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Abstract

Reserving against future claims and settlements is vital for insurance companies, in
the sense that it influences how they may price their products and the solvency of the
insurance company. This thesis will present and compare two models that can esti-
mate the outstanding liabilities: The well known and well used Chain Ladder model
which uses aggregated data and the Kaminsky approach that divides the problem
into modelling counts and losses separately and regard the delay in IBNR and RBNS
as multinomial phenomenon governed by delay probabilities. Mean square error will
be used to compare these methods. The thesis will provide a theoretical basis for each
method and an analysis when implemented on fire and car insurance data provided
by a Norwegian non-life insurance company. A large portfolio approximation will
be done analytically, which will confirm with the observation done in the numerical
study that for large portfolios it will be more accurate to model claim counts and
sizes separately than using aggregates to estimate the outstanding liabilities. The
more heavy-tailed the claim size distribution is, the more superior will the Kaminsky
approach be.

Key words and phrases: Chain Ladder, Kaminsky approach, estimation error,
large portfolio approximation, multinomial distribution, IBNR, RBNS, Bootstrap-
ping, Monte Carlo
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Chapter 1

Introduction

1.1 Non-life insurance

In this thesis we are going to consider the claims reserving problem for a branch
of insurance products known as non-life insurance. In the UK, non-life insurance
branch is known as General Insurance and in the USA as Property and Causality
Insurance. In Europe it is mainly known as non-life insurance, which is the term that
will be used in this thesis. Non-life insurance contain all kinds of insurance products
except life insurance. The reason for separating them is that life insurance products
are somewhat different from non-life insurance contracts. The differences can be
seen in the type of claims, risk drivers, terms of contracts, etc. As a consequence,
life and non-life insurance products are modelled quite differently.

The non-life insurance branch operates in the following line of business (Wütherich
and Merz, 2008):

• Motor/car insurance, for example: third party liability.

• Property insurance, for example: against fire, water, flooding and etc.

• Liability insurance, for example: private and commercial liability.

• Accident insurance, for example: personal, compensation for workers.

• Health insurance, for example: personal.

• Travel insurance.

• Credit insurance.

• Other insurances such as aviation, marine, legal protection, etc.

We have been fortunate enough to be given insurance data from a Norwegian non-life
insurance companya. The dataset contains car and fire insurance data which can be
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found in Appendix B. The fire insurance data only contains fire damages on villas
while the car insurance data contains data on personal injuries caused in car related
accidents. These datasets are both RBNS datasets.

1.2 Course of events

Every day there are hundreds of accidents and the chances are that most of us will, at
one point or another, experience an incident where an insurance company is involved.
We will now present the course of events that are set in motion when an incident
happens and an insurance company has to get involved. A typical timeline of events
can be seen in Figure 1.1.

First and foremost the policyholder have to be insured against that certain kind of
accident, if not the policyholder has to pay the full amount. An insurance contract
that specifies what or who is insured, and what it or they are insured against, has to
be signed. This provides the insurer with a fixed amount of money, called premiums,
and the insured with a financial coverage against random well-specified events. This
insurance contract also has to mention in what time period the contract is valid,
which depends on what kind of insurance is signed. Property insurance is usually
valid for a time period of one year, while life insurance last longer. In property
insurance property is usually insured for example: villas, cabins, houses, cars, boats
and pets. In life insurance people get insured against for example: death, disability,
etc. The right of the insured to collect these amounts, in case the event happens,
creates a claim by the insured to the insurer. The amount which the insurer it
obligated to pay in a case of a claim is known as the claim amount or the loss
amount. The policyholder is not always the one who is insured. It could be that a
mother insures her family, and in that case the mother is the policyholder while her
family is insured and the insurance company is the insurer.

The reserving problem that arises because the delay between the accident date and
the reporting date is know as the IBNR problem, “Incurred, But Not Reported”. The
reserving problem that arises because of delay between the reporting date and the
claims closing date is called the RBNS problem, “Reported, But Not Settled”. We
will go more in-depth in both cases below.

1.2.1 IBNR

If an accident happens it will have to be reported to the insurance company including
the date of the accident. With this information the insurance company has to decide
if the accident can be linked up to a policy the policyholder is holding. It is important
that the policyholder had a valid insurance contract for that specific accident at the
time of the accident. The policyholder is not always certain when the accident

aThe name of the Norwegian non-life insurance company will not be specified as they wish to
remain anonymous

2



1.2. COURSE OF EVENTS

T ime

Contract periode

Accident date

Reporting date

Claims
payments

Claims closing

Reopening

Payments

Claims closing

Figure 1.1: Typical timeline of a non-life insurance claim

happened. For example if some damage happened to ones cabin, it could take a
while before it is noticed. Another example is if a water leak went unnoticed, and
later caused mold damage in the house. In such cases the insurance company have
to call in a expert to estimate the date of the accident. The insurance company that
insured the house during the period when the accident happened will have to cover
the damages. These delays are not uncommon, but rather a big part of the daily
routine of an insurance company. Delays can vary from hours or days to months or
years. One of the reasons for such delays could be as mentioned above, water leaks
or damage on ones cabin. Several other examples of IBNR claims are listed below:

• An accident could not be reported right away because it happened during a
holiday.

• An accident happened and the policyholder was hospitalized and thus could
not report the accident right away.

• A slowly developing occupational disease that was not discovered until several
years later.

• A doctor being sued for malpractice because of an operation he or she pre-
formed several years ago.

Each year accidents are reported to the insurance company with a delay, as men-
tioned above. In all of Europe, insurance companies are obligated to put aside an
amount of money to pay all claims for accidents happening during a year. In other
words insurance companies have to reserve money for claims they do not know any-
thing about, and that can occur in the future. This is called IBNR reserving.

1.2.2 RBNR

When an accident is reported the insurance company will try to figure out if the
accident is something their policy will cover or not. All accidents or claims the
insurance company are actively working on are referred to as “open”. When it seems
like there will be no more payouts, the case is referred to as “closed”. When small
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accidents happen, like baggage getting lost in transit, the payouts are minor and
the case is closed relatively fast. In cases where there are bigger accidents, like a
house burning down, the case will stay open for while. The insurance company have
to make an assessment of the scope of the accident and expected cost. They will
probably have to do inspections of the accident site to make a full assessment. If
a person is injured, a doctor needs to be consulted. In this period there will be no
big payouts, just minor payouts to cover assessment expenses, medical consultations
and other minor expenses.

The major payouts happen when the damages are evaluated. In the case of a burnt
down house the rebuilding will start, or in the case of personal injury, the medical
treatment and rehabilitating will commence. In this period the insurance company
will not really know the overall cost of the accident, and they will have to appraise
it continuously. In this period the case is labelled as “open”, until there are no more
payouts. In some cases, given the insured had disability insurance, the case will
remain open for the rest of the insured individuals’ life.

A case that gets closed because the insurance company is not expecting there to be
any more payouts, can still be re-opened. The policyholder might not be satisfied
with the compensation he or she received, or additional information may have sur-
faced. In situations like these the case might be re-opened and it will have to go
through the same stages again. The insurance company will have to re-evaluate to
see if there is any basis for the customers dissatisfaction, or to see if the additional
information that surfaced provided grounds for more compensation. If it does, the
expected costs and payouts have to be re-assessed and the payouts will start again.

The problem that arises because of the delays in settlements are called RBNR prob-
lem. Just as with the IBNR, the insurance will have to put aside an amount of
money, or reserve, so that they can pay the future payouts for the accidents that
have been reported that year. Therefore this is also a big part of the daily routine
of an insurance company.

Not all claims begin as an IBNR problem and then become a RBNS problem. Some
are only IBNR, and some only RBNS. In some cases the accident is noticed quite
early, but the settlements take some time. In other cases it takes some time before
the accident is noticed, but then it is settled at once. It is a matter of fact that a
lot of non-life insurance company have more RBNS cases then IBNR. The number
of IBNR cases are also steadily declining for some products, for example personal
injury from car collisions. The reason is the car manufacturers are building better
and safer cars, the governments are building better roads and people are driving
safer. These are some of the factors that contribute to fewer IBNR cases.

1.3 Reserving future claims and payouts

Estimating IBNR and RBNS reserves is probably one of the most important jobs
of an actuary working in an insurance company. These estimates will affect the

4



1.3. RESERVING FUTURE CLAIMS AND PAYOUTS

profitability of a insurance company and bad estimates could have grave consequences
for the company. If the actuary over-estimates the reserve it could lead to the
insurance company having less money to invest in the market. It could also make it
seem like the company is not preforming well, which could lead to them increasing
the price of their insurance products. This will not make them popular among their
customers. If the actuary under-estimates the reserve it may seem as the company
is performing well, and they might decrease the price of their products. This would
make them less equipped to tackle unforeseen claims from past accidents which could
have grave consequences for the insurance company. The worst case scenario would
be that they are insolvent.

As the consequences of over- or underestimating the reserves could be grave, it
is important to estimate the necessary reserves as exact as possible. There exist
many possible methods for estimating reserves for IBNR and RBNS, like the Chain
Ladder method, Bornhuetter-Ferguson method, and others. Both the Chain Ladder
method and Bornhuetter-Ferguson method are purely algorithmic methods and uses
aggregates to estimate the outstanding liabilities. In the actuarial community there
has been some discussions about the convenience of using aggregated data. For
presenting the data it is quite suitable, but there could also be loss of information,
and in some cases it could lead to poor estimation of the outstanding liabilities.
There is a lot of literature that supports using the individual loss data; see Norberg
(1989), Norberg (1993), Kaminsky (1987) and Verrall, Nielsen and Jessen (2010).
When it comes to the lack of stochasticity in the Chain Ladder method it is shown in
Wütherich and Merz (2008) that there are in fact several different stochastic models
that justify the Chain Ladder method and the Bornhuetter-Ferguson method. One
of the models that leads to the same reserve estimates as the Chain Ladder method
is the Poisson model. It should be noted that this revelation was made by the
actuaries several years after the algorithm was constructed. Nevertheless the Chain
Ladder method and the Bornhuetter-Ferguson are two of the most popular methods
of calculating the reserves.

Since none of those who argued for employing the individual loss ever ranked their
methods in terms of accuracy, this will be the objective of this thesis. The method
that we propose as an alternative to the Chain Ladder method is a approach were we
divide the problem into counts and losses and regard the delays in IBNR and RBNS
as a multinomial phenomenon governed by delay probabilities. Kenneth Kaminsky
was probably the most adamant spokesman for this approach, see Kaminsky (1987),
which concerns only the IBNR situation. A similar approach can be done for the
RBNS situation, see Verrall et al. (2010). In Bølviken (2015) the author assigns
Kaminsky’s name to the model and focuses mostly on the IBNR situation. This
thesis is inspired by that paper and will adopt the same name for modelling RBNS
reserves.

In Bølviken (2015) it is shown that breaking down the problem into counts and losses
is always more accurate than using aggregates when estimating the IBNR reserve.
In this thesis we will investigate if this holds true for the RBNS as well.
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1.4 Objective and outline of the thesis

The objective of this thesis is to tackle the question: Should one use aggregated data,
which is what the Chain Ladder method applies, or will dividing the problem into
modelling the claim frequency and the claim sizes separately improve the reserve
estimate? The mean square error will be used to compare these two models to
investigate their uncertainties and bias in the estimation of the RBNS outstanding
liabilities. To this end we will perform a data study, numerical study and solve it
analytically. Everything but basic probability theory will be explained in the thesis.

Chapter 2 is dedicated to introducing both the Chain Ladder method and the Kamin-
sky approach and will explain how they can be implemented on both IBNR and
RBNS reserve problems. Since the IBNR reserve problem is explained in great de-
tail and solved for an IBNR case in Bølviken (2015), this thesis will mainly concern
the RBNS reserve problem. In Chapter the Chain Ladder method and the Kaminsky
approach will be implemented on real RBNS data from a Norwegian non-life insur-
ance company. The goal will be to observe and discuss the different obstacles one
may encounter when implementing these methods. We will also use bootstrapping
to quantify the uncertainty and bias in the estimation of the outstanding liabilities.
In Chapter 3 we will implement the methods on a simulated dataset, where we know
the underlying situation perfectly to better examine the uncertainty and the bias in
the estimation of the reserve. In Chapter 4 we will embark on finding an approximate
expression for the uncertainty for both models, and compare them to maybe figure
out which model is more accurate. Chapter 5 will present the concluding remarks
for this thesis. In Appendix A the various distributions for modelling claim counts
and claim sizes that are used in this thesis will be introduced. The fire insurance
data and the car insurance data from the Norwegian non-life insurance company is
introduced in Appendix B. The computer program that was used in the various sim-
ulations and to produce the different plots can be found in Appendix C. The script
language that was used in this thesis is R, RStudio Team (2015), and will henceforth
not be referenced to throughout the thesis.
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Chapter 2

Modelling delay

2.1 Notation

Considering an IBNR and a RBNS situation, we assume that we are at the end of
year I, and i, 0 ≤ i ≤ I are historical data going back I+1 years while k, 0 ≤ k ≤ K
are the development years. The interpretation of i depends on if it is an IBNR or
a RBNS case. If it is an IBNR case, i is denoted as the accident year or occurrence
year. When considering a RBNS case it is interpreted as the year the claim was
reported. This will be called reported year.

The Xik has the interpretation of the sum of claims that were reported in year i
and was settled k years later. In an IBNR case the interpretation is the sum of
claims that incurred in year i and was reported k years later. Xik is an observation
if i+ k ≤ I. Each of them can be broken down into counts Nik and losses per event
Zi,k,1 , Zi,k,2 , ... so that:

Xik =

Nik∑
l=1

Zi,k,l. (2.1)

It is now possible to present the outstanding loss liabilities Ri as:

Ri = Xi,I−i+1 + · · ·+Xi,K , i = 1, · · · , I, (2.2)

which is the amount the insurance company has to reserve against. The issue that
will be addressed in this thesis is whether it is better to estimate the outstanding
loss liabilities Ri by taking use of the aggregates, or by breaking it down into counts
and losses and model them separately.
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CHAPTER 2. MODELLING DELAY

2.2 Claims development triangles

When working with outstanding loss liabilities one often studies them in so-called
claims development triangles, where the insurance claims are separated on two axes
as in Figure 2.1. As mentioned above, the most recent accident/reported year is
denoted by I while the last development year is denoted by K.

