
Coherence Estimates Between
Hadamard Matrices and Daubechies
Wavelets

Vegard Antun
Master’s Thesis, Spring 2016



Abstract

Traditionally the compressive sensing theory have been focusing on the three
principles of sparsity, incoherence and uniform random subsampling. Recent
years research have shown that these principles yield insufficient results in many
practical setups. This has lead to the development of the principles of asymp-
totic sparsity, asymptotic incoherence and multilevel random subsampling.

As a result of these principles, the current theory is limited to unitary sam-
pling and sparsifying operators. For large scale reconstruction, the theory is
further restricted to operators whose product can be computed in OpN log2Nq
operations, due to memory constraints of computers. Accordingly this has in-
creased the popularity of the Fourier and Hadamard sampling operators, for
applications where these operators can model the underlying sampling struc-
ture. As the sparsifying operator the wavelet transform have proven to yield
satisfactory results in most setups. Since all of these operators needs to be uni-
tary, this have restricted us to only consider Daubechies compactly supported
orthonormal wavelets.

By using wavelets as the sparsifying transform it has been proven that a
Fourier sampling basis will be asymptotically incoherent to a unitary wavelet
basis. The same result can easily be calculated numerically between a Hadamard
sampling basis and a Daubechies wavelet basis. However, any theoretical result
of this fact have been lacking. The purpose of this text is to provide such a
theoretical result.
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Preface

Overview of the thesis

In this thesis we will shortly review the limitations and the most important
results of the standard theory in compressive sensing. We will then turn to
the theory proposed by Adcock, Hansen, Poon & Roman in [2] to motivate
the need for a coherence estimate between Hadamard matrices and Daubechies
wavelets.

We will then give a short introduction to wavelets and the Hadamard trans-
form in chapter 3 and 4. These chapters will also contain most of the results
needed in the derivation of the new coherence result. In chapter 5 we will
state most of the formal theory known from [2], and conduct some practical
experiments verifying their accuracy. In particular these results indicate that
both a Fourier and Hadamard sampling basis can benefit from this asymptotic
theory. It also suggests that both of these bases are asymptotically incoherent
when they are combined with wavelets. This property will then be proven to
be true for Hadamard matrices combined with wavelets in chapter 6.

The purpose of this thesis has been to create this new coherence estimate
between Hadamard matrices and Daubechies wavelets. The focus has there-
fore been to construct a proof of this, rather than rewriting proofs of well
known theorems. Most of the theorems stated in this thesis will therefore be
given without any proof. For theorems which have a particularly short and
simple proof, some of them have been provided, to give the reader a better
understanding of the text.

Code

The code produced during the work with this thesis is to extensive to be in-
cluded as a part of the text. Most notable of all this code is a C++ imple-
mentation of the Hadamard transform, with bindings to Python and Matlab.
This code extends NumPy’s module with lacking functionally and outperform
Matlab’s own fwht(...) function. This can be seen in figure 0.1, where the
computational time between the two have been time measured for arrays of dif-
ferent sizes. As this code may be of independent interest, it has been created
as a project on its own under the name Fastwht. The project also provide an
implementation in C++ of the WAL and PAL functions with an interface to
Python. As the author never needed these in Matlab an interface have not yet
been provided. The code is found at https://bitbucket.org/vegarant/fastwht.

Most of the figures included in this text have been created using Python
scripts, while all of the sketches have been written in Tikz. All of this code have
been published in the git repository https://bitbucket.org/vegarant/code-thesis.
This repository also includes all the Matlab scripts used in the reconstruction
process of compressive sensing. These scripts use the SPGL1 software pack-
age [5, 6] to solve the basis pursuit denoise problem. All of these scripts also
rely on the Python and Matlab wavelet library developed by Øyvind Ryan.
It is found at http://folk.uio.no/oyvindry/matinf2360/code/. For interested
readers I have also included five different solvers of the basis pursuit prob-
lem, written in Python. These solvers are however not suitable for large scale
problems, and have been written for readability rather than performance.
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Figure 0.1: The difference in performance between Matlab’s Hadamard trans-
form, the authors Hadamard transform and Matlab’s implementation of the
fast Fourier transform for various array lengths.

Due to the authors personal interests in convex optimization solvers used
in compressive sensing, there have also been developed a C++ implementa-
tion of the SPGL1 solver. This have been published as its own project on
https://bitbucket.org/vegarant/spgl1. This code also include my own C++
implementation of a Daubechies wavelet transform for various number of van-
ishing moments. All of the code in this project is working correctly, but it is
poorly documented, and have not yet been optimized. As a result it is harder
to maintain and order of magnitude slower than the Matlab package. To
reduce development time, the Matlab package have therefore been preferred.
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CHAPTER 1

Introduction

1.1 Motivation

For decades the sampling theory have been dictated by the famous theorem
of Shannon and Nyquist. This theorem states that in order to obtain perfect
signal recovery of a uniformly sampled signal, whose maximum frequency is γ,
the signal must be sampled at a rate which exceeds 2γ. Any sampling below
this rate would cause aliasing, and thus suboptimal results. A consequence of
this theorem has therefore been high sampling rates for high-frequent signals.
Such sampling rates will thus result in an enormous amount of data.

As an example consider a sound whose highest frequency is 20 000 Hz. A
recoding of this sound would require more than 40 000 samples{sec. Sampling at
this rate for one hour, using say 16 bit{samples would result in at least 288 Mb
of data. Recoding on multiple channels would increase this size further.

This amount of data would be impractical to most applications, so to over-
come this difficulty one usually compress the collected data before storage.
This has lead to the development of a swarm of different compression formats
which are able to extract and store only the important parts of all the data,
created by the high sampling rates.

A general strategy for many of these compression formats is to transform
the sampled signal into a different basis, where most of the signal coefficients
are close to zero, while only a few are large in magnitude. The key observation
used by these compression algorithms is that all the small coefficients contain
very little “information”, in the sens that if we neglect all coefficients below a
certain threshold by setting them to zero, and transform the signal back to
the original domain, the signal would be nearly identical to the original one.
Hence, in order to reduce the size of the data, only the significant coefficients
in the transformed signal are stored

The important observation, exploited by these algorithms is the empirical
fact that most real life signals are sparse, if they are written in the right domain.
It is this observation which gives rise to the field of compressive sensing and
enables us to beat the traditional sampling rate introduced by Shannon and
Nyquist.

The idea behind this revolutionary recovery technique, is to use a linear non-
adaptive signal acquisition process, so that the acquisition can be modeled as a
sensing matrix A P CmˆN . By letting b P Cm denote the set of measurements,



the signal x P CN can be found as a solution of the equation

Ax “ b. (1.1)

As the idea is to use fewer measurements than the traditional sampling rate,
we implicitly assume that m ă N . This leaves us with the redundant system
Ax “ b, which have infinitely many solutions, making it impossible to pick the
right one.

To overcome this difficulty the compressive sensing technique has to add
some further assumptions on the measured signal x, in order to obtain a unique
solution of equation (1.1). It is here the important observation of sparsity comes
into play. By doing our measurements in a smart way – which will be clarified
later – and assuming that the original signal x is sparse, any vector z P CN
with the same number of non-zero coefficients as x will be the unique solution
of Az “ b, i.e., z “ x.

To clarify the key idea of compressive sensing, we will present it through
a classical example of a counterfeit coin. Before we start on the example, we
note that we will use the usual convention of letting ej be a column vector
with only zero entries, except for a 1 at position j. We will also let

sgnpzq :“

#

z
|z| if z ‰ 0

0 otherwise

denote the sign of the number z. If z is a vector we let it be the component
wise sign of z.

Example 1.1. You are given 12 golden coins, one of which is a counterfeit.
All the coins are of equal shape and color, but the counterfeit’s mass differ
from the others. Using a balance scale, how many measurements are needed
to detect the counterfeit?

As it turns out this can be solved non-adaptively, using only three measure-
ments. The solution reads as follows: Label the 12 coins from 1, 2, . . . 12, and
let each coin correspond to a column in the sensing matrix A. Let each row of
the matrix correspond to a weighting of a subset of the coins. Any entry pi, jq
of the sensing matrix should then be either ´1, 1, or 0, if coin j was placed
either on the left scale, on the right scale or off the scales, respectively, during
weighting i. A sensing matrix which could solve the problem, would place 4
coins on either side of the scales in each weighting. It could for instance look
like this

A “

»

–

1 0 0 ´1 0 ´1 1 ´1 0 1 ´1 1
0 1 0 ´1 ´1 0 ´1 0 1 1 1 ´1
0 0 1 0 ´1 ´1 0 1 ´1 ´1 1 1

fi

fl .

We know that each of the authentic coins have the same mass µ, and that the
counterfeit have a different mass µ1. This implies that the mass vector x must
have the following form

x “ µ
“

1 1 . . . 1
‰T
` pµ1 ´ µqej P R12.

As we weight four coins on either side in all weightings, all rows have four 1’s,
four 0’s and four ´1’s. This will make the first constant vector term in x cancel
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in each weighting. As a result we get the following relation

Ax “ pµ1 ´ µqAej .

Because a balance scale is used, it will only tell us which of the two sides
are heavier. We will therefore not have access to the difference µ1 ´ µ, but
rather the sign of this difference i.e., sgnpµ1 ´ µq. To overcome this difficulty
we could write the result of each weighting using one of the numbers ´1, 0 and
1, depending on which of the scales that fell to the ground. Doing so we are
searching for a solution of

sgnpAxq “ sgn
`

pµ1 ´ µqAej
˘

.

The measurement vector b “ sgnpµ1 ´ µqAej would then equal one of the
columns A times the sign of sgn pµ1 ´ µq. As we know that there is only one
single counterfeit coin, we can now easily extract coin j from the authentic
ones [9]. ♣

In the example above, the sparsity was simply created as a part of the
problem. Similar examples can be found in error correction, machine learning
[21, pp. 19–21] or facial recognition [18, ch. 12]. In general however, we can not
assume that the problem at hand will have a sparse solution x without imposing
a sparsifying transform Ψ P CNˆN , similar to the ones used by the compression
algorithms. Consequently we have to modify the system in equation (1.1), into

AΨ´1z “ b (1.2)

with z “ Ψx. This means that we first have to find the sparse solution z of
the underdetermined system in equation (1.2), and then reconstruct x from z
using Ψ´1.

1.2 Random sensing matrices

An open question within the field of compressive sensing, have been to con-
struct good sensing matrices A, so the reconstruction of z can be done with
as few measurements as possible. Traditionally many of these sensing matrices
have been random matrices, where each entry is drawn from some probability
distribution. Typical distributions would be the standard normal Gaussian dis-
tribution or a Bernoulli distribution with equal probability of the entry 1 and
´1. For such random matrices one can guarantee reconstruction of a sparse
vector x with high probability provided that the number of measurements
meets the famous lower bound of

m ě Cs logpN{sq (1.3)

measurements [21, p. 6]. Where C is a constant which only depends on the
probability distribution, N is the length of the vector, and s is the number
of non-zero coefficients of x. To simplify notation a vector x will be called
s-sparse if it contains at most s non-zero coefficients.

These random matrices do, however, have two major limitations. The first
of these are all of the applications where the sampling operator is given due
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to physical constraints of the imaging system. These constraints are found
in almost any medical imaging system, such as magnetic resonance imaging
(MRI) and computerized tomography (CT) [2].

To see how such an operator is imposed consider magnetic resonance imag-
ing. In this application a specimen is exposed to different frequencies while
lying in a magnetic field. This will cause the specimen to emit frequencies
whose wavelength depends linearly on the strength of the magnetic field. By
imposing a varying magnetic field around the specimen, one can construct an
image based on the strength and wavelength of the emitted frequencies.

To model this setup, one must apply a sampling operator, whose rows
corresponds to different frequencies. Otherwise the sampling operator would
have no physical interpretation. In these types of applications a popular choice
have therefore been to select the rows from the Fourier matrix

Vdft “

”

expp´2πijk{Nq{
?
N
ı

j,k
P CNˆN , j, k “ 1, . . . , N

whose frequencies coincides with the sampled frequency.
Other examples are found in computerized tomography where one is unable

to illuminate the specimen from all angles, and the coin example above where
any matrix entry which is not equal to one of the numbers ´1, 0 and 1 would
be impractical at best. Other similar examples are single-pixel imaging and
fluorescence microscopy, were the matrix entires are either 1 or 0. Thus a
sampling matrix whose entries are drawn from some probability distribution
can not always model the underlying sampling pattern.

The second problem with random matrices is that one needs to store the
entire matrix A. As an example assume we have an image with 1024 ˆ 1024
pixels, written as a column vector x P C220

, and lets say we use a subsam-
pling rate of 10%. Using double floating-point arithmetic this would require
us to store a 1

10 ¨ 2
20ˆ 220 random matrix, resulting in a memory consumption

of approximately 880 GB! This makes the problem incomputable without a
supercomputer.

1.3 A new sampling scheme

To overcome the computational bottleneck of large, densely stored matrices,
we will only address a sampling scheme similar to the one proposed by Adcock,
Hansen, Poon & Roman in [2]. In this paper one restricts the search for sam-
pling operators to unitary matrices which do not need to be stored in memory,
but whose matrix product can be computed in-place with OpN logNq oper-
ations, rather than the usual OpN2q. As our sampling operator V P CNˆN
we will therefore only consider the Fourier transform and Hadamard trans-
form. Similarly we will only consider the wavelet transform as the sparsifying
operator. This enable us to model the sampling process as

PΩVx “ PΩVΨ´1z “ b (1.4)

where PΩ P RmˆN is a projection matrix selecting which of the m rows we
would like to sample. The subset Ω Ă t1, . . . , Nu, |Ω| “ m will contain the
indices of the chosen rows. Traditionally one of the fundamental concepts in
compressive sensing have been to use random subsampling of the indices in

4



(a) (b)

(c) (d)

Figure 1.1: The two images seen in (a) and (b) are reconstructions of an im-
age which have been sampled by a Hadamard matrix and sparesified by a
two dimensional Daubechies 4 (DB4) wavelet. Image (a) used the structured
sampling scheme seen in (c), while image (b) used the uniformly random sub-
sampling scheme seen in (d). Both sampling schemes used the same number
of samples.

Ω. This have, however, proven to produce suboptimal results. The reason
for this is, as we shall see in chapter 5, that the signal z is not sparse, it is
asymptotically sparse. This means that most of the large magnitude coefficients
are stored at the beginning of z, while the vector becomes more sparse as one
moves towards the end. A more optimal sampling scheme Ω therefore takes
this structure into account by favoring the rows in the sampling matrix.

Another principle known from this traditional theory is the use of an inco-
herent sampling operator.

Definition 1.2 (coherence). Let V,Ψ P CNˆN be unitary matrices with
columns vi and ψj , respectively. The coherence of the matrix U “ VΨ˚

is defined as
µpUq :“ max

i,j“1,...,N
|
@

vi,ψj
D

|2 P
“

1
N , 1

‰

where Ψ˚ denotes the conjugate transpose of the matrix Ψ. We say that U is
perfectly incoherent if µpUq “ N´1.
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Due to the result of Candes & Plan [10] and Adcock & Hansen [1], we know
that the setup in equation (1.4) can recover x exactly with a probability of at
least 1´ ε if

m ě C ¨ µpVΨ˚qNsp1` logp1{εqq logpNq. (1.5)

Hence by using an incoherent basis µpVΨ˚
q “ N´1 we see that the inequality

(1.5) reduces to the bound of (1.3).
The sampling bases proposed earlier do not possess this property. For a

zero frequency Fourier measurement, it is well known [29, Thm. 7.2] that
using a orthonormal wavelet scaling function φ will result in a coherence1
µpVdft,Ψ

˚
q “ |

@

e0, φ0

D

|2 “ Op1q. As the first row of any Hadamard ma-
trix only consists of 1’s, a similar result can be derived for this basis. By the
inequality (1.5) this implies that using these sampling bases should result in a
sampling rate m ą N i.e., the opposite of compressive sensing.

