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Summary

The present work investigates heat conduction from lattice vibrations in a class of mate-
rials called half-Heuslers. The composition under investigation was XNiSn half-Heusler
alloys where X=Ti, Zr or Hf. These materials have received a lot of attention for their
favorable properties for thermoelectric applications. However, their lattice thermal con-
ductivity is too high to be applicable as a thermoelectric material. Previous studies have
shown that lattice thermal conductivity can be reduced by isoelectronic substitutions
on the X-site or by reducing the grain size. The lattice thermal conductivity is calcu-
lated by using density functional theory and the phonon Boltzmann transport equation
with the frozen phonon approach. Anharmonic three-phonon scattering was used to
assess κl of pure TiNiSn, ZrNiSn and HfNiSn, the results had good accordance to ex-
perimental values. However, a slight overestimation was observed due to the fact that
experimental samples exhibit microstructures which may affect the κl. The effect of
alloying was then explored within the virtual crystal approximation, making it possi-
ble to screen all possible ternary substitutions in the composition TixHfyZr1−x−yNiSn.
The lowest κl was found for the binary substitution where X=Ti and Hf, in the com-
position Ti0.5Hf0.5NiSn. Finally, a simple model for boundary scattering was used to
quantify the effect of finite grain sizes on κl. Using values of the grain size obtained
from experimental measurements as input when calculating lattice thermal conductivity
showed very good accordance to experimental measurements of κl. This study demon-
strated that modeling based on first principles can be used to quantify contributions from
various scattering mechanisms and thus predict the thermal conductivity of given alloy
compositions with a specific grain size.
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Chapter 1

Introduction

A higher demand for energy can be related to an increased population and higher stan-
dard of living. We are today strongly dependent on energy sources as fossil fuels, and
it is well known that fossil fuels contaminate the climate with emission of greenhouse
gases. We need to find new energy sources which are renewable and clean, with no
emission of additional greenhouse gases.

There are a lot of energy that dissipates into the atmosphere in the form of heat. This
waste heat could be utilized to produce electricity, but the conversion efficiency is too
low to have an impact on a global energy scale. Thermoelectricity could be used for this
purpose, which is related to direct conversion of a heat to electricity, or vice versa. As a
power generator, thermoelectricity has found its way into some niche application areas,
e.g. space probes. This is due to the durability and stability of thermoelectric power
generators. On the other hand, thermoelectric materials can be used as refrigerators and
spot-on coolers for micro-electronics.

It has been invested a lot in research to obtain high-performance thermoelectric ma-
terials: one route is to find new materials, and another route is to carefully engineer
existing materials in such a way that they exhibit the properties of interests.

This chapter will be an introduction to thermoelectricity and the physical properties
which govern the conversion efficiency. The end of this chapter will include a motivation
of the thesis.

1.1 Thermoelectricity

Thermoelectricity can be described as a two way process. One of the descriptions is
conversion of heat into electricity. This process make use of a temperature gradient over
the materials to produce electricity. The reverse effect uses an electric current through

1



Chapter 1. Introduction

the material to produce a temperature difference on each side. These two processes are
called the Seebeck effect and Peltier effect, respectively.

1.1.1 Seebeck Effect

In 1821, T. J. Seebeck discovered the first of the thermoelectric effects. He showed that
by joining two dissimilar materials, and holding the junction at two different tempera-
tures, i.e. T and T + ∆T , produces a voltage difference across the junction.

The mobile charge carriers on the hot side will diffuse to the cold side which results
in an electric field opposite of the motion of the charges. One says that the system is in
equilibrium when no more diffusion occurs due to the opposed electric field.

Figure 1.1: An illustration of a thermoelectric material in a temperature gradient. The negative
charge carriers diffuses from the hot side to the cold side, which induces an electric field.

The voltage difference between the hot and the cold side is called the Seebeck volt-
age. This voltage per unit temperature difference is called the Seebeck coefficient S,
also known as the thermopower, and has units of V/K. This is an intrinsic property of
the material and the Seebeck coefficient is defined as

S = −∆V

∆T
= −Vhot − Vcold

Thot − Tcold

, (1.1)

where ∆V is the voltage difference between the hot and the cold side and ∆T is the
temperature difference.

1.1.2 Peltier Effect

A few years later, J. C. Peltier discovered another effect which is nowadays known as
the Peltier effect. He observed that when an electrical current passes through a junction
of two dissimilar materials, heat was either rejected or absorbed at the junction. The
heat absorbed or rejected at the junction per unit time is defined as

Q = (ΠA − ΠB)I, (1.2)

2



1.1. Thermoelectricity

where ΠA and ΠB are the Peltier coefficient of material A and B, respectively. The
Peltier coefficient is a measure of the amount of heat carried per unit charge. This effect
is largely due to the difference in Fermi energies of the two materials [1].

The Seebeck and Peltier coefficient are related to each other by a simple relation,
known as one of the Thomson relations,

Π = TS. (1.3)

The simple relation states that the Peltier coefficient is proportional to the Seebeck co-
efficient at a given temperature.

1.1.3 Figure of Merit

The efficiency of a thermoelectric material can be determined by the dimensionless fac-
tor called the figure of merit (ZT ),

ZT =
S2σ

κe + κl

T, (1.4)

where S is the Seebeck coefficient, σ is the electrical conductivity and the numerator
S2σ is called the power factor. The denominator is the total thermal conductivity, where
κe and κl are the electronic- and lattice contributions, respectively. A high ZT value
denotes a good thermoelectric material, and ZT higher than one are considered good
thermoelectric materials.

For an efficient process, it is necessary to have materials with good electrical con-
ductivity; otherwise, the scattering of electrons will generate heat on both sides of the
material and reduce the thermal gradient. Similarly, the Seebeck coefficient has to be
maximized to produce the highest possible voltage difference. To maintain a high ther-
mal gradient between the hot and cold side, the material should be a poor thermal con-
ductor. All the parameters are strongly influenced by the material’s crystal structure;
therefore, the parameters are interdependent. The electrical conductivity and the elec-
tronic contribution to the thermal conductivity are proportional to each other, which is
given by the Wiedemann-Franz law,

κe = σLT, (1.5)

where L is called the Lorentz number which is a function of charge carrier concentration
and temperature. Because of the propotionality of electrical conductivity and electronic
contribution to thermal conductivity, obtaining a low thermal conductivity and a high

3
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power factor at the same time requires a low lattice contribution to the thermal conduc-
tivity.

1.1.4 Thermoelectric Materials

There exist various thermoelectric materials which operates at different working temper-
atures with different efficiency. Ioffe reported as early as in 1957 that the best thermo-
electric materials are the heavily doped semiconductors [2]. Figure 1.2 presents some of
the most common thermoelectric materials for energy generation or refrigeration.

Figure 1.2: The figure of merit as a function of temperature for different n- and p-type thermo-
electric materials [5].

The most widespread application of thermoelectric materials is in refrigeration pur-
poses at room temperature with materials such as alloys of Bi2Te3 and Sb2Te3 and Bi2Se3

[3]. For thermoelectric generation at temperatures in the range of 500-900◦C, materials
based on group-IV tellurides are typically used such as PbTe, GeTe or SnTe [4]. For
applications at higher temperatures, the Si-Ge alloys have been used [3].

Other interesting materials for thermoelectric applications are structures which con-
tains cages within the unit cell. Skutterudites [6, 7] and clathrates [8, 9] are such ma-
terials, and have shown promising thermoelectric properties. One advantage of these
types of materials is the possibility to fill the cages resulting in an effective reduction of

4



1.2. Half-Heusler Alloys

the lattice thermal conductivity. Another potential class of materials for thermoelectric
applications is the half-Heusler alloys, which will be discussed in the next section.

1.2 Half-Heusler Alloys
Half-Heusler alloys are ternary compounds with the general formula XYZ which forms
the MgAgAs structure. The X, Y and Z atoms form three interpenetrating face-centered
cubic (FCC) sublattices, with corresponding Wyckoff positions at 4a (0, 0, 0), 4b (1/2,
1/2, 1/2) and 4c (1/4, 1/4, 1/4). The half-Heusler structure can be viewed as a sub-
lattice of the zinc-blende structure which consists of atoms at Wyckoff positions 4a and
4c with an interpenetrating rock-salt structure with atoms at position 4a and 4b, as illus-
trated in figure 1.3.

Figure 1.3: An illustration of a) rock-salt b) zinc-blende and the c) half-Heusler structure. This
figure and all other atomic models are made in the visualization tool VESTA [10].

Half-Heusler alloys are particular interesting due to the wide variety of combinations
making it possible to use inexpensive, earth-abundant and environmentally friendly el-
ements [11]. The possible choices of the X , Y and Z atoms are shown in figure 1.4.
Another great advantage is the possibilities for doping on the Z site to improve the
charge carrier concentration and simultaneously introduce mass-disorder on the X and
Y site to decrease the lattice thermal conductivity.

One of the most promising half-Heusler for thermoelectric application is the n-type
XNiSn, where X=Ti, Zr or Hf. The XNiSn alloys are narrow band gap semiconductors
resulting in a high effective mass and large Seebeck coefficient [13, 14]. Combining
their high Seebeck coefficient with their high electrical conductivity, a high power factor
may be achieved [15, 16]. However, their relatively high thermal conductivity remains
a problem for efficient energy conversion [15–19]. The thermal conductivity is reported
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Figure 1.4: The periodic table of the elements with a color scheme for the possibilities of the X ,
Y and Z atoms in the half-Heusler compound [12].

to be as high as 15 W/mK, which is almost five times greater than commercial Bi2Te3

[20].
Various methods have been deployed to reduce the thermal conductivity. An isoelec-

tronic substitution on the X-site has shown to efficiently reduce the thermal conductivity
without altering the electric conductivity [5, 16, 18, 21–25]. A binary substitution at the
X-site has shown to reduce κl up to 50% [23, 26–28]. Ternary substitution at the X-site
can further reduce κl [21, 29–31].

Heat carriers in the low frequency range are particularly sensitive to scattering from
grain boundaries, and lowering the grain size in XNiSn alloys has shown to be an effec-
tive method to reduce κl [15, 24, 26, 32–36].

1.3 Motivation for the Thesis

The XNiSn half-Heusler alloys are promising candidates for thermoelectric application.
Maintaining the temperature gradient is vital for the material to be considered a good
thermoelectric material; however, the half-Heusler alloys have shown to have a lattice
thermal conductivity five times greater than commercial Bi2Te3. The main goal for
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the thesis is to investigate the quantities that govern lattice thermal conductivity in the
XNiSn alloys. Lattice thermal conductivity is directly related to the phonons in a lattice
structure. The dynamics of the phonons can be calculated from first principles, and this
thesis will conduct such calculations within the harmonic approximation. The calcula-
tions will yield frequency of the phonons and other related properties, e.g. density of
states and heat capacity. The harmonic approximation fails to capture interactions be-
tween phonons; thus, the heat transport within the harmonic approximation are perfect.
To calculate the lattice thermal conductivity, anharmonicity has to be included. Once
the anharmonicity is included in the calculations, one have the possibility to calculate
the phonon-phonon scattering rates and the lattice thermal conductivity.

First principles calculations with mass-disorder and boundaries will be very com-
putational demanding; thus, the thesis will investigate additional models to account for
scattering mechanisms for a reduction in κl: scattering from mass-disorder and grain
boundaries. Quantifying an effective and predictive model for these scattering mecha-
nisms will be one of the goals of the thesis.

7





Chapter 2

Theory of Phonons

The physics behind phonons is important in order to understand how to obtain a low
lattice thermal conductivity. Phonons can be described as collective excitations of atoms
or molecules in condensed matter phases. The word "phonon" stems from the Greek
word "φωνn̂", which translates to sound or voice.

This chapter will start with some basic solid state physics: a description of crystal
lattices in real and reciprocal space. Section 2.2 will discuss lattice dynamics and de-
rive the dynamical matrix within the harmonic approximation. However, there are no
interactions between the vibrations within the harmonic approximation; thus, the heat
conduction is infinite. Including phonon-phonon interactions is necessary in order to
calculate the lattice thermal conductivity, and the derivation of the phonon-phonon in-
teractions is shown in the following section. The chapter ends with a description of
different scattering mechanisms which will be utilized in the calculations of lattice ther-
mal conductivity.

The structure of this chapter is inspired by the references [37, 38]. Additional details
can be found in the references [39, 40]. The basics of solid state physics can be found
in any introductory solid state physics text book, such as [41, 42].

2.1 Periodic Crystal Structures

2.1.1 Bravais Lattice

An ideal crystal consists of an infinite repetition of an identical group of atoms. This
group is called a basis and may consist of just one atom or a volume of several atoms.
The position of the basis may be described with the translation vectors a1, a2 and a3, in
such way that any point R has the exact same surroundings translated by any integer of
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the translation vectors,
R = l1a1 + l2a2 + l3a3, (2.1)

where l1, l2 and l3 are arbitrary integer numbers. The set of R for all l1, l2 and l3 defines
the crystal lattice.

A primitive unit cell consists of only one lattice point, whereas a non-primitive unit
cell consists of several lattice points. The conventional cubic unit cell is one such non-
primitive unit cell. The primitive unit cell has a smaller volume compared to the conven-
tional unit cell. The figure 2.1 illustrates the difference in the shape of a conventional
and primitive unit cell. There are a limited number of possible arrangements of the lat-

(a) Conventional unit cell (b) Primitive unit cell

Figure 2.1: Comparison of a conventional versus primitive half-heusler.

tice points. The set of the possible arrangements are known as Bravais lattices, and there
exists in total 14 such lattices.

2.1.2 Reciprocal Lattice

Every crystal structure has two lattices associated with it: one in real space and one
in reciprocal space. The reciprocal lattice is a periodic set of points which obeys the
relation

eiG·R = 1, (2.2)

where the vector G is the reciprocal lattice vector which constructs the lattice points in
the reciprocal space. The units of the vectors in real space are length, but the units in the
reciprocal space are given as the inverse of the length.

10



2.1. Periodic Crystal Structures

The G-vector is defined as a set of reciprocal translation vectors times any integer
number m1, m2 and m3,

G = n1b + n2b2 + n3b3, (2.3)

where b1, b2 and b3 are the reciprocal translation vectors. The vectors b1, b2 and b3

can be constructed from the vectors of the Bravais lattice the following way,

b1 =
2π

Ω
a2 × a3; b2 =

2π

Ω
a1 × a3; b3 =

2π

Ω
a1 × a2, (2.4)

where Ω = |a1 · (a2×a3)| is the volume of the primitive unit cell in the real space. From
equation (2.1), (2.3) and (2.4), one can derive the following property,

ai · bj = 2πδij. (2.5)

δij is the Kronecker’s delta, which is equal to 1 if i = j and zero otherwise.
An alternative way to view the reciprocal lattice vectors is by viewing them as wave

vectors which yields plane waves with the periodicity of the Bravais lattice,

eiG·r = eiG·reiG·R = eiG·(r+R), (2.6)

where r is the position vector of an atom in a unit cell. This definition obeys the relation
eiG·R = 1 from equation (2.2).

A more detailed, physical and mathematical, description of the reciprocal space can
be found in any solid state physics book [41, 42].

2.1.3 Brillouin Zone

The Brillouin zone (BZ) is an uniquely defined volume in the reciprocal space, and the
boundaries of the volume are related to planes between lattice points in the reciprocal
lattice. The BZ is constructed by placing planes normal to the mid-point of the reciprocal
lattice vector G. The first BZ is the volume enclosed by such planes with the shortest
possible reciprocal lattice vector. Any position inside the first BZ is closer to the lattice
point of origin compared to any other points in the crystal lattice.

An illustration of the first BZ for a body-cetered cubic (BCC) and for a face-centered
cubic (FCC) is given in figure 2.2. The letters in the figure 2.2a and 2.2b denotes high
symmetry points. At such a point, the distance to the origin is equal to the distance to
the nearest lattice point.

By using Bloch’s wave description of periodic structures, it is found that the solution
of the wave function for the whole structure can be characterized by the behavior within
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(a) 1st BZ of BCC (b) 1st BZ of FCC

Figure 2.2: The first BZ of a) BCC and b) FCC structure with the symmetry points [43].

a single BZ. Furthermore, by using the symmetry in the point group of the lattice the
first BZ can be reduced to the irreducible BZ. It is common to utilize this symmetry in
computational methods to reduce the cost of the calculations; thus, it is only necessary to
solve Schrödinger’s equation for a periodic crystal structure within the irreducible BZ.