Development years k

0 1 · · · k · · · K-1 K

Occurance
years i

0
1
...

i
...

I-1

I

Remaining
claims
N0,R

N1,R

...

Ni,R
...

NI−1,R

NI,R

Observations Ci,k, Xi,k, Ni,k
i+ k ≤ I

Predicted Ci,k, Xi,k, Ni,k
i+ k > I

Figure 2.1: Claims development triangle

It is worth mentioning that we do not necessarily have to use development years as
a measuring unit. Using development periods, where periods can be weeks, months,
etc. is another possibility. It really depends on how the insurance company want to
utilize the data they have acquired. When it comes to the data we have been given,
it is most convenient to use years.

Xi,k has the same interpretation as above while Ci,k are defined as:

Ci,k =

k∑
j=0

Xi,j (2.3)

which is interpreted as the cumulative claim losses that were reported in year i and
were settled at most k years later. This interpretation regards a RBNR case. In an
IBNR case the cumulative claim losses are interpreted as the claims that incurred in
year i and was reported at most k years later.

Claims Xi,k and Ci,k, as mentioned above, are usually studied in a claims devel-
opment triangle where the accident/reported years are specified on the y-axis and
development years on the x-axis, as in Figure 2.1. At time I the claims development
triangle is split into two parts: The upper triangle or trapezoid which shows our
historical data, and the lower triangle with the predicted or estimated values of Xi,k

or Ci,k.

When working with an IBNR problem, the column "Remaining claims" does not
exist. The insurance company do not have any knowledge about the total amount of
claims that occurred in accident year i , assuming that year i is not fully developed
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2.3. THE CHAIN LADDER

by the end of year I. In other words, when modelling the lower triangle the claim
numbers are independent of each other. In a RBNS case the insurance company
knows exactly how many claims were reported in reporting year i . So when predict-
ing the number of claims in the lower triangle, we have to condition on the number
of claims that have not been settled by the end of year I. Hence, the last column
is of importance in a RBNS case when using the Kaminsky method. The Chain
Ladder method has no need for information about the number of claims because it
only estimates the accumulated claim sizes as we will see in the next section. This
is the main difference between IBNR and RBNS cases.

Most textbooks do not emphasize the ramification of the absolute sizes of I and K
in a claims development triangle. There are three possibilities: K < I, K = I and
K > I. The first possibility, where there are more accident/reporting years than
development years is not a problem because we have enough historical data that we
can use to estimate or predict the future payouts. In this case there will be a upper
trapezoid and not a upper triangle of observed information. The second possibility
is the same as the first, because there is enough historical data to predict or estimate
the future payouts. The third possibility do cause some problems. In this case we
have more development years than accident/reporting years, in other words we do
not have enough information to estimate or predict future payouts with the models
that are presented later on. A part of the solution could be to parametrize the
delay probabilities, but in this thesis we will only consider the two first possibilities,
because the last one is in itself a master’s thesis.

By definition, Xi,k and Ci,k are observations if i+ k ≤ I. This means that we have
to use the observations in the upper triangle/trapezoid,

DI = {Xi,k, Ci,k; i+ k ≤ I, 0 ≤ k ≤ K},

to estimate or predict the lower triangle Dc
I = {Xi,k, Ci,k; i+ k > I, i ≤ I, k ≤ K}.

2.3 The Chain Ladder

The Chain Ladder method is probably one of the most popular ways to estimate
reserves. The main reason is the fact that it is distribution-free, in other words
non-parametric. It is also known for its simplicity where the basic assumption is
that patterns in the claim losses observed in the past will continue in the future
(Haavardsson, 2014). This assumption is intuitive and basically says that there exist
factors for each development year that describe how the total cumulative claim losses,
Cij , will change from one development year to the next.

We will consider Thomas Mack’s distribution-free Chain Ladder where there are
two embedded assumptions in the Chain Ladder method. The first assumption is a
Markov-like assumption that says there exists factors f1, · · · , fK and l1, · · · , lK such

9



CHAPTER 2. MODELLING DELAY

that:

E[Ci,k+1|Ci,0, · · · , Ci,k] = Ci,kfk+1 and Var(Ci,k+1|Ci,0, · · · , Ci,k) = Ci,klk+1.
(2.4)

The second assumption of the Chain Ladder method is that the variables, Ci,k, from
different reported years are independent, i.e.:

{Ci,0, · · · , Ci,I} , {Cj,0, · · · , Cj,I} , i 6= j , are independent. (2.5)

These two assumptions are implicitly assumed in the Chain Ladder algorithm. When
working with the Chain Ladder method, one usually use the development triangle
in Figure 2.1 with Ci,k’s.

The method is the same for both the IBNR and the RBNS case. Since we are at the
end of year I, all the Ci,k’s which satisfy i + k ≤ I are known, i.e. observed data.
In the first column, which equals k = 0, we find the aggregated claims that were
reported and settled the same year. The second column equals to those aggregated
claim reports that were settled the year they were reported and the year after. With
these interpretations in mind, we have that CI,K is the aggregated claim losses that
were reported in year I and were settled up to K years later. The interpretation of
the IBNR case is similar to the RBNS case, but uses “incurred and reported” instead
of “reported and settled”. As of now we will only give the interpretation of the RBNS
case as it is equivalent to the IBNR case, except the difference in wording.

To estimate the future cumulative reported claim losses, we will have to take a look at
the Markov-like assumption in (2.4) left. To be able to estimate the next cumulative
reported claim loss we have to multiply the previous cumulative reported claim loss
with a factor fk. This seems to correspond with what was mentioned earlier, that
there exists patterns in how the aggregated reported claim losses evolve from one
development year to the next.

A way to estimate these fk’s is by dividing the cumulative reported claim losses
up to and including development year k , by the cumulative claim losses up to and
including development year k -1, i.e.:

f̂k =

∑I−k
i=0 Ci,k∑I−k
i=0 Ci,k−1

for k = 1, · · · ,K. (2.6)

If we divide the numerator and the denominator by I − k + 1 we will notice that f̂k
is the average payout after k years divided by the average payout after k -1 years.
This makes it an estimate to predict how the future losses will evolve. If we take a
closer look at equation (2.6) for I = 2 we will get:

f̂k =
C0,k + C1,k + C2,k

C0,k−1 + C1,k−1 + C2,k−1
.

Each f̂k for 1 ≤ k ≤ I is estimated by using as much data as possible from the
different claim reported years. Further analysis could be made for f̂k: If f̂k ≤ 1 we
could conclude that the cumulative reported claim losses would in average decrease

10
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from development year k -1 to k . The opposite would apply to f̂k ≥ 1, and if f̂k = 1
there would be no change in average. Another interesting aspect of (2.6) seems to be
an underlying assumption of the Chain Ladder method: f̂k for a specific development
year is assumed to be the same for all reported claim years. In other words, how the
cumulative reported claim settlements evolve from one development year to the next
is independent of when they were reported. This coincides with what was mentioned
earlier.

When Ci,k is known the next one, Ci,k+1, can be found by multiplying Ci,k with
f̂k+1. Ci,k+2 can be found by multiplying Ci,k+1 with f̂k+2 and so on. It is therefore
possible to write Ci,K like:

Ci,K = Ci,K−1fK = Ci,K−2f̂K−1f̂K = · · · = Ci,kf̂k+1 · · · f̂K−1f̂K = Ci,I−i

K∏
k=I−i+1

f̂k.

As shown above, this simmers down to multiplying the “last” known observation with
the remaining factors. We then have that:

Ci,k = Ci,I−i

K∏
j=I−i+1

f̂j for k = I − i+ 1, · · · ,K. (2.7)

With (2.6) and (2.7) we have the algorithm that will let us fill in the lower triangle
in Figure 2.1.

With the definition of Ci,k it is possible to write the outstanding amount (2.2) dif-
ferently so that it coincides with the Chain Ladder notation.

RCLi = Xi,I−i+1 + · · ·+Xi,K

= Ci,K − Ci,I−i. (2.8)

We can now use what has been shown above to easily express Ci,K with Ci,I−i, i.e.:

R̂CLi = Ci,I−i(f̂I−i+1f̂I−i+2 · · · f̂i,K − 1), (2.9)

which has a multiplicative structure. This will be of importance later on.

2.4 Using delay probabilities

Using delay probabilities is probably the most natural way an actuary would tackle
a delay problem. The delays could be regarded as a random phenomenon based on
probabilities qk, where qk is the probability of a claim being settled k years later.
We obviously have that q0 + · · · + qK = 1 and the process is multinomial. This
method is slightly different for IBNR and RBNS cases. If we first describe the
RBNS case and let Ni,0, · · · , Ni,K be the numbers of claims that arose in year i and
were settled 0, · · · ,K years later, then Ni,0 + · · · + Ni,K = Ni. We will then have

11
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that Ni,0 . . . , Ni,K given Ni follows the multinomial distribution with probabilities
q0, · · · , qK where Ni = ni is known.

P (Ni,0 = ni,0, · · · , Ni,K = ni,K |Ni = ni) =
ni!

ni,0! · · ·ni,K !
q
ni,0
0 · · · qni,KK .

From the multinomial distribution we have that the expectation and the variance is:

E[Ni,k] = niqk and Var(Ni,k) = niqk(1− qk). (2.10)

In the IBNR case we make the natural assumption that Ni follows a Poisson distri-
bution with parameter λi. Then we have that:

P (Ni,0 = ni,0, · · ·Ni,K = ni,K) = P (Ni,0 = ni,0, · · · , Ni,K = ni,K |Ni = ni)P (Ni = ni)

=
ni!

ni,0! · · ·ni,K !
q
ni,0
0 · · · qni,KK

λnii
ni!

eλi

=
q
ni,0
0 · · · qni,KK

ni,0! · · ·ni,K !
λnii e

λi(q0+···+qK)

a
=
q
ni,0
0 · · · qni,KK

ni,0! · · ·ni,K !
(λ
ni,0
i e−q0λi) · · · (λni,Ki e−qKλi)

=
K∏
k=0

(qkλi)
ni,k

ni,k!
e−qkλi .

The set {Ni,k}Ik=0 is stochastically independent with

Ni,k ∼ Poisson(λi,k) where λi,k = λiqk. (2.11)

As mentioned earlier, Kaminsky has probably been the most vocal advocate of using
delay probabilities and modelling claim numbers and loss separately. From here on
and throughout the thesis his name will be assigned to the method of using delay
probabilities for calculating both IBNR and RBNS reserves.

2.5 Implementing the Kaminsky approach

When it comes to the IBNR case, fitting the Kaminsky model is not hard. Since the
λi,k is in a multiplicative form in (2.11) so that:

log(λi,k) = log(λi) + log(qk).

This is a log-linear Poission regression problem and can easily be fitted by standard
GLM software where all the parameters will be estimated. This is discussed in detail
in Bølviken (2014) and Bølviken (2015), while in de Jong and Heller (2008) the GLM
process is described in detail. Since there is a lot of literature on this subject, we
are mainly going to focus on the RBNS case.

aSince q0 + · · ·+ qI = 1 and that ni = ni,0 + · · ·+ ni,I
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2.5. IMPLEMENTING THE KAMINSKY APPROACH

2.5.1 Delay probabilities

The delay probabilities can be found through maximum likelihood estimation. To
find them, the Lagrange method were we use that

∑
k qk = 1 will be applied. The

log-likelihood is:

l(q0, · · · , qK) = ln

{
I∏
i=0

P (Ni,0 = ni,0, · · · , Ni,I = ni,I |Ni = ni)

}

=

I∑
i=0

K∑
k=0

ln(ni!)−
I∑
i=0

K∑
k=0

ln(ni,k) +

I∑
i=0

K∑
k=0

ni,k ln(qk). (2.12)

If we use the Lagrange method with the constraint:
∑

k qk = 1. We then get

L(q0, · · · , qK) =

I∑
i=0

K∑
k=0

ln(ni!)−
I∑
i=0

K∑
k=0

ln(ni,k) +

I∑
i=0

K∑
k=0

ni,k ln(qk)− λ(1−
K∑
k=0

qk).

(2.13)

By setting all the derivatives to 0, δLδλ = 1−
∑K

k=0 qk = 0, which is just the constraint,
and also:

0 =
δL(q0, · · · , qK)

δql
=

∑I
i=0 ni,l
ql

− λ

ql =

∑I
i=0 ni,l
λ

. (2.14)

To find λ we notice that:

q0 + · · · qK =

∑I
i=0 ni,0 + · · ·+

∑I
i=0 ni,K

λ
=

∑I
i=0

∑K
k=0 ni,k
λ

= 1

which gives us that λ =
∑I

i=0

∑K
k=0 ni,k. Then the ML estimator is:

q̂k =

∑I
i=0 ni,k∑I

i=0

∑K
k=0 ni,k

. (2.15)

The ML estimator is quite intuitive as well since it is just the sum of column for a
given development year divided by the total number of claims.

2.5.2 Mean and variance

The delay dependent mean is the average cost of a claim that is settled after k years.
It can be found by taking the total amount of claim losses for a certain development
year and dividing it by the total number of claims for that same development year,
i.e.:

ξ̂k =

∑I−k
i=0 Xi,k∑I−k
i=0 ni,k

for k = 0, · · · ,K. (2.16)
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One may also notice that as k grows the uncertainty in ξ̂k will also grow. When
k = K there is only one observation to base the estimate for delay dependent mean
on. This will be addressed further in the next chapter.

The variance between the individual losses, Zi,k,j , is denoted by σ2k, and can be
found by taking the variance of all claims belonging to development year k . With
the dataset that we have been given, calculating the variance is a bit tricky. The
information that is available is only the sum of claims for the different combination
of reporting and development year. We do not have any information about the
individual claims. The datasets can be found in Appendix B.