In practice these bases works perfectly fine with m ă N measurements,
given the right sampling strategy Ω. This can bee seen in figure 1.1 where
two different sampling strategies results in two completely different reconstruc-
tions. A mathematical justification for these empirical results will be reviewed
in chapter 5. As we shall see in that chapter a necessary condition for the
success of the structured sampling scheme seen in figure 1.1 is the principle of
asymptotic incoherence between the sampling basis V and the sparsifying basis
Ψ. This is defined as follows

Definition 1.3 (Asymptotic incoherence). Let tUNu be a sequence of isome-
tries with UN P CNˆN and let PK

N denote the projection onto spantej : j “
K ` 1, . . . , Nu. Then tUNu is asymptotically incoherent if µpPK

NUN q Ñ 0 and
µpPK

NUN q Ñ 0 when K Ñ8, with N{K “ c for all c ě 1.

In short, this definition tells us that if K first rows or columns are removed
from the isometry UN and the coherence of the resulting matrix is small, we
shall call the isometry asymptotically incoherent.

Due to the success of the structured sampling scheme in figure 1.1c we
would expect the Hadamard sampling basis to be asymptotically incoherent to
a Daubechies wavelet matrix. In figure 1.2 we have plotted the absolute values
of these two matrices multiplied together. From this figure we see that the
large magnitude coefficients are stored in the upper left corner, and that the
magnitudes decreases as one moves away from this corner. This suggests that
these operators could be asymptotically incoherent. It is asymptotic structure
we will find a theoretical justification for in chapter 6.

1 See remark 3.3 for an explanation of notation.
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(a) DB1

(b) DB4

Figure 1.2: The magnitude of the matrix entries of |VhadΨ´1
|, where Vhad is

the Hadamard matrix, and Ψ is a Daubechies wavelet matrix.
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CHAPTER 2

Elementary compressive sensing

2.1 Solving underdetermined systems

The fundamental problem of compressive sensing is to solve the underdeter-
mined system

Ax “ b (2.1)

where A P CmˆN , x P CN and b P Cm with m ă N . Hence, if there exists
at least one solution of equation (2.1), this system will contain infinitely many
solutions. To overcome this problem we introduced the assumption of a sparse
solution x7 of equation (2.1). By using this assumption one can reformulate
the problem into

minimize ||x||0 subject to Ax “ b (P0)

where the notation || ¨ ||0 refer to the `0-“norm”. That is ||x||0 :“ |supppxq|,
with supppxq :“ tj : xj ‰ 0u. The use of the word “norm” in the sentence
above can be misleading as || ¨ ||0 does not satisfy the triangle inequality. It is,
however, customary to denote it as a norm, so we will continue this practice.

The system (P0) can be solved uniquely according to the following theorem

Theorem 2.1 ([15, Corollary 1.1])
Let A P CmˆN . Every s-sparse vector x P CN is the unique solution of Az “
Ax, that is if both x and z is s-sparse then x “ z, if and only if every set of
2s columns of A is linearly independent.

Proof. Assume x is the unique s-sparse solution of Ax “ Az, and let v P ker A
be 2s-sparse. Then we can write v “ x ´ z for some s-sparse vector z with
supppzqX supppxq “ H. But as every s-sparse solution of Ax “ Az is unique,
and the support of x and z are disjoint, it follows that x “ z “ 0.

Conversely assume every set of 2s columns of A are linearly independent,
further let both x and z be s-sparse. Then x´ z is 2s-sparse and the solution
of Apx´ zq “ 0 is unique.

Unfortunately the (P0) problem is NP-hard. This means that even a moder-
ately sized problem is impossible to solve within a reasonable time-constraint.
To overcome this difficulty one therefore applies the standard technique of
relaxing the formulation of (P0) into a convex optimization problem. For a
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Figure 2.1: The solution of maximize r1 ´ 1{3srx1 x2s
T subject to ||x||p “ 1,

for various values of p.

problem involving only real variables, the default relaxation is known as basis
pursuit (BP) and can be formulated as

minimize ||x||1 subject to Ax “ b. (BP )

This can be reformulated into a linear optimization problem and solved effi-
ciently. For the complex case we relax the problem further into the quadratically
constrained basis pursuit (QCBP) problem. That is

minimize ||x||1 subject to ||Ax´ b||2 ď η (P1,η)

which can be reformulated into a second-order cone problem and solved by
appropriate software.

For an intuitive justification for our use of the `1-norm we refer to figure
2.1. Here one can easily see that any `p-norm is non-convex for 0 ă p ă 1.
This makes the problems intractable to solve. For the choice p “ 1 we see
that the norm consists of four extreme faces, all of which corresponds to sparse
solutions, as opposed to p “ 8. The easiest choice would be p “ 2, which
could be solved using a least squares solution. This norm does, however, create
a convex set with infinitely many extreme faces, which implies that no sparse
solutions will be favoured.

As any `1-solution of (BP ), is a relaxation of the `0-solution of (P0), our
main interest is when these solutions coincide. To create such results we need
to impose certain restrictions on the sensing matrix A. One such restriction
ensuring such results is called the null space property (NSP). To introduce this
concept, we first need to settle on some new notation.

Let S Ă t1, . . . , Nu, then its compliment Sc will be with respect to the set
t1, . . . , Nu. For a vector x P CN , we shall let the vector xS P C|S| consist of
the entries of x indexed in S. Similarly for a matrix A P CmˆN we shall let
AS P Cmˆ|S| be the matrix consisting of the |S| columns in A labeled in S.

Definition 2.2 (Null space property). A matrix A P CmˆN is said to satisfy
the null space property relative to a set S Ă t1, . . . , Nu if

||vS ||1 ă ||vSc ||1 for all v P ker Azt0u.

It is said to satisfy the null space property of order s if it satisfy the null space
property for any set S Ă t1, . . . , Nu with |S| ď s.
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Applying this property, one can derive the following theorem

Theorem 2.3 ([21, p. 79])
Given a matrix A P CmˆN , every s-sparse vector x P CN is the unique solution
of (BP ) if and only if A satisfy the null space property of order s.

Using this theorem, one can easily derive that any solution x‹ of (P0) will
coincide with a solution x7 of (BP ). To see this, remember that ||x‹||0 ď
||x7||0, which implies that x‹ is s-sparse. By the theorem above any s-sparse
solution of a matrix satisfying the null space property of order s is unique i.e.,
x‹ “ x7.

Other similar requirements on the sensing matrix A, which ensure a unique
solution of the `1-optimization problem, have also been derived. One of these
is the restricted isometry property (RIP).

Definition 2.4 (Restricted isometry property). The sth restricted isometry
property constant δs “ δspAq of a matrix A P CmˆN is the smallest δ ě 0 such
that

p1´ δq||x||22 ď ||Ax||
2
2 ď p1` δq||x||

2
2

for all s-sparse vectors x P CN .

Theorem 2.5 ([21, pp. 142–143])
Suppose that the 2sth restricted isometry constant of the matrix A P CmˆN
satisfy

δ2s ă
1

3
.

Then every s-sparse vector x P CN is the unique solution of (BP )

To see the resemblance between the constant δ “ 1
3 for the `1-problem,

and the `0-problem, consider the latter for a moment. For this problem we
could require that δ2s ă 1. For such a δ, any subset S Ă t1, . . . , Nu with
|S| ď 2s will provide a matrix AT

SAS with non-zero singular values. Any such
matrix is non-singular, which again implies that any subset of 2s columns of
A are linearly independent. Hence, due to theorem 2.1 it would provide a
unique `0-minimizer. The condition δ2s ă 1{3, yields the same condition for
an `1-minimizer.

By considering the definition of the RIP and the theorem above, one could
see that it would be advantageous to have almost equal size of the entries in
the sensing matrix. In fact it is not difficult to construct a system where the `0-
solution does not coincide with the `1-solution, if this property is not present.
As the following example shows, all one has to do is to stretch some of the
columns.

Example 2.6. Consider the underdetermined system
„

2 1 3
3 1 2



x “

„

2
2



. (2.2)

If we denote the columns of the matrix as a1,a2 and a3, we can see that
the columns a1 and a3 are longer than a2, in an `2-sense. This means than
any linear combination of these two columns yields a smaller `1-norm than a
stretched version of a2. The sparsest solution of this system is, however, the
vector r0 2 0sT . ♣

10



x2

x1

a1

a2

a3
p2, 2q

Figure 2.2: The system in equation (2.2). Due to the two long column vectors
a1 and a3, the solution of (P0) and (BP ) does not coincide.

In the introduction we learned that most compression algorithms exploit the
fact that real life signals can be sparsified by a transform Ψ, so that most of the
coefficients become close to zero. Such signals are typically called compressible
rather than sparse, as few of the coefficients are exactly zero. To model such a
compressible signal we will add a random perturbation or noise ε P Cm to our
original model. This gives the equation

Ax` ε “ b.

To make the problem solvable, we shall assume that the amount of perturba-
tions is limited by ||ε||2 ď η. One can then employ the formulation (P1,η) to
find a sparse solution x P CN .

For this relaxed optimization problem, there exists similar results as de-
scribed above. In these setups one then requires the matrix A to satisfy the
robust null space property [21, def. 4.17] or the matrix could have a RIP
constant δ2s ă 4?

41
« 0.62 [21, thm. 6.12]. For these estimates we are not

guaranteed to recover x, but we are guaranteed to recover a vector which is
close to x, which is the best we can do, due to the relaxation. All error bounds
in these theorems will therefore involve the error of best s-term approximation,
denoted as

σspxqp :“ inft||x´ z||p, ||z||0 ď su

This is an important measure of performance, since no s-sparse vector can
obtain a better `p-approximation to x, than σspxqp. Hence, when we evaluate
any s-sparse solution x7 of (P1,η), this will be an excellent lower bound for the
error.

2.2 Convex optimization algorithms

The problem found in (P1,η) is a conic optimization problem, which can be
solved using generalised convex optimization software. For the basis pursuit
problem, and more generally the quadratically constrained optimization prob-
lem, there have, however, been developed several specific algorithms for these
problem formulations.

11



Selected `1-optimization solvers

Among the greedy algorithms one finds the orthogonal matching pursuit (OMP)
and compressive sampling matching pursuit (CoSaMP). These algorithms work
iteratively, and include new entries in the set of support S “ supppxq to the
solution vector x at each iteration. The new entries in the set S is at each
iteration chosen among the larges entries of the product A˚pAxn ´ bq, where
xn denotes the intermediate solution at iteration n. When the new set S have
been chosen, one computes a new intermediate solution as

xn`1 “ argmint||Ax´ b||2, supppxq Ď Su. (2.3)

This process continues until a stopping criterion is met.
Other methods include thresholding-based methods, such as basic thresh-

olding (BT), iterative hard thresholding (IHT) and hard thresholding pursuit
(HTP). The simplest of these is the BT algorithm, which chooses the set of
support S “ supppxq as the s largest entries of A˚b, and then finds the final
solution by solving (2.3). The two other algorithms work iteratively by choos-
ing a new set of support S, as the largest entries of xn `A˚pb ´Axnq. The
IHT chooses the s largest of these entries as the next intermediate solution
xn`1, while HTP solves equation (2.3).

All of these algorithms, except the IHT, solves (2.3). This is done by solving
the least squares problem seen in the equation, and restricting the solution to
have support in S. Hence, to solve this equation we must store the entire
matrices in memory. This will make all four of these algorithms unsuitable for
large scale calculations.

Another drawback with these algorithms, except the OMP algorithm, is
that they require an estimate of the sparsity s. This can be hard to estimate
for an unknown signal. The advantage with such an estimate is of course the
ability to recover a signal which is truly sparse. By iteratively adding more
non-zero entries, or by setting a fixed number of non-zero entries, one can
guarantee that the final solution will be sparse. This will not be the case for
the SPGL1 algorithm considered in the next subsection.

To explain all of these algorithms in more detail is beyond the scope of this
text. Interested readers are refer to [21, Ch. 3] for an easy introduction. For
actual implementations of these algorithms, the author has provided this in
Python.

Spectral projected gradient `1 algorithm

Recovery of large signals using convex optimization software will often be con-
strained by memory limitations on computers. Thus, if the signal is large
enough, it will simply be impractical to store the sampling and sparsifying
operators as matrices. To overcome this difficulty, we have indicated that
we will apply linear operators on CN which can be computed in-place using
OpN log2Nq operations. One challenge with this approach is that most conic
solvers require a densely stored matrix to solve (P1,η), making it impossible to
bypass the memory bottle-neck.

An algorithm which handles these issue is the spectral projected gradient
`1 (SPGL1) algorithm [5, 7]. This algorithm works iteratively, by only using
operations which require the matrices A and AT to be linear operators. Hence,

12



it does not involve any computations of the pseudo-inverse, as required by most
of the algorithms above. This enables us to save enormous amounts of memory,
by using matrices whose products can be computed in-place.

The SPGL1 algorithm tries to solve the (P1,η) problem for a fixed η P
r0, ||b||2s by finding a sequence of solutions to an equivalent problem formu-
lation [21, prop. 3.2]. This equivalent formulation is often denoted the least
absolute shrinkage and selection operator (LASSO), and uses a one-norm con-
straint. That is

minimize ||Ax´ b||2 subject to ||x||1 ď τ. (LSτ )

As both of these formulations fall into the category of vector optimization
problems with no unique optimal value, any solution of either one of them will
be Pareto optimal [8, Sec. 4.7.3]. A general problem with these formulations is
that it is impossible to know a priori for what values of η and τ these solutions
coincide.

Next, let xτ be a solution of (LSτ ) and let τη denote the value of τ for
which the solution of (P1,η) and (LSτ ) coincide. In [5] it was proved that the
optimal solutions of (LSτ ) for all values of τ P r0, τηs defines a continuously
differentiable curve. As all points along this curve is Pareto optimal it is
denote as the Pareto curve. It was further proven that for τ P r0, τηs the single
parameter function

φpτq “ ||rτ ||2 with rτ :“ b´Axτ

was strictly decreasing. One was also able to find an explicit expression for its
derivative using the solution xτ of (LSτ ),

φ1pτq “ ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ATrτ
||rτ ||2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

.

In total, this enable us to use a Newton-based root-finding algorithm to find
the final solution φpτq “ η. Hence, start by setting τ0 “ 0 and solve (LSτ ).
This gives us a solution xτ0 . Next, evaluate ∆τ0 :“ pη ´ φpτ0qq{φ

1pτ0q for this
xτ0 and compute τ1 “ τ0 `∆τ0. Repeat this process until φpτq “ η

For this algorithm to work, a critical requirement is to solve the (LSτ )
problem in an efficient manner. This is done by the spectral projected-gradient
(SPG) algorithm. This algorithm consists of two potentially costly operations.
First, one need to implement an efficients projection operator

Pτ pcq :“

"

argmin
x

||c´ x||2 subject to ||x||1 ď τ

*

to project any vector onto the feasible set tx : ||x||1 ď τu. This can be done
using at most OpN log2Nq operations by following an algorithm given in [5].

The second critical step is to compute the gradient of the function fpxq “
1
2 ||Ax ´ b||

2
2 i.e., ∇fpxq “ A˚pAx ´ bq. The matrix-vector products found

in this gradient could potentially have a cost of OpN2q, but with our use of
operators we know that it can be computed using only OpN log2Nq operations.
As a result, both of the potentially expensive operations can be computed
efficiently.

13



The idea of the SPG algorithm is to start with an initial solution x0 and
search for a new solution along the gradient ∇fpx0q. This is done by choosing
a step length α and compute a new solution x1 “ Pτ px0 ´ α∇fpx0qq. This
process is then repeated until some stopping criterion is met.

There are more technicalities concerning this algorithm, which have been
omitted here. Interested readers are referred to [5] for the mathematical de-
tails, while the authors C++ implementation can be found online for technical
details. In figure 2.3 we have compared this implementation with the default
Matlab package [6]. As we can see from the figure, both of these implementa-
tions yield sufficient results, but the computational time of the former is higher.
All other figures in this text have therefore been computed with the Matlab
algorithm.
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Full image Cropped image

(a) Original (b) Original

(c) SPGL1 (d) SPGL1

(e) Author’s SPGL1 (f) Author’s SPGL1

Figure 2.3: The images shows reconstruction using Hadamard sampling and
Daubechies wavelets with various SPGL1 algorithms. (Top) The original im-
ages. (Middle) The reconstruction using Matlab’s SPGL1 algorithm. (Bot-
tom) The reconstruction using the author’s SPGL1 implementation.
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CHAPTER 3

Wavelets

Compressive sensing rely on the assumption of sparsity to solve an underde-
termined system of linear equations. To impose the required sparsity on the
signal x P CN , there have been proposed several sparsifying operators Ψ on
CN . Typical choices could be the curvelet transform [29, Sec. 5.5.2] for two
dimensional signals, the cosine transform for smooth real signals or total vari-
ation transform [29, Sec. 2.3.3], if an inverse transform in not necessary.

