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Preface

Abstract

This thesis aims to study the risk measure Conditional Value-at-Risk and
analyse an optimization problem of maximizing expected return subject to
this risk measure. The analysis include performing Fourier-Motzkin elimina-
tions on the system of linear constraints of the problem, so that the portfolio
is the only remaining decision variable.
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1 | Introduction

In portfolio optimization, since the future market prices are not known, one
is dealing with uncertainties. This implies that making decisions involve
some risk. Finding ’good’ measures of risk has since the Markowitz mean-
variance optimization problem in the 1950s been an essential problem. There
has been several approaches, some which has been flawed. In 1999 Philippe
Artzner, in ’Coherent risk measures’, gave some reasonable axioms for risk
measures.

The risk measure Value-at-Risk was introduced to measure an upper es-
timate of losses of a portfolio, but this risk measure lacked properties like for
instance convexity for discrete loss distributions. This made it undesirable
in optimization problems. To remedy Value-at-Risk’s shortcomings, the re-
lated risk measure Conditional Value-at-Risk was introduced.

This thesis aims to analyse an optimization model with this relatively new
risk measure. In doing so, the results and concepts from the main article
for this thesis, by Krokhmal, Palmquist and Uryasev [KPU01], is presented.
The results and concepts from this article is used to describe an optimiza-
tion model of maximizing expected return subject to Conditional Value-at-
Risk constraints. In this optimization model, the decision variables are the
threshold, the variables representing the losses that are exceeding the thresh-
old, and the portfolio. At the end of this thesis I perform Fourier-Motzkin
eliminations on the system of constraints in the Conditional Value-at-Risk
optimization model. This elimination results in new, equivalent optimiza-
tion models where the portfolio is the only decision variable. In some cases,
as we will see, these new optimization models not only have fewer decision
variables, they also have fewer constraints.

In Chapter 2 I will give a short introduction to convex sets and functions. In
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this chapter I also introduce the basics of linear programming and quadratic
programming, and aim to clarify the connection between convexity and opti-
mization. The final section in this chapter gives an introduction to Fourier-
Motzkin elimination. This technique of eliminating variables in a linear
system of inequalities can be used in optimization problems, where the con-
straints are linear. The Fourier-Motzkin elimination is of importance in
this thesis, as my main contributions are performing Fourier-Motzkin elim-
inations on the constraints of the Conditional Value-at-Risk optimization
problem.

In Chapter 3 I lie down the financial framework for this thesis, from a
stochastic calculus point of view. This chapter also gives an introduction to
convex risk measures. In the final section I present the risk measures Value-
at-Risk and Conditional Value-at-Risk, and some of their properties. In
particular, I show that Conditional Value-at-Risk is a coherent risk measure,
and hence also a convex risk measure.

Chapter 4 gives an introduction to portfolio optimization problems. I give
a short introduction to the classical Markowitz mean-variance optimization
problem, and Markowitz’s concept of efficient portfolios. In this chapter
I introduce the main optimization problem of this thesis; the problem of
maximizing expected return subject to the risk measure Conditional Value-
at-Risk. The presentation of this model is based on the article by Krokhmal
et. al. [KPU01]. In addition, some additional constraints are introduced.

In Chapter 5 I aim to analyse an linearized, one period optimization
model with Conditional Value-at-Risk constraints. At the end of this chapter
I perform Fourier-Motzkin elimination on this one period model, under some
conditions on the scenario probabilities.

Chapter 6 contains some efficient frontiers for the Conditional Value-at-
Risk problem.

In chapter 7 I give some of the Matlab code I have produced working
with this thesis. Some code is left out, due to their simplicity.
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1.1 My contributions

My main contribution in this thesis is the work I have done in Section 5.2,
Section 5.3 and Section 5.4; the Fourier-Motzkin elimination on the system
of linear constraints in the one period optimization model with Conditional
Value-at-Risk constraints. In these sections I show that we can eliminate
all decision variables except those representing the portfolio. This results in
some new, simplified systems of linear constraints. I have also proved some
results and solved some examples to clarify some of the concepts presented.
Below is a list of my contributions in this thesis:

• CHAPTER 2:
- The proof of Proposition 2.1.7.

• CHAPTER 3:
- In the proof of Theorem 3.3.2, I proved some details,

in particular that the the function Fα(ξ) is convex.
- I produced some details in proving the convexity property in

Theorem 3.3.3
- The proof of Proposition 3.3.4, except the proof of the

convexity property.

• CHAPTER 5: Most of this chapter consists of my ideas.
- Section 5.2. In particular, Theorem 5.2.1 and its proof.
- Section 5.3. In particular, Lemma 5.3.1 and its proof.
- Section 5.4.

• CHAPTER 6: This chapter consists of the efficient
frontiers I have produced.

• APPENDIX A: This appendix consists of some of the
Matlab code I have produced.

8



2 | Convexity and optimization

Optimization is the mathematical theory of minimization or maximization
problems, and is an important theory in for instance finance. The goal in
optimization is to find the point x∗ such that f(x∗) ≤ f(x) for all x. Such
a point x∗ is called a global minimum. The problem is that most numerical
methods for finding such a minimum, often only find a local minimum, i.e a
point x̂ that is minimum for points ’sufficiently near’ x̂. Even though such
a minimum is good locally, it may be very poor compared to the global
minimum. If, however, the function f we are looking at is convex, then local
minima are also global. This is a very important fact, and is why convexity
is fundamental in optimization.

2.1 Basics of convexity

In this thesis, the goal is to investigate some concepts and optimization mod-
els in finance. In doing so, it is important to look at convexity, as it also is
of great importance in financial optimization. In this section we will restrict
the attention to convexity in Rn, since the sets we are interested in will be
the set of some real vectors.

This section is based on the report by Dahl [Dah10].

Convex sets

In optimization, the set of feasible points is often a convex set. This is
the case in for instance linear programming. Here, the convexity of the
feasible set plays a role in the existence of optimal solutions and how to
solve optimization problems numerically. Also, for the applications in this
thesis, we will later see that some risk sets are convex sets.
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Figure 2.1: Some convex sets.

Figure 2.2: Some non-convex sets.

Definition 2.1.1. A set C ⊆ Rn is called convex if

(1− λ)x + λy ∈ C, for all x,y ∈ C and 0 ≤ λ ≤ 1

Geometrically, a set is convex if it contains the line segments between
each point in the set. For an alternative definition of convex sets, let
x1,x2, . . . ,xn ∈ Rn be vectors and λj ≥ 0 for j = 1, 2, . . . , n such that∑n

j=1 λj = 1. Then the vector x =
∑n

j=i xjλj is called a convex combination
of the vectors x1,x2, . . . ,xn ∈ Rn. A convex set is a set that is closed under
convex combinations.

The expectation of a random variable, in a discrete setting, relates to the
latter definition of convexity. Let X be the random variable taking values in
{x1, x2, . . . , xn}, and let 0 ≤ pj ≤ 1 be the probability thatX = xj . Then the
expectation E[X] =

∑n
j=1 pjxj is a convex combination of {x1, x2, . . . , xn}.
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Proposition 2.1.2. A set is convex if and only if it contains all convex
combinations of its points.

Let A ∈ Rm×n, x = (x1, x2, . . . , xn)T ∈ Rn and b = (b1, b2, . . . , bm)T ∈
Rm. The notation Ax ≤ b should throughout this thesis be interpreted
component wise. That is, for each row ai in A, the inequality aix ≤ bi holds
for each i = 1, 2, . . . ,m.

Definition 2.1.3. A polyhedron is a set of the form {x ∈ Rn : Ax ≤ b},
where A ∈ Rm×n and b ∈ Rm.
A polyhedron is a special type of convex sets, it is the solution set of a linear
system. Let S ⊆ Rn be any set, then the convex hull of S is the set of all
convex combinations of points in S. We denote this set by conv(S). The
convex hull of a set S is the smallest convex set containing S.

Definition 2.1.4. A set P is called a polytope if it is the convex hull of a
finite number of points.

Often, in optimization problems, the feasible set is closed and the optimal
solution lies on the boundary of this feasible set. It is therefore of interest
to introduce some basic knowledge of topology. In the definition below,
||x|| ∈ R is the norm of vector x, representing the length of x.

Definition 2.1.5. Some useful definitions:
i) An open ball is a set Bo(a, r) = {x ∈ Rn : ||x− a|| < r},

where r ≥ 0.
ii) Every open ball is an open set. Also, a set S ⊆ Rn is open if

every point in S is contained in an open ball, i.e for each
x ∈ S there is an ε such that x ∈ Bo(a, ε) ⊆ S.

iii) A set S is closed if its set compliment Sc is open.
iv) A set S i called bounded if there exists a number M such

that ||x|| ≤M for all x ∈ S.
v) A set is compact if it is closed and bounded.
vi) The interior of S, denoted int(S), is the union of all open

sets contained in S.
vii) The closure of S, denoted cl(S), is the intersection of all

closed sets containing S.
viii) The boundary of S, denoted bd(S), is defined by

bd(S)=cl(S)\ int(S).
Polyhedrons are closed sets. The feasible set of a linear programming prob-
lem is a polyhedron, and the optimal solution lies on this polyhedron’s
boundary. A set is a polytope if and only if it is a bounded polyhedron.
This is an important theorem in convexity.
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Convex functions

From calculus we know that a function f : Rn → R is called convex if f ′′ ≥ 0,
where f ′′ denotes the second derivative of f . Geometrically, the graph of such
a function ’bends upward’. We will in this thesis use the following definition
of a convex function.

Definition 2.1.6. Let C ⊆ Rn be a convex set, then the real function f : C →
Rn is convex if

f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y)

holds for every x,y ∈ C and every 0 ≤ λ ≤ 1.

Geometrically, for f : R → R, this new definition says that the line seg-
ment between each pair (x1, f(x1)) and (x2, f(x2)) lies above the graph of f
in the interval [x1, x2].

x1

x2

x1 x2

(1− λ)f(x1) + λf(x2)

Figure 2.3: A convex function.

Proposition 2.1.7. The sum of convex functions is a convex function.

Proof. Let the functions gi : Rn → R be convex for i = 1, 2, . . . ,m, and let
f : Rn → R be such that f(x) =

∑m
i=1 gi(x). Then for all x,y ∈ Rn, and

0 ≤ λ ≤ 1
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f((1− λ)x + λy) =
∑m

i=1 gi((1− λ)x + λy)

≤
∑m

i=1

(
(1− λ)gi(x) + λgi(y)

)
= (1− λ)

∑m
i=1 gi(x) + λ

∑m
i=1 gi(y)

= (1− λ)f(x) + λf(y)

This proves that f is convex.
�

Definition 2.1.8. A function f is called concave if −f is convex.

The next result will be useful in showing that our main risk measure in
this thesis, Conditional Value-at-Risk, is a convex function. The proof of
this theorem will not be stated here.

Theorem 2.1.9. Let g, h be convex functions on C ⊆ Rn. Then

f(x) = max{g(x), h(x)}

is convex for x ∈ C.

The following corollary is very important in convex optimization, and
states that for convex functions, local minima are also global. Let ∇f(x)
denote the gradient of f at x.

Corollary 2.1.10. Let f : C → R be a differentiable convex function, defined
on an open convex set C ⊆ Rn. Let x∗ ∈ C. Then the following statements
are equivalent
i) x∗ is local minimum
ii) x∗ is global minimum
iii) ∇f(x∗) = 0, i.e all partial derivatives at x∗ are zero.

In Corollary 2.1.10, since C is an open set, the optimal solutions, if they exist,
can not lie on the boundary of C. This is simply because these points lie
outside C. For the purpose of extending Corollary 2.1.10 to the case where C
is a closed set, which is more typical, consider a convex optimization problem
where C ⊆ Rn is closed and convex.

max
x
{f(x) : x ∈ C, C closed and convex} (2.1)

Lemma 2.1.11. Let f : C → R be a convex function defined on a closed
convex set C ⊆ Rn. Then in problem (2.1), each local minimum is also
global. Moreover, the set of minima in problem (2.1) is a closed convex
subset of C.
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In the case where C is closed, optimal solutions may lie on the boundary of
C.

2.2 Linear programming

The purpose of this section is to give a basic introduction to linear pro-
gramming, which will be applied when analysing an one period optimization
model later. This section is based on theory from Vanderbei [Van14].

A linear programming (LP) problem is an optimization problem of maxi-
mizing or minimizing a linear function subject to linear constraints. The
variables whose values are to be decided in some optimal fashion, are called
decision variables. They are usually denoted xj , j = 1, 2, . . . , n. The function
to be maximized or minimized is a linear function of the decision variables,
and is called the objective function. We can write the objective function as
ζ = cTx, where x = (x1, x2, . . . , xn)T and c = (c1.c2, . . . , cn)T . The con-
straints of the problem can either be linear equalities or linear inequalities:

aTx


≥
=
≤

 b

where a,x ∈ Rn and b ∈ Rm are column vectors. It is easy to convert
constraints from one form to another. We will prefer ’less-than’ inequalities1.
The standard form of a linear program can be formulated as follows on matrix
form:

maximize cTx
subject to Ax ≤ b

x ≥ 0
(2.2)

where A ∈ Rm×n,b ∈ Rm and c,x ∈ Rn. m is the number of constraints, n
is the number of decision variables.

A solution x∗ to problem (2.2) is called feasible if it satisfies all the con-
straints. Recall that a polyhedron is a convex set of form {x ∈ Rn : Ax ≤ b},
where A ∈ Rm×n and b ∈ Rm. So, the set of all feasible solutions in LP

1Less-than inequalities are preferred from a mathematical point of view, see Vanderbei
[Van14]
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x1

x2

Feasible set

x∗

x1 + 2x2 = 1.38

0.5

0.5

Figure 2.4: Geometrically solution to the LP problem in Example 2.2.1.

problems is a polyhedron. If the problem (2.2) has no feasible solutions, then
the problem itself is called infeasible. A feasible solution, that in addition
attains the desired maximum, is called an optimal solution. A problem is
unbounded if there exists a feasible solution with arbitrary large objective
value.

Example 2.2.1. Assume we have following LP problem in R2.

maximize x1 + 2x2

subject to 2x1 + 10x2 ≤ 5
x1 + x2 ≤ 1

2x1 − 2x2 ≤ 1
x1 , x2 ≥ 0

This problem can be solved geometrically in the plane. From Figure 2.4
we can see that x = (x1, x2) has feasible solutions. The feasible set is a
polyhedron which is closed, so the optimal solution lies on this polyhedron’s
boundary. In fact, Figure 2.4 also tells us that the optimal solution is x∗ =
(0.62, 0.38), and that the optimal value is 1.38.

�
Example 2.2.1 shows geometrically the concept of feasible sets. In addi-

tion, it shows that we can find the optimal solution geometrically by finding
the feasible point (or points) where the objective function leaves the feasi-
ble set. Although this is a simple method for finding optimal solutions in
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x1

x2

1

1

cTx

Figure 2.5: Example of a unbounded LP problem.

R2, when dealing with higher dimensions, this method is not good at all.
The most commonly used method for solving LP problems is the Simplex
method. It can be shown that the Simplex method always will terminate, i.e
find the optimal solution or prove that no such solution exists, if the leaving
variable is selected by the lexicographic rule or Bland’s rule. For details on
the Simplex method see Vanderbei [Van14].

Theorem 2.2.1 (Fundamental theorem of linear programming). For an
arbitrary linear program in standard form, the following statements are true:
i) If there is no optimal solution, then the problem is either infeasible or
unbounded.
ii) If a feasible solution exists, then a basic feasible solution exists.
iii) If an optimal solution exists, then a basic optimal solution exists.

The first property of the fundamental theorem of LP 2.2.1 states that if a
problem is neither infeasible nor unbounded, then there exists an optimal
solution. This means that a LP problem is either unbounded, infeasible or it
has an optimal solution. The second and third property of the fundamental
theorem on LP contains the concepts of basic feasible solutions and basic
optimal solutions, for definitions see Vanderbei [Van14, p. 13].

The following result, Farkas’ Lemma, is important in LP, as it gives a nec-
essary and sufficient condition for a system of linear inequalities to have
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solutions.