Two methods were considered for calculating the variance in the individual losses,
but only one of them worked. The method that worked based its estimation of the
variance in the individual losses by calculating the variance in the average cost after
k years for different reporting years and assuming the individual losses to be Gamma
distributed. The other method was developed in hopes of it being more accurate
than the former method. As it kept giving negative values for the variance it was
eventually discarded. Both methods were documented and therefore both will be
presented. The working method will be presented below, while the other one will be
presented in Section 2.5.4 with a possible explanation as to why it did not work.

Since we do not have the individual losses we do not know the distribution of them.
Therefore we will be making the likely assumption that the individual claims are
Gamma distributed. The goal will be to estimate αk which is defined as α = ξ2/σ2.
To this end we will introduce Yik = Xik

nik
= 1

nik

∑nik
j=1 Zikj , which is the average

claim cost for reporting year i and development year k . These individual claims are
Gamma distributed with ξk and αk, i.e: Zikj ∼ ξkGamma(ak). All the elements in
development year k have the same shape factor αk independent of reporting year i .
We then have that:{

Yik|Nik = 0 if Nik = 0

Yik|Nik ∼ ξkGamma(Nikak) if Nik > 0.

By conditioning on Nik > 0 we can easily calculate the expectation and the variance
of Yik.

E[Yik|Nik > 0] = E[E[Yik|Nik, Nik > 0]] = E[ξk] = ξk

and

Var(Yik|Nik > 0) = Var(E[Yik|Nik, Nik > 0]) + E[Var(Yik|Nik, Nik > 0)]

= Var(ξk) +
ξ2k
αk

E[
1

Nik
|Nik > 0]

=
ξ2k
ak

ni∑
j=1

1

j

(
ni
j

)
qjk(1− qk)

ni−j

=
ξ2kf(ni, qk)

ak
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where f(ni, qk) =
∑ni

j=1
1
j bin(ni, j, qk) and bin(ni, j, qk) is the binomial distribution

with probability of success qk. It is also possible to calculate the variance of Yik by
using the empirical formula. By setting these two expressions equal to each other,
the shape parameters, αk’s are easily estimated.

s2k =
1

K − 1− k

I−k∑
i=0

(Yi,k − ξ̂k)2 for k = 0, · · · ,K − 1 (2.17)

so that

s2k = Var(Yik|Nik > 0)

s2k =
ξ2kf(ni, qk)

ak

âk =
ξ2kf(ni, qk)

s2k
for k = 0, · · · ,K − 1. (2.18)

Again, we have that as k grows the uncertainty in ak will grow because of lack of
information. One may also notice that sK will always be zero, which is why both sk
and ak are only defined from k = 0, · · · ,K − 1.

2.5.3 Modelling the lower triangle

The Kaminsky approach is based on breaking the reserve problem into two parts:
modelling claim numbers and modelling claim sizes. Since we have everything we
need, ξ̂k and âk, to model the claim sizes we are going to shift our focus to the claim
numbers.

When modelling the lower triangle we have to condition on the upper triangle. The
good news is that the lower triangle is still multinomial distributed, i.e. we have that
Ni,K−i+1 for i = 1, · · · , I are multinomial distributed given Ni,R for for i = 1, · · · , I.
Recall that Ni,R are all the claims that have been reported, but not yet settled at
time I. We then have to calculate new delay probabilities, q̃i,k, by conditioning them
on that the claim is settled for a development year k > K − i, i.e.:

q̃i,k = P (k = j|k > K − i) =
P (k = j, k > K − i)

P (k > K − i)

=

{
P (k=j)

P (k>K−i) , if j > K − i
0, if j ≤ K − i

=
P (k = j)

1− P (k ≤ K − i)
, if j > K − i

=
qj

1−
∑K−i

l=o ql
, if j > K − i.

With these “new” delay probabilities is is possible to model the lower triangle. Notice
that if we assume, as we will, that all claims that were reported in year i will be
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settled within K years. Then we have that for i = 1 the probability is q̃1,K = 1 and
for i = 2 it all collapses into a binomial trial. By combining this with the modelling
of claim sizes the lower triangle is easy to predict.

2.5.4 An alternative method for calculating variance

An alternative method to calculate the individual claim variance, that is not used,
will now be presented. The method is quite intuitive and logical, but it did not work
with the dataset that was given for this thesis. This method was developed because
it was thought that it would give a better estimate for the variance in the individual
losses as it did not assume any underlying distribution for the Zi,k,j ’s.

We start by defining Yik = Xik
nik

, which is the average cost of a claim in reporting year
i and development year k. We also define Qk =

∑I−k
i=0 nik(Yik − ξ̂k)2.

Qk =
I−k∑
i=0

nik(Yik − ξ̂k)2

=
I−k∑
i=0

nik(Yik − ξk − (ξ̂k − ξk))2

=

I−k∑
i=0

nik(Yik − ξk)2 +

I−k∑
i=0

nik(ξ̂k − ξk)2 − 2

I−k∑
i=0

nik(Yik − ξk)(ξ̂k − ξk)

=
I−k∑
i=0

nik(Yik − ξk)2 −
I−k∑
i=0

nik(ξ̂k − ξk)2. (2.19)

Here we have used that
∑I−k

i=0 nikYik =
∑I−k

i=0 Xik =
∑I−k
i=0 nik

∑I−k
i=0 Xik∑I−k

i=0 nik
= ξ̂k

∑I−k
i=0 nik.

We define the first expression in E[Qk] for I and the last one II.

I : E[
I−k∑
i=0

nik(Yik − ξk)2] =

I−k∑
i=0

nik[Var(Yik − ξk) + (E[Yik − ξk])2]

=
I−k∑
i=0

nik[Var(
Xik

nik
) + (E[

Xik

nik
]− ξk)2]

=

I−k∑
i=0

nik[
1

n2ik
Var(Xik) + (

1

nik
E[Xik]− ξk)2]

=

I−k∑
i=0

nik[
niqk[ξ

2
k(1− qk) + σ2k]

n2ik
+ ξ2k(

niqk
nik
− 1)2] (2.20)
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and

II : E[

I∑
i=0

nik(ξ̂k − ξk)2] =

I−k∑
i=0

nik[Var(ξ̂k − ξk) + (E[ξ̂k − ξk])2]

=
I−k∑
i=0

nik Var(ξ̂k)

=
I−k∑
i=0

nik

∑I
i=0Var(Xik)

(
∑I−k

i=0 nik)
2

=
I−k∑
i=0

nik

∑I−k
i=0 niqk[ξ

2
k(1− qk) + σ2k]

(
∑I−k

i=0 nik)
2

(2.21)

where we have used the expectation and the variance of Xik which are calculated in
(2.25) and (4.10) respectively. We have then have that:

E[Qk] =

I−k∑
i=0

nik[q̂k[ξ
2
k(1− qk) + σ2k](

ni
n2ik
−

∑I−k
i=0 ni

(
∑I−k

i=0 nik)
2
) + ξ2k(

niqk
nik
− 1)2]. (2.22)

E[Qk] can easily be calculated and everything on the right hand side is known except
for σ2k. ξk can be estimated through ξ̂k. By solving equation (2.22) for σ2k we have
an estimate for the variance in the individual losses.

σ̂2k =
E[Qk] + ξ̂2k

∑
i nik((

∑
i ni∑
i nik

q̂k − 1)2 − (niq̂knik
− 1)2)

q̂k(
∑

i
ni
nik
−

∑I−k
i=0 ni∑I−k
i=0 nik

)
− ξ̂2k(1− q̂k). (2.23)

The problem with this method is that it kept giving negative values for some of
the variances for some k ’s. Our understanding is that the variance between the
individual claims became overshadowed by the variance between the Xi,k’s. In other
words, Var(Xi,k) = niqk[ξ

2
k(1 − qk) + σ2k] ≈ niqkξ

2
k(1 − qk) where as mentioned, σ2k

is the variance between the individual claims. When this method did not work,
equation (2.17) was used instead to estimate the shape parameter.

2.6 Outstanding loss liabilities

When it comes to estimating the outstanding amount, we can predictNi,I−i+1, · · · , Ni,K

through their expectations. We have to combine this with the model for the claim,
which depends on how long it has taken to report or settle them. We can observe
this in how Xi,k is constructed. The expectation of Xi,k is:

IBNR: E[Xi,k] = E[E[Xi,k|Ni,k]] = E[ξkNi,k] = ξkλiqk (2.24)
RBNS: E[Xi,k] = E[E[Xi,k|Ni,k]] = E[ξkNi,k] = ξkniqk (2.25)
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where ξk is just a delay-dependent mean. It is now possible to find the expectation
of Ri as defined in (2.2):

IBNR: E[Ri] = λi(qI−i+1ξI−i+1 + · · ·+ qKξK). (2.26)
RBNS: E[Ri] = ni(qI−i+1ξI−i+1 + · · ·+ qKξK). (2.27)

With the estimates λ̂i, ξ̂k and q̂k, the Kaminsky prediction for the outstanding
amount becomes:

IBNR: R̂Kai = λ̂i(q̂I−i+1ξ̂I−i+1 + · · ·+ q̂K ξ̂K). (2.28)

RBNS: R̂Kai = ni(q̂I−i+1ξ̂I−i+1 + · · ·+ q̂K ξ̂K). (2.29)

It should be noted that the Kaminsky method has an additive structure, as one
may see above. ξ̂k can be estimated in various ways, but in this thesis it is esti-
mated by taking the average of all past claims that were settled k years later, as in
equation (2.16). In Chapter 4 when we embark of finding approximate expressions
for the Kaminsky and Chain Ladder uncertainty, this way of estimating ξ̂k will be
convenient.

2.7 Method for comparing the two models

The method we decide to use to compare both models is the mean square error, MSE,
which is defined as E[(θ̂− θ)2]. For more on MSE see Devore and Berk (2007). This
method was chosen because the Chain Ladder method has a multiplicative structure
while the Kaminsky approach has an additive structure. This will be addressed
further in Chapter 4.

E[(θ̂ − θ)2] =Var(θ̂) + [E[θ̂]− θ]2

=Variance of estimator + [bias]2

An estimator is unbiased if the bias is equal to zero, i.e. E[θ̂] = θ.

The MSE informs us about the balance between the uncertainty of the estimator
and how well it estimates the target, θ. Focusing only on either the uncertainty or
the bias will not give us any valuable information. For example: If the objective is
to have an uncertainty equal to zero, we can choose θ̂ to be equal to a constant. But,
this does not guarantee that the θ̂ is a good estimate for θ. To ensure that θ̂ is a
good estimate, we would have to look at both the uncertainty and the bias. When
comparing the Chain Ladder method and the Kaminsky approach we will investigate
the estimation of the outstanding liabilities through analysing the balance between
the uncertainty and the bias, as this will show which model is superior.

In the next chapter the Chain Ladder method and the Kaminsky approach will be
implemented on both the real data from a Norwegian non-life insurance company
and a simulated dataset. When implementing the Kaminsky approach, the “recipe”
described in Section 2.5 will be used to estimate the various parameters to predict
the lower triangle. We will also try to figure out which parameters seem to affect
the uncertainty and the bias in estimates for the outstanding liabilities.
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Chapter 3

Data study

3.1 Data

To compare the two models we will use the car and fire insurance data from the
Norwegian non-life insurance company. In the car insurance data there were 1504
incidents while in the fire insurance data there were 2963 incidents. In the case of car
insurance we received information dating back to 2009, while the fire insurance infor-
mation covers the period 2010 to 2015. The number of policies have been increasing
by about an average of 5 000 and 10 000 each year for car and fire insurance respec-
tively. As mentioned earlier, when a claim is reported to the insurance company and
is valid for one of the policies, the policyholder will not necessarily get a lump sum.
The insurance company will not pay everything at once but rather small payments
until there are no more payouts. In this dataset we have defined “settlement” as the
last payout to the policyholder, in other words the year of the case being “closed”.
More information about the dataset can be found in Appendix B on page 57.

Table 3.1: Number of fire insurance claims that were reported and settled with delay

0 1 2 3 4 5 Not Yet Settled Total(ni)
2010 212 92 26 8 5 1 2 346
2011 274 105 15 10 4 3 411
2012 269 111 20 9 7 416
2013 319 110 13 9 451
2014 599 198 34 831
2015 378 130 508

The table above presents the number of claims that were settled. The rows are the
reported years and the columns are the delays, also known as development years. The
column titled “Not Yet Settled” includes the claims that have not yet been settled.
This means that 130 claims out of all 508 claims that were reported in year 2015
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have not yet been settled at the time we were given the dataset. The last column
is the total amount of claims that were reported for each year. It is reasonable that
there is a steady increase in claims that have not yet been settled from the different
reported years. Remember the interpretation of development triangle, for example:
of all the claims that were reported in year 2010, 212 of them were settled the same
year, while 92 of them were settled the year after, in 2011. The highlighted gray
diagonal are all the claims settled in 2015. One would then expect there to be quite
a few claims not yet settled out of the claims reported in 2015.

The data for the car insurance is presented below in the same way as Table 3.1, with
the same interpretation.

Table 3.2: Number of car insurance claims that were reported and settled with delay

0 1 2 3 4 5 6 Not Yet Settled Total(ni)
2009 12 14 17 10 9 4 4 7 77
2010 32 70 14 14 9 2 5 146
2011 60 51 22 16 8 16 173
2012 77 83 23 13 20 216
2013 65 101 22 35 223
2014 150 148 80 378
2015 108 183 291

Comparing the table above with Table 3.1 we notice that for the fire insurance,
most of the claims are settled the year they were reported. For the car insurance,
almost the same amount of claims are settled the two first years after the claims
were reported. In some cases it might take more time to recover from a personal
injury caused by a car accident, than it takes to settle a fire insurance claim. This
could be the reason why the settlement of car insurance claims are dragged out over
a longer period.

It will be assumed that all claims that were reported after 2009 and 2010 for car and
fire insurance respectively, will be settled within their respectively maximum delays
of 5 and 6 years.