In this text we have chosen to study the wavelet transform, since this trans-
form can be defined as an unitary operator and computed in OpNq operations.
In addition, it has an excellent sparsifying effect on most signals. This is one
of the reasons for its popularity in image compression [36]. Due to the uni-
tary requirement of the current theory within compressive sensing, our main
focus in this chapter will be on Daubechies’ compactly supported orthonormal
wavelets.

3.1 Multiresolution analysis

From Fourier theory we know that any function f P L1pr0, 1sq can be repre-
sented in the Fourier basis te2πikxukPZ through the Fourier series

fpxq “
8
ÿ

k“´8

pfpkqe2πikx

with
pfpkq “

@

fpxq, e2πikx
D

“

ż 1

0

fpxqe´2πikx dx

provided that pf P `1pZq [30, Thm. 15.2]. This gives a signal representation of f
in the frequency domain, by using the complex exponentials as basis functions.
Each of these exponentials have a frequency k and support on all of r0, 1s.
Hence, if f consists of any irregularity, this will cause all of the coefficients
pfpkq to have a slow decay. It will also be impossible to localize any irregularity,
since all the exponentials have support on r0, 1s.

Wavelets, on the other hand, which we will define on R rather than r0, 1s,
will have a narrow support in both the time and frequency domain. This is
conducted by replacing the complex exponentials e2πikx found in the Fourier
basis, by a scaling function φ : RÑ R, in the wavelet basis. By translating and
dilating the function φ we will create an orthonormal basis for L2pRq where



not all the basis functions have the same support. Hence if we define

φj,k :“ 2j{2φp2jx´ kq

we are seeking a orthonormal basis of L2pRq on the form tφj,kupj,kqPZ2 . To
create such a basis we need to construct φ such that it satisfies the conditions
of a multiresolution analysis (MRA).

Definition 3.1 (Multiresolution [27, 29]). A sequence tVjujPZ of closed sub-
spaces of L2pRq is a multiresolution analysis if the following five properties are
satisfied

Vj Ă Vj`1 for all j P Z;

f P Vj if and only if fp2p¨qq P Vj`1 for all j P Z;
č

jPZ
Vj “ t0u;

Closure

˜

ď

jPZ
Vj

¸

“ L2pRq;

and there exists a φ P V0 such that tφpx´ kq : k P Zu is an orthonormal basis
of V0.

For any set of functions Vj Ă Vj`1, there exists a nonempty orthogonal set
of functions Wj “ Vj`1 K Vj , usually denoted as the detail space of Vj`1. This
could alternatively be written as

Vj ‘Wj “ Vj`1

where ‘ denotes the direct sum of the two spaces. As Vj Ñ t0u when j Ñ ´8

one can apply this relation recursively and obtain

Vj`1 “ Vj ‘Wj “

j
à

`“´8

W`. (3.1)

Similarly we can apply this relation when j Ñ8 as Vj Ñ L2pRq, thus

L2pRq “
8
à

j“´8

Wj . (3.2)

Hence, if we find another function ψ P W0 so that tψpx ´ kq : k P Zu is an
orthonormal basis for W0 then, due to equation (3.1) and (3.2) Wj constitutes
a multiresolution analysis of L2pRq. As V0 Ă V1 we know that φpxq can be
written as a linear combination of

?
2φp2x´ kq. That is

φ pxq “
8
ÿ

k“´8

hrks
?

2φp2x´ kq (3.3)

with
hrks “

A

φ pxq ,
?

2φp2x´ kq
E

“
?

2

ż 8

´8

φpxqφ˚p2x´ kqdx,

17



where φ˚ denotes the complex conjugate of φ. As the function φ P L2pRq we
know that the convergence in (3.3) is in L2pRq and

ř

kPZ |hrks|
2 ă 8. Taking

the Fourier transform of the above equation, we obtain

pφpωq “
1
?

2
pφ
`

ω
2

˘

8
ÿ

k“´8

hrkse2πikω “
1
?

2
pφ
`

ω
2

˘

phpωq (3.4)

where
phpωq “

8
ÿ

k“´8

hrkse2πikω

is denoted as the conjugate mirror filter of the scaling function φ, with filter
coefficients thrksukPZ [27, p. 53]. As we shall see from the following theorem,
this filter h is a low-pass filter due to the equality ph

`

1
2

˘

“ 0.

Theorem 3.2 ([29, thm. 7.2])
Let φ P L2pRq be an integrable scaling function. The Fourier series of hrks “
@

φpxq,
?

2φp2x´ kq
D

satisfies for all ω P R
ˇ

ˇ

ˇ

phpωq
ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ph
`

ω ` 1
2

˘

ˇ

ˇ

ˇ

2

“ 2

and
php0q “

?
2.

Remark 3.3. In the theorem above, none of the equations are equal to 1. In the
literature, however, both of these equations are often normalized. To obtain
this effect, one would need to remove the factor

?
2 in equation (3.3). The

derivation of an MRA would have been the same, but the factors would be
different. Both forms are therefore found in the literature. As a result, we
refer to the coherence at frequency ω “ 0 as Op1q, meaning that it is equal to
1 or a small constant factor away from 1.

As W0 Ă V1, the same derivation can be made for ψ as we did for φ above.
One then finds the following relation between φ and ψ

Theorem 3.4 ([29, thm. 7.3])
Let φ be a scaling function and h the corresponding conjugate mirror filter. Let
ψ be the function having a Fourier transform

pψp2ωq “
1
?

2
pφpωqpg pωq

with
pgpωq :“ e´2πiω

ph˚
`

ω ` 1
2

˘

.

Let us denote
ψj,k :“ 2j{2ψ

`

2jx´ k
˘

.

For any scale 2j, tψj,kukPZ is an orthonormal basis of Wj. For all scales
tψj,kupj,kqPZ2 is an orthonormal basis for L2pRq.
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V0 V1

W0

¨ ¨ ¨

W1

VR´1

WR´2

VR

WR´1

V0 V1

W0

¨ ¨ ¨

W1

VR´1

WR´2

VR

WR´1

Figure 3.1: Above: The wavelet transform of a function f P VR. Below: The
inverse wavelet transform of a function f P VR

3.2 Vanishing moments

The idea of the discrete wavelet transform is to assume the that signal f P VR,
R ą 0 and decompose f into the low resolution space V0 and the detail spaces
Wj , for 0 ď j ă R. This is possible since

VR “ V0

R´1
à

j“0

Wj .

In order to obtain a more compressible representation of f in this new domain,
we need to construct the spaces tWju0ďjăR such that most of the coefficients
xf, ψj,ky « 0. To obtain this effect, one usually requires ψ to have a certain
number of vanishing moments ν. That is, ψ needs to be orthogonal to all
polynomials of degree less than ν.

Definition 3.5 (Vanishing moments). A wavelet ψ has ν vanishing moments
if

ż 8

´8

xkψpxqdx “ 0 for 0 ď k ă ν.

The magnitude of the inner product xf, ψj,ky will depend on the smoothness
of f , in addition to the support and number of vanishing moments of ψ. A
smooth signal can be approximated well by a lower degree polynomial, which
implies that the inner product becomes close to zero. If the support of ψ is
large, any singularity in f would create large amplitude coefficients for many
of the ψj,k functions. We would therefore like to minimize the support of ψ,
while maximizing its number of vanishing moments.

The above argument can be formalized by specifying the regularity – which
will be defined later – of f and the support of ψj,k. Interested readers are
referred to [29, thm. 6.3]

According to theorem 7.4 – 7.9 in [29] one can derive that any orthonormal
wavelet ψ has ν vanishing moments if and only if pψpωq and its first ν ´ 1
derivatives are zero at ω “ 0. Further, we know from these theorems that if
the scaling function φ has compact support, then so does h, and their support
is equal. A similar results holds for ψ.

The orthonormal wavelet which minimizes the support of ψ for a given
number of vanishing moments ν, are called Daubechies wavelets. We summarize
this as a theorem.
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Figure 3.2: The Daubechies scaling function and wavelet for three different
vanishing moments.

Theorem 3.6 ([29, pp. 293 – 294])
If ψ is a wavelet with ν vanishing moments, that generates an orthonormal
basis for L2pRq, then its support size is larger than or equal to 2ν ´ 1. A
Daubechies wavelet has a minimum-size support equal to r´ν ` 1, νs. The
support of the corresponding scaling functions φ is r0, 2ν´1s. The filters h and
g corresponding to these functions both have 2ν filter coefficients.

The Daubechies scaling function φ is defined through the conjugate mirror
filter h in equation (3.3). To create an MRA this filter h must satisfy the
conditions of theorem 3.2. Further phpωq and its ν ´ 1 first derivative must
equal zero at ω “ 0, to achieve the required number of vanishing moments.
That is

phpωq “
?

2

ˆ

1´ e´2πiω

2

˙ν

Rpe´2πiωq (3.5)

where Rpe´2πiωq is some polynomial. To obtain a minimum support of φ, one
needs to minimize the degree of R under the constraint of

|phpωq|2 `
ˇ

ˇ

ˇ

ph
`

ω ` 1
2

˘

ˇ

ˇ

ˇ

2

“ 2.

One can then show using Bezout’s theorem [14, Thm. 6.1.1] that the minimum
degree of this polynomial is ν´1, and use a computer to calculate its roots. Due
to this construction, one usually finds the filter coefficients h to the Daubechies
scaling function in lookup-tables. For a table of all the coefficients up to 10
vanishing moments, we refer to [14, p. 195].

3.3 The discrete wavelet transform

The cascade algorithm

The Daubechies wavelets are, as we have seen above, created in the Fourier
domain, with filter coefficients which are computed to machine precision. The
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functions φ and ψ do therefore not have a closed analytic form. To compute any
of their function values, one have to apply the cascade algorithm to perform
an inverse discrete wavelet transform.

To use this algorithm, we start by finding the filter coefficients of the filter
g, defined in theorem 3.4. From this theorem we know that

pgpωq “ e´2πiω
ph˚

`

ω ` 1
2

˘

pgpωq “ e´2πiω
ph
`

´ω ` 1
2

˘

pgpωq “ ph
`

´pω ` 1q ` 1
2

˘

.

By converting this to the time domain, one obtains the following formula for
the g-coefficients,

grks “ p´1q1´khr1´ ks.

To use these coefficients in an MRA we recall that Vj´1 Ă Vj and that

φj´1,k “

8
ÿ

n“´8

xφj´1,k, φj,nyφj,n.

By using the change of variable x1 “ 2jx´ 2k we obtain

xφj´1,k, φj,ny “

ż 8

´8

2j´1{2φ
`

2j´1x´ k
˘

φ˚
`

2jx´ n
˘

dx

“

ż 8

´8

1
?

2
φ
´x

2

¯

φ˚ px´ n` 2kq dx

“ hrn´ 2ks

where the same derivation can be made for ψj,k. By using vector notation for
the inner products

ajrks “ xf, φj,ky , djrks “ xf, ψj,ky for all k P Z (3.6)

and the convention h̄rks “ hr´ks, one can derive the following theorem, known
as the cascade algorithm.

Theorem 3.7 ([29, thm. 7.10])
A function f P Vj can be decomposed into Vj´1 and Wj´1 using

aj´1rks “
8
ÿ

n“´8

hrn´ 2ksajrns “ aj ˚ h̄r2ks

dj´1rks “
8
ÿ

n“´8

grn´ 2ksajrns “ aj ˚ ḡr2ks

where ˚ denotes the convolution of the two sequences. Similarly one can convert
f back to its original domain Vj using coefficients from the two spaces Vj´1 and
Wj´1. That is

ajrks “
8
ÿ

n“´8

hrk ´ 2nsaj´1rns `
8
ÿ

n“´8

grk ´ 2nsdj´1rns

21



aj´2 Ò 2 h ‘

dj´2 Ò 2 g

aj´1 Ò 2 h ‘

dj´1 Ò 2 g

aj

aj h̄ Ó 2 aj´1

ḡ Ó 2 dj´1

h̄ Ó 2 aj´2

ḡ Ó 2 dj´2

Figure 3.3: Illustration of composition and decomposition found in theorem
3.7. The notation “Ò 2” means upsampling by a factor 2 i.e., one insert a zero
between all samples. Similarly the notation “Ó 2” means downsampling by a
factor 2 i.e., remove every second sample.

By applying the above theorem to a function f P VR, R ą 0, we are able
represent f in both of the vector spaces VR and VR´1‘WR´1. By decomposing
the vector space VR´1 further, we can obtain a representation of f in the vector
space V0 ‘

R´1
j“0 Wj . The change of coordinates from the vector space VR to

V0‘
R´1
j“0 Wj is known as the discrete wavelet transform (DWT) of f . Similarly

the inverse discrete wavelet transform (IDWT) is the change of coordinates
from the vector space V0 ‘

R´1
j“0 Wj back to VR.

Computational complexity

From theorem 3.6 we know that the filters h and g both have length K “ 2ν.
One step with the cascade algorithm would therefore require approximately
2KN floating-point operations. As the next iteration only applies this trans-
form to half of the remaining coefficients there are approximately 2KN{2 flops
at this iteration. Continuing in this manner one obtains the sequence

2KN `
2KN

2
`

2KN

22
` ¨ ¨ ¨ `

2KN

2R´1
« 4KN

where we assume K ! N . This gives an overall complexity of OpNq.

The wavelet crime

In any application of the wavelet transform we do never have a function in
f P L2pRq, but rather a function f P L2pr0, 1sq, where we for simplicity have
normalized any interval ra, bs into r0, 1s. This function is usually observed using
N equispaced samples. For our purposes we shall always assume N “ 2R, since
the Hadamard transform is only defined for signals of this length. A welcome
side effect of this choice, is that the DWT becomes particularly simple for
signals of this length. In the following we will drop any concerns regarding the
boundary of r0, 1s, as these will be dealt with in the next subsection.
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To compute the DWT of a signal f P L2pr0, 1sq, we start by assuming that
the samples of f are uniformly distributed. Any sample of f can then be
written as fpk{Nq, k “ 0, . . . , N ´1. We shall assume that all of these samples
fpk{Nq are approximately equal to 2R{2 xf, φR,ky.

To justify this assumption, notice that the scaling function is orthonormal.
We can therefore interpret the inner product

2R{2 xf, φR,ky “

ż 1

0

fpxq2Rφp2Rx´ kqdx

as a weighted average of f around k{N . Thus the approximation

fpk{Nq « 2R{2 xf, φR,ky (3.7)

is fair for smooth functions f [29, p. 301]. As the constant 2R{2 is the same for
all samples, we usually omit it. The approximation found in equation (3.7) is
the standard way of approximating discrete signals, and it is usually referred
to as the wavelet crime [33] due to its inaccuracy. The approximation (3.7)
can however cause large errors if the samples does not match the corresponding
inner products.

Boundary wavelets

One of the problems with the model above is of course that the scaling function
φR,k does not have support on r0, 1s for all k. This problem can be addressed
by several different approaches, three of which are presented here.

Periodic extension The simplest approach is to extend f periodically to R
with period 1. In any case where fp0q ‰ fp1q this will cause the extended func-
tion to be discontinuous at the boundary points. As polynomials always give
a poor approximation to any discontinuous function, this will remove all van-
ishing moments around the discontinuity. Thus, any wavelet coefficient whose
wavelet have support at one of the endpoints, will have a large magnitude.
This removes any compressibility among all of these coefficients. The advan-
tage with this method is, of course, that it is particularly simple to implement.
One simply replace the convolution operator found in theorem 3.7 by a circular
convolution operator.