2.2 Classical Description of Lattice Dynamics

2.2.1 Traveling Waves in a Crystal

Born and von Kármán introduced the concept of periodic boundary condition, and the
condition is used to describe an infinitely large system using smaller unit cells of the
system. An effect of the periodic boundary condition is that one can ignore the surfaces;
thus, makes it convenient to describe bulk properties.

In an unbounded crystal, the vibrations are considered as traveling waves extending
throughout the whole crystal. The atomic displacement uα from its equilibrium position
r(lb) can be expressed as

uα(lb, t) =
1
√
mb

Uα(b|q)ei(q·l−ω(q)t). (2.7)

The displacement uα(lb, t) is along the α-direction, where α = 1, 2, 3 and represents the
Cartesian axes, and it depends on the wave vector q of the traveling wave. The vectors l
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and b are the position vectors of the unit cell l and atom b, respectively. Further notations
will address unit cells as l and atoms as b; it is given that the unit cell l and atom b have
a corresponding position vector l and b, respectively. Uα(b|q) describes the amplitude
and direction of the motion of atom b, as produced by a lattice wave with wave vector
q. The angular frequency as a function of q is called the dispersion relation for the
propagation of traveling waves.

Because of the periodicity, the directions and amplitudes of the motions for atom b in
unit cell l is equal to the directions and amplitudes of the motions of the corresponding
atom b in a different unit cell l′ where l 6= l′. Thus, one only need to consider 3nmotions
with n equal to the number of atoms in the unit, instead of the motion of all atoms in the
crystal.

2.2.2 Interatomic Forces

The crystal potential energy denotes the formation energy of the crystal with the atoms
in their equilibrium position. The atoms vibrate around their equilibrium position shown
as the atomic displacement in equation (2.7).

The crystal potential energy is given as V (uα(lb), uβ(l′b′), uγ(l
′′b′′), · · · ), and it can

be expressed as a function of the instantaneous displacement uα(lb) of all atoms. It is not
only a function of the displacement of a single atom, but contains also the displacement
of two or more displaced atoms simultaneously. The expression can be expanded as a
Taylor series:

V = V0 +
∑
lb

∑
α

∂V

∂uα

∣∣∣∣∣
0

uα(lb) +
1

2

∑
lb,l′b′

∑
αβ

φαβ(lb, l′b′)uα(lb)uβ(l′b′)

+
1

3!

∑
lb,l′b′,l′′b′′

∑
αβγ

φαβγ(lb, l
′b′, l′′b′′)uα(lb)uβ(l′b′)uγ(l

′′b′′) + · · ·

= V0 + V1 + V2 + V3 + · · · ,

(2.8)

where V0 is an energy constant at the equilibrium position. The first derivative is equal
to the force exerted on the displaced atom b in the unit cell l by all other atoms in the
crystal,

Fα(lb) = − ∂V

∂uα(lb)
. (2.9)

The subscript 0 in the Taylor expansion of the potential energy from equation (2.8)
denotes that one are evaluating the positions in the equilibrium configuration. Thus, the
forces are zero, and one can exclude V1 from equation (2.8).
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The second-order forces constants is given by φαβ , which is the second derivative of
the crystal potential,

φαβ(lb, l′b′) = − ∂2V

∂uα(lb)∂uβ(l′b′)

∣∣∣∣
0

= − ∂Fα(lb, l′b′)

∂uβ(l′b′)

∣∣∣∣
0

. (2.10)

φαβ(lb, l′b′) represents the forces exerted on atom b in unit cell l in direction α by an
unit displacement in the β-direction of atom b′ in unit cell l′.

φαβγ denotes the third-order force constants which are related to the third derivative
of the crystal potential energy,

φαβγ(lb, l
′b′, l′′b′′) =

∂3V

∂uα(lb)∂uβ(l′b′)∂uγ(l′′b′′)

∣∣∣∣
0

= − ∂2Fα(lb, l′b′)

∂uβ(l′b′)∂uγ(l′′b′′)

∣∣∣∣
0

.

(2.11)

φαβγ(lb, l
′b′, l′′b′′) represents the forces exerted on atom b in unit cell l in direction α

when two other atoms l′b′ and l′′b′′ are displaced in the β- and γ-direction, respectively.

From equation (2.10), one see that the second-order force constants φαβ(lb, l′b′)

must follow the symmetry condition:

φαβ(lb, l′b′) = φβα(l′b′, lb). (2.12)

The periodicity of the lattice requires that if a unit cell is translated relative to itself by
a lattice vector R(l), it will coincide with itself; that is, for any integer of the unit cell l,
the force from a displacement of a single atom bwill have the same value, independently
of the unit cell l. It makes the second-order force constants φαβ(lb, l′b′) not separately
dependent on the cell indices l and l′, but the relative cell index l′ − l. This result can be
expressed as a function of the relative position vector of the unit cell,

φαβ(lb, l′b′) = φαβ(0b, (l′ − l)b′), (2.13)

which is called the lattice translation symmetry condition.

2.2.3 The Dynamical Matrix

Within the harmonic approximation, one only consider the force constants in the Tay-
lor series up to the second derivative. Ignoring the higher ordered terms of (2.8), the
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potential energy can be written as

Vharm = V0 +
1

2

∑
0b,(l′−l)b′

∑
αβ

φαβ(0b, (l′ − l)b′)uα(0b)uβ((l′ − l)b′), (2.14)

where we have used the lattice translation symmetry condition.

The equations of motion for the bth atom in the lth unit cell can be written as follows,

mbüα(0b, t) = −
∑

(l′−l)b′

∑
β

φαβ(0b, (l′ − l)b′)uβ((l′ − l)b′, t), (2.15)

where mb is the mass of the bth atom. The coefficient φαβ(0b, (l′ − l)b′) represents the
forces along the α-direction exerted on the bth atom, when the b′th atom is displaced in
the β-direction in the unit cells l′ − l relative to each other.

By substituting the atomic displacement in equation (2.7) into the equation of mo-
tions (2.15), one get

ω2(q)Uα(b|q) =
∑
b′β

Dαβ(bb′|q)Uβ(q|b′), (2.16)

with non-trivial solutions when

|Dαβ(bb′|q)− ω2(q)δαβδbb′ | = 0. (2.17)

The matrix Dαβ(bb′|q) is called the dynamical matrix and is given as

Dαβ(bb′|q) =
1√

(mbmb′)

∑
(l′−l)

φαβ(0b, (l′ − l)b′)eiq·(l′−l). (2.18)

The dynamical matrix consists of 3n × 3n matrix elements: the second-order force
constant matrix which is a 3 × 3 matrix and n × n pairs of atom b and atom b′. Thus,
equation (2.17) will have 3n solutions for each wave vector q. The frequency will be
denoted as ω(jq), where j = 1, 2, 3, · · · , 3n, and it represents the phonon branches.
Thus, there exists 3n frequencies for each wave vector q.

It can be shown that the dynamical matrix is Hermitian for any value of q [40],

Dαβ(bb′|q) = (Dαβ(b′b|q)∗)T . (2.19)

This implies that the phonon dispersion squared are real; thus, ω(jq) is either real or
purely imaginary. From the equation for atomic displacement (2.7), a purely imaginary
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ω(jq) would imply that the atomic displacement increases exponentially to infinity or
decreases exponentially to zero. Imaginary solutions denotes an unstable crystal struc-
ture; thus, only real values of the phonon dispersion ω(jq) are expected to meet the
condition of crystal stability.

The collective motion of atom b in the α-direction for a given phonon branch j and
wave vector q can be described with a polarisation vector eα(b|jq). One particularly
element of the polarisation vector describes the motion of a given atom b, vibrating in
a given phonon mode jq along x-, y- or z-direction. Thus, the polarisation vector is a
3n× 1 column matrix, and it can be expressed as

eα(b|jq) =



U1(1|jq)

U2(1|jq)

U3(1|jq)

U1(2|jq)
...

U3(n|jq)


. (2.20)

The polarisation vector e(b|jq) is an eigenvector consisting of n linearly independent
vectors, satisfying the orthonormality and closure conditions, given as∑

bα

e∗α(b|jq)eα(b|j′q) = δjj′ , (2.21)

∑
j

e∗β(b′|jq)eα(b|jq) = δαβδjj′ , (2.22)

Equation (2.16) can be rewritten with respect to the frequency ω(jq) and the polarisation
vector eα(b|jq),

ω2(jq)eα(b|jq) =
∑
b′β

Dαβ(bb′|q)eβ(b′|jq). (2.23)

From the orthonormality condition (2.21) and closure condition (2.22), the eigenval-
ues of equation (2.23) are decoupled and do not interact with each other. Solving this
equation yields the phonon dispersion ω(jq).

2.2.4 Dispersion Relation

The phonon dispersion relation is now given as ω(jq), where jq represents the normal
modes of vibrations. One have 3n normal modes in a system with n atoms. The modes
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are "normal" in the sense that they are decoupled and an excitation of one normal mode
will not cause any motion of a different mode, i.e. there is no energy transfer between
modes.

In the special case when q→ 0, three of the solutions of ω(jq) goes to zero. Those
modes are called acoustic modes or acoustic phonons. A proof of this is given in refer-
ence [44]. The remaining 3n − 3 modes are called the optical phonons. The acoustic
phonons are long wavelength vibrations with coherent movement of atoms in the direc-
tion α = 1, 2, 3. In contrast, optical phonons have short wavelength with out-of-phase
movements of the atoms in the lattice, and they will only occur if the system is composed
of atoms with different charge or mass [39].

Any vibrational motion corresponding to any of the branches can have their motion
longitudinal or transverse to the wave vector, i.e. e||q or e ⊥ q. It is also possible to
have a mixture of these motions. In an isotropic crystal, the polarisation vector can be
written as mutually independent polarisations of a given wave vector q,

eL||q; eT1 ⊥ eT2 ⊥ q, (2.24)

where eL is the longitudinal vibrations. eT1 and eT2 is the transverse vibrations with
a degeneration of the eigenvalues. However, if one considers a cubic system, purely
longitudinal and transverse modes occur only along high symmetry points. In the case
of the FCC half-Heusler structure, these pure modes occur when the wave vector q is
along the [100], [110] and [111] directions, corresponding to Γ→ X, Γ→ K and Γ→ L

points, respectively.
The phonon modes of TiNiSn are illustrated in figure 2.3. There are three distinct

atoms in TiNiSn; thus, from the definition of phonon branches j = 3n, one expect in
total nine phonon branches, and all nine phonon branches are observed in figure 2.3. The
lower three branches are the acoustic phonons and the six upper branches are the optical
phonons. Going from zero frequency and upwards we get the three acoustic branches:
the first two are the transverse acoustic (TA) branches and the third is the longitudinal
acoustic (LA) branch, denoted T1A, T2A and LA. The next three branches are optical
branches: there are two transverse optic (TO) branches and one longitudinal optic (LO)
branch denoted T1O, T2O, LO. The last three are also optical branches: T1O′, T2O′

and LO′. Noteworthy, the transverse modes are degenerated only along the directions
[100] and [111], but not along [110].

A non-analytic correction term can be included to account for the induced macro-
scopic polarization from the LO motion of TO branch [45]. This is seen as a LO-TO
splitting at the zone center for the higher energetic optical phonon branches.

The slope of the phonon dispersion is related to the group velocity in the following
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Figure 2.3: Phonon dispersion of TiNiSn

manner,

vjq =
∂ω(jq)

∂q
, (2.25)

which is the change in frequency with respect to the reciprocal space of the phonons.
The acoustic phonons have steeper slopes resulting in a higher group velocity compared
to the optical modes.

2.3 Hamiltonian for a Three Dimensional Crystal

2.3.1 Introducing Quantum Mechanics

This section will describe vibrational motions in the Hamiltonian formalism. We start
by adding the potential energy expanded up to the third-order to the Hamiltonian for
kinetic energy,

Ĥ =
∑
lb

p(lb)p(lb)

2mb

+
1

2

∑
lb,l′b′

∑
αβ

φαβ(lb, l′b′)uα(lb)uβ(l′b′)

+
1

3!

∑
lb,l′b′,l′′b′′

∑
αβγ

φαβγ(lb, l
′b′, l′′b′′)uα(lb)uβ(l′b′)uγ(l

′′b′′).

(2.26)
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The first term is the kinetic energy, the constant V0 from the Taylor series is set to zero
for convenience and p(lb) denotes the momentum operator for an atom with position
b in a unit cell l with mass mb. The first step consists of a Fourier transformation of
coordinate u(lb) and momentum p(lb),

u(lb) =
1√
N0Ω

∑
q

X(qb)eiq·l, (2.27)

p(lb) =
1√
N0Ω

∑
q

P(qb)e−iq·l. (2.28)

N0 = N1N2N3 is the total number of unit cells and Ω is the volume of one unit cell;
therefore, N0Ω is the total volume of the crystal. We call X and P the normal coordi-
nate of the variables u and p, respectively, which are functions of the wave vector q.
The wave vector can be described as a collective coordinate; that is, the normal coordi-
nates can describe the collective displacements of atoms and the corresponding lattice
momentum for a traveling wave with a given q extending over all unit cells.

The normal coordinates satisfy the following commutation relations:

[X(qb),P(q′b′)] =
1

N0Ω

∑
l,l′

e−i(q·l−q′·l′) [u(lb),p(l′b′)]

=
1

N0Ω

∑
l,l′

e−i(q·l−q′·l′)Îi~δll′δbb′

= Îi~δqq′δbb′ ,

(2.29)

where [u(lb),p(l′b′)] = Îi~δll′δbb′ . δqq′ is the Fourier transform of δll′ . The normal
coordinates are canonically conjugate only if they exhibit the same wave vector q and
basis vector b. Because the operators u and p are Hermitian, the normal coordinate
operators X and P are non-Hermitian. It can be expressed as

X†(qb) = X(−qb) =
1√
N0Ω

∑
l

u(lb)eiq·l, (2.30)

P†(qb) = P(−qb) =
1√
N0Ω

∑
l

p(lb)e−iq·l. (2.31)

The Hamiltonian from equation (2.26) can be rewritten with the help of the normal
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coordinate operators from equation (2.27) and (2.28),

Ĥ =
1

N0Ω

∑
qq′lb

P(qb) ·P(q′b)

2mb

e−i(q+q′)·l

+
1

2

1

N0Ω

∑
qq′,lb,l′b′

∑
αβ

φαβ(lb, l′b′)Xα(qb)Xβ(q′b′)ei(q+q′)·l

+
1

3!

1

(N0Ω)3/2

∑
qq′q′′,

lb,l′b′,l′′b′′

∑
αβγ

φαβγ(lb, l
′b′, l′′b′′)

×Xα(lb)Xβ(l′b′)Xγ(l
′′b′′)ei(q·l+q′·l′+q′′·l′′).

(2.32)

This equation can be simplified. Firstly, by performing the summation over l for the
kinetic energy operator,

K̂ =
∑
qq′b

P(qb) ·P(q′b)

2mb

1

N0Ω

∑
l

e−i(q+q′)·l

=
∑
qq′b

P(qb) ·P(q′b)

2mb

δq+q′,0

=
∑
qb

P(qb) ·P†(qb)

2mb

,

(2.33)

where we have used
∑

l e−i(q+q′)·l = N0Ωδq+q′,0 and equation (2.31) where q = −q′.

Before simplifying the term containing the second-order forces, we define it as fol-
lowing [37]:

φαβ(bb′|q) =
√
mbmb′Dαβ(bb′| − q) =

∑
h′

φαβ(0b,h′b′)e−iq·h′ . (2.34)

The translation symmetry condition from equation (2.13) was used, and we defined the
relative cell index l′ − l = h′. The second term in equation (2.32) is the second-order
potential energy operator and can be simplified by using the newly defined term for the
second-order force constants φαβ(bb′|q) from equation (2.34),

V̂2 =
1

2

∑
qq′h′bb′

∑
αβ

φαβ(0b,h′b′)Xα(qb)Xβ(q′b′)eiq·h′

=
1

2

∑
qbb′

∑
αβ

φαβ(bb′|q)Xα(qb)X†β(qb′).
(2.35)
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Before starting on the process to simplify the third term we make a new variable
h′′ = l′′ − l and define the third-order forces as

φαβγ(qb,q
′b′,q′′b′′) ≡

∑
h′h′′

φαβγ(0b,h
′b′,h′′b′′)eiq′·h′eiq′′·h′′ . (2.36)

Combining the third term of equation (2.32) and equation (2.36) one get the third-order
potential energy operator,

V̂3 =
1

3!

