

/
V (2.37)

= L0 + U †i∂
/
U 6= L. (2.38)

And the Lagrangian is clearly not invariant under local SU(2) transformations.
However, we can modify the differential operator by introducing the connection
Aiµ(x) in the covariant derivative

Dµ = ∂µ − igtiAiµ (2.39)

The connection is now n2− 1 independent gauge-fields Aµi (x). We now make the
substitution ∂µ → Dµ in Eq. (2.34), and if the new Lagrangian is to be invariant
with respect to local SU(N)-transformations we can derive the transformation
property for the gauge fields under such a transformation. If we demand that the
Lagrangian is invariant under a local transformation U ∈ SU(n) we must have

Dµψ
SU(n)→ UDµψ, (2.40)

Which will result in the desired transformation property of the SU(n) gauge
fields. We have

DµΨ = (∂µ − igtiAiµ)Ψ
SU(n)→ (∂µ − ig(tiAiµ)′)UΨ

= U
(
U †∂µU + ∂µ − igU †tiA′iµU

)
Ψ.
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And we see that Eq. (2.40) is fulfilled only if

U †tiA′iµU +
i

g
U †∂µU = tiAiµ. (2.41)

We have U∂µU
† = −(∂µU)U † so the general transformation property of the gauge

fields can be written as

tiA′iµ = U

(
tiAiµ +

i

g
∂µ

)
U †,

for any local U ∈ SU(n). We define the field tensor F j
µν from the commutator of

the covariant deriative with itself. The field tensor is given by

[Dµ, Dν ] = igti
(
∂µA

i
ν − ∂νAiµ

)
− ig2f ijktiAjνA

k
µ

≡ igtiF i
µν .

where F i
µν = ∂µA

i
ν−∂νAiµ−gεijkAjνAkµ is the SU(N) field tensor. Due to its defi-

nition the field strength inherits the transformation property under local SU(N)-
transformations from Dµ, thus it is not gauge invariant since it transforms as

tiF i
µν

SU(N)→ V tiF i
µνV

†. (2.42)

We can make a gauge invariant term from tracing over the generators. The term

tr
[
tiF i

µνtjF
µν
j

] SU(N)→ tr
[
V tiF i

µνV
†V tjF

µν
j V †

]
= tr

[
titj
]
F µν
j F i

µν .
(2.43)

And in the fundamental representation the generators satisfy C(N)δij = tr [titj] ,
where C(r) is just a number which depends on the irreducible representation r
of the generators tir. In the fundamental representation it is C(N) = 1/2. With
the correct normalization factor in for the contracted field tensor we can write
down the Lagrangian

LYM = Ψ̄
(
iD
/
−m

)
Ψ− 1

4
F µν
i F i

µν . (2.44)

It is called the Yang-Mills Lagrangian, and it is invariant under local SU(N)-
gauge transformations. The contracted field tensor represent the kinetic energy
of the gauge fields just as for QED, however, due to the ∝ g-term in F µν

i it also
contains other terms. We have

−1

4
F i
µνF

µν
i = −1

4

(
∂µA

i
ν − ∂νAiµ

)2
+

1

2
gf ijkAjνA

k
µ (∂µAνi − ∂νAµi )

− 1

4
g2f ijkf ilmAνl A

µ
mA

j
νA

k
µ.

(2.45)

Where the squared term is a full contraction of all gauge- and spacetime indices.
We recognize the first term as the Lagrangian of a free abelian gauge field account
for propagation of the gauge fields, in addition we also see three and four point
self-interactions.
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Prelude to Electroweak Theory

We will first consider a theory for a single, massless, free Dirac fermion fields ψ,
by inserting for the left- and right-handed components ψ = ψL+ψR we can state
the Lagrangian in the following form

LDirac = ψ̄Li∂
/
ψL + ψ̄Ri∂

/
ψR. (2.46)

We will now make the U(1) transformations of the left- and right-handed com-
ponents

ψL → ψL
′ = eiyLθψL (2.47)

ψR → ψR
′ = eiyRθψR (2.48)

Where yL, yR are the U(1)-charges, the gauge parameter θ are real numbers. The
Lagrangian in Eq. (2.46) is invariant under such local transformations. Note that
a mass term would not be gauge invariant if yL 6= yR, as they generally are. For
SM-fields we will refer to YL, yR as hypercharges and denote the abelian symmetry
group as U(1)Y . The Lagrangian for an arbitrary number massless fermions can
be written as

L =
n∑
i=1

(
(ψ̄i)L i∂

/
(ψi)L + (ψ̄i)R i∂

/
(ψi)R

)
, (2.49)

The U(1)Y charges yi,L, yi,R can, generally, all be distinct for all fields.
For further discussion relating this to the SM we will restrict the field content

to be N = 2 fermion fields. However, similar discussion can be made for arbitrary
N .

Aiming at the Electroweak interactions of the standard model we set the
hypercharges for the left-handed fields equal y1,L = y2,L = yL and keep the
hypercharges for the right-handed fields general. We also introduce the doublet

ΨL =

(
(ψ1)L
(ψ2)L

)
, Ψ̄L =

(
(ψ̄1)L, (ψ̄2)L

)
(2.50)

We can write the Lagrangian in Eq. (2.49) as

L = Ψ̄Li∂
/
ΨL +

2∑
i=1

(ψ̄i)R i∂
/

(ψi)R. (2.51)

And we immediately recognize a global SU(2)L symmetry for doublet Ψ in addi-
tion to the global U(1)Y symmetry. Applying the gauge principle as outlined in
Sec. 2.3, by making these symmetries we introduce the SU(2)L gauge fields Aaµ
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i = 1, 2, 3 and the U(1)Y gauge field Bµ. The covariant derivative then acts on
the field ΨL and the right-handed fields as

Dµ =
(
∂µ − igtaW a

µ − ig′yLBµ

)
ΨL (2.52)

Dµ = (∂µ − ig′yi,RBµ) (ψi)R, (2.53)

where g is the SU(2)L coupling and g′ is the U(1)Y coupling. The generators
for SU(2) in the fundamental representation are σi/2 where σi are the Pauli
matrices, i.e. ta = σa/2. The commutation relation in the corresponding Lie
algebra is [ta, tb] = iεabctc where the structure constants εabs are the components
of the three dimensional Levi-Civita tensor. For the abelian gauge symmetry
we do not have a set of generators, however, all the results from Sec. 2.3 still
holds by neglecting the structure constants. We define the field tensors from the
commutator of the general covariant derivative with itself as in Eq. (2.42) with
the covariant derivative in Eq. (2.52)

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µ W

k
ν (2.54)

Bµν = ∂µBν − ∂νBµ. (2.55)

Then we have arrived at the electroweak Lagrangian for the massless fermions
ψ1 and ψ2

LSU(2)L×U(1)Y =Ψ̄LiD
/
ΨL +

2∑
i=1

(ψ̄i)R iD
/

(ψi)R

− 1

4
W i
µνW

µν
i −

1

4
BµνBµν .

(2.56)

2.3.1 Spontaneous Symmetry Breaking and Goldstone’s
Theorem

Before we indulge the Higgs mechanism in the SM we state how the process of
spontaneous symmetry breaking (SSB) occurs for a multiplet Φ = (φa), a =
1, . . . , N . We consider the Lagrangian

L = ∂µφ
a∂µφa − V (Φ), (2.57)

where the potential V (Φ) is non-zero when the fields φa minimizes the total
energy of the system. This is obtain for a potential of the form in Fig. 2.1,
written for the multiplet Φ it is

V (Φ) =
1

2
µ2φaφa +

λ

4
(φaφa)2. (2.58)

For µ2 < 0 and λ > 0 the minimum of the potential will be non-zero. The fields
occupying the ground state will be the constant value Φ0 which minimizes V,
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φ0−φ0 φ

V

Figure 2.1: The Higgs potential of a single real scalar field φ, V (φ) = 1
2µ

2φ2+
λ
4φ

4. The field values at the two lower extrema of the potential are ±φ0.

this the referred to as the vacuum expectation value (VEV). We assume that
the vacuum expectation value is 〈Φ〉v = Φ0 with the (generally) non-vanishing
components φa0. We assume from now on that the potential is general, but with
the desired property of Fig. 2.1. Expanding the potential around its minimum
gives

V (Φ) = V (Φ0) +
1

2
(φa − φa0)(φb − φb0)

∂2V

∂φa∂φb

∣∣∣∣
Φ=Φ0

+ · · · . (2.59)

The matrix ∂2V
∂φa∂φb

∣∣∣∣
Φ=Φ0

= m2
ab can be diagonalized by an orthogonal matrix W ,

and the fields φ̃a = W ab(φ− φ0)b attains a mass equal to one of the eigenvalues
of m2

ab. Since the mass matrix is the Hessian of V with respect to the fields, the
masses must be non-negative since the Hessian V is positive (semi-)definite at a
minimum of V . We will now see that there is a one-to-one correspondence be-
tween the vanishing eigenvalues of m2

ab and the spontaneously broken symmetries
in the ground state.

We assume that the Lagrangian in Eq. (2.57) is invariant under symmetry
transformations belonging to a Lie group G. An infinitesimal transformation of
the components of Φ can be written as

φa → φa + εif i(Φ)a, (2.60)
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where εi are infinitesimal parameters, and the summation over i runs over n
independent symmetry transformations. For instance, if the fields where complex
an infinitesimal SU(N) in an irreducible representation r then the transformation
is specified by f i(Φ)a = i(tir)

abφb, with i = 1, . . . N2−1, i.e., runs over the number
of generators which is the independent SU(N) symmetry transformation that can
be performed of ψa. However, we will consider the transformation in Eq. (2.60)
to be completely general. Since the Lagrangian in Eq. (2.60) is invariant with
respect to the constant transformation in Eq. (2.60) by assumption, then the
potential must be invariant

V (φa) = V
(
φa + εif i(Φ)a

)
(2.61)

= V (φa) + εif i(Φ)a
∂V

∂φa
. (2.62)

Thus, we have, since εi are arbitrary

f i(Φ)a
∂V

∂φa
= 0, (2.63)

taking the derivative with respect to the fields and evaluating at the minimum
Φ0

f i(Φ0)a
∂2V

∂φaφb

∣∣∣∣
Φ=Φ0

= 0. (2.64)

Where we recognize the matrix m2
ab defined from Eq. (2.59). We see that for

some i two possibilities emerge:

a) The transformation f i (Φ0)a = 0 leaves the vacuum, and is still a symmetry
for small fluctuations about the VEV.

b) The transformation breaks the symmetry f i(Φ0)a 6= 0, but has mass-
eigenvalue equal to zero.

This implies that there is a one-to-one correspondence between the number of
massless fields, and the number of broken symmetries. These massless fields are
referred to as Goldstone bosons and this result is known as Goldstones theo-
rem. Even if we proved it here using real scalar fields the theorem generalizes to
complex fields as well, as an N complex fields can be written as 2N real fields.

The Higgs mechanism is similar in the SM, however here the symmetry is not
global but local. This implies that the field which aqcuire VEV interacts with
gauge fields. We shall see in the following section that SSB give mass terms to
gauge fields by fixing the gauge.
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2.4 Feynman Calculus and Higher Order Cor-

rections

Richard Feynman provided a physical picture for performing perturbation theory
in particle physics diagramatically through Feynman diagrams. However going
to higher order in perturbation theory makes seeming infinites appear when cal-
culating amplitudes.We will take Quantum electrodynamics (QED) to illustrate
how higher order corrections can be treated. The QED Lagrangian for a single
fermions field ψ (whose excitations are positrons and electrons) is

L = ψ̄
(
i(∂
/

+ ieA
/

)−me

)
ψ − 1

4
FµνF

µν . (2.65)

It is a U(1) (abelian) gauge theory, Fµν is the field tensor and me is the electron
charge. When calculating higher order contributions for QED would demand
calculation of diagrams in Fig. 2.2. The different diagrams in Fig. 2.2 have

+ + + · · ·

Figure 2.2: Feynman diagrams contributiong to fermion scattering in QED
for higher order. All contribution must be added together for the final ampli-
tude. In addition there are finite diagrams that contribute to the same order
which we have neglected to draw. Figure made using JaxoDraw [10].

different physical interpretations, and they end up as quantum corrections to the
ingredients in the QED Lagrangian. The first diagram where an electron loop
appears in the photon propagator account for renormalization of the electron
charge. The second diagram is the vertex correction, which accounts for the
anamolous magnetic moment of the electron ,(g − 2)e and its infinites cancels
with the external leg contribution in the last diagram.

We can clearly see that the diagrams in Fig. 2.2 are divergent. For instance,
for the first diagram the momentum integral has the form with the use of QED
Feynman rules from [11]

Iµν(q;me) ∝
∫

d4k

(2π)4
tr

[
γµ

1

(k
/
− q
/

)−me

γν
1

k
/
−me

]
(2.66)

where q is the momentum carried in the propagator k is the loop momentum, and
me is the mass of the electron. When the loop variable dominates, the integral
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it will go like (ignoring the spacetime structure)

Iµν ∼
∫ ∞

0

|k|3d|k| 1

|k|2 →∞. (2.67)

Such divergences for large momenta are referred to as Ultra Violet (UV) diver-
gences. One method for taking care of the UV-divergences is to introduce a
cut-off energy Λ for the upper limit. However, this procedure does not breaks
gauge invariance [11], as qµI

µν 6= 0 for a physical photon with q2 = 0. An-
other method which preserves gauge invariance is Pauli-Villars procedure, where
propagators for several massive fermions are introduced [12]

Iµν(q;me)→ Iµν(q;me)−
∑
i

Ci(Mi)Iµν(q;M
2
i ),

which cuts of smoothly for a large masses M2
i and Ci(M

2
i ) ensures that the

integral converge. Another option, is to use dimensional regularization where
the integral is performed in d-spacetime dimensions. We can performing a Wick
rotation in the time component of k by the substitution ik0

E = k0 and kiE = ki,
this shifts to Euclidian coordinates from Minkowski as −k2

E = −(k0)2 − k2.
By Wick rotating we can evaluate the integral using four dimensional spherical
coordinates (justifying the asymptotic behavior of the integrand in Eq. (2.67)).
Further details on dimensional regularization can be found in appendix B.

The fields (ψ,Aµ) and constants (e,me) that are present in the QED La-
grangian are bare quantities. They can be rescaled to the to the physical, renor-
malized, quantities (subscripted r) by

ψ = Z
1/2
2 ψr, Aµ = Z

1/2
3 Aµr

eZ1
2Z

1/2
3 = erZ1

(2.68)

The Z2,3 are the residues at the poles of the fermion- and photon propagators,
respectively when calculating the higher order corrections to them, Z1 is defined
as the scaling for the for the electron charge. Furthermore, the scale factors can
be written as Z1 = 1+δ1, Z2 = 1+δ2 and Z3 = 1+δ3. Inserting the renormalized
fields in the Lagrangian it can be written as

L = Lrenormalized + Lcounterterms, (2.69)

where Lrenormalized is the same Lagrangian as in Eq. (2.65) but with all renormal-
ized quantities. In Lcounterterms all the terms that are proprotional to δi occur.
The counter terms appear as additional Feynman rules, that needs to be included
for every order in perturbation theory, furthermore, they represent the (unob-
servable) difference between the renormalized quantities and the bare quantities.
By setting the renormalization scale we demand, to a given order in perturbation
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theory that the amplitude we are calculating corresponds to a measured value
at a specific energy. The δs are then determined (to the specific order in per-
turbation theory) in order to yield a finite amplitude. The physical parameters
me,r and er will then correspond to the measured value at the specific energy,
and they can be calculated at a different energy to a given order in perturbation
theory however their values will change — this is referred to as running.

This procedure can be made at each order in perturbation theory in QED,
thus QED is renormalizable. That is, divergences appear at every order in pertur-
bation theory, however, only a finite number of amplitudes appear to diverge and
only a finite number of counterterms are needed (none are needed at tree-level).

It is enough to refer to the mass dimension of the coupling constant in a given
theory in order to see if it is renormalizable or not. If the coupling constant is
dimensionless or has a positive mass dimension the theory is renormalizable,
however, if the coupling constant has a negative mass dimension, all amplitudes
diverge at a certain order in perturbation theory. For non-renormalizable theory
an infinite number of counterterms are needed to renormalize it, hence renormal-
ization is not possible, and the theory will predict infinite amplitudes.

2.5 Contents of the Standard Model

We will now state the most important features of the Standard Model (SM) of
particle physics. It is a theory following from the past ∼100 years of development
of particle physics. It covers all known interactions between the known fermions,
gauge bosons and the Higgs boson. There are two types of fermions as indicated
in Fig. 2.3. The leptons and quarks. Quarks are assumed to be the fundamental
particles in hadrons, up until recently (Aug. 2015) they where only known to form
mesons (bound states of two quarks with a short lifetime) and baryons (bound
states of three quarks, most are short lived but the proton is stable or has a
lifetime comparable to the age of the universe) before observations consistent
with a five quark state – the pentaquark – was observed at the LHCb experiment
at CERN [13]. In Fig. 2.3 all the particle content of the SM is displayed. The
three columns to the left are the known fermions, and the other particles are
gauge bosons and one scalar boson. In addition to the 12 fermions in the SM
there are also 12 anti fermions not displayed in the figure. The anti fermions
carry opposite charge but have the same mass and spin properties of the fermions.
Reading the fermion columns in Fig. 2.3 left to right we see that they are arranged
hierarchically in increasing mass; each column is referred to as a generation of
fermions according to the mass hierarchy.