Extension by folding The second approach is to fold the function f around the
point x “ 0, by extending the support of f to r´1, 1s and setting fpxq “ fp´xq.
This signal is then extended periodically to R. Using this method the folded
function obtains the desired continuity fp´1q “ fp1q. The only problem is
that we can not not assume f 1p0q “ f 1p1q “ 0. Hence, even if f is continuously
derivative on r0, 1s, its folded extension will have a discontinuous first derivative
when it is extended to R. This approach will therefore only preserve one
vanishing moment.

Constructing boundary wavelets The last and most demanding approach
is to construct a new orthonormal wavelet basis on the interval r0, 1s. This
is done by first translating the scaling function φ such that it has support
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Figure 3.4: The Daubechies boundary wavelets with ν “ 2 vanishing moments.

r´ν ` 1, νs. One then choose a j0 such that 2ν ď 2j0 . This ensures that there
are 2j0 ´ 2ν scaling functions with support inside p0, 1q. Next, one constructs
ν orthonormal boundary scaling functions with support inside r0, 1s on both
sides of this interval.

Using this approach one construct a new space we shall denote V int
j for

j ě j0, consisting of the functions

φint
j,kpxq “ 2j{2φleft

k p2jxq for 0 ď k ă ν;

φint
j,kpxq “ 2j{2φp2jx´ kq for ν ď k ă 2j ´ ν;

φint
j,kpxq “ 2j{2φright

k p2jxq for 2j ´ ν ď k ă 2j .

Each of these new boundary functions are created as solutions of the corre-
sponding scaling equation

1
?

2
φleft
n

`

x
2

˘

“

ν´1
ÿ

k“0

H left
n,kφ

left
k pxq `

ν`2n
ÿ

k“ν

hleft
n,kφpx´ kq (3.8)

and similarly for φright
k , ψleft

k and ψright
k [29, Sec. 7.5.3]. Hence, to decompose a

function f P V int
R into V int

R´1‘W
int
R´1 one can then be perform the usual cascade

algorithm to interior samples, while one applies equations similar to (3.8) for
the boundary samples. For the corresponding inverse equations we refer to [29,
thm. 7.19].

Pre- and postconditioning By using the boundary wavelet algorithm de-
scribed above, one would expect that a one level DWT of the vector

“

1 1 . . . 1
‰T

would result in a vector where the N{2 last elements are 0. This is, however,
not the case. To obtain such an effect, one need to impose some pre- and
postconditions on the corresponding input and output vectors. Next, we will
shortly explain these concepts.

Recall that we in equation (3.6) introduced the short hand notation ajrks “
xf, φj,ky and djrks “ xf, ψj,ky. Let πν´1 denote the set of polynomials of degree
less than or equal to ν´1. The following discussion considers wavelets in L2pRq.
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If ψ is a wavelet with ν vanishing moments we know that
ş8

´8
xkψpxqdx “ 0

for k “ 0, . . . , ν´1. This implies that φ P πν´1 as φ is orthogonal to ψ. Hence,
if p P πν´1 we know that a0rks can be written as a linear combination of the
monomial basis. That is

a0rks “

ż 8

´8

ppxqφpx´ kqdx “
ν´1
ÿ

i“0

αik
i.

Thus, if a0rks is some polynomial sequence, say for simplicity a0rks “ 1 for all
k P Z, ν ě 1, this implies that ppxq “ 1 and d´1rks “ 0 for all k P Z.

On the interval r0, 1s the d´1rks “ 0 equality does not hold for the boundary
functions because the integrals

ż 8

´8

φright
k dx ‰ 1 and

ż 8

´8

φleft
k dx ‰ 1,

while
ş8

´8
φ0,kpxqdx “ 1. Hence, if we would like the DWT of vectors like

“

1 1 . . . 1
‰T or

“

1 2 . . . N
‰T

to have boundary wavelet coefficients which equal 0, one must multiply the
endpoints of the vectors with some precondition matrices Aleft P Rνˆν and
Aright P Rνˆν before one apply the DWT. This will account for the boundary
scaling functions the lack of orthonormality. Similarly, one needs to multiply
with the postconditioning matrices A´1

left and A´1
right after one have applied the

IDWT. [12].
Note the boundary wavelet matrix with no pre- or postconditioning will

be a unitary matrix. The corresponding boundary wavelet matrix with this
preconditioning included as a part of the operator will, on the other hand,
not be unitary, since A´1 ‰ AT . In any calculations involving boundary
wavelets found in this text, these pre- and postconditions have therefore not
been included as part of the operator.

3.4 Wavelet regularity

As there does not exists any analytical expression for the functions ψ and φ, it
is difficult to state if these functions are continuous or if the derivative exits for
all points. A first glance of these functions in figure 3.2 reveal that they might
be continuous. To verify this analytically, we need to explore the Lipschitz
regularity of the functions.

Definition 3.8 ([29, def. 6.1]).

• A function f is pointwise Lipschitz α ě 0 at s if there exists K ą 0 and
a polynomial ps of degree n “ tαu such that

|fpxq ´ pspxq| ď K|x´ s|α. (3.9)

• A function f is uniformly Lipschitz α over ra, bs if it satisfies (3.9) for all
x P ra, bs with a constant K that is independent of x.

25



• The Lipschitz regularity of f at s or over ra, bs is the supremum of the α
such that f is Lipschitz α.

It is an easy exercise to show that any function f which is uniformly Lip-
schitz α ą 0 is continuous. Similarly for α ě 1, f is tαu times continuously
differentiable. To estimate the regularity of the Daubechies scaling function
φ and wavelet ψ, one may use the Fourier transform formulation of this regu-
larity. It says that a function f is bounded and uniformly Lipschitz α over R
if

ż

R
| pfpωq|p1` |ω|αqdω ă 8.

By using the recurrence relation in (3.4) and the expression for ph in (3.5) one
can estimate these α’s with various accuracy. As φ and ψ are both linear com-
binations of φp2x´kq they obtain the same Lipschitz regularity. In Daubechies
work [14, Ch. 7] she describes several of these approaches to estimate the α’s.
The best of these estimates are seen in table 3.1. Further, we know that for
large ν, α increases approximately as 0.2ν [12]. This means that for ν ě 3 the
functions φ and ψ are continuously differentiable.

ν α
2 0.55
3 1.08
4 1.61

Table 3.1: The Lipschitz constant α for ν number of vanishing moments for
the Daubechies wavelets.

3.5 Numerical implementation

In any numerical algorithm, one would always like to reduce the number of
operation as much as possible. For the orthonormal wavelet transform, this can
be done by rewriting the cascade algorithm using elementary lifting operations
[29, sec. 7.8]. Using these liftings, one can reduce the number of operations by
a factor of 2 and reduce the memory consumption by performing all operations
in-place. Thus, when one choose a modern wavelet library, it is this algorithm
one would find under the hood. This is also the case for the wavelet library
provided by Ryan, which is used extensively for all computations related to
this text.

The lifting algorithm makes it particularly simple to implement the pe-
riodic or folded wavelets to handle the boundary problem. Most wavelet li-
braries therefore implements these two extensions, and omit the harder ap-
proach of constructing dedicated boundary wavelets. In fact, a thorough search
for orthonormal wavelet libraries, showed that most libraries simply omit any
comments about boundary handling, or implements the periodic or folded ap-
proach.

To construct a DWT with boundary wavelets, one would necessarily need
the boundary wavelet coefficients. In [12] Cohen, Daubechies and Vial provide
a FTP connection where one can retrieve these coefficients. This connection
did naturally turned out to be unresponsive when the author tested it 23 years
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after the paper was first published. A quick google search for these coefficients
did also turned out empty.

Eventually the author was able to find one wavelet library where the bound-
ary wavelets had been implemented. This was found as a part of the Wavelab
package [16] for Matlab. Unfortunately this package only support 2 and 3
vanishing moments for this particular boundary handling. The package does
also only support the boundary wavelet decomposition into the space V3 rather
than V2, which should be possible for ν “ 2 vanishing moments. It is also worth
noting that due to the boundary wavelet functions use of the cascade algorithm,
rather than a lifting factorization, results in a notable round off error.

In addition, for the case with ν “ 2, the left sided pre- and postcondition
matrices were wrong. The author therefore had to debug the DWT and IDWT
functions and provide a fix to make them work correctly. The author have
tried to file a bug report on the issue, but the Wavelab mail address turned
out to be dead, so nothing have been reported. For a thorough bug report, see
the repository with the code related to this thesis. In total this suggest that
boundary wavelets are not very common in applications.

Most recently the author have also found an extension of the Wavelab
package provided by Clarice Poon and Milana Gataric at http://www.damtp.
cam.ac.uk/research/afha/code/gs_wavelets-1.1.zip. In this extension one have
rewritten the function responsible for providing the boundary wavelet coeffi-
cients in the Wavelab package, so that one can retrieve the coefficients up to
10 vanishing moments. Due to the late discovery of this extension, it has not
been used in any of our computations.

In this text we have applied the periodic extensions of the wavelet basis
in all figures involving wavelets. The only exception is a few figures found in
chapter 6, where it is explicitly stated that the boundary wavelets found in the
Wavelab package have been used. This approach have been chosen both for
the numerical accuracy provided by the lifting factorization and for simplicity,
as Ryan’s wavelet library provided a unified interface to both Matlab and
Python. For any computations made in C++, the author’s own wavelet library
was preferred.
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CHAPTER 4

Hadamard transform

In chapter 1, we saw the need for unitary matrices whose matrix product
could be computed in-place using OpN log2Nq operations. One such type of
matrix is the orthogonal Hadamard matrix, whose entries consists of either
1 or ´1. To create an orthogonal matrix with these entries for any N is, in
general, impossible, just consider any odd number N . The Hadamard matrix
is therefore only defined for N “ 2R for some positive integer R.

For the size N “ 2R, there are at least three different ways to construct
an orthogonal matrix with the entries ´1 and 1, all of which are referred to
as the Hadamard matrix. The set of rows in these matrices are necessarily the
same, but the ordering of the rows are different. To distinguish between them
we shall use the usual convention of denoting them as the ordinary, sequency
and Paley enumerated Hadamard matrix.

4.1 The ordinary Hadamard matrix

The ordinary Hadamard matrix is, as the name suggests, the ordering of the
matrix rows which is often found in sources where only one of the orderings is
mentioned. It is therefore often also referred to as the Hadamard order. The
reason for its popularity is probably due to its simple definition through the

(a) (b) (c)

Figure 4.1: The three different Hadamard matrices for N “ 32. paq Ordinary
order, pbq Sequency order, pcq Paley order. The color white represents 1’s, while
black represents ´1’s.



recurrence relation

HN “ H2 bHN{2 “

„

HN{2 HN{2

HN{2 ´HN{2



(4.1)

H2 “

„

1 1
1 ´1



(4.2)

where b denotes the Kronecker product. As this relation has a close connection
to the fast Fourier transform , it is often proposed as a poor man’s FFT.
Remark 4.1. The Hadamard matrix as we have defined it in equation (4.1) and
(4.2) is orthogonal and not orthonormal. We will, however, often state that all
three of the Hadamard matrices are unitary. It is then implicitly understood
that one scale HN by 1{

?
N . The same effect could also be obtained by scaling

the H2 matrix in (4.2) by 1{
?

2.

Computational complexity In general, a matrix multiplication would require
OpN2q floating point operations. For the ordinary ordered Hadamard matrix,
this amount can be reduced to OpN log2Nq. To see this, note that we can
decompose the N ˆN matrix product

HNx “

„

HN{2xtop `HN{2xbottom
HN{2xtop ´HN{2xbottom



into two matrix products, each of size N{2 ˆ N{2. Here xtop are the N{2
first entries of x while xbottom are the N{2 last entries. Next let qi denote the
number of operations required for the multiplication H2ix of size 2i ˆ 2i. By
applying the matrix decomposition recursively, we can describe the number of
operation through the difference equation qi “ 2qi´1 ` 2i. For q0 “ 1, this
difference equation have the solution qi “ pi ` 1q2i, which implies that the
overall complexity of the matrix product is OpN log2Nq [13, p. 505].

Iterative algorithm To apply the recursive strategy presented above directly,
would in any case outperform the usual matrix product for sufficiently large
N . Recursive algorithms are however known to be suboptimal compared to
any equivalent iterative algorithm. Any recursive algorithm will always require
a large amount of function calls, which all together will increase the computa-
tional time of the algorithm. [28, pp. 87–89].

Iterative algorithms are therefore the preferable choice. To compute the
Hadamard matrix product in an iterative manner we will decompose the matrix
into a sequence of matrix products H2R “ AR´1 ¨ ¨ ¨A1. In this product each
of the matrices Ai are the block diagonal matrix

Ai “ diagpB2i , . . . ,B2i
loooooomoooooon

r

q, r “ 2R´i

with
B2i “

„

I2i´1 I2i´1

I2i´1 ´I2i´1



where diagp¨ ¨ ¨ q denotes the matrices along the diagonal and IK denotes the
identity matrix of size K. Using this decomposition one can easily write the de-
sired for-loops, implementing each of these matrix products in turn [13, p. 508].
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4.2 The sequency ordered Hadamard matrix

The sequency and Paley enumerated Hadamard matrix is defined through the
use of Walsh functions, as opposed to the simple recursive definition of the
ordinary matrix. To define these functions, we will need some notation for the
dyadic expansion of the real positive numbers. We therefore start by reviewing
some elementary theory of the dyadic numeral system. Recall that any number
x P r0, 1q have a dyadic expansion

x “ x12´1 ` x22´2 ` ¨ ¨ ¨ ` xj2
´j ` . . .

with xi P t0, 1u.
For a rational number x this expansion is not unique, as we may either

choose the finite expansion, or the infinite expansion with xi “ 1 for all i ě k,
for some k P N. To avoid this ambiguity we will always choose the finite
expansion. This means that we in practice have removed countably many
singletons from the interval r0, 1q. As the removed set have Lebesgue measure
zero, we will see later on that it will not cause any problems for us. The gain on
the other hand, is an isomorphic mapping between any x P r0, 1q and a dyadic
sequence tx1, x2, . . .u.

In a similar manner, one can find a unique dyadic expansion of any number
n P Z`, as

n “ n120 ` n221 ` ¨ ¨ ¨ ` nj2
j´1 ` . . .

This expansion is necessarily 0 from some point on, as the number n is finite.
Using this setup we can define the sequency ordered Walsh function.

Definition 4.2. Let n P Z` and x P r0, 1q. The Walsh function for sequency
ordered Hadamard transform is

WALpn, xq :“ p´1q
ř8

i“1pni`ni`1qxi .

The sequency ordered Hadamard matrix is then initialized at the pi, jq entry
using the value WALpi´1, pj´1q{2Rq, for i, j “ 1, . . . , N . Using this ordering,
each of the matrix rows will contain one more sign change than the previous
row. Thus the “frequency” of the WAL function will be strictly increasing for
increasing n [4, pp. 7,17-18].

Gray code

In computer science there have been developed several elementary operators
on binary sequences. Typical operators are NOT, AND, OR, XOR and the bit
shift operators !,". In our work with the Walsh functions the XOR operator
will be used extensively on binary sequences. We therefore introduce it as the
operator ‘.

Definition 4.3. Let x “ txiu8i“1 and y “ tyiu8i“1, be sequences consisting of
only binary numbers. That is xi, yi P t0, 1u for all i P N. The operator ‘ of
these sequences is then

x‘ y :“ t|xi ´ yi|u
8
i“1.

For two binary numbers xi, yi P t0, 1u we let xi ‘ yi “ |xi ´ yi|.
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Using this definition we can now introduce the gray code of a binary se-
quence.

Definition 4.4 (Gray code). Let n P Z` have a binary representation tn1, n2, . . .u,
ni P t0, 1u where n “ n120 ` n221 ` ¨ ¨ ¨ . The gray code of n is

gpnq :“ n‘ 2n “ tni ‘ ni`1u
8
i“1

The gray code of a finite binary sequence, is an alternative representation
where only one bit is changed every time the value of the corresponding decimal
number increases by one. This structure can be seen in table 4.1, where the
first 16 decimals are written in both systems.

In definition 4.2 of the sequency ordered Walsh function, we used the usual
’`’ operator in the expression ni ` ni`1. This operator could also be replaced
by the ‘ operator, since p´1q0 “ p´1q2. Using this operator we recognize this
as the gray code representation of n. This fact will be used extensively later,
in the computations of the OpN log2Nq matrix product with the sequency
ordered Hadamard transform [4, p. 23].