1

(N0Ω)3/2

∑
qb,q′b′,q′′b′′

∑
αβγ

∑
l

ei(q+q′+q′′)·l

× φαβγ(qb,q′b′,q′′b′′)Xα(qb)Xβ(q′b′)Xγ(q
′′b′′)

=
1

3!

1√
N0Ω

∑
qb,q′b′,q′′b′′

δG,q+q′+q′′

∑
αβγ

× φαβγ(qb,q′b′,q′′b′′)Xα(qb)Xβ(q′b′)Xγ(q
′′b′′).

(2.37)

The last step is the summation over l and the vector G is the reciprocal lattice vector.
Once again, the Hamiltonian can be rewritten, now with the help of the new op-

erators: the kinetic energy operator (2.33), the second-order potential energy operator
(2.35) and the third-order potential energy operator (2.37),

Ĥ =
∑
qb

P(qb) ·P†(qb)

2mb

+
1

2

∑
qbb′

∑
αβ

φαβ(bb′|q)Xα(qb)X†β(qb′)

+
1

3!

1√
N0Ω

∑
qb,q′b′,q′′b′′

δG,q+q′+q′′

∑
αβγ

× φαβγ(qb,q′b′,q′′b′′)Xα(qb)Xβ(q′b′)Xγ(q
′′b′′).

(2.38)

The Hamiltonian in equation (2.38) is expressed in terms of the first quantisation vari-
ables of positions X(qb) and momenta P(qb) with a total of nN0 atoms, which are
coupled by the second-order force constants φαβ(bb′|q) and third-order force constants
φαβγ(qb,q

′b′,q′′b′′).

2.3.2 The Annihilation- and Creation Operators

This section will further work on the Hamiltonian to introduce the second quantisation
variable; the procedure is often called the second quantisation method. The normal
coordinates X(qb) and P(qb) can be transformed such that they depend on the vibra-
tional mode jq. We make use of the polarisation vector and write a new set of normal
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coordinates as
X(jq) =

∑
b

√
mbe

∗(b|jq) ·X(qb), (2.39)

P (jq) =
∑
b

1
√
mb

e(b|jq) ·P(qb). (2.40)

We define the phonon annihilation operator ajq and the creation operator a†jq [37],

ajq =
1√

2~ω(jq)
P (jq)− i

√
ω(jq)

2~
X†(jq), (2.41)

a†jq =
1√

2~ω(jq)
P †(jq) + i

√
ω(jq)

2~
X(jq). (2.42)

The annihilation operator ajq and creation operator a†jq obey the following commutation
relation:

[ajq, a
†
j′q′ ] = Îδqq′δjj′ . (2.43)

The normal coordinates can be expressed as functions of the annihilation- and creation
operators. This is done by solving the annihilation- and creation operator from equation
(2.41) and (2.42) for X(jq) and P (jq),

X(jq) = −i

√
~

2ω(jq)
(a†jq − a−jq), (2.44)

P (jq) =

√
~ω(jq)

2
(ajq + a†−jq), (2.45)

where X†(jq) = X(−jq) and P †(jq) = P (−jq) because they are non-Hermitian.
Also, a traveling wave with a wave vector of the same magnitude in different directions
will have the same frequency ω(jq) = ω(−jq).

One can express the normal coordinates X(qb) and P(qb) as functions of the polar-
isation vector and annihilation- and creation operators. We start by inserting the normal
coordinates as a function of the phonon mode jq and polarisation vectors from equation
(2.39) and (2.40) into the equation (2.44) and (2.45), then solve for X(qb) and P(qb),

X(qb) = −i
∑
j

√
~

2mbω(jq)
e(b|jq)(a†jq − a−jq), (2.46)
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P(qb) =
∑
j

√
mb~ω(jq)

2
e∗(b|jq)(ajq + a†−jq). (2.47)

The kinetic energy operator from equation (2.33) can now be written in terms of the
annihilation- and creation operators with the use of the orthonormality condition (2.21)
and the momenta operator given in equation (2.47),

K̂ =
∑
qb

P(qb) ·P†(qb)

2mb

=
1

4

∑
jq

~ω(jq)e∗(b|jq)e(b|jq)(ajq + a†−jq)(a†jq + a−jq)

=
1

4

∑
jq

~ω(jq)(ajq + a†−jq)(a†jq + a−jq).

(2.48)

Similarly, the second-order potential energy operator can be expressed in terms of the
annihilation- and creation operators. This derivation will make use of the orthonormality
condition (2.21), eigenvalue equation (2.23), second-order force constants in equation
(2.34) and the new normal coordinates in the equations (2.46) and (2.47),

V̂2 =
1

2

∑
qbb′

∑
αβ

φαβ(bb′|q)Xα(qb)X†β(qb′)

=
1

4

∑
jqbα

~
2ω(jq)

[∑
b′β

D∗αβ(bb′|q)e∗β(b′|jq)

]
eα(b|jq)

× (a†jq − a−jq)(ajq − a†−jq)

=
1

4

∑
jqb

~ω(jq)

[∑
α

e∗α(b|jq)eα(b|jq)

]
(a†jq − a−jq)(ajq − a†−jq)

=
1

4

∑
jqb

~ω(jq)(a†jq − a−jq)(ajq − a†−jq).

(2.49)

The relations Dαβ(bb′| − q) = D∗αβ(bb′|q) and ω(jq)2 = ω(−jq)2 have been used.
Adding up the operator K̂ and V̂2, one obtain the Hamiltonian for the harmonic approx-
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imation,

Hharm =
1

4

∑
jqb

~ω(jq)
[
(ajq + a†−jq)(a†jq + a−jq) + (a†jq − a−jq)(ajq − a†−jq)

]
=

1

2

∑
jq

~ω(jq)(ajqa
†
jq + a†jqajq).

(2.50)
The summation over all negative wave vectors is just a duplicate of the summation

over all positive wave vectors. Using the commutation relation between the annihilation-
and creation operators from equation (2.43), the final form of the harmonic Hamiltonian
is

Hharm =
∑
jq

~ω(jq)(a†jqajq +
1

2
). (2.51)

Expressing the anharmonic potential energy operator is done in a similar manner. We
will simply substitute the normal coordinate X(qb) in equation (2.37) with the normal
coordinate from equation (2.47),

V̂3 =
1

3!

i√
N0

∑
qb,q′b′,q′′b′′

jj′j′′

∑
αβγ

(
~3

8mbmb′mb′′ω(jq)ω(j′q′)ω(j′′q′′)

)1/2

× δG,q+q′+q′′φαβγ(qb,q
′b′,q′′b′′)eα(b|jq)eβ(b′|j′q′)eγ(b′′|j′′q′′)

× (a†jq − a−jq)(a†j′q′ − a−j′q′)(a
†
j′′q′′ − a−j′′q′′)

=
1

3!

∑
jq,j′q′,j′′q′′

δG,q+q′+q′′φ(jq, j′q′, j′′q′′)

× (a†jq − a−jq)(a†j′q′ − a−j′q′)(a
†
j′′q′′ − a−j′′q′′).

(2.52)

In the last step, the factor φ(jq, j′q′, j′′q′′) was introduced and it is given as

φ(jq, j′q′, j′′q′′) =
i√
N0

∑
bb′b′′

∑
αβγ

(
~3

8mbmb′mb′′ω(jq)ω(j′q′)ω(j′′q′′)

)1/2

× φαβγ(qb,q′b′,q′′b′′)
× eα(b|jq)eβ(b′|j′q′)eγ(b′′|j′′q′′),

(2.53)

which is called the cubic term of the anharmonic potential energy operator. The Kro-
necker’s delta δG,q+q′+q′′ is due to translation invariance; the phonon wave vectors q, q′
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and q′′ in equation (2.52) must satisfy conservation of momentum,

q + q′ + q′′ = G, (2.54)

where G is the reciprocal lattice vector.

The second quantisation of the Hamiltonian up to the third-order of the potential
energy is complete. To recapitulate: we introduced the quantum mechanical formalism
where we defined the normal coordinates of positions and momenta as a function of the
wave vector q. Further, we introduced the second quantisation variables ajq and a†jq
to the Hamiltonian by expressing a new set of normal coordinates as functions of the
annihilation- and creation operators Now, we have the tools to express the quantisation
of energy levels of phonons.

2.4 Harmonic Properties in a Crystal

2.4.1 Density of States

Density of states (DOS) of normal modes is defined as the number of modes between
frequency ω and ω + dω. If the dispersion relation is known, a general expression for
DOS can be derived with the use of periodic boundary conditions. It can be shown that
only one q-point in the reciprocal space is confined to a volume (2π/L)3 [41, 42]. In
other words, a unit volume in reciprocal space contains (2π/L)3 = N0Ω/8π3 values of
q.

Density of states must be evaluated over the reciprocal space, and the evaluation can
be expressed as a Dirac delta function [37]. The expression for DOS is given as

g(ω(jq)) =
N0Ω

8π3

∑
jq

δ(ω − ω(jq)). (2.55)

An accurate DOS is obtained by summing over a large number of q-points; however, one
does only need to consider the irreducible part of the first Brillouin zone as described in
the section 2.1.3 about Brillouin zone.
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2.4.2 Thermodynamics

The harmonic phonon energy can be obtained by applying the harmonic Hamiltonian on
a phonon state |njq〉 in phonon mode jq,

Hharm|njq〉 =
∑
jq

~ω(jq)(njq +
1

2
)|njq〉. (2.56)

The operator a†jqajq|njq〉 = njq|njq〉, where njq is the phonon occupation number. It is
given by the Bose-Einstein distribution function,

njq =
1

e~ω(jq)/kBT − 1
, (2.57)

which is derived from statistical thermodynamics.

The eigenvalues of equation (2.56) is the harmonic phonon energy,

E =
∑
jq

~ω(jq)

(
njq +

1

2

)
=
∑
jq

~ω(jq)

(
1

e~ω(jq)/kBT − 1
+

1

2

)
. (2.58)

Once the phonon energy is known, the heat capacity at constant volume is easily
derived,

CV =
∂Ejq
∂T

∣∣∣∣
V

=
∑
jq

kB

(
~ω(jq)

kBT

)2
e~ω(jq)/kBT )

(e~ω(jq)/kBT − 1)2
. (2.59)

Other thermodynamic quantities can be calculated if one know the partition function
Z for phonons. The derivation of the partition function can be found in reference [39],
and is given as

Z = e−V/kBT
∏
jq

e−~ω(jq)/2kBT

1− e−~ω(jq)/kBT
. (2.60)

The vibrational contribution to the free energy is then,

Fvib = −kBT ln(Z) = V − 1

2

∑
q

~ω(jq) + kBT
∑
jq

ln(1− e−~ω(jq)/kBT ). (2.61)
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Once the vibrational free energy is known, the vibrational entropy is given as

Svib = −∂Fvib

∂T

=
1

2T

∑
jq

~ω(jq) coth(~ω(jq)2kBT )− kB

∑
jq

ln(2 sinh(~ω(jq)/2kBT )).

(2.62)

2.5 Thermal Conductivity

2.5.1 Boltzmann Transport Equation

In perfect and harmonic crystals, there are no interactions between the phonon modes
resulting in an infinite heat conduction. However, in real crystals there will be inter-
actions between phonons and the heat conduction will have a finite value. The lattice
thermal conductivity can be described through the Boltzmann transport equation (BTE)
for phonons. The BTE assumes that the occupation number of a phonon mode jq can
be described by its distribution function njq(r, t) in the vicinity of position r at a time
t. The total rate of change of the occupation number when the system is placed in a
thermal gradient can be expressed as

∂njq
∂t

=
∂njq
∂t

∣∣∣∣
diffusion

+
∂njq
∂t

∣∣∣∣
scattering

, (2.63)

where one have contribution to the rate of change from diffusion and scattering mecha-
nisms.

A thermal gradient∇T will make the phonons diffuse with a rate

∂njq
∂t

∣∣∣∣
diffusion

= −vjq∇T
∂njq
∂T

, (2.64)

where vjq is the group velocity at phonon mode jq.
One assumes a steady state where the total rate of change of the phonon distribution

number must be equal to zero. In the steady state, the deviation from the average occu-
pation number n̄jq with respect to the thermal gradient is small. Thus, one can replace
njq with n̄jq and equation (2.63) can be rewritten as

− vjq∇T
∂n̄jq
∂T

+
∂njq
∂t

∣∣∣∣
scattering

= 0. (2.65)
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The average occupation number is given by the Bose-Einstein distribution function as in
equation (2.57).

The second term in equation (2.65) represents the rate of change due to scattering
mechanisms, e.g. anharmonic effects, boundary scattering or mass-disorder scattering.
To solve said equation, expressions for the scattering mechanisms have to be derived.

2.5.2 Relaxation Time Approximation

By introducing the relaxation time approximation (RTA), an expression for the lattice
thermal conductivity can be derived from the phonon BTE. The relaxation time is de-
noted τjq and represents the the amount of time a phonon in mode jq will travel before
it gets annihilated due to scattering. The simplest picture uses the single-mode relax-
ation time, and in this approximation it is assumed that only one phonon mode at a time
deviates from its equilibrium distribution while all other modes remain at equilibrium.
The scattering term in equation (2.65) can be expressed as

− vjq∇T
∂n̄jq
∂T

= − ∂njq
∂t

∣∣∣∣
scattering

=
njq − n̄jq

τjq
. (2.66)

An expression for lattice thermal conductivity can be derived from Fourier’s law of
heat conduction. If a material is placed in a thermal gradient, the Fourier’s law state
that the heat flux Q, resulting from heat conduction due to the temperature difference, is
proportional to the thermal gradient times a proportional constant,

Q = −κl∇T. (2.67)

The proportional constant κl is the lattice contribution to the thermal conductivity.

The heat flux from phonons is given as [37]

Q =
1

N0Ω

∑
j

∫
q

~ω(jq)njqvjq dq, (2.68)

where the summation is done to obtain the contribution to heat flux from all phonon
branches, while the integral gathers the contribution over the reciprocal space. Substi-
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tuting equation (2.66) into (2.68) we get,

Q = − 1

N0Ω

∑
j

∫
q

(
τjqv

2
jq~ω(jq)

∂n̄jq
∂T
∇T − ~ω(jq)n̄jqvjq

)
dq

= − 1

N0Ω

∑
j

∫
q

τjqv
2
jqCV,jqdq∇T.

(2.69)

The term
∑

j

∫
q
~ω(jq)n̄jqvjq dq = 0 because the average occupation number is

isotropic. Multiplying ~ω(jq) with ∂n̄jq/∂T results in the heat capacity under iso-
choric conditions. From Fourier’s law in equation (2.67), one see that the proportionality
constant κl can be extracted from equation (2.69),

κl =
1

N0Ω

∑
j

∫
q

τjqv
2
jqCV,jq dq. (2.70)

If the scattering mechanisms are independent of each other, the total relaxation time
can be expressed by using Mathiessen’s rule,

1

τjq
=

1

τ anh
jq

+
1

τbs
jq

+
1

τmd
jq

+ · · · , (2.71)

where each relaxation time in this equation correspond to anharmonic scattering, bound-
ary scattering and mass-disorder scattering, respectively. The next section will present
the said scattering mechanisms and an expression of its relaxation times within the RTA.

2.6 Scattering Mechanisms

2.6.1 Anharmonic

Three-phonon Interactions

Anharmonicity introduces interactions between the normal modes. In the first-order
perturbation, the potential energy operator up to the third-order causes three-phonon
interactions. Expanding the product (a†jq − a−jq)(a†j′q′ − a−j′q′)(a

†
j′′q′′ − a−j′′q′′) from

equation (2.52) one gets,

a†jqa
†
j′q′a

†
j′′q′′ − a

†
jqa
†
j′q′a−j′′q′′ − a

†
jqa−j′q′a

†
j′′q′′

+a†jqa−j′q′a−j′′q′′ − a−jqa
†
j′q′a

†
j′′q′′ + a−jqa

†
j′q′a−j′′q′′

+a−jqa−j′q′a
†
j′′q′′ − a−jqa−j′q′a−j′′q′′ .