Lemma 2.2.2 (Farkas’ Lemma). The system Ax ≤ b has no solutions if
and only if there exists a y such that

ATy = 0
y ≥ 0

bTy < 0

2.3 Quadratic programming

We will later in this thesis look at the Markowitz mean-variance portfolio
optimization problem. This optimization problem has a quadratic objective
function and linear constraints. For this purpose, we will consider quadratic
optimization. This section is based on the book by Best [Bes10].

A general quadratic function Q : Rn → R can be written as

Q(x) =
1

2
xTCx + cTx (2.3)

where c = (c1, c2, . . . , cn)T , x = (x1, x2, . . . , xn)T and C is a n × n sym-
metric matrix. We will also assume that C is positive semidefinite, i.e that
sTCs ≥ 0 for all s.

For minimizing the quadratic function Q, iterative methods like the steepest
descent and conjugate gradient method may be used. These methods are
related to each other. For more on these, see Lyche [Lyc15].

A typical quadratic optimization problem will consist of a quadratic objec-
tive function and in addition some linear constraints. I will start by looking
at a geometric example in the plane to illustrate the idea.

Example 2.3.1. Assume we have following optimization problem

min
{1

2
xTCx + cTx : aTx = b

}
where c = (c1, c2)T , C is a 2×2 symmetric, semidefinite matrix, a = (a1, a2)T

and b is a scalar. The constraint function is represented as a line in the plane,
and the objective function as a paraboloid, with ellipses as level curves.
Then the optimal solution can be found geometrically where the objective
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x2

x1

←optimal solution

Figure 2.6: Geometrically solution to Example 2.3.1.

function and the constraint function intersect in one point. This means that
the gradient of the objective function, at this optimal point x∗, is a multiple
of the linear constraint. Let d be the gradient of the constraint function,
then

∇Q(x∗) = ud

for some scalar u.

�
For the purpose of generalizing this optimality condition to problems

having n variables and m constraints, consider the problem

min
{1

2
xTCx + cTx : Ax = b

}
(2.4)

where c ∈ Rn, C ∈ Rn×n is symmetric and positive semidefinite, A ∈ Rm×n,
b ∈ Rm. Let AT = (a1,a2, . . . ,am), where ai is the i’th row vector of A,
and let b = (b1, b2, . . . , bm)T . We can write the constraints on the form

aTi x = bi, for i = 1, 2, . . . ,m

where ai is the gradient of the i’th constraint. Then for a vector u =
(u1, u2, . . . , um)T we should have following optimality condition

−∇Q(x) = ATu

18



Definition 2.3.1. The optimality conditions for problem (2.4) are Ax∗ = b
and that there exists a vector u such that −∇Q(x∗) = ATu

The vector u is called the multiplier vector for the problem. There is one
component ui for each constraint, and this ui is called the multiplier asso-
ciated with constraint i. The optimality condition Ax∗ = b is often called
primal feasibility, and the second condition −∇Q(x∗) = ATu is often called
dual feasibility.

Theorem 2.3.2. x∗ is optimal for problem (2.4) if and only if x∗ satisfies
the optimality conditions in Definition 2.3.1.

Proof. Assume that x∗ satisfies the optimality conditions in Definition 2.3.1.
To show that x∗ is optimal, we must show that Q(x∗) ≤ Q(x) for all x
satisfying Ax = b. Let x be such that Ax = b. Then by Taylor’ theorem
we have

Q(x) = Q(x∗) +∇Q(x∗)T (x− x∗) +
1

2
(x− x∗)TC(x− x∗)

From our assumption, ∇Q(x∗) = −ATu, so

∇Q(x∗)T (x− x∗) = −uTA(x− x∗) = −uT (b− b) = 0

Since C is positive semidefinite, we have that

(x− x∗)TC(x− x∗) ≥ 0

This gives us that Q(x∗) ≤ Q(x) for all x.

To show that x∗ satisfies the optimal conditions, given that it is optimal,
is a bit more complicated. This part of the proof will be omitted. �

Theorem 2.3.3. x∗ is optimal for problem (2.4) if and only if there exists
a column vector u ∈ Rm such that (x∗,u)T satisfies the linear equations[

C AT

A 0

] [
x∗

u

]
=

[
−c
b

]
(2.5)

Proof. Performing the multiplication results in the equations

Cx∗ +ATu = −c and

Ax∗ = b

In the first equation we recognize Cx∗ + c to be the the gradient at x∗, so
∇Q(x∗) = −ATu. These two equations are just the optimality conditions
for problem (2.4), and the result follows from Theorem 2.3.2. �
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2.4 Fourier-Motzkin elimination

This section is based on the reports by Dahl [Dah14] and by Dantzig [Dan72].
The purpose of this section is to give an introduction to the Fourier-Motzkin
elimination (FM elimination). This algorithm is used to eliminate variables
from a linear system of inequalities, and at the same time find the projection
of a polyhedron into a subspace. FM elimination may be used to solve LP
problems, as the set of constraints can be written as a system of linear in-
equalities. We will in this thesis use it to analyse the portfolio optimization
problem given Conditional Value-at-Risk constraints.

Assume that we have system Ax ≤ b, where A = [aij ] ∈ Rm×n and b ∈ Rm.
Assume x = (x1, x2, . . . , xn)T are variables that we want to eliminate in the
given order, although any order will do. We start by eliminating variable x1.
First we divide the system into three subsystems:

ai1x1 + ai2x2 + · · · + ainxn ≤ bi for i ∈ I+

0 · x1 + ai2x2 + · · · + ainxn ≤ bi for i ∈ I0

ai1x1 + ai2x2 + · · · + ainxn ≤ bi for i ∈ I−

where I+ = {i : ai1 > 0}, I− = {i : ai1 < 0} and I0 = {i : ai1 = 0}. The sets
I+, I− and I0 form a partition of the row index set I = {1, 2, . . . ,m}. We
leave all inequalities with i ∈ I0 as they are, since these don’t give upper or
lower bounds on x1. For all i ∈ I+∪I−, we divide ai1x1+ai2x2+· · ·+ainxn ≤
bi by |ai1| and get following system:

x1 + a′i2x2 + · · · + a′inxn ≤ b′i for i ∈ I+

+ ai2x2 + · · · + ainxn ≤ bi for i ∈ I0

− x1 + a′i2x2 + · · · + a′inxn ≤ b′i for i ∈ I−

where a′ij = aij/|ai1| and b′i = bi/|ai1|. Combining inequalities with indexes
from I+ with inequalities with indexes from I−, results in an equivalent
system of inequalities.

m∑
j=2

a′ijxj − b′i ≤ x1 ≤ b′k −
m∑
j=2

a′kjxj for i ∈ I−, k ∈ I+ (2.6)

m∑
j=2

aijxj ≤ bi for i ∈ I0 (2.7)
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x is a solution to the original problem Ax ≤ b if and only if x2, x3, . . . , xn
satisfy

m∑
j=2

a′ijxj − b′i ≤ b′k −
m∑
j=2

a′kjxj for i ∈ I−, k ∈ I+ (2.8)

m∑
j=2

aijxj ≤ bi for i ∈ I0 (2.9)

and x1 satisfies

max
i∈I−

{
m∑
j=2

a′ijxj − b′i

}
≤ x1 ≤ min

k∈I+

{
b′k −

m∑
j=2

a′kjxj

}
(2.10)

If either I+ or I− is empty, then the set of inequalities in (2.8) vanishes, and
upper bounds or lower bounds in (2.10) should be set to ∞ or −∞, respec-
tively. If I0 is empty and either I+ or I− is empty, we terminate. In this
case, the general problem is obtained by choosing x2, x3, . . . , xn arbitrarily,
and then choosing x1 according to (2.10).

Assume we now have eliminated all variables x1, x2, . . . , xk (in that order)
which may be all or just some of the variables. Then we have a system
li(xi+1, . . . , xn) ≤ xi ≤ ui(xi+1, . . . , xn), i = 1, 2, . . . , k. Here ui(xi+1, . . . , xn)
and li(xi+1, . . . , xn) are upper and lower bounds, respectively, dependent on
variables that have been eliminated after xi and variables that haven’t been
eliminated (if not all have been eliminated). We may choose xk ∈ [lk, uk].
Once xk is chosen, we choose xk−1 ∈ [lk−1(xk, . . . , xn), uk−1(xk, . . . , xn)].
Continuing with this back-substitution produces a solution x. In fact, all
solutions of Ax ≤ x may be produced this way.

Performing FM elimination on a variable can make the number of inequali-
ties grow. Assume that I+ has cardinality p and I− has cardinality q. Also
let r be the cardinality of I0. Then, after eliminating the variable, the num-
ber of inequalities equals pq+ r. If the number of inequalities in the original
problem is m, the worst case occurs when p = q, r = 0. In this case, the
number of new constraints will be m

2 ·
m
2 = m2

4 .
I will now give an example to illustrate the FM elimination.
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Example 2.4.1. Consider the problem in Example 2.2.1, and assume I want
to eliminate x2. Now I+ = {1, 2}, I− = {3, 5} and I0 = {4} (inequality
numbers 4 and 5 correspond to x1 ≥ 0 and x2 ≥ 0, respectively).

10x2 ≤ 5 - 2x1

x2 ≤ 1 - x1

2x2 ≥ 2x1 - 1
x2 ≥ 0

Dividing by |aij | gives following system.

x2 ≤ 1
2 - 1

5x1

x2 ≤ 1 - x1

x2 ≥ x1 - 1
2

x2 ≥ 0

Combining upper bounds with lower bounds will result in pq+ r = 4 + 1 = 5
inequalities. After eliminating x2, and some rewriting, we am left with this
new system

x1 ≤ 5
2

x1 ≤ 1

x1 ≤ 5
6

x1 ≤ 3
4

x1 ≥ 0

max
{

0, x1 −
1

2

}
≤ x2 ≤ min

{
1− x1,

1

2
− 1

5
x1

}
This means that 0 ≤ x1 ≤ 3

4 . Looking at Figure 2.7, we see that this interval
corresponds to the feasible x1-values. Let P be the polyhedron equal to the
feasible set in Figure 2.7, then the interval

[
0, 3

4

]
is the projection of P along

x2-axis into the x1-axis. This projection is illustrated in Figure 2.7 by a
thick line along the x1-axis.

�
Since the constraints of a LP problem can be written as a system of

linear inequalities, it is sometimes useful to eliminate decision variables using
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x1

x2

P

0.75

0.5

Figure 2.7: Projection of the feasible set P in Example 2.4.1, into the x1-axis.

FM elimination. Since performing a FM elimination produces an equivalent
system of linear inequalities to the original system, the new system will
have a solution if and only if the original system has one. A LP problem is
infeasible if we, by performing FM elimination, get something like 1 ≤ 0. One
can also use Farkas’ Lemma 2.2.2 to decide whether the linear system has
solutions, i.e whether the LP problem is feasible. Below is an example of an
infeasible LP problem. The example will illustrate that when we perform FM
elimination on the constraints of this problem, we get an illogical inequality,
in this case 4 ≤ 2.

Example 2.4.2. Assume we have following LP problem:

max 5x1 + 4x2

subject to x1 + x2 ≤ 2
−2x1 − 2x2 ≤ −8
x1 , x2 ≥ 0

we will show that this problem is infeasible, using FM elimination. First I
eliminate x1.

x1 ≤ 2− x2

x1 ≥ 4− x2

x1 ≥ 0

kAfter eliminating x1 we have
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0 ≤ 2− x2 ⇐⇒ x2 ≤ 2
4− x2 ≤ 2− x2 ⇐⇒ 4 ≤ 2

Since we get that 4 ≤ 2, the problem is infeasible.

�
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3 | Mathematical Finance and
Risk measures

3.1 Mathematical Finance

In this section I will discuss the financial framework for this thesis, using
mathematical finance to describe the concepts. This chapter is based on
the books by Øksendal [Øk13], McDonald and Weiss [MW13], and Çınlar
[Çın11].

Definition 3.1.1. A σ-algebra F on a set Ω is a collection of subsets of Ω
such that
i) ∅ ∈ F
ii) If F ∈ F , then also F c ∈ F . Here F c = Ω\F .
iii) If F1, F2, . . . ∈ F , then

⋃∞
i=1 Fi ∈ F

The set Ω is in a statistical setting thought of as the sample space, the
space of possible outcomes of a random experiment. In fact, Ω will be per-
mitted to be any set containing all of the possible outcomes. This is because
it may be difficult to know precisely the possible outcomes of an experiment.
In finance, Ω is often the set of possible prices in a market. F is often called
the set of events. The subsets F of Ω which belongs to F are called F-
measurable sets. A pair (Ω,F) is called a measurable space.

Definition 3.1.2. A measure µ on a measurable space (Ω,F) is a function
µ : F → R such that
i) µ(F ) ≥ 0 for all F ∈ F
ii) µ(∅) = 0
iii) If F1, F2, . . . ∈ F and {Fi} is pairwise disjoint (i.e Fi ∩ Fj = ∅

if i 6= j), then

µ
( ∞⋃
i=1

Fi
)

=
∞∑
i=1

µ(Fi)
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A measure P , which in addition satisfies the condition P (Ω) = 1, is called a
probability measure. In this case, for every F ∈ F , P (F ) is the probability
that event F will occur. Since Ω contains all possible outcomes, the prob-
ability that event Ω will occur must be equal to 1. Also, the probability of
the impossible event ∅ is P (∅) = 0. We will from now on let P be a proba-
bility measure. A triple (Ω,F , P ) is called a probability space, and is called
a complete probability space if it is such that F contains all subsets G of Ω
with P -outer measure zero, i.e with

P ∗(G) = inf{P (F ) : F ∈ F , G ⊂ F} = 0

Fore more on P -outer measures, see McDonald and Weiss [MW13]. We will
from now on assume that all our probability spaces are complete.

The following example illustrates some of the concepts presented in this
section.

Example 3.1.1. Let H denote head, and T denote tail when flipping a fair
coin. When flipping a coin twice, the sample space of the experiment is Ω =
{HH,HT, TH, TT}. Let F = P(Ω), so that every subset of Ω is an event.
Let F ∈ F be the event that the first toss is tail, i.e. that F = {TH, TT}.
Then the probability that event F will occur is P (F ) = 2

4 = 1
2 .

�

Definition 3.1.3. Let (Ω,F , P ) be a probability space. A random variable
is a real-valued function X on Ω such that {ω : X(ω) ∈ B} ∈ F for each
B ∈ B (where B is the Borel σ-algebra, see [Øk13]).

A stochastic process is a parametrized collection of random variables
{Xt}t∈T , defined on a probability space (Ω,F , P ). Here, and throughout
this section, T is some index set, typically [0,∞), [0, S] or N. t usually
denotes the time. For a fixed t ∈ T , ω → Xt(ω) is a random variable. For a
fixed ω ∈ Ω, t→ Xt(ω) is called a path.

Example 3.1.2 (Example 3.1.1 continued). Let (Ω,F , P ) be the probability
space described in Example 3.1.1. Let X : Ω → R be a random variable on
Ω, such that X(ω) is the number of heads after two flips. Then

P (X = 0) = P ({TT}) = 1/4
P (X = 1) = P ({HT, TH}) = 1/2
P (X = 2) = P ({HH}) = 1/4

�
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Definition 3.1.4. A filtration (on (Ω,F)) is a family {Ft}t∈T of σ-algebras
such that Ft ⊆ F for all t ∈ T , and for s ≤ t, Fs ⊆ Ft.

In a financial setting, one should interpret the σ- algebra Ft as the informa-
tion available to investors at time t, in the sense that if ω is the true state of
the world, and if F ∈ Ft, then at time t the investors know whether ω ∈ F .
Then, at time t the filtration {Ft}t∈T holds all the information about the
market, up to time t.

Definition 3.1.5. Let {Ft}t∈T be an increasing family of σ-algebras of sub-
sets of Ω. A stochastic process {Xt}t∈T , such that for all t ∈ T , Xt is
Ft-measurable, is called Ft-adapted.