Decimal Binary Gray Decimal Binary Gray
0 0 0 8 1000 1100
1 1 1 9 1001 1101
2 10 11 10 1010 1111
3 11 10 11 1011 1110
4 100 110 12 1100 1010
5 101 111 13 1101 1011
6 110 101 14 1110 1001
7 111 100 15 1111 1000

Table 4.1: The ordinary representation of the binary number, and their gray
code representation. Notice that only one bit changes in the gray code repre-
sentation each time the decimal number increases by one.

4.3 The Paley ordered Hadamard matrix

The sequency ordered Hadamard matrix can be defined by the sequency or-
deredWalsh functionWAL. In a similar manner, the Paley enumerated Hadamard
matrix can be defined through another Walsh function, which we will denote as
PAL. Both of these functions can be defined in a variety of ways, for instance
through the use of difference equations [26, p. 19], as product of Rademacher
functions [19] or by using binary sequences as we did above [23, Eq. 1.2.5]. We
have chosen the latter approach as much of the theory of Walsh functions have
been derived for this definition.

Definition 4.5. Let n P Z` and x P r0, 1q. The Walsh function for the Paley
ordered Hadamard transform is

PALpn, xq :“ p´1q
ř8

i“1 nixi .

This function will also be denoted as wnpxq :“ PALpn, xq to shorten the nota-
tion.
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From this definition it is easy to see the equality

WALpn, xq “ PALpgpnq, xq. (4.3)

Hence the WAL function is the gray code permuted PAL function.
To initialize the Paley ordered Hadamard matrix, we can evaluate the func-

tion PALppi ´ 1q, pj ´ 1q{2Rq for i, j “ 1, . . . , N , as we did for the sequency
ordered matrix. This approach will, however, require that we compute and
store all the N2 elements. This creates a densely stored matrix, whose matrix
product will have a cost of OpN2q operations.

Preserving the OpN log2Nq requirement

For our applications to work satisfactory, the critical requirement of a trans-
form that can be computed using OpN log2Nq operations, can not be relaxed.
The two previous orderings do not possess this property, using their usual defi-
nition. To obtain these transforms within the desired amount of floating point
operations, we have to rely on the fact that all of these matrices consist of the
same set of rows, ordered in different ways. As all of the coefficients from the
ordinary ordering transform corresponds to the inner product with the matrix’s
rows, a reordering of these coefficients is equivalent to a reordering of the rows.

Hence, by applying the ordinary ordering transform using OpN log2Nq op-
erations, the computational bottleneck of the transform have been bypassed.
Afterwards, one permutes these coefficients into the desired order, at a cost
of OpNq operations. The ordering between the sequency and Paley enumer-
ation is as we have seen in equation (4.3), given by the gray code of the row
number. Similarly, one can show that the ordinary ordering of the coefficients
corresponds to a bit reversed Paley enumeration [4, p. 18].

Let the permutation which reverses the finite bit sequences be denoted as
T pnq :“ tnR, nR´1, . . . , n1u for n “ tn1, . . . , nRu. We can then write this
permutation system as we have done in the following figure.

Ordinary

T pnq

T pnq

Paley

g´1pnq

gpnq

Sequency

Unfortunately, the gray code permutations of a sequence with 2R elements
contain many cycles. This can be seen in table 4.1, which contains the five
cycles

1 Ñ 1
2 Ñ 3 Ñ 2
4 Ñ 6 Ñ 5 Ñ 7 Ñ 4
8 Ñ 15 Ñ 10 Ñ 12 Ñ 8
9 Ñ 13 Ñ 11 Ñ 14 Ñ 9

Thus to compute the gray code permutation of an array in-place one must
detect all of the cycles and permute with respect to these. Such a setup can
be seen in e.g., [3, pp. 128–133, 474–481]. In the fastwht library, a simpler ap-
proach was chosen, by creating an intermediate array to store all the permuted
elements.
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PALp0, xq WALp0, xq

PALp1, xq WALp1, xq

PALp2, xq WALp3, xq

PALp3, xq WALp2, xq

PALp4, xq WALp7, xq

PALp5, xq WALp6, xq

PALp6, xq WALp4, xq

PALp7, xq WALp5, xq

PALp8, xq WALp15, xq

PALp9, xq WALp14, xq

PALp10, xq WALp12, xq

PALp11, xq WALp13, xq

PALp12, xq WALp8, xq

PALp13, xq WALp9, xq

PALp14, xq WALp11, xq

PALp15, xq WALp10, xq

Figure 4.2: The 16 first PAL and WAL functions.
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Choice of ordering

In compressive sensing, a critical requirement is the asymptotic incoherence
property between the sampling basis and sparsifying basis. In chapter 5 we
will see numerically that this property is not present for the ordinary ordered
Hadamard matrix. For our applications we will therefore not consider this
ordering.

In chapter 6 we will prove that the incoherence property holds for the
sequency and Paley enumerated Hadamard matrix. To do this, the following
lemma is needed.

Lemma 4.6
Let the rows of a 2Rˆ 2R matrix be labeled from 0 (top row) to 2R´ 1 (bottom
row). The set of rows between 2p ď n ă 2p`1 is the same in both the Paley and
sequency ordered Hadamard matrix for p “ 0, 1, . . . R´ 1.

Proof. For 2p ď n ă 2p`1 we know that the binary sequence representation
of n is tn1 . . . np, 1, 0, . . .u. If we let m “ gpnq be the gray code of n, we also
know that m will be represented in the same way, tm1, . . . ,mp, 1, 0, . . .u since
mp`1 “ np`1 ‘ np`2 “ 1 ‘ 0 “ 1. This means that if n P r2p, 2p`1q then
m P r2p, 2p`1q. As g is injective, the result follows.

4.4 Walsh transform

In section 3.1 we saw that a function f P L1pr0, 1sq could be written in the
Fourier domain by applying the Fourier transform, and writing the function
as a Fourier series. In this section we will state a similar result for the Walsh
functions.

First we will, however, investigate the Walsh-functions more closely, by
deriving some well known properties. All of these properties will turn out
to be useful when we later investigate the coherence between the Hadamard
matrices and Daubechies wavelets. The lemmas we present below can be found
in [23, ch. 1], however, most of them is not be explicitly stated as we have done
below. As most of the theory of the Walsh transform and Walsh series have
been derived for the PAL function, we will continue this practice. To shorten
notation we use the abbreviation wnpxq “ PALpn, xq.

Lemma 4.7
Let x, y P r0, 1q have disjoint dyadic support i.e., xi “ 1 ùñ yi “ 0 and
yj “ 1 ùñ xj “ 0. Then

x` y “ x‘ y

Proof. The results follows directly from the definition of ‘.

Lemma 4.8
Let n and p ě 0 be integers such that 2p ď n ă 2p`1 and let

∆p`1
k “ rk{2p`1, pk ` 1q{2p`1

˘

for k P t0, . . . , 2p`1 ´ 1u. Then wn is constant on each of the intervals ∆p`1
k .

Each of the intervals ∆p
k can be decomposed into the intervals ∆p`1

2k and ∆p`1
2k`1,

where wn is equal to 1 on exactly one of them, and equal to ´1 on the other.
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Proof. Since 2p ď n ă 2p`1 we know that an dyadic expansion of n will have
the following form n “ tn1, . . . , np, 1, 0, . . .u i.e., np`1 “ 1, nk “ 0 for k ě p`2.
Further we know that for all x P ∆p`1

k the first p ` 1 binaries in the dyadic
expansion will be fixed and thus wn will be constant for all x P ∆p`1

k . Further
we know that

x P ∆p`1
2k ùñ tx1, . . . , xp, 0, . . .u

x P ∆p`1
2k`1 ùñ tx1, . . . , xp, 1, . . .u

Since np`1 “ 1, we know that if wnpxq “ 1 for x P ∆p`1
2k then wnpxq “ ´1 for

∆p`1
2k`1 and vice versa.

Proposition 4.9
For R,n,m P Z` and x, y P r0, 1q, the Walsh function satisfies the following
relations

(a)
wnpx‘ yq “ wnpxqwnpyq

(b)
wnpxqwmpxq “ wn‘mpxq

(c)
ż 1

0

wnpxqwmpxqdx “

#

1 if m “ n

0 otherwise
(4.4)

(d)
wnp2

´Rxq “ wtn{2Rupxq

Proof.

(a)

wnpx‘ yq “ p´1q
ř8

j“0 nj |xj´yj | “ p´1q
ř8

j“1 njpxj`yjq

“ p´1q
ř8

j“1 njxj p´1q
ř8

j“1 njyj “ wnpxqwnpyq

(b) The result follows by a similar computation as in (a).

(c) The integral in equation (4.4) is a Lebesgue integral. Since we have removed
countably many singletons in r0, 1q, the removed set have Lebesgue measure
zero. The integral over the set where the singletons are removed, and the
integral where they are not will therefore coincide.

Assume m ‰ n then wnpxqwmpxq “ wn‘mpxq “ w`pxq for ` “ m‘ n ą 0.
Let p P Z` be such that 2p ď ` ă 2p`1. From lemma 4.8 we know that w`
will be equal to 1 on exactly one of the intervals ∆p`1

2k and ∆p`1
2k`1 while it

will be ´1 on the other. This implies that
ż

∆p
k

w`pxqdx “ 0
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Thus we can derive
ż 1

0

w`pxqdx “
2p
´1
ÿ

k“0

ż

∆p
k

w`pxqdx “ 0

For m “ n we obtain m ‘ n “ 0, which implies that w0pxq “ 1 and
ş1

0
1 dx “ 1.

(d)

wnp2
´Rxq “ p´1q

řR
j“1 0¨nj`

ř8
j“R`1 njxj´R “ p´1q

řR
j“1 nj`Rxj “ wtn{2Rupxq

Definition 4.10 (Walsh transform). Let f be a Lebesgue integrable function
on r0, 1q. The Walsh transform of f is

qfpnq :“

ż 1

0

fpxqwnpxqdx.

Further, one can show that the set of Walsh functions twnunPZ` is closed and
complete in the spaces Lppr0, 1sq, p ě 1 [23, Sec. 2.6]. Thus, if f P L1pr0, 1sq
the series

8
ÿ

n“0

qfpnqwn

converges to f almost everywhere.
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CHAPTER 5

Asymptotic compressive sensing

Traditionally the theory of compressive sensing have been based on the three
principles of sparsity, incoherence and uniform random subsampling. These
principles rely on the assumption that we have no priori knowledge of the
position of the signal’s non-zero entries. Practical experiments, using wavelets
as the sparsifying transform do, however, impose an asymptotic structure on
the non-zero coefficients of the signal. For such setups these old principles have
proven to yield insufficient results [31]. Due to these insufficiencies we will
therefore review the principles of asymptotic sparsity, asymptotic incoherence
and multilevel random subsampling.

These principles and the related theorems involve a lot of notation and tech-
nicalities. To redefine all of the needed structure for a complete presentation
of this theory is beyond the scope of this text. Instead interested readers are
referred to the paper [2] by Adcock, Hansen, Poon & Roman. We will only
review the most important theory, to motivate the need for a new coherence
result between Hadamard matrices and Daubechies wavelets.

The principles may be reviewed either in a finite or infinite setting. We will
state the following definitions for both settings, while we will comment on the
finite dimensional theory. The infinite-dimensional theory will be considered
on its own in section 5.4.

5.1 Asymptotic principles

We recall from chapter 1 that the problem at hand is to construct a sampling
scheme Ω Ď t1, . . . , Nu such that the recovered solution c7 of the optimization
problem

minimize ||z||1 subject to ||PΩUz ´ b||2 ď η (P1,η,Ω)

is close to the wavelet coefficients c “ Ψx. In this setup PΩ was the projection
onto the set Ω and U was an isometry consisting either of VdftΨ

´1 or VhadΨ´1,
where Vdft was the discrete Fourier transform, Vhad was the Hadamard matrix
and Ψ was the discrete wavelet transform. The solution c7 of (P1,η,Ω) would
correspond to the wavelet coefficients of x i.e., c7 « Ψx.

Due to the properties of the sparsifying wavelet transform we argued that
most of the non-zero coefficients would be at the beginning of the wavelet coeffi-
cient vector c. Thus to recover such a vector this structure should be reflected
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Figure 5.1: Two dimensional discrete wavelet transform using the Haar wavelet.
The original image have values in the range r0, 1s. Red box: 2.1% of the
coefficients have an absolute value above 0.06. Yellow box: 21.3 % of the
coefficients have an absolute value above 0.06.

Figure 5.2: The local sparsity in `2-norm of the different wavelet detail spaces
of the image 5.6a. Some of these detail spaces can also be seen visually in figure
5.1.

in the sampling scheme. We therefore start by formalizing this asymptotic
sparsity structure.

Definition 5.1 (Asymptotic sparsity [2]). Let x be an element of either CN or
`2pNq. Let M “ rM1, . . . ,Mrs P Nr be the sparsity levels of x with 1 ď M1 ă

¨ ¨ ¨ ă Mr. Further let s “ rs1, . . . , srs P Nr with sk ď Mk ´Mk´1, k “ 1, . . . r
and M0 “ 0, be the sparsity within each level. We say that x is ps,Mq-sparse
if, for each k “ 1, . . . , r, the set Γk :“ supppxq X tMk´1 ` 1, . . . ,Mku satisfies
|Γk| ď sk. We denote the set of ps,Mq-sparse vectors by Σs,M. We say that
a vector y P Σs,M is asymptotically sparse in levels if sk{pMk ´Mk´1q Ñ 0 as
k Ñ8.
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For our purposes we shall let the differentMk’s correspond to the boundaries
between the wavelet resolution spaces. Applying a DWT to a vector x P VR,
corresponds to decomposing it into the space V0 ‘

R´1
k“0 Wk, where the size of

Wk is 2k. A natural choice is therefore M “ r20, 21, . . . 2Rs.
The principle of asymptotic sparsity can be seen in figure 5.1, where a three

level, two-dimensional DWT have been applied to the image. This has resulted
in one low resolution approximation of the image, and three detail spaces at
different resolutions. Each of these detail spaces can again be divided into three
different detail spaces, based on the type of wavelet used in the decomposition.

By studying the image closely, one would find that the fraction of large
coefficients in the first detail space is much lower than in the other spaces.
As one decompose the image into the next detail space this fraction increases.
This is illustrated in the two colored boxes in the image. In section 5.3 we will
also see a practical setup exploiting this fact.

In practice, a DWT will only produce coefficients which are compressible
rather than sparse. To measure the degree of sparsity in practice, we therefore
need a measure taking this consideration into account. One such measure is
the local sparsity.

Definition 5.2 (Local sparsity [31]). Let be M “ rM1, . . . ,Mrs P Nr be the
sparsity levels of a vector x P CN . Further, letMk “ tMk´1` 1, . . . ,Mku and
letMk,L ĎMk be such that |xl| ě |xj | for all l PMk,L and all j PMkzMk,L.
For ε P p0, 1s the local sparsity of x is

skpεq :“ min
 

L : ||xMk,L
|| ě ε||xMk

||
(

For reasonable choices of ε this measure will necessarily yield high values
for uniform signals, while lower values for sparse signals. In figure 5.2 we have
used this measure to find the sparsities within each level for ε P r0, 1s. In this
image the fraction of significant coefficients within each level decreases with
increasing resolution spaces for almost all spaces. The only exception is the
last space W9, which have a more uniform distribution of low value coefficients
than the other detail spaces. In practice we will, however, characterize this
signal as asymptotically sparse in wavelets.

As the sparsity within each level changes, it is natural to create a sampling
pattern which takes these considerations into account. A sampling strategy
with provable good results are multilevel random subsampling.

Definition 5.3 (Multilevel random subsampling [2]). Let N “ rN1, . . . , Nrs P
Nr with 1 ď N1 ă ¨ ¨ ¨ ă Nr, andm “ rm1, . . . ,mrs P Nr withmk ď Nk´Nk´1,
k “ 1, . . . , r and N0 “ 0. Suppose the local sampling sets Ωk Ď tNk´1 `

1, . . . , Nku, with |Ωk| “ mk for k “ 1, . . . , r are chosen uniformly at random.
We then refer to the set ΩN,m “ Ω1Y¨ ¨ ¨YΩr as an pN,mq-multilevel sampling
scheme.