(2.72)
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The three-phonon interaction becomes clear, where each of these operators acts on a
three-phonon state |njqnj′q′nj′′q′′〉. There are four different interactions from equation
(2.72): (i) creation of three phonons, (ii) annihilation of three phonons, (iii) creation of
one and annihilation of two phonons and (iv) creation of two and annihilation of one
phonon. Because of conservation of energy, the options (i) and (ii) are not physically
relevant.

The interactions that are left can be expressed in terms of energy and momentum
conservation:

ω(jq) + ω(j′q′) = ω(j′′q′′); q + q′ = q′′, (2.73)

ω(jq) = ω(j′q′) + ω(j′′q′′); q = q′ + q′′, (2.74)

where the equations (2.73) and (2.74) are more commonly called the coalescence pro-
cess of phonons and the decay process of phonons, respectively.

Considering the coalescence process: if q + q′ lies within the first BZ one call it a
normal-process or N-process. However, if q + q′ lies outside the first BZ, it is "flipped"
back into the first BZ by a non-zero reciprocal lattice vector G. Such an event is called an
umklapp-process or U-process, which is illustrated in figure 2.4. The same description
can be made for the decay process.

q′

q

q′′

(a) N-process

q′

q

q′′

G

(b) U-process

Figure 2.4: Illustration of a) N-process of a three-phonon scattering where all wave vectors are
within the first BZ, and (b) U-process where the wave vector q′′ is flipped back into the first BZ
by a vector G.

Anharmonic Relaxation Time

If one considers the anharmonic potential energy operator as a perturbation which acts
on an initial state |i〉 ≡ |njq, nj′q′ , nj′′q′′〉: the system will change in time t and end up
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in a final state |f〉 given as

|f〉 = |njq − 1, nj′q′ − 1, nj′′q′′ + 1〉, (2.75)

|f〉 = |njq − 1, nj′q′ + 1, nj′′q′′ + 1〉, (2.76)

for the coalescence and decay process, respectively. The phonon occupation number njq
is written as an expansion around its equilibrium up to the first-order perturbation ψjq.
The Bose-Einstein distribution then becomes

njq =
1

e~ω(jq)/kBT−ψjq − 1

' n̄jq − ψjq
∂n̄jq

∂(~ω(jq))

= n̄jq + ψjqn̄jq(n̄jq + 1).

(2.77)

The function ψjq is a measure of the deviation from the equilibrium distribution for
phonons in mode jq.

The transition probability P f
i from the initial state to the final state is given by Fermi’s

golden rule,

P f
i =

2π

~
|〈f|V̂3|i〉|2δ(Ef − Ei), (2.78)

where Ei and Ef are the energy in the initial and final state, respectively. The delta
function δ(Ef −Ei) ensures energy conservation. By using Fermi’s golden rule with the
third-order potential energy operator V̂3 expressed in equation (2.52) on the initial and
final state one get the transition probability for the three-phonon scattering mechanisms,

P j′′q′′

jq,j′q′ − P
jq,j′q′

j′′q′′ = P̃ j′′q′′

jq,j′q′(ψjq + ψj′q′ − ψj′′q′′), (2.79)

corresponding to the coalescence process: the annihilation of two and creation of one
phonon. The two first terms correspond to forward and backward scattering, and P̃jq,j′q′
is given as

P̃ j′′q′′

jq,j′q′ =2πn̄jqn̄j′q′(n̄j′′q′′ + 1)|φ(−jq,−j′q′, j′′q′′)|2

× δ(ω(j′′q′′)− ω(j′q′)− ω(jq)),
(2.80)

A similar expression can be derived for the decay process: the annihilation of one
and creation of two phonons,

P j′q′,j′′q′′

jq − P jq
j′q′,j′′q′′ = P̃ j′q′,j′′q′′

jq (ψjq − ψj′q′ − ψj′′q′′), (2.81)
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where
P̃ j′q′,j′′q′′

jq =2πn̄jq(n̄j′q′ + 1)(n̄j′′q′′ + 1)|φ(−jq, j′q′, j′′q′′)|2

× δ(ω(jq)− ω(j′q′)− ω(j′′q′′)).
(2.82)

The total rate of change in the phonon population njq due to the three-phonon inter-
actions is the sum of the transition probabilities,

− ∂njq
∂t

∣∣∣∣
anh

=
∑

j′q′j′′q′′

[
P̃ j′′q′′

jq,j′q′(ψjq + ψj′q′ − ψj′′q′′)

+
1

2
P̃ j′q′,j′′q′′

jq (ψjq − ψj′q′ − ψj′′q′′)
]
,

(2.83)

where the factor 1/2 avoids double counting in the summation. The relaxation time τ anh
jq

for anharmonic scattering can be expressed within the RTA with help of equation (2.66).
The result is given as

1

τ anh
jq

=π
∑

j′q′j′′q′′

|φ(−jq, j′q′, j′′q′′)|2

[ n̄j′q′(n̄j′′q′′ + 1)

n̄jq + 1
δ(ω(j′′q′′)− ω(j′q′)− ω(jq))

+
(n̄j′q′ + 1)(n̄j′′q′′ + 1)

n̄jq + 1
δ(ω(jq)− ω(j′q′)− ω(j′′q′′))

]
.

(2.84)

The deviation functions ψj′q′ = 0 and ψj′′q′′ = 0 because one assumes the single-
mode relaxation time approximation where only phonons in mode jq deviates from its
equilibrium distribution.

2.6.2 Mass-disorder

Introducing alloying in a crystal reduces the lattice thermal conductivity due to scattering
of the phonons by the disorder in the crystal. Calculations of lattice thermal conductivity
with scattering from mass-disorder within the relaxation time approximation requires an
expression for τmd

jq . This is done by considering the mass-disorder as a perturbation
where one replaces the real crystal with an ordered virtual crystal, and the method is
called the virtual crystal approximation (VCA).
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The Hamiltonian for the ordered virtual crystal can be expressed as

H =
1

2

∑
lbα

m(lb)u̇2
α(lb) + V̂2

= H0 +Hmd.

(2.85)

The second line separates the Hamiltonian into two parts: an unperturbed part H0 and
a perturbed part Hmd with the contribution from mass-disorder. The unperturbed part is
given as

H0 =
1

2

∑
lbα

m̄(b)u̇2
α(lb) + V̂2, (2.86)

where H0 represent the virtual crystal, and m̄(b) is the average mass of atom b. It is
given as the sum of the concentration fi of species i times the mass of the same element,

m̄(b) =
∑
i

fi(b)mi(b). (2.87)

The perturbed Hamiltonian Hmd is given as

Hmd =
1

2

∑
lbα

(m(lb)− m̄(b))u̇2
α

=
1

2

∑
lbα

∆m(lb)u̇2
α,

(2.88)

where ∆m(lb) = m(lb) − m̄(b), and represents the difference in the mass of the
real crystal compared to the virtual crystal. Further, by using the equation for atomic
displacements (2.7), the first derivative of the displacement u̇α(lb) can be calculated.
The Hamiltonian for mass-disorder can be written as

Hmd =− ~
4

∑
bjj′

qq′Q

[ω(jq))ω(j′q′)]1/2δ(q + q′ + Q)M̃b(Q)

× e(b|jq)e(b|j′q)[ajqa
†
−j′q + a†−jqaj′q]

(2.89)

where M̃b(Q) is the Fourier transform of ∆M(lb) = ∆m(lb)/m̄(b):

M̃b(Q) =
1

N
∆M(lb)e−iQl. (2.90)

The delta function δ(q + q′ + Q) is obtained by summing over l. Applying Fermi’s
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golden rule and the single-mode RTA, the relaxation time for mass-disorder in a cubic
system can be expressed as [46, 47]

1

τmd
jq

=
π

6N
ω2(jq)

∑
b

Mvar(b)|e(b|jq)|2
∑
j′q′

δ(ω − ω(j′q′))|e(b|j′q′)|2. (2.91)

The scattering rate is described by the squared amplitudes of the initial phonon multi-
plied by the partial density of states of the final phonon weighted by the squared ampli-
tude of the same phonon. Mvar(b) is called the mass-variance parameter obtained from
an ensemble average where a completely random distribution of the species is assumed.
The parameter is given as

Mvar(b) =
∑
i

fi(b)

(
1− m(lb)

m̄(b)

)2

. (2.92)

The result from equation (2.91) accounts for the mass-disorder introduced when al-
loying on the X-site in XNiSn.

2.6.3 Grain boundaries

At sufficiently low temperatures, the mean free path (MFP) of a phonon will exceed the
dimensions of the grain size in a polycrystalline material. In this temperature range it
is assumed that phonons will scatter several times at the grain boundaries before it is
scattered internally by another phonon or by mass-disorder; thus, scattering by the grain
boundaries are most prominent at low temperatures. An expression for the relaxation
time for boundary scattering is derived in [48],

1

τbs
jq

=
vjq
L
, (2.93)

where vjq is the group velocity and L is the MFP resulting from grain boundary scat-
tering. This equation assumes completely diffusive scattering, i.e. there is no reflection
of phonons, and all of the incoming energy is absorbed and re-emitted at all bound-
aries. The boundary MFP can be averaged over all geometrical orientations of the grain
boundaries [48]. For a polycrystalline material the boundary MFP in the diffusive scat-
tering model is equivalent to the average grain size; thus, the MFP will be denoted as
the average grain size in the following sections.

The model is only valid if the scattering from grain boundaries occurs uniformly
throughout the volume of the specimen. In a polycrystalline material, this condition
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can be approximated to specimens with a small acoustic mismatch between the grains.
However, to fully account for the effect of grain boundary scattering on the lattice ther-
mal conductivity, the relative orientation between the grain boundaries and the surface
roughness of the grains have to be considered.
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Computational Methods

Computational methods for modeling of material properties have been an increasing
field the past years due to the increased power of computers. Density functional the-
ory (DFT) is such a method and it is based upon first principles. The calculations of
the second- and third-order force constants in this work are obtained from DFT as im-
plemented in the VASP package [49, 50]. This chapter will go through the basics of
DFT and how we obtain the force constants from the frozen phonon approach. A more
in-depth description of the quantum mechanics in DFT may be found in [51–53].

3.1 Many-particle Problem

To understand various properties of materials, one have to describe the interactions
between all electrons and nuclei within the material. The many particle wave func-
tion describes the position of the electrons and nuclei with i = 1, 2, · · · , Ne and j =

1, 2, · · · , Nn, number of electrons and nuclei, respectively. The wave function can be
written as

Ψ(ri,Rj) ≡ Ψ(r1, r2, · · · , rNe ,R1,R2, · · · ,RNn). (3.1)

A study of materials on a quantum mechanical level is based upon solving the time-
independent or time-dependent Schrödinger equation; however, we will only consider
the time-independent Schrödinger equation. It can be written as

ĤΨ(ri,Rj) = EtotΨ(ri,Rj), (3.2)
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where Ĥ is the total energy Hamiltonian for the system, which contains the sum of all
interactions. The Hamiltonian is given as

Ĥ = −
Ne∑
i=1

~2∇2
i

2me

−
Nn∑
j=1

~2∇2
j

2mj

+
Ne∑
i<i′

q2

|rj − rj′ |

+
Nn∑
j<j′

q2ZjZj′

|Rj −Rj′ |
−

Ne∑
i=1

Nn∑
j=1

q2Zj
|ri −Rj|

,

(3.3)

where Zj is the atom number and mj is the mass of the nuclei. The first two terms
in equation (3.3) represents the kinetic energy of the electrons and nuclei. The third
and forth term describes the Coulomb repulsion between electron-electron pairs and
nucleus-nucleus pairs. The last term describes Coulomb attraction between electron-
nucleus pairs. A compact form of equation (3.2) can be defined:

Ĥ = T̂e + T̂n + Ûee + Ûnn + Ûen, (3.4)

where

T̂e = −
Ne∑
i=1

~2∇2
i

2me

T̂n = −
Nn∑
j=1

~2∇2
j

2mj

Ûee =
Ne∑
i<i′

q2

|rj − rj′|

Ûnn =
Nn∑
j<j′

q2ZjZj′

|Rj −Rj′|

Ûen = −
Ne∑
i=1

Nn∑
j=1

q2Zj
|ri −Rj|

.

(3.5)

3.1.1 Born-Oppenheimer Approximation

Solving the many-particle Schrödinger equation requires immense computational power.
To simplify the many-particle problem, a separation of variables in the wave function
can be done. The separation may be written as a product between the electron wave
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function and nuclei wave function,

Ψ(ri,Rj) = ψ(r1, r2, · · · , rNe ,R1,R2, · · · ,RNn)χ(R1,R2, · · · ,RNn), (3.6)

where ψ(ri,Rj) and χ(Rj) are the wave function for electrons and nuclei, respectively.
The separation is based on the assumption that the nuclei are assumed to be stationary
point particles compared to the electrons, which is due to the massive mass difference.
The electrons depends on the positions of the stationary nuclei Rj .

Furthermore, the bra-ket notation will be used for compactness. A wave function
Ψ(r) ≡ 〈r|Ψ〉 will be written as the ket |Ψ〉, and the complex conjugate will be written
as the bra 〈Ψ|. With this, the eigenvalue equation from (3.2) can be rewritten:

Ĥ|ψ(Rj)〉|χ〉 = Etot|ψ(Rj)〉|χ〉. (3.7)

The dependence of the positions of the nuclei in the electron wave function is kept
as a reminder. The Hamiltonian from equation (3.3) can be considered to have pure
electronic terms and pure nuclear terms,

Ĥe = T̂e + Ûee + Ûen

Ĥn = T̂n + Ûnn.
(3.8)

The next step is to multiply each side by 〈ψ(Rj)| and use the normalization condition
〈ψ(Rj)|ψ(Rj)〉 = 1. This step gives

〈ψ(Rj)|Ĥe|ψ(Rj)〉|χ〉+ 〈ψ(Rj)|Ĥn|ψ(Rj)〉|χ〉 = Etot|χ(Rj)〉
E(Rj)|χ〉+ 〈ψ(Rj)|Ĥn|ψ(Rj)〉|χ〉 = Etot|χ〉,

(3.9)

where E(Rj) is the electronic energy,

Ĥe|ψ(Rj)〉 = E(Rj)|ψ(Rj)〉. (3.10)

The second term in equation (3.9) may be simplified by neglecting all terms containing
∇j|ψ(Rj)〉; that is, the electronic wave function does not change drastically upon dis-
placements of the nuclei. The result is known as the Born-Oppenheimer approximation,
where equation (3.9) may be written as

(T̂n + Ûnn + E(Rj))|χ〉 = Etot|χ〉. (3.11)

The total energy can may be calculated by solving equation (3.11), where the electronic
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energy E(Rj) is obtained from equation (3.10).

3.1.2 Hartee and Hartree-Fock Approximation

Approximations have been made to solve the many-electron wave function in equation
(3.10). Hartree suggested that the electrons are independent of each other, and that the
total electron wave function ΨH could be written as a product of all single-electron wave
functions for all possible wave numbers,

ΨH(ri) = ψ1(r1)ψ2(r2) · · ·ψNe(rNe). (3.12)

The superscript stands for Hartree. However, the Hartree approximation neglects the
anti-symmetry of the wave function; that is, the electrons are indistinguishable and do
not obey the Pauli exclusion principle for fermions. The Hartree-Fock approximation
expresses the many-particle wave function in a so-called Slater determinant,

ΨHF(ri) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) · · · ψNe(r1)

ψ1(r2) ψ2(r2) · · · ψNe(r2)
...

... . . . ...
ψ1(rNe) ψ1(rNe) · · · ψNe(rNe).

∣∣∣∣∣∣∣∣∣ (3.13)

By using the variational method, one may obtain the ground state eigenfunction and
transform the Ne-particle equation into Ne equations of single particles. One has to
write the total energy as a functional of the single-particle wave functions to obtain the
Hartree-Fock equations,

E[ψi] = 〈ψi|Ĥ|ψi〉. (3.14)

For simplicity, one may require that the wave functions are normalized and orthogonal,
i.e.