There are six distinct types of quark in the SM, often referred to as six flavors.
It is usual to look at the consider the two types of quarks what we will call the
up-type quarks, and the down-type quarks. The up-type quarks are the up-
(u), charm- (c) and top (t) quark, and the down type quarks are the down- (d),
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Figure 2.3: The entire particle content of the Standard Model of particle
physics. Each tile in the figure refers to an elementary particle, with the mass,
charge (in units of |e|) and spin is indicated in the upper right corner. The 12
elementary fermions of the model are fitted in the three columns to the left.
The upper six (purple) are the quarks – the building blocks for the baryons.
The lower six (green) are the known leptons. The force carriers, or gauge
bosons, are listed in the complete column to the right (red), and the last piece
of the puzzle is the scalar Higgs boson (yellow). From [14]

strange- (s) and botton (b) quark. The electromagnetic charges of the quarks are
in units of the proton charge +2/3 and −1/3 for the up- and down- type quarks
respectively. Each quark carry an associated flavor quantum number conserved
independently in strong and neutral electroweak processes. For example, the top
quark has a topness quantum number of +1 and the bottom quark has bottomness
of2 −1, and the charm quark has charm of +1 (and zero topness, or bottomness),
while the strange quark has strangeness of −1. The corresponding anti-particles
have the same flavor quantum number with opposite sign.

We find six different types of leptons in the SM. The electromagnetically
charged leptons are the electrons (e),muons (µ) and tau (τ) -particles. They all

2It is conventional that the down type quarks has a negative flavour quantum number.
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carry an electromagnetic charge in a single unit of the electron charge. Associated
with each charged lepton are the neutrinos, they are charge neutral and were
initially postulated by Wolfgang Pauli in 1930, however, Enrico Fermi coined the
term neutrino [15]. The leptons (both charged and neutrinos) also come with an
associated lepton number Li = +1 i = e, µ, τ, and their respective anti particles
carry the same quantum number with opposing sign.

We proceed to look at the different sectors of the SM. The strong and elec-
troweak sectors are pure gauge theories. In the strong sector interactions among
the quarks are found, and the gauge theory is referred to as Quantum Chromody-
namics (QCD). The electroweak sector is a gauge theory for massless fermions
and gauge bosons. The mass terms appear in the Higgs sector, by fermion and
gauge couplings to the scalar Higgs doublet.

The Strong Sector The quarks also have three internal degrees of freedom,
known as color. That is a quark field is multiplet q = (q1, q2, q3)T . Through this
color symmetry the quark multiplets exhibit an SU(3)-symmetry, and the Yang-
Mills Lagrangian in Eq. (2.44) with N = 3 for six distinct multiplets constitutes
QCD. However, due to the strength of QCD the quarks rapidly form color singlets
as hadrons, hence color charge is never directly observed. We can write the QCD
Lagrangian as

LQCD =
∑
q

q̄γµ
(
i∂µ − igs

λa

2
Ga
µ −mq

)
q − 1

4
Ga
µνG

µν
a , (2.70)

where the sum is over all quarks q = u, d, c, s, t, b, mq is the mass of quark q, gs
is the strong coupling constant, Ga

µ a = 1, . . . , 8 are gauge fields, λa are the Gell-
Mann matrices and λa/2 forms the generators of QCD, Gµν

a are the field tensors
accounting for the propagation and self interactions of the gauge bosons. Due to
the self-interactions of the gauge bosons of QCD (called gluons) the QCD charge
exhibits an anti-screening effect, which effectively results in a stronger force at low
energies. QCD is at low energies (below ∼200 MeV) not well understood, as this
is in the so-called unperturbative regime of the theory which makes calculations
practically unsolvable.

The Electroweak Sector The electroweak sector is also a gauge theory for
fermions, however the left- and right-handed components of the fermion fields
are treated differently and the fermions are massless. The fermions (except the
neutrinos) will get Dirac mass terms from interactions to the Higgs doublet. In
Sec. 2.3 we laid the groundwork for the electroweak interactions for two massless
Dirac fermions. We define the SU(2)L doublets for quarks as

Qi =

(
ui

di

)
L

=

{(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

}
, (2.71)
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and note that the color degree of freedom is suppressed, i.e. ui and di are multi-
plets with three right-handed fermion fields. The SU(2)L doublets for the leptons
are defined as

Li =

(
νi

`i

)
L

=

{(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

}
(2.72)

, The for the right-handed fields we define uiR = (uR, cR, tR), (diR) = (dR, sR, bR),.
and for the leptons we define `iR = (eR, µR, τR). We will not make a definition
of the right-handed neutrinos as they ave zero hypercharge in the SM. We re-
mark that the hypercharges are independent of the generation index i, however,
different for the leptons and quarks. We can now simply state the Electroweak La-
grangian making substituting the quark- and lepton doublets for ΨL in Eq. (2.56)
and the lepton quark singlets for ψi in Eq. (2.56). We then get the Lagrangian

LEW = Q̄i iD
/
Qi + ūiR iD

/
uiR + d̄iR iD

/
diR

+ L̄i iD
/
Li + ¯̀i

R iD
/
`iR

− 1

4
W j
µνW

µν
j −

1

4
BµνBµν ,

(2.73)

By including the gluon self-interctions and propagation ter −1
4
Ga
µνG

µν
a we have

the locally SU(3)C × SU(2)L × U(1)Y -symmetric where the general covariant
derivative is

Dµ = ∂µ − igsQC
λa

2
Ga
µ − igQIσ

jW j
µ − ig′

Y

2
Bµ (2.74)

where the QC , QI and Y have values in the SM according to table 1.1. We note
that we have extracted an additional factor of 1/2 for what we now will refer to as
hypercharge Y . In table 1.1. we have also included the hypercharge for a complex

Field QC QI Y

Qi 1 1 1/3
uiR 1 0 4/3
diR 1 0 -2/3
Li 0 1 -1
`iR 0 0 -2
Φ 0 1 1

Table 2.1: The values for the charges in the covariant derivative for fields in
the SM.

scalar doublet Φ. This is the Higgs doublet, and through its gauge couplings in
the covariant derivative the massive W±- and Z− bosons will emerge.
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Higgs sector The Higgs part of the SM can be written as the Lagrangian

LHiggs = |DµΦ|2 − V (Φ), (2.75)

where Φ is

Φ =

(
φ(+)

φ(0)

)
, (2.76)

where φ(+) and φ(0) are complex scalar fields. The covariant derivative acts on Φ
according to Eq. (2.74) with the charges non-zero charges QI and Y are specified
in table 1.1 The potential have the assumed form

V (Φ) = µ2|Φ|2 +
λ

4
|Φ|4. (2.77)

The potential makes the Higgs doublet to take a non-vanishing VEV, which
will break the SU(2)×U(1)Y symmetry, and leave one massive scalar field (the
physical Higgs field), and three Goldstone bosons, one for each broken symmetry.
However, the Goldstone bosons will not appear if we consider a unitary gauge,
which we define below. First, we can write the Higgs doublet in terms of a local
SU(2)L × U(1)Y as

Φ = U(x)

(
0

1√
2
H(x)

)
. (2.78)

Where H is a real scalar field. The transformation U(x) has the form

U(x) = eiθ
i(x)σ

i

2 eiβ(x). (2.79)

Due to the form of the potential V . In unitary gauge we fix the gauge parameters
θ1(x) = θ2(x) = 0 and θ3(x) = β(x), this leaves the lower component of Φ
invariant. We expand H about the VEV

H(x) = h(x) + v, (2.80)

where v is the VEV and h(x) is a real scalar field with vanishing VEV. In unitary
gauge we find

|DµΦ|2 =
1

2
(∂µh)2 +

(
g2

8
v2|W 1

µ − iW 2
µ |2 +

v2

8
(gW 3

µ − g′Bµ)2

)(
1 +

h

v

)2

.

(2.81)

Inserting Eq. (2.80) for H we get mass terms for superpositions of the SU(2)L
and U(1)Y gauge bosons. We define the massive W± boson as

W±
µ =

(
1√
2
W 1
µ ∓ iW 2

µ

)
, (2.82)
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and the massive Z-boson as

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
. (2.83)

They have the masses

mW =
g2

2
v2, mZ =

√
g2 + g2

v2

2
(2.84)

Defining the mixing angles

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, (2.85)

clarifies that the definition of the Z-boson is a rotation in the (W 3
µ , Bµ) - plane.

There is another superposition orthogonal to the superposition in Eq. (2.83) and
this is the photon Aµ which does not get a mass from the SSB. The mixing in of
(W 3, B) can be written as(

Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3
µ

Bµ

)
.

This concludes the mass generation of theW±- and Z- boson. Due to the choice of
unitary gauge, the Goldstone bosons in the scalar Higgs doublet are not apparent
as separate degrees of freedom. However, their degrees of freedom appears as the
massive gauge bosons, as massive vector fields also have longitudinal polarizations
in addition to the two degrees of freedom in the transverse polarizations.

We can now rewrite the covariant derivative from Eq. (2.74) in terms of the
photon A and W±-, Z-bosons

Dµ =∂µ − gs
λa

2
Ga
µ − iQI

g√
2

(
W+
µ σ

+ +W−
µ σ
−)

− i g

cos θW
Zµ

(
QI

σ3

2
− sin2 θWQ

)
− ig sin θWQAµ,

(2.86)

where σ± = 1
2
(σ1 ± iσ2), and we have introduced the charge matrix

Q = QI
σ3

2
+
Y

2
, (2.87)

and we see that the fields get the corresponding as the particles in Fig. 2.3 charges
according to the weak isospin QI and the hypercharge Y from table 1.1. in units
of e = g sin θW where e is the electron charge.
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We can form SU(3)C × SU(2)L × U(1) invariant couplings between fermions
and the Higgs doublet

LHff =− yijd Q̄iΦ djR − yiju Q̄iΦ̂ ujR + h.c. (2.88)

− yij` L̄iΦ `jR + h.c., (2.89)

where Φ̂ = iσ2Φ∗ is introduced to give mass to the in a manner that is both
U(1)Y and SU(2)L gauge invariant. After SSB when the Higgs doublet acquires
VEV we have in unitary gauge.

LHf =− yijd vd̄iL djR −−yiju vūiL ujR + h.c.

− yij` v ¯̀i
L `

j
R + h.c.

+ (Yukava interactions with the physical Higgs boson),

(2.90)

where the Yukawa couplings yijd/u/` are diagonal for the physical fields. However,

they are not required to be diagonal by the weak eigenstates in Eq. (2.71), what
then appears are the Dirac mass terms for the charged leptons and the quarks.
The mixing of the mass eigenstates to the weak basis for the quarks is quantified
by the Cabbibo-Kobayasi-Maskava (CKM) matrix [16, 17] and we shall not go
into the details, however, we mention that the CKM matrix contains one complex
phase which parametrizes the CP violation in the SM [18]. Furthermore, it also
makes it possible for quark interactions across generations. There could be a
similar matrix for the leptons, however due to the non-interacting right-handed
neutrinos such a matrix disappears from the SM.

Neutrinos in the SM Right-handed neutrinos does not interact with any-
thing in the SM. However, it has been proven experimentally that neutrinos can
oscillate across generations [19] suggesting that lepton number is not conserved
overall. Neutrinos have been found to have a small mass (O(1 eV)), but the na-
ture of the mass term is not known (whether it is Dirac or Majorana). Neutrino
oscillations suggests that the νe,µ,τ which take part in weak neutral- and charged
currents are not the mass eigenstates. The neutrino mixing is parametrized by
the Pontecorvo-Maki-Nakagawa-Sakata [20, 21] (PMNS) matrix, which rotates
the mass basis neutrinos νi=1,2,3 into the lepton number carrying neutrinos νe,µ,τ .



Chapter 3

Extending the Standard Model

Though tremendously successful, the SM still leaves a lot of questions unan-
swered. Why do seemingly large higher-order contributions to the Higgs mass
cancel? How do particles at the subatomic level interact gravitationally? What
is the link between the vacuum energy in QFT and the vacuum energy of cos-
mology? In addition to the matter-particles in the SM there are also conclusive
cosmological evidence for a state of matter not found in experiments or theoret-
ical predictions of the SM – another type of matter, not consisting of leptons or
quarks, that we know nothing about – Dark Matter (DM).

In this chapter we address some of these unanswered questions, and we shall
keep our focus on DM and its history. We will also discuss some possible can-
didates in pre-existing extensions of the SM, with a focus on Supersymmetric
extensions – a class of theories capable of providing adequate answers to some of
the problems the SM faces.

3.1 What are we missing?

Hierarchy problem In order to give the measured mass of the Higgs boson of
125.98 ± 0.42(stat.) ± 0.28(sys.) GeV [22], divergent higher-order contributions
need to cancel. When calculating higher order contributions to its mass, the Higgs
self interaction and Yukawa couplings to the fermions, using a cut-off scheme to
regularize the divergent loop integrals, the Higgs mass gets a correction of the
form

δm2
h = −|gf |

2

8π2
Λ2 +

gs
16π2

Λ2 + · · · , (3.1)

where Λ is the cutoff energy of the loop integral, gf is the Yukawa coupling to the
fermions and gs is the coupling for the Higgs self interaction, the dots indicate
finite and less “severe” UV-divergences. The cutoff is typically Λ ∼ 1019 GeV
(Planck mass). Hence there must occur a cancellation in Eq. (3.1) between terms

27



28 Extending the Standard Model Chapter 3

of of order (1019 Gev)2. The SM does not provide an answer to how, or why, this
cancellation occurs.
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Figure 3.1: Running SM coupling constants (dashed lines) and the Minimal
Supersymmetric Standard Model prediction of the running of the coupling
constants (red and blue). αs(mz) is varied between 0.117 and 0.121. The
β-functions for the relevant couplings are calculated to two-loop precision.
From [23].

Unification The SM has 19 free parameters which can be seen in Table 2.1.
These have to be fixed to fit data from experiments. There are also open questions
such as the number fermion generations, as there is no mechanism explaining
why there should be only three generations of quarks and leptons. We have no
explanation to why the apparent gauge structure of the SM is precisely SU(3)C×
SU(2)L × U(1)Y .

Quantum corrections beyond leading order results in the running of the gauge
couplings gs, g, and g (equivalently; αs = g2

s/4π, sin θW = g/
√
g2 + g′2 and

αEM = e2/4π2 with e = g sin θW ). The running refers to them being energy
dependent quantities, and not constants. Good measurements have been made
of how these couplings run. For the QCD coupling constant the measurement goes
up to energies of 1.4 TeV [24,25]. The electroweak couplings are used for precision
tests of the SM, and measurements of the numerical value of αEM are known to to
astonishing accuracy experimentally [26,27], agreeing with theoretical predictions
up to 10 loop order [28] taking into account both weak and QCD corrections.
However, a Grand Unified Theory attempt to consider SU(3)C×SU(2)L×U(1)Y
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as the result of spontaneous symmetry breaking of a larger gauge group, would
reduce the number of free gauge parameters to one single coupling parameter αG
at some breaking scale MG. A premise for such unification is that the running
gauge coupling constants of the SM intersect at one breaking scale MG. The
SM prediction for the running of the inverse coupling constants g2

s , g
2 and g′2 are

indicated by the dashed lines in Fig. 3.1. With the current content of the SM, the
coupling constants appear to not all intersect at the same energy. However, the
three points of intersection are close (though spanning ∼ 2 orders of magnitude
in energy), which entertains the idea of unification. The colored lines in Fig. 3.1
show the running with additional field content and couplings introduced through
an extension of the SM in the Minimal Supersymmetric Standard Model (MSSM).
We will return to the MSSM in in Sec. 3.3.

Parameter

Gauge couplings for SU(3)C , SU(2)L and U(1)Y interactions 3
Fermion masses 9
Quark mixing (CKM-matrix) 4
VEV and four-point coupling for the Higgs 2
QCD θ-parameter 1

In total 19

Table 3.1: The free parameters of the SM, not including neutrinos.

Gravity The three fundamental interactions in particle physics are the weak
and strong interactions and the electromagnetic interaction. However, this is not
the exhaustive list of the known interactions in physics. The missing piece is
the gravitational interaction. Including gravitational interactions would imply
unifying QFT with Einstein’s General Relativity (GR). This would require de-
veloping a quantized theory for gravity. However, we can address the Newtonian
gravitational potential for two massive objects with masses M,m separated by a
distance r

VN(r) = −GN
Mm

r
, (3.2)

where GN = 6.674× 10−11 Nm2

kg2 is the gravitational constant. Comparing Eq. 3.2
with the Coulomb potential between two charges of opposite sign in units of e,
V (r) = −αEM/r, we recognize GN as the coupling constant for a quantized theory
of gravity. However, in natural units the mass dimension of GN is −2. This makes
gravity fundamentally non-renormalizable, and it produces infinite answers be-
yond leading order. In a cutoff regularization scheme this might indicate the ap-
pearance of new physics at the Planck mass

√
1/GN = MPlanck ∼ O(1019 GeV).
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It is not necessary to account for gravitational interactions in the SM, as the
gravitational attraction is ∼ 29 orders of magnitude weaker than the weak inter-
actions below the electroweak scale.