3.1.1 Delay-dependent mean

The delay-dependent mean, ξk, is the average cost for a claim after k years. It is
also needed when computing the the lower triangle, Dc

I with the Kaminsky method,
but it also holds some interesting information about the dataset. An estimate of the
delay-dependent mean for each individual claim can be found by taking the total
amount of claim losses for a certain development year and dividing it by the total
number of claims for that development year as seen in equation (2.16).
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The table below has the delay-dependent mean for both the car and fire insurance.
A rather interesting aspect of this table is that it seems like the most expensive
claims are settled 4 years after being reported. Table 3.3 also indicates that the fire
insurance claims are more expensive for the insurance company than car insurance
claims, which is somewhat intuitive. Villas are seemingly often more expensive than
injuries related to car accidents.

Table 3.3: The delay-dependent mean for the individual car and fire losses given in
million NOK

ξ̂0 ξ̂1 ξ̂2 ξ̂3 ξ̂4 ξ̂5 ξ̂6
Fire 0.03 0.20 1.50 2.27 3.17 0.06
Car 0.01 0.02 0.19 0.29 0.35 0.25 0.09

There is considerable uncertainty with high delays because of the lack of information
for high k ’s. These errors have limited effect on the projection in the Kaminsky
method because the delay probabilities are quite small, which can be found in Table
3.10.

In the next two sections we will implement the Chain Ladder method and the Kamin-
sky approach on these datasets to see what kind of obstacles that can occur. The
results for the outstanding liabilities will be presented in Table 3.15 and 3.16 where
bootstrapping has been used to obtain the final estimates. The R-codes for the
implementation of these models can be found in Appendix C.

3.2 Chain Ladder

3.2.1 Fire insurance data

Table 3.4: Cumulative payouts/settlement (in million NOK) in fire insurance pre-
sented as a run-off triangle

0 1 2 3 4 5
2010 4.85 17.71 52.56 81.15 103.39 103.45
2011 8.04 30.51 50.25 72.13 78.40
2012 7.28 28.72 64.02 74.87
2013 10.35 52.88 73.76
2014 11.38 34.07
2015 9.41
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We start by implementing the Chain Ladder method on the fire insurance data
presented above. For more information about the dataset, consult Appendix B. We
present the cumulative payouts/settlements in a run-off triangle fashion. We see that
the Table 3.4 is equivalent to Figure 2.1 with Ci,k.

The cumulative settlements are the total amount of claims settled up to that de-
velopment year, which is the sum of the incremental settlements to that date. By
definition, we then have that all the elements on the outer diagonal are equal to the
total amount settled up to that date for each reported year. From looking at the
run-off triangle in Table 3.4, we can see that the development years seem to develop
in the same way independent of when the accident was reported. In other words
all the elements in a column, development year, behave in the same way. They all
increase with about the same amount. This does indeed satisfy the assumptions in
the Chain Ladder model.

By using the equation (2.6) we can find the Chain Ladder factors that describe how
the development years change from one development year to the next. Below we
have Table 3.5 with the Chain Ladder factors.

Table 3.5: Chain Ladder estimates for the development factors for the fire insurance
data

k 1 2 3 4 5
f̂k 3.91 1.85 1.37 1.19 1.00

By looking at these factors we see that all of them are either equal to or larger than 1
when taking two decimals into account. The factors also steadily decrease, starting
at 3.19 and gradually declining towards 1.00. This was expected, as we observed
that most of the claims would be settled within a short period of time.

From a statistical point of view, the factor estimated for development year 1 is more
reliable than the estimates for the other development years, especially the last one.
If we look at equation (2.6) and Table 3.4 we see that the reason is because more
observations are used to estimate f̂1 compared to f̂5.

Table 3.6: Cumulated payouts/settlements (in million NOK) for fire insurance

0 1 2 3 4 5
2010 4.85 17.71 52.56 81.15 103.39 103.45
2011 8.04 30.51 50.25 72.13 78.40 78.44
2012 7.28 28.72 64.02 74.87 88.79 88.84
2013 10.35 52.88 73.76 100.87 119.63 119.69
2014 11.38 34.07 63.15 86.36 102.42 102.47
2015 9.41 36.78 68.16 93.21 110.55 110.61
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Above we have used the factors in Table 3.5 to find the missing lower triangle in Table
3.4. We have used the algorithm described in Chapter 2. Looking at the grey triangle
in Table 3.6 we see that they behave the same way as the factors, which is to be
expected if we take a look at equation (2.7). The equation tells us to multiply the last
known observation with the remaining Chain Ladder factors. When programming
we are using more than two decimals on the development factors, which is why there
is a relatively small change from development year 4 to 5.

Now that we have computed the lower triangle we can easily find the outstanding
loss liabilities. We take the elements in the last column in Table 3.6 and subtract
the last know observations for the respective accident years, as in equation (2.8).
Another possibility is to use equation (2.9). As mentioned the results of this will be
presented later on.

3.2.2 Car insurance data

We have the settlements for the car insurance from year 2009 to 2015. Notice that
we have a development triangle with the settlements, Xik, and not the cumulative
settlements, Cik. At first glance everything seems to be fine, but with a closer look
we notice that element X2013,0 = 1181876 is an outlier compared to the others. This
can cause problems. A condition of the Chain Ladder model is that what happens
one year, will happen in the next year as well. In other words, there is no room for
outliers in the Cain Ladder model. This outlier clearly does not satisfy the condition
above.

Table 3.7: Payouts/settlements (in million NOK) for car insurance presented in a
run-off triangle

0 1 2 3 4 5 6
2009 0.05 0.16 8.95 3.64 2.39 0.78 0.36
2010 0.06 0.50 2.68 2.47 3.57 0.73
2011 0.26 0.86 5.32 4.15 3.13
2012 0.38 3.12 4.86 4.49
2013 1.18 1.56 4.65
2014 0.55 2.94
2015 0.61

We have that 65 claims were reported and settled in 2013. In 2014, 150 claims were
reported and settled. This means that the average cost of each of those 150 claims
was around 4 000 NOK, while the 65 claims that were settled in 2013 cost around
18 000 NOK each in average.

It could be that the road was quite slippery in 2013, which caused a chain collision
and therefore the amount X2013,0 consist of several middle sized claims. It could also
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be that there is an individual outlier, i.e. there is a single large claim which is the
reason why X2013,0 is so big.

An actuary in the industry(email correspondence with an actuary from DNB) ex-
plained that software usually uses a truncating method to deal with problems such as
these. They also use several other methods to compute an outstanding loss estimate,
so they do not solely rely on the Chain Ladder method. Another method that can
be used is the one proposed by Weindorfer (2012) where he finds the single claim
which is the reason for the amount to be large. Then he preforms the Chain Ladder
method without that claim. Here he acts as if the outlier claim did not happen,
since it is “unnatural”.

The actuary proposed another method where we take the outlier claim into account.
First start by removing the claim or the claims that generate high values in C2013,0.
Then preform the Chain Ladder method on the dataset without the outlier/outliers.
Using the Chain Ladder factors acquired from the dataset without the outlier/out-
liers, one can preform a Chain Ladder method on the outliers and adding the reserves
for both with and without the outliers to achieve a total reserve estimate.

We cannot perform any of these methods because we do not have the data necessary
to do so. If we take a look at the dataset in Appendix B we do not have information
about the individual claims, but rather the aggregated ones for certain development
and reported years. Therefore we cannot simply find an outlier claim or claims.
This also shows a unfavourable side of the Chain Ladder method which runs on
the conditions that there cannot be any outliers. While in real life there is always
a possibility for a “surprise” chain collision, or a single expensive claim. We will
proceed without any modifications, because there was only one outlier cell. This
means that it has a very limited effect on the result. The biggest effect will be
through the estimation of f̂1.

Table 3.8: Chain Ladder estimates for the development factor for car insurance data

k 1 2 3 4 5 6
f̂k 4.68 3.26 1.77 1.43 1.09 1.04

As in the fire insurance case, all the Chain Ladder factors are greater than 1 and
steadily decrease from 4.68 to 1.04. We see that the factors for development year 1
are quite a bit higher for the car insurance data compared to the same development
years in the fire insurance. We have to remember that the factor f̂1 describes how
the accumulated claim settlements evolve from development year 0 to 1. If we look
at Table 3.2, we see that unlike the fire insurance data there are more claims that are
settled the year after they get reported than the amount that are settled the same
year. In Table 3.3 we also see that the average claim cost rises from development
year 0 to 1. It is therefore reasonable that f̂1 is quite big.

Another reason why f̂1 is big, is because of the outlier. How does this affect the the
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outstanding loss? It only affects the 2014 reserve estimate because it is the only one
that requires f̂1. This causes the outlier to have a limited effect. Remember that
the Chain Ladder method does not use the claim numbers, only the accumulated
losses. The Chain Ladder factors, f̂k, picks up on the trend of how the cost varies
from one development year to the next. The estimates in the context of the claim
numbers can be surprising. Notice that for 2014 there are only 80 claims left. These
80 claims seem to cost around 28-29 million NOK while the 298 claims cost around
4 million NOK. It should be noted that the final estimate, C2014,6, does not seem to
be out of this world. It is a realistic estimate compared to the others and the fact
that there were 378 claims reported that years.

Table 3.9: Cumulative payouts/settlements (in million NOK) for fire insurance in a
run-off triangle

0 1 2 3 4 5 6
2009 0.05 0.21 1.10 4.75 7.13 7.92 8.28
2010 0.06 0.56 3.24 5.71 9.28 10.01 10.47
2011 0.26 1.12 6.45 10.59 13.72 14.99 15.67
2012 0.38 3.51 8.37 12.86 18.40 20.10 21.02
2013 1.18 2.75 7.39 13.09 18.73 20.46 21.40
2014 0.55 3.49 11.38 20.14 28.83 31.45 32.93
2015 0.61 2.84 9.27 16.40 23.48 25.65 26.82

3.3 The Kaminsky method

3.3.1 Delay probabilities

The maximum likelihood (ML) estimator obtained in Section 2.5,

q̂k =

∑I−k
i=0 ni,k∑I

i=0

∑K−i
k′=0 ni,k′

,

is a quite natural estimate for qk. If we take a look at either Table 3.1 or Table 3.2
we see that qk is estimated by summing the column for a given k , development year,
and dividing it by the sum of all the claim numbers. The delay probabilities are
based on the upper triangle, DI . One may also notice that the uncertainty grows
with higher lags, as less information is used to estimate the delay probabilities for
high k ’s.
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Table 3.10: The delay probabilities for the car and fire insurance modelling

q̂0 q̂1 q̂2 q̂3 q̂4 q̂5 q̂6
Fire 0.6922 0.2079 0.0250 0.0091 0.0030 0.0003
Car 0.3351 0.3105 0.0652 0.0352 0.0173 0.0040 0.0027

We see that in the case of fire insurance most of the claims, around 70%, are settled
the year they are reported. These are also the cheapest claims according to the Table
3.3. The number of claims that get settled gradually decline as the development years
get higher. We also notice that the most expensive development year only consist
of 0.3% of the total claims that were reported. With the car insurance we see that
almost the same amount of claims were settled the year they were reported and
the year after. The most expensive development year only has 1.74% of the total
amount of claims that were reported. The most interesting aspect is that unlike
the fire insurance, the car insurance claims are dragged out over longer periods of
time. With the fire insurance almost 90% of the claims are settled within the 2
first year after reporting, while only 60% are settled in the same time period for
car insurance claims. This may be intuitive since it will most likely take some time
before people recover after a car accident, which means that it takes time before a
claim is settled. Remember that a case is settled when the insured has received their
last compensation payment.

3.3.2 The shape parameter

As specified earlier, because there is no information about the individual claims, the
usually easy task of finding the shape parameter becomes a bit more tricky. The
method that was described in Section 2.5 is the method that have been used to
produce the estimates below.

Table 3.11: The Gamma shape parameter α for different development years

α̂0 α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

Fire 0.11 0.04 5.13 1.14 1.09 1.09
Car 0.05 0.08 0.62 1.60 7.38 2.09 2.09

Notice that the two last shape parameters for both fire and car insurance are equal.
That is because there is not enough information in development year K to produce an
estimate α̂, the shape parameter. It is interesting to see how the shape parameter
evolves from one development year to the next. One can see that for the 2 first
years and the 3 first years for the fire and car insurance respectively, the values are
quite low compared to the other. For low values of α, we get heavier tails as seen
in Figure 3.1. We are using the parametrization of the Gamma distribution from
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Bølviken (2014) which can also be found in Appendix A. The claim size distribution
for the 2 first years and the 3 first years for the fire and car insurance respectively
are heavy-tailed. One can also see big jumps in α̂2 and α̂4, for fire and car insurance
respectively. The high fluctuations in the parameters can be explained by noise in
the dataset and lack of information.

Gamma distribution

Figure 3.1: Gamma distribution for different shape parameters α and mean equal to
1

An interesting question is: How should the α be for different development years?
Intuitively, we could assume that all “easy” claims are settled quite early on. One
could also assume that these “easy” claims are cheap and therefore easy to settle. As
k gets larger, the variance in the individual claims would also become higher because
these claims are more complex and cost more to settle which can be confirmed
by Table 3.3 where the claim cost grows as k grows. One should then expect the
individual claim variance, σ̂k, to get higher as k grows, i.e. the tail should become
heavier as k grows. If we combine this with Table 3.3 and use the standard deviation
for the Gamma distribution: σ = ξ√

α
, we see that the standard deviation grows with

k . Even though the shape parameter seems to show the opposite, combining the
parameter with ξ̂k’s show us that for high k values the distribution is more heavy-
tailed. We also have a somewhat rough estimate of σ̂k, sk that was derived in Section
2.5, equation (2.17) which gives us the estimates below:

Table 3.12: Emperical standard deviation given in millions

s0 s1 s2 s3 s4 s5 s6
Fire 0.005 0.107 0.217 1.192 2.048 NaN
Car 0.005 0.011 0.075 0.087 0.074 0.125 NaN

As already mentioned, these estimates are very rough because there is not enough
information. They will still help us to paint the picture that the individual variance
grows as k gets larger, as you can see in Table 3.12. This give a heavier tail for high
k ’s. It is hard to determine anything without the information about the individual
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claims. It may also depend on what product it is: if it is a boat, travel or any other
kind of insurance. For some products, the claim size distribution is heavy-tailed for
small k ’s and not for large k ’s. This does not seem to be the case in our dataset.