〈ψi|ψi〉 = 1, and 〈ψi|ψi′〉 = 〈ψi′ |ψi〉 = 0. (3.15)

The variational method may be used to find the function ψi which minimizes the total
energy to the ground state energy. The minimization step uses the Lagrange multiplier
and it requires a lot of algebra. The full derivation can be found in reference [52]. The
result is called the Hartree-Fock (HF) single-electron equations. There are Ne number
of single electron equations which are only valid for the ground state energy due to the
nature of the minimization process. It is given as[

− ~2

2me

∇2 + Vext(r) + V H(r)

]
ψi(r) +

∫
V HF

x (r, r′)ψi(r
′)dr′ = εiψi(r), (3.16)
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where Vext(r), V H(r) and V HF
x (r, r′) are the external potential, Hartree potential and

Hartree-Fock exchange potential. The Hartree and Hartree-Fock potentials are defined
as

V H(r) =

∫
n(r′)− ni(r′)
|r− r′|

dr′

V HF
x (r, r′) = −

∑
i

ψ∗i (r
′)ψi(r)

|r− r′|
.

(3.17)

The Hartree potential describes interactions between electrons in the system, but it does
not include exchange and correlation effects. The −ni(r′) in the Hartree potential ex-
cludes self-interactions. The Hartree-Fock exchange potential is an effect from Pauli
exclusion principle: two electrons cannot be in the same quantum state. In fact, they
cannot be in the same quantum state with parallel spin. Incorporation of the spin re-
quirement can be done as follows: each integral over the space variable must include a
summation over the spin orientation σ = ±1/2, i.e.

∫
dr →

∑
σ

∫
dr, the derivation

has been shown in [53]. The Hartree-Fock approximation includes exchange effects but
neglects the correlation effects.

3.2 Density Functional Theory

Density functional theory is based on the theorems by Hohenberg-Kohn [54]. The first
theorem states that the external potential Vext(r) for any system of electrons is an unique
functional of its ground state density n0(r). If the ground state density is known, then the
external potential is known; thus, we will have the Hamiltonian and may solve the many-
particle wave function in the ground state. Another consequence is that the ground state
density determines all ground state properties. The theorem is very convenient to reduce
the many-particle problem with 3Ne number of spatial variables to only 3 variables: x,
y and z.

The second theorem states that there exists an universal energy functional of the
density F [n(r)] which is valid for any electron system, i.e. for all possible external
potentials Vext(r). The density which minimizes the energy functional of a given system
is the exact ground state density n0(r).

3.2.1 Kohn-Sham Equation

The Hohenberg-Kohn theorems states that one may define the ground state energy if the
ground state density n0(r) is known. The problem is that the universal energy functional
F [n(r)] is not known.
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The total energy functional can be written in terms of the universal functional
F [n(r)] and the external potential Vext(r),

E[n(r)] = F [n(r)] +

∫
Vext(r)n(r)dr

= Ts[n(r)] + Uen[n(r)] + EH[n(r)] + Exc[n(r)],

(3.18)

where Ts[n(r)] is the kinetic energy of non-interacting electrons, EH[n(r)] is the Hartree
energy and Exc[n(r)] is the exchange-correlation energy which contains the complex
many-electron interactions.

The many-particle wave function is assumed to be described by the Hartree approx-
imation in terms of Kohn-Sham (KS) single-particle wave functions,

Ψ(ri) = ψKS
1 (r1)ψKS

2 (r2) · · ·ψKS
Ne

(rNe), (3.19)

where ψKS
i is the Kohn-Sham wave functions. The ψKS

i that minimizes the functionals
in equation (3.18) will define the ground state density. The variational method is used to
find the exact ground state energy, and the result will be the KS equation which includes
exchange and correlation effects [55]. The Kohn-Sham equation is given as[

− ~2

2me

∇2
i + Veff(r)

]
ψKS
i (r) = εKS

i ψKS
i (r), (3.20)

where εKS
i is the single-electron energies. Veff(r) is the effective potential,

Veff(r) = Vext(r) +
δEH[n(r)]

δn(r)
+
δExc[n(r)]

δn(r)

= Vext(r) + V H(r) + Vxc(r).

(3.21)

The total energy can be expressed in terms of the exchange-correlation energy and the
single-electron energies,

E[n(r)] =
∑
i

εKS
i −

1

2

∫
V H(r)dr−

∫
Vxc(r)dr + Exc[n(r)], (3.22)

and it is obtained from self-consistent field calculations. The loop starts with an initial
guess of the density n(r). Then one solves the many KS single-electron wave functions
in equation (3.20) with the initial density which gives the wave functions ψKS

i and the
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total energy. A new density is defined with the obtained wave functions,

n(r) =
∑
i

|ψKS
i |2, (3.23)

and a new effective potential is calculated. These steps are repeated until the total energy
is converged; thus, we have reached the ground state energy and obtained the ground
state density.

To solve the KS equation, we will need an expression for the unknown exchange-
correlation functional Exc[n(r)]. There exist several approximations for such a complex
functional.

3.3 Exchange and Correlation

The Kohn-Sham equation generates the exact energy if the exchange-correlation func-
tional Exc[n] is exact. The exchange-correlation functional is not known to date, and ap-
proximations are needed to describe it. The local density approximation (LDA) assumes
that the density can be treated locally as uniform electron gas; that is, the exchange-
correlation energy at any point in the system is the same as for uniform electron gas of
the same density. The exchange-correlation functional within LDA is given as

ELDA
xc [n(r)] =

∫
n(r)εgas

xc [n(r)]dr, (3.24)

where εgas
xc [n(r)] is the exchange-correlation energy per particle of an uniform electron

gas with density n(r).

Real systems are not homogeneous: the electrons have variations in the density land-
scape. The generalized gradient approximation (GGA) describes the electron density
with a gradient at a given point. The exchange-correlation functional is given as [56, 57]

EGGA
xc [n(r)] =

∫
n(r)εGGA

xc [n,∇n(r)]dr, (3.25)

where the exchange-correlation energy εGGA
xc accounts for the gradient to the electron

density.
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3.4 Frozen Phonon Approach
The force constants can be obtained from density functional perturbation theory (DFPT)
[58, 59] or by a direct approach. We have used the direct approach called the finite-
displacement method or frozen phonon method. In principle, the method consists of
calculating the forces caused by displacement of one atom. The forces are calculated
with DFT for each unique displacement; that is, crystal symmetry is used to reduce the
number of displacements. Once the forces caused by displacing one atom are obtained,
the interatomic force constant matrix up to the second-order can be constructed [60,
61]. The frequencies can now be calculated by solving the dynamical matrix equation.
Constructing the third-order force constant matrix requires two simultaneously displace-
ments of the atoms. This increases the number of unique displacements; therefore, the
computational time increases significantly. The finite-displacement method requires a
supercell approach, and the supercell have to be sufficiently large to prevent artificial
forces due to the periodic boundary conditions used in DFT calculations.
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Computational Details

All first principles calculations in this work was performed with DFT as implemented
in the VASP package [49] with the projector-augmented wave (PAW) pseudopotential
[50]. The generalized gradient approximation (GGA) by Perdew, Burke and Ernzerhof
(PBE) was used as the exchange correlation potential [57].

A convergence study of lattice thermal conductivity and frequencies were conducted
with respect to k-mesh and energy cutoff in TiNiSn half-Heusler with a 2×2×2 supercell
of the primitive unit cell. This was done within the PHONO3PY package [62]. Each
PHONO3PY calculation included 255 unique displacements.

The primitive unit cell is relatively small; thus, artificial forces may arise due to the
periodic boundary condition. Going from the primitive cell to the cubic cell increased
the unit cell size and thus decreased interactions between each unit cell. The primitive
2×2×2 supercell has 24 atoms and a volume of 420.45Å

3
. The 2×2×2 cubic supercell

has 96 atoms and a volume of 1681.23 Å
3
. All calculations after the convergence of

κl and ω(jq) were done on the 2 × 2 × 2 supercell of the conventional unit cell. The
increase in size reduces the number of k-points needed to acquire the same convergence.
The energy cutoff and k-mesh was set to 450 eV and 3× 3× 3, respectively. The effect
on the frequencies from various values for the magnitude of the displacements were
compared. The resulting forces from the frozen phonon approach was converged with
an accuracy better than 10−8 eV/Å.

Sampling of the frequencies and relaxation times requires an integration over the BZ.
The forces were Fourier-interpolated into a finer mesh, as implemented in the packages
PHONOPY [63] and PHONO3PY [62]. This study used the tetrahedron method to
sample the BZ [64, 65]. A well converged DOS and relaxation times was achieved with
a sampling mesh of 30× 30× 30.
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4.1 Relaxation of the Structures
Relaxation of the structure was done for the cubic XNiSn half-Heuslers containing in
total 12 atoms. The energy cutoff was set to 600 eV with a k-mesh of 7 × 7 × 7.
The obtained lattice parameters were in good agreement with previous first principles
calculations [66, 67], as well as the reported values from experiments [68].

Table 4.1: The lattice parameters in the conventional XNiSn from our calculations in compar-
ison with another theory and experimental results. The lattice parameters measurements was
conducted at room temperature [68].

a (Å)

This study DFT [67] Exp. [68]

TiNiSn 5.945 5.945 5.9298(1)
ZrNiSn 6.153 6.153 6.1089(1)
HfNiSn 6.109 6.113 6.0795(1)

4.2 Convergence of Lattice Thermal Conductivity and
Frequency

4.2.1 k-mesh

The convergence tests of κl and ω(jq) was performed on a 2 × 2 × 2 supercell of the
primitive unit cell. The k-mesh varied from 3× 3× 3 to a denser mesh of 14× 14× 14.
The energy cutoff was set to 600 eV in those convergence calculations.

Figure 4.1a) shows κl for different temperatures. The change of the lattice thermal
conductivity was below 10−1 W/mK for all the different k-meshes. The change oscil-
lates for all meshes and the lattice thermal conductivity had reached good convergence
already at a mesh with 3×3×3. The change in the frequencies with respect to the differ-
ent k-meshes are illustrated in figure 4.1b) for an arbitrary q-vector with no degeneracy
of the frequency. The results suggested that an error of ∼ 10−2 meV in the frequencies
corresponds to an error of ∼ 10−1 W/mK in the lattice thermal conductivity.

4.2.2 Energy Cutoff

The convergence tests of κl and ω(jq) were performed with various values for the en-
ergy cutoff to the plane waves. The k-mesh was set to 9 × 9 × 9 for all convergence
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calculations, where the energy cutoff varied from 250-800 eV with an interval of 50 eV.
Increasing the energy cutoff reduced the change in the lattice thermal conductivity.

An energy cutoff equal to 450 eV showed a change less than 10−1 W/mK in κl for all
temperatures. At higher energy cutoff, even less change in lattice thermal conductivity
was observed. As for the frequency, the average change for all bands was less than
10−3 meV for an energy cutoff equal to 450 eV. The results suggested that an error of
∼ 10−3 meV in frequencies corresponds to an error of ∼ 10−1 W/mK in lattice thermal
conductivity.
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Figure 4.1: a) The change in κl and b) the change in ω(jq) at nine arbitrary phonon mode jq
when increasing the mesh from n × n × n to (n + 1) × (n + 1) × (n + 1). The value on the
x-axis corresponds to the latter (n+ 1)× (n+ 1)× (n+ 1) cubic mesh.
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Figure 4.2: a) The change in lattice thermal conductivity and b) the change in frequency as a
function of the energy cutoff.

4.3 Effect of Displacement
The harmonic approximation is not valid for too large displacements where anharmonic-
ity have larger contributions. At very small displacements an inaccuracy was also ob-
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served. The origin of this inaccuracy stems from the challenges in the calculations of
very small energy differences with density functional theory [51]. The frequencies were
relatively insensitive to the amplitude of the displacement. The highest variation of the
frequencies was observed at the higher energetic phonons: the maximal change was 0.03

meV.
Calculations of the frequencies with amplitudes ranging from 0.001 − 0.1 Å have

been performed within the harmonic approximation. Figure 4.3 shows the change in fre-
quencies as a function of the displacement lengths for three arbitrary jq phonon modes.
Effects from anharmonicity had a larger impact when the displacements were above
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Figure 4.3: Frequencies at representative jq mode where a) is for a phonon at the Γ-point and
the lowest TO branch, b) is for the L-point and the lowest TA branch and c) is for X-point and
the highest energetic TO branch.

48



4.4. Brillouin Zone Sampling

0.3 Å. Numerical inaccuracy was most prominent at the displacements below 0.001 Å.
The displacement for further calculations was set to 0.03 Å for both the harmonic and
anharmonic force calculations.

4.4 Brillouin Zone Sampling
Properties like DOS and relaxation times requires an evaluation of the sum in the re-
ciprocal space with a large number of q-points. It exists several different integration
methods, e.g. the tetrahedron method and the Gaussian smearing method. An advantage
with using the tetrahedron method compared to the Gaussian smearing method is that it
can be parameter-free [62].

Density of states was obtained by evaluating the summation from equation (2.55)
with the tetrahedron method. A converged result of DOS was obtained with a 30×30×30

sampling mesh.
It has been reported that the Gaussian smearing method generally underestimates the

relaxation time; thus, Gaussian smearing underestimates the lattice thermal conductivity
as well [62]. The sampling of anharmonic relaxation times from equation (2.84) was
performed with the tetrahedron method over the irreducible part of the Brillouin zone
as described in [64, 65]. A converged result was obtained with a sampling mesh of
30× 30× 30.
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Results

5.1 Harmonic Properties

5.1.1 Phonon Dispersion

The phonon dispersion shows the distribution of phonon vibrations within the first Bril-
louin zone, which is of great interest when investigating heat conduction from lattice
vibrations. The phonon dispersion for TiNiSn, ZrNiSn and HfNiSn is shown in figure
5.1a-c), respectively. The three expected acoustic phonon branches and the six optical
phonon branches are observed. As there are no imaginary phonon modes, the crystal is
stable under small distortions. The inclusion of the non-analytic correction term results
in a LO-TO splitting for the upper optical phonons at the zone center for all the three
XNiSn half-Heuslers which are observed in figure 5.1.
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Figure 5.1: The phonon dispersion for a) TiNiSn, b) ZrNiSn and c) HfNiSn. The curves shows
qualitative similarities; however, substitution on the X-site with a heavier atom show a shift of
the phonon branches towards lower frequencies.
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An energy gap between the acoustic and optical phonon branches is observed for the
TiNiSn half-Heusler. The energy gap increases with the mass difference of the atoms:
a substitution with Zr on the Ti-site decreases the frequencies, and the energy gap in
the ZrNiSn half-Heusler is closed as seen in figure 5.1b); however, the phonon branches
does not overlap in the reciprocal space. In this case, the frequencies for the acoustic
phonons are shifted < 3%, whereas the frequencies for the optical phonons are shifted
∼ 15%. A substitution with the heavier Hf-atom on the X-site results in a decrease of
the frequencies for the acoustic phonons and a further decrease of the three lower optical
phonons. A new frequency gap between the optical branches is observed in the HfNiSn
half-Heusler; the frequencies for the upper three optical phonon branches are shifted
< 1%, whilst the frequency shift was very similar for all the other phonon branches with
∼ 13% decrease in frequencies. In TiNiSn and ZrNiSn, a transition of phonons in the
acoustic branches to the optical branches would require an additional momentum due to
the lack of overlapping branches. In contrast, at the high symmetry point L in HfNiSn, a
phonon can make a transition from the acoustic branches to the optical branches without
the need of any additional momentum.

The shape of the phonon dispersion curves shows qualitative similarities; in fact,
keeping the second-order forces of TiNiSn and changing the mass from Ti to Zr repro-
duces the closing of the energy gap. This result is illustrated in figure 5.2: the solid line
is the dispersion of TiNiSn half-Heusler with its own forces, and the dotted line is the
dispersion with a change in the mass from Ti to Zr while keeping the TiNiSn forces.
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Figure 5.2: The phonon dispersion holding TiNiSn forces constant while changing the mass
on the X-site. The solid line represents the dispersion with Ti mass and the dotted line is the
dispersion with Zr mass
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5.1. Harmonic Properties

Because of the similar structures, the lowering of the frequencies is mainly due to
the mass difference. The result emphasizes the possibility to tune the phonon dispersion
with an isoelectronic substitution on the X-site without any drastic change in the phonon
dispersion. This is of interest when investigating strategies to obtain a low lattice thermal
conductivity. The effect of the phonon dispersion on κl are discussed in more detail when
anharmonicity are included in the calculations in section 5.2.1.