Dark Matter There is now compelling evidence that the content of the Uni-
verse is not dominated by the baryonic states of matter described by the SM.
More recent observations of the formation of the structures in the universe today
can not be explained without an invisible matter component now known as Dark
Matter (DM). In order to account for the structures we see in th universe today,
this invisible non-baryonic matter is mostly cold, meaning non-relativistic, at the
time when these structures started to form. There are no viable DM candidates
among the field content of the SM. We will turn to a more thorough discussion
of DM in Sec 3.2.

Dark Energy Supernova explosions of type 1a (SNe 1a) have been used as
standard candles to measure distances to galaxies. Studies of distances to distant
galaxies using SNe 1a [29, 30] have proven that the universe is expanding at
an accelerating rate. This is is incorporated in the cosmological constant Λ in
Einsteins field equations. The cosmological constant is interpreted as the energy
density of empty space, referred to as Dark Energy (DE). The measured value
of the cosmological constant is very small, Λ ∼ (10−3 eV)4. In a QFT we can
make a rough estimate of the contribution to the vacuum energy by taking into
account all diagrams with no external legs and setting the cutoff at the Planck
mass MPlanck ∼ 1019 GeV. This gives a discrepancy of Λ/(M4

Planck) ∼ 10−124,
which is referred to as the Cosmological Constant Problem.

3.2 Dark Matter and the Matter-Energy Com-

ponents of the Universe

The history of evidence for DM spans nearly all of the past century in observa-
tional cosmology. However, the idea that the DM must be a significant fraction
of the matter-density component of the universe gained momentum in the 1980s
as more galaxy clusters and galaxies were studied. We will in this section go
through some of the cosmological evidence for DM, leading up to what proper-
ties we might expect from DM in particle physics.

Early hints of dark matter In 1933 Fritz Zwicky [31] calculated the required
mass to fit with the observations of the motion of the luminous matter (the
matter inferred from the observed galaxies and gas which emits electromagnetic
radiation, i.e. visible matter) in the galaxy cluster ”Coma Cluster”. Zwicky
arrived to the conclusion that the cluster must be more massive than the observed
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luminous matter content. He called this excess of matter ”dunkle materie”, which
translates to ”dark matter”. In 1970 Vera Rubin studied the rotation curves

Figure 3.2: Observed rotational velocities (red points) in the spiral galaxy
NGC 3198 [32] compared with idealized Keplerian motion (dashed line). Fig-
ure from [33].

of several rotating spiral galaxies [34]. Newtonian dynamics predicts that the
rotational velocity of objects moving a large radial distances r from the center of
the galaxy follows ideal Keplerian motion, such that the velocity goes as ∝ r−1/2.
However, by studying the Doppler shifts for several galaxies, no such fall-off for
objects distant from the galactic center was observed, which could be explained
if the galaxies are more massive than observations imply.

These were the first two indications of the existence of DM. However, these
observations alone are not considered evidence, as a modified theory of gravity
could also account for these discrepancies.

Gravitational Lensing The studies put forward by Zwicky and Rubin raises
two suspicions; either our descripition of gravity is wrong and needs modification,
or they indicate the presence of DM. Further studies of gravitational lensing
from galactic clusters provide evidence for deflection of light which can not be
explained by the observed amount of luminous matter [36]. Observations of the
”Bullet Cluster” in Fig.3.3 provide more conclusive evidence for DM, and of
the fact that it must be collisionless, i.e. that DM exhibits no significant self-
interactions. In the picture to the left in Fig.3.3 there are two galaxy clusters that
have merged. The contours in this picture show the gravitational lensing effect,
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Figure 3.3: Both figures show two galaxy clusters that have collided. The
contours in each plot indicate where the gravitational lensing effect is strongest,
i.e. where the significant matter components of the galaxy clusters are located.
To the right we see the clusters in the optical spectrum. The objects emitting
light in this spectrum are galaxies. To the left we see the same image in the
X-ray spectrum, and the same contours. The gas in the galaxy clusters have
interacted, resulting in hotter gas closer to the collision point, and a larger
concentration of gas further from the other matter component. The figure is
from [35].

indicating that most of the matter exhibiting gravitational attraction is centered
around the galaxy components in the clusters. However, there is not enough
luminous matter observed in the galaxy clusters to account for this gravitational
lensing effect. In the picture to the right we see the same image in the X-ray
spectrum. We see that the gas component of the galaxy clusters have interacted
forming a collision front with higher temperature gas indicated by the yellow
color. We also see the same contours as in the picture to the left, indicating
that most of the matter components on the galaxy clusters have interacted far
less in the cluster collision. We observe that the gas in galaxy clusters make up
a significantly higher mass fraction of the cluster than the galaxies and objects
emitting light in the visible spectrum. Thus, the Bullet Cluster provides direct
evidence of DM without significant self-interactions present on the scale of galaxy
clusters.

Cosmic Microwave Background In the primordial plasma immediately after
the Big Bang, the universe was too hot and dense for electrically neutral hydrogen
to form, photons scattered on electromagnetically charged particles at a high rate
and as a result the universe was opaque. After the universe had expanded and
cooled, neutral hydrogen was able to form (referred to as “recombination”). The
photon radiation was still present, but the photons did not interact with matter at
the same rate as prior to recombination. Immediately after the photons decoupled
from matter in recombination the radiation is well described as that of infrared



Section 3.2 Dark Matter and the Matter-Energy Components of the Universe 33

black body radiation from a gas at a high temperature. Due to the expansion of
the universe, this radiation has been redshifted to the microwave-spectrum and
is now observable as the Cosmic Microwave Background (CMB) radiation, which
has a current temperature of ∼ 2.725±0.0057 K. First discovered by Penzias and
Wilson in 1965 [37], the CMB has a nearly uniform temperature. However, small
density perturbations in the early universe have resulted in small anisotropies in
the temperature of the CMB. These anisotropies have been studied recently by
the Planck [38] satellite, and also WMAP [39] before that, in order to describe the
densities of the different matter-energy components in the universe today. The
density for a given matter component ρ is given in terms of a density parameter
Ω as

Ω =
ρ

ρ0

, (3.3)

where ρ0 = 3H2

8πGN
, where H is the Hubble parameter, ρ0 is the critical density for

a flat universe. Combined analyses of the CMB, and of early structure formation
known as Baryonic Acoustic Oscillation (BAO) and SNe 1a, results in a non-
zero DE-component ΩΛ versus the total matter content Ωm as we can see from
Fig. 3.4. We state the latest (2015) estimates from the Planck collaboration for
the cosmological parameters in the universe today at 68%-confidence from [38]:

(Baryonic matter) Ωbh
2 = 0.02230± 0.0014

(DM) ΩDMh
2 = 0.1188± 0.0010

(DE) ΩΛ = 0.6911± 0.062
(Hubble’s parameter) H0 = 67.74± 0.46 km

s Mpc

(Universe lifetime) t0 = 13.799± 0.021 Gyr,

h =
H0

100 km2s−1Mpc−1 .

(3.4)

The sum of the densities are close to unity, implying that the universe is close to
flat, i.e. the ”spatial curvature density” Ωk = 1 −∑i=b,DM,Λ Ωi = 0.0008+0.0039

−0.004

is small. From the values in Eq. (3.4) we can conclude that we have a close to
flat universe dominated by DE (∼ 69%), and the total matter content is ∼ 31%,
where ∼ 5% is baryonic matter and ∼ 26% is DM.

3.2.1 Hot DM vs. Cold DM

Hot dark matter (HDM) are invisible particles (i.e. not emitting any light) that
moved at ultrarelativistic velocities at the time of recombination. If the DM after
recombination was dominantly hot, it would predict a structure formation of the
universe known as the ”top-down” scenario. In this scenario large ”pancakes” of
matter form after recombination. The pancakes increase in size until they frag-
ment and form the large scale structures of filaments and voids, and eventually
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Figure 3.4: Limits on the DE and total matter densities ΩΛ,Ωm in the
universe. The limits are from Baryonic Acoustic Oscillations-, Superovae 1a-
and Cosmic Background radiation observations. The black line indicates the
matter/DE profile for a flat universe. From [40].

then the super clusters, galaxy clusters and the galaxies we observe today. In
short, in the top-down scenario the largest structures form prior to the smaller
— clusters and galaxies. Candidates for HDM are light (mass in the eV range)
ultrarelativistic particles, e.g. neutrinos.

Cold dark matter (CDM) refers to DM particles moving at low velocities at
the time of recombination. This kind of DM would predict a different scenario for
the formation of structures in the universe, referred as the ”bottom-up” scenario.
Here dwarf galaxies form first after recombination and merge into larger galaxies,
eventually forming the large-scale structures in the universe.

In the top-down scenario HDM prevents early clustering of smaller galaxies.
In contrast, the bottom-up scenario predicts galaxies old enough to be compared
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with the lifetime of the universe, which is what we observe. Further observations
of the large-scale structures of the universe [41, 42]and numerical N -body simu-
lations [43] are also consistent with the bottom-up scenario. Hence, the observed
universe is consistent with DM being dominated by CDM. This excludes the
neutrinos as potential DM candidates. The simplest way to account for the cos-
mological observations of the universe today is formulated in the ΛCDM-model,
which describes a universe dominated by DE and CDM. The ΛCDM-model is
referred to as the Standard Model of Cosmology.

3.2.2 Candidates for CDM in Particle Physics

There are many candidates for CDM provided from extensions of SM in particle
physics. Maybe the most popular are the Weakly Interacting Massive Parti-
cles (WIMPs). This is a class of DM candidates which only interacts with SM
fields by a weak scale interaction, in addition to gravity, and they have a mass
O(100 GeV) − O(1 TeV). Possible popular WIMP candidates can be found in
for instance theories of universal extra dimensions as the lightest Kaluza-Klein
particle [44], as the lightest supersymmetric particle in supersymmetric theories
or as an inert Higgs boson. Another popular candidate which is not a WIMP is
the axion [45]. Despite not being massive (it acquires a small mass O(10−5eV)),
it is a candidate for CDM.

The spin statistics of a WIMP particle is model dependent. There is no
consensus of whether it should be a boson (vector or scalar) or a fermion. The
existence of a WIMP particle χ (and its antiparticle χ̄, if it exists) leads naturally
to a DM relic density (observed DM density today) if the WIMPs can annihilate
via a weak scale interaction into SM particles f and f ′.

When the temperature of the universe is much greater than the mass of the
WIMPs, i.e. T >> mχ, both ff ′ → χχ̄ and χχ̄ → ff ′ can occur as a thermal
process. As the time moves forward, the temperature decreases, and when T <
mχ only DM annihilation to SM particles can occur as the opposite reaction is
Boltzmann suppressed since the SM particles must have velocities from the tail
of the Boltzmann distribution. The comoving1 number density of the WIMPs nχ
can be described by the Boltzmann equation

dnχ
dχ

= −3Hnχ − 〈σann.v〉
(
n2
χ − (neq.

χ )2
)
, (3.5)

where H = ȧ/a (a being the scale factor of the universe in the Friedmann-
Robertson-Walker metric [46]) is Hubble’s constant at the time denoting the
expansion rate, neq.

χ is the comoving number density for the WIMPs at thermal
equilibrium, and 〈σann.v〉 is the thermally averaged total annihilation cross sec-
tion for the annihilation process χχ̄ → ff ′ times the relative velocity of the

1A comoving volume expands with the expansion rate H of the universe.
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WIMPs. If the WIMPs stay at thermal equilibrium Eq. 3.5 makes the comoving
number density drop exponentially. If this were to continue the DM relic den-
sity would vanish. However, approximately when the annihilation rate nχ〈σann.v〉
becomes lower than the expansion rate H the probability of WIMPs meeting in
a collision becomes small, and the comoving number density remains constant
from this point. This is referred to as freeze out. The number density at freeze
out corresponds to the relic density observed today ΩDMh

2 ∼ 0.1. For a small
〈σann.v〉, freeze out occurs at a high temperature, resulting in a lower value of
the relic density as is seen in Fig. 3.5. For WIMPs annihilating via weak scale

Figure 3.5: Comoving WIMP-number density as a function of x = m/T
where, T is temperature and m is the mass of the WIMPs. Increasing the
thermally averaged total cross section times velocity 〈σann.v〉 = 〈σAv〉 de-
creases the relic density of the WIMPs as indicated by the dashed curves. The
solid curve shows the exponential fall-off in the number density if the WIMPs
stay in thermal equilibrium. From [47].

interactions the freeze out occurs at a temperature Tcrit. ≈ mχ/20. Here the
WIMPs are non-relativistic, i.e. cold. Calculating the resulting DM relic density,
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assuming CDM [48] gives

ΩDMh
2 =

nχ,todaymχ

ρ0,today

≈ 3× 10−27 cm3s−1

〈σann.v〉
. (3.6)

Between freeze out and today the WIMPs loose the ability to inelastically collide
(known as kinetic decoupling) and they do not track the temperature of the SM
particles in the universe, so that cold non-interacting DM is what remains —
which, incidentally, are the features of DM consistent with observations. Fur-
thermore, for weak scale WIMPs annihilating via the weak interaction we have,
roughly

〈σann.v〉 ∼
α2

weak

m2
weak

∼ (10−2)2

(100 GeV)2
∼ 10−25 cm3s−1, (3.7)

thus leaving a DM relic density corresponding remarkably well with the measured
relic density ΩDMh

2 ≈ 0.1. This is referred to as the WIMP miracle.

Features of WIMPs as DM

We can now summarize a some properties for the WIMPs as DM candidates.

• The WIMPs must be electrically neutral and only interact weakly and
gravitationally, as they can not be directly observed as luminous matter.

• They must be stable particles. Since the relic density is set in in the early
ages of the universe, the WIMPs must be stable in order to keep the relic
density through the eons, or at least metastable with a lifetime comparable
to the age of the universe.

• The mass of WIMPs is assumed to be comparable to the weak scale to get
the observed relic density, thus the mass is in the range O(100 GeV) -O(1
TeV).

3.2.3 Detection Methods Dark Matter

Several experiments try to measure DM in order to describe the properties of
the particles. Experiments for measuring DM can be divided in three categories:
Direct- and indirect detection, and production.

Direct detection experiments try to observe DM particles interacting with
SM particles. High-sensitivity experiments aim to measure events where WIMPs
scatter of massive nuclei in large volumes. The WIMP scattering cross section off
nuclei can be calculated model dependently. However, the WIMPs are assumed
to constitute the galactic DM halo, and its mass- and velocity distribution in
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Figure 3.6: Diagram illustrating the different experimental approaches for
discovering DM by considereing time-flow in three different directions. With
time moving from bottom to top it illustrates SM particles ff ′ annihilating to
a pair of DM χχ. Reading it left to right illustrates a generic direct detection,
and from top to bottom we have DM annihilation to SM particles.

the Milky Way have large uncertainties. The known velocity parameters in the
galactic rest frame are the velocities of the sun with respect to nearby stars
(proper velocity) and the sun’s rotational velocity around the center of the Milky
Way, as well as the annular modulation from Earth’s orbit around the sun. Taking
into account that observed velocities of bodies in the reference frame of the Milky
Way are of O(10−3c) the deposited recoil energies for DM particles in the mass
range 10GeV−−1TeV would be in the range 1− 100 KeV [49]. The differential
scattering rate N for a WIMP scattering of a nucleus with mass M giving it a
recoil energy Er is generally [50]

dN

dEr
=

σρ

2µ2mχ

|F (q)|2
∫ vesc

vmin

f(v)

v
d3v, (3.8)

where σ is the cross section for the scattering, mχ is the WIMP mass, F (q) is
the nuclear form factor, µ is the reduced mass µ = mχM/(mχ +M) and f(v) is
the WIMP’s velocity distribution. The integral is to be taken from the minimum
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WIMP velocity in order to recoil of the nucleus, to the escape velocity vesc where
the WIMPs escape the galactic DM halo.

Detecting DM by studying annular modulation on top of a constant back-
ground are being performed by e.g. DAMA/LIBRA [51]. Experiments such as
XENON [52] and LUX [53] does not consider annular modulation but trying to
measure WIMP scattering of nuclei through high-sensitivity measurements and
suppressing the background. In Fig. 3.7 we see the limits from several high sen-
sitivity experiments. We see that the discovery regions from DAMA/LIBRA and
CDMS are in the excluded area from the most recent XENON and LUX results,
thus these discovery regions are not compatible with these exclusion limits.

Figure 3.7: Limits on WIMP-nucleus cross section, several direct detec-
tion experiments are displayed. The strongest limits are from the LUX col-
laboration (light green). The estimated limits from upcoming XENON1T-
experiment displayed for 2-20 yrs of exposure time. From [54].

Indirect detection Reading the diagram in Fig. 3.6 with time going down-
wards is the generic process behind indirect detection, where experiments are set
up measure products from DM annihilation (or possibly decay) in cosmic rays.
It is paramount that the SM particles are stable in order to detection experi-
ments on Earth or in orbit. Excess from background is studied, and photons
and neutrinos are favoured as they point to the source while other particles such
as positrons, antiprotons and anti-deuterons can diffuse in the galactic magnetic
field. The process χχ → γγ or γZ would result in a sharp peak at the DM
invariant mass if the photons are detected. As the photons would point to the
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Figure 3.8: Constraints on DM annihilation cross section from six years of
data from Fermi-LAT for gamma rays in χχ→ bb̄ process. Other experiments
are also visualized. The grey and black line show the limits from Milky Way
halo search and Milky Way dwarf spheroidal galaxy search, respectively. From
[55].

source one might observe radiation from regions in the galaxy with assumed large
DM densities, in order to potentially reduce background. We can calculate the
expected flux of photons at earth, this would depend on the DM distribution in
the galaxy. Measuring the photon spectrum can then be used to set bounds on
the dark matter annihilation cross section by assuming a WIMP scenario with
the canonical expression for the (low energy) temperature averaged cross section

〈σann.v〉 ' 3× 10−26 cm3s−1. (3.9)

The PAMELA [56] experiment is observing the high energy electrons in cosmic
rays, and Fermi-LAT [57] studying gamma rays are two examples of experiments
looking to indirectly detect DM. In Fig. 3.8 shows limits put on the DM annihi-
lation cross section from Fermi-LAT.