Using a Hadamard sampling matrix, it is natural to choose the sampling lev-
els equal to the boundaries between the different Walsh frequency resolutions.
That is N “ M “ r20, 21, . . . , 2Rs. In order to obtain a complete sampling
scheme, we must also decide on the sampling distribution m “ rm1, . . . ,mrs P

Nr. To find a good such distribution, we first need to know the coherence
properties of our system.
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Figure 5.3: The effect of the projection P
Nk´1
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U and UP
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Mk
used in the

definition of coherence.

Before we review the definition of coherence, we start by recalling the fol-
lowing notation from definition 1.3. Pa

b denotes the projection onto spantej :
j “ a`1, . . . , bu where ej is the canonical basis. Similarly, we let pP0

Kq
K “ PKK

denote P0
K ’s orthogonal complement. Further, we will also let BpXq denote the

set of bounded linear operators on the normed linear space X.

Definition 5.4 (Asymptotic incoherence [2]). Let tUNu be a sequence of
isometries with UN P CNˆN or let U P Bp`2pNqq be an isometry. Then

(a) tUNu is asymptotically incoherent of µpPKKUN q, µpUNPKKq Ñ 0 as K Ñ

8 with N{K “ c for all c ě 1.

(b) U is asymptotically incoherent if µpPKKUq, µpUPKKq Ñ 0, when K Ñ8.

Here BpXq denotes the set of bounded linear operators on the normed linear
space X.

Definition 5.5 (Local coherence [2]). Let U be an isometry of either CN or
`2pNq. Further, let M,N P Nr with 1 ď N1 ă ¨ ¨ ¨ ă Nr, 1 ď M1 ă ¨ ¨ ¨ ă Mr

and let M0 “ N0 “ 0. The pk, lqth local coherence of U with respect to M and
N is given by

µN,Mpk, lq :“

c

µ
´

P
Nk´1

Nk
UP

Ml´1

Ml

¯

µ
´

P
Nk´1

Nk
U
¯

k, l “ 1, . . . , r.

From chapter 2 we learned that the best s-term approximation to a solution
vector x was given by σspxqp :“ inft||x ´ z||p, ||z||0 ď su. This constituted
a lower bound on the error in the search for a s-sparse solution. As we are
searching for a ps,Mq-sparse solution of (P1,η,Ω), we need to introduce a similar
lower bound of best ps,Mq-term approximation

σs,Mpxqp :“ inft||x´ z||p : z P Σs,Mu

Using these definitions we are able to state the main theorem in this section.
We state the theorem for the finite dimensional setting, an infinite version can
be found in [2, Thm. 5.3]. To shorten notation, we use the abbreviation A Á B
if A ě CB for some constant C independent of all relevant parameters.
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Theorem 5.6 ([2])
Let U P CNˆN be an isometry and x P CN . Suppose that Ω “ ΩN,M is
a multilevel sampling scheme, where N “ rN1, . . . , Nrs P Nr, Nr “ N and
m “ rm1, . . . ,mrs P Nr. Further let M “ rM1, . . . ,Mrs P Nr be the sparsity
levels of x with Mr “ N , and let s “ rs1, . . . , srs P Nr be the sparsities within
each of these levels. Let ps,Mq be any pair such that the following holds: for
ε P p0, e´1s and 1 ď k ď r,

1 Á
Nk ´Nk´1

mk
logpε´1q

˜

r
ÿ

l“1

µN,Mpk, lq ¨ sl

¸

logN, (5.1)

where mk Á m̂k logpε´1q logpNq, and m̂k is such that

1 Á
r
ÿ

k“1

ˆ

Nk ´Nk´1

m̂k
´ 1

˙

¨ µN,Mpk, lqs̃k (5.2)

for all l “ 1, . . . , r and all s̃1, . . . , s̃r P p0,8q satisfying

s̃1 ` ¨ ¨ ¨ ` s̃r ď s1 ` ¨ ¨ ¨ ` sr, s̃k ď max
zPΘ

||P
Nk´1

Nk
Uz||2,

where Θ “ tz P CN : ||z||8 ď 1, ||P
Ml´1

Ml
z||0 ď sl, l “ 1, . . . , ru. Suppose that

c7 P CN is a minimizer of (P1,η,Ω) with η “ η̃
?
K´1 and K “ max1ďkďrtpNk´

Nk´1q{mku. Then with probability exceeding 1´ sε, where s “ s1`¨ ¨ ¨` sr, we
have that

||x7 ´ x|| À
`

η̃p1` L
?
sq ` σs,Mpxq1

˘

,

for L “ 1`

?
log2p6ε

´1q

log2p4KM
?
sq
. If mk “ Nk ´Nk´1, 1 ď k ď r, then this holds with

probability 1.

The key property of this result is the bounds of equation (5.1) and (5.2).
Form these bounds we see that the success of any multilevel sampling scheme,
depends on the local coherences of the isometry U, the number of samples
within each levels mk, and the sparsity sk and s̃k. In particular we see that it
would be advantageous if the isometry U was asymptotically incoherent, as it
would imply that we could reduce the number of samples mk for large k. As
the size of each detail space Wk is 2k, this is an important property, even for
mildly large k.

To clarify the idea, we will review the coherence structures for two con-
crete matrices, Hadamard matrix multiplied with the Haar wavelet matrix and
Fourier matrix multiplied with a Daubechies wavelet matrix.

5.2 Two asymptotic coherence estimates

Coherence between Hadamard and Haar wavelets

The simplest of all isometries possessing the asymptotic incoherence property is
a sequency or Paley enumerated Hadamard matrix multiplied with the inverse
Haar wavelet matrix. The Haar wavelet is a Daubechies-1 wavelet, having
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one vanishing moment i.e.,
ş

R ψptqdt “ 0. It is defined through the piecewise
constant functions

φpxq “

#

1 if x P r0, 1q
0 otherwise

, ψpxq “

$

’

&

’

%

1 if x P r0, 1{2q
´1 if x P r1{2, 1q
0 otherwise

.

As each wavelet ψj,k “ 2j{2ψp2j ¨´kq has support on the interval r2´jk, 2´jpk`
1qs, this implies that it will be constant on two dyadic intervals of size 2´pj`1q.
Thus, due to lemma 4.8 it is not hard to see that ψj,k will be orthogonal to all
Walsh-functions wn outside the range 2j ď n ă 2j`1. That is

ˇ

ˇ

ˇ

ˇ

ż 1

0

ψj,kpxqwnpxqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

2j{2ψp2jx´ kqwnpxqdx

ˇ

ˇ

ˇ

ˇ

“ 2j{2

ˇ

ˇ

ˇ

ˇ

ˇ

ż 2´j
pk`1q

2´jk

ψp2jx´ kqwnpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“

#

2´j{2 if n P r2j , 2j`1q

0 otherwise
.

Next we fix the sparsity and sampling levels to M “ N “ r20, 21, . . . , 2Rs
and let Ψhaar P RNˆN denote the Haar wavelet matrix and let Vhad P RNˆN
denote the sequency or Paley enumerated Hadamard matrix for N “ 2R. It
then follows that the local coherence of the matrix U “ VhadΨ´1

haar is given by

µN,Mpk, lq “

#

2´pk´2q{2 if k “ l

0 otherwise
k, l “ 2, . . . R` 1.

Here we have omitted the index 1, since it corresponds to the scaling function
φ. It is an easy exercise to show that φ is orthonormal to wn for all n ‰ 0.
The k ´ 2 term is introduced to account for cumbersome indexing. To see
this, note that µN,MpR ` 1, R ` 1q corresponds to the lower right corner i.e.,
P2R´1

2R UP2R´1

2R , which corresponds to the resolution space WR´1. Hence the
magnitude of the coefficients in this lower right corner is

a

2{N . This is close
to being perfectly incoherent.

If we insert this estimate into the lower bound of (5.1) it becomes

mR Á p2
R ´ 2R´1q logpε´1q

?
2

2R{2
sR logp2Rq

“ 2R{2´1{2 log pε´1qsR log p2Rq.

Where the 2R{2 term represents a tremendous reduction in the required number
of samples. The greatest disadvantage of this wavelet is of course that it’s
discontinuity is not optimal for approximating smooth structures. To see this,
assume we have solved (P1,η,Ω) and recovered a vector

c7 “
@

x7, φ0,0

D

φ0,0 `

R´1
ÿ

j“0

2j
´1
ÿ

k“0

@

x7, ψk,j
D

ψk,j .
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(a) (b)

Figure 5.4: The element-wise absolute values of (a) sequency ordered
Hadamard and (b) ordinary ordered Hadamard matrix; multiplied by the Haar
wavelet matrix. One can clearly see the block diagonal structure of the se-
quency ordering. The same block diagonal structure would bee seen, using
Paley enumeration.

In each of these inner products
@

x7, ψj,k
D

there will be an error ε, either due
to round off error, the wavelet crime, or inaccurate recovery. If ψj,k is smooth,
the error εψj,k will also be smooth, while a discontinuous ψ will lead to more
irregular error, even if the two errors have the same magnitude. In images a
smooth error is often less visible than an irregular error. [29, p. 287]

Coherence between Fourier and orthonormal wavelets

The previous setup was particularly simple as supppφq “ supppψq “ r0, 1q for
the Haar scaling function and wavelet. This made it possible to construct an
orthonormal wavelet basis on L2pr0, 1sq without any boundary wavelets. For
Daubechies wavelets with ν ě 2 vanishing moments, we know from theorem
3.6 that supppφq “ r0, 2ν ´ 1s and supppψq “ r´ν ` 1, νs. Thus, to construct
a wavelet basis on L2pr0, 1sq for compactly supported wavelets with ν ě 2
vanishing moments we have to handle the boundary problem.

In the coherence estimates provided by Adcock et al. in [2] one handles this
problem in a simplified setup. In their work one assumes that φ and ψ are
orthonormal with supppφq “ supppψq “ r0, as for some a ě 1. Further one
assumes that ψ has ν ě 2 vanishing moments. Using these wavelets one con-
structs an orthonormal basis on the interval r0, as, by considering all wavelets
intersecting this interval i.e.,

Λa “ tφk, ψj,k : supppφkq˝Xr0, as ‰ H, supppψj,kq˝Xr0, as ‰ H, j P Z`, k P Zu

where we have used the notation K˝ to denote the interior of a set K Ď R.
This construction essentially zero-expand all functions whose domain intersects
r0, as and apply the general wavelet theory for R on these zero-expanded func-
tions. This setup has two disadvantages [12]. Any function f whose domain
is extended from r0, as, to R by setting fpxq “ 0 for x R r0, as, is likely to be
discontinuous at 0 and a, even if the function itself is continuous on the orig-
inal domain. This discontinuity will necessarily introduce some large wavelet
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coefficients near the discontinuity. To overcome this difficulty Adcock et al.
samples functions with a wider support. That is

!

f P L2pRq : supp pfq Ď r´T1, T2s

)

Ě Closure pspan tρj P Λauq

In practice this means that not all the sampled functions f can be represented
by this wavelet basis.

The other disadvantage with this construction is that it uses 2ja ` a ´ 1
wavelets in each of the detail spaces Wj , j ě 0, for some a P N which depends
on ν. Ideally we would like the size of each of these spaces to be independent
of ν and contain only 2j wavelets.

To eliminate these drawbacks we shall apply the boundary wavelets intro-
duced in section 3.3. We recall that the orthonormal boundary wavelet basis
on r0, 1s was defined through the direct sum of the spaces V int

j0
‘8j“j0 W

int
j

where each subspace V int
j and W int

j consisted of 2ν boundary basis functions
and 2j ´ 2ν interior basis functions. That is

W int
j “ tψleft

j,0 , . . . , ψ
left
j,ν´1, ψj,ν , . . . , ψj,2j´ν´1, ψ

right
j,2j´ν , . . . , ψ

right
j,2j´1u

and similarly for V int
j0 . From equation (3.8) we learned that these boundary

wavelets and boundary scaling functions where created as finite linear combi-
nations of φj,k and ψj,k. All of these boundary basis functions will therefore
possess the same Lipschitz regularity α as φ and ψ [12].

The Fourier sampling basis on r0, 1s will consist of the basis functions

ϕkpxq “ e´2πikx
1r0,1spxq,

where we have used the notation

1Ipxq “

#

1 if x P I Ď R
0 otherwise

to denote the step function on some interval I Ď R.
The final step in the creation of an asymptotically incoherent matrix U,

is to order the Fourier sampling vectors according to increasing frequencies.
Thus, we let ϕ̃1 “ ϕ0, ϕ̃2n “ ϕn and ϕ̃2n`1 “ ϕ´n. Further we let ρn be
element n in the following ordering of the boundary wavelet functions

tφint
j0,0, . . . , φ

int
j0,2j0´1, ψ

int
j0,0, . . . , ψ

int
j0,2j0´1, ψ

int
j0`1,0, . . .u (5.3)

found in the spaces Vj0 ‘8j“j0 W
int
j . Applying this setup we are able to state

to following incoherence theorem.

Theorem 5.7 ([2, Thm. 7.15])
Let U be the isometry corresponding to the product between the Fourier sam-
pling basis tϕ̃nunPN and the orthonormal boundary wavelet basis tρnunPN. That
is

U “

»

—

—

—

–

u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .

fi

ffi

ffi

ffi

fl

, uij “ xρi, ϕ̃iy .
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We then have

µpPKKUq ď
C2
φint,ψint

Kπp2α` 1q p1` 1{p2α` 1qq
2p1`αq

(5.4)

µ
`

UPKK
˘

ď 2K´1|| pψint||28.

Where Cφint,ψint is some constant independent of K.

Proof. From [14, p. 216] we know that the Fourier transform of a function f
which is uniformly Lipschitz α ě 0 is bounded by

| pfpωq| “
C1

p1` |ω|q1`α

Thus, as φ and ψ are Lipschitz α we have that

|pφpωq| ď
Cφ

p1` |ω|q1`α
and | pψpωq| ď

Cψ
p1` |ω|q1`α

. (5.5)

We recall that the ν first and ν last boundary scaling functions and wavelets
are not translated by any integer k. That is φint

j0,k
pxq “ 2j0{2φleft

k p2j0xq for k “
0, . . . , ν´1, and similarly for the ν last functions. For k “ ν, . . . , 2j0 ´ν´1 we
have the usual translation φint

j0,k
pxq “ 2j0{2φp2j0x´kq. Due to this inconsistency

we need to treat the two cases separately. For k “ ν, . . . , 2j0 ´ ν ´ 1 we have
the following relation

ˇ

ˇ

@

φint
j0,k, ϕn

D
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż 1

0

φint
j0,kpxqe

2πinx dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

2j0{2φint `2j0x´ k
˘

e2πinx dx

ˇ

ˇ

ˇ

ˇ

“ 2´j0{2
ˇ

ˇ

ˇ

ˇ

pφint
ˆ

´2πn

2j0

˙

e2πink

ˇ

ˇ

ˇ

ˇ

“ 2´j0{2
ˇ

ˇ

ˇ

ˇ

pφint
ˆ

´2πn

2j0

˙
ˇ

ˇ

ˇ

ˇ

Similarly for k “ 0, . . . , ν ´ 1, 2j0 ´ ν, . . . , 2j0 ´ 1 we have

ˇ

ˇ

@

φint
j0,k, ϕn

D
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż 1

0

φint
j0,kpxqe

2πinx dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

2j0{2φint
k

`

2j0x
˘

e2πinx dx

ˇ

ˇ

ˇ

ˇ

“ 2´j0{2
ˇ

ˇ

ˇ

ˇ

pφint
k

ˆ

´2πn

2j0

˙
ˇ

ˇ

ˇ

ˇ

.