Every random variable induces a probability measure µX on Rn, called
the distribution of X. This is defined by

µX(B) = P (X−1(B))

Definition 3.1.6. A random variable X is said to be an absolutely con-
tinuous random variable if there is a nonnegative Borel measurable function
p such that µX(B) =

∫
B p dλ for all Borel sets B. For such function, we

usually write p = pX and call pX the density function of X.

In Definition 3.1.6, the integral is with respect to the Lebesgue measure λ, see
McDonald and Weiss [MW13]. For functions that are Riemann integrable
on [a, b], the Lebesgue integral and the Riemann integral coincide on this
interval. The probability that a random variable X takes on a value in the
interval [a, b] is the area under the density function and above this interval.
For pX(x) to be a density function, it must satisfy the following conditions:

i) pX(x) ≥ 0 for all x

ii)
∫
R pX(x)dλ(x) = 1

If
∫

Ω |X(ω)|dP (ω) <∞, then the number

E[X] =

∫
Ω
X(ω)dP (ω) =

∫
Rn
xdµX(x)

is called the expectation, and sometimes the mean, of X with respect to P .
The expectation is the Lebesgue integral on space the (Ω,F , P ), see McDon-
ald and Weiss [MW13]. So, the following properties are just properties of
this integral.
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Proposition 3.1.7 (Properties of the expectation). Let (Ω,F , P ) be a prob-
ability space, let X and Y be random variables and let a, b ∈ R be constants.
Then the following properties hold for the expectation:
i) (Positivity) X ≥ 0 =⇒ E[X] ≥ 0 with equality if and only if X = 0
ii) (Monotonicity) X ≥ Y ≥ 0 =⇒ E[X] ≥ E[Y ]
iii) (Linearity) X,Y ≥ 0 =⇒ E[aX + bY ] = aE[X] + bE[Y ]
iv) ( Insensitivity) X = Y almost surely =⇒ E[X] = E[Y ]

The monotonicity property in Proposition 3.1.7 can be extended, see [Çın11].
If X ≥ Y , and if both E[X] and E[Y ] exists, then E[X] ≥ E[Y ]. By X = Y
almost surely (a.s.) we mean that X = Y except on a set of P - measure
zero, that is, except on a set N with P (N) = 0.

Definition 3.1.8. Let (Ω,F , P ) be a probability space, let X be a random
variable such that E[|X|] < ∞, and let H be a sub-σ-algebra of F . The
conditional expectation of X given H, denoted E[X|H], is the almost surely
unique function from Ω to Rn satisfying:
i) E[X|H] is H-measurable
ii)

∫
H E[X|H]dP =

∫
H XdP for all H ∈ H

The following proposition states some properties of the conditional expecta-
tion. Some properties are taken from Øksendal [Øk13] and some are taken
from Çınlar [Çın11].

Proposition 3.1.9 (Properties of the conditional expectation). Let (Ω,F , P )
be a probability space, let H be a sub-σ-algebra of F and let a, b, c ∈ R be
constants. The following properties hold for the conditional expectation func-
tion:
i) (Monotonicity) X ≥ Y =⇒ E[X|H] ≥ E[Y |H]

if X,Y are F-measurable
ii) (Linearity) E[aX + bY + c|H] = aE[X|H] + bE[Y |H] + c

if X,Y are F-measurable
iii) E[E[X|H]] = E[X] if X is F-measurable
iv) E[X|H] = X if X is H-measurable
v) E[X|H] = E[X] if X is independent of H
vi) E[Y ·X|H] = Y · E[X|H] if Y is H-measurable, where · denotes

the usual inner product.

provided these conditional expectations exist.

Let H be an event. Then

E[X|H] =
1

P (H)
E[X1H ]
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where 1H denotes the indicator function on H. If P (H) = 0, then so is the
integral over H, and E[X|H] = 0.

Definition 3.1.10. Let X be a random variable of finite expectation. Then
the variance of X, denoted Var(X), is defined by

VaR(X) = E[(X − E[X])2]

The square root of the variance of X is called the standard deviation of X.

The variance of a random variable describes the variability in the distribution
of X.

Definition 3.1.11. Suppose X, Y are random variables having finite vari-
ances and are defined on the same probability space. Then the covariance of
X and Y , denoted by Cov(X,Y ), is defined by

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
The covariance of two random variables describes how strongly they are
related. If the covariance is zero, then they are independent of each other.

The market model

The Brownian motion is a very important example of a stochastic process,
and has a number of real-world applications like for instance to mathematical
finance. In particular, the Brownian motion is widely applied in modelling
the financial market.

Definition 3.1.12. Let (Ω,F , P ) be a probability space with filtration {Ft}t∈T ,
and let s ≤ t. A Ft-adapted stochastic process {Bt}t∈T is called a Brownian
motion starting in x ∈ Rd if
i) P (B0 = x) = 1
ii) Bt −Bs is independent of Fs
iii) Bt −Bs is normally distributed with mean x and variance

σ = (t− s)I, where I is the d× d identity matrix

We often let x = 0 in Definition 3.1.12, so that the Brownian motion starts at
0. The second condition in Definition 3.1.12 states that the Brownian motion
has independent increments. The third condition states that the increments
are normally distributed. This means that E[Bt(ω)−Bs(ω)] = x. Also, the
variance of the increments Bt(ω)−Bs(ω) equals (t− s), where t, s ∈ T . The
variance is proportional to the time. We will throughout this section assume
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that the family of σ-algebras {Ft}t∈T , is generated by the Brownian motion.
This means that Ft is the smallest σ-algebra containing all sets of the form
{ω : Bt1 ∈ F1, . . . , Btk ∈ Fk}, where tj ≤ t, and Fj , j ≤ k, are Borel sets.

It can be shown that the Brownian motion has a continuous modifica-
tion, i.e for all T > 0 there exists positive constants α, β,D such that
E[|Bt − Bs|α] ≤ D|t − s|1+β for 0 ≤ s, t ≤ T . If {Xt}t∈T is a modifica-
tion of {Yt}t∈T , then they have the same finite-dimensional distributions.
From now on we will assume that Bt is such a modification.

We will later define a market to be an Itô process. For this purpose we
want to define the Itô integral:∫ T

0
f(s, ω)dBs(ω)

for a given function f(s, ω). First we need to define the Lp-spaces.

Definition 3.1.13. Let X be a random variable on probability space (Ω,F , P ),
and let p ∈ [1,∞]. Then the Lp-spaces are defined by

Lp(P ) = Lp(Ω) = {X : Ω→ Rn : ||X||p <∞}

where the Lp-norms ||X||p are defined by

||X||p =
(∫

Ω
|X(ω)|pdP (ω)

) 1
p

for p ∈ [1,∞), and for p =∞

||X||∞ = inf{N ∈ R : |X(ω)| ≤ N almos surely}

The construction of the Itô integral consists of first defining it for simple
functions, i.e functions on the form ψ(t, ω) =

∑
i ξi(ω)1[ti,ti+1)(t) where ξ

is Fti-measurable and E[ξ2] < ∞. 1[ti,ti+1) is the indicator function on
[ti, ti+1). Then one extends it to functions in L2

a([0, T ] × Ω), which is the
subspace of L2([0, T ] × Ω) that consists of adapted processes. For simple
functions ψ(t, ω), the Itô integral is defined to be∫ T

0
ψ(s, ω)dBt(ω) =

∑
i≥0

ξi(ω)[Bti+1 −Bti ]
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where

tk =


k2−n if S ≤ k2−n ≤ T
S if k2−n < S
T if k2−n > T

Definition 3.1.14. Let f ∈ L2
a([0, T ]×Ω). Then the Itô integral of f from

0 to T is defined by∫ T

0
f(s, ω)dBs(ω) = lim

n→∞

∫ T

0
ψn(s, ω)dBs(ω)

where the limit is in L2(P ), and {ψn} is a sequence of simple functions such
that

E
[ ∫ T

0
(f(s, ω)− ψn(s, ω))2ds

]
→ 0 as n→∞

Assume we are playing a game with payoff Xs. The game is considered
to be fair if the expected payoff at time t ≥ s, Xt, given that we have all
the information up to time s, is equal to Xs. This is the idea behind the
definition of a martingale.

Definition 3.1.15. A n-dimensional stochastic process {Mt}t≥0 on (Ω,F , P )
is called a martingale with respect to filtration {Mt}t≥0 if
i) Mt isMt-measurable for all t
ii) E[|Mt|] <∞ for all t
iii) E[Mt|Ms] = Ms for all s ≤ t

The Brownian motion {Bt}t≥0 is a martingale with respect to the filtra-
tion {Ft}t∈T , see Øksendal [Øk13].

The Itô integral has a t-continuous modification, i.e there exists a t-continuous
stochastic process Jt on (Ω,F , P ) such that P [Jt =

∫ t
0 f(s, ω)dBs] = 1. We

will from now on assume that the Itô integral is such a modification. Also,
it can be shown that the Itô integral Mt(ω) =

∫ t
0 f(s, ω)dBs is a martingale

with respect to Ft.

Definition 3.1.16. Let Bt be the 1-dimensional Brownian motion on prob-
ability space (Ω,F , P ). An 1-dimensional Itô process is a stochastic process
{Xt}t≥0 on (Ω,F , P ) of form

Xt = X0 +

∫ t

0
u(s, ω)ds+

∫ t

0
v(s, ω)dBs

where X0 is F0-measurable, u and v are adapted processes, and we assume
E[
∫ t

0 |u(s)|ds] <∞ and E[
∫ t

0 v
2(s)ds] <∞ for all t.
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Sometimes we use the following notation for an Itô process:

dXt = u(t)dt+ v(t)dBt

We are now ready to define a financial market. We will here define it
to be the prices of the available assets. Then at each time t, each asset
have a price Y (t). Also, the future price of an asset is not known, so we
are dealing with uncertainties. This implies that for each asset, its price
process should be a stochastic process. The following definitions are taken
from Øksendal [Øk13], but other mathematical models are also possible and
actively investigated.

Definition 3.1.17. A market is a F (m)-adapted (n + 1) dimensional Itô
process Y (t) = (Y0(t), Y1(t), . . . , Yn(t)), 0 ≤ t ≤ T which we assume has the
form

dY0(t) = ρ(t, ω)Y0(t)dt ; Y0(0) = 1

and

dYi(t) = µi(t, ω)dt+

m∑
j=1

σij(t, ω)dBj(t)

= µi(t, ω)dt+ σi(t, ω)dB(t) ; Yi(0) = xi

where σi is row number i of the n×m matrix [σij ], 1 ≤ i ≤ n ∈ N

We think of the random variables Yi(t) = Yi(t, ω) as the price of asset num-
ber i at time t. In Definition 3.1.17 there are n risky assets and one risk free
asset. The assets are called risky because of the presence of their diffusion
term (their expressions include the Itô integral). This represent the random-
ness in the prices; we can’t know what the prices will be in the future. For
many applications, the risky assets are stocks. Asset number 0 is called risk
free because of the absence of diffusion term. This term often represents the
bank investment.

The market {Y (t)}t∈[0,T ] is called normalized if Y0(t) = 1. We can always
make the market normalized by defining Y 0(t) = Y0(t)−1Yi(t) for 1 ≤ i ≤ n.
This new market is called the normalization of Y (t). The normalization
corresponds to regarding the price Y0(t) of the safe investment as the unit
of price, and computing the other prices in terms of this unit.

Definition 3.1.18. A portfolio in the market {Y (t)}t∈[0,T ] is a (n + 1)-
dimensional (t, ω)-measurable and F (m)

t -adapted stochastic process

X(t, ω) = (X0(t, ω), X1(t, ω), . . . , Xn(t, ω))
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0 ≤ t ≤ T .

A portfolio, as it is defined in Definition 3.1.18, holds n different securities.
The components X0(t, ω), . . . , Xn(t, ω) represent the number of units of the
securities number 0, . . . , n, respectively, which the investor holds at time t.
A portfolio is an adapted stochastic process, so at time t, the investor knows
how many units he or she has of each security. When an investor is choosing
a portfolio for the future, the portfolio is often called a trading strategy. It
says how the investor is investing his money, and the future value of this
portfolio is clearly not known.

Definition 3.1.19. The value at time t of a portfolio X(t) is defined by

V (t, ω) = V X(t, ω) = X(t) · Y (t) =
n∑
i=0

Xi(t)Yi(t)

where · denotes the inner product in Rn+1.

To calculate the value of a portfolio at time t, one simply multiplies the
number of units in each security with its corresponding price at time t, and
sum over these products. The value is the total value of the portfolio at time
t.

Definition 3.1.20. The portfolio X(t) is called self-financing if∫ T

0

{
|X0(s)ρ(s)Y0(s)+

n∑
i=1

Xi(s)µi(s)|+
m∑
j=1

[ n∑
i=1

Xi(s)σij(s)
]2}

ds <∞ a.s.

(3.1)

and

V (t) = V (0) +

∫ t

0
X(s)dY (s) for t ∈ [0, T ] (3.2)

Condition (3.1) in Definition 3.1.20 is required to make (3.2) well-defined, for
more details see Øksendal [Øk13]. A portfolio is self-financing if no money
is brought in or taken out from the system.

Definition 3.1.21. A portfolio X(t), which satisfies condition (3.1) in Def-
inition 3.1.20 and which is self-financing, is called admissible if there exists
K = K(X) <∞ such that

V X(t, ω) ≥ −K for almost all (t, ω) ∈ [0, T ]× Ω.
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The concept of an admissible portfolio is that there must be a limit to how
much debt an investor can tolerate.

Definition 3.1.22. An admissible portfolio X(t) is called an arbitrage in
the market {Y (t)}t∈[0,T ] if the corresponding value process V X(t) satisfies

V X(0) = 0 and

V X(T ) ≥ 0 a.s., and P [V X(T > 0)] > 0

In other words, a portfolio X(t) is an arbitrage if it gives an increase in the
value from time t = 0 to time t = T a.s., and a strictly positive increase with
positive probability. It means that we are guaranteed value increase. The
existence of an arbitrage is a sign of lack of equilibrium in the market. No
such market can exist in the long run, so it is therefore important to be able
to determine whether a given market allows arbitrage or not.

3.2 Convex risk measures

The purpose of this section is to define and discuss what is good measures
of risk. This section is based on the papers by Rockafellar [Roc07], Artzner,
Delbaen, Eber and Heath [ADEH99], Krokhmal, Zabarankin and Uryasev
[KZU11], Kaina and Rüschendorf [KR09]

When making decisions, and having to deal with future uncertainties,
one commonly talk about risk. In financial optimization, measuring risk is
very important. One is often interested in assigning a single value to a ran-
dom variable, since a random variable itself is not a single quantity. Over
the years, researchers have tried to find good measures of risk, some which
have been flawed. One approach has been to compute the variance. The
problem with this approach is that it does not distinguish between positive
and negative deviations. Assume we want to compute the risk of a loss func-
tion, then negative deviations (corresponding to gain) should be welcomed,
while positive deviations (corresponding to loss) should be disliked. Artzner
et. al [ADEH99] gives some reasonable axioms that should be satisfied, and
introduces the notion of coherent risk measure.

Let V (X,ω) be the loss of portfolio X if ω turns out to be the state of
the world. A risk measure is defined on a class of random variables, in
particular we can let this class be the class of losses V (X,ω) of attainable
portfolios. Denote this set by X , so that V X(t, ω) ∈ X . For simplicity, we
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will use notation V (X,ω), and sometimes just V . One should remember
that we are considering the loss of a portfolio. Any risk measure has domain
contained in L0(Ω,F , P ), the class of all measurable random variables on
the probability space (Ω,F , P ). Sometimes we want more restrictions on
the random variables, for instance that they should be bounded. Then we
can let X = L∞(Ω,F , P ). In applications, risks are usually modelled by
unbounded random variables, and for such applications, one may choose to
use the space Lp(Ω,F , P ), 1 ≤ p < ∞, as domain, see [KR09]. We will in
this thesis let p = 2. This means that we require that ||V ||2 = (E[V 2])

1
2 <∞.