Direct Detection Reading with time flowing from the bottom to top yields
the generic process for production of DM. This is done, for instance in particle
accelerators, where SM particles are accelerated to near light-speed velocities an
collide in a detector. At the LHC the proton-proton collisions at a center of mass
energies of 14 TeV are performed.
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The protons themselves are not fundamental particles but they consist of
quarks and gluons collectively referred to as partons. The partons in the proton
carry fractional amount x of the protons total momentum. The fraction x is
unknown, however, the its probability distribution function is obtained by deep
inelasic scattering of electrons off protons. Since it is the partons in the proton
are the interacting particles in a collision total momentum along the collision axis
is unknown. Hence, momentum and energy conservation is constricted to apply
only in a direction transverse to the collision axis, this is referred to a transverse
momentum or transverse energy.

The ATLAS and CMS detectors are sensitive to particles that couple electro-
magnetic and strong coupling particles, thus if a WIMP particle is produced it
can not be detected directly by the experiment. However, if the WIMP is pro-
duced together with a muons or jets with large amounts of transverse momentum
it can be detected as missing transverse momentum. For instance if one of the
initial state quarks radiate a high energetic (hard) gluon, the gluon will quickly
hadronize to form a jet. The jet will recoil of the WIMP, and an event with
missing transverse energy will be detected if the transverse momentum of the jet
is passes a given cut. In Fig. 3.10 there recent results from a jet search from
ATLAS, with the cut at 250GeV.

χ

χ

g

q

q′

Figure 3.9: Diagram for initial state radiation of high energetic gluon from
the incident quarks. The quarks eventually annihilates and a WIMP pair is
produced which escapes the detector.

3.3 A Brief Introduction to Supersymmetry

Supersymmetry (SUSY) appeared from an attempt to unify the exterior symme-
tries of Special Relativity with the interior symmetries of particle physics. As
we have seen, the symmetry group of SM relies on the internal spaces that the
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Figure 3.10: Monojet analysis performed by the ATLAS experiment at LHC.
It shows the distribution of the jet with the leading pT which passes the cut
pT > 250 GeV, and missing energy of ET >250 GeV. In blue dashed the
missing energy is the distribution for a model with a Dirac WIMP with mass
mχ = 150 GeV whose interactions to SM quarks are mediated by a massive
new vector boson with mass mmed = 1000 GeV. From [58].

SM quantum fields can be arranged in, the well known gauge symmetry group
SU(3)C × SU(2)Y × U(1)Y .

It was shown in [59] that an attempt to extend the Poincarè group to also
include the internal gauge symmetries of particle physics can not be done. In [60]
the concept of a graded Lie algebra was introduced in order to successfully unite
the external symmetries of spacetime with the internal symmetries of particle
physics. In short, in order to extend the spacetime symmetries described by the
Poincarè group one extends the Lie algebra with new operators (called the Majo-
rana central charges, or spinor charges) and anti -commutation relations among
themselves. The graded Lie algebra, or superalgebra is realized by introducing
the Majorana spinor charges Qa, a = 1, . . . , 4. The Majorana spinor charges can
be considered as the components of spinor

Qa =

(
Qα

Q̄α̇

)
a

. (3.10)
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which satisfies the relations

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0 (3.11)

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 (3.12){
Qα, Q̄α̇

}
= 2σµαα̇Pµ (3.13)

[Qα, J
µν ] =

i

4
(σ̄µσν − σν σ̄µ) β

α Qβ, (3.14)

(3.15)

where σµ = (1, σ) and σ̄µ = (1, σ), Pµ = i∂µ is the momentum operator (generator
of translations) and Mµν are the generators of boosts and rotations. The rela-
tions in Eqs. (3.11)-(3.14), along with the commutation relations for the Poincarè
algebra form the Super-Poincaré algebra, which is a graded Lie algebra.

We define a SUSY transformation as

δη = ηαQα + η̄α̇Q̄
α̇, (3.16)

where η and η̄ are Grassmann variables ordered in left- and right-handed Weyl
spinors, considered infinitesimal. By studying the irreducible representations
of the Super-Poincarè algebra one encounters superfields. Analogous to Weyl-
spinors being irreducible representations of the L↑+-algebra, the vector super-
fields and left-, right- handed superfields are the irreducible representations of the
Super-Poincarè algebra relevant for forming the Minimal Supersymmetric Stan-
dard Model (MSSM). One left-handed superfield (right-handed) contain the phys-
ical degrees of freedom of left-handed Weyl fermion (right-handed Weyl fermion)
as well as a one complex scalar field. And the physical degrees of freedom in
one vector superfield are those of one real four-vector field, and the left- and
right-handed versions of a Weyl fermion – forming a Majorana fermion.

In a supersymmetric theory there will, in general, be one scalar field associated
with every left- or right-handed Weyl fermion, and for every four-vector field there
will be associated one Majorana fermion.

3.3.1 The MSSM

One can form Lagrangians that are invarant under SUSY-transformations, such
theories are referred to as supersymmetric. The MSSM is the supersymmetric
theory which contains the SM, by introducing a minimal amount of new fields.
It exhibits a symmetry between fermions and bosons, in that every SM-field gets
a supersymmetric ”partner”: for each left-handed SM-fermion there is one asso-
ciated scalar field and for every SM gauge boson there is one Majorana fermion
field. We refer to these supersymmetric ”partners” as sparticles, furthermore, the
scalar sparticles are referred to as sfermions and Majorana sparticles are referred
to as gauginos.
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The sparticles have all the same properties as their SM partner besides spin
properties. For example the sfermion partner of a charged left-handed lepton – a
slepton ˜̀

Li – has (in unbroken SUSY) the same mass, the same weak isospin and
weak hypercharge as the corresponding lepton `Li, i.e. the sfermions have the
same couplings to the Higgs scalars, and the gauge bosons as the corresponding
SM fermions.

The Higgs Sector of the MSSM

It is not possible to define the MSSM with one scalar Higgs doublet in a manner
that is supersymmetric, thus there are two scalar Higgs SU(2)L doublets Hu and
Hd in the MSSM

Hu =

(
h

(+)
u (x)

h
(0)
u (x)

)
, Hd =

(
h

(0)
d (x)

h
(−)
d (x)

)
, (3.17)

The neutral complex scalar fields h0
u/d acquires VEV, and the charged complex

scalar fields h
(+)
u . Upon attaining its VEVs the scalar in Hd gives mass-terms for

the down-type SM quarks and the charged SM leptons and the corresponding
sparticles, the Hu-doublet gives mass to the up-type quarks (neutrinos are con-
sidered massless in the MSSM with sterile right-handed neutrinos). The physical
Higgs bosons also have supersymmetric partners which are called Higgsinos, and
there are both neutral and charged Higgsinos. Prior to electroweak symmetry
breaking, which in the MSSM is referred to as Radiative Electroweak Symmetry-
breaking (REWSB) there are in total eight degrees of freedom in the two (com-
plex) Higgs doublets. Among the degrees of freedom in Hu three are Goldstone
bosons which gives longitudinal polarizations to the W±- and Z-gauge fields of
the SM and one degree of freedom is a real scalar field. Thus there are in total
five degrees of freedom after REWSB, remained in two neutral scalars h,H one
complex scalar H± and one CP -odd scalar A. In fact, taking into account loop
corrections to the mass of the lightest scalar Higgs h, it has an upper bound

mh . 135 GeV. (3.18)

Had the SM Higgs discovered at the LHC had a mass higher than this it would
have excluded the MSSM. The mass of the SM Higgs is found to be ∼ 126 GeV,
thus not excluding the MSSM.

3.3.2 Breaking of SUSY in the MSSM

For extending the SM supersymmetry predicts the apperance of sparticles as in
the MSSM, however, it also predicts that the sparticles have masses equal to
the corresponding SM-particles. This is not observed in any collider experiment.
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A solution is that there is be a mechanism responsible for boosting the value
of the sparticle masses so that they have been inaccessible in past experiments.
Spontanous symmetry breaking of SUSY have been proven to be not effecitve
for boosting the sparticle masses, as a there is an upper bound for the difference
in sparticle-particle masses for such a mechanism [61]. At tree level it is shown
in [61] that in a spontaneously broken SUSY theory the sum∑

s

(−1)2s(2s+ 1)ms = 0, (3.19)

where s is the spin of particle with mass ms, this states that the bosons can
not have significantly higher masses than the fermions of a SUSY-theory. The
way supersymmetry is broken, is to assume that the breaking happens at a high
energy scale (1016 or 1018 GeV) by an unknown mechanism as new physics enters.
Soft terms (couplings with positive mass dimension) are added to the theory
to effectively boosts the masses of the sparticles and the Higgs bosons in the
MSSM. Furthermore, they provide the MSSM with 104 new parameters. The
total number of free parameters in the MSSM is then 124, as unbroken MSSM
introduces only one new parameter and the SM has 19 free parameters. Among
the soft terms are those for the SU(2)L and U(1)Y gauginos, respectively, W̃ a

and B̃ (in two-component Weyl notation)

−1

2
M1B̃B̃ −

1

2
W̃ aW̃ a. (3.20)

where Mi are potentially complex-valued.

R-parity

When constructing a theory like the MSSM interactions which violates baryon-
and lepton number conservation are not forbidden by gauge- or SUSY invariance.
In the MSSM one such term leads to proton decay by p → e+π0. There is a
strong upper limit on the proton lifetime which renders the coupling permitting
baryon number and lepton number violation indeed very small, but there is no
mechanism which explicitly suppresses such couplings. However, in the MSSM
there is a symmetry called R-parity. This is a multiplicative quantum number
for a particle with spin s, baryon number B and lepton number L given by

R = (−1)2s+3B+L. (3.21)

R-parity forbids couplings that break lepton- or baryon number conservation, as
every sparticle gets R = 1 and every SM particle gets R = 1. If this quantum
number is conserved, lepton- and baryon number violating operators are forbid-
den. Furthermore, since R-parity is multiplicative than SUSY sparticles can only
be produced in pair in an collision between two SM particles. Also, R-parity en-
sures that there exists a lightest SUSY particle (LSP) which is stable, and that
every other sparticle decays to the LSP.
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3.3.3 Why SUSY?

A supersymmetric theory provides a solution to the hierarchy problem. As the
new scalar field contents introduced as sfermions contributes to higher one-loop
order correction to the Higgs mass. When calculating the correction to the Higgs
mass, the correction looks precisely like in Eq. (3.1), only the number of scalars
coupling to the Higgs is exactly two times the number if fermions, as the scalars.
Furthermore, from demaning that the theory is supersymmetric, the couplings
must also satisfy |λf |2 = λs. Hence, cancellation of quadratic UV-divergences for
the Higgs mass correction is exact in a supersymmetric theory. However, due to
soft breaking of SUSY the soft terms ms boosting the masses of the sparticles
must not be higher than O(1 TeV) in order not to reintroduce the hierarchy
problem for the next leading term in the UV-cut off Λ

δmh = −ms
λs

16π2
ln

Λ

ms

+ · · · . (3.22)

The extra field content of the MSSM also allows for unification of the coupling
constants as can be seen by the colored lines in Fig.3.1. Also, SUSY provides a
way to incorporate gravity in QFT, in a class of theories known as superstring-
theory. Also, since the LSP of MSSM is assumed stable due to R-parity it (if
charge neutral) also provides a candidate for DM. One such DM particle is known
as the lightest neutralino.

3.3.4 Supersymmetric Dark Matter

The MSSM contains Majorana fermion fields for each gauge boson field of the SM,
which are possible candidates for DM together with the neutral Hggsinos H̃0

u and
H̃0
d . The gauginos associated with the gluons – the gluinos– are not considered

DM candidates as they only interact strongly. We are then left with the SU(2)L
gauginos– the winos – W̃ a and the U(1)Y gauge bosons – the bino – B̃ in addition
to the Higgsinos. After electroweak symmetry breaking the W± = 1√

2
(W 1∓W 2)

emerge as massive, charged, similarly we get the charged winos W̃± which leaves
the W̃ 3 in addition to the bino and Higgsinos as the only Majorana fermions
in the SM. The B̃, W̃ 3, H̃0

u and H̃0
d will mix to form the neutralinos and (the

charged gauginos and Higgsinos mix to form the charginos) after electroweak
symmetry breaking. Defining the gauge eigenstate ψ̃0 = (B̃, W̃ 3, H̃0

u, H̃
0
d)T the

MSSM Lagrangian interactions among the components of ψ̃0 can be written as

Lχ̃0
j−mass = −1

2
ψ̃0TMψ̃0 + c.c., (3.23)
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by defining the mass matrix

M =


M1 0 1√

2
g′vd − 1√

2
g′vu

0 M2 − 1√
2
gvd

1√
2
gvu

1√
2
g′vd − 1√

2
gvu 0 −µ

− 1√
2
g′vd

1√
2
gvu −µ 0

 , (3.24)

where M1 and M2 are the soft terms for the gauginos, g and g′ are,respectively,
the SU(2)L and the U(1)Y couplings, vu/d are the VEVS for h

(0)
u/d and µ is the

supersymmetric analogue to the mass term of the Higgs in SM, it is the only new
parameter introduced in an unbroken MSSM. The matrix M can be diagonalized
by a matrix N , and the mass eigenstates are the neutralinos χ̃i = Nijψ

0
j . In many

scenarios the LSP is the lightest neutralino2 χ̃0 = N01B̃+N02W̃
3+N03H̃

0
u+N04H̃

0
d .

2It is conventional to let the index j with from the lightest to the most massive neutralino.





Chapter 4

Leptophilic Dark Matter Model

We will consider a model for extending SM with a DM candidate. This model
is possible in supersymmetric theories, with the lightest neutralino as the DM
particle candidate. We are interested in the cross section for pair production of
DM particles, and for this we have to go beyond leading order in pertubation
theory. First we introduce the SM to DM coupling and next we will lay the
groundwork for the next-to-leading order calculation.

4.1 Leptophilic Dark Matter

We will consider the interaction written in two-component notation as

∆L = gNPχ(νLη
(0) − `Lη(+)) + h.c., (4.1)

where χ is a left-handed Weyl-spinor and represents the Majorana DM fermion,
η(0), η(+) are heavy scalar particles. The neutral scalar η0 is not charged under
U(1)EM, η

(+) has charge U(1)EM-charge +1 in units of |e|. The left-handed fermion
fields `L and νL are SM lepton fields, respectively a standard model lepton (elec-
tron, muon or tau) and its associated neutrino. The scalar particles η(0), η(+) (or
χ) also carry lepton number L` = 1 to ensure lepton number conservation, . The
coupling constant for this new physics will be denoted gNP, and is assumed to
be small. We will work with the interaction in Eq. (4.1) using four component
notation. We introduce the Majorana spinor ψM from the left- and right-handed
versions of χα, i.e. in the chiral representation we have

ψM =

(
χα
χ̄α̇

)
. (4.2)

We employ the notation η† = η(+) and η†0 = η(0) (letting hermitian conjugation †
denote complex conjugation for the scalar fields). Both scalar particles η and η0

take on all the same quantum numbers as the relevant lepton, except spin. They

49
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transform under the SM gauge group are in representation (0,2, 1) of SM, i.e. as
an SU(2)L doublet with hypercharge Y = 1

H =

(
η†

η†0

)
. (4.3)

Then we can write the interaction as

∆L = gNP ψ̄ML
T
` iσ

2H + h.c. (4.4)

= gNPψ̄M(PLν`η
†
0 − PL`η†) + h.c., (4.5)

where L` = (PLν`, PL`)
T is the left-handed lepton doublet. The Gauge interac-

tions and propagation of the scalars η and η0 is described by

Lη = |DµH|2 −H†MηH, (4.6)

where Mη is assumed to be the diagonal 2×2-matrix with Mη = diag(M,M0).
In general M 6= M0, but we will assume M = M0 to preserve SU(2)L gauge
invariance. In Eq. (4.6) we find the scalar couplings

|DµH|2 ⊃ H†
(
i

g

cos θW
Zµ

[
σ3

2
−Q sin2 θW

]
+ iQg sin θWAµ

)
∂µH + h.c.,

(4.7)

where Zµ and Aµ are the Z-boson field and the photon field, respectively. The
charge matrix for an SU(2)L-doublet is Q = (Y + σ3)/2, g is the SU(2)L gauge
coupling, and sin θW is the weak mixing angle. The explicit interactions from
between the new scalar particles η and η0 and the SM bosons Z and A are fund
from Eq. (4.7)

LNP
int =g

2 sin2 θW − 1

2 cos θW
Zµη

† i∂µη − g sin θWAµη
† i∂µη + h.c.