5.1.2 Phonon Density of States

The total phonon density of states (DOS) represents the number of states per interval
of energy which are available to be occupied. The partial density of states (PDOS) is a
measure of the relative contribution from the motion of each atom to the phonon mode
jq. DOS and PDOS are shown in figure 5.3. The general trend when substituting the
atom on the X-site (X=Ti, Zr or Hf) on the phonon dispersion is reflected in the DOS: the
lowering of the frequencies in phonon branches are reflected as a shift in DOS towards
lower frequencies, which is seen in figure 5.3.

There are regions with dominant contribution from one of the three atoms to the
total phonon DOS in a XNiSn half-Heusler. The phonon states in the acoustic region
are dominantly created by the heaviest atom in the XNiSn compound. For TiNiSn and
ZrNiSn, the contribution comes from the Sn atoms. For HfNiSn, the contribution to the
acoustic states is dominated by the Hf atoms.

The contribution to the highest energetic optical phonon states are dominated by the
two lightest atoms in the XNiSn-structure. For TiNiSn and ZrNiSn, the contribution are
dominated by the X and Ni-atom; whereas, Ni and Sn shows the most contribution to
DOS in HfNiSn.
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Figure 5.3: Phonon density of states and the partial DOS for a) TiNiSn, b) ZrNiSn and c)
HfNiSn. The partial density of states from the X=Ti,Zr or Hf, Ni and Sn is shown with the
squares, circles and triangles, respectively. The total density of states is shown with the black
curve.
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5.1. Harmonic Properties

5.1.3 Heat Capacity

The heat capacity at constant volume CV is calculated from the phonon dispersion as
explained in section 2.4.2 about thermodynamics in equation (2.59). The results are
normalized by the number of atoms in the conventional unit cell. The heat capacity at
constant volume as a function of temperature is shown in figure 5.4 in the temperature
range from 0 K to 1000 K: the inset shows the trend for CV up to 100 K.
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Figure 5.4: The heat capacity at constant volume as a function of temperature from zero up to
1000 K. The squares, circles and triangles are TiNiSn, ZrNiSn and HfNiSn, respectively. The
inset shows the general trend for CV when T goes from 0 to 100 K.

The heat capacity at constant volume increases when going from TiNiSn to ZrNiSn
to HfNiSn. The difference in CV is most prominent at lower temperatures, as seen in
the inset of figure 5.4. The values of TiNiSn, ZrNiSn and HfNiSn at 100 K are 14.19,
15.67 and 16.51 J/mol K. The trend CV(TiNiSn) < CV(ZrNiSn) < CV(HfNiSn) can
be understood by the shift in DOS towards lower frequencies when substituting the atom

55



Chapter 5. Results

on the X-site with a heavier element; therefore, there are more available states at lower
temperatures for the heaviest XNiSn half-Heusler.

The heat capacity at constant volume increases with temperature due to an increase
in available states. At sufficiently high temperatures when kBT >> ~ω(jq), one can
derive the Dulong-Petit law of CV = 3NAkB = 24.94J/mol K, whereNA is Avogadro’s
constant. The value for all three XNiSn half-Heuslers converges towards the Dulong-
Petit value, and it is illustrated as the dotted line in figure 5.4. At 2000 K, the calculated
CV differs by ±0.04 J/mol K from the Dulong-Petit value.

5.2 Thermal Transport

5.2.1 Anharmonic Relaxation Times

Harmonic phonon vibrations does not interact with each other, and the thermal conduc-
tivity will be infinite; thus, describing the phonon interactions are a necessity to get a
finite lattice thermal conductivity. Phonon-phonon scattering rates may be obtained by
including higher ordered terms from the Taylor expansion of the potential energy. For
three-phonon scattering events, the third-order force constants are taken into consider-
ation. The inverse relaxation times due to three-phonon scattering are shown in figure
5.5. The peaks correspond to scattering events with a low relaxation time, and the peaks
are shifted towards lower frequencies due to the lowering of phonon modes when going
from Ti to Zr to Hf on the X-site. In fact, the peaks are placed close to the middle of the
frequency range, which can be understood by the conservation of energy.

In three-phonon interactions, each phonon has their own energy ω, ω′ and ω′′ and
their own wave vector q, q′ and q′′. Allowed scattering events requires the conservation
of both energy and momentum, which are explained in section 2.6.1 about three-phonon
interactions. Considering the annihilation of two phonons and creation of one phonon:
the two initial phonons must have an energy equal to the final phonon. At what frequen-
cies the three-phonon scattering events takes place are limited by the phonon disper-
sion. Further, conservation of momentum of the three phonons is also required, and the
phonon dispersion restricts where in the first Brillouin zone the three-phonon scattering
events takes place. It is expected that the scattering events are not uniformly distributed
within the first Brillouin zone due to the conservation of both energy and momentum.
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Figure 5.5: The inverse relaxation times for anharmonic three-phonon interactions in a) TiNiSn,
b) ZrNiSn and c) HfNiSn as a function of phonon frequencies.
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5.2.2 Lattice Thermal Conductivity

Lattice thermal conductivity may be calculated by solving the Boltzmann transport equa-
tion for phonons within the relaxation time approximation. We have all the ingredients to
calculate the lattice thermal conductivity as described in equation (2.70) from section 2.5
about thermal conductivity. The calculated κl for the pure TiNiSn, ZrNiSn and HfNiSn
is shown as functions of temperature in figure 5.6, where T goes from 300 K to 1000 K.
At 300K, we obtains a κl of 14.5, 16.7 and 15.3W/mK for TiNiSn, ZrNiSn and HfNiSn,
respectively. Figure 5.6 shows the trend κl(ZrNiSn) > κl(HfNiSn) > κl(TiNiSn) in
the whole temperature range, with the greatest difference at lower temperatures. Lat-
tice thermal conductivity decreases as a function of temperature and is less temperature
dependent at higher temperatures due to the increase of anharmonicity. Higher temper-
atures increases the phonon population at higher frequencies; therefore, there will be
more phonons which can participate in the three-phonon interactions.
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Figure 5.6: Lattice thermal conductivity for bulk XNiSn where the squares, circles and triangles
represents TiNiSn, ZrNiSn and HfNiSn, respectively.

The acoustic and optical phonons do not carry the same amount of heat. Cumula-
tive lattice thermal conductivity as a function of frequency, and its derivative, at 300 K
is shown in figure 5.7a) and 5.7b) for the pure XNiSn half-Heuslers. The total accu-
mulation of κl increases as a function of the frequency throughout the whole frequency
spectrum: all phonons contributes to heat resistivity.

The plateau in figure 5.7a) for TiNiSn in the frequency range 17-23 meV represents
the acoustic-optical gap. The optical phonons contributes less than 2 W/mK to lattice
thermal conductivity for all three XNiSn half-Heuslers. The cumulative κl for ZrNiSn
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Figure 5.7: The cumulative lattice thermal conductivity is shown as a function of frequency for
a) TiNiSn (circles), ZrNiSn (squares) and HfNiSn (triangles) at 300 K. Figure b) represents the
derivative of the cumulative κl.

in figure 5.7a) increases evenly up to 25 meV. However, there is a small plateau at ∼ 17

meV, which is the region in the dispersion where the lower optical branches and the
acoustic branches barely overlap. The upper three optical branches contributes with < 1

W/mK to the lattice thermal conductivity; whilst, the acoustic phonons and the optical
phonons from the three lower branches have similar contribution to the κl. The acoustic
phonons in HfNiSn are the major heat carriers at room temperature, as seen in figure
5.7a) and the derivative in figure 5.7b). The cumulative κl for HfNiSn increases slightly
faster compared to ZrNiSn and TiNiSn, illustrated by the small "bump" (triangles) in
figure 5.7a) at frequencies between 5 and 10 meV. It can be understood from the lower
acoustic phonon branches and the shift of DOS towards lower frequencies; thus, the
most prominent heat carriers are located at lower frequencies in the heavier HfNiSn
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half-Heusler. The optical phonons from the lower three optical branches contributes
with ∼ 2 W/mK to κl, where the phonons from the upper three optical branches have
a contribution < 1 W/mK. As mentioned in section 5.1.2, the majority of the states in
the acoustic region in HfNiSn stems from the motions of the Hf-atoms; thus, it becomes
apparent that substitution on the Hf-site in HfNiSn will have a big impact on lattice
thermal conductivity.
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Figure 5.8: The cumulative lattice thermal conductivity is shown in a) as a function of frequency
for TiNiSn (circles), ZrNiSn (squares) and HfNiSn (triangles) at 600 K. Figure b) represents
the derivative of the cumulative κl. For comparison, the cumulative κl at 300 K for the same
compositions are illustrated as the shaded curves.

At 600 K, the cumulative κl in figure 5.8a) shows an increase in the whole frequency
range; still, the majority of the heat carriers are the acoustic phonons for all three TiNiSn,
ZrNiSn and HfNiSn half-Heuslers. However, the contribution from the acoustic phonons
at 600 K is considerable lower compared to the case at 300 K. There is almost a 50%
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reduction of the acoustic heat carriers at 600 K compared to the case at 300 K which
is seen in the maxima for the derivative of the cumulative κl in figure 5.8b) and 5.7b).
Higher temperature increases the anharmonicity of the crystal; thus, more three-phonon
scattering events takes place and a lower lattice thermal conductivity is expected.

5.3 Isoelectronic Substitution

5.3.1 Virtual Crystal Approximation

Introducing mass-disorder on the X-site breaks the symmetry. The frozen phonon ap-
proach utilizes symmetries in the crystal to reduce the number of displacements; thus,
calculations of the force constants in an alloy with disorder becomes very computation-
ally expensive because of the increase in number of displacements. Accounting for the
scattering from mass-disorder is done within the virtual crystal approximation to effec-
tively reduce the computational costs.

Keeping the mass constant on the X-site while changing the obtained forces from
the first principles calculations for pure TiNiSn, ZrNiSn and HfNiSn shows similarities
between DOS which suggests similarities between the force constants as shown in figure
5.9a-c). Also, the inverse relaxation time from anharmonic scattering show similarities
between the forces obtained from the first principles calculations, and the results are
shown in figure 5.9d-f). The virtual crystal approximation considers mass-disorder as
a perturbation where the changes in the forces are neglected; however, the similarities
in the force constants between the pure TiNiSn, ZrNiSn and HfNiSn makes VCA more
applicable.

The differences between the DOS plots in the acoustic region is very small, and
figure 5.9b) and 5.9c) suggests that ZrNiSn and HfNiSn exhibit similar force constants.
This is somewhat expected due to the similarities in the atomic radii between Zr (rZr =

206 pm) and Hf (rHf = 208 pm). Also, the electronegativity for Zr and Hf are the
most similar compared to Ti. The electronegativity in Ti, Zr and Hf is 1.53, 1.33 and
1.3, respectively; thus, it is expected that Zr and Hf makes more similar bonds to the
neighboring atoms in the crystal. Similar calculations can be done keeping the mass
constant for either Zr or Hf while changing the forces, and the DOS are quite similar
also in the case of constant Zr or constant Hf.

A similar test may be performed for the third-order force constants. Again, the mass
at the X-site is held constant with Ti mass, while varying the third-order force constants
between the pure XNiSn half-Heuslers obtained from the first principles calculations.
The result is shown in figure 5.9d-f). The spread of relaxation times in figure 5.9e) and
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Figure 5.9: Density of states and the inverse τ for anharmonic scattering within the VCA: the
mass on the X-site is held fixed at Ti mass, while changing the second- and third-order force
constants. The calculated DOS with varying second-order forces are shown in figure a-c) for
TiNiSn-, ZrNiSn- and HfNiSn forces, respectively. The inverse τ with varying third-order forces
are shown in figure d-f) for TiNiSn-, ZrNiSn- and HfNiSn forces, respectively.

5.9f) as a function of frequency suggests that ZrNiSn and HfNiSn have more similar
third-order forces, as compared to the distribution in figure 5.9d) for TiNiSn forces.
Similar comparisons can be done for the inverse relaxation times with the third-order
force constants with constant Zr- or Hf mass.

5.3.2 Optimal Alloying

Binary Substitution

Alloying on the X-site has proven to reduce κl [21, 23, 26–31]. To gain a better un-
derstanding of the role of the mass-disorder, the binary substitution on the X-site is
considered. The inverse relaxation times from mass-disorder scattering are proportional
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5.3. Isoelectronic Substitution

to the mass-variance parameter, 1/τmdjq ∝ Mvar(b), and it defines which degree the
alloying contributes to scattering from mass-disorder. The mass-variance parameter is
defined as Mvar(b) =

∑
i fi(b)(1 − [m(lb)/m̄(b)])2 [46, 47], where fi is the concen-

tration of the species i, m(lb) is the mass of the bth atom in the lth unit cell and m̄(b)

is the average mass of atom b. Relaxation times from mass-disorder scattering 1/τmd
jq

is combined with the anharmonic relaxation times 1/τ anh
jq before calculating the lattice

thermal conductivity.

The mass-variance parameter as a function of alloy concentration on the X-site for
(Ti,Zr)NiSn, (Ti,Hf)NiSn and (Zr,Hf)NiSn is shown in figure 5.10. There are specific
values where the mass-variance parameter is the greatest. The mass-variance parameter
in the case of 80% Ti and 20% Hf is 5 times greater than 70% Ti and 30% Zr and 4 times
greater than 70% Zr and 30% Hf.
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Figure 5.10: Mass-variance parameter as a function of binary alloy percentage. The binary
substitution pair is indicated as squares for Zr:Ti, circles for Hf:Ti and triangles for Hf:Zr.

The occurrence of the highest mass-variance parameter can be understood by con-
sidering the mass-ratio difference, which is largest for the alloys containing Ti and Hf on
the X-site. In order to minimize lattice thermal conductivity, the virtual crystal should
be as light as possible, but still contain high enough concentration of Hf in order to have
a significant contribution to the mass-disorder scattering. Considering an alloy in the
optimal case with 80% Ti and 20% Hf; introducing Zr on the Ti-site will make the vir-
tual crystal heavier which results in lower scattering effects, and by substituting Hf with
Zr results in lower scattering effects due to the removal of the Hf contribution to mass-
disorder in the crystal. Either way, the mass-variance parameter will decrease and the
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relaxation times from mass-disorder scattering will increase; therefore, lattice thermal
conductivity will increase.

The theory captures the expected U-shape for lattice thermal conductivity versus
the percentage of alloying with a binary substitution at the X-site. Similar calculations
of κl versus alloy concentration for Si-Ge-alloys have been reported to reproduce the
experimental results [70–72]. The resulting κl as a function of alloy percentage in Hf:Ti,
Zr:Ti and Hf:Zr at the X-site is given in figure 5.11a-c). An interpolation between κl

with respect to the composition has been done. The lattice thermal conductivity drops
drastically with an alloy percentage between 0-10% at 300 K; however, the change in
κl becomes relative small with an alloy percentage in the range 20-80%. The lattice
thermal conductivity becomes less sensitive to mass-disorder scattering at 600 K and
900 K, as observed earlier for κl as a function of temperature for pure TiNiSn, ZrNiSn
and HfNiSn.
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Figure 5.11: Lattice thermal conductivity as a function of alloy percentage for a binary substitu-
tion on the X-site, for a) Hf:Ti, b) Zr:Ti and c) Hf:Zr. The squares, circles and triangles represents
κl at 300 K, 600 K and 900 K, respectively.

Ternary Substitution

The relaxation times from mass-disorder scattering with ternary substitutions on the X-
site is calculated for the composition TixZryHf1-x-yNiSn, where x, y = 0.1, 0.2, · · · , 1.0
and x + y ≤ 1. Lattice thermal conductivity for TixZryHf1-x-yNiSn is mapped in the
ternary diagrams in figure 5.12 at 300 K and figure 5.13 at 600 K. The diagrams a-c)
in said figures are calculations of κl with pure TiNiSn-, ZrNiSn- and HfNiSn forces,
respectively. The lattice thermal conductivity are then interpolated with respect to the
composition, and the interpolated κl at 300 K and 600 K are given in figure 5.12d) and
5.13d), respectively. Note that the scale for lattice thermal conductivity at 300 K goes
from 2-12 W/mK; whereas, the scale at 600 K goes from 2-6 W/mK.
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Figure 5.12: Lattice thermal conductivity mapped for the whole TixZryHf1-x-yNiSn at 300 K.
The bottom right, top and bottom left corner of the diagrams correspond to 100% Ti, Zr and
Hf, respectively. Figure a-c) is the calculated κl with TiNiSn forces, ZrNiSn forces and HfNiSn
forces, respectively. Figure d) is κl with an interpolation between κl with respect to the compo-
sition.