The exact same computations can be made for ψint
j,k, j ě j0. As all of these
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have the same regularity α it follows that

µ
`

PKKU
˘

ď sup
|n|ěK{2

max
ρP

V int
j0

À8
j“j0

W int
j

| xρ, ϕny |
2

“ max

#

sup
|n|ěK{2

max
jěj0

2´j
ˇ

ˇ

ˇ

ˇ

pψint
ˆ

´2πn

2j

˙
ˇ

ˇ

ˇ

ˇ

2

, sup
|n|ěK{2

2j0
ˇ

ˇ

ˇ

ˇ

pφint
ˆ

´2πn

2j0

˙
ˇ

ˇ

ˇ

ˇ

2
+

“ max
|n|ěK{2

max
jěj0

2´j
C2
φint,ψint

p1` |2πn2´j |q
2p1`αq

“ max
jěj0

2´j
C2
φint,ψint

p1` |πK2´j |q
2p1`αq

. (5.6)

Here Cφint,ψint “ maxtCφ, Cφleft
k
, Cφright

k
, Cψ, Cψleft

k
, Cψright

k
u is the constants know

from equation (5.5). The last equality (5.6) can be described as the function
fpxq “ x´1

`

1` πKx´1
˘´2p1`αq whose derivative satisfies f 1pKπp2α` 1qq “ 0

for x P r1,8s. Thus

µ
`

PKKU
˘

ď
C2
φint,ψint

Kπp2α` 1q p1` 1{p2α` 1qq
2p1`αq

.

Similarly, we get for 2p ď K ă 2p`1, p P N with p ě j0.

µ
`

UPKK
˘

“ max
kěK

max
nPZ

| xρk, ϕny |
2

“ max
jěp

max
nPZ

1

2j

ˇ

ˇ

ˇ

ˇ

pψint
ˆ

´2πn

2j

˙
ˇ

ˇ

ˇ

ˇ

2

“ 2´p|| pψint||28 “
2|| pψint||28

K

Due to this theorem, we see that Fourier measurements sparsified by a
Daubechies wavelet basis yield an asymptotically incoherent sampling basis.
We also see from equation (5.4) that the coherence will decrease in each row
for increasing regularity. This has been verified numerically in figure 5.5. In
this figure we have extracted three columns from the matrix U “ VdftΨ for
three different number of vanishing moments. As see from the plots in (d,e,f),
the asymptotic coherence decreases for increasing regularity.

5.3 Numerical experiments

Theorem 5.6 suggests that any sampling pattern should be signal dependent.
In particular, one should fully sample all parts of a signal which is non-sparse
and/or have high local coherence. On the other hand, one could reduce the
number of samples for sparse parts of the signal, and in areas which are locally
incoherent. In this section we intend to show numerically that this theorem
coincides with practical experiments.
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(a) DB1 (b) DB4

(c) DB10 (d)

(e) (f)

Figure 5.5: (a,b,c) Plot of |VdftΨ
´1
|, N “ 210, for various number of vanishing

moments. The three colored lines indicate the cross-section of the matrices
which have been extracted and plotted in the corresponding colored boxed
found in (d,e,f).

47



Flip test

We know from practical experience using Fourier and Hadamard sampling that
most of the signal energy will be contained within the first low frequent samples.
This is due to the high correlation between low frequencies and homogeneous
areas found in most signals. An example of this can be seen in figure 5.6,
where the absolute values of the different domains are plotted. Due to the
large magnitude of these low frequency samples, any recovery scheme failing to
recover these coefficients will find the recovered signal unrecognizable.

From theorem 5.7 we know that all of these low frequencies have a local
coherence of Op1q. Thus, according to theorem 5.6 it will require full sampling
rate to recover them.

Suppose we were in possession of a signal where the structure described
above for the Fourier and Hadamard domain where not present. That is a
signal where the low frequencies did not possess the most significant coefficients.
In that case, the low-pass filtering performed by the DWT would produce
coefficients close to zero, while the high-pass filters would give large magnitude
coefficients. This would cause the sparsity structure of the signal to change.

According to theorem 5.6, this would imply that we would have to change
the sampling pattern Ωs,M. Note, however, that this would contradict prin-
ciples such as the restricted isometry property and the null space property.
According to these principles we could recover any s-sparse signal with the
same error, regardless of the sparsity pattern and the sampling pattern. Thus
we will show numerically that for the setup we have used, none of these old
principles apply.

To test whether the recovery process is structure-dependent, as suggested
by theorem 5.6, we will create a signal where the significant coefficients are at
the lower half of the signal. This is done by reversing the DWT coefficients of
a signal, and transforming the coefficients back to its original domain. Next,
one can try to recover this new image through the usual setup. This is known
as the flip test. A detailed description is presented below.

Let c “ Ψx be the wavelet coefficients of the signal x P CN and let T P

RNˆN be the permutation matrix which reverses all vectors of length N . That
is c1 “ Tc will be the reversed wavelet coefficients of x, where c11 “ cN , c12 “
cN´1, . . . , c

1
N “ c1. Suppose we sample this reversed signal x1 “ Ψ´1c1, solve

(P1,η,Ω) and find the recovered reversed wavelet coefficients c71. If the recovery
process was successful we would expect that by reversing the recovered wavelet
coefficients back again, and transforming them to its original domain would
yield the same reconstruction as the unflipped signal. Thus if we let Ψ´1Tc71 “
x71 be the recovered flipped signal and let Ψc7 “ x72 be the recovered unflipped
signal, we would expect x71 « x

7
2. As we can see from figure 5.7 this is not the

case for both Fourier and Hadamard sampling.
As is evident from the test seen in figure 5.7, is that the optimal subsampling

strategy for these sampling bases is signal dependent. It is also obvious that
none of these bases satisfies the RIP or the NSP.

Two-dimensional compressive sensing

The setup seen in figure 5.7 involve two-dimensional signals, namely images.
For such setups there exists at least two possible extensions of the theory we
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Original domain Fourier domain Hadamard domain

(a) X (b) logp|VdftXVT
dft|q (c) logp|VhadXVT

had|q

(d) C1 “

Ψ´1TΨXΨTTT
pΨ´1

q
T

(e) logp|VdftC
1VT

dft|q (f) logp|VhadC1VT
had|q

Figure 5.6: Top row: The unflipped image in the three domains. Bottom row:
The image of the flipped wavelet coefficients in the three domains.

have discussed so far. The simplest of these extensions reshapes the signal
into one-dimension, and apply the one-dimensional theory we have already
discussed. This will destroy any structure in either the horizontal or vertical
direction, depending on how we reshape the signal.

The other solution is to extend our sampling basis and sparsifying basis by
the use of tensor products. This means that we will need to perform the sam-
pling and sparsifying transforms which know from the one-dimensional theory,
to both the columns and the rows of the images. Written in matrix notation,
we end up with the following system

PΩ

`

VΨ´1
˘

b
`

Ψ´1V
˘

vecpXq “ b (5.7)

where
vecpXq “ rx11, . . . , x1N , x21, . . . , . . . , xNN s

T

denotes the vectorization of a matrix by placing the matrix columns into a
single vector, and b is the Kronecker product.

To speed up numerical simulations, we note that the formulation in equation
(5.7) is equivalent to the following equation

VΨ´1XpΨ´1
qTVT “ B (5.8)
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Unflipped Flipped Sampling pattern

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: The flip test seen in practice. In the top row the same sampling
pattern have been used to sample both the flipped and unflipped signal, using
a Fourier sampling basis and the Daubechies 4 wavelet as sparsifying basis.
In the two next rows a Hadamard sampling basis have been used in the same
experiment, with two different sampling patterns.
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where we have omitted the projection operator, as it is cumbersome to express
in a two-dimensional setting. Using formulation (5.8) one can, however, apply
the one-dimensional transforms in OpN log2Nq operations to each row and
column, without explicitly creating a matrix. This saves memory and reduces
the total number of floating point operations as the cost applying aOpN log2Nq
transform N times is lower than applying a OpN2 log2N

2q one time.
In software packages such as SPGL1 [6], the setup described in (5.8) can

be implemented as a matrix operator. This operator starts by reshaping the
input vector into a square matrix, it then performs all the computations in
the two-dimensional domain. The resulting output matrix is then vectorized
before it is returned. This makes the algorithm observe the behaviour of (5.7)
while the actual algorithm uses (5.8). This is how all of the operators used to
create the CS-recovery images in this text, have been implemented.

Super-resolution

As we have already suggested, most real life signals are not sparse, but asymp-
totically sparse in wavelets. This means that the fraction of significant coef-
ficients within each level decreases asymptotically for higher order resolution
spaces. In addition, we know that the coherence in these high order resolution
spaces are close to being incoherent. Using theorem 5.6, this implies that we
can recover these higher order wavelet coefficients with very few samples.

On the other hand, if we sampled the signal at a lower resolution, then
both the number of significant coefficients of the wavelet decomposition, and
the coherence of the corresponding isometry would be higher. Hence, sampling
a low resolution approximation would require a higher fraction of samples to
obtain the same relative accuracy, as one obtains in a higher resolution system

This is verified in figure 5.8, where we have kept the fraction of samples
fixed, and sampled the images at different resolutions. As one can see from the
images, the error decreases for increasing resolution.

Error measurements To measure the error in an image reconstruction, can be
a cumbersome task, as two images can differ largely in any norm without being
different to the naked eye. Typical examples of this occurs if we translate
all pixels in an image by a few pixels in the same direction, or if we add a
small constant to all the pixel intensity values. Thus, in addition to viewing
the actual mathematical error, one should also consider the visual error in the
reconstruction.

For the error measurements used in figure 5.8, we have used the relative
error between the sampled image and its reconstructed version. That is

||X´X7||F

||X||F
,

where || ¨ ||F denotes the Frobenius norm. One could also argue that the error
should be measured using the σs,M measure, since we are searching for a solu-
tion c7 P Σs,M of (P1,η,Ω). This would be meaningful if the original signal was
ps,Mq-sparse or if the we had an estimate of the sparsity. In our setup, neither
the original set of wavelet coefficients c, nor the wavelet coefficients recovered
by the SPGL1 algorithm c7 will be ps,Mq-sparse. Instead both of them will
be compressible. This makes the lower bound of σs,M cumbersome to apply.
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Experimental setup All images used in this text have been captured by a con-
ventional digital camera. These images was captured as raw images, without
any image compression. The images have then been cropped into a 2048ˆ2048
image and stored in a lossless format. To obtain the lower resolution images
of dimension 1024 ˆ 1024, 512 ˆ 512 and 256 ˆ 256 the images was resam-
pled using the GNU Image Manipulation Program (GIMP) [22]. This program
implements a resampling strategy based on cubic interpolation, which the au-
thor did not bother to implement himself. All of the Fourier and Hadamard
sampling have then been applied to these digital images.

This setup have been used so that the results would not be overly optimistic.
If we instead had sampled an image stored in a lossy format, most of the low
magnitude coefficients would already have been truncated to zero. This would
have increased the signal sparsity, and simplified the reconstruction.

The author have not been able to test compressive sensing on 4096ˆ 4096
or larger images, due to the limitation in camera technology. The author could
of course used the conventional approach of image interpolation to increase the
size further [24, sec 2.4]. This would, however, also introduced sparsity as our
wavelet functions are orthonormal to polynomials.

5.4 Infinite dimensional compressive sensing

In most papers considering infinite-dimensional compressive sensing one does
only consider the Fourier sampling basis on Lp-spaces or some general sampling
basis on a Hilbert space [1, 11]. In this section, we will review this theory using
a Walsh sampling basis. The presentation will be non-exhaustive and is only
meant as a motivation for the coherence estimates for infinite-dimensional ma-
trices. Before we study this theory, we will start out by a simplified description
of how one obtains a continuous Hadamard sample. In this discussion we will
omit any technical details concerning the point spread functions blurring effect
on the signal [32], photonic noise [31], the required bit depth of the sensor [17],
and the leakage of light between the sampling mirrors [34].

The Hadamard sampling matrix can be used in any application where one
can obtain binary samples. Typical examples would be example 1.1 with a
counterfeit coin, single-pixel imaging [17, 35] and fluorescence microscopy [34].
In the two latter approaches the measurements are obtained from a continuous
two-dimensional signal. In these setups the light from the object being imaged
is directed towards a digital micro-mirror device (DMD), whose mirrors can
be turn either on or off. The light from the active mirrors are then directed
towards the sensor which produce an output voltage, whose strength represents
the number of photons the sensor perceived during exposure. A sketch of this
setup can be seen in figure 5.9.

This creates measurements bi, which are realizations of the inner product
xai,xy “ bi between the signal x P RN and a vector ai P t0, 1uN , whose entries
are either 0 or 1, depending on whether or not the corresponding mirror on the
DMD was turned on or off. To capture a row in the Hadamard matrix, one start
by obtaining a measurement b1 with all mirrors on. This can be modeled as a
sample from the sampling vector 1 “ r1, 1, . . . , 1sT . By applying the linearity
of the inner product, one can then obtain a row from the Hadamard matrix as

x1´ 2ai,xy “ x1,xy ´ x2ai,xy “ b1 ´ 2bi
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Original Recovery Sampling pattern

(a) 256ˆ 256 (b) Error 5.86% (c) 5%

(d) 512ˆ 512 (e) Error 3.68% (f) 5%

(g) 1024ˆ 1024 (h) Error: 2.49% (i) 5%

(j) 2048ˆ 2048 (k) Error: 1.89% (l) 5%

Figure 5.8: The relative error using Fourier sampling with 5% subsampling
and the DB-4 wavelet. The error is measured using the Frobenius norm.
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Light

Object

DMD
Sensor

Figure 5.9: Conceptual sketch of single-pixel imaging.

by choosing an appropriate pattern of the 1’s in ai. There are of course other
ways to create this sampling pattern from 0, 1 patterns, all of which use the
linearity of the inner product.

In the applications described above, the samples came from two-dimensional
signals, but to simplify the discussion we will assume the sampled signal is one
dimensional i.e. f : r0, 1s Ñ R. This means that the measurements we observe
in any of these applications come from the continuous integral

qfpnq “

ż 1

0

fpxqwnpxqdx

where wn denotes the Paley enumerated Walsh function.
If we applied these samples directly in a finite-dimensional setup, this would

lead to measurement mismatch [11] and the wavelet crime. To see this let qfN “
r qfp0q, . . . , qfpN ´ 1qsT P RN be the N first continuous Walsh measurements.
By multiplying VT

had
qf “ x one will project these samples onto a N -point

grid on r0, 1s. That is, the values of x will be given by the function fN pxq “
řN´1
k“0

qfpkqwkpxq [31].
If f is a smooth function, it will be sparse in wavelets. In the setup we have

presented above this can not happen, since we approximate f by the truncated
Walsh-series fN . These truncated series is spanned by the discontinuous Walsh
functions, which cannot be sparse in wavelets. Note, that this is not an issue
in the experiments we have presented above as these measurements emerged
from the Hadamard matrix Vhad, rather than the continuous samples qfpkq [31].
This is known as the inverse crime [25], and by committing it we will obtain
artificially good results.

To solve these problems we will consider the recovery problem of f as
infinite-dimensional. To do this, we recall from equation (5.3) that we let
tρnunPN denote the boundary wavelet basis belonging to the space V int

j0
‘8j“j0

W int
j . Next let

U “

»

—

—

—

–

u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .

fi

ffi

ffi

ffi

fl

, uij “ xwi, ρjy ,

be the isometry of `2pNq consisting of the sampling and sparsifying bases. Fur-
ther let qf “ r qfp0q, qfp1q, . . .sT be the infinite vector of Walsh samples of f . Then
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the problem we are trying to solve can be described in infinite-dimensions as

inf
zP`1pNq

||z||1 subject to PΩUz “ PΩ
qf

To solve this on a computer, we must project the problem into finite dimensions.
The simplest approach would be to approximate U by the matrix VhadΨ´1

P

RNˆN , but this would cause all of the problems presented above. Another
approach would be to project U onto RNˆN by P0

NUP0
N . Using this approach

would however ruin the isometry property of U. As an example one could find
that for a Fourier sampling basis this would create a condition number of 106

[1].
The solution to the discretization problem above is to choose a Ñ and

M̃ ď Ñ according to the balancing property [1]. This will ensure that the finite
matrix PÑUPM̃ preserves the required amount of isometric structure. Hence,
if we let Ω Ă t1, . . . , Ñu, |Ω| ď m and solve the finite dimensional problem

inf
zPP0

M̃
p`1pNqq

||z||1 subject to PΩP0
Ñ

UP0
M̃
z “ PΩ

qf (5.9)

we will see a substantial gain in performance. This is because we formulate the
problem as infinite-dimensional and then discretize, rather than applying the
discrete formulation directly. Examples illustrating the success of this theory
for a Fourier sampling basis can be found in [1, 31].
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CHAPTER 6

Coherence between Hadamard and
orthonormal wavelets

In chapter 5, we saw that Hadamard matrices were asymptotically incoherent
to the Haar wavelet matrix. In this chapter, we will generalize this result to all
compactly supported orthonormal Daubechies wavelets on an interval. As we
have already seen in figure 5.7, these wavelets combined with a Hadamard sam-
pling passed the flip test. This indicated that there is at least some incoherence
between the bases.