− g

2 cos θW
Zµη

†
0 i∂

µη0 + h.c..
(4.8)

The interactions for the ` and ν` with the Z and A can be found by the covariant
derivative in Eq. (2.74) on the left- and right-handed lepton fields,

LSM
int =

g

2 cos θW
ν̄Z
/
PLν +

g

2 cos θW
¯̀Z
/ (

2 sin2 θW − PL
)
`− g sin θW ¯̀A

/
`, (4.9)

where ` and ν are four-component fermion fields representing the a SM charged
lepton and its associated neutrino, respectively. Note that only the left-handed
neutrino appear in the interaction.
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γ∗/Z χ

χq →

Figure 4.1: Diagram for an s-channel production of DM particles χχ. The
intermediary state γ∗/Z carries a time-like invariant center of mass energy q2 =
s. The grey vertex is used to indicate that this is not a tree level interaction.

Majorana Pair Production Beyond Leading Order

We will now consider the interactions in Eqs. (4.5), (4.8) and (4.9). They imply
that a DM pair can not be produced at leading order. However, going beyond
leading order a DM pair can be produced. They can be pair produced in an s-
channel particle collision between SM particles via an electroweak neutral vector
mediator Z/γ∗, as schematically illustrated in Fig. 4.1. The complete theory is
then described by the Lagrangian

L = LSM + Lχ + Lη + ∆L (4.10)

= L0 + Lint. (4.11)

Where Lint = ∆L + LNP
int + LSM

int . This is the interaction Lagrangian we will use
to derive the diagrams that contributes to χχ-production beyond leading order.

We can find the diagrams contributing to γ∗/Z → χχ from the general ex-
pression for the S-matrix element in the canonical formalism [11]

Sfi = 〈f | i〉 =

[
lim

T→(1+iε)∞
〈0|T

[
O(Φ)e−i

∫ T
−T dt HI(t)

]
|0〉
]

Connected,
amputated

, (4.12)

where Φ is all the field content in the interaction picture, O(Φ) is some function
of the field content which specifies the overlap of initial and final states and T is
the time ordering operator. The interaction is specified by the interaction Hamil-
tonian HI = −

∫
d3xLint. It is understood that only connected and amputated

diagrams are kept.
The contribution to the non-trivial matrix element iT is then all Wick-

contractions of an expression of the form

− i0〈p1,p2|(f̄PRψMφf )x (ψ̄MPLfφ
†
f )y×

×
(
gf̄Bµγ

µ(af + vfγ
5) f +

[
gkfB

µφ†f i∂µφf + h.c.
])

z
|B〉 ,

(4.13)

integrated over all the spacetime variables x, y and z. Here Bµ represents the
Z-boson or photon, and |B〉 is an intermediate state with a Z or photon field.



52 Leptophilic Dark Matter Model Chapter 4

The fermions are f = `, ν` and the scalars are φ` = η, φν` = η0. The coupling
factors kf , af and vf are given in table 3.1. If the intermediate boson B is a

B A Z

k` − sin θW
2 sin2 θW−1

2 cos θW

kν` 0 1
2 cos θW

(v`, a`) (− sin θW , 0)
(

2 sin2 θW−1/2
2 cos θW

, 1/2
2 cos θW

)

(vν` , aν`) 0
(

1
4 cos θW

, −1
4 cos θW

)
Table 4.1: The coupling factors for the scalar and fermion coupling to the Z-
boson or the photon. The coupling factors are such that they can be inserted
directly into the general vertex factor in Eq. (4.13).

photon we apply the couplings in the middle column of table 3.1 in Eq. (4.13),
all contractions leading to a connected diagram results in the sum of the four
diagrams in Fig. 4.2. The only loop particles in this diagram are charged SM
leptons ` and the charged scalar particles η. We see that we get a crossing of
the DM particle external legs. This is because Majorana operators ψM and ψ̄M
can contract with the same external state, one permutation of these Majorana
operators yields the extra factor of (−1).

If the intermediate boson B is a Z-boson, then we sum Eq. (4.13) over f = `, ν`
and apply the coupling factors of table 3.1 in the column to the right. This will
give in total eight diagrams. One set of four diagrams have SM charged leptons
` and charged scalar η in the loop, and another set of four diagrams have the SM
neutrino ν` and the scalar η0 in the loop. Both sets of four diagrams appear as
in Fig. 4.2.
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− + −

Figure 4.2: Four diagrams contributing to Dark Matter pair production
from a photon or Z-boson, the final state is two Majorana DM particles. The
particles are scalar particles s and SM-fermions f . If the incoming boson is a
Z we sum over f = `, ν` giving in total a sum of 8 diagrams.

4.2 Evaluation of the Diagrams

We will use some standard techniques to find a closed form expression for the
diagrams in Fig. 4.2. The techniques for solving the loop integrals are elaborated
in appendix C, and can be found in most books on QFT e.g. [11]

We will split the diagrams in Fig. 4.2 in two classes. The two diagrams on
the left we will refer to as the fermion diagrams, and the two diagrams to the
right are referred to as the scalar diagrams. For the fermion diagrams, the loop
integral contains two fermion propagators and one scalar propagator. For the
scalar diagrams contains two scalar propagators and one fermion propagator.
However, given a positive power of the loop momentum in the scalar coupling to
the gauge boson, both the scalar and fermion diagrams will contain momentum
integrals which, for high loop momenta, will go as∫

d4k

(2π)4

1

k4
∼ ln(ΛCutoff). (4.14)

That is, superficially, we find a logarithmic divergence in the limit ΛCutoff → ∞
for all the diagrams in Fig. 4.2. However, this divergence should cancel between
the fermion and scalar diagrams, as we note that the direction of the charge flow
in the loops are opposite between these two types of diagrams. This process does
not exist at tree level, therefore there is no counterterm for this vertex. Adding
all diagrams contributing to each order in perturbation theory will yield a finite
amplitude.

We will not employ the cutoff -regularization for regularizing these loop-
diagrams. We will instead apply the dimensional regularization. Here we perform
the integral in arbitrary dimenion d, and evaluate the integrals as functions of
ε = 4−2d, and eventually take the limit ε→ 0. The symbols M,mχ,mf are used
for the scalar mass, DM mass and SM lepton mass (neutrino or charged lepton).
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We have the hierarcy M > mχ >> mf at all times, however we do not make use
of the small lepton mass at this stage.

4.2.1 Fermion Diagrams

q

k′ = k − q

k

p2 →

p1 →

k − p1 −
q

p1 →

p2 →

k

k′ = k − q

k − p2

Figure 4.3: The two first diagrams in Fig. 4.2, with the momentum variables
assigned. The loop momentum variable is k. In the loop it is a SM lepton and
a heavy scalar η0 or η participating. The external, physical particles of the
diagram are the Majorana DM particles with momentum p1 and p2. The ar-
rows following the momentum assignment dictates that they are both outgoing
particles. The vertex coupling is iγµV for the vector-fermion coupling.

The diagram to the left in Fig. 4.3 is has the amplitude

−gg2
NP

∫
ddk

(2π)d
ū(p1)PL(k

/
+mf )γ

µ(vf + afγ
5)(k
/′

+mf )PRv(p2)

[(k − p1)2 −M2 + iε]
(
k2 −m2

f + iε
) (
k′2 −m2

f + iε
)

= −gg2
NP

∫
ddk

(2π)d

ū(p1)
[
(vf − af )k

/
γµk
/′

+ (vf + af )mfγ
µ
]
PRv(p2)

[(k − p1)2 −M2 + iε]
(
k2 −m2

f + iε
) (
k′2 −m2

f + iε
)−
(4.15)

We define the matrix Γµ0(p1, p2) such that Eq. (4.15) has the form

ū(p1) igΓµ0(p1, p2)PR v(p2).. (4.16)

We can do the same for the diagram on the right in Fig. 4.3 where the external
contractions are permuted. This will then have the amplitude

ū(p2) igΓµ0(p2, p1)PR v(p1), (4.17)

where iΓµ(p2, p1) is the same matrix as in Eq. (4.16), only with permuted external
momenta. We will make the subtraction of the diagrams as indicated in Fig. 4.3,
but first we make a general prescription for this. We note that since the amplitude
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in Eq. (4.17) is just a complex number, i.e. it is equal to its transpose

ū(p2) igΓµ0(p2, p1)PR v(p1) = v(p1)T PR igΓµ0(p2, p1)T ū(p2)T .

= ū(p1) igCΓµ0(p2, p1)TPLC
−1 v(p2),

(4.18)

here C denotes the charge conjugation matrix. In the matrix Γµ0(p2, p1)T , each
term contains an odd number of Dirac matrices, thus commuting the PL through
gives a PL. We then get the prescribed subtraction for the two diagrams in Fig. 4.3
given by

ū(p1) igΓµ0(p1, p2)PR v(p2)− ū(p2) igΓµ0(p2, p1)PR v(p1)

=ū(p1) ig
[
Γµ0(p1, p2)PR + CΓµ0(p2, p1)TPLC

−1
]
v(p2).

≡u(p1) igΓµ(q) v(p2)

(4.19)

4.2.2 Scalar Diagrams

q

k′ = k + q

k

p2 →

p1 →

k + p1 −
q

p1 →

p2 →

k

k′ = k + q

k + p1

Figure 4.4: The scalar diagrams, with the momentum variables assigned.
The loop momentum variable is k. It is a SM lepton and a heavy scalar η0 or
η participating in the loop. The external, physical particles of the diagram are
the Majorana DM particles with momentum p1 and p2. The arrows following
the momentum assignment indicate that they are both outgoing particles. The
vertex coupling is igkf (k + k′)µ for the vector-scalar coupling.

The first diagram in Fig. 4.4 has the amplitude

ū(p1) igΛµ
0(p1, p2)PR v(p2), (4.20)

where we have defined the matrix iΛµ
0 as

igΛ0(p1, p2) = −kfg2
NP

∫
ddk

(2π)d
×

(2k + q)µ (k
/

+ p
/

1
)PR

[k2 −M2 + iε] [(k + q)2 −M2 + iε]
[
(k + p1)2 −m2

f + iε
] (4.21)
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The Feynman rules for a scalar coupling to gauge boson, and Majorana fermions
final states are found in [9] to the diagram to the left in Fig. 4.4. We follow
the same prescription for the subtraction of the two diagrams in Fig. 4.4 as in
Eq. (4.19) and define the sum of the two diagrams in Fig. 4.4

ū(p1) iΛµ(q)PR v(p2) ≡ ū(p1)
[
iΛµ

0(p1, p2)PR + C [iΛµ
0(p2, p1)]T PLC

−1
]
v(p2)

(4.22)

4.2.3 General Considerations

We can use a specific technique to see how the divergences cancel between the
diagrams. The details are left to appendix B and C. The specific technique is
to introduce Feynman parameters to symmetrize the integrand in a shifted loop
variable. For the γ∗-channel the divergent contributions ΓµA,Div and Λµ

A,Div (from
the fermion diagrams and scalar diagrams, respectively) can be written in terms
of ε = 4− 2d as

igΓµA,Div =
ig2

NPg sin θW
16π2

(ε− 1)

∫ 1

0

dxdydzδ(x+ y + z − 1)

(
δε + ln

4π

∆
+O(ε)

)
γµγ5

(4.23)

igΛµ
A,Div =

ig2
NPg sin θW

16π2

∫ 1

0

dxdydzδ(x+ y + z − 1)

(
δε + ln

4π

∆̃
+O(ε)

)
γµγ5,

(4.24)

here δε = 1
ε
+γE, and γE is the Euler-Mascheroni constant. ∆ and ∆̃ are functions

of the Feynman parameters and all momentum invariants present: the charged
scalar mass M2, the DM mass m2

χ, the SM charged lepton mass m2
` and the

invariant center of mass energy carried by the photon propagator q2.We see that
when adding the two diagrams the UV-divergences parametrized by ε vanish and
leaves in the ε→ 0 limit

igΓµA,Div + igΛµ
A,Div

= −ig
2
NPg sin θW

16π2

∫ 1

0

dxdydz δ(x+ y + z − 1)

(
1 + ln

∆

∆̃

)
γµγ5.

(4.25)

For the Z-channel the cancellation occurs between the four charged lepton dia-

grams in the same manner as above, only with an overall factor of sin2−1/2
cos θW

instead
of the sin θW appearing in Eqs. (4.23) and (4.24). We also get cancellation of di-
vergences when the loop particles are SM neutrino and the neutral scalar η0. The
same divergent terms as in Eqs. (4.23) and (4.24) arise, but with an overall factor
of 1

2 cos θW
in place for the sin θW .
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We have learned from this that the sum of the UV-divergent amplitudes corre-
sponding to the diagrams in Fig. 4.2 cancel in both the Z- and γ∗-channel. The
cancellation is between the amplitudes corresponding to the fermion diagrams
and the scalar diagrams in both channels.

4.2.4 Generic Form of the Vertex

We now state the general form of the vertex for both the Z- and γ∗-channel in
terms of two form factors, and an overall constant kZ/A

iΞµ
Z/A(q) =

igNPkZ/A
16π2

(
FZ/A,1(q)γµγ5 + FZ/A,2(q)γ5 q

µ

mχ

)
. (4.26)

It is a sum of pseudo-scalar (qµγ5) and pseudo-vector (γµγ5) term. Details regard-
ing the calculation and definitions of the form factors can be found in Appendix
C. The form of the vertex factor in Eq. (4.26) tells us that pure vector (γµ) and
scalar couplings (qµ) vanish. The reason for this is that these terms are anti-
symmetric with respect to the interchange of the Feynman parameters x ↔ y.
This will serve as a useful guideline when we apply a different method for solving
loop integrals. When we neglect the SM fermion masses mf , f = `, ν` the form
factors for the Z- and γ∗- coupling are equal up to the coupling factor kz/A.For
the γ∗- and Z-coupling, respectively, we have kp = sin θW and kZ = sin θW tan θW .

One could argue that the coupling iΞZ/A has to contain a nonzero pseudo-vector
contribution and not a vector contribution. A vector coupling for γ∗ → χχ would
be equivalent to the DM particles acquiring an electromagnetic charge at one-loop
level, as the DM particles are assumed to be Majorana this can not happen.





Chapter 5

Loop Integrals by Tensor
Reduction

In this chapter we introduce an alternative scheme to solve the vertex function
for the γ∗ → χχ. Since the scheme is general it, generalizes to the loop diagrams
in Z-channel amplitudes. The method relies on the covariant description of a
given loop integral, and reduces a complicated momentum integral to sums of
several, simpler, momentum integrals. We complete the section by stating the γ∗

to χχ vertex in terms of simpler integrals.

5.1 Loop Integrals in Tensor Reduction Scheme

We will apply a method known as tensor reduction, or the Passarino-Veltmann
method [62]. The method is useful for solving integrals of the form

i

16π2
T µ1µ2...µPN

(
{qi,mi}N−1

i=0

)
= µ4−d

∫
ddk

(2π)d
kµ1kµ2 . . . kµP

ΠN−1
i=0 [(k + qi)2 −m2

i + iε]
(5.1)

by reducing them to sums of scalar integrals of the form

i

16π2
TM

(
{qi,mi}M−1

i=0

)
= µ4−d

∫
ddk

(2π)d
1

ΠN−1
i=0 [(k + qi)2 −m2

i + iε]
. (5.2)

In Eqs. (5.1) and (5.2) k is the loop momentum variable, and qi are sums of
incoming momenta. The convention for incoming momentum in a loop diagram
is illustrated in Fig. 5.1. There is an extracted factor of i/16π2 which always
appears in one-loop calculations The iε in Eqs. (5.1) and (5.2) is the Feynman
prescription for the pole shift of the propagator when the propagator momentum
is on-shell. We have also included a mass dimension µ to the power of 4 − d

59
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q1, m1
p1

p2

p3

p4

m0

q2, m2 q3, m3

qi,mi

qN−1, mN−1

pi

pi+1

pN−1

pN

Figure 5.1: Schematic diagram for visualizing the momentum flow in an
arbitrary one loop diagram. The arrows denote momentum direction. The
propagators and external lines denotes those of a general particle, not neces-
sarily fermion. Momentum is conserved at each vertex, making the propagator
momentum qn =

∑n
i=1 pi and

∑N
i=1 pi = 0. The mass associated with a prop-

agator with momentum qi is denoted mi. The dashed lines indicates skipping
over several propagators and external momenta.

to ensure consistency of the mass dimension of the integral.1 We shall show in
Sec. 5.1.1 show by an example how this tensor reduction is done.

We refer to the tensor integral of Eq. (5.1) as the N -point rank P tensor
integral, and the integral in Eq. (5.2) as the M -point scalar integral. Generally
M ≤ N . We define the propagator denominators Di by

Di = (k + qi)
2 −m2

i + iε, i = 0, 1, 2, . . . , N − 1. (5.3)

Formally, we have a momentum q0 in D0 which can be disregarded due to a
suitable linear substitution of the loop-momentum. To accommodate for this we
set D0 = k2 − m2

0 + iε. The integral is invariant under all permutation of the
Lorentz indices, as well as any interchange of the denominator factors Di, i =
1, 2, , . . . N − 1 (or equivalently, any permutation of {(qi,mi)}N−1

i=1 ).