3.3.3 Fire and car insurance

By using the estimated delay-dependent means, the delay probabilities and the shape
parameter we can predict the lower triangle. Below we have a result of a single
iteration of the Kaminsky approach. These results are presented for illustrative
purposes only and are not the final result of the Kaminsky approach.

Table 3.13: Cumulative payouts/settlement (in million NOK) for fire insurance

0 1 2 3 4 5
2010 4.85 17.71 52.56 81.15 103.39 103.45
2011 8.04 30.51 50.25 72.13 78.40 78.54
2012 7.28 28.71 64.02 74.87 92.52 92.59
2013 10.35 52.88 73.76 84.76 87.70 87.70
2014 11.38 34.07 176.05 217.15 251.80 251.80
2015 9.41 9.85 116.70 123.33 129.55 129.55

What is interesting with this method of modelling the lower triangle is that it will
sometimes predict that there will be no claims settled for some certain combination
of the reporting and development year. This possibility is absent from the Chain
Ladder method, because it uses the development factors. If fk = 1 the Chain Ladder
method will assume that no claims were settled k years later for all reporting years
i . This could be seen as a weakness in the Chain Ladder method and a strength
in modelling both claim frequency and claim sizes separately and combining them
afterwards.

Table 3.14: Cumulative payouts/settlement (in million NOK) for car insurance

0 1 2 3 4 5 6
2009 0.05 0.21 1.10 4.75 7.13 7.92 8.28
2010 0.06 0.56 3.24 5.71 9.28 10.01 11.22
2011 0.26 1.12 6.45 10.59 13.72 18.79 19.61
2012 0.38 3.51 8.37 12.86 53.08 55.55 55.77
2013 1.18 2.75 7.39 14.76 34.25 36.22 37.04
2014 0.55 3.49 8.89 23.74 38.59 40.70 40.70
2015 0.61 0.90 3.94 6.10 22.74 24.12 24.12

As mentioned above, the two tables are only a single iteration of the modelling. To

28



3.4. COMPARING THE DATA STUDY RESULTS

compare the Chain Ladder method and the Kaminsky approach we are going the
use bootstrapping, see Efron and Tibshirani (1993) and Devore and Berk (2007).
With this method it is possible to see how well the Chain Ladder method and the
Kaminsky approach estimate the reserve for different reporting years.

3.4 Comparing the data study results

The method used to estimate outstanding liabilities is called parametric bootstrap-
ping. We will use the estimates gathered in Table 3.3 and Table 3.11 to produce a
new dataset. Using this new dataset we are going to predict the lower triangle and
estimate the reserve using the Chain Ladder method and the Kaminsky approach.
This will be done several times until we have 1000 mean reserve estimates for both
methods. It is then possible to find the variability in the estimate and hopefully
determine which model is preferable. The R-code can be found in Appendix C.
Non-parametric bootstrapping could have been used if the individual data was avail-
able. We then could have sampled from the individual data for each reporting and
development year combination and produce a upper triangle. With the aggregated
data this is not possible.

Below we have the bootstrap results for the fire and car insurance. In Table 3.15
we see one of the trends: that the Kaminsky approach keeps underestimating the
reserve while the Chain Ladder method overestimates. It also seems like the standard
deviation for the Kaminsky approach is somewhat higher than for the Chain Ladder
method. We should expect the standard deviation to increase with the reporting
years. This is because there is more to predict and fewer constants for high i ’s.

Table 3.15: Kaminsky and Chain Ladder projections (in million NOK) for the fire
insurance data

Reporting Kaminsky Chain Ladder
year Estimate Bias Sd Estimate Bias Sd
2011 0.001 -0.007 0.0004 0.008 0.001 0.001
2012 3.894 -0.348 0.209 4.429 0.151 0.137
2013 14.186 -0.401 0.320 15.018 0.421 0.237
2014 59.266 -0.753 0.532 62.534 2.515 0.765
2015 58.852 -0.483 0.541 59.970 0.964 0.496

For 2014 the standard deviation for the Chain Ladder method jumps to 0.765 with a
bias of 2.52 million NOK. After running the program several times, and by increasing
the portfolio number, it still jumps quite high in 2014. The reason for this sudden
jump can be found in Table 3.1 and Table 3.4. In 2014, 599 claims were settled,
which is high compared to the others for the same development year. The cost of
those 599 claims were 11,38 million NOK, which means that each claim cost about
19 000 NOK in average. If we compare this to 2013 and 2015, they cost around 32
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000 and 24 000 NOK in average respectively. In other words, the 599 claims were
relatively cheap compared to the others. The effect of the amount of claims that were
settled in 2014 is picked up by the delay probability, while the fact that the claims
were relatively small is not picked up by the delay-dependent mean. It estimates the
average cost of a claim being settled within a year around 30 000 NOK. It should
be noted that the σk is high for the last k ’s and could also be a reason why the
bias and standard deviation is high. When performing a parametric bootstrap we
get an outlier in this very cell. This affects the rest of the prediction for 2014 in
the sense that the Chain Ladder method uses the accumulated data. We see that
this problem does not affect the Kaminsky approach, which has a relatively small
standard deviation.

This problem is also present for the car insurance data, see Table 3.16, but it is
not so evident. It was addressed when implementing the car insurance data for the
Chain Ladder method. In 2014 there were 150 claims settled while they only cost
4 000 NOK each in average. The delay-dependent mean estimated the claims to
cost around 10 000 each in average if the claim was settled within a year. It should
be noted that in both these cases, non-parametric bootstrapping would have been
preferable if individual data was available. Since we are sampling from the individual
data for the different combinations of reporting and development year, we would not
have gotten any outliers.

Table 3.16: Kaminsky and Chain Ladder projections (in million NOK) for the car
insurance data

Reporting Kaminsky Chain Ladder
year Estimate Bias Sd Estimate Bias Sd
2010 0.011 -0.035 0.002 0.051 0.006 0.002
2011 0.168 -0.113 0.009 0.297 0.016 0.010
2012 1.904 -0.414 0.030 2.114 0.069 0.029
2013 4.807 -0.144 0.049 5.110 0.160 0.060
2014 14.154 -0.245 0.090 14.92 0.523 0.161
2015 13.197 -0.189 0.079 14.133 0.748 0.219

Compared to the previous dataset we see that the standard deviations are almost
the same except for the last 3 years. We see that for the last 3 years, the standard
deviation is high compared to the Kaminsky standard deviation. The bias is also high
for the Chain Ladder for the 2 last reporting years. The variance of the individual
losses is somewhat high for the last development years compared to the former, but
not as high in the fire insurance data. This could be in play and cause the standard
deviation for the Chain Ladder method to be high. This does not seem to affect the
results of the Kaminsky approach, as it has a somewhat low bias. The reason could
also be that outliers are created when producing the new dataset with the given
estimators.

There are some complications here, and different factors are shadowing the true
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results that we are after. We are going to do a numerical study where we produce
our own dataset. We will test how individual claim variance seem to affect the two
models and how they perform when we increase the portfolio number.

Figure 3.2: Delay probabilities with a peak at development year 2

3.5 Numerical study

We will preform a Monte Carlo simulation study with 10 000 simulations. As men-
tioned above the purpose will be to examine the error while we know perfectly well
the underlying situation. The portfolio number will also be increased to see if it
has an affect on how these two models preform. We are going to define qk the same
way as Bølviken (2014): qk = ce−γ|k−km| for k = 0, · · · ,K where c ensures that
q0 + · · · + qK = 1. Bølviken (2014) mentions that for the dataset he encountered,
most of the claims did not get reported early on, but a few years after they incurred.
The dataset he used was an IBNR dataset. In our case, which is a RBNS case, we see
that most of claims are settled within a year. For the car insurance we see that the
delay probabilities actually plateau for development year 1 and 2 before decreasing
rapidly. We have chosen the parameters γ = 0.2 and km = 2 which means that the
sequence q0 + · · · + qK reaches a peak after 2 years as seen in Figure 3.2. In other
words, most of the claims are settled within two years.

K = I = 10 means that we have 11 years of historical data and 11 development
years. The portfolio number is increased by increasing the number of claims that
are reported each reporting year. The number of claims reported was set at 250 000
for i = 0, · · · , 10. The simulation was run twice. Once, when the individual losses
were exponentially distributed, which is a special case of the Gamma distribution
when the shape parameter αk = 1 for all k ’s. The second time, it was run when the
individual losses were Gamma distributed and αk = 0.5 for k = 0, · · · , 10 to simulate
when the claim size distribution is heavy-tailed. It should be mentioned that both
of them are heavy-tailed, but the latter one has both a heavier and a longer tail. We
want to see how both models fare when the individual claim variance is quite high.
In both cases the mean was ξk = 100 for all k ’s as if the average of all past losses at
delay k was 100 NOK.
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By using the parameters mentioned above we simulated a full dataset of claim num-
bers and corresponding claim amounts. In other words, the upper and lower triangle
were simulated. By using the upper triangle, which is the known observations from
a reserving point of view, we simulated the lower triangle using both methods. By
doing so we could obtain estimates for the outstanding liabilities for both the Chain
Ladder method and the Kaminsky approach. This was done 10 000 times. The re-
sult of the study are shown in Figure 3.3 while the uncertainty and the bias in their
estimates for the exponential losses and the heavy-tailed losses respectively can be
found in Table 3.17 and Table 3.18.

Figure 3.3: The standard deviation in the estimates for the outstanding liabilities for
the Chain Ladder method and the Kaminsky approach

From the figure above it is clear that from development year 6 and up, the uncer-
tainties in the Kaminsky approach are lower than for the Chain Ladder method.
It seems as if the Kaminsky approach tackles increasing the portfolio number and
introducing heavy-tailed claim size distribution better. The results from the figure
above are reminiscent of and more evident than the results found in the car insurance
data in Table 3.16. The uncertainty is bigger and grows more rapidly for the Chain
Ladder method compared to the Kaminsky approach. We can take a closer look at
the results in Table 3.17 and Table 3.18 for exponential distributed claim losses and
heavy-tailed distributed losses respectively.

For the exponential losses, the bias is small and somewhat similar for both the
models. One might notice that the bias and the standard deviation for the Chain
Ladder method grows for the last 4 years.

The Kaminsky approach seems to be unaffected by the exponential losses. The
standard deviation is stable for all reporting years though it is higher than the
Chain Ladder method for the first 5 reporting years. The standard deviation for the
Kaminsky approach is stable, and therefore the bias is stable as well and does not
seem to grow with the reporting year as for the Chain Ladder method.
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Table 3.17: Results from the numerical study with exponential losses

Exponential losses
Chain Ladder Kaminsky

Year Estimate Bias Sd Mean estimate Bias Sd
1 0.661 0.000 0.015 0.661 0.000 0.015
2 1.397 0.000 0.017 1.381 0.001 0.020
3 1.714 0.001 0.015 1.714 0.001 0.019
4 2.069 0.001 0.016 2.068 0.000 0.020
5 4.073 0.000 0.025 4.075 0.002 0.029
6 8.363 -0.003 0.046 5.359 -0.004 0.043
7 8.123 -0.003 0.048 8.129 0.003 0.037
8 6.652 -0.004 0.054 6.655 -0.001 0.030
9 13.537 0.002 0.113 13.534 -0.001 0.045
10 7.272 0.004 0.127 7.263 0.000 0.028

The Kaminsky approach seems to perform a lot better than the Chain Ladder method
for heavy-tailed claim loss distribution. In Table 3.18 we can observe that the bias
is somewhat close to zero for all reporting years for the Kaminsky approach. Again,
we see that the standard deviation is very stable, unlike the Chain Ladder method.
The standard deviation seems to grow for the Chain Ladder method as the reporting
years move toward reporting year 10. One should notice that the bias is quite low
for the Chain Ladder method, but not as low as for the Kaminsky approach.

Table 3.18: Results from the numerical study with heavy-tailed losses

Heavy-Tailed losses
Chain Ladder Kaminsky

Year Estimate Bias Sd Mean estimate Bias Sd
1 0.036 0.000 0.001 0.036 0.000 0.003
2 1.401 0.000 0.026 1.401 -0.001 0.026
3 1.083 0.001 0.013 1.082 0.000 0.020
4 2.898 0.001 0.027 2.897 0.000 0.034
5 0.904 0.000 0.011 0.904 0.000 0.016
6 8.928 0.001 0.062 8.925 0.000 0.058
7 2.794 0.000 0.032 2.794 0.000 0.028
8 2.068 0.000 0.035 2.067 0.000 0.023
9 17.712 0.000 0.178 18.712 0.000 0.076
10 14.447 0.004 0.230 14.446 0.003 0.065

It seems as if the Kaminsky approach is performing better than the Chain Ladder
method under these conditions. While the distinction between these two models
uncertainty in their predictions are quite on par until reporting year 6. The question
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is if this distinction will be even more clear if we further increase the number of
policies? Will the difference between the uncertainties and the bias for the corre-
sponding methods grow with more volatile loss distributions? These questions will
be answered in the next chapter, where we try to acquire an approximate expression
for these uncertainties when the number of policies increase toward infinity.
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Chapter 4

Error analysis for RBNR

4.1 The approach

In the numerical study we observed that when the number of policies in a portfolio
were increased, the variance in individual losses had a big impact on the uncertainty
in the prediction of the outstanding liabilities for the Chain Ladder method. When
compared to the Chain Ladder method, the uncertainty in the Kaminsky prediction
of the outstanding liabilities seemed to hardly be affected at all by the individual
claim variance. The bias was also smaller for the Kaminsky approach compared
to the the Chain Ladder method. In this chapter both models will be compared
analytically. We will investigate if it is a general rule that the Kaminsky approach is
superior to the Chain Ladder method. In other words, we will investigate if modelling
the claim frequency and claim size separately improves the accuracy of the estimate
of outstanding liabilities.

Mack (1993) introduced the Markov-like assumptions, which can be found in the
equations in (2.4), to be able to quantify the Chain Ladder error. The Chain Ladder
method has a multiplicative structure as seen in equation (2.9), while the Kaminsky
approach has an additive structure as seen in equation (2.28). The way Mack (1993)
quantified the error will not suffice, due to the additive structure of the Kaminsky
approach.