The highest κl is observed at the corners of the ternary diagrams with zero percentage
of alloying. The optimal alloy percentage in 5.12a-c) and 5.13a-c) is 80% Ti and 20%

Ti, which is related to the mass-variance parameter. However, the interpolated result in
figure 5.12d) and 5.13d) shifts the minimum to an alloy percentage of 50/50 between
Ti and Hf on the X-site, which is a result of the different effect of alloying when using
pure TiNiSn, ZrNiSn and HfNiSn. The different effects of alloying on κl are observed
by the difference in the color map. The broader, blue area in figure 5.12c) is related to
cumulative κl, where substitution the Hf-site reduces the acoustic heat carriers.
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Figure 5.13: Lattice thermal conductivity mapped for the whole TixZryHf1-x-yNiSn at 600 K.
The bottom right, top and bottom left corner of the diagrams correspond to 100% Ti, Zr and
Hf, respectively. Figure a-c) is the calculated κl with TiNiSn forces, ZrNiSn forces and HfNiSn
forces, respectively. Figure d) is κl with an interpolation between κl with respect to the compo-
sition.
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5.4 Smaller Grains for a Low Lattice Thermal Conduc-
tivity

A binary or ternary substitution on the X-site in a XNiSn Half-Heusler scatters the
phonons at higher frequencies. Thus, the main heat carriers in such alloys are the
phonons at lower frequencies, which are particularly sensitive to scattering from grain
boundaries. Further reduction of κl in XNiSn alloys can be achieved by considering
scattering from grain boundaries, as presented in equation (2.93). The inverse relax-
ation times from boundary scattering is inversely proportional to frequency; therefore,
scattering from grain boundaries will mainly affect the acoustic phonons. Figure 5.14
shows κl as a function of the grain size at three different temperatures for the TiNiSn
Half-Heusler alloy.
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Figure 5.14: Lattice thermal conductivity as a function of grain size at 300 K, 600 K and 900 K
for the TiNiSn Half-Heusler alloy.
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The grain size dependence of κl is most prominent at grain sizes L ≤ 2 µm for all
temperatures. The largest reduction in κl is observed at lower temperatures. This may be
related to the smaller phonon population at lower temperatures; thus, the grain bound-
aries have more phonons to scatter. The small change in κl at larger grain sizes stems
from the phonons with the highest group velocity which are the acoustic phonons near
the zone center. It can be directly related to the scattering model for grain boundaries,
where 1/τbsjq = vjq/L. The choice of the parameter L will be discussed in the sec-
tion 6.2.4 about calculations of low lattice thermal conductivity based on relevant grain
sizes.
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Discussion and Analysis

6.1 Calculations of Low Lattice Thermal Conductivity

The lattice thermal conductivity for pure TiNiSn, ZrNiSn and HfNiSn based on the
first principles calculations in this study is too high to be applicable for thermoelectric
applications: the calculated κl is around five times higher than commercial Bi2Te3 [20].
A more thorough comparison of the κl to the literature, both experimental and theoretical
studies, is conducted in the next section.

The half-Heuslers TiNiSn, ZrNiSn and HfNiSn show similar structure in the phonon
dispersion; however, a heavier atom at the X-site lowers the frequencies. The atomic
specific contribution to density of states from the X-, Ni- and Sn-atoms is significantly
different. Comparing the density of states for the three TiNiSn, ZrNiSn and HfNiSn
half-Heuslers, one can see a large contribution from the Hf-atoms to the acoustic phonon
states, whereas TiNiSn and ZrNiSn have their main contribution in this region from the
Sn-atoms. From the cumulative lattice thermal conductivity, the acoustic phonons with
frequencies lower than 15 meV are the majority heat carriers in all three of the pure
half-Heuslers in this study. Therefore, it is expected that a substitution on the X-site
will have a big effect for HfNiSn, which will result in a removal of the available states
for the acoustic phonons and increase the number of states at higher frequencies. The
bigger effect on the κl for HfNiSn can be observed by the broader, blue area in the
ternary diagrams in figure 5.12c). The alloying in TiNiSn and ZrNiSn has shown a
significant reduction in lattice thermal conductivity; therefore, one cannot consider the
direct removal of the acoustic heat carriers as the main source for the reduction in κl.

The conservation of energy and momentum limits where in the first Brillouin zone an
anharmonic scattering event can take place. If a phonon with a large wave vector takes
part in a coalescence process with another phonon with a large wave vector, it would re-
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quire a phonon with a short wave vector to conserve momentum. With respect to energy
conservation, an ideal case would exhibit a phonon dispersion which has the acoustic
phonon branches in a frequency range exactly half of the upper optical branches. At the
same time, the lower optical phonon branches should barely overlap with both the acous-
tic region and the upper optical region. This kind of dispersion will increase the possible
three-phonon scattering events; coalescence and decay processes will be energetically
possible in the whole frequency range. Also, this situation will make it possible for a
coalescence process for all of the acoustic heat carriers with other phonons resulting in
a scattering of the majority heat carriers to higher energetic states. This is beneficial to
reduce κl because the phonons in the optical bands contribute less to heat conduction,
seen from the cumulative κl. Therefore, the structure of the dispersion will limit where
in the first Brillouin zone a scattering event can take place due to conservation of the
energy and momentum.

The isoelectronic substitution on the X-site within the virtual crystal approximation
has shown a significant reduction in lattice thermal conductivity, especially for alloy per-
centages over 10% on the X-site. The κl as a function of binary alloy percentage in figure
5.11 shows small changes in the κl when the alloy percentage is in the range 20-80%:
these findings suggests that the scattering from mass-disorder are mostly utilized when
alloying with 20% on the X-site. The mass-disorder scattering are expected to efficiently
scatter phonons at higher frequencies, and this is directly related to the expression for
the relaxation time from mass-disorder scattering where 1/τmd

jq ∝ ω4(jq). In contrast,
grain boundaries scatters the lower energetic phonons. The relaxation times for grain
boundary scattering have the following frequency dependence, 1/τbs

jq ∝ ω−1(jq). The
grain size must be less than 2 µm to have a significant impact on the κl, which is shown
in figure 5.14 with κl as a function of grain sizes.

Combining the anharmonic, mass-disorder and grain boundary scattering results in
a low lattice thermal conductivity. From section 5.3.2 about optimal alloying, we know
that the composition Ti0.5Hf0.5NiSn shows a big reduction in κl. Combining the scatter-
ing from mass-disorder in the composition Ti0.5Hf0.5NiSn with the scattering from grain
boundaries results in an low κl. Lattice thermal conductivity as a function of tempera-
ture is shown in figure 6.1 for the pure TiNiSn and HfNiSn; as well as the composition
Ti0.5Hf0.5NiSn with and without grain boundary scattering. There is not any new physics
here, which has not been discussed. The onset of new scattering mechanisms reduces
the lattice thermal conductivity, and the κl becomes less temperature dependent. A re-
duction of the κl is observed when increasing the temperature. This is related to the
increased anharmonicity at higher temperatures.

A demonstration that the mass-disorder scattering and grain boundary scattering af-
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Figure 6.1: The lattice thermal conductivity as a function of temperature. Pure TiNiSn and
HfNiSn are shown as squares and circles, respectively. A reduction in κl is observed when
including scattering from mass-disorder, and the triangles represent the κl for Ti0.5Hf0.5NiSn.
Further reduction is achieved including scattering from grain boundaries, shown with the dia-
monds.

fects phonons at different frequencies is shown in figure 6.2. The cumulative lattice
thermal conductivity for pure TiNiSn and Ti0.5Hf0.5NiSn with and without grain bound-
ary scattering is considered. The acoustic phonons are the main contributors to heat
conduction in pure TiNiSn (diamonds). The derivative of the cumulative κl for TiNiSn
shows that the onset of grain boundary scattering with an average grain size of 70 nm
(triangles) scatters all acoustic phonons to some degree; whilst, the optical phonons are
unaffected. Therefore, one observes a large reduction in κl because grain boundaries
scatters the heat carriers with the most contribution to heat conduction.

The mass-disorder in Ti0.5Hf0.5NiSn without boundaries (circles) scatter all phonons
above 5 meV. The effects on the κl from mass-disorder scattering increases at higher
frequencies, which are in accordance with the ω4 dependence. The onset of boundary
scattering with 70 nm (stars) reduces the κl even further because the boundaries scatters
the phonons in the low-acoustic region which is the frequency region where the mass-
disorder does not scatter the phonons efficiently.

These observations confirms the theory about frequency dependence: mass-disorder
are the most effective at higher frequencies and grain boundary scattering are the most
effective at lower frequencies. From cumulative κl in figure 6.2, one can see that both
scattering mechanisms scatters the phonons in the frequency range 5-12 meV.
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Figure 6.2: Illustration of the effect of mass-disorder and grain boundary scattering. The cu-
mulative κl is given in a) and its derivative in b) as a function of frequency. Pure TiNiSn with
and without grain boundary scattering are is shown as diamonds and triangles, respectively. The
composition Ti0.5Hf0.5NiSn with and without grain boundary scattering is shown as circles and
stars, respectively.

6.2 Comparison Between Theory and Experiments

6.2.1 Bulk Properties of Pure XNiSn Half-Heuslers

There are in total four phonon branches at the Γ-point: the acoustic modes go to zero
as one approach the Γ-point and the transverse-optical branches are degenerated. The
vibrational properties from theoretical calculations in this study and the experimental
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values from [73, 74] are presented in table 6.1 at the zone-center. The experimental
values are obtained from Raman and infrared spectroscopy, and the experiments were
conducted at two different temperatures: at 80 K and 300 K. The values in the paren-
theses are from the experiments at 300 K. There are a negligible frequency difference
between the TO− LO branches; however, the TO′ − LO′ shows a significant gap in the
frequency. The splitting of the higher energetic TO′ − LO′ is in the order of 3-4 meV.
This trend matches the behavior from the experimental studies. All of the calculated
phonon dispersions for pure XNiSn agrees well with previous theoretical studies on the
same materials [67, 75, 76].

Table 6.1: The calculated phonon frequencies in meV at the zone center in comparison with
experimental values from [73, 74]; the experimental results are obtained with Raman and infrared
spectroscopy. The experiments conducted in [74] at 80 K; the experiments in [73] at 300 K,
which are the values given in the parentheses.

TiNiSn

Phonon branch Theory Raman IR

TO 26.443 27.277 (27.524) (27.624)
LO 26.461 (27.673)
TO′ 29.647 (31.492) 32.980 (31.864)
LO′ 33.818 35.212 36.203 (35.645)

ZrNiSn

Phonon branch Theory Raman IR

T1O 23.447 (24.946) (24.673)
LO 23.451 (24.958)
T1O′ 26.997 (29.384) (29.012)
LO′ 30.281 (32.236)

HfNiSn

Phonon branch Theory Raman IR

T1O 20.409 21.697 (20.953) 21.325 (21.697)
LO 20.674 22.069 (21.821)
T1O′ 27.095 28.888 (28.640) 29.632 (29.508)
LO′ 29.984 31.616 32.484 (31.368)

To date, there are no experimental studies of the anharmonic relaxation times; how-
ever, a similar theoretical study of anharmonic relaxation times and lattice thermal con-
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ductivity for the pure XNiSn half-Heuslers has been performed by Andrea et al. [66].
The inverse relaxation times in this study from the three-phonon interactions show qual-
itative similarities to the obtained values in their study. They illustrated that the inverse
relaxation time in the first Brillouin zone is not evenly distributed, which are shown in
figure 2 in [66]. The peaks of the inverse relaxation time in figure 5.5 from this study are
in good agreement with the indicated regions of the phonon dispersion with the strongest
scattering mechanisms. The placement of the region of the strongest anharmonic scat-
tering events is in good accordance with the discussion about the role of energy and
momentum conservation during a three-phonon scattering event.

Theoretical and experimental values found in the literature of κl are presented in
table 6.2. The κl are all of the same order; however, the table shows a great variation
in the values. On the theory part, the calculated κl from this study differs from what
was obtained in [66]: even with the qualitative similarities in the phonon dispersion and
anharmonic relaxation times. At 300 K we obtains a κl of 14.3, 16.7 and 15.3 W/mK

for TiNiSn, ZrNiSn and HfNiSn; whereas, Andrea et al. calculated the κl at 300 K to be
15.4, 13.4 and 15.8 W/mK for TiNiSn, ZrNiSn and HfNiSn, respectively. The approach
to calculate the κl differs in this study and theirs; we solved the BTE with help of RTA,
where they solved the BTE with a direct solution as described in [77]. The setup of the
DFT calculations has two different initial parameters: the sampling mesh and the mag-
nitude of the displacements. The calculations in [66] used an amplitude of 0.01 Å with a
sampling mesh of 7×7×7; and, in this study a amplitude of 0.03 Åand a sampling mesh
of 3 × 3 × 3 was used. Due to the insensitivity of the magnitude of the displacement,
as illustrated in section 4.3, the difference in the κl is believed to come from the dif-
ferent sampling meshes. Generally, a denser mesh produces more accurate calculations
from first principles. The force constants may differ from this study and Andrea et al.;
thus, all of the subsequent properties may also differ. As discussed in the prior section,
three-phonon scattering events are strongly dependent on phonon dispersion. Although
a qualitative similarity in the phonon dispersions, the fine features in the dispersions will
strongly influence the conservation of energy and momentum in anharmonic scattering;
thus, a difference in the lattice thermal conductivity is observed.

The calculated κl in this work are comparable to reported experimental values in the
literature. However, the experimental values of κl show a great variation between the
different synthesis methods, even between the same synthesis methods. The variation
between the experimental measurements is believed to stem from different microstruc-
tures. Yu et al. demonstrated a decrease in the κl due to grain-refinement by melt-
spinning [34]; thus, the microstructure plays a major role in the lattice thermal conduc-
tivity. All the experimental studies in table 6.2 reported a single-phase half-Heusler.
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Table 6.2: Lattice thermal conductivities at 300 K from theory and experimental measurements
with their respective method. All samples are reported to be single-phased with respect to the
characterization method in the parentheses. The table is adapted from [66].

Composition κl [W/mK] Method Ref.

TiNiSn 14.3 RTA-BTE This work
15.4 LBTE [66]
17.9 LBTE [11]
16.8 ML [11]
9.3∗ AM (XRD) [18]
7.5 AM (SEM/XRD) [26]
8 AM (XRD) [15]

ZrNiSn 16.7 RTA-BTE This work
13.4 LBTE [66]
19.6 LBTE [11]
17.5 ML [11]
8.8∗ AM (XRD) [18]
10.1 AM/SPS (SEM/XRD/EDX) [27]
6.8 LM/SPS (XRD) [78]
5.69 LM/SPS (SEM/XRD) [34]
4.75 LM/MS/SPS (SEM/XRD) [34]

HfNiSn 15.3 RTA-BTE This work
15.8 LBTE [66]
19.5 ML [11]
6.7∗ AM (XRD) [18]
12 AM (XRD) [16]
6.3 LM/SPS (XRD) [78]
5.38 LM/SPS (SEM/XRD) [34]
4.8 LM/MS/SPS (SEM/XRD) [34]

RTA-BTE: Relaxation time approximation - Boltzman transport equation
LBTE: Linearized Boltzmann equation
ML: Machine learning algorithm
AM: Arc melting
LM: Levitation melting
MS: Melt-spinning
SPS: Spark plasma sintering
XRD: X-ray diffraction
EDX: Energy dispersive x-ray spectroscopy
SEM: Scanning electron microscopy
Note: Entries with ∗ represent the total thermal conductivity.
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6.2.2 Effect of Alloying

Different synthesis methods of the same half-Heusler composition may yield different
microstructures which can affect the measured lattice thermal conductivity. The virtual
crystal approximation does not consider the multiphase behavior; therefore, whether the
model captures the mass-disorder correctly cannot be concluded from a direct compar-
ison of the measured κl between the experimental values and with the calculated κl.
This section presents a rough approximation where scattering effects from microstruc-
tures can be excluded. This includes both scattering at the interface between different
phases and scattering from grain boundaries. If these effects can be separated out, the
comparison between theory and experiment would be much more direct.