We will here adopt the convention in [63] and refer to the N -point integrals in
Eq.(5.1) by the Nth capital roman letter in the alphabet. As well as a different

1One might also assume that this ”dimensional inconsistency” can be absorbed in the cou-
pling constant. However we will take this approach, as the coupling constant is neglected in
the general scheme
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convention for the arguments. For the scalar integrals we then define

A0(m2
0) ≡ T1(m0) (5.4)

B0

(
q2

1,m
2
0,m

2
1

)
≡ T2 (m0, (q1,m1)) (5.5)

C0

(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)
≡ T3 (m0, (q1,m1), (q2,m2)) (5.6)

Where qij = qi − qj. The rank-one tensor integrals are denoted

Bµ(q2
1,m

2
0,m

2
1) ≡ T µ2 (m0, (q1,m1)) , (5.7)

Cµ
(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)
≡ T µ2 (m0, (q1,m1), (q2,m2)) , (5.8)

And the rank-two tensor integrals

Bµν(q2
1,m

2
0,m

2
1) ≡ T µν2 (m0, (q1,m1)) (5.9)

Cµν
(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)
≡ T µν3 (m0, (q1,m1), (q2,m2)) (5.10)

The list continues up to arbitrary rank P . However, we will not need any more
scalar or tensor integral for the scope of this thesis. The rank-one tensor integrals
in Eq. (5.7) and (5.8) can, to Lorents covariance, be written in terms of the
momenta qi as

Bµ(q2
1,m

2
0,m

2
1) = qµ1B1 (5.11)

Cµ
(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)
=

2∑
i=1

qµi Ci (5.12)

And the Rank-two tensor integrals in Eqs. (5.9) and (5.10) can be decomposed
as

Bµν(q2
1,m

2
0,m

2
1) = gµνB00 + qµ1 q

ν
1B11 (5.13)

Cµν
(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)
= gµνC00 +

2∑
i,j=1

qµi q
ν
jCij (5.14)

The coefficients B1, Ci, Bii, Cij are referred to as Passarino Veltmann coefficients.
We note that the momenta qµi are assumed to be independent. Note that four
linearly independent four-vectors are needed to span four dimensional spacetime.
This implies if N ≥ 5 (i.e. four or more linearly independent external momenta
are present) at most four linearly independent Lorentz four-vectors are needed in
the expansion of the tensor integral, such that, terms containing gµν should then
be omitted.
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5.1.1 Rank-One Two-Point Tensor Integral

We will illustrate the method by performing Passarino Veltmann method on
the two-point scalar integral Cµ (q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2) ≡ Cµ. We consider the

expansion in momenta qµi in Eq. (5.12), and take the Lorentz invariant inner
product qµi Cµ, i = 1, 2

qµi Cµ =
2∑
i=1

qj · qiCi ≡ Rj. (5.15)

This is equivalent to the system of equations q2
1 q1 · q2

q1 · q2 q2
2

C1

C2

 =

R1

R2

 . (5.16)

The matrix on the left hand side is referred to as the Gram matrix. The system
can now easily be solved to find C1 and C2 in terms of R1 and R2 for a non-
singular Gram matrix.

The expressions forRj can be reduced to scalar integrals by using the following
relation:

qi · k =
1

2

([
(k + qi)

2 −m2
i + iε

]
−
[
k2 −m2

0 + iε
]

+m2
i − q2

i −m2
0

)
= Di −D0 +m2

i − q2
i −m2

0.

This gives the following expressions for R1,2:

R1 =
(2πµ)4−d

iπ2

∫
ddk

{
1

D0D2

− 1

D1D2

+
m2

1 − q2
1 −m2

0

D0D1D2

}
= B0

(
q2

2,m
2
0,m

2
2

)
−B0

(
q2

21,m
2
1,m

2
2)
)

+
[
m2

1 − q2
1 −m2

0

]
C0(q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2),

(5.17)

and

R2 =
(2πµ)4−d

iπ2

∫
ddk

{
1

D0D1

− 1

D1D2

+
m2

2 − q2
2 −m2

0

D0D1D2

}
= B0

(
q2

1,m
2
0,m

2
2

)
−B0

(
q2

21,m
2
1,m

2
2

)
+
[
m2

2 − q2
2 −m2

0

]
C0(q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2).

(5.18)

Solving the system of equations will lead to expressions for C1 and C2 in terms
of R1 and R2 C1

C2

 =
1

(q1)2(q2)2 − (q1 · q2)2

q2
2R1 − q1 · q2R2

q1 · q2R1 − q2
2R2

 . (5.19)
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Where we can insert the expressions for R1 and R2 in Eqs. (5.17) and (5.18).
This cives C1 and C2 in terms of scalar integrals B0 and C0.

Lastly we insert C1 and C2 in the expansion Cµ =
∑

i=1,2 qiCi. This will give
the full decomposition of Cµ in scalar integrals

Cµ =
1

2 ((q1 · q2)2 − q2
1q

2
2)

{(
qµ1 q1 · q2 − qµ2 q2

1

)
B0(q2

1,m
2
0,m

2
1)

+
(
qµ2 q1 · q2 − qµ1 q2

2

)
B0(q2

2,m
2
0,m

2
2)[

qµ2 (q2
1 − q1 · q2) + qµ1 ((q2

2 − q1 · q2))
]
B0

(
q2

21,m1,m
2
2)
)

+
[
qµ1
(
q2

2

[
q2

1 +m0 −m2
1

]
− q1 · q2

[
q2

2 +m0 −m2
2

])
+

+qµ2
(
q1 · q2

[
m2

1 −m2
0

]
− q2

1

[
q1 · q2 − q2

2 −m2
0 +m2

2

])]
C0

(
q2

1, q
2
21, q

2
2,m

2
0,m

2
1,m

2
2

)}
.

5.1.2 UV-Divergent scalar integrals

We can investigate the superficial divergence of a tensor integral like in Eq. (5.1).
When looking at the leading order terms in k of the integrand of Eq. (5.1) we
find

T µ1,...µPN ∼
∫

ddk
kP

k2N
∼
∫

d|k| |k|
d−1|k|P
|k|2N . (5.20)

Which is UV-divergent if the power of k in the denominator is less than one.
That is, the integral in Eq. (5.1) is UV-divergent if

P + d− 2N ≥ 0.

Where P is the maximal number of momenta in the numerator, N is the number
of numerator factors Di’s and d is the spacetime dimension.

We regularize the UV-divergence by dimensional regularization. Among the
scalar integrals in Eqs. (5.4) and (5.5) the scalar one-point integral A0(m2

0) and
the scalar two-point integral B0(q2

1,m
2
0,m

2
1) are UV-divergent. In dimensional

regularization the divergence in B0 and A0 scales as 1/(d − 4) where d is the
dimension of spacetime. A exhaustive list of divergent scalar integrals can be
found in [63].

5.2 Tensor Reduction Using Numerical Tools

The Passarino-Veltmann procedure of reducing tensor integrals to several scalar
integrals quickly becomes cumbersome and tedious to perform. However, there
are numerical tools to aid the reduction. We apply FeynCalc 9.0.1 [64,65], for
the tensor reduction of the loop integrals.
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We apply the tensor reduction scheme for the fermion diagrams and the scalar
diagrams separately, and then add the contributions. Motivated by the general
form of the γ∗ → χχ in Eq. (4.1) we now the desired form of the vertex. After
the amplitudes for all four diagrams in Fig. 4.2 are added together we obtain an
expression of the form

iΞµ
A = −ig

2
NP sin θW
16π2

[
FA,1γ

µγ5 + FA,2γ
5 q

µ

mχ

]
Where the form factors FA,1 and FA,2 are given in terms of scalar integral B0(. . . )
and C0(. . . ) as

FA,1 =
1

2(4m2
χ − q2)

{
4(m2

χ − q2)
[
B0(m2

χ,m
2
` ,M

2)−B0(q2,m2
` ,m

2
`)
]

+ (q2 − 2∆M2
+)
[
B0(q2,M2,M2)−B0(q2,m2

` ,m
2
`)
]

+ 2
[
∆M4

− +m2
`(q

2 − 4m2
χ)
]
C0(m2

χ,m
2
χ, q

2,M2,m2
` ,M

2)

+ 2
[
∆M4

+ + q2∆M2
+ + (q2 − 4m2

χ)M2
]
C0(m2

χ,m
2
χ, q

2,m2
` ,M

2,m2
`) } − 1,

(5.21)
and

FA,2 =
m2
χ

q2

1

4m2
χ − q2

{ 4(m2
χ − q2)[B0(q2,m2

` ,m
2
`)−B0(m2

χ,m
2
` ,M

2)]

− (q2 − 2∆M2
+)[B0(q2,M2,M2)−B0(q2,m2

` ,m
2
`)]

−2
[
∆M4

− +m2
`(q

2 − 4m2
χ)
]
C0(m2

χ,m
2
χ, q

2,M2,m2
` ,M

2)

−2
[
∆M4

+ + q2∆M2
+ + (M2 − q2)(q2 − 4m2

χ)
]
C0(m2

χ,m
2
χ, q

2,m2
` ,M

2,m2
`) }

+ 2
m2
χ

q2
,

(5.22)
Where ∆M2

± = M2 ± m2
χ − m2

` . We see that from the expressions of the form
factors in Eqs. (5.21) and (5.22) that the UV-divergences cancel, as they appear
only in the scalar two-point integrals B0(· · · ). The form factors only depend on
the difference between two UV-divergent scalar two-point integral.

5.2.1 The Scalar Integrals in the Effective Vertex

In the form factors there are two types of scalar integrals. The three-point scalar
integrals and two-point scalar integrals. We state the general solutions to the
two- and three-point scalar integrals below.
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Two point scalar integral

The general expression or the two-point scalar integral is

i

16π2
B0(p2,m2

0,m
2
1) = µ4−d

∫
ddk

(2π)d
1

[k2 −m2
0] [(k + p)2 −m2

1]
. (5.23)

The general solution for the two-point scalar integral is made in AppendixD.2.1
and can also be found in e.g. [66,67]. The general solution is for arbitrary masses
m1, m2 and arbitrary p2

B0(p2,m2
0,m

2
1) = δε + ln

µ2

m2
0 − iε

+ 2−
2∑
i=1

(1− xi) ln

(
xi − 1

xi

)
. (5.24)

where x1,2 are given as

x1,2 =
1

2p2

(
p2 −m2

0 +m2
1 ±

√
(p2 −m2

1 +m2
0)2 − 4p2(m2

0 − iε)
)
, (5.25)

and

δε =
2

ε
− γE + ln 4π (5.26)

regularizes the UV-divergence in dimensional regularization with d = 4− 2ε. We
note that it is important to distinguish ε (UV-regulator) from ε, as vε is the
infinitesimal imaginary part in the propagator.

The scalar two-point integral is divergent, however, we see in Eqs. (5.21) and
(5.22) that the form factors are dependent on the difference of the divergent
integrals. Thus, these divergences cancel as we can see from the general solution
of B0(p2,m2

0,m
2
1).

The logarithm is evaluated by taking its principal value. The principal value
of the logarithm is

ln z = ln |z|+ iArgz (5.27)

where z = |z|eiArgz and Argz is the principal value of the argument that is
−π ≤ Argz ≤ π. The logarithm then has a branch cut along the negative real
axis in the complex plane, and its imaginary part takes on the values ±iπ here.
In order to determine the correct sign of iπ the infinitesimal imaginary part iε.
As an example; if m0 in Eq. (5.24) is negative we get

ln
µ2

m2
0 − iε

= ln
µ2

−m2
0

+ iπ, (5.28)
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as ε is positive and infinitesimal. The product rule for logarithms for complex z
and w is given by [68]

ln(zw) = ln z + lnw + η(z, w), (5.29)

where η compensates for crossings of the branch cut and is given by

η(z, w) = 2πi [θ(−Imz)θ(−Imw)θ(Imzw)− θ(Imz)θ(Imw)θ(−Imzw)] , (5.30)

where η is the Heaviside function.

For the two-point scalar integral in the form factors of Eqs. (5.21) and (5.22)
we get

B0(m2
χ,m

2
` ,M

2)−B0(q2,m2
` ,m

2
`)

= ln

( −q2 − iε
M2 −m2

χ − iMΓ

)
+ µ ln

(
1− 1

µ

)
,

(5.31)

and

B0(q2,M2,M2)−B0(q2,m2
` ,m

2
`) =− ln

(
M2 − iMΓ

−q2 − iε

)
+

1

2
(1− ξM) ln

(
ξM − 1

ξM + 1

)
− 1

2
(1 + ξM) ln

(
ξM + 1

ξM − 1

) (5.32)

where the width is calculated at tree-level to be Γ = (g2
NP/16π)M

(
1−m2

χ/M
2
)2

Three-point scalar integral

The general expression for the three point scalar integral is

i

16π2
C0(p2

1, p
2
21, p

2
2,m

2
0,m

2
1,m

2
2)

=

∫
ddk

(2π)d
1

(k2 −m2
0 + iε)

(
[k + p1]2 −m2

1 + iε
) (

[k + p2]2 −m2
2 + iε

) . (5.33)



Section 5.2 Tensor Reduction Using Numerical Tools 67

We perform a shift in the momentum k → k − p2, and introduce Feynman
parameters

i

16π2
C0(p2

1, p
2
21, p

2
2,m

2
0,m

2
1,m

2
2)

=

∫
ddk

(2π)d
1

([k2 − p2]2 −m2
0)
(
[k − p21]2 −m2

1

)
(k2 −m2

2)

=

∫
dd`

(2π)d

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

[`2 − (∆− iε)]3

d→4
=
−i

16π2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
1

∆− iε.

Where we integrate in a shifted momentum variable ` = k−yp2−zp21 and define
∆ = −xyp2

2−xzp2
21− yzp2

1 +xm2
2 + ym2

0 + zm2
1. We solve the momentum integral

using Eq. (B.9). Integrating over z and substituting x→ 1−x gives the following
form of the three point scalar integral

C0(p2
1, p

2
21, p

2
2,m

2
0,m

2
1,m

2
2) =

−
∫ 1

0

dx

∫ x

0

dy { x2p2
21 + y2p2

1 + xy
(
p2

2 − p2
1 − p2

21

)
+ x(m2

1 −m2
2 − p2

21)

+ y(m2
0 −m2

1 + p2
21 − p2

2) +m2
2 − iε }−1 .

The solution of the three-point integral on this form is given in [63], there is also
detailed calculation in [68]. The general solution has the following form:

C0(p2
1, p

2
21, p

2
2,m

2
0,m

2
1,m

2
2)

=
1

α

2∑
i=0

[∑
σ=±

Li2

(
z0i − 1

y0σ

)
− Li2

(
z0i

y0σ

)
+

η

(
1− xiσ,

1

yiσ

)
ln
z0i − 1

yiσ
− η

(
−xiσ,

1

yiσ

)
ln
z0i

yiσ

− [η (−xi+,−xi−)− η (yi+, yi−)−

−2πi θ
(
−p2

ij

)
θ (−Im (yi+yi−) )

]
ln

1− zi0
−zi0

,

]
(5.34)

where α = κ(p2
1, p

2
21, p

2
2) and κ is the function

κ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + xz)
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We have p2
ij = (pi − pj)

2, i, j = 0, 1, 2 and p0 = 0. For cyclic permutations of
i, j, k = 0, 1, 2 the quantities xi±, yi±, z0i are

z0i =
1

2αp2
jk

{
p2
jk

[
p2
jk − p2

ki − p2
ij + 2m2

i −m2
j −m2

k

]
(5.35)

−
(
p2
ki − p2

ij

) (
m2
j −m2

k

)
+
(
p2
ki −m+

j m
2
k

)
,
}

xi± =
1

2p2
jk

[
p2
jk −m2

j +m2
k + αi

]
, (5.36)

yi± = z0i − xi±, (5.37)

α = κ(p2
1, p

2
21, p

2
2) (5.38)

αi = κ(p2
jk,m

2
j , p

2
2)(1 +

iε

p2
jk

), (5.39)

here Li2(z) is the dilogarithm function, which is given by

Li2(z) = −
∫ z

0

ln(1− t)
t

dt = −
∫ 1

0

ln(1− zt)
t

dt, (5.40)

where z is generally complex. Due to the branch cut of the logarithm on the
negative axis the dilogarithm gets a cut on the positive real axis, i.e. for z ∈ [1,∞)
the dilogarithm is multivalued. The iε-prescription selects the correct part of the
branch. The general solution in Eq. (5.34) applies for generally complex masses
mi and general momenta p2

ij, and the η functions will compensate for branch
crossings of the dilogarithm and logarithms [63].

We evaluate the three-point scalar integral directly using Eq. (5.34) for
C0(m2

χ,m
2
χ, q

2,M2,m2
` ,M

2) and C0(m2
χ,m

2
χ, q

2,m2
` ,M

2,m2
`). We apply the mass

hierarchyM2 > m2
χ >> m2

` , which makes both three-point integrals in Eqs. (5.21)
and (5.22) independent of m2

` .