The axioms in the definitions of convex risk measures and coherent risk
measures are taken from Krokhmal et. al [KZU11] and Rockafellar [Roc07].
Since the risk measure Conditional Value-at-Risk measures the risk of loss,
I have chosen to let the risk measures in this section also measure the risk
of loss. This means that negative outcomes are welcomed, while positive
outcomes are disliked.

Definition 3.2.1. A convex risk measure is a mapping ρ : L2 → R, which
for all V,U ∈ L2 satisfies the following properties:
(R1) (Translation invariance)For every constant function c ∈ R

we have that ρ(V + c) = ρ(V ) + c
(R2) (Monotonicity) If V ≤ U , then ρ(V ) ≤ ρ(U)
(R3) (Convexity) ρ(λV + (1− λ)U) ≤ λρ(V ) + (1− λ)ρ(U)

for all V,U ∈ L2 and λ ∈ [0, 1].

Property (R1) states that if the amount c of guaranteed loss is added to a
position, then the risk increases with this amount c. Property (R2) states
that if the loss V is less than loss U under every scenario, then the risk of V
should be less than the risk of U . Property (R3) says that diversification1

reduces risk.

A convex risk measure is called coherent if in addition it satisfies the positive
homogeneity property, i.e that

(R4) ρ(λV ) = λρ(V ) for all λ ≥ 0 and V ∈ L2

In Artzner et. al. [ADEH99], the definition of coherent risk measures
is based on sets called acceptance sets. Acceptance sets are sets of random
variables, in our case losses. The definition of such sets will not be stated

1Diversification is a technique of combining a variety of instruments. It corresponds to
"not putting all eggs in one basket".
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here, but the concept is that if the risk of some random variable V (ω) is a
positive value, then the investor should invest less in risky assets to meet
capital requirements. If the risk of V (ω) is a negative value, then the in-
vestor can invest more in risky assets. We say that the risk associated with
a random variable V is acceptable with respect to a coherent risk measure
ρ when ρ(V ) ≤ 0, i.e when the risk of loss is negative. The relationship be-
tween acceptance sets and coherent risk measures can be stated as follows:
The acceptance set is the set of acceptable random variables.

In the paper by Rockafellar [Roc07], there is introduced an additional axiom
for coherent risk measures:

(Closedness) ρ(V ) ≤ 0 when ||V k − V ||2 → 0 with ρ(V k) ≤ 0 (3.3)

This additional axiom (3.3) says that if the random variable V can be
approximated by acceptable random variables V k, then V is also acceptable.

3.3 Value-at-Risk and Conditional Value-at-Risk

It is the risk measure called Conditional Value-at-Risk (CVaR) that will be
the most important risk measure in this thesis, due to its suitable properties,
like for instance convexity. The related risk measure Value-at-Risk (VaR)
will also be considered. This section is based on the articles by Krokhmal
et. al. [KPU01], and Rockafellar and Uryasev [RU99]

VaR is defined to be an upper percentile of the loss distribution. α-VaR
is an upper estimate of loss witch is exceeded with (1− α)100% probability.
For instance, if we have that 0.95-VaR equals $1000, for some loss distribu-
tion, then there is a 5% chance of losing $1000 or more.
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Figure 3.1: 0.95-VaR, when the loss function is normally distributed.

As a benefit of VaR being a upper α-quantile, VaR has simple representa-
tion of high losses, see Krokhmal et. al. [KPU01]. When the the underlying
risk factors are normally distributed, VaR can be quite effectively estimated.
For non-normal distributions, VaR may have undesirable properties such as
lack of sub-additivity2. This implies that it is not a coherent risk measure.
VaR is also non-convex for discrete distributions when it is calculated using
scenarios. This makes it undesirable in optimization problems, as it is not
guaranteed that local extrema are global.

CVaR is another percentile risk measure, which is closely related to VaR.
As opposed to VaR, CVaR is convex and sub-additive. We will see that it is
in fact a coherent risk measure. CVaR is for continuous distributions defined
to be the conditional expected loss under the condition that it exceeds VaR,
while it for general distributions is defined to be the weighted average of VaR
and losses strictly exceeding VaR. I will only consider the continuous case in
this section. If 0.95-VaR equals $1000, then the 0.95-CVaR is the expected

2In some definitions of coherent risk measures, the convexity axiom is replaced by the
sub-additivity axiom.
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loss, given that the loss is $1000 or more. This means that α-CVaR≥ α-VaR
for all α.

Figure 3.2: 0.95-CVaR, when the loss function is normally distributed.

When the loss distribution is normal, CVaR and VaR are equivalent in the
sense that they produce the same optimal portfolio. For skewed distributions,
CVaR and VaR risk optimal portfolios may be quite different, since CVaR
is more sensitive right skewness in the loss distribution.

VaR and CVaR with continuous loss distributions

Assume we are given probability space (Ω,F , P ). Let f(x, Y (t, ω)) be the
loss associated with the decision vector x to be chosen from some set X ⊆ Rn.
We interpret x as a portfolio, with X as the set of available portfolios, and
Y (t, ω) as the market prices. For simplicity we will use notation Y for the
market prices. For each x, the loss f(x, Y ) is again a random variable, having
a distribution in R induced by the distribution of Y . The assumption that Y
has continuous distribution implies that it has density, which will be denoted
pY . We will first give the probability of f(x, Y ) not exceeding a threshold

38



ξ, also known as the cumulative distribution function of the loss associated
with x (when x is fixed).

ψ(x, ξ) = P (f(x, Y ) ≤ ξ)

= E[1{ω:f(x,Y )≤ξ}]

=

∫
Ω
1{ω:f(x,Y )≤ξ}dP (ω)

=

∫
{ω:f(x,Y )≤ξ}

dP (ω)

=

∫
{y∈Rn:f(x,y)≤ξ}

pY (y)dy

The function ψ(x, ξ) is non-decreasing and will be assumed to be everywhere
continuous with respect to ξ. This assumption is made for simplicity. Let
α ∈ (0, 1) be probability levels. We will denote by ξα(x) and φα(x) the
α-VaR and α-CVaR values for the loss random variable, respectively. ξα(x)
is defined as follows:

α-VaR = ξα(x) = min{ξ ∈ R : ψ(x, ξ) ≥ α} (3.4)

Since ψ(x, ξ) is continuous and non-decreasing, α-VaR comes out as the left
end point of the interval consisting of the values of ξ satisfying ψ(x, ξ) = α.
Since the distribution of f is continuous, this interval will only consist of one
point. φα(x) is defined as follows:

α-CVaR = E[f(x, Y )|f(x, Y ) ≥ ξα] (3.5)

There is an equivalent representation of φα that will be used is this thesis:
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φα(x) = E[f(x, Y )|f(x, Y ) ≥ ξα]

=
1

P (f(x, Y ) ≥ ξα)
E[f(x, Y )1f(x,Y )≥ξα ]

=
1

1− α

∫
Ω
f(x, Y )1f(x,Y )≥ξαdP

=
1

1− α

∫
f(x,y)≥ξα(x)

f(x,y)pY (y)dy (3.6)

The set f(x, Y ) ≥ ξ in the integrals above is just notation for the set {ω :
f(x, Y ) ≥ ξ}, and f(x,y) ≥ ξ is notation for the set {y ∈ Rn : f(x,y) ≥ ξ}.
It should be clear from the context which set we are integrating over.

Example 3.3.1. Assume that the loss is normally distributed, then the 0.95
-VaR is the the minimum threshold such that ψ(x, ξ) ≥ 0.95. From tables
on the standard normal distribution we find that this minimum threshold is
ξ = 1.645. So ξ0.95 = 1.645, see Figure 3.1. There is a 5% chance that the
loss will exceed the mean by 1.645 standard deviations, or more.

�
Let us define a function Fα(x, ξ) on X × R. This will be useful for our

optimization problems later. We will see that Fα is convex and continuously
differentiable, which eliminates the possibilities of a local minimum being
different from a global minimum.

Fα(x, ξ) =ξ + (1− α)−1

∫
y∈Rn

[f(x,y)− ξ]+pY (y)dy (3.7)

=ξ + (1− α)−1E[[f(x, Y )− ξ]+] (3.8)

where [t]+ = max{t, 0}. Both representations (3.7) and (3.8) will be useful
later.
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Before we state an important theorem, we will give a lemma that will be
helpful in the proof of this theorem.

Lemma 3.3.1. Let G(ξ) =
∫
y∈Rn [f(y − ξ)]+pY (y)dy. Then G is a contin-

uously differentiable function with derivative

G′(ξ) = ψ(ξ)− 1

The following theorem show the importance of Fα; minimizing it with
respect to ξ gives φα, and as a bi-product we get ξα.

Theorem 3.3.2. As a function of ξ, Fα(x, ξ) is convex and continuously
differentiable. The α-CVaR of the loss associated with any x ∈ X can be
determined by

φα(x) = min
ξ∈R

Fα(x, ξ)

Let
Aα(x) = argmin

ξ∈R
Fα(x, ξ)

namely the set consisting of the values of ξ for which the minimum is at-
tained. Then Aα(x) is a non-empty, closed, bounded interval, and the α-VaR
of the loss is given by

ξα(x) = left endpoint of Aα(x)

In particular, we always have

ξα(x) ∈ argmin
ξ∈R

Fα(x, ξ) and φα(x) = Fα(x, ξα(x))

Proof. Let us start with showing that Fα(x, ξ) is convex and continuously
differentiable, as a function of ξ. To simplify notation we omit x, for instance
we write Fα(ξ) in stead of Fα(x, ξ).

The fact that Fα(ξ) is continuously differentiable follows from Lemma 3.3.1.
The convexity of Fα(ξ) follows from the linearity and monotonicity of the
expectation and the fact that the function [f(Y )−ξ]+ is convex as a function
of ξ.

[f(Y )− ξ]+ = max{f(Y )− ξ, 0} =

{
f(Y )− ξ if f(Y ) > ξ
0 if f(Y ) ≤ ξ
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f(Y )

f(Y )− ξ

[f(Y )− ξ]+

ξ

Figure 3.3: The function [f(Y )− ξ]+.

We can view f(Y ) as a constant, and ξ as the variable. Since both f(Y )−
ξ and the zero function are convex functions, we know from Theorem 2.1.9
that the function max{f(Y )− ξ, 0} is convex. From Figure 3.3 we can also
see that it ’bends upward’. Let 0 ≤ λ ≤ 1.

Fα((1− λ)ξ1 + λξ2)

= (1− λ)ξ1 + λξ2 +
1

1− α
E
[
[f(Y )− (1− λ)ξ1 − λξ2]+

]
≤ (1− λ)ξ1 + λξ2 +

1

1− α
E
[
(1− λ)[f(Y )− ξ1]+ + λ[f(Y )− ξ2]+

]
= (1− λ)ξ1 +

1− λ
1− α

E
[
[f(Y )− ξ1]+

]
+ λξ2 +

λ

1− α
E
[
[f(Y )− ξ2]+

]
= (1− λ)Fα(ξ1) + λFα(ξ2)

The inequality above follows from the fact that [f(Y )−ξ]+ is convex with re-
spect to ξ, and from the monotonicity of the expectation. The second equal-
ity follows from the linearity of the expectation. This proves that Fα(x, ξ)
is convex as a function of ξ.

Next we want to show the property φα(x) = minξ∈RFα(x, ξ), and start by
rewriting Fα(ξ):
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Fα(ξ) =ξ +
1

1− α

∫
Rn

[f(y)− ξ]+pY (y)dy

=ξ +
1

1− α

(∫
Rn

1f(y)≥ξ[f(y)− ξ]+pY (y)dy

+

∫
Rn

1f(y)<ξ[f(y)− ξ]+pY (y)dy

)

=ξ +
1

1− α

∫
Rn

1f(y)≥ξ
(
f(y)− ξ

)
pY (y)dy

=ξ +
1

1− α

∫
f(y)≥ξ

f(y)− ξ pY (y)dy

=ξ +
1

1− α

(∫
f(y)≥ξ

f(y) pY (y)dy

+

∫
f(y)≤ξ

ξ pY (y)dy −
∫
Rn
ξ pY (y)dy

)

=ξ +
1

1− α

(∫
f(y)≥ξ

f(y) pY (y)dy − ξ(1− ψ(ξ))

)

=ξ +
ξ

1− α
(ψ(ξ)− 1) +

1

1− α

∫
f(y)≥ξ

f(y) pY (y)dy

Here I have used that 1f(y)≥ξ = 1Rn − 1f(y)<ξ. To differentiate Fα with
respect to ξ is rather difficult because of the dependence of ξ in the integrals.
So, as in Rockafellar and Uryasev [RU99], we will rely on Lemma 3.3.1, and
get that

F ′α(ξ) = 1 +
1

1− α
(ψ(ξ)− 1)

To minimize this, set F ′α = 0
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F ′α(ξ) = 0

1 + (1− α)−1(ψ(ξ)− 1) = 0

1− α− 1 + ψ(ξ) = 0

ψ(ξ) = α

The values of ξ that furnish the minimum of Fα are precisely those ξ satis-
fying ψ(ξ) = α. The set of these ξ’s equals the set Aα. From the definition
of ξα we see that this is an interval where ξα is its left end point. ξα is
indeed contained in Aα, which proves that it is non-empty. Since ψ(ξ, α) is
continuous and nondecreasing in α with

lim
α→∞

ψ(ξ, α) = 1 and lim
α→−∞

ψ(ξ, α) = 0

Aα is closed and bounded.

Now, we will get back to showing that minξ∈R F (x, ξ) = φα(x). IfAα = {ξα}
then

Fα(ξα) = ξα −
ξα

1− α
(1− α) +

1

1− α

∫
f(y)≥ξα

f(y) pY (y)dy = φα

Now, assume Aα consists of more than one point, and let ξ∗ ∈ Aα. Then

minξ∈RFα(ξ) =ξ∗ − ξ∗

1− α
(1− α) +

1

1− α

∫
f(y)≥ξ∗

f(y) pY (y)dy

=
1

1− α

∫
f(y)≥ξ∗

f(y) pY (y)dy

=
1

1− α

∫
f(y)≥ξα

f(y) pY (y)dy

=φα

This finishes the proof.
�
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This next theorem will be very useful in the optimization model later.

Theorem 3.3.3. Minimizing φα(x) over all x ∈ X is equivalent to mini-
mizing Fα(x, ξ) over all (x, ξ) ∈ X × R, in the sense that

min
x∈X

φα(x) = min
(x,ξ)∈X×R

Fα(x, ξ) (3.9)

where moreover a pair (x∗, ξ∗) achieves the right hand side minimum if and
only if x∗ achieves the left hand minimum and ξ∗ ∈ Aα(x∗). In particular,
in circumstances where Aα(x) reduces to a single point, the minimization of
Fα(x, ξ) over (x, ξ) ∈ X ×R produce a pair (x∗, ξ∗), not necessarily unique,
such that x∗ minimizes φα(x) and ξ∗ gives the corresponding α-VaR.
Furthermore, Fα(x, ξ) is convex with respect to (x, ξ), and φα(x) is convex
with respect to x, when f(x, Y ) is convex with respect to x. In this case, if
the constraints are such that X is a convex set, the joint minimization is an
instance of convex programming.

Proof. The initial claims in Theorem 3.3.3 is a consequence of the statement
φα(x) = minξ∈R Fα(x, ξ) in Theorem 3.3.2 and the fact that minimizing
Fα(x, ξ) over (x, ξ) ∈ X × R can be carried out by first minimizing over
ξ ∈ R for fixed x and then minimizing the result over x ∈ X .

To show that Fα(x, ξ) is convex with respect to (x, ξ), it is enough to show
that the function [f(x, Y )−ξ]+ is convex with respect to (x, ξ). In fact, all we
need to show is that f(x, Y )− ξ is a convex function, see Theorem 2.1.9. To
see that this function is convex, let g(x, ξ) = f(x, Y )− ξ and let 0 ≤ λ ≤ 1,
then

g((1− λ)(x1, ξ1) + λ(x2, ξ2))

= f((1− λ)x1 + λx2, Y )− (1− λ)ξ1 − λξ2

≤ (1− λ)f(x1, Y )− (1− λ)ξ1 + λf(x2, Y )− λξ2

= (1− λ)
(
f(x1, Y )− ξ1

)
+ λ

(
f(x2, Y )− ξ2

)
= (1− λ)g(x1, ξ1) + λg(x2, ξ2)

The inequality above follows from the assumption that f(x, Y ) is convex.
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The convexity of φα(x) follows from the fact that minimization of an ex-
tended real valued convex function of two vector variables, with respect to
one of these variables, results in a convex function of the remaining variable,
see Rockafellar and Uryasev [RU99].