This is the reason behind choosing the mean square error (MSE) to compare the two
models. We have that R̂i fitted on past observations is independent of the future Ri.
This gives us:

E[(R̂i −Ri)2] = Var(R̂i) + Var(Ri) + (E[R̂i]− E[Ri])
2

where Var(Ri) is unaffected by how we perform the RBNS reserve calculations and
will be called the unpredictable error. The mathematical expression for Var(Ri) can
be found below. The calculations for variance and the covariance in the expression
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can be found in Section 4.3.

Var(Ri) = Var(
K∑

k=I−i+1

Xi,k)

=

K∑
k=I−i+1

Var(Xi,k) +

K∑
k=I−i+1

∑
k 6=k′

cov(Xi,k, Xi,k′)

=
K∑

k=I−i+1

(qkξ
2
k + qkσ

2
k)ni − (

K∑
k=I−i+1

qkξk)
2ni

It is already known that the estimate for the outstanding liabilities in the Kaminsky
approach is an unbiased estimator for the outstanding liabilities. It is also shown in
Section 4.3 that for large portfolio E[RCLi ] ≈ E[Ri]. In other words the bias term,
E[R̂i] − E[Ri], will become zero when the number of policies in a portfolio increase
toward infinity. Since Var(Ri) is unaffected by how we perform the modelling of the
reserve, our main concern will be to compare the uncertainties in the prediction of
the outstanding liabilities for both approaches. It is impossible to obtain a closed
and exact formula for these uncertainties. Because of this we will try to approximate
them for large portfolios, i.e. we will let ni →∞.

4.2 Large portfolio approximation

One knows from the central limit theorem that both Ri and R̂i becomes normally
distributed for a large portfolio. In this section the key results will be presented,
while the lengthy calculations will be presented in section 4.3.

For the Chain Ladder we introduce:

ak =
k∑
l=0

qlξl , bk =

k∑
l=0

ql[ξ
2
l + σ2l ] (4.1)

and

ck = bk−1(
aK
ak−1

− 1)2 − bk(
aK
ak
− 1)2 , dk = bk − a2k (4.2)

for k = 0, · · · ,K. We then have that Var(R̂cli ) approximately becomes:

Ṽar(R̂CLi ) =n2i

K∑
k=I−i+1

η−1k (ck + bk − bk−1) + nidI−i(
aK
aI−i

− 1)2. (4.3)

The stochastic remainder term o(
√
ni) is, as one may see in equation (4.31) for

Var(R̂cli ) in Section 4.3, dominated by
√
ni in the sense that o(

√
ni)√
ni
→ 0 in some

stochastic limit as ni → ∞. There will also be other remainder terms in the cal-
culations in section 4.3, but they will be treated informally. For example, through
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the limit process where n0 = ω0n̄, . . . nK = ωK n̄ where n̄ → ∞. Here we have that
ω0, . . . , ωK are fixed and positive weights such that ω0 + ω1 + · · ·+ ωK = 1. It gives
us that Ṽar(R̂cli )/Var(R̂cli )→ 1 as ni →∞.

The variance between the individual losses, Zi,k, is denoted by σ2k. Both Bølviken
(2015) and Wütherich and Merz (2008) discusses the connection between the Pois-
son version of the Burnhuetter-Ferguson method and the Chain Ladder method.
It is shown that both methods are equivalent. For a simple proof see Bølviken
(2015). Bølviken (2015) further discusses the consequence of this equivalence. When
there is no uncertainty around the estimation of the delay-dependent means, ξk,
i.e. when σk = 0 for all k we have that the Kaminsky predictions coincide with the
Burnhuetter-Ferguson ones, which again coincide with the Chain Ladder method.

This makes it possible to take a sizeable step towards a similar approximation
Ṽar(R̂Kai ) for the Kaminsky variance. By inserting the new condition, that σk = 0
for all k, in the expressions above we get:

b
(0)
k =

k∑
l=0

qlξ
2
l , c

(0)
k = b

(0)
k−1(

aK
ak−1

− 1)2 − b(0)k (
aK
ak
− 1)2 and d

(0)
k = b

(0)
k − a

2
k

(4.4)

for k = 0, · · · ,K. When the error in the estimate ξ̂k is lead through a linearization
argument in Section 4.3 we have that:

Ṽar(R̂Kai ) = n2i

K∑
k=I−i+1

η−1k (c
(0)
k + bk − bk−1) + nid

(0)
I−i(

aK
aI−i

− 1)2 (4.5)

where ηk =
∑I

i=k ni. Again we have that Ṽar(R̂Kai )/Var(R̂Kai )→ 1 as ni →∞.

Equation (4.3) and (4.5) are very similar, and it is therefore possible to study their
differences analytically. By taking the difference between these two equations we
get:

Ṽar(R̂CLi )− Ṽar(R̂Kai ) = n2i

K∑
k=I−i+1

η−1k (ck + bk − bk−1) + nidI−1(
aK
aI−i

− 1)2

− n2i
K∑

k=I−i+1

η−1k (c
(0)
k + bk − bk−1)− nid

(0)
I−i(

aK
aI−i

− 1)2

= ni(dI−i − d(0)I−i)(
aK
aI−i

− 1)2 + n2i

K∑
k=I−i+1

η−1k (ck − c
(0)
k )

= A1,i +A2,i (4.6)

where

A1,i = ni(dI−i − d(0)I−i)(
aK
aI−i

− 1)2 and A2,i = n2i

K∑
k=I−i+1

η−1k (ck − c
(0)
k ). (4.7)
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Starting with A1,i, because it is the easiest term to work with, we see that A1,i ≥ 0

since d(0)k ≤ dk because b(0)k ≤ bk. A2,i is a bit more complicated to work with, but
by inserting the definition of ck and c(0)k into A2,i we get that:

A2,i = n2i

K∑
k=I−i+1

η−1k (ck − c
(0)
k )

= n2i

K∑
k=I−i+1

η−1k (bk−1(
aK
ak−1

− 1)2 − bk(
aK
ak
− 1)2 − b(0)k−1(

aK
ak−1

− 1)2 + b
(0)
k (

aK
ak
− 1)2)

= n2i

K∑
k=I−i+1

η−1k (bk−1 − b
(0)
k−1)(

aK
ak−1

− 1)2 − n2i
K∑

k=I−i+1

η−1k (bk − b
(0)
k )(

aK
ak
− 1)2

= n2i η
−1
I−i+1(bI−i − b

(0)
I−i)(

aK
aI−i

− 1)2 + n2i

K∑
k=I−i+2

η−1k (bk−1 − b
(0)
k−1)(

aK
ak−1

− 1)2

− n2i
K∑

k=I−i+1

η−1k (bk − b
(0)
k )(

aK
ak
− 1)2

a
= n2i η

−1
I−i+1(bI−i − b

(0)
I−i)(

aK
aI−i

− 1)2 + n2i

K−1∑
k=I−i+1

η−1k+1(bk − b
(0)
k )(

aK
ak
− 1)2

− n2i
K−1∑

k=I−i+1

η−1k (bk − b
(0)
k )(

aK
ak
− 1)2

= n2i η
−1
I−i+1(bI−i − b

(0)
I−i)(

aK
aI−i

− 1)2 + n2i

K−1∑
k=I−i+1

(bk − b
(0)
k )(

aK
ak
− 1)2(η−1k+1 − η

−1
k )

(4.8)

again by the virtue of b(0)k ≤ bk and ηk+1 < ηk we have that A2,i ≥ 0. It follows
that Ṽar(R̂Kai ) ≤ Ṽar(R̂CLi ). It is shown here that the Kaminsky approach is more
accurate in estimating the outstanding liabilities than the Chain Ladder method for
large portfolios regardless of claim frequency and claim size distribution. This result
coincides with the results from the the numerical study and the data study for the
car insurance data.

It would be interesting to calculate A1,i and A2,i when the parameters are the same
as in the numerical study where ξk = ξ and σk = σ for all k . In other words,
when the average of all past losses per event and when the variation is the same
independent of development year k , then ak =

∑k
l=0 qlξ = Qkξ,

di − d(0)i = bi − b(0)i
= Qk(ξ

2 + σ2)−Qkξ2

= Qkσ
2

aHere we have used that
∑K
k=I−i+1 η

−1
k (bk − b

(0)
k )(aK

ak
− 1)2 =

∑K−1
k=I−i+1 η

−1
k (bk − b

(0)
k )(aK

ak
− 1)2

since the last term in the sum will always be zero.
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and

ck − c
(0)
k = (bk−1 − b

(0)
k−1)(

aK
ak−1

− 1)2 − (bk − b
(0)
k )(

aK
ak
− 1)2

= Qk−1σ
2(
QKξ

Qk−1ξ
− 1)2 −Qkσ2(

QKξ

Qkξ
− 1)2

b
= σ2(

1

Qk−1
− 1

Qk
+Qk−1 −Qk)

= σ2(
Qk −Qk−1
Qk−1Qk

+Qk−1 −Qk)

= qk(
1

Qk−1Qk
− 1)σ2

where Qk = q0 + · · · qk is the distribution function of the delay. It follows then that

A1,i = niQI−i(
1

QI−i
− 1)2σ2 and A2,i = n2i

K∑
k=I−i+1

η−1k qk(
1

Qk−1Qk
− 1)σ2.

(4.9)

The beauty of the equations in (4.9) is that both A1,i and A2,i are proportional to σ2.
This shows us that the more volatile the loss distribution is, the more superior the
Kaminsky approach is compared to the Chain Ladder method. When the variation
in claims per event is large it is far better to solve the problem by breaking the
predictions down into claim losses and claim counts. The expressions for A1,i and
A2,i and the difference in di − d(0) shows that this is a general phenomenon. This
was also observed in the numerical study that it seem as if the Kaminsky approach
fare for more volatile claim size distribution.

4.3 Mathematical arguments

In this section we will thoroughly go through the lengthy calculations that were
skipped in the preceding section. First, we will tackle the Chain Ladder asymp-
totics. The section below is divided into three parts: Preliminaries, the Chain
Ladder coefficients and mean and variance of R̂CLi .

In the first part we will derive some preliminary results needed for the two other
parts. In the second part our goal will be to derive an expression for the f̂k. Using
the results from the two previous parts, we will derive an expression for the mean
and the variance of outstanding losses for the Chain Ladder method in the third
and last part. In section 4.3.2 we will find an expression for the variance of the
outstanding losses for the Kaminsky approach.

bHere we have used that QK by definition is equal to 1 and rewritten the quadratic terms into
standard forms

39



CHAPTER 4. ERROR ANALYSIS FOR RBNR

4.3.1 The Chain Ladder asymptotics

Preliminaries

Recall that each aggregate Xi,k becomes normally distributed as ni → ∞ which
is a consequence of the central limit theorem. It is also known that each Ni,k is
multinomial given Ni = ni with expectation and variance as given in (2.10). Using
these results we can also derive the expectation, as given in (2.25), variance and
covariance for Xi,k:

Var(Xi,k) = Var(E[Xi,k|Ni,k]) + E[Var(Xi,k|Ni,k)]

= Var(ξkNi,k) + E[σ2kNi,k]

= ξ2kniqk(1− qk) + σ2kniqk

= niqk[ξ
2
k(1− qk) + σ2k]. (4.10)

With this result we can find the covariance between Xi,k and Xi,l. We will have to
use that cov(Ni,k, Ni,l) = −niqkql since ni,k’s are multinomial distributed.

cov(Xi,k, Xi,l) = cov(E[Xi,k|Ni,l]E[Xi,l|Ni,l]) + E[cov(Xi,k, Xi,l|Ni,kNi,l)]
c
= cov(ξkNi,k, ξlNi,l) + E[0]

= ξkξlcov(Ni,k, Ni,l)

= −ξkξlniqkql if k 6= l. (4.11)

Now that we know the expectation, variance and the covariance of Xi,k we can
compute the expectation and the variance for the cumulative losses Ci,k = Xi,0 +
· · ·+Xi,k.

E[Ci,k] = E[Xi,0 + · · ·+Xi,k] = (q0ξ0 + · · · qkξk)ni = akni (4.12)

cThe covariance is 0 in RBNS since the counts Ni,k are observed the sizes of the claims are
independent from year to another
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and

Var(Ci,k) =
k∑
j=0

Var(Xi,j) +
k∑
j=0

∑
j′ 6=j

cov(Xi,j , Xi,j′)

=

k∑
j=0

(qj(1− qj)ξ2j + qjσ
2
j )ni −

k∑
j=0

∑
j′ 6=j

qjqj′ξjξj′ni

=
k∑
j=0

(qjξ
2
j + qjσ

2
j )ni − (

k∑
j=0

k∑
j′ 6=j,j′=0

qjqj′ξjξj′ +
k∑
j=0

q2j ξ
2
j )ni

=
k∑
j=0

(qjξ
2
j + qjσ

2
j )ni −

k∑
j=0

k∑
j′=0

qjqj′ξjξj′ni

= bkni − (

k∑
j=0

qjξj)
2ni

= (bk − a2k)ni
= dkni (4.13)

where ak, bk and dk were defined in (4.1) and (4.2) right. The variance between the
individual losses, Zi,k, is denoted by σ2k.

With the acquired expressions for both the expectation and the variance of Ci,k we
can express the cumulative losses Ci,k in (2.3) as such:

Ci,k = niak +
√
nidkεi,k + o(

√
ni). (4.14)

As mentioned earlier, the stochastic remainder term o(
√
ni) is dominated by

√
ni in

the sense that o(
√
ni)√
ni
→ 0 in some stochastic limit as ni → ∞. There will be other

remainder terms below, but we will treat them informally. For example, through the
limit process where n0 = ω0n̄, . . . nK = ωK n̄ where n̄ → ∞. Again, we have that
ω0, . . . , ωK are fixed and positive weights such that ω0 + ω1 + · · ·+ ωK = 1.