5.2.2 Cross Section

We can now state the unpolarized cross section for pair production of this dark
matter candidate in the photon channel. We consider the initial state to be a
quark and anti-quark pair with a center of mass energy

√
s =

√
q2 > 4mχ. The

differential cross-section is then

dσ

dΩ
=

1

4q2

√
1− 4m2

χ

q2

1

(4π)2
|M̄(qq̄ → χχ)|2 (5.41)
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where |M̄(qq̄ → χχ)|2 is the unpolarized amplitude given by

|M̄(qq̄ → χχ)|2 = e2Q2
q

(
1− 4m2

χ

q2

) (
cos2 θ + 1

) g4
NP

(16π2)2
|F1A(q2)|2, (5.42)

where θ is the azimuthal angle Qq is the charge of the quark q in units of the
electron charge e = g sin θW . We have inserted for the fine-structure constant
e2/4π. For up type quarks up-type quark then Qu = +2/3 and Qd = −1/3 for
down-type quarks. The total cross section is found by integrating over θ from 0
to π

σ =
3π

2

α2Qqg
4
NP

(32π2)2

1

q2

(
1− 4m2

χ

q2

)3/2

|F1A(q2)|2, (5.43)

We emphasize that for quarks colliding at a hadron collider, such as the LHC,
this cross section needs to be integrated of the parton distribution functions
(PDFs)for each quark flavor. Partons are quarks and gluons in a hadron, they
carry a fractional part of the hadrons full momentum, the PDFs are flavour
dependent probability distributions for a quarks fractional amount of the full
momentum.

5.3 Results

In Fig. 5.2 we see a plot of the cross section as a function of the center of mass
energy for the process qq̄ → χχ in the photon channel. The cross section has a
resonance at

√
s = 2M , where the scalar mass M = 1500 for this figure.

In Fig. 5.3 we see the cross section where the DM and scalar are close in
mass. Here M = 500 GeV is with 11% of the DM-mass mχ = 450. This is
where M is in the co-annihilation region. Here, the WIMP miracle described in
Sec. 3.2.2, can not occur with self-annihilating DM. And co-annihilating processes
ηχ → SM × SM must also be taken into account. The η-resonance is barely
visible in the Fig. 5.3, however, in Fig. 5.4 is plotted in a mass range closer to 1
TeV to highlight the resonance.

In Fig. 5.6 and in Fig. 5.5 we see the cross section as function of the ratio of
the DM and scalar mass m2

χ/M
2 with a fixed M = 1500. In Fig. 5.5 the center

of mass energy is on the η-resonance. In Fig. 5.6 the center of mass energy is
far from the resonance. We see that the cross section increases monotonically
with increasing mχ, however, at resonance the cross section appears to diverge
as mχ → M/4. When mχ exceeds this limit q2 < 4m2

χ since q2 = M2 = (8 TeV)
in Fig. (5.6), i.e. the center of mass energy is not sufficient for production of χχ.
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Figure 5.2: The cross section for qq̄ → χχ in the photon channel. The chosen
values are for the coupling gNP = 0.9, the scalar mass is M = 1500 GeV and
the DM mass is mχ = 450 GeV. There is a distinct resonance at

√
s = 3000

GeV, which is the η mass M resonance.
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Figure 5.3: The cross section for qq̄ → χχ in the photon channel. The chosen
values are for the coupling gNP = 0.9, the scalar mass is M = 500 GeV and
the DM mass is mχ = 450 GeV. The η-resonance at 1 TeV is barely visible.
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Figure 5.4: The cross section for qq̄ → χχ in the photon channel. The
chosen values are for the coupling gNP = 0.9, the scalar mass is M = 500
GeV and the DM mass is mχ = 450 GeV. The graph is zoomed in around the
η-resonance at 1 TeV.
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Figure 5.5: The cross section for qq̄ → χχ in the photon channel as a
function of the DM and scalar mass ratio m2

χ/M
2 at a center of mass energy

at resonance,
√
s = 1500. The chosen values are for the coupling gNP = 0.9,

the scalar mass is fixed at M = 1500 GeV.
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Figure 5.6: The cross section for qq̄ → χχ in the photon channel as a
function of the DM and scalar mass ratio m2

χ/M
2 at a center of mass energy

at resonance,
√
s = 8000. The chosen values are for the coupling gNP = 0.9,

the scalar mass is fixed at M = 1500 GeV.

5.3.1 Discussion

We have plotted results for some selected parameters for pair production of lep-
tophilic DM in a collision between quq̄u of same flavor in Figs. 5.2-5.5. We use
the effective vertex given in terms of the form factors in Eq. (4.26), with the form
factors found in Eqs. (5.21) and (5.22).

Neglecting the lepton masses results in a generation independent vertex, i.e.
the SM leptons in the loop are either e, µ or τ for the cross sections in Figs. 5.2-
5.5. Furthermore we can generalize the results to include the Z-channel, as the
form factors are equal up to a constant for the one-loop processes γ∗ → χχ and
Z∗ → χχ when all lepton masses are neglected.

The cross section at the η-resonance with the parameters in Fig. 5.2 is of
order O(0.1fb), however, this does not directly translate into expected number
of events at the LHC for a given luminosity. In order to get complete cross for
pp→ χχ integration over the PDFs must be performed as well as summation over
the quarks and anti-quark in the proton. For LHC applications the total center of
mass energy is

√
s = 14 TeV in its second run, however only a fractional amount

of each proton momentum is carried by the quarks that take part in the collision.
Furthermore, the χ-pair will escape detection rendering measuring these events
impossible.

In order to get a result that can be detected at the LHC further analysis is
needed. One possibility is to study a higher order process where the final state is
a jet in addition to a χ-pair. The jet comes from initial state radiation of a gluon
from one of the incident quarks in the collision. If the jet carries high transverse
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momentum the missing transverse momentum will be the χ-pair recoiling on the
jet.





Chapter 6

Summary and Concluding
Remarks

We begun in Chapter 1 by introducing the theoretical ingredients necessary for
understanding the SM. We also introduced the Weyl spinor formalism, which
is widely used to represent a Majorana fermion since it contains the degrees of
freedom carried by a complex two-component object. We then turned to the
questions left open by the SM. After giving a summary of the history of DM, we
went through the evidence for its existence from cosmological observations and
studies.

A class of particles consistent with the requirements for DM is the WIMPs.
We have studied a model consisting of a WIMP interacting with SM charged
leptons and neutrinos and two decaying scalar particles.

We studied the process γ∗Z∗ → χχ at next-to leading order. First we applied
dimensional regularization and introduced Feynman parameters to find the gen-
eral form of the effective vertex rule in this amplitude. We found that the effective
vertex is UV-finite and that the cancellation occurs between the amplitudes cor-
responding to two different sets of Feynman diagrams. From the resulting form of
the vertex we found that the Majorana particles had an pseudo-scalar and vector
coupling to the neutral electroweak gauge bosons γ and Z. Furthermore, the ver-
tex form factors for the effective coupling to the Z were found to be equal to the
effective γ-coupling — up to a constant factor tan θW — when the η, η†-masses
are equal and the SM lepton masses were neglected in the loop.

In order to find a closed form expression for the vertex we used the Passarino-
Veltmann method. This gave the form factors expressed in terms of scalar inte-
grals. By applying the closed form solutions of the scalar integrals the effective
vertex was retrieved in closed form.

Lastly, we investigated the cross section for free quarks annihilating into the
pair χχ.
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6.1 Future Prospects

For the sampled value of the coupling gNP = 0.9 we get a cross section for free
quarks to χχ of the order O(0.1 fb) at the η-resonance for M = 1500 GeV and
mχ = 450 GeV. For the integrated luminosity of the LHC, a cross-section of
this order gives a non-negligible number of events, and this makes it tempting
to speculate whether the cross section for pp → χχ is of the same order of
magnitude. The logical next step in order to examine this is to conduct a full
study of the visible cross section using a mono-jet analysis. This can be done
using Monte Carlo sampling from parton distribution functions of the initial state
quarks, numerically generating events with initial state radiation showering, and
performing a jet analysis for a sample of events.
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Appendix A

Quantum Electrodynamics

The Dirac Lagrangian

L = ψ̄
(
i∂
/
−m

)
ψ, (A.1)

is invariant under the transformation ψ → eiQθψ. Where Q defines a charge,
and θ is a real constant referred to as the gauge parameter. We call this sort of
symmetry a global U(1) gauge-symmetry — all unitary 1× 1-matrices i.e. phase
shifts of the Dirac spinor.

We shall another complication by letting the gauge parameter be an arbitrary
real function of space time θ → θ(x). By applying a local gauge transformation
of the spinors in the free Dirac Lagrangian the differential operator in Eq. (A.1)
picks up and extra term:

L = ψ̄(i∂
/
−m)ψ (A.2)

→ ψ̄e−iQθ∂
/ (
eiQθψ

)
(A.3)

= ψ̄
(
i∂
/
−m+ iQ(∂

/
θ)
)
ψ 6= L. (A.4)

This Lagrangian is not invariant with respect to local U(1) gauge-transformations.
We can still construct a Lagrangian which is invariant under these transforma-
tions, however we then have to introduce the covariant derivative

Dµ ≡ ∂µ + ieQAµ(x). (A.5)

Where we postulate the connection or gauge field Aµ(x). We perform the minimal
substitution ∂µ → Dµ in the Lagrangian of Eq. A.1, and if we desire the resulting
Lagrangian to be invariant under local U(1)-transformations we can derive the
desired transformation property for the gauge field. Let A′µ denote the U(1)
transformed gauge field, we then have

L = ψ̄
(
iD
/
−m

)
ψ = ψ̄ (i∂µ − ieQAµ −m)ψ (A.6)

U(1)→ ψ̄
(
i∂
/
− ieQA′µ −m+ iQ(∂

/
θ)
)
ψ. (A.7)
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It is clear that this expression for the Lagrangian is invariant only if the gauge
fields transforms such that

Q∂µθ + eQA′µ = eQAµ

⇒ A′µ = Aµ −
1

e
∂µθ. (A.8)

And that is precisely the U(1) transformation property we demand of an associ-
ated U(1) gauge field.

We want to write down the most general Lagrangian which does not violate
the local U(1)-symmetry, Lorentz-invariance and parity (C,P and T). As these
are symmetries which are not broken by QED. There is another U(1) gauge
invariant quantity that can be formed using the gauge fields, and that is the
field strength tensor. The field strength is defined from the commutator of the
covariant derivative. For a U(1) symmetry it is given by

ieFµν ≡ [Dµ, Dν ]

= ∂µAν − ∂νAµ.

By applying the transformation property for the gauge field Aµ from Eq. (A.8)
it is straight forward to show that

Fµν
U(1)→ ∂µ

(
Aν −

Q

e
∂νθ

)
− ∂ν

(
Aµ −

Q

e
∂µθ

)
= (∂µAν − ∂νAµ) = Fµν .

Contracting the space time indices yields a Lorentz invariant quantity, and we
can write down the full QED Lagrangian as

LQED = ψ̄
(
iD
/
−m

)
ψ − 1

4
F µνFµν (A.9)

= ψ̄
(
i∂
/
−m

)
ψ − eψ̄A

/
ψ − 1

4
F µνFµν . (A.10)

Varying the action with respect to the fields will produce the Dirac equation, and
Maxwell’s equation with source terms. The factor of 1/4 yields the correct nor-
malization for Maxwell’s equation with source terms. The two trivial Maxwell’s
equations is the Jacobi identity applied to the covariant derivative.

Varying the action S =
∫

d4xLQED with respect to ψ̄ gives the equation of
motion for a spin-1/2 Dirac -field with charge eQ interacting with an electromag-
netic field Aµ

0 =
(
iD
/
−m

)
ψ = (iγµ(∂µ + ieQAµ)−m)ψ (A.11)
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And varying with respect to the electromagnetic potential Aµ will give Maxwell’s
equations on covariant form

∂µF
µν = eQjν (Gauss’ law and Ampres law)

where jµ ≡ ψ̄γµψ. We get Gauss’ law for the magnetic fields and Farady’s law of
induction by applying the Jacobi identity

[Dµ, [Dν , Dλ]] + [Dλ, [Dµ, Dν ]] + [Dν , [Dλ, Dµ]] = 0

Where a lot of the terms cancel and we are left with

∂µFνσ + ∂σF
µν + ∂νF

σµ = 0,

compactly stated as

εµνρσ∂νFρσ = 0 (Faraday’s law of induction

and Gauss’ law for magnetic fields)





Appendix B

One Loop Momentum Integrals

Any one-loop integral can be decomposed as sum of integrals taking the form

Lµ1...µm
∫

ddp

(2π)d
pµ1 . . . pµm∏n

i=0Di

. (B.1)

Where Di = (p− qi)2 −m2
i + iε are the propagator denominators, and qi are ex-

ternal momenta (or sums of external momenta). Here we perform the integral in
arbitrary d−dimensions in stead of four. Initially, of course, the loop momentum
is a four-vector in Minkowski space, i.e. a non-trivial metric. We can, however,
analytically continue the integrand and simply rotate the time component in the
complex plane. That is, we make the substitution

p0 = ip0
E, p

i = piE
p2 = −p2

E

This gives the integration measure ddp = iddpE. Shifting to spherical cordinates
in d-dimensions gives ddpE = dΩdd|pE| pd−1

E .Keeping only the highest powers of
the loop momentum variable pE gives the asymptotic behavior for the integrand,
thus for high loop momenta the loop integral goes as

∼
∫ ∞

0

dp pd−1+m−2n (B.2)

Which is divergent for

d+m− 2n ≥ 0. (B.3)

One way to regularize these types of integrals is to cut off the integral in d = 4
dimensions. Then loop momentum is integrated to Λ, assuming that Λ is much
larger than all external momenta in the problem. In the end of the calculation the
limit Λ→∞ is taken. However, we use the method of dimensional regularization
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where we perform all momenutm integration in d− dimensions, and take the limit
d→ 4 from below towards the end of the calculation.

In order to get an integrand which is even in the integration variable we apply
Feynman’s trick

n∏
i=1

1

Ai
=

∫ 1

0

dx1 · · ·
∫ 1

0

dxn δ(
n∑
i=1

xi − 1)
(n− 1)!

[x1A1 + · · ·+ xnAn]n
. (B.4)

This will give a denominator which is even in a shifted loop variable `. Due to
this symmetry of the denominator, all terms proportional to an odd power of `µ

in the numerator will vanish. This symmetry also allows to replace e.g.

`µ`ν → 1

d
gµν`2, (B.5)

and more complex expressions for higher powers of `. We can thus get the integral
in the form of

Imn(∆; d) =

∫
dd`

(2π)d
(`2)n

(`2 −∆)m
. (B.6)

Wick rotating ` by the i`0
E = `0 gives

Imn(∆; d) = i (−1)n−m
∫

dΩd

(2π)d

∫
d`E

`2n+d−1
E

(`2
E + ∆)m

The angular integral in d-dimensions is the area of the d-dimnesional sphere
divided by (2π)d ∫

dΩd

(2π)d
=

1

(4π)d/2
2

Γ(d/2)
(B.7)

The radial integral can be evaluated using the Euler-Beta function∫
d`E

`2n+d−1
E

(`2
E + ∆)m

=
1

2
∆n−m+d/2B(n+ d/2,m− n− d/2), (B.8)

where the Euler-Beta function isB(x, y) =
∫∞

0
dttx−1/(1+t)x+y = Γ(x)Γ(y)/Γ(x+

y). Then we have the result

Imn(∆; d) = i(−1)n+mΓ
(
n+ d

2

)
Γ
(
m− n− d

2

)
Γ
(
d
2

)
Γ(m)

∆n−m+d/2

(4π)d/2
(B.9)



Appendix C

The Vertex as a Feynman
Parameter Integral

Here we calculate the effective vertex where an Z/γ∗ creates a dark matter pair.

C.1 Fermion Diagrams

In the text we define γµ0 (p1, p2). By applying the trick in Eq. (B.4) we can write
Γµ0(p1, p2) as the integral

iΓµ0(p1, p2) =− g2
NP

∫
[0,1]3

d3x δ(x+ y + z − 1)×

2

∫
ddk

(2π)d

[
(vf − af )k

/
γµk
/′

+ (vf + af )m
2
fγ

µ
]
PR

[(k − yq − zp1)2 −∆]3
.

(C.1)

Where ∆ = 2yz(p2
2− p2

1) + zM2 + (1− z)m2
` − z(1− z)p2

1−xyq2, we also have
momentum conservation implying q = p1 + p2. We see that the denominator is
even in the variable ` = k−yq−zp1, this will be our shifted momentum. We also
have the on shell criteria p2

1 = p2
2 = m2

χ for the external, physical particles. Thus,
since p1 and p2 are the momenta of two physical particles with identical mass we
find that ∆ is invariant under p1 ↔ p2. For reference we state the expression for
∆

∆ = zM2 + (1− z)m2
f − z(1− z)m2

χ − xyq2 − iε. (C.2)

We look at the numerator of Eq. (C.1) and perform the shift in loop momen-
tum variable ` = k− yq− zp1 we neglect all terms linear in ` as they vanish due
to symmetry. The numerator is then

(vf − af )
[
k
/
γ(k
/
− q
/

) + (vf + af )m
2
fγ

µ
]
PR (C.3)

=
[
(vf − af )

(/̀
γµ
/̀

+Nµ
0 (p1, p2)

)
+ (vf + af )m

2
fγ

µ
]
PR +O(`). (C.4)
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Where Nµ
0 (p1, p2) = (yq

/
+ zp
/

1
)γµ
(
(y − 1)q

/
+ p
/

1

)
.

We can now quite easily find the sum of the two fermion diagrams. When
both iΓµ(p1, p2) and iΓµ(p2, p1) are in the same form as in Eq. (C.1), the only
terms that are distinguishable are those belonging to Nµ

0 (p1, p2) and Nµ
0 (p2, p2).