�

As mentioned earlier, CVaR is a coherent risk measure, and hence also a
convex risk measure.

Proposition 3.3.4. CVaR is a coherent risk measure.

Proof. To prove this proposition, we must show that CVaR satisfies axioms
(R1)-(R4) of the definition of a coherent risk measure in Section 3.2. Let
V (x, Y ), V1(x, Y ), V2(x, Y ) be random variables representing loss functions.
For simplicity we write V, V1, V2, respectively. To show this proposition we
will use Theorem 3.3.2 repeatedly.

(R1) Translation invariance: From Theorem 3.3.2 we know that φα(V)=
minξ∈RFα(V, ξ). So let ξV+c be such that φα(V +c) = ξV+c+(1−α)−1E[[V +
c − ξV+c]

+] and let ξV be such that φα(V ) = ξV + (1 − α)−1E[[V − ξV ]+].
Then, since ξV+c = ξV + c:

φα(V + c) = ξV+c + (1− α)−1E
[
[V + c− ξV+c]

+
]

= ξV + c+ (1− α)−1E
[
[V + c− ξV − c]+

]
= ξV + (1− α)−1E

[
[V − ξV ]+

]
+ c

= φα(V ) + c

Before we show that the remaining axioms are satisfied, we will show con-
vexity, monotonicity and positive homogeneity of [V − ξ]+, with respect to
V . Here, ξ is a constant number.
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ξ

V − ξ

[V − ξ]+

V

Figure 3.4: The function [V − ξ]+.

[V − ξ]+ = max{V − ξ, 0} =

{
V − ξ if V > ξ
0 if V ≤ ξ (3.10)

As a function of V , [V − ξ]+ is clearly convex as V − ξ and the zero func-
tion are convex, see Theorem 2.1.9. From Figure 3.4, we see that it is also
a piecewise linear function that ’bends upward’. It is also clear that it is
monotone, i.e if V1 ≤ V2 then [V1 − ξ]+ ≤ [V2 − ξ+]. From equation (3.10)
we see that it is positive homogeneous, i.e. [λ(V − ξ)]+ = λ[V − ξ]+.

(R2) Monotonicity: The monotonicity of CVaR follows from the mono-
tonicity of [V − ξ]+. Assume that V1 ≤ V2. Assume that ξ1 is such that
φα(V1) = ξ1 + (1 − α)−1E[[V1 − ξ1]+] and that ξ2 is such that φα(V2) =
ξ2 + (1− α)−1E[[V2 − ξ2]+]. Then

φα(V1) = ξ1 + (1− α)−1E
[
[V1 − ξ1]+

]
≤ ξ2 + (1− α)−1E

[
[V2 − ξ2]+

]
= φα(V2)

The inequality above follows from the monotonicity of [V − ξ]+ and the ex-
pectation, and the fact that ξ1 ≤ ξ2.

(R3) Convexity: Let λ ∈ [0, 1]. As before, let ξ1 be such that φα(V1) = ξ1 +
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(1−α)−1E[[V1−ξ1]+] and ξ2 be such that φα(V2) = ξ2+(1−α)−1E[[V2−ξ2]+].
Also, let ξ be such that φα((1− λ)V1 + λV2) = ξ + (1− α)−1E[[(1− λ)V1 +
λV2 − ξ]]. Then

φα((1− λ)V1 + λV2)

= ξ + (1− α)−1E
[
[(1− λ)V1 + λV2 − ξ]+

]
≤ (1− λ)ξ1 + λξ2 + (1− α)−1E

[
[(1− λ)(V1 − ξ1) + λ(V2 − ξ2)]+

]
≤ (1− λ)ξ1 + λξ2 + (1− α)−1E

[
(1− λ)[V1 − ξ1]+ + λ[V2 − ξ2]+

]
= (1− λ)

(
ξ1 + (1− α)−1E

[
[V1 − ξ1]+

])
+ λ
(
ξ2 + (1− α)−1E

[
[V2 − ξ2]+

])
= (1− λ)φα(V1) + λφα(V2)

The first inequality follows from Theorem 3.3.2. The second inequality fol-
lows from the convexity of [V −ξ]+ and the monotonicity of the expectation.
The second equality follows from the linearity of the expectation.

(R4) Positive homogeneity: Let λ ≥ 0, let ξλV be such that ξλV + (1 −
α)−1E[[λV − ξλV ]+], and let ξV be such that ξV + (1 − α)−1E[[V − ξV ]+].
Then since ξλV = λξV :

φα(λV ) = ξλV + (1− α)−1E
[
[λV − ξλV ]+

]
= λξV + (1− α)−1E

[
[λV − λξV ]+

]
= λξV + λ(1− α)−1E

[
[V − ξV ]+

]
= λφα(V )

�
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4 | Portfolio optimization prob-
lems

In this chapter we will give an introduction to portfolio optimization prob-
lems. First, the classical Markowitz mean-variance problem will be given
some attention, then we will study an optimization model with CVaR con-
strains. Both of these optimization problems can be written as problems of
maximizing the expected return of a portfolio, subject to some risk measure.
For such optimization problems, the relationship between the mean and the
risk for optimal portfolios is often represented by a graph called an efficient
frontier.

Both of the optimization models presented in this chapter will be repre-
sented as one-step models, that is, decisions are made for one day, one month
or one year in the future. Multi-step models will not be considered, as they
are too complex.

This chapter is based on the articles by Krokhmal et. al. [KZU11],
Krokhmal et. al. [KPU01] and the book by Best [Bes10].

Optimization and decision making under uncertainties is a popular area,
and so are the applications to finance and portfolio optimization. The basic
portfolio optimization problem is to decide how much of an investor’s wealth
that should be optimally invested in each asset. Recall, in a deterministic
setting, an optimization problem typically looks like

max
x∈S

f(x)

subject to gi(x) ≤ 0 , i = 1, . . . ,m

where x ∈ S is a decision vector in some deterministic set S ⊆ Rn, and
f, gi : S → R for all i. Let ω be a random element, describing uncertain-
ties. When optimizing under uncertainties, we have to deal with f(x, ω) and
gi(x, ω), in stead of f(x) and gi(x). Optimizing f(x, ω) subject to gi(x, ω)
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leads to some difficulties. The decision vector x must be determined before
one knows what the state of the world turns out to be, so the optimizer
has incomplete information at the time x must be chosen. This means that
making decisions involve some risk. Also, f(x, ω) is a random variable for
a fixed x. This means that we can’t replace f(x) by f(x, ω). The same
goes for the constraints. The treatment of the objective function and the
constraints should not be conceptual distinct. For the purpose of optimizing
functions with uncertainties, risk measures are brought into the picture. As
we have discussed in Section 3.2, there are several ways to measure risk.

4.1 Markowitz Mean-Variance portfolio optimiza-
tion

This section is based on the book by Best [Bes10]. The goal of classical
Markowitz mean-variance portfolio optimization is to choose a portfolio such
that the expected return of the portfolio is large, but the variance is small.
In this optimization model, the variance is the risk measure.

Let x = (x1, x2, . . . , xn)T denote the portfolio, where xj denotes the pro-
portion of wealth to be invested in security j, for j = 1, . . . , n. Note that
this representation of the portfolio differ from the definition in Section 3.1,
where xj denoted the number of units to be invested in security j, rather
than the percentage. Let µj denote the expected return of asset j, and σi,j
denote the covariance between the returns of asset i and j, 1 ≤ i, j ≤ n. Let

µ = (µ1, µ2, . . . , µn)T and Σ = [σi,j ]

where Σ ∈ Rn×n is a symmetric, positive semidefinite matrix. Then the
expected return and the variance of the portfolio is given by, respectively

µp = µTx and σ2
p = xTΣx

Suppose we have two portfolios with the same expected return, but the
first has smaller variance than the second one. Then the first portfolio is
clearly more attractive because it bears less risk for the same expected return.
This is the main idea behind Markowitz’s definition of efficient portfolios.

Definition 4.1.1. A portfolio is variance-efficient if for a fixed µp there is
no other portfolio which has a smaller variance σ2

p.
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This definition implies that a portfolio is efficient if for some fixed expected
return µp, the variance is minimized. Variance efficient portfolios are solu-
tions to the following optimization problem:

min{xTΣx : µTx = µp, e
Tx = 1,x ≥ 0} (4.1)

where e is the column vector consisting entirely of ones, of length n. This op-
timization problem has quadratic objective function and linear constraints,
and is a quadratic optimization problem as discussed in Section 2.3.

There is an equivalent definition of an efficient portfolio. Suppose we have
two portfolios with the same variance, but the first portfolio has larger ex-
pected return than the second portfolio. Then the first is more attractive
because it gives a higher return for the same risk.

Definition 4.1.2. A portfolio is expected return-efficient if for fixed σ2
p,

there is no other portfolio with a larger µp.

Definition 4.1.2 implies that a portfolio is efficient if it is the solution to the
following optimization problem:

max{µTx : xTΣx = σ2
p, e

Tx = 1,x ≥ 0} (4.2)

This optimization problem has linear objective function, quadratic and lin-
ear constraints.

There is a third, equivalent optimization problem, which also produce ef-
ficient portfolios. Let t be a scalar, and consider the following problem:

min{−tµTx +
1

2
xTΣx : eTx = 1,x ≥ 0} (4.3)

This problem has quadratic objective function and linear constraints. It is
hence a quadratic optimization problem, see Section 2.3.

Definition 4.1.3. A portfolio is parametric-efficient if it is an optimal so-
lution for some non-negative parameter t.

The three optimization problems presented in this section generates a
family of optimal solutions. They are in fact identical, provided x is not a
multiple of e.

For solving the optimization problems where the objective is quadratic and
the constraints are linear, we can use what we know about quadratic opti-
mization from Section 2.3.
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4.2 Efficient Frontiers

This section is based on the article by Krokhmal et. el [KPU01], and aims to
describe the concept of efficient frontiers. The concept of efficient frontiers
is based on Markowitz’s concept of efficient portfolios. Efficient frontiers are
used to describe the relationship between the expected return and the risk
for optimal portfolios. Recall that a portfolio is said to be expected return-
efficient if for a fixed level of risk, there is no portfolio with higher return.
Similarly, a portfolio is said to be risk-efficient if for a fixed level of return,
there is no portfolio with lower risk. For Markowitz mean-variance opti-
mization, the three families of problems generate the same efficient frontiers.
So, in this section we will only consider the problems generating expected
return-efficient portfolios, to study the concept.

As we will see in the next section, the portfolio optimization problem with
CVaR constrains is a problem of maximizing expected return subject to the
risk measure CVaR. So, studying efficient frontiers for such problems is also
of interest.

Let x = (x1, x2, . . . , xn)T denote the portfolio, where xj denotes the propor-
tion of wealth to be invested in security j, for j = 1, . . . , n, as in Section 4.1.
Let ρ(x) be some risk measure. In the Markowitz mean-variance optimiza-
tion problem, the risk measure is the variance and in the CVaR optimization
problem, the risk measure is the CVaR. Let R(x) denote the expected return
of portfolio x

R(x) = −E[f(x, Y )]

where −f(x, Y ) is the payoff function and Y is a random variable repre-
senting prices. Then solutions to the following problem are expected return-
efficient portfolios:

max
x

R(x)

subject to ρ(x) ≤ ν
x ∈ X

(4.4)

Here, the parameter ν represents the level of risk, and is often some percent-
age of the initial portfolio value that one are putting up for risk exposure.
For every feasible portfolio x, one gets a pair (ρ(x), R(x)) that can be repre-
sented as a point in the plane. These points are combinations of the points
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Figure 4.1: The efficient frontier for the Markowitz mean-variance optimiza-
tion problem.

corresponding to invest everything in one of the assets.

Let x∗ be the optimal solution to problem (4.4) for a fixed ν. Varying ν
will generate a set of points {(ρ(x∗k), R(x∗k))} for k in some index set I. It is
the graph generated by this set of points that is called the efficient frontier.
As we can see from Figure 4.1, the relationship between risk and return is
not linear. This means that increasing the risk level ν by a factor a does not
imply that the expected return is increased by the same factor a.

When choosing an optimal portfolio one should choose one that lies on
this efficient frontier. The plot of an efficient frontier should never have any
’horizontal lines’. Points lying on a horizontal line have the same returns,
but have different risks. Points on the right side of such a line correspond
to portfolios that are not optimal. The same is true for ’vertical lines’, as
points on these have same risks, but have different returns.

Assume the risk free asset, namely the bank investment is included in the
portfolio. The the efficient portfolios may be combinations of this risk free
asset and risky asset. The efficient frontier for such problems may therefore
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look a bit different from the case where the portfolio only consisted of risky
assets. The two different cases are illustrated in Section 6.1.

4.3 Portfolio optimization with CVaR constraints

In this section we will use the main article of this thesis, Krokhmal et. al.
[KPU01], to give an optimization model of maximizing expected returns sub-
ject to CVaR constraints.

The key to the model is the function Fα(x, ξ) given in Section 3.3, due
to its properties. The portfolio optimization technique we now shall look at,
will optimize CVaR and at the same time calculate VaR.

Let φα(x) be as in Section 3.3, x ∈ X , where X is the set of attainable
portfolios, and let R(x) be the expected return of portfolio x. The following
theorem is a special case of Theorem 3 in Krokhmal et. al. [KPU01].

Theorem 4.3.1. Let x be the portfolio, R(x) be the return of portfolio x
and φα(x) be the CVaR of x. Consider the following three problems:

(P1) min
x
{φα(x) | R(x) ≥ γ,x ∈ X}

(P2) max
x
{R(x) | φα(x) ≤ ν,x ∈ X}

(P3) min
x
{φα(x)− µR(x) | x ∈ X , κ ≥ 0}

Suppose the constraints R(x) ≥ γ, φα(x) ≤ ν have initial points. Varying the
parameters γ, ν and κ traces the efficient frontier for the problems (P1) −
(P3), accordingly. If φα(x) is convex, R(x) is concave and and the set X
is convex, then the three problems (P1) − (P3) generate the same efficient
frontier.

The proof of Theorem 4.3.1 can be found in the article by Krokhmal et. al.
[KPU01].

Solutions to problems (P1)-(P3) in Theorem 4.3.1 correspond to what was de-
fined as variance-efficient, expected return-efficient and parametric-efficient
portfolios, respectively, in the Markowitz mean-variance optimization model.
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In the rest of this thesis we will concentrate on problem (P2), the problem
of maximizing the expected return with CVaR constraints. Theorem 3.3.3
shows that the function Fα(x, ξ) can be used instead of φα(x) in problem
(P1). The next theorem shows that Fα(x, ξ) can be used instead of φα(x)
in problem (P2). The same holds also for problem (P3), for more details on
this see Krokhmal et. al. [KPU01].

Theorem 4.3.2. The two optimization problems below

(P2) max
x∈X
{R(x) | φα(x) ≤ ν,x ∈ X}

(P2’) max
(x,ξ)∈X×R

{R(x) | Fα(x, ξ) ≤ ν,x ∈ X}

are equivalent in the sense that their objectives achieve the same maximum
values. Moreover, if the CVaR constraint in (P2) is active, a pair (x∗, ξ∗)
achieves the maximum of (P2’) if and only if x∗ achieves the maximum of
(P2) and ξ∗ ∈ Aα(x∗). In particular, when the interval Aα(x∗) reduces to a
single point, the maximization of R(x) over (x, ξ) ∈ X × R produces a pair
(x∗, ξ∗) such that x∗ maximizes the return, and ξ∗ gives the corresponding
α-VaR.

The proof of Theorem 4.3.2 can be found in the article by Krokhmal et. al.
[KPU01].