The Chain Ladder coefficients

All the εi,k in (4.14) are N(0,1) and are independent between accident years i , but
the aggregates Xi,k’s are correlated in Ci,k. Before we can calculate cor(Ci,k, Ci,l) =
cor(εi,k, εi,l) we need to calculate the covariance between Ci,k and Ci,l.
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Suppose that k ≤ l, then:

cov(Ci,k, Ci,l) =
k∑
j=0

l∑
j′=0

cov(Xi,j , Xi,j′)

=
k∑
j=0

Var(Xi,j) +
k∑
j=0

l∑
j′ 6=j,j′=0

cov(Xi,j , Xi,j′)

=

k∑
j=0

(qj(1− qj)ξ2j + qjσ
2
j )ni −

k∑
j=0

l∑
j′ 6=j,j′=0

qjqj′ξjξj′ni

=
k∑
j=0

(qjξ
2
j + qjσ

2
j )ni − (

k∑
j=0

l∑
j′ 6=j,j′=0

qjqj′ξjξj′ +
k∑
j=0

q2j ξ
2
j )ni

= bkni − (
k∑
j=0

qjξj)(
l∑

j′=0

qj′ξj′)ni

= (bk − akal)ni. (4.15)

With the expression for the covariance, we can calculate the correlation between the
aggregates Ci,k’s.

ρεk,l = cor(εi,k, εi,l) =
cov(Ci,k, Ci,l)√

Var(Ci,k)Var(Ci,l)

=
(bk − akal)√

dkdl
.

We then have that:

ρεk,l =

{
bk−akal√
dkdl

if k ≤ l
bl−alak√
dldk

if l > k
(4.16)

ρεk,l will be useful later on, but now we can find an expression for f̂k by inserting the
expression for Ci,k in (4.14) into (2.6). We then get:

f̂k =

∑I
i=k[niak +

√
nidkεi,k + o(

√
n̄)]∑I

i=k[niak−1 +
√
nidk−1εi,k−1 + o(

√
n̄)]

for k = 1, · · · , I. With further manipulation we get:

f̂k =
ak + η

− 1
2

k d
− 1

2
k δ1,k + o(n̄−

1
2 )

ak−1 + η
− 1

2
k d

− 1
2

k−1δ2,k + o(n̄−
1
2 )

(4.17)

where

ηk =

I∑
i=k

ni , δ1,k =

I∑
i=k

n
1
2
i

η
1
2
k

εi,k , and δ2,k =

I∑
i=k

n
1
2
i

η
1
2
k

εi,k−1. (4.18)
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By taking a closer look at δ1,k and δ2,k, we see that since ε1,k’s are N(0,1) distributed,

E[δ1,k] = E[δ2,k] =

I∑
i=k

n
1
2
i

η
1
2
k

E[εi,k−1] = 0

Var(δ1,k) = Var(δ2,k) =

I∑
i=k

ni
ηk

Var(εi,k−1) =
ηk
ηk

= 1

δ1,k and δ2,k are also standard normal. It is now possible calculate the correlation
between δi,k and δ2,k.

cor(δ1,k, δ1,l) =
E[δ1,kδ1,l]− E[δ1,k]E[δ1,l]√

Var(δ1,k)Var(δ1,l)

= E[δ1,kδ1,l]

= η
− 1

2
k η

− 1
2

l E

[
I∑

i=k+1

I∑
i′=l+1

n
1
2
i n

1
2
i′ εi,kεi′,l

]

= η
− 1

2
k η

− 1
2

l

I∑
i=max(k,l)+1

ni E[εi,kεi,l]

= η
− 1

2
k η

− 1
2

l

I∑
i=max(k,l)+1

nicor(εi,k, εi,l)

= ρnk,lρ
ε
k,l.

Where we have defined ρnk,l to be:

ρnk,l =


√

ηl
ηk

if k ≤ l√
ηk
ηl

if l > k
(4.19)

When transitioning from the third to the fourth equality sign, we have used that
E[εi,kεi′,l] = 0 when i 6= i′. We have also used that E[εi,kεi,l] = cor(εi,k, εi,l) since,
by definition, the expectations and the variances are equal to zero in the transition
from the fourth to the fifth equality sign. In summary, the other three correlations
will be:

cor(δ1,k, δ1,k) = ρnk,lρ
ε
k,l, cor(δ1,k, δ2,l) = ρnk,lρ

ε
k,l−1 and cor(δ2,k, δ2,l) = ρnk,lρ

ε
k−1,l−1.

(4.20)

The expression for f̂k in (4.17) is hard to work with, and a more compliant expression
is needed. One way to get a more compliant expression is to approximate f̂k through
a Taylor expansion centred in η

− 1
2

k . This is the same as noticing that (4.17), with
minor manipulation, can be expanded into a the geometric series. By only using the
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linear part of the expansion we get the following expression:

f̂k =

ak
ak−1

+
η
− 1

2
k d

1
2
k δ1,k

ak−1
+ o(n̄−

1
2 )

1 +
η
− 1

2
k d

1
2
k−1δ2,k

ak−1
+ o(n̄−

1
2 )

=

 ak
ak−1

+
η
− 1

2
k d

1
2
k δ1,k

ak−1
+ o(n̄−

1
2 )

1−
η
− 1

2
k d

1
2
k−1δ2,k

ak−1
+ o(n̄−

1
2 )


=

ak
ak−1

1 + η
− 1

2
k

d
1
2
k

ak
δ1,k − η

− 1
2

k

d
1
2
k−1
ak−1

δ1,k − η
− 1

2
k η

− 1
2

k

d
1
2
k−1

ak−1ak
δ1,kδ2,k

+ o(n̄−
1
2 )

d
=

ak
ak−1

1 + η
− 1

2
k

d 1
2
k

ak
δ1,k −

d
1
2
k−1
ak−1

δ2,k

+ o(n̄−
1
2 )

=
ak
ak−1

(
1 + η

− 1
2

k Yk

)
+ o(n̄−

1
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Where we have defined Yk to be:

Yk =
d

1
2
k

ak
δ1,k −

d
1
2
k−1
ak−1

δ2,k. (4.22)

There is a need to calculate the variance and the covariance of Y1, · · · , YK . Here we
will need the results in (4.16), (4.19) and (4.20) to calculate the variance and the
covariance.
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dHere we have that the last term gets eaten by the remainder term since η−1
k is a very small

number
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When calculating the covariance we are going to assume that k ≤ l
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d

1
2
k

ak
δ1,k −

d
1
2
k−1
ak−1

δ2,k,
d

1
2
l

al
δ1,l −

d
1
2
l−1
al−1

δ2,l)

=
d

1
2
k d

1
2
l

akal
ρnk,lρ

ε
k,l −

d
1
2
k d

1
2
l−1

akal−1
ρnk,lρ

ε
k,l−1 −

d
1
2
k−1d

1
2
l

ak−1al
ρnk,lρ

ε
k−1,l +

d
1
2
k−1d

1
2
l−1

ak−1al−1
ρnk,lρ

ε
k−1,l−1

=ρnk,l(
d

1
2
k d

1
2
l

akal

(bk − akal)√
dkdl

−
d

1
2
k d

1
2
l−1

akal−1

(bk − akal−1)√
dkdl−1

−
d

1
2
k−1d

1
2
l

ak−1al

(bk−1 − ak−1al)√
dk−1dl

+
d

1
2
k−1d

1
2
l−1

ak−1al−1

(bk−1 − ak−1al−1)√
dk−1dl−1

)

=ρnk,l(
bk − akal
akal

− bk − akal−1
ak−1al

− bk−1 − ak−1al
ak−1al

+
bk−1 − ak−1al−1

ak−1al−1
)

=ρnk,l(
bk
akal

− bk
ak−1al

− bk−1
ak−1al

+
bk−1

ak−1al−1
)

=ρnk,l(
bk
ak
− bk−1
ak−1

)(
1

al
− 1

al−1
), for k ≤ l. (4.24)

Mean and variance of R̂CLi

It is now possible to find the expression for R̂CLi , but first we need to find the
expression for the growth factor α̂i = f̂I−i+1 · · · f̂K . From (4.21) we get:

α̂i = (
aI−i+1

aI−i
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− 1
2

I−i+1YI−i+1) + o(n̄−
1
2 )) · · · ( aK
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2
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1
2 )).

After multiplying and excluding all the cross-terms, since they are small in order,
we get:
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The linearization of R̂CLi = (α̂i − 1)Ci,I−i can now be obtained by setting Ci,I−i
equal to the two first terms in (4.14) when k = I − i. This yields:

R̂CLi =ni(aK − aI−i) + niaK
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2
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The two last terms before o(n̄
1
2 ) is of a lower order and can be dumped into the

discrepancy. We then have that:

R̂CLi = ni(aK − aI−i) + niaK
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η
− 1

2
k Yk + (
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√
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1
2 )

(4.26)

The expectation can easily be calculated since YI−i+1, · · · , YK and εi,I−i are zero-
mean so that:

E[R̂CLi ] = ni(aK − aI−i) + o(n̄
1
2 )

= ni(
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2 ). (4.27)

The result of this equality is that the bias term in the MSE becomes zero as the
number of policies in a portfolio increases towards infinity. To calculate the variance
of R̂CLi , it will be wise to focus on Yk-term first, because this will cause the biggest
problems.
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(4.28)

By defining the first and the last term in (4.28), V1 and V2 respectively, we get:
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By adding V1 and V2 we obtain the variance expression for (4.28):
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The variance of the outstanding losses for the Chain Ladder method, R̂CLi , can now
be calculated. By taking advantage of the fact that YI−i+1, · · ·YK of the future and
εi,I−i of the past are stochastically independent and that the variance of εi,I−i is
equal to 1 from the definition of the εi,k’s, we have that:
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where ck is defined as in (4.2) left. This is the approximation for the variance of
R̂CLi in Section 4.

4.3.2 Kaminsky asymptotics

To verify the approximate variance of the outstanding losses for the Kaminsky ap-
proach we will start at a natural point:

R̂Kai − E[Ri] = ni

K∑
k=I−i+1

q̂kξ̂k − ni
K∑

k=I−i+1

qkξk. (4.32)
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By implementing some further manipulation by adding and subtracting a ni
∑K

k=I−i+1 q̂kξk
we get:

R̂Kai − E[Ri] =
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[niq̂kξ̂k − niqkξk + niq̂kξk − niq̂kξk]
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By replacing q̂k by its true value in the last sum and lump all the discrepancy into
the reminder term, we have that:

R̂Kai − E[Ri] = B1,i +B2,i + o(n̄−
1
2 ) (4.33)

where

B1,i = ni
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We can also notice that B1,i is the error of the Kaminsky method when the ξk are
fixed for a development year k without any randomness. This is very important
and can be taken advantage of. As mentioned earlier, the connection between the
Poisson version of the Burnhuetter-Ferguson method and the Chain Ladder method
is discussed in both Bølviken (2015) and Wütherich and Merz (2008). It is shown
that both methods are equivalent. The consequence of this equivalence is that when
there is no uncertainty around the estimation of the delay-dependent means, ξk, i.e.
when σk = 0 for all k we have that the Kaminsky predictions coincide with the Chain
Ladder method.

This makes it possible to obtain Var(B1,i) by setting σ0 = σ1 = · · · = σK = 0 into
the Chain Ladder variance in (4.3) which yields:

Var(B1,i) =n2i
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k − b

(0)
k−1) + nid
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where b(0)k , c(0)k and d
(0)
k are defined as in (4.4). To calculate the variance of B2,i,

remember that ξ̂k is the average loss when delayed k years. The observation behind
is Nkk+, · · · ,+NI,k with expected value (nk + · · ·+ nI)qk. This gives us:

Var(ξ̂k) =
σ2k

(nk + · · ·+ nK)qk
+ o(n̄−1)

so that

Var(B2,i) = n2i

K∑
k=I−i+1

q2k Var(ξ̂k) = n2i

K∑
k=I−i+1

η−1k qkσ
2
k + o(n̄). (4.36)
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The final step is quite easy because B1,i and B2,i are independent, Var(R̂Kai ) can
easily be calculated:

Var(R̂Kai ) = n2i

K∑
k=I−i+1

η−1k (c
(0)
k + b

(0)
k − b

(0)
k−1 + qkσ

2
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− 1)2 + o(n̄) (4.37)

which is the approximation (4.5). This concludes the lengthy calculations that were
used to show that the Kaminsky approach is more accurate than the Chain Ladder
method in the preceding section. It was also shown that breaking the problem
into counts and sizes is a more superior method the more volatile the claim size
distribution is.
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Chapter 5

Concluding remarks

The objective of this thesis was to investigate which model would be more accurate
to estimate the outstanding liabilities. Should insurance companies use aggregated
data to estimate the outstanding liabilities, or should they divide the problem into
modelling the claim frequency and the claim sizes separately? From the results in
Chapter 3 and 4 it seems as it would be advantageous to model the claim counts
and the claim sizes separately to estimate the outstanding liabilities.

In Chapter 2 we introduced the Chain Ladder method and the Kaminsky approach,
and wanted to find out how the insurance company could go forth to implement
them. One of the underlying assumptions of the Chain Ladder method is that there
are no “unnatural” claims. Every year develops the same way, as if there is a pattern
that will continue in the future. This will not always be true. “Unnatural” claims
like natural disasters, big chain collisions and ect. have to be handled separately to
predict the reserves. Different methods of handling outliers were described in Chap-
ter 3. The stochasticity of the Kaminsky approach allows it to deal with outlying
claim or claims with no additional effort.

When implementing the methods on real data from a Norwegian non-life insurance
company in Chapter 3, we observed that for the fire insurance data the Chain Ladder
method was affected by the outlier in reporting year 2014. The standard deviation
and the bias were both larger for the Chain Ladder method than for the Kaminsky
approach for the 2 last reporting years. The results from the bootstrapping simu-
lation on the car insurance data seemed more reliable in the sense that it was not
affected by outliers. The Kaminsky standard deviations and the bias were more
stable than for the Chain Ladder method. It should be noted that the bias and the
standard deviation were somewhat higher for the Kaminsky approach for the first 3
and 4 reporting years.

In the numerical study, the number of policies in a portfolio were increased and the
exponential losses and heavy-tailed losses were introduced. The standard deviation
and the bias for the Kaminsky apporach were very stable compared to the Chain
Ladder ones. It was also clear that when the more volatile the loss distribution was
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more superior was the Kaminsky approach. This was confirmed in the large portfolio
approximation in Chapter 4. It was shown that when the delay-dependent mean
and the variance in the individual losses were the same for all delays, the difference
between the Chain Ladder approximation and the Kaminsky approximation was
proportional to the variance in the individual losses.