Mathiessen’s rule states that the inverse of the total relaxation times is a sum of the
inverse relaxation times from the scattering mechanisms under investigation. The κl is
proportional to the τjq, which are derived from solving the Boltzmann transport equation
within the relaxation time approximation in section 2.5. In order to separate out the
effect of the scattering from the boundaries, the total κl with mass-disorder and grain
boundaries is written as a sum of the contributions from different scattering mechanisms

1

κl,tot

=
1

κl,anh

+
1

κl,md

+
1

κl,bs

. (6.1)

We now assume that we investigate an alloy system XxX′1-xNiSn, that is a mixture of
the pure half-Heusler compounds XNiSn and X′NiSn. The total thermal conductivity
without scattering from mass-disorder can be written as

1

κ′l,tot

=
1

κ̄l,anh

+
1

κl,bs

, (6.2)

where the κ̄l,anh is the mean value of the lattice thermal conductivity of the pure XNiSn
and X′NiSn half-Heuslers. Considering the half-Heusler with composition XxX′1-xNiSn,
then the mean value is given as

κ̄l,anh = x× κXNiSn
l,anh + (1− x)× κX’NiSn

l,anh . (6.3)

Further, by assuming that the same synthesis procedure within the same paper pro-
duced the same microstructure for all of the compositions, the effect from grain bound-
ary scattering on the total lattice thermal conductivity can be eliminated by subtracting
equation (6.2) from (6.1). One obtains an expression for the effect of mass-disorder
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scattering which we denote κ′l,md,

1

κ′l,md

=
1

κl,tot

− 1

κ′l,tot

=
1

κl,anh

− 1

κ̄l,anh

+
1

κl,md

≈ 1

κl,md

. (6.4)

Also, one assumes equal contributions from anharmonic scattering in a composition
with mass-disorder and the pure half-Heusler. Therefore, the resulting κ′l,md should be
relatively similar independent of the synthesis method. The calculated κ′l,md is not a
contribution to the total κl, but a value expressing the effect of mass-disorder scattering
with respect to the composition. Thus, one can now compare the κl obtained with the
virtual crystal approximation with experiments in the literature in more direct manner.

Table 6.3 shows the total κl for various compositions and the effect of mass-disorder
scattering κ′l,md. The theory is compared to experimental values from the literature. Con-
sider the composition Ti0.5Hf0.5NiSn from the theory: the value for κ′l,md is obtained by
considering the inverse κl for Ti0.5Hf0.5NiSn with mass-disorder and subtracting the in-
verse mean value of the bulk conductivity κ′l,tot, as described in equation (6.4). A similar
procedure is done for the experimental value of κ′l,md. In the case of Ti0.5Hf0.5NiSn: the
calculated κl and the values from experimental measurements in the literature differ by 1

W/mK; however, by applying the model to calculate the effect of alloying shows reason-
ably similar values of κ′l,md. The other compositions also shows reasonable similarities
with a higher variation in both κl and κ′l,md.

There are uncertainties in the approximation to exclude the effect of boundaries from
the lattice thermal conductivity. The boundaries from multiphase compositions and grain
boundaries are equally treated; it is also assumed that the microstructures in XNiSn,
X′NiSn and XxX′1-xNiSn are the same, which are most probably not the case. Despite
these uncertainties, the role of mass-disorder from the virtual crystal approximation are
comparable with the experimental values.
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Table 6.3: Theoretical and experimental κl for binary alloys are represented in the first column.
The second column represents the effect of mass-disorder scattering κ′l,md with respect to the
composition.

Composition κl [W/mK] κ′l,md [W/mK] Ref.

Ti0.75Zr0.25NiSn 9.3 24.45 Theory
7.2∗ 27.94 [26]
7.0∗ 21.00 [15]

Ti0.5Zr0.5NiSn 8.5 18.67 Theory
7.4∗ 27.31 [26]
8.0∗ 29.33 [15]
4.9 10.69 [18]

Ti0.25Zr0.75NiSn 8.9 19.68 Theory
7.2∗ 22.01 [26]
7.3∗ 19.62 [15]

Zr0.5Hf0.5NiSn 5.3 7.84 Theory
4.4 10.18 [18]
4.3 8.00 [16]
3.1 5.81 [23]
3.2 8.75 [36]
3.7 8.19 [78]

Zr0.4Hf0.6NiSn 5.4 8.19 Theory
4.0 9.93 [78]
3.0∗ 8.00 [33]

Ti0.5Hf0.5NiSn 4.8 7.02 Theory
4.4 9.78 [18]
3.7∗∗ 8.59 [23]
3.7∗∗ 7.30 [79]

Note: Entries with ∗ represents compositions with 5 % doping of Sb on the Sn-site, and entries with ∗∗ represents compositions
with 2 % doping of Sb on the Sn-site.
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6.2.3 Fitting of the Grain Sizes

The decrease of κl as a function of alloy percentage in a binary substitution was demon-
strated in figure 5.11. A comparison with experimental measurements in the literature is
presented; however, the theory does not include scattering from grain boundaries, and κl

is expected to be overestimated. Katayama et. al [79] prepared half-Heusler alloys with
composition Ti1-xHfxNiSn, whereas Liu et al. [78] prepared Zr1-xHfxNiSn. The theory
overestimates all values for lattice thermal conductivity given in [78, 79]. The articles
did not report any grain sizes; therefore, the average grain size was used as a fitting pa-
rameter. The grain size was set to 200 nm and 150 nm for the results from Katayama
et al. and Liu et al., respectively. The results are shown in figure 6.3. The experimen-
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Figure 6.3: Lattice thermal conductivity as a function of binary substitution on the X-site. The
squares are the theory with a solid line, and circles are the experimental results reproduced from
[78, 79]. The dashed line is a guide to the eye to illustrate the general trend. The filled and
unfilled markers are the κl at 300 K and 600 K, respectively. Figure a) show the κl with Ti:Hf
substitution fitted to an average grain size of 200 nm, and figure b) is Zr:Hf substitution with an
average grain size of 150 nm.

tal results are shown as circles and theory are shown as squares; the filled and unfilled
markers are at 300 K and 600 K, respectively. The dashed line is a guide to the eye to
illustrate the general trend. Both articles show a decrease in κl with alloy percentages
up to 20%, which is consistent with the theory. However, the theory overestimates κl for
the pure half-Heusler. Katayama et al. reported a majority of single phase TiNiSn with
a small amount of metallic phases after 2 weeks of annealing at 1073 K. The metallic
phases have been demonstrated to have a significant effect on κl [80]. Downie et al.
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prepared the compositions TiNi1+ySn with y ≤ 0.06, and the measured κl reduced with
increasing amount of Ni. In fact, there was a reduction of κl by 2 W/mK at both 400 K
and 700 K when going from zero excess Ni to y = 0.06.

6.2.4 Calculations Based on Relevant Grain Sizes

There are reports of the average grain size in the literature, and basing the average grain
size upon the reported values have shown good accordance between theory and exper-
imental measurements. At 300 K, the theory predicts the κl in TiNiSn with an average
grain size of 10 µm to be 14.29 W/mK, and with an average grain size 0.05 µm to be
6.11 W/mK. The experimental κl for TiNiSn0.95Sb0.05 was reported to be 10 W/mK

and 4 W/mK with reported grain sizes of 10 µm and 0.05 µm, respectively [26]. They
reported a single-phase half-Heusler by x-ray diffraction. The theory captures the same
trend as the experiment, but the theory overestimates κl by 2-3 W/mK.

Lattice thermal conductivity as a function of temperature is shown in figure 6.4. Tri-
angles are the κl with a combination of anharmonic scattering and mass-disorder scat-
tering; squares represents κl with a combination of anharmonic, mass-disorder and grain
boundary scattering and circles are experimental results found in the literature [29, 34,
35]. The average grain size is based on the reported values from the said papers. Bhard-
waj et al. [35] characterized the microstructure of Zr0.25Hf0.75NiSn with x-ray diffraction
analysis and transmission electron microscope images, and concluded that the average
grain size of that composition is in the range of 30-100 nm. Yu et al. [34] reported an av-
erage grain size in the range of 300-400 nm in composition Zr0.4Hf0.6NiSn0.98Sb0.02 with
x-ray diffraction analysis and scanning electron microscope images. Joshi et al. [81]
reported an average grain size to be in the range of 200-300 nm for the the composition
Zr0.25Hf0.75NiSn0.99Sb0.01 from x-ray diffraction and transmission electron microscope
images.

A decrease in κl as a function of temperature is observed for all compositions. How-
ever, the calculated κl is too high compared to the experimental results if one does
not consider scattering from grain boundaries. Combining the anharmonic and mass-
disorder scattering with grain boundary scattering results in further reduction of κl. The
lowest temperature dependence of κl is when the grain size is the smallest, i.e. figure
6.4b) with a grain size of 50 nm. The theory reproduces the temperature dependence
observed from experimental measurements of κl in the literature; however, the theory
overestimates the κl in comparison with the experimental values in [29, 34, 35].
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Figure 6.4: Lattice thermal conductivity as a function of temperature. The triangles are κl with
anharmonic scattering and mass-disorder scattering, the squares represents κl with a combination
of anharmonic, mass-disorder and grain boundary scattering and circles are experimental results
found in the literature. a) κl for the composition Zr0.4Hf0.6NiSn with an average grain size of
300 nm, and the experimental results are from [34]. b) κl for the composition Zr0.25Hf0.75NiSn
with grain size of 50 nm, and the experimental results are from [35]. c) κl for the composition
Zr0.25Hf0.75NiSn with an average grain size of 200 nm, and the experimental results are from
[29]. The composition from Yu et al. [34] and Joshi et al. [29] had a doping concentration on
the Sn-site of 2% Sb and 1% Sb, respectively.
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6.3 Validity of the Scattering Models
The observed overestimation of the lattice thermal conductivity may be related to the
scattering models. The mass-disorder is considered to be a perturbation, where the dis-
order is assumed to be distributed completely random; thus, completely ignoring multi-
phase behavior and the possibility for phonons to be scattered by the interface between
the phases. There have been reports in the literature that the multiphase behavior may
be beneficial for thermoelectric properties [24, 30, 82].

Schwall and Balke reported three phases in Ti0.5Zr0.25Hf0.25NiSn where two of them
is either Ti-rich or Hf-rich [30]. A scattered phonon from the interface between the Ti-
rich phase and Hf-rich phase can be described by the acoustic mismatch model, which
describes the two sides of the phase-interface as two different mediums. It assumes
complete specularity and accounts for the possibility for reflection, refraction and the
angle of the incident phonon. The reflection and refraction is described by the acoustic
analog to Snell’s law, and a more detailed description of the model can be found in [83].

The effects on κl from phase-interface scattering are believed to be very small if the
grain sizes is much smaller than the size of the observed phase-domains. The element-
specific EDX mappings in figure 2 in [30] suggests domain size in the order of∼ 10 µm

or higher. The grain boundary scattering has a big impact on the κl with an average grain
size of < 2µm. Thus, scattering of the acoustic phonons may already be mostly utilized
with sufficiently low grain size. However, multiphase behavior may have a significant
effect if the phases and grains are of the same order.

The grain boundary scattering model considers all grains to be equal in geometry
with an average grain size, and it does not consider a distribution of grain sizes. More-
over, it is assumed that phonons scatter completely diffusive at the interface between
each grain; that is, there is no reflection of phonons. It is believed that the diffusive scat-
tering model will overestimate the calculated κl due to no back-scattering of phonons at
the grain boundaries. There exists a parameter called the specularity parameter which
accounts for the possibility to have reflection of phonons at the boundary [48]. The spec-
ularity parameter describes how many times a phonon is reflected before it is diffusively
scattered. There are few attempts to quantify the specularity parameter between two
grains or phases in the literature; however, the attempts that have been made are typi-
cally based on matching the results from BTE that includes the grain boundary relaxation
time 1/τjqbs to thin film or nanowire measurements [84]. Without any prior knowledge
of the specularity parameter, it is just a fitting parameter to get good agreement between
theory and experiments; thus, it is not included in these calculations.
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Conclusions

Lattice thermal conductivity is an important property in thermoelectric generators and
coolers; also, an understanding of the heat conduction from lattice vibrations is useful in
thermal isolation materials for example for the development of zero emission buildings.
The efficiency of such applications depends on the nano-scale thermal conductivity in
their constituting materials. It is possible to tailor the nano-materials to exhibit the
desired thermal properties for a particular application. In this thesis, the tailoring of half-
Heusler compounds as thermoelectric materials is discussed from a theoretical point of
view.

The thermal conductivity has contributions from electrons and lattice vibrations. The
lattice thermal conductivity can be calculated from first principles by considering the
forces up to the third-order of the expanded crystal potential. The determination of
lattice thermal conductivity was done by solving the Boltzmann transport equation for
phonons within the relaxation time approximation (RTA). In the RTA, the relaxation
time of a phonon mode was calculated while all other modes are considered to be in
equilibrium. From these calculations, an understanding of the limiting factors of the
three-phonon scattering events was obtained.

Pure XNiSn (X=Ti, Zr or Hf) shows too high lattice thermal conductivity to be
applicable as an efficient thermoelectric material. One strategy to lower the κl is to
have an isoelectronic substitution on the X-site in the XNiSn half-Heusler alloys where
X = Ti, Zr, Hf. Introducing such alloying will break the symmetry of the unit cell, and
explicit density functional theory calculations on such crystals are very time consuming.
The effects of alloying in TixZryHf1-x-yNiSn on the κl in this work was explored within
the virtual crystal approximation (VCA). The result was mapped on a ternary alloying
diagram, and it was found that the greatest reduction of κl comes from compositions
with the highest mass-difference. The lowest κl was thus obtained in the composition
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Ti0.5Hf0.5NiSn. The effects from mass-disorder scattering from theory and experimental
results was found to be comparable.

The effect on the lattice thermal conductivity from nanostructuring was studied with
an empirical model due to the computational expenses with explicit DFT calculations on
nanostructured materials. Phonons incident on a grain boundary are diffusively scattered
and the relaxation times can be calculated by considering a particular value of the grain
size representing that for all the grains. For grain sizes less than 0.5 µm, a significant
reduction in κl was observed. For comparison, the grain size was chosen with respect to
reported values in the literature. The resulting κl from the theory showed a slight over-
estimation compared to the experiments; however, the theory captured the temperature
dependence of the κl. The orientations and distributions of the grains are not included
in this model; also, it disregards the possibility for a phonon wave packet to be reflected
at the boundary, which will have an impact on the thermal conductivity. The possibility
for reflection can be introduced by including a specularity parameter, and a lower κl can
be obtained. However, in this thesis the specularity has been disregarded because of the
lack of literature on the topic. The multiphase behavior in half-Heusler alloys has been
reported to be beneficial for a low κl, but the VCA fails to capture the scattering from the
boundaries between two phases. If the phase-domain is in the order of 10 µm or higher,
it is believed the multiphase behavior have less of an effect on the lattice thermal con-
ductivity with sufficiently low grain sizes because the scattering of the lower energetic
phonons are already mostly utilized.

In conclusion, the approach presented in this thesis allows calculations of κl for any
composition of XNiSn in combination with scattering due to grain boundaries. All in-
gredients to calculate κl were computed from first principles: the vibrational properties
and anharmonic scattering rates. This approach reproduces the available experimental
results in the literature for κl when combining the scattering mechanisms: anharmonic,
mass-disorder and grain boundary scattering. The addition of mass-disorder scattering
were observed to scatter phonons at higher frequencies; whilst, grain boundaries scat-
tered the phonons with lower frequency. These findings may be beneficial for further
investigation of the XNiSn half-Heusler compounds, both for experimentalists and theo-
reticians. The results may be used to decide which compound to make or it can be used
as a reference to other calculation methods. Also, the methods presented to calculate the
lattice thermal conductivity are transferable to other half-Heusler alloys or other thermo-
electric materials. These methods are not confined to the field of thermoelectricity but
may as well be used to understand heat conduction from lattice vibrations in isolation
materials or other application areas where an understanding of heat conduction in the
constituting materials is important.
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Further work on this topic would include a calculation of the dispersion in an ordered
alloy, e.g. Ti0.5Hf0.5NiSn: the dispersion may verify the assumptions regarding the struc-
ture of the dispersion for an increased possibility for three-phonon scattering events. It
would be interesting to implement another description of boundaries to capture transmis-
sion probabilities, angle of the incident waves and the mismatch in acoustic dispersion
to check if such a model would reproduce the experimental values even better; however,
such implementation would require a lot more prior knowledge of the materials.
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