If R(x) is linear, it is also convex. If the loss function f(x, Y ) also is linear,
then Fα(x, ξ) is convex. In this case, problem (P2’) is a convex optimization
problem. This ensures that a local maximum is also global.

Discretization and linearization

The integral in Fα(x, ξ) can be approximated in various ways. The approxi-
mation we will use is described in Krokhmal et. al [KPU01]. One can sample
the probability distribution of Y according to its density pY . This sampling
generates a collection of vectors y1,y2, . . . ,ym, where yi ∈ Rn, n is the
number of securities and m is the number of scenarios. There are several
ways to generate scenarios. One approach is to generate scenarios using the
Brownian Motion. The approach that we will use in this thesis is the one of
using historical returns.
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Let p ∈ Rm be the column vector containing the probability of the scenarios,
i.e pi is the probability that scenario i will occur. Then we can approximate
Fα(x, ξ) by

F̂α(x, ξ) = ξ + (1− α)−1
m∑
i=1

pi[f(x,yi)− ξ]+

If the loss function f(x,yi) is linear with respect to x, then F̂α(x, ξ) is
convex and piecewise linear. Moreover, we can replace F̂α(x, ξ) by a linear
function. Let z ∈ Rm be a column vector. Then we can replace F̂α(x, ξ) by
the following linear function and set of linear constraints

ξ + (1− α)−1pT z
zi ≥ f(x,yi)− ξ i = 1, 2, . . . ,m

z ≥ 0
(4.5)

4.4 Constraints

Because of real-world requirements and concepts, we introduce some addi-
tional constraints that should be considered. For instance, buying or selling
an instrument often incurs a transaction cost, or short sales may not be
allowed. Therefore, in this section, we will state some constraints that are
reasonable to use. Throughout this section, n is the number of securities and
m is the number of scenarios. Budget constraint: eTx = 1, e = (1, 1, . . . , 1)T

This section is based on the paper by Krokhmal et. al. [KPU01].

Transaction costs

we will assume, when transaction costs are considered, that they are linear
and proportional to the total value of the bought/sold asset. Let c ∈ Rn
be the column vector of transaction costs, so that cj is the cost of selling or
buying security j . Let c0 = 0 be the cost of moving money in or out of the
bank. Let x0 ∈ Rn be the initial portfolio, q = (q1, q2, . . . , qn)T be the initial
prices, and V0 = qTx0 be the initial value.

V0 =
n∑
j=1

cjqj |x0
j − xj |+ qTx
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This equality can be reformulated using the following set of linear constraints:

V0 =

n∑
j=1

cjqj(u
+
j + u−j ) + qTx

xj − x0
j = u+

j − u
−
j for j = 1, . . . , n

u+
j , u

−
j ≥ 0 for j = 1, . . . , n

CVaR constraints

Current regulations impose capital requirements on investment companies,
proportional to VaR. These requirements can be met by constraining port-
folio CVaR at different confidence levels, since one always have that α-
CVaR≥ α-VaR, for all α. Such constraints may look like this

φα(x) ≤ νV0

where φα(x) is the α-CVaR for the loss function, V0 = qTx is the initial
portfolio value, and ν is a percentage of the initial portfolio value allowed
for risk exposure.

In the linearized case, the CVaR constraints will be as follows:

ξ + (1− α)−1pT z ≤ νV0

zi ≥ f(x,yi)− ξ i = 1, 2, . . . ,m
z ≥ 0

(4.6)

This constraint makes sure that an investor doesn’t lose more than he or she
can handle.

Change in individual positions and bounds on positions

Sometimes position changes are bounded. This reflects as limited liquidity
of securities in the portfolio. Such a bound can be a fixed number or be
proportional to the initial position in the security

0 ≤ u+
j ≤ u

+
j , 0 ≤ u−j ≤ u

−
j , j = 1, . . . , n

One might also want to use bounds on the positions:

xj ≤ xj ≤ xj

for j = 1, 2, . . . , n. A typical example of a constraint of this type is the ’no
short sales’ constraint x ≥ 0.
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Value constraints

Sometimes we do not allow a security, j, to constitute more than a given
percentage, vj , of the total portfolio value. Let q ∈ Rn be the initial portfolio
prices. Then the value constraint can be formulated as follows:

qjxj ≤ vj(qTx)

This constraint is only applicable when short positions are not allowed.

Admissibility constraint

In real life finance there must be a limit to how much debt an investor can
tolerate. So there exists a K = K(x) <∞, such that

V (t, ω) ≥ −K

Assume we have generated scenarios Y = (y1,y2, . . . ,ym)T . Then the ad-
missibility constraint will be as follows:

yTi x ≥ −K

for i = 1, . . . ,m. This constraint is only applicable when short sales are not
allowed. If no money is borrowed, the investor is ensured no debt.
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5 | The model and Fourier –
Motzkin elimination

This chapter contains a description of an one period portfolio optimization
model with linearized CVaR constraints. Also, we will perform Fourier-
Motzkin elimination on the system of linear constraints for this problem.
The models presented in this chapter will be the main models for examples
and production of efficient frontiers.

5.1 The one period optimization model

This section is based on the article by Krokhmal et. al. [KPU01]. In this
section we will study an one period portfolio optimization model. In such a
model we consider only two dates; t0 and t1, the start and the end of the
period, respectively. At time t0, we know the prices in the market, but we
don’t know the state of the world at time t1. The t1- prices are scenario-
dependent. Throughout this chapter, m will be the number of scenarios and
n will be the number of securities.

Consider the linear system (4.5) in Section 4.3. Substituting these into
problem (P2) makes it a LP problem, and easy to solve using the Simplex
algorithm.

Let x ∈ Rn be the portfolio and play the role of the decision variable. As
oppose to earlier discussions, we will now let the portfolio x be the propor-
tion of the initial wealth to be invested. For this purpose we will add the
constraints eTx = 1, initial portfolio value V0 = 1, and no short sales, i.e
x ≥ 0. This approach corresponds to Rockafellar and Uryasev [RU99], and
to the Markowitz Mean-Variance model in Section 4.1. Because of this inter-
pretation of x, the CVaR constraint should be interpreted as the expected
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loss percentage, given this percentage is exceeding ξ. If one is interested in
finding the numbers of units that should be invested in each security, one can
calculated for each security j: V0xj/q

0
j , where q

0
j is the t0-price of security j

and V0 is the value to be invested (in this case V0 is not equal to 1). This
number is usually not an integer, and in this case we should round down to
nearest integer.

Let the matrix of returns be denoted by A ∈ Rm×n. The elements of this
matrix is given by

aij = (q1
ij − q0

i )/q
0
j = q1

ij/q
0
j − 1

where q0 = (q0
1, q

0
2, . . . , q

0
n) is the vector of initial prices, and q1 ∈ Rm×n is

the matrix of t1-prices. The number aij should be interpreted as the percent-
age of return from security j under scenario i. Defining A in this way makes
sense. If the t1-price q1

ij is higher than the t0-price q0
j , then aij is positive,

corresponding to gain. If the t1-price q1
ij is lower than the t0-price q0

j , then
aij is negative and corresponds to loss. Ax is the percentage of return of
portfolio x.

Let p ∈ Rm be the vector of scenario probability. Also, for simplicity, let
(1 − α)−1p = β. The reward function I will use is R(x) = Ax. Then the
expected return is pTAx, and the loss is given by −Ax. As discussed in
Section 4.3, when linearizing Fα, we introduce a vector z = (z1, . . . , zm)T ,
where zi denotes the loss that is exceeding the threshold ξ. ν ∈ [0, 1] will as
before be the level of risk.

The one period portfolio optimization model with CVaR constraints is as
follows:

max
ξ,z,x

pTAx

subject to ξ + βT z ≤ ν
− ξe − z − Ax ≤ 0

eTx = 1
z, x ≥ 0

(5.1)

Problem (5.1) has feasible solutions, when the risk level ν is not very small,
see Krokhmal et. al. [KPU01]. Let for instance z = 0. Let also x1 = 1 and
xj = 0 for j = 2, . . . , n. Then we can choose ξ to be less than the level of
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risk and larger than the loss of security 1 under each scenario, i.e

max
1≤i≤m

{−ai1} ≤ ξ ≤ ν

5.2 Fourier-Motzkin elimination

The goal in this section is to perform Fourier-Motzkin eliminations (FM elim-
inations) on the system of linear constraints in the one period model (5.1)
from Section 5.1, to simplify this optimization model. We have seen that
the number of decision variables in this model equals m+ n+ 1, where n is
the number of securities and m is the number of possible scenarios. I will
in this section, under some conditions, find an equivalent linear system with
the portfolio as the only decision variable.

Let A ∈ Rm×n be the matrix of possible t1- market returns, as defined
in Section 5.1. Denote by ai the i’th row of A. Let p = (p1, p2, . . . , pm)T ,
where pi is the probability of scenario i, and let β = (1 − α)−1p. Let
x = (x1, x2, . . . , xn)T represent the portfolio interpreted as in Section 5.1,
and let z = (z1, z2, . . . , zm)T represent the function [f(x,aj)− ξ]+, the loss
exceeding threshold ξ. e will denote the column vector of length m consist-
ing entirely of ones, and ν ∈ [0, 1] will denote the risk level.

Recall problem (5.1):

max
ξ,z,x

pTAx

subject to ξ + βT z ≤ ν
−ξe − z − Ax ≤ 0

eTx = 1
z, x ≥ 0

I will now, for the purpose of performing FM eliminations, only consider
the system of constraints. I start by eliminating ξ:

ξ ≤ ν − βT z
ξe ≥ −z−Ax

I now have one upper bound for ξ and m lower bounds. Combining these
will result in m new inequalities containing ξ. After some simple rewriting,
these new inequalities are as follows:
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−z + (βT z)e−Ax ≤ νe

Eliminating ξ has resulted in reducing the number of inequalities by one,
and the new system is as follows:

− z + (βT z)e - Ax ≤ νe
eTx = 1

z, x ≥ 0

max
1≤i≤m

{−zi − aix} ≤ ξ ≤ ν − βT z

Note that ai is a row vector, so the product aix makes sense. I will now
continue and eliminate z. For this purpose, I will write the system of those
inequalities containing z on component form.

(β1 − 1)z1 + β2z2 + · · · + βmzm − a1x ≤ ν
β1z1 + (β2 − 1)z2 + · · · + βmzm − a2x ≤ ν

. . .
β1z1 + β2z2 + · · · + (βm − 1)zm − amx ≤ ν
z1, z2, . . . , zm ≥ 0

(5.2)

I start by eliminating z1. From system (5.2) one can see that in the first
inequality, z1 has coefficient β1 − 1, and in the remaining inequalities z1 has
coefficient β1. Recall that β1 = p1(1 − α)−1 ≥ 0, but β1 − 1 may not be
positive. If β1 − 1 were to be negative, then dividing by it on both sides
would change the inequality sign. So one wants to know when this is the
case. β1 − 1 ≥ 0 ⇐⇒ p1 ≥ 1− α.

The following theorem will be interpreted after the proof.

Theorem 5.2.1. Assume pi ≥ 1− α for all i = 1, 2 . . . ,m. Then eliminat-
ing z from system (5.2), by performing FM eliminations, will result in the
following, equivalent system:

Ax ≥ −νe
eTx = 1

x ≥ 0

(5.3)

with
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max
1≤i≤m

{−zi − aix} ≤ ξ ≤ ν − βT z

0 ≤ z1 ≤ u1(z2, . . . , zm, x1, . . . , xn)
0 ≤ z2 ≤ u2(z3, . . . , zm, x1, . . . , xn)

...
0 ≤ zm ≤ um(x1, . . . , xn)

where ui is the smallest upper bound for zi, i = 1, 2, . . . ,m, and is given by

ui =min
{

min
1≤j≤i−1

(ν −
m∑

k=i+1

βkzk + ajx)β−1
i ,

(ν −
m∑

k=i+1

βkzk + aix)(βi − 1)−1,

min
i+1≤j≤m

(ν −
m∑

k=i+1

βkzk + ajx + zj)β
−1
i

}
(5.4)

Proof. I will prove this theorem by using induction on k. The induction hy-
pothesis will be that using FM elimination to eliminate zk, k ∈ {1, 2, . . . ,m},
will result in just ’eliminating’ the column containing zk from system (5.2).
If this hypothesis turns out to be true, then eliminating z1, z2 . . . , zm will
give us the result of the theorem. I start by eliminating z1. In doing so, I
will use the following inequalities:

z1 ≤ (ν -
∑m

i=2 βizi + a1x)(β1 − 1)−1

z1 ≤ (ν -
∑m

i=2 βizi + z2 + a2x)β−1
1

...
z1 ≤ (ν -

∑m
i=2 βizi + zm + amx)β−1

1

z1 ≥ 0

Combining the upper bounds with the lower bound reduces the number of
inequalities with one.

0 ≤ (ν -
∑m

i=2 βizi + a1x)(β1 − 1)−1

0 ≤ (ν -
∑m

i=2 βizi + z2 + a2x)β−1
1

...
0 ≤ (ν -

∑m
i=2 βizi + zm + amx)β−1

1

0 ≤ z1 ≤ min
{

(ν−
m∑
i=2

βizi+a1x)(β1−1)−1, min
2≤j≤m

(ν−
m∑
i=2

βizi+zj+ajx)β−1
1

}
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Since both β1 and β1 − 1 are nonnegative1, one can multiply the first in-
equality by β1 − 1 and the rest by β1, without changing the inequality sign.

0 ≤ ν -
∑m

i=2 βizi + a1x
0 ≤ ν -

∑m
i=2 βizi + z2 + a2x

...
0 ≤ ν -

∑m
i=2 βizi + zm + amx

The new system is now as follows:

β2z2 + · · · + βmzm - a1x ≤ ν
(β2 − 1)z2 + · · · + βmzm - a2x ≤ ν

. . .
β2z2 + · · · + (βm − 1)zm - amx ≤ ν
z2, . . ., zm ≥ 0

with

0 ≤ z1 ≤ min
{

(ν−
m∑
i=2

βizi+a1x)(β1−1−1), min
2≤j≤m

(ν−
m∑
i=2

βizi+zj+ajx)β−1
1

}

Comparing this new system to system (5.2), it seems like we have just elim-
inated the z1-column. Now, assume we have eliminated z1, . . . , zk−1, and
that the corresponding columns have been deleted. I will now delete zk from
our current system, which is as follows:

βkzk + βk+1zk+1 + · · · + βmzm - a1x ≤ ν
...

βkzk + βk+1zk+1 + · · · + βmzm - ak−1x ≤ ν
(βk − 1)zk + βk+1zk+1 + · · · + βmzm - akx ≤ ν

βkzk + (βk+1 − 1)zk+1 + · · · + βmzm - ak+1x ≤ ν
. . .

βkzk + βk+1zk+1 + · · · + (βm − 1)zm - amx ≤ ν
zk, zk+1, . . . , zm ≥ 0

1In fact, β1 > 0. If β1 was equal to zero, this would mean that p1 = 0. Scenarios with
probability equal to zero should not be considered, as they represent impossible scenarios.
If β1 − 1 = 0, then the first inequality should be deleted.
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with 0 ≤ zi ≤ ui(zi+1, . . . , zm, x1, . . . , xn) for i = 1, . . . , k − 1. Here ui is
the smallest lower bound on zi. Since βk and βk − 1 both are nonnegative,
dividing by them doesn’t change the inequality sign.

zk ≤ (ν -
∑m

i=k+1 βizi + a1x)β−1
k

...
zk ≤ (ν -

∑m
i=k+1 βizi + ak−1x)β−1

k

zk ≤ (ν -
∑m

i=k+1 βizi + akx)(βk − 1)−1

zk ≤ (ν -
∑m

i=k+1 βizi + zk+1 + ak+1x)β−1
k

...
zk ≤ (ν -

∑m
i=k+1 βizi + zm + amx)β−1

k

zk ≥ 0

Combining these upper bounds with the lower bound reduces the number of
inequalities by one.