We will start this chapter with the actual coherence result, before we show
some numerical simulations indicating their accuracy. Finally, we end this
chapter with a short summary of this thesis, indicating how this result fits into
the rest of the theory we have presented.

6.1 Asymptotic coherence estimate

Lemma 6.1
Let ψ be a wavelet with supppψq Ď r0, 1s and let ψj,k “ 2j{2ψp2jx ´ kq for
j, k P Z` and 0 ď k ă 2j. Then

xψj,k, wnpxqy “ 2´j{2wn

ˆ

k

2j

˙

qψ
´Y n

2j

]¯

.

Proof.

xψj,k, wnpxqy “

ż 1

0

ψj,kpxqwnpxqdx

“

ż 1

0

2j{2ψ
`

2jx´ k
˘

wnpxqdx

“ 2j{2
ż 2´j

pk`1q

2´jk

ψ
`

2jx´ k
˘

wnpxqdx

“ 2´j{2
ż 1

0

ψpxqwn

ˆ

x

2j
`

k

2j

˙

dx

“ 2´j{2
ż 1

0

ψpxqwn

ˆ

x

2j
‘

k

2j

˙

dx (6.1)



“ 2´j{2wn

ˆ

k

2j

˙
ż 1

0

ψpxqwn

´ x

2j

¯

dx (6.2)

“ 2´j{2wn

ˆ

k

2j

˙

qψ
´Y n

2j

]¯

where we in equation (6.1) and (6.2) used lemma 4.7 and proposition 4.9a,
respectively.

In short, this lemma limits the size of the coefficients on the right hand side
of the isometry U “ VhadΨ´1. The factor wnp¨q is negligible as it is either ´1

or 1, while we would still need to limit the factor qψp
X

2´jn
\

q in order to get an
estimate of the coefficients in the lower half of U. The next lemma will do just
this.

Lemma 6.2
Let ψ : r0, 1s Ñ R be uniformly Lipschitz α ą 0. Next let n, p P Z` be such that
2p ď n ă 2p`1. Then for 0 ă α ă 1

qψpnq “

ż 1

0

ψpxqwnpxqdx ď C2´pα

and for α ě 1

qψpnq “

ż 1

0

ψpxqwnpxqdx ď C2´p

where C is some constant independent of n.

Proof. To simplify notation let ∆p
k “ r2´pk, 2´ppk ` 1qq. First we consider

0 ă α ă 1. Due to the Lipschitz regularity we know that there exists a
constant C such that ψpxq ď ψpsq ` C|s´ x|α for any s P r0, 1s. Hence,

sup
xP∆p

k

ψpxq ď ψ
´

2´pk ` 2´pp`1q
¯

` C2´pp`1qα

sup
xP∆p

k

´ψpxq ď ´ψ
´

2´pk ` 2´pp`1q
¯

` C2´pp`1qα.

From lemma 4.8 we know that on each interval ∆p
k, wn is constant equal

to 1 on one of the subintervals ∆p`1
2k , ∆p`1

2k`1, and equal to ´1 on the other.
Hence,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

∆p
k

ψpxqwnpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2´p
ˇ

ˇ

ˇ

´

ψ
`

2´pk ` 2´p´1
˘

` C2´pp`1qα
¯

`

´

´ψ
`

2´pk ` 2´p´1
˘

` C2´pp`1qα
¯
ˇ

ˇ

ˇ

ď 2´pC2´pα.

Thus,
ż 1

0

ψpxqwnpxqdx “
2p
´1
ÿ

k“0

ż

∆p
k

ψpxqwnpxqdx

ď

2p
´1
ÿ

k“0

2´pC2´pα “ C2´pα.
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Next, consider the case where ψ is uniformly Lipschitz α ě 1 on r0, 1s. Then
the derivative ψ1pxq exists for all x P r0, 1s. Thus by Taylors formula we know
that for any point s P r0, 1s we have

ψpxq “ ψpsq ` ψ1ptqpx´ sq

for some t in the interval containing both s and x. Using this formula we know
that

sup
xP∆p

k

ψpxq ď ψ
´

2´pk ` 2´pp`1q
¯

` sup
tPr0,1s

|ψ1ptq|2´pp`1q

sup
xP∆p

k

´ψpxq ď ´ψ
´

2´pk ` 2´pp`1q
¯

` sup
tPr0,1s

|ψ1ptq|2´pp`1q.

Hence, by applying the same technique as before, the result it self-evident.

A valid question is whether this result can be sharpened for functions which
are uniformly Lipschitz α ě 2. For such a function f , the corresponding Taylor
polynomials would be

sup
xP∆p

k

fpxq ďf
´

2´pk ` 2´pp`1q
¯

` f 1
´

2´pk ` 2´pp`1q
¯

2´pp`1q

` sup
xP∆p

k

|f2ptq|

2
p2´pp`1qq2

sup
xP∆p

k

´fpxq ď ´ f
´

2´pk ` 2´pp`1q
¯

` f 1
´

2´pk ` 2´pp`1q
¯

2´pp`1q

` sup
xP∆p

k

|f2ptq|

2
p2´pp`1qq2

Here the two first derivatives have the same sign. This ruins the cancellation
effects seen in the proof. This means that we can not expect to gain a lower
coherence by increasing the regularity. Thus, the effect seen in figure 5.5 can
not be expected. This has been verified numerically in figure 6.1, where we see
that increasing regularity does not affect the coherence.

Next, we shall see that the regularity of a function is unaffected by scaling.
We have now proven all the necessary lemmas, in order to obtain the final

coherence result between a Walsh sampling basis and Daubechies wavelets. Be-
fore we state the final theorem, we recall the ordering of the boundary wavelet
basis introduced in equation (5.3). That is ρn denotes element n in the follow-
ing ordering of the basis

tφint
j0,0, . . . , φ

int
j0,2j0´1, ψ

int
j0,0, . . . , ψ

int
j0,2j0´1, ψ

int
j0`1,0, . . .u.

Theorem 6.3
Let U correspond to the isometry generated by the Paley enumerated sampling
basis twn´1unPN and the orthonormal boundary wavelet basis tρnunPN on the
interval r0, 1s, for a wavelet with ν vanishing moments and a uniform Lipschitz
regularity α ą 0. That is

U “

»

—

—

—

–

u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .

fi

ffi

ffi

ffi

fl

, uij “ xρi, wjy
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(a) DB1 (b) DB4

(c) DB10 (d)

(e) (f)

Figure 6.1: (a,b,c) Plot of |VhadΨ´1
|, N “ 210, for a sequency ordered

Hadamard matrix and various number of vanishing moments. The three col-
ored lines indicate the cross section of the matrices which have been extracted
and plotted in each of the three colored boxed found in (d,e,f).

59



For β “ mint1, αu and p ě j0 we then have

µ
`

PK2pU
˘

ď K2´pβ

µ
`

UPK2p

˘

ď 2´pp´j0qD2,

where K is some constant independent of p and

D “ max
!
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψleft
j0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
, . . . ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψleft
j0,ν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψright
j0,1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
, . . . ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ψright
j0,ν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
, ||ψj0 ||8

)

.

Proof. The space Vj0 is spanned by 2ν boundary scaling functions and 2j0´2ν
of the usual Daubechies scaling functions with a support strictly inside r0, 1s.
Similarly the Wj , j ě j0, is spanned by 2ν boundary wavelets and 2j ´ 2ν
of the usual Daubechies wavelets. Further, we know from equation (3.8) that
all of these boundary functions can be written as linear combinations of the
scaling and wavelet functions. Thus, they have the same regularity as φ and
ψ.

From lemma 6.2 we know that

qφint pnq ď C2´pβ , qψint pnq ď C2´pβ

for n so that 2p ď n ď 2p`1. For all j ě j0, with j “ j1 ` j0, we know that
all of the functions φint

j,k and ψint
j,k are supported on r0, 1s. The ν first and ν

last of these functions, are not translated as the other 2j ´ 2ν wavelets and
scaling functions. In the following, we are only interested in the absolute value
of the Walsh transform of these functions. From lemma 6.1 this absolute value
will be unaffected by the translation by k. To shorten the argument we will
therefore assume all of them are translated by k. As the regularity of all these
functions are the same, our use of lemma 6.2 will also be unaffected by this
abuse of notation.

From lemma 6.1 we know that
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Next note that due to lemma 6.2 we obtain the following relation for 2p ď n ă
2p`1,

|
@
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|2 ď 2´j1
ˇ

ˇ

ˇ
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]¯
ˇ
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2

ď

#

2´j1D2 j1 ą p

2´j1C2´2pp´j1qβ j1 ď p
.

Here the last equality for j P r0, ps can be written as 2´2pβC2p2β´1qj1 . From
table 3.1 we know that α « 0.55 for ν “ 2, and that the regularity increases
with the number of vanishing moments. This implies that β ą 1

2 , which again
implies that 2´2pβC2p2β´1qj1 attains it maximum for j1 “ 0. This fact will be
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used in the following calculations
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with K “ maxt2´1D2, Cu. Here we used the fact that β ą 1
2 to obtain the

inequality C2´2pβ ă C2´p. Similarly we obtain
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In the theorem above we have only considered the Paley enumerated Hadamard
matrix. Note, however, that due to lemma 4.6 we have the following relation

span
 

WALpn, ¨q : n P t2p, . . . , 2p`1´1u
(

“ span
 

PALpn, ¨q : n P t2p, . . . , 2p`1´1u
(

,

for all p P N. Thus, the result should hold equally well for the sequency ordered
Hadamard matrix.

6.2 Accuracy of the results

In the proof above we have only considered boundary wavelets, as these wavelets
preserve all vanishing moments. Another approach would have been to create
a periodic wavelet basis on r0, 1s or some other interval r0, as, a ě 1, as was
done in [2]. The later approach would of course require us to extend the Walsh
functions to R`. This is done in e.g., [20] and [23, sec 1.5]. An advantage
with this approach would of course be that we could decompose the space Vj0
further into the spaces V0 ‘

j0´1
j“0 Wj
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To verify the above results in a finite-dimensional setup, the two matrices
ˇ

ˇVhadΨ´1
ˇ

ˇ “ |U| P CNˆN , N “ 2R can be multiplied together in order to
find the maximum element in each of the rows and columns. This is done in
figure 6.2 for the Daubechies wavelet with 2 and 3 vanishing moments. For
both of these wavelets, a periodic wavelet basis and a boundary wavelet basis
have been applied. As seen in the figure, some of these boundary wavelets have
a higher constant than the interior wavelets. If we consider the plots of the
wavelet functions for ν “ 2 vanishing moments, found in figure 3.2 and 3.4, we
would find that ||ψleft

1 ||8 « 2.4, while ||ψ||8 « 1.8. Approximately the same
difference would have been found for boundary wavelets with ν “ 3 vanishing
moments. It is therefore not surprising that both of these boundary wavelet
bases have a higher constant than their periodic equivalence.

One thing which is surprising is the fact that it is the right boundary wavelet
which creates these large constants. This can be seen by studying the Ψ´1

matrix, whose N{2 rightmost columns consists of the filter coefficients of g,
shifted by two entries between each column. The ν last of these columns will
consist of all the different gright filters. Thus, by considering the absolute sum
of these high-pass filters for ν “ 2 vanishing moments we see that

ÿ

n

ˇ

ˇgleft
1 rns

ˇ

ˇ “ 1.6017,
ÿ

n

ˇ

ˇ

ˇ
gright

2 rns
ˇ

ˇ

ˇ
“ 2.0858,

ÿ

n

ˇ

ˇgleft
2 rns

ˇ

ˇ “ 1.6794,
ÿ

n

ˇ

ˇ

ˇ
gright

2 rns
ˇ

ˇ

ˇ
“ 1.5988,

ÿ

n

|grns| “ 1.6017

the filter gright
2 creates the high coherence. The sum of gright

2 is in fact so large,
that the coherence of µ

`

UPK2p

˘

between level 214 and 215 is the same for a
system of size N “ 216. This can be seen in figure 6.3(b).

The same effect with constant coherence occur in figure 6.3(d) as well. This
can be seen between the levels 214 and 215 for µ

`

PK2pU
˘

. In this case the same
is true for the periodic wavelet basis.

To plot the upper coherence boundaries found in theorem 6.3 is a cumber-
some task, as an estimate of the constants C and D is needed. In the plots
found in figure 6.3 we chose D “ 2.5 for the boundary wavelet, while D “ 1.9
for the periodic wavelet bases. These choices are based on the maximum ab-
solute value of the wavelets found in figure 3.2 and 3.4. In these plots we
simply omitted the constant 2j0 to keep the upper bound closer to the actual
coherence.

The final coherence estimate created in theorem 6.3 is infinite-dimensional.
For future work, an interesting experiment would therefore be to apply this
estimate in an infinite-dimensional setup. This could be done by choosing
Ñ and M̃ in the balancing property according to this estimate, and obtain
continuous Walsh-samples qfpkq from some function f . Further one would have
to apply the setup introduced section 5.4 and solve equation (5.9), to obtain a
finite dimensional solution.
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6.3 Summary

In this thesis we started by reviewing some of the limitations of the traditional
theory within the field compressive sensing. We also verified numerically that
the new principal of a multilevel random subsampling scheme outperformed
the traditional principle of uniform random subsampling. In chapter 2, we
studied how the `1-minimizer could be used to find a unique sparse solution in
an underdetermined linear system of equations. Furthermore, we introduced
the SPGL1 algorithm, which could solve the QCBP problem with matrices
acting as linear operators by computing all matrix multiplications in-place.

Next, the necessary theory of wavelets and Hadamard matrices were re-
viewed in chapter 3 and 4. In chapter 5 we described the mathematical theory
which explained why a multilevel subsampling strategy could guarantee recov-
ery of a sparse signal. To provide this recovery guarantee, a critical requirement
was to use a sampling basis which was asymptotically incoherent to the sparsi-
fying basis. We then showed that the Hadamard sampling basis and the Haar
sparsifying basis possessed this property, before reviewing the proof of the same
result for a Fourier sampling basis and a Daubechies wavelet basis. Afterwards,
we conducted some practical experiments verifying that the multilevel random
subsampling scheme worked for these bases. We then concluded chapter 5 with
a brief introduction introduction to infinite-dimensional compressive sensing.

In this final chapter we have applied our knowledge from the three pre-
vious chapters to provide a new asymptotic coherence estimate between the
Hadamard sampling basis and the Daubechies wavelet basis. Additionally we
have studied the coherence of some finite-dimensional matrices, and found that
the new coherence estimate found in theorem 6.3 provided an upper bound on
the coherence in these matrices.

As a part of this work there has also been created an open-source imple-
mentation of the Hadamard transform in C++ with bindings to Matlab and
Python. This code have proven to outperform Matlab’s own implementa-
tion, and extend Python with lacking functionality. Additionally, there have
been developed an open-source implementation of the SPGL1 algorithm, mak-
ing all of the result presented here reproducible without any affiliation with
commercial software, such as Matlab. Such a setup would of course require
some programming experience with C++. All code used to create any figure
in this text have also been made publicly available, so that any result can be
understood and reproduced. This is done in the spirit of reproducible research.
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(a) (b)

(c) (d)

Figure 6.2: The maximum entry in each row and column found in the matrix
U “ VhadΨ´1 for Ψ´1 with a periodic wavelet basis and a boundary wavelet
basis.
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(a) (b)

(c) (d)

Figure 6.3: The coherence for various projections of the matrix U “ VhadΨ´1

for Ψ´1 with a periodic wavelet basis and a boundary wavelet basis. For the
boundary wavelet basis D “ 2.5 while for the periodic D “ 1.9, the value of p
is p “ tlog2pnqu.
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