Using the property C−1γµC = −(γµ)T we get

iΓµ(q) = iΓµ0(p1, p2)PR + CiΓµ0(p2, p1)TPLC
−1

= −g2
NP

∫
[0,1]3

d3x δ(x+ y + z − 1)×

2

∫
dd`

(2π)d
1

[`2 −∆]3
{

(vf − af )
/̀
γµ
/̀

(PR − PL)+

+ (vf + af )m
2
fγ

µ(PR − PL)

+ (vf − af )
[
Nµ

0 (p1, p2)PR + CNµ
0 (p2, p1)TPLC

−1
]}
.

(C.5)

We can write Nµ
0 (p1, p2)PR and CNµ(p2, p1)TPLC

−1 of the form

Nµ
0 (p1, p2)PR = −

[
(1− x)p

/
1

+ yp
/

2

]
γµ
[
xp
/

1
+ (1− y)p

/
2

]
PR (C.6)

CNµ(p2, p1)TPLC
−1 =

[
xp
/

2
+ (1− y)p

/
1

]
γµ
[
(1− x)p

/
2

+ yp
/

1

]
PL. (C.7)

It is now convenient to view these as functions of x and y. We therefore define
fµ(x, y) = Nµ

0 (p1, p2), we then have CNµ(p2, p1)TPLC
−1 = −fµ(y, x)PL. We then

add them and get

Nµ
0 (p1, p2)PR + CNµ

0 (p2, p1)TPLC
−1

=
1

2

[
Nµ

0 (p1, p2) + C[Nµ
0 (p2, p1)]TC−1

]
+

1

2

[
Nµ

0 (p1, p2)− C[Nµ
0 (p2, p1)]TC−1

]
γ5

=
1

2
[fµ(x, y)− fµ(y, x)] +

1

2
[fµ(x, y) + fµ(y, x)]γ5.

(C.8)

That is, in one term proportional to γ5 which is symmetric with respect to x↔ y
and one term, proportional to the identity which is antisymmetric with repspect
to the permutation x ↔ y. We see that the denominator in Eq. (C.5) is even
under the permutation x↔ y, and therefore the term which is antisymmetric with
respect to this change will vanish when integrating over the Feynman parameters
x, y and z. We are thus left with the term

Nµγ5 ≡ 1

2

[
Nµ

0 (p1, p2)− C[Nµ
0 (p2, p1)]TC−1

]
γ5

= −1

2

[
(1− x)p

/
1

+ yp
/

2

]
γµ
[
xp
/

1
+ (1− y)p

/
2

]
γ5 + (x↔ y) (C.9)
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In order to simplify Nµ further we may use the Dirac equation for the external
momenta p1 and p2. The momenta p1 and p2 must meet ū(p1) or v(p2), respec-
tively. There is the γ5 matrix to the left in Eq. (C.9) and the remainder of the
work of simplifying Nµ is to ensure that we move all the p

/
1

to the left, and all

p
/

2
γ5 to the right. Then we can make the replacements p

/
1
→ mχ and p

/
2
γ5 → mχ.

After the dust settles we are left with1

Nµγ5 = − [z(1− z) + 4xy]mχq
µγ5 −

(
z2m2

χ − xyq2
)
γµγ5. (C.10)

Solving the Momentum Integral

We can exploit the symmetry of the integrand in Eq. (C.5) to take
/̀
γµ
/̀
→(

2
d
− 1
)
`2γµ. We then get

2

∫
dd`

(2π)d

/̀
γµ
/̀
γ5

[`2 −∆]3
= γµγ5

(
2

d
− 1

)
2

∫
dd`

(2π)d
`2

[`2 −∆]3
(C.11)

=

(
1− d

2

)
2I3,1(∆; d)γµγ5 (C.12)

(C.13)

Applying the formula in Eq. (B.9) we get

2I3,1(∆; d) = 2

∫
dd`

(2π)d
`2

[`2 −∆]3
(C.14)

=
i

16π2

d

2
Γ

(
2− d

2

)(
4π

∆

)2− d
2

(C.15)

=
i

16π2

d

2

(
1

2− d
2

− γE + ln

(
4π

∆

)
+O

(
2− d

2

))
(C.16)

We expand the Γ-function around 2− d/2 as in e.g. [11], here γE = 0.5772 . . . is
the Euler-Mascheroni constant. We see that I3,1(∆; d) is a divergent quantity in
the d→ 4 limit. We also have the integral

2I3,0(∆; d) = 2

∫
dd`

(2π)d
1

[`2 −∆]3
(C.17)

= − i

(4π)d/2
Γ

(
3− d

2

)
1

(∆)3− 2
d

(C.18)

d→4→ − i

16π2

1

∆
(C.19)

1We should have called the term Nµ by a different symbol after applying the Dirac equation,
as Eq. (C.10) only holds true when sandwiched between ū(p1) and v(p2). We will nevertheless
call the resulting expression Nµ.
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Which is finite in the d → 4 limit. We state the expression for Γµ in terms of
2ε = 4− d and take the limit ε→ 0 wherever possible

iΓµ(q) = − ig
2
NP

16π2

∫
[0,1]3

d3x δ(x+ y + z − 1) ×{
(vf − af ) (ε− 1) Γ (ε)

(
4π

∆

)ε
γµγ5

−
[
(vf + af )m

2
fγ

µγ5 + (vf − af )Nµγ5
] 1

∆

} (C.20)

For the fermion diagrams.

C.1.1 Scalar Diagrams

We introduce the Feynman parameters by the trick in Eq. (B.4). Then we get

iΛµ
0(p1, p2) = −g2

NPkf

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dzδ(x+ y + z − 1)× (C.21)

× 2

∫
dd`

(2π)d
(2k + q)µ (k

/
+ p
/

1
)PR[

(k + yq + zp1)2 − ∆̃
]3 (C.22)

Where ∆̃ = zm2
f+(1−z)M2−z(1−z)m2

χ−xyq2−iε after the external DM particles
are put on shell. We make the shift in loop momentum variable ` = k+ yq+ zp1

to get the numerator of the form

2
/̀
`µPR +Mµ

0 (p1, p2)PR, (C.23)

where Mµ
0 (p1, p2) = [(2x− 1)pµ1 − (2y − 1)pµ2 ](xp

/
1
− yp
/

2
). When adding the two

diagrams in Fig. 4.4 we get

igΛµ = iΛµ
0(p1, p2)PR + CiΛµ

0(p2, p1)TPLC
−1

= −kfg2
NP

∫
[0,1]3

d3x δ(x+ y + z − 1) 2

∫
dd`

(2π)d
2
/̀
`µγ5 +Mµγ5[
`2 − ∆̃

]3 . (C.24)

Where

Mµγ5 = Mµ
0 (p1, p2)PR + CMµ

0 (p2, p1)TPLC
−1

= (x− y)2mχq
µγ5. (C.25)

Due to the symmetry in ` we can substitute
/̀
`µ → 1

d
`2γµ. We then get

2

∫
dd`

(2π)d
2
/̀
`µγ5[

`2 − ∆̃
]3 =

4

d

∫
dd`

(2π)d
`2[

`2 − ∆̃
]3γ

µγ5 (C.26)

=
i

16π2
Γ

(
2− d

2

)(
4π

∆̃

)2−2/d

γµγ5, (C.27)
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which is divergent in the limit d → 4. We state iΛµ in terms of 2ε = 4 − d and
take the limit ε→ 0 wherever possible

iΛµ = −ikfg
2
NP

16π2

∫
[0,1]3

d3x δ(x+ y + z − 1)×{
Γ (ε)

(
4π

∆̃

)ε
γµγ5 − Mµγ5

∆̃

} (C.28)

C.2 The Effective Vertex

We can now compactly write the vertex in terms of the Feynman parameter
integral

iΞµ
B(q) = iΓµ + iΛµ

= − ig
2
NP

16π2

∫
[0,1]3

d3x δ(x+ y + z − 1)

×
{

Γ(ε)

[
(vf − af )(ε− 1)

(
4π

∆

)ε
+ kf

(
4π

∆̃

)ε]
γµγ5

−
(
(vf + af )m

2
`γ

µγ5 + (vf − af )Nµγ5
) 1

∆

−kfM
µγ5

∆̃

}
.

(C.29)

Where we insert the relevant coupling factors for kf , vf and af for to get the
photon- and Z-channel amplitudes.

C.2.1 DM Pair From a Photon

We consider the case when the vector particle Bµ is a photon. The particles which
partake in the loop in Fig. 4.2 are then only charged lepton ` and the charged
scalar η. We then insert kf = − sin θW , af = 0 and vf = − sin θW in Eq. (C.29),
in order to get the effective vertex factor given in terms of Feynman parameter
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integrals. From the third line in Eq. (C.29) we then get when expanding in ε

sin θWΓ(ε)

[(
4π

∆

)ε
(ε− 1) +

(
4π

∆̃

)ε]
=− sin θW

(
1

ε
− γE +

1

2
(γ2
E +

π2

6
)ε+O(ε2)

)
×[

(ε− 1)

(
1 + ε ln

4π

∆

)
+ 1 + ε ln

4π

∆̃
+O(ε2)

]
=− sin θW

(
1

ε
− γE +

1

2
(γ2
E +

π2

6
)ε+O(ε2)

)
×[

ε+ ε ln
∆

∆̃
+O(ε2)

]
=− sin θW

(
1 + ln

∆

∆̃

)
, as ε→ 0. (C.30)

We can write this in terms of formfactors F1 and F2

iΞµ
A =

ig2
NP sin θW

16π2

[
F1(q)γ5γµ + F2(q)

qµ

mχ

γ5

]
(C.31)

as the effective coupling factor for γ∗ → χχ. Here the form factors are

F1(q) =

∫
[0,1]3

d3x δ(x+ y + z − 1)

[
1 + ln

∆̃

∆
+

(z2m2
χ − xyq2)−m2

`

∆

]
(C.32)

F2(q) =

∫
[0,1]3

d3x δ(x+ y + z − 1)

[
z(1− z) + 4xy

∆
− (x− y)2

∆̃

]
m2
χ. (C.33)

C.2.2 DM Pair From a Z-boson

We now consider the case when a Z-boson carrying invariant center of mass
energy q2 creates two DM particles. We get the same types of diagrams as in
Fig. 4.2, however, the particle in the loop are both charged SM leptons `, and
neutrinos ν` in addition to the scalars η and η0. There are then in total 8 dia-
grams, 4 diagrams for the charged lepton ` and scalar η and 4 for the neutrino
ν` and the charge neutral scalar η0.
The contribution for f = ` is the vertex factor arising in the amplitude from the
4 diagrams with the charged lepton and scalar particles. The coupling factors a`
and v` and k` are displayed in table 3.1, and we have k` = vf−af = sin2 θW−1/2

cos θW
such

that the divergences cancel, we also get a term proportional to vf + af = sin2 θW
cos θW

.

For the four diagrams where f = ν` the cancellation occurs in the same manner
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as for f = `, as vν` − aν` = kν` = 1/(2 cos θW ). Furthermore vν` + aν` = 0 so we
get no term proportional to mν` .

The necessary algebra to find the Z-channel vertex factor for charged leptons-
and neutrino- loop particles is analogous to the γ∗ vertex. If we ignore the lepton
masses m` and mν` we get the same form of the vertex as in Eq. (C.31), only
with an overall factor of tan θW after adding the amplitudes for all 8 diagrams.
We state the vertex for completeness

iΞZ =
ig2
NP sin θW tan θW

16π2

[
F1(q)γ5γµ + F2(q)

qµ

mχ

γ5

]
(C.34)

Where the form factors are given in Eqs. (C.32) and (C.33) neglecting m2
` .





Appendix D

Passarino Veltmann Integrals

D.1 Three-point rank-two tensor integral

We will here go through the details of how to calculate the three-point rank-
two tensor integral from Eq. (5.10). Firstly, the decomposition into Passarino-
Veltmann coefficients

Cµν = gµν C00 + pµ1p
ν
1 C11 + pµ2p

ν
2 C22 + pµ1p

ν
2 C12 + pµ2p

ν
1 C21.

We note that C12 = C21 due to total symmetry in space-time indices. We can
then set up another set of equations

pν1C
µ
ν = pµ1 C00 + pµ1 p

2
1 C11 + p1 · p2 p

µ
2 C22 + (pµ1 p1 · p2 + pµ2p

2
1) C12 (D.1)

pν2C
µ
ν = pµ2 C00 + pµ1 p1 · p2 C11 + p2

2 p
µ
2 C22 + (pµ1 p1 · p2 + pµ2p

2
1) C12 (D.2)

Cµ
µ = dC00 + p2

1 C11 + p2
2 C22 + 2p1 · p2 C12 (D.3)

We can also reduce these to a set of equations as Eq. (5.16), we can express
pνiC

µ
ν in terms of scalar integrals

pν1C
µ
ν =

(2πµ)4−d

iπ2

∫
ddk

kµp1 · k
D0D1D2

=
(2πµ)4−d

iπ2

∫
ddk

1

2

[
kµ (D1 −D0 +m1 −m0 − p2

1)

D0D1D2

]
=

(2πµ)4−d

iπ2

∫
ddk

1

2

[
kµ

D0D2

− kµ (1)

D1D2

+
(
m1 −m0 − p2

1

) kµ

D0D1D2

]
=

1

2
Bµ(p2

2,m
2
0,m

2
2)− 1

2
Bµ((p2 − p1)2,m1,m2)

+
1

2
(m1 −m0 − p2

1)Cµ(p2
1, p

2
2, (p2 − p1)2,m2

1,m
2
0,m

2
2).
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And analogously we have

pν2C
µ
ν =

1

2
Bµ(p2

1,m
2
0,m

2
1)− 1

2
Bµ((p2 − p1)2,m1,m2)

+
1

2
(m2 −m0 − p2

2)Cµ(p2
1, p

2
2, (p2 − p1)2,m2

1,m
2
0,m

2
2),

also for the trace

Cµ
µ =

(2πµ)4−d

iπ2

∫
ddk

k2

D0D1D2

= B0((p2 − p1)2,m0,m1) +m2
0C0(p2

1, p
2
2, (p2 − p1)2,m2

1,m
2
0,m

2
2).

We have now to find the decomposition of the respecitve one-tensor integrals Bµ

and Cµ. Once this is done set it in as left hand side in Eqs. (D.1) and (D.2),
and we assume that p1 and p2 are linearly independent in order to find two new
equations from each of the expressions for pνiC

µ
ν . In the end we end up with a

set of equations analogous to the set in Eq. (5.16).

D.2 General Solution for the Scalar Two- and

Three-Point Integrals

We here provide the general solutions for the scalar two-and three-point scalar
integrals. A lot of the intermediary steps for the solution of the three-point scalar
integral is found in [68].

D.2.1 Two-Point Scalar Integral

The two-point scalar integral is divergent as d → 4 this corresponds to a UV-
divergence. We will solve the integral in Eq. (??) by using Feynman parametriza-
tion. We then have

i

16π2
B0(p2,m2

0,m
2
1) = µ4−d

∫
ddk

(2π)d
1

[k2 −m2
0] [(k + p)2 −m2

1]

= µ4−d
∫

ddk

(2π)d

∫ 1

0

dx
1[

(k + px)2 −∆
]2

k→k−xp = µ4−d
∫

dx
i

(4π)d/2
Γ(2− d/2)

1

∆2−d/2

Where ∆ = −x(1− x)p2
1 +m2

0(1− x) +m2
1x− iε. We will take the expansion

Γ(2− d/2)

4πd/2

(
µ2

∆

)2−d/2

=
1

16π2

(
2

ε
− ln

∆

µ2
− γE + ln 4π

)
+O(ε)
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We see that the mass dimension µ keeps the argument of the log dimensionless.
We define δε = 2

ε
− γE + ln 4π and state the intermediate result1

B0(p2,m2
0,m

2
1) = δε −

∫ 1

0

dx ln

[
−x(1− x)

p2

µ2
+
m2

0

µ2
(1− x) +

m2
1

µ2
x− iε

µ2

]
+O(ε)

(D.4)

For nonzero masses and p2 the general solution is

B0(p2,m2
1,m

2
2) = δε − ln

(
p2

µ2

)
−

2∑
i=1

∫ 1

0

dx ln (xi − x)

Where ∫ 1

0

dx ln (t− x) = (1− t) ln(t− 1) + t ln t− 1

Where x1,2 are the roots of the equation

x2 − x
(

1− m2
1

p2
+
m2

0

p2
)

)
+
m2

0

p2
− iε

p2
= 0.

They are found to be

x1 =
1

2p2

(
p2 −m2

0 +m2
1 +

√
(p2 −m2

1 +m2
0)2 − 4p2(m2

0 − iε)
)

(D.5)

x2 =
1

2p2

(
p2 −m2

0 +m2
1 −

√
(p2 −m2

1 +m2
0)2 − 4p2(m2

0 − iε)
)

(D.6)

=
m2

0 − iε
p2

1

x1

(D.7)

Applying Eq. (D.7) we can rewrite

2∑
i=1

∫ 1

0

dx ln (xi − x) =
2∑
i=1

[∫ 1

0

dx ln

(
1− x

xi

)
+ lnxi

]

= ln
p2

m2
0 − iε

+
2∑
i=1

(1− xi) ln

(
xi − 1

xi

)
.

And we arrive at

B0(p2,m2
0,m

2
1) = δε + ln

µ2

m2
0 − iε

+ 2−
2∑
i=1

(1− xi) ln

(
xi − 1

xi

)

1We make the important distinction between ε which is used to regularize the UV-divergence,
and the iε which is the propagator pole shift, and it also gives the desired branch of the logs.
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