0 ≤ (ν -
∑m

i=k+1 βizi + a1x)β−1
k

...
0 ≤ (ν -

∑m
i=k+1 βizi + ak−1x)β−1

k

0 ≤ (ν -
∑m

i=k+1 βizi + akx)(βk − 1)−1

0 ≤ (ν -
∑m

i=k+1 βizi + zk+1 + ak+1x)β−1
k

...
0 ≤ (ν -

∑m
i=k+1 βizi + zm + amxβ

−1
k

0 ≤ zk ≤ uk(zk+1, . . . , x1, . . . , xn)

where

uk =min
{

min
1≤j≤k−1

(ν −
m∑

i=k+1

βizi + ajx)β−1
k ,

(ν −
m∑

i=k+1

βizi + akx)(βk − 1)−1,

min
k+1≤j≤m

(ν −
m∑

i=k+1

βizi + ajx + zj)β
−1
k

}
The expression for uk can actually be used to calculate ui for all i = 1, . . . , k.
Continue by multiplying row k by βk − 1 and the rest by βk.
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0 ≤ ν -
∑m

i=k+1 βizi + a1x
...

0 ≤ ν -
∑m

i=k+1 βizi + akx
0 ≤ ν -

∑m
i=k+1 βizi + zk+1 + ak+1x

...
0 ≤ ν -

∑m
i=k+1 βizi + zm + amx

The new system is as follows:

βk+1zk+1 + βk+2zk+2 + · · · + βmzm - a1x ≤ ν
...

βk+1zk+1 + βk+2zk+2 + · · · + βmzm - akx ≤ ν
(βk+1 − 1)zk+1 + βk+2zk+2 + · · · + βmzm - ak+1x ≤ ν

βk+1zk+1 + (βk+2 − 1)zk+2 + · · · + βmzm - ak+2x ≤ ν
. . .

βk+1zk+1 + βk+2zk+2 + · · · + (βm − 1)zm - amx ≤ ν
zk+1, zk+2, . . ., zm ≥ 0

with

maxi{−zi − aix} ≤ ξ ≤ ν − βT z
0 ≤ z1 ≤ u1(x1. . . . , xn, z2, . . . , zm)
0 ≤ z2 ≤ u2(x1, . . . , xn, z3 . . . , zm)

...
0 ≤ zk ≤ uk(x1, . . . , xn, zk+1, . . . , zm)

Here the upper bounds ui are given by (5.4). The elimination of zk has
resulted in deleting the column containing zk, and the induction hypothesis
is proved. Eliminating z1, z2, . . . , zm gives the system stated in the theorem.

�

Theorem 5.2.1 says that if pi ≥ 1−α for i = 1, . . . ,m, then we can easily
eliminate ξ and z such that the decision variable is only the portfolio. Also,
the number of constraints will be reduced from 2(m+ 1) + n to m+ n+ 1.
The constraint Ax ≥ −νe says that the loss percentage under each scenario
must be less than or equal to the percentage of the initial portfolio value
that is put up for risk exposure. The fact that one must have pi ≥ 1 − α
implies that the number of scenarios m is bounded, in fact m ≤ (1 − α)−1.
If for instance α = 0.9, then we must have pi ≥ 0.1 for all i, and the number
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of scenarios must be less than or equal to 10. If there are (1−α)−1 scenarios
with pi = 1− α for all i, then βi − 1 = 0 for all i. This means that m of the
coefficients in system (5.2) will be zero. If we have α = 0.99 then we must
have that pi ≥ 0.01 in order to apply Theorem 5.2.1. In this case, the num-
ber of scenarios is bounded by 100, which also is a low number of scenarios.
In the next sections we will allow some of the probabilities pi to be less than
1 − α, which implies that we can have a larger number of scenarios. This
number will not increase by much, though.

Problem (5.1) is equivalent to the problem

max
x

pTAx

subject to Ax ≥ −νe
eTx = 1

x ≥ 0

(5.5)

with ξ and z chosen according to

lξ ≤ ξ ≤ uξ
0 ≤ z ≤ u

where lower and upper bounds on ξ and z are given as in Theorem 5.2.1.
As discussed earlier, one often wants to add additional constraints to a op-
timization problem. Since these constraints often are constraints on the
portfolio, these can easily be added to problem (5.5). Once the solution
to problem (5.5) has been found, one can find the optimal objective value
since this does not depend on ξ and z. For computing the corresponding
α-CVaR value, one can for instance calculate ξ and z using the upper and
lower bounds in Theorem 5.2.1. Using this approach, one gets a lower and a
upper bound on the α-CVaR value. Another alternative for computing the
corresponding α-CVaR value it to compute it using its definition. In order
to use the definition, one must first compute α-VaR, but this is not difficult.

I will now give an example to illustrate Theorem 5.2.1.

Example 5.2.1. Assume we want to solve optimization problem (5.1) when
we have a market consisting of two securities, and there are two possible
scenarios, i.e. m = n = 2. The bank position is not included in the portfolio.
Let p = [0.5 0.5]T , α = 0.95 and ν = 0.1. Let the return matrix be
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A =

[
0.13 −0.11
−0.12 0.09

]
Conditions for applying Theorem 5.2.1 are satisfied, since p1, p2 ≥ 0.05. The
linear system can be written as follows:


−0.13 0.11
0.12 −0.09

1 1
−1 −1

 [
x1

x2

]
≤


0.1
0.1
1
−1


with x1, x2 ≥ 0. Since x ∈ R2, we can illustrate this problem in the plane.

From Figure 5.1 one can see that the feasible set lies on the line x1+x2 = 1. It
is in fact the line segment between the points (0.905, 0.095) and (0.042, 0.958)
(thick line). This means that the optimal solution has to be either the point
(0.905, 0.095), the point (0.042, 0.958), or the whole line segment. In our
case p = [0.5 0.5]T , which implies that pTAx = 0.005x1 − 0.01x2 (dashed
line). So the optimal solution is the point (0.905, 0.095). This means that
an investor should invest 90, 5% of his or her wealth in security 1 and 9, 5%
in security 2. The expected percentage return of this portfolio is 0.36%.

To find the corresponding 0.95-CVaR value, I compute ξ and z. Using
back substitution and the expression for upper bounds (5.4) in Theorem 5.2.1
gives:

u2 = min{(ν + a1x)β−1
2 , (ν + a2x)(β2 − 1)−1}

= min{0.0207, 0}
= 0

Since 0 ≤ z2 ≤ u2 = 0, we have that z2 = 0.

u1 = min{(ν − β2z2 + a1x)(β1 − 1)−1, (ν − β2z2 + a2x + z2)β−1
1 }

= min{0.023, 0}
= 0

So, also z1 = 0.

lξ = max{−z1 − a1x,−z2 − a2x}
= max{−0.1071, 0.1}
= 0.1
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x1

x2

pTAx = 0.0036

x∗

Figure 5.1: The feasible set of the problem in Example 5.2.1
.

Since ξ ≤ ν − βT z = ν, we have that ξ = 0.1. Now we can calculate
0.95-CVaR

φ0.95 = ξ + βT z = ξ

This means that φ0.95 = 0.1. (To see the efficient frontier for this example,
see Figure 6.3).

�
As Example 5.2.1 illustrates, the optimization model in Theorem 5.2.1 is

good for finding optimal expected returns, but computing the CVaR takes
more effort, when computing it using back substitution. Once the optimal
solution x∗ has been found, one continues by finding an interval for zm.
Then, one must choose a value for zm from this interval. In the example,
we were lucky since this interval happened to be a single point. Once zm is
determined, one continues with this back substitution. Since CVaR is linear
and a sum of positive numbers, one can when choosing zi’s and ξ from inter-
vals, choose in two separate cases the lowest and highest value, respectively.
Then, for a given level of risk, one would get an interval containing CVaR.
Computing α-CVaR using its definition might be easier, as one only needs to
compute the upper percentile α-VaR, and find the expectation of the losses
exceeding this value.
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5.3 Fourier-Motzkin elimination with one negative
coefficient

I will in this section study what happens when we eliminate z from sys-
tem (5.2), when for some k ∈ {1, 2, . . . ,m}, βk − 1 < 0 and βi − 1 ≥ 0 for
all i 6= k. Since we can eliminate z1, z2 . . . , zm in any order we like, I will
assume that k = m.2 When re-indexing so that k = m, since all coeffi-
cients βi − 1 ≥ 0 for i = 1, . . . ,m − 1, we can easily eliminate all variables
z1, . . . , zm−1, see proof of Theorem 5.2.1. After eliminating z1, . . . , zm−1 we
are left with the following system:

βmzm − a1x ≤ ν
...

βmzm − am−1x ≤ ν
(βm − 1)zm − amx ≤ ν

zm ≥ 0

(5.6)

with

maxi{−zi − aix} ≤ ξ ≤ ν − βT z
0 ≤ z1 ≤ u1(z2, . . . , zmx1, . . . , xn)

...
0 ≤ zm−1 ≤ um−1(zm, x1, . . . , xn)

where ui are upper bounds given by (5.4) in Theorem 5.2.1. In system (5.6)
the number of inequalities is m+ 1. We are now ready to eliminate zm

zm ≤ (ν + a1x)β−1
m

...
zm ≤ (ν + am−1x)β−1

m

zm ≥ (ν + amx)(βm − 1)−1

zm ≥ 0

(5.7)

Note that in the m’th inequality, the inequality sign is changed since βm− 1
is negative. We now have two lower bounds and m− 1 upper bounds, which

2One could also re-index so that k = 1. This will result in a bit more complicated
systems, but it simplifies the work when one have several small pi’s
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will result in 2(m − 1) new inequalities (containing zm). This means that
the number of inequalities has increased by m−3. Combining the lower and
the upper bounds gives the following inequalities:

0 ≤ (ν + a1x)β−1
m

...
0 ≤ (ν + am−1x)β−1

m

(ν + amx)(βm − 1)−1 ≤ (ν + a1x)β−1
m

...
(ν + amx)(βm − 1)−1 ≤ (ν + am−1x)β−1

m

(5.8)

In the case where (ν + amx)(βm − 1)−1 ≤ 0, we can delete the m − 1 last
inequalities. This is the case when

amx ≥ −ν

i.e. when the loss percentage under scenario m is less than the risk level.
I assume this is not the case, and rewrite the m − 1 last inequalities in
system (5.8). For 1 ≤ j ≤ m− 1:

(ν + amx)(βm − 1)−1 ≤ (ν + ajx)β−1
m

ν + amx ≥ (ν + ajx)β−1
m (βm − 1)

ν + amx ≥ ν + ajx− (ν + ajx)β−1
m

βmamx− βmajx ≥ −(ν + ajx)

−βmamx + βmajx ≤ ν + ajx

−(βmam + (1− βm)aj)x ≤ ν

The new system is as follows:
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−a1x ≤ ν
...

−am−1x ≤ ν

−(βmam + (1− βm)a1)x ≤ ν
...

−(βmam + (1− βm)am−1)x ≤ ν

(5.9)

max
{

0, (ν + amx)(βm − 1)−1
}
≤ zm ≤ min

1≤j≤m−1

{
(ν + ajx)β−1

m

}
In the first m − 1 inequalities in system (5.9), I have used that βm ≥ 0,
and multiplied by βm on both sides of the inequality sign. These m − 1
inequalities are equal to the m − 1 inequalities we had in Section 5.2. The
following lemma will be interpreted after its proof.

Lemma 5.3.1. Assume pk < 1−α for some k ∈ {1, 2, . . . ,m} and pi ≥ 1−α
for i = {1, 2, . . . ,m}\k. Then eliminating z from system (5.2), by using FM
elimination, will result in the following system

A′x ≥ −νe
βkAkx + (1− βk)A′x ≥ −νe

eTx = 1
x ≥ 0

(5.10)

with

max
1≤i≤m

{−zi − aix}≤ ξ ≤ν − βT z

0≤ zi ≤ui(zi+1, . . . , zm, x1 . . . , xn), for i 6= k

l′k(zk+1, . . . , zm, x1, . . . , xn)≤zk≤u′k(zk+1, . . . , zm, x1, . . . , xn)

(5.11)

where A′ ∈ R(m−1)×n is the matrix A with row k deleted, and Ak ∈ R(m−1)×n

is the matrix consisting of rows equal to ak. The upper bounds ui for i 6= k
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are given by (5.4) in Theorem 5.2.1. The lower bound l′k and the upper bound
u′k are given by

l′k = max
{

0, (ν −
m∑
k+1

βizi + akx)(βk − 1)−1

}

u′k = min
{

min
1≤j≤k−1

(ν−
m∑

i=k+1

βizi+ajx)β−1k , min
k+1≤j≤m

(ν−
m∑

i=k+1

βizi+ajx+zj)β
−1
k

}

Proof. The system (5.10) was proved above, using Theorem 5.2.1. The lower
bound l′k follows from eliminating z1, . . . , zk using the proof of Theorem 5.2.1.
Then 0 and (ν−

∑m
k+1 βizi+akx)(βk−1)−1 are the lower bounds for zk. The

upper bound u′k follows from (5.4) and deleting (ν−
∑m

i=k+1 βizi+akx)(βk−
1)−1, since this is now a lower bound. �

Lemma 5.3.1 says that under scenarios i 6= k, the loss percentage must be
less than the percentage of the initial portfolio that is up for risk exposure.
In addition, an affine combination of the percentage loss under scenario k
and the percentage loss under scenario i, for each i ∈ {2, 3 . . . ,m}\k, must
be less than the risk level. An affine combination of vectors x1,x2, . . . ,xn is
a vector

∑n
i=1 aixi, where

∑n
i=1 ai = 1.

As in Section 5.2, constraints can easily be added to the problem of maxi-
mizing expected return subject to the constraints in Lemma 5.3.1. Assume
we have found the optimal solution to this problem, then the corresponding
α-CVaR value can be computed using back substitution or by using the def-
inition.

Although we in this section have allowed one scenario probability to be less
than 1 − α, the upper bound on the number of scenarios is still (1 − α)−1.
Since α often is chosen to be either 0.9, 0.95 or 0.99, the number of scenarios
is still less than what is usually desire.

5.4 Fourier-Motzkin elimination with more than one
negative coefficients

In this section I will study what happens when βi− 1 in system (5.2) is neg-
ative for two indexes k, l ∈ {1, 2 . . . ,m}. We will see that this will result in a
growth in the number of inequalities, which is because we will typically have
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more lower bounds on zk and zl. When we get more lower bounds, the sys-
tem of linear inequalities gets bigger, and the inequalities more complicated
to rewrite to a simplified form. For this reason I will not try to eliminate z
from system (5.2) when βi−1 < 0 for more than two i’s. Although a further
study is not done, one gets a sense of what will happen when more of the
coefficients βi’s are less than 1. Also, one gets a sense of how these systems,
after performing FM elimination, will look like.

Now, let there be two scenarios with probabilities such that pk < 1 − α
and pl < 1−α . Arrange such that these are indexed pm−1 and pm. Assume
we have eliminated z1, . . . , zm−2 from system (5.2), such that we are left with
the following system:

βm−1zm−1 + βmzm − a1x ≤ ν
...

βm−1zm−1 + βmzm − am−2x ≤ ν
(βm−1 − 1)zm−1 + βmzm − am−1x ≤ ν

βm−1zm−1 + (βm − 1)zm − amx ≤ ν
zm−1, zm ≥ 0

(5.12)

with lower and upper bounds on ξ, z1, . . . , zm−1 as in Theorem 5.2.1. We
start by eliminating zm−1.

zm−1 ≤ (ν − βmzm + a1x)β−1
m−1

...
zm−1 ≤ (ν − βmzm + am−2x)β−1

m−1

zm−1 ≥ (ν − βmzm + am−1x)(βm−1 − 1)−1

zm−1 ≤ (ν − βmzm + zm + amx)β−1
m−1

zm−1 ≥ 0

(5.13)

Since the coefficient βm−1 − 1 is negative, we get two lower bounds, and
m− 1 upper bounds on zm−1. Combining upper and lower bounds result in
the following system:
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0 ≤ (ν− βmzm + a1x)β−1
m−1

...
0 ≤ (ν− βmzm +am−2x)β−1

m−1

0 ≤ (ν− (βm − 1)zm + amx)β−1
m−1

(ν−βmzm +am−1x)(βm−1 − 1)−1≤ (ν− βmzm + a1x)β−1
m−1

...
(ν−βmzm +am−1x)(βm−1 − 1)−1≤ (ν− βmzm +am−2x)β−1

m−1

(ν−βmzm +am−1x)(βm−1 − 1)−1≤ (ν− (βm − 1)zm + amx)β−1
m−1

(5.14)

l′m−1 ≤ zm−1 ≤ u′m−1

where l′m−1 and u′m−1 are given in Lemma 5.3.1. Rewriting inequalities
number m to 2(m− 1) in system (5.14) can be done in the same fashion as
in Section 5.3. For j = 1, . . . ,m− 2:

(ν − βmzm + am−1x)(βm−1 − 1)−1 ≤ (ν − βmzm + ajx)βm−1

ν − βmzm + am−1x ≥ ν − βmzm + ajx− (ν − βmzm + ajx)β−1
m−1

βm−1am−1x− βm−1ajx ≥ −ν + βmzm − ajx

βm−1am−1x− βm−1ajx− βmzm + ajx ≤ −ν

βmzm − (βm−1am−1 + (1− βm−1)aj)x ≤ ν

The last inequality in system (5.14) is similar to the ones above. The differ-
ence is that, because we on the right hand side we have (ν − (βm − 1)zm +
amx)β−1

m−1, we get in addition βm−1zm − zm on the left hand side after the
rewriting. That is:

(βm + βm−1 − 1)zm − (βm−1am−1 + (1− βm−1)am)x ≤ ν

Rewriting the system (5.14) has resulted in the following system:
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βmzm − a1x ≤ ν
...

βmzm − am−2x ≤ ν
(βm − 1)zm − amx ≤ ν

βmzm − (βm−1am−1 + (1− βm−1)a1)x ≤ ν
...

βmzm − (βm−1am−1 + (1− βm−1)am−2)x ≤ ν
(βm + βm−1 − 1)zm − (βm−1am−1 + (1− βm−1)am)x ≤ ν

(5.15)

with 0 ≤ zi ≤ ui, i = 1, . . . ,m − 2, and l′m−1 ≤ zm−1 ≤ u′m−1 as in
Lemma 5.3.1. Now we continue by eliminating zm. The critical coefficients
here are (βm−1) and (βm+βm−1−1). We know that (β2−1) < 0 from our
assumption, but (βm+βm−1−1) might be negative as well. This happens if
pm+pm−1 < 1−α. We will assume this is not the case, i.e that pm+pm−1 ≥
1−α . If (βm +βm−1− 1) were to be negative, we would get one more lower
bound on zm, and as a result the number of inequalities would become even
bigger.

zm ≤ (ν + a1x) β−1
m

...
zm ≤ (ν + am−2x) β−1

m

zm ≥ (ν + amx) (βm − 1)−1

zm ≤ (ν + (βm−1am−1 + (1− βm−1)a1)x) β−1
m

...
zm ≤ (ν + (βm−1am−1 + (1− βm−1)am−2)x) β−1

m

zm ≤ (ν + (βm−1am−1 + (1− βm−1)am)x) (βm + βm−1 − 1)−1

(5.16)

As when eliminating zm−1, we now have two lower bounds. Combining these
with the 2m − 3 upper bounds result in 2(2m − 3) inequalities. Rewriting
the system of inequalities after combining lower bounds with upper bounds,
will require some work. For this reason we will divide the system into four
subsystems. The first subsystem consists of the inequalities with 0 as lower
bound. These inequalities are quite familiar, so we omit the rewriting of
these. This subsystem will after eliminating zm be as follows:
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−a1x ≤ ν
...

−am−2x ≤ ν
−(βm−1am−1 + (1− βm−1)a1)x ≤ ν

...
−(βm−1am−1 + (1− βm−1)am−2)x ≤ ν
−(βm−1am−1 + (1− βm−1)am)x ≤ ν

(5.17)

The second subsystem consist of the following inequalities, for 1 ≤ j ≤ m−2:

(ν + amx)(βm − 1)−1 ≤ (ν + ajx)β−1
m

These inequalities are equivalent to the ones we had in system (5.8) in Sec-
tion 5.2 (with j = 1, . . . ,m − 1). So for j = 1, . . .m − 2, this subsystem of
inequalities can be written as:

−(βmam + (1− βm)aj)x ≤ ν
The third subsystem is as follows, for j = 1, . . . ,m− 2:

(ν + amx)(βm − 1)−1 ≤ (ν + (βm−1am−1 + (1− βm−1)aj)x)β−1m

ν+amx ≥ ν+(βm−1am−1+(1−βm−1)aj)x−(ν+(βm−1am−1+(1−βm−1)aj)x)β−1m

βmamx−βm(βm−1am−1 + (1−βm−1)aj)x ≥ −(ν+ (βm−1am−1 + (1−βm−1)aj)x)

βmamx− βm(βm−1am−1 + (1− βm−1)aj)x + (βm−1am−1 + (1− βm−1)aj)x) ≥ −ν

−(βmam + (1− βm)(βm−1am−1 + (1− βm−1)aj)x ≤ ν

The fourth subsystem consists of only one inequality. Rewriting this inequal-
ity require some work.

(ν + amx)(βm − 1)−1 ≤ (ν + (βm−1am−1 + (1− βm−1)am)x)(βm + βm−1 − 1)−1

(ν + amx)(βm + βm−1 − 1) ≥ (ν + (βm−1am−1 + (1− βm−1)am)x)(βm − 1)
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βm−1ν + (βm + βm−1 − 1)amx ≥ (βm−1am−1 + (1− βm−1)am)x)(βm − 1)

βm−1ν + βm−1amx + (βm − 1)amx ≥ (βm−1am−1 + (1− βm−1)am)x)(βm − 1)

βm−1ν ≥ βmβm−1am−1x− βm−1am−1x− βmβm−1amx

−(βmamx + (1− βm)am−1)x ≤ ν

We see that this inequality is similar to the ones in the first subsystem. The
new system of inequalities, after eliminating z is as follows:

−a1x ≤ ν
...

−am−2x ≤ ν
−(βm−1am−1 + (1− βm−1)a1)x ≤ ν

...
−(βm−1am−1 + (1− βm−1)am−2)x ≤ ν
−(βm−1am−1 + (1− βm−1)am)x ≤ ν

−(βmam + (1− βm)a1)x ≤ ν
...

−(βmam + (1− βm)am−1)x ≤ ν
−(βmam + (1− βm)(βm−1am−1 + (1− βm−1)a1))x ≤ ν

...
−(βmam + (1− βm)(βm−1am−1 + (1− βm−1)am−2))x ≤ ν

(5.18)

with lower and upper bounds on zi, i = 1, . . . ,m− 1 as in Lemma 5.3.1, and
l′′m ≤ zm ≤ u′′m, where

l′′m(x1, . . . , xn) = {0, (ν + amx)β−1
m }

and

u′′m(x1, . . . , xn) =min
{

min
1≤j≤m−2

(ν + ajx)β−1
m ,

min
1≤j≤m−2

(ν + (βm−1am−1 + (1− βm−1)aj)x)β−1
m ,

(ν + (βm−1am−1 + (1− βm−1)am)x)(βm + βm−1 − 1)−1

}
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Conclusions

The analysis in the three last sections has shown that we can eliminate the
decision variables ξ and z, and get a new, equivalent optimization model
where the portfolio is the only decision variable. Also, adding constraints
to the new problems can easily be done. Once one has found the optimal
solution for one of these new problems, one can easily find the correspond-
ing expected return. For finding the corresponding α-CVaR, one can either
calculate VaR and then use the definition of CVaR, or one may use back
substitution using the lower and upper bounds found during the FM elimi-
nation.

In Section 5.2 we assumed that all the scenario probabilities were greater
or equal to 1 − α. This resulted in a simplified optimization model, with
both less constraints and less decision variables. The original optimization
model had 2(m + 1) + n constraints, while after eliminating ξ and z there
were only m+n+ 1 constraints. The result of this section was illustrated in
an example, where we could see from its efficient frontier (Figure 6.3) that
the optimal solution for this example was equivalent to the solution for the
original problem. The downside with this new model was that the number
of scenarios was bounded by (1− α)−1.

In Section 5.3 we allowed one of the scenario probabilities to be smaller
than 1 − α. This resulted in a similar model to the one in Section 5.2, but
with some additional constraint. The number of constraints after eliminating
ξ and z was 2m − 1 + n, so it was still less than the number of constraints
in the original problem. Allowing one of the probabilities pk < 1 − α did
not increase the upper bound on the number of scenarios. If for instance
α = 0.99, then pi = 0.01 is the smallest probability we can have for i 6= k.
If m = 101, then eTp = 0.01 · 100 + pk > 1. So, m is bounded by (1− α)−1

still.
In Section 5.4 we allowed two scenario probabilities pk and pl to be smaller

than 1−α, and the result was a system of a larger number of constraints. In
the case where we assumed that the coefficient βk + βl − 1 was positive, the
number of constraints in the new problem became 4m − 5 + n. In the case
where this coefficient was negative, the number of constraints would be even
bigger. The upper bound on the number of scenarios for this case grew with
one compared to the two previous section. It was not much, but a welcomed
result.

Letting several scenario probabilities to be small will make the system
of constraints grow in size, as we will get at least two lower bounds for each
elimination of those zi with negative coefficients βi − 1. It seems like we
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would be able to eliminate ξ and z for these cases as well, but doing so
would require a lot of work. Studying the previous three section, one can
get a sense of how these systems will look like. A benefit of allowing more
scenario probabilities to be small is that the upper bound on the number of
scenarios will increase.
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6 | Numerical results

In this chapter I will present some efficient frontiers. The portfolio consists
of a random selection of stocks in the S&P500. It is the 13 following stocks
I have chosen; ACN, AA, BA, DIS, MMM, AGG, CNX, AGN, CAT, CAM,
CA, CCE and CCI. If not otherwise specified, the portfolio consists of these.
The scenarios are generated from monthly historical prices, from May 1 2006
to May 1 2016.
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6.1 Efficient frontiers for problems with CVaR con-
straints

Figure 6.1: The efficient frontier of an one period model with CVaR con-
straints, of 13 assets from the S&P500. The graphs are plots of the efficient
fronter for α-values 0.9, 0.95 and 0.99, respectively.
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Figure 6.2: The efficient frontier of an one period model with CVaR con-
straints, of 13 assets from the S&P500, and the bank. The graphs are plots
of the efficient fronter for α-values 0.9, 0.95 and 0.99, respectively.

In Figure 6.1 the portfolio consists only of risky assets, while the portfolio in
Figure 6.2 also includes the risk free asset. The interest rate is set to be 1%.
For low expected returns (left side of the graph), we see that a combination
of investing in the bank and in risky assets is preferred.

6.2 Efficient frontier for a Fourier-Motzkin example

Recall Example 5.2.1 where we found the optimal expected return and 0.95-
CVaR for a risk level of 10%. Below a plot of the efficient frontier for this
example. Since we only have two securities, this efficient frontier is a line.
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Figure 6.3: The efficient frontier for the problem in Example 5.2.1.

Figure 6.3 shows the efficient frontier for the optimization problem in
Example 5.2.1. I used the original optimization problem with CVaR con-
straints from Section 5.1 to generate this efficient frontier. In Example 5.2.1
we found that the expected return was 0.0036 for the optimal solution, and
that the corresponding 0.95-CVaR value was 0.1. This point lies, as we can
see, on the efficient frontier.
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Appendix A

In this chapter I will present my MATLAB code.
The following code computes the upper bound for zk, using the equa-

tion (5.4) in Theorem 5.2.1. The vector y that is input for the function
uBound, is of form (x1, . . . , xn, zm, . . . , zk−1)T . This program can be used
when calculating CVaR using back substitution, for the problem in Sec-
tion 5.2.

1 f unc t i on uk= uBound(A, nu , bet , y , n )
2 % INPUT:
3 % A: matrix o f r e tu rns
4 % nu : the r i s k l e v e l . i t t a k e s va l u e s in (0 ,1)
5 % be t : the be ta vec t o r . b e t=p ’/(1− a lpha )
6 % y : the d e c i s i on v a r i a b l e conta ing x , and
7 % conta in some z_m, . . z_{k−1}. [ x , z ] ’
8 % n : the number o f a s s e t s
9 % OUTPUT: the upper bound f o r z_k

10

11 m=length ( bet ) ;
12 z=y(n+1: l ength (y ) ) ;
13 k=m−l ength ( z ) ;
14 x=y ( 1 : n) ;
15

16 % be t ∗ z=0 i f a l l z has been e l im ina t ed
17 i f isempty ( z )
18 s=0;
19 e l s e
20 s=bet (k+1:m) ’∗ z ;
21 end
22

23 % i n i t i a l upper bound
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24 uk=(nu−s+A(k , : ) ∗x ) /( bet ( k )−1) ;
25

26 % seach f o r lower upper bounds
27 i f k>1
28 f o r i =1:k−1
29 temp=(nu−s+A( i , : ) ∗x ) /bet (k ) ;
30 i f temp<uk
31 uk=temp ;
32 end
33 end
34 end
35

36 i f k<m
37 f o r i =1: l ength ( z )
38 temp=(nu−s+A(m−i +1 , : ) ∗x−z ( i ) ) / bet ( k ) ;
39 i f temp<uk
40 uk=temp ;
41 end
42 end
43 end
44 i f uk<10^(−9)
45 uk=0;
46 end
47 % since l b=0 fo r a l l z_i :
48 i f uk< 0
49 e r r o r ( ’ Problem i s i n f e a s i b l e ’ ) ;
50 end
51 end

The following code computes the maximum expected returns and the
corresponding α-CVaR values for different risk levels. This program can be
used to plot efficient frontiers, together with a program fetching prices from
Yahoo. The code of these programs will be omitted here.

1 f unc t i on [ cvar , Fval ] =CVaREF( ret , a lp )
2 % INPUT: r e t : the r e tu rns
3 % alp : a lpha value , t a k e s va l u e s in (0 ,1)
4 % Output :
5 % cvar : v e c t o r o f alpha−CVaR, f o r d i f f e r e n t r i s k l e v e l s
6 % Fval : opt imal expec ted ra t e o f return , f o r d i f f e r e n t
7 % r i s k l e v e l s
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8

9 [m, n]= s i z e ( r e t ) ;
10 p=1/m∗ones (m, 1 ) ;
11 bet=p/(1− alp ) ;
12

13 % con s t r a i n t s
14 A=[1 , bet ’ , z e r o s (1 , n ) ; ones (m, 1 ) .∗(−1) ,−eye (m) ,− r e t ] ;
15 b=ze ro s (1 ,m+1) ;
16 Aeq=[ z e ro s (1 ,m+1) ones (1 , n ) ] ;
17 beq=1;
18

19 % bounds on v a r i a b e l s
20 lb=ze ro s (1 ,m+n+1) ;
21 ub= [ ] ;
22

23 % ob j e c t i v e f unc t i on
24 c=p ’∗ r e t ;
25 c=[ z e r o s (1 ,m+1) −c ] ’ ;
26

27 % l e v e l s o f r i s k
28 nu=l i n s p a c e ( 0 . 0 0 5 , 0 . 3 ) ;
29 k=length (nu) ;
30

31

32 % op t im i za t i on
33 cvar=ze ro s (1 , k ) ;
34 Fval=ze ro s (1 , k ) ;
35 maxval=0;
36 f o r i =1:k
37 b (1)=nu( i ) ;
38 [ x , f v a l ]= l i np r og ( c ,A, b , Aeq , beq , lb , ub ) ;
39 cvar ( i )=A( 1 , : ) ∗x ;
40 Fval ( i )=−f v a l ;
41 % Keep t rack o f h i g h e s s expec t ed re turn
42 i f maxval<(− f v a l )
43 maxval=−f v a l ;
44 end
45 end
46

47 % ensures no ho r i z o n t a l l i n e s
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48 s=1;
49 f o r i =1:k
50 i f maxval−Fval ( i )>10^(−9)
51 s=s+1;
52 end
53 end
54

55 Fval=Fval ( 1 : s ) ;
56 cvar=cvar ( 1 : s ) ;
57 end
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