This thesis has shown that it is more advantageous to model the counts and the
sizes separately in a RBNS case than by using aggregates, especially when the loss
distribution is volatile. This is also true for the IBNR case as shown in Bølviken
(2015). Verrall et al. (2010) discusses how insurance companies do not tend to use
individual data as it can be hard to utilize and computationally difficult. This is
also one of the reasons why the Chain Ladder method is popular. It should be noted
that since there was no available data on individual losses, the Kaminsky approach
was implemented using aggregated data to estimate parameters on an individual
level. The method fared very well. If individual data would have been available,
the Kaminsky approach would have been even more accurate as the parameters
would have been estimated more accurately. Another argument for using the Chain
Ladder method is that the method is distribution-free, i.e. non-parametric. This is
not necessarily a strength, but can be seen as a weakness in the sense that the model
treats all situations equally. This has been pointed out several times in the thesis,
and it is not a realistic assumption to make because there is always a possibility for
an outlier. The Chain Ladder method is very sensitive when it comes to for example:
small changes in portfolio as strong growth that can influence the observed history
and changes in product and/ or assessments of claims. The Kaminsky approach
can be affected by these examples as well, but the model is more adaptable for
these scenarios. The Kaminsky approach requires no specific loss distribution, and
is parametric in the sense that it has a Poisson or multinomial basis depending on
whether it is an IBNR or a RBNS case. The flexibility in the Kaminsky approach
makes it a valuable resource for an actuary that is estimating outstanding liabilities
in an insurance company.
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Distributions

A.1 Claim number distribution

A.1.1 Poisson distribution

The Poisson distribution is qualified to model claim numbers. The proof is shown in
Bølviken (2014). The Poisson distribution:

P (N = n) =
λn

n!
e−λ, for n = 0, 1, · · ·

with

E[N ] = λ and Var(N) = λ

The parameters are defined as:

λ = µT and λ = JµT

on policy level and portfolio level respectively. µ is the intensity while J is the number
of policies and T is the exposure. This makes µT the frequency. When modelling
with delay, a possibility as mentioned Chapter 2 is:

Ni,k ∼ Poisson(λi,k)

where λi,k = λiqk where λi = Aiµ and Ai is the portfolio value in year i .

A.1.2 Multinomial distribution

The multinomial distribution is a generalized binomial distribution. There exists
K + 1 categories where each category is assigned a fixed probability qk of success.
In our case we assume the categories to be development years and the qk’s to be
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the delay probability. Chapter 2 addresses how the claim numbers are governed by
delay-probabilities q0, · · · , qK in-depth. The formula is:

P (X1 = x1, · · · , XK = xK |
K∑
k=0

xk = n) =
n!

x1! · · ·xK !
qx11 · · · q

xK
K

where the expectation, the variance and the covariance is:

E[Xk] = nqk ,Var(Xk) = nqk(1− qk) and Cov(Xk, Xl) = nqkql

for k 6= l. For the RBNS case, where the goal is to model the claim numbers for the
different development years and reporting years, we have:

P (Ni,0 = ni,0, · · · , Ni,K = ni,K |Ni = ni) =
ni!

ni,0! · · ·ni,K !
q
ni,0
0 · · · qni,KK ,

whereNi,0+· · ·+Ni,K = Ni and multinomial distributed with probabilities q0, · · · , qK
where Ni = ni is known.

A.2 Claim size distributions

A.2.1 Gamma distribution

The Gamma distribution is often used to simulate claim sizes. One of the reasons for
this is that its shape is flexible and this makes it useful in many contexts. The loss
Z can be Gamma distributed. In Bølviken (2014), when loss is Gamma distributed,
Z is defined as Z = ξG where G∼ Gamma(α) is called the standard Gamma with
mean one and shape α. We then have that:

E[Z] = ξ and Var(Z) =
ξ2

α
.

When α→∞ the Gamma variables become normal and the standard deviation→ 0.
The smaller the α becomes, the heavier the tail will become. The density function
is:

f(x) =
(αξ )α

Γ(α)
xα−1e

−αx
ξ , x > 0 where Γ(α) =

∫ ∞
0

xα−1e−xdx.

The density function to a standard Gamma is equal to the one above, but with ξ = 1.

A.2.2 Exponential distribution

This distribution is a special case only when the shape parameter is equal to 1. It is
a somewhat heavy-tailed distribution. The density function is:

f(x) =
1

ξ
e
−x
ξ = Gamma(ξ, α = 1).
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The expectation and variance is:

E[X] = ξ and Var(Z) = ξ2.
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Appendix B

Data

The data was given by a Norwegian non-life insurance company. The data for fire
insurance and car insurance can be found below. For the fire insurance, there is
data from 2010 to 2015 and it contains data on fire damage on villas. For the car
insurance there is data from 2009 to 2015 and it contains data on personal injury in
car related accidents. The data contains:

Reported Years: These are the years the claims were reported to the insurance
company.

Development Years: These are also known as delay years or lags. They indicate
how many years it takes for a claim to be settled, counting from the reporting
year. The claims that have not yet been settled are set to 2020. In other
words, if reported year + development year = 2020 then they have not yet
been settled.

Number of Claims: These are the total number of claims for the combination of
reported year and development year that have been settled.

Payouts: The total amount the insurance company had to pay out for the different
combination of reported and development year.
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B.1 Car insurance

Table B.1: Car insurance data

Reported Year Development Year Number of Claims Payout
2009 0 12 -48064.0
2009 1 14 -161108.0
2009 2 17 -894886.0
2009 3 10 -3641613.1
2009 4 9 -2387052.0
2009 5 4 -784852.0
2009 6 4 -362340.0
2009 11 7 -10499516.2
2010 0 32 -59994.0
2010 1 70 -502431.9
2010 2 14 -2675988.0
2010 3 14 -2474542.0
2010 4 9 -3571742.0
2010 5 2 -729123.8
2010 10 5 -632908.9
2011 0 60 -258203.0
2011 1 51 -864706.8
2011 2 22 -5322439.2
2011 3 16 -4147862.9
2011 4 8 -3127485.6
2011 9 16 -2054619.2
2012 0 77 -384433.0
2012 1 83 -3124323.2
2012 2 23 -4860033.0
2012 3 13 -4486513.0
2012 8 20 -3734359.8
2013 0 65 -1181876.5
2013 1 101 -1564453.0
2013 2 22 -4647047.8
2013 7 35 -4599373.1
2014 0 150 -554078.0
2014 1 148 -2938129.4
2014 6 80 -2520063.6
2015 0 108 -607523.4
2015 5 183 -914747.9

58



B.2. FIRE INSURANCE

B.2 Fire insurance

Table B.2: Fire insurance data

Reported Year Development Year Number of Claims Payout
2010 0 212 -4853226
2010 1 92 -12858772
2010 2 26 -34847703
2010 3 8 -28592712
2010 4 5 -22237291
2010 5 1 -55505
2010 10 2 -2041059
2011 0 274 -8038561
2011 1 105 -22469769
2011 2 15 -19741824
2011 3 10 -21876168
2011 4 4 -6275362
2011 9 3 -12112507
2012 0 269 -7283445
2012 1 111 -21434904
2012 2 20 -35305370
2012 3 9 -10841351
2012 8 7 -18209330
2013 0 319 -10352733
2013 1 110 -42526638
2013 2 13 -20881159
2013 7 9 -28143883
2014 0 599 -11381789
2014 1 198 -22691535
2014 6 34 -53914940
2015 0 378 -9404576
2015 5 130 -18332702
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Appendix C

R-code

C.1 Sorting the data

Here we are sorting the fire insurance data and making a run-off triangle with incre-
mental losses. For the fire insurance data we will use the data from reporting year
2010 to 2015.

1 ##########################
2 ######## Brann #############
3 ##########################
4
5 Brann = read . table ( "SumBrann . txt " , sk ip="1" ) #Reading the data , skipping the

first row
6
7 BMelAr = Brann [ , 1 ] #reported year
8 BAvv = Brann [ , 2 ] #development years
9 BAnS = Brann [ , 3 ] #number of accidents

10 BSkae = Brann [ , 4 ] #accident estimate
11 BRegg = Brann [ , 5 ] #Regress
12 BUtBe = Brann [ , 6 ] #settlements
13 BRBNS = Brann [ , 7 ] #RBNS
14
15 BrannTable = cbind (BMelAr , BAvv, BAnS, BUtBe)
16 cat ( "\n\n" )
17 BrannTable
18
19 b = max(which( BrannTable [ , 1 ] %in% 2009) ) #finding last index where 2009

appears
20
21 BrannTable2010 = BrannTable [−(1 :b ) , ] #making a matrix with only SkadeAr 2010

and up and avv and utbetaltbelop
22
23 #Elementing data were claims where settled in 2020. They have not yet been

settled.
24
25 MelAr2020 = c ( )
26 Avv2020 = c ( )
27 AnS2020 = c ( )
28 bindex = c ( )
29 h=1
30 for (b in 1 : length ( BrannTable2010 [ , 1 ] ) )
31 {
32 #Data is given in such way that the reported claims in year x that hasn ’t
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been settled yet are "Settled"
33 #in 2020
34 i f ( BrannTable2010 [ b , 1 ] + BrannTable2010 [ b , 2 ] == 2020) {
35 MelAr2020 [ h ] = BrannTable2010 [ b , 1 ] ; Avv2020 [ h]= BrannTable2010 [ b , 2 ] ;

AnS2020 [ h]= BrannTable2010 [ b , 3 ]
36 bindex [ h ] = b
37 h = h+1
38 }
39 }
40 BrannTableUse = BrannTable2010[−bindex , ] #Table from 2010 and up to 2015 with

data of settlements up to 2015
41 Table2020 = cbind (MelAr2020 , AnS2020 ) #contains the the claims that have

not been reported yet.
42 \\
43 ################################
44 #Upper -Triangle Matrix ##########
45 ################################
46 #Making a empty Matrix
47 AccidentYear = unique ( BrannTableUse [ , 1 ] )
48 DevelopmentYear = unique ( BrannTableUse [ , 2 ] )
49 UpperTriangle = matrix ( rep (NA) , length ( AccidentYear ) , length ( AccidentYear ) )
50 rownames( UpperTriangle )=AccidentYear
51 colnames ( UpperTriangle )=DevelopmentYear
52 a = 1 ; b=1
53 for ( i in AccidentYear ) {
54 c = which( BrannTableUse [ , 1 ] %in% i ) #finding indexs.
55 b=1
56 for ( j in c ) {
57 UpperTriangle [ a , b ] = (−1)∗BrannTableUse [ j , 4 ] #Making settlements positive ,

and adding them to the
58 #run -off -triangle
59 b = b+1 #changing colomn
60 }
61 a = a+1 #changing rows
62 }
63 cat ( "\n\n\n Upper Tr iang l e \n\n\n" )

For the car insurance data we will use information from reporting year 2009 to 2015.

1 ##########################
2 ######## Bil ###############
3 ##########################
4
5 B i l = read . table ( "SumBil . txt " , sk ip="1" ) #Reading the data , skipping the

first row
6
7 BiMelAr = Bi l [ , 1 ] #reported year
8 BiAvv = Bi l [ , 2 ] #development years
9 BiAnS = Bi l [ , 3 ] #number of accidents

10 BiSkae = Bi l [ , 4 ] #accident estimate
11 BiRegg = Bi l [ , 5 ] #Regress
12 BiUtBe = Bi l [ , 6 ] #settlements
13 BiRBNS = Bi l [ , 7 ] #RBNS
14
15 Bi lTable = cbind (BiMelAr , BiAvv , BiAnS , BiUtBe )
16 cat ( "\n\n" )
17 Bi lTable
18
19 b = max(which( Bi lTable [ , 1 ] %in% 2008) ) #finding last index where 2008 appears
20
21 Bi lTable2009 = Bi lTable [−(1 :b ) , ] #making a matrix with only SkadeAr 2009 and

up and avv and utbetaltbelop
22
23 #Elementing data were claims where settled in 2020. They have not yet been

settled.
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24
25 BilMelAr2020 = c ( )
26 BilAvv2020 = c ( )
27 BilAnS2020 = c ( )
28 B i l i ndex = c ( )
29 h=1
30 for (b in 1 : length ( Bi lTable2009 [ , 1 ] ) )
31 {
32 #Data is given in such way that the reported claims in year x that hasn ’t

been settled yet are "Settled"
33 #in 2020
34 i f ( Bi lTable2009 [ b , 1 ] + Bi lTable2009 [ b , 2 ] == 2020) {
35 BilMelAr2020 [ h ] = BilTable2009 [ b , 1 ] ; BilAvv2020 [ h]= Bi lTable2009 [ b , 2 ] ;

BilAnS2020 [ h]= BilTable2009 [ b , 3 ]
36 B i l i ndex [ h ] = b
37 h = h+1
38 }
39 }
40 BilTableUse = BilTable2009 [−Bi l index , ] #Table from 2010 and up to 2015 with

data of settlements up to 2015
41 Bi lTable2020 = cbind ( BilMelAr2020 , BilAnS2020 )
42
43 ################################
44 #Upper -Triangle Matrix ##########
45 ################################
46 #Making a empty Matrix
47 AccidentYearBi l = unique ( Bi lTableUse [ , 1 ] )
48 DevelopmentYearBil = unique ( Bi lTableUse [ , 2 ] )
49 UpperTr iangleBi l = matrix ( rep (NA) , length ( AccidentYearBi l ) , length (

AccidentYearBi l ) )
50 rownames( UpperTr iangleBi l )=AccidentYearBi l
51 colnames ( UpperTr iangleBi l )=DevelopmentYearBil
52 a = 1 ; b=1
53 for ( i in AccidentYearBi l ) {
54 c = which( Bi lTableUse [ , 1 ] %in% i ) #finding indexs.
55 b=1
56 for ( j in c ) {
57 UpperTr iangleBi l [ a , b ] = (−1)∗BilTableUse [ j , 4 ] #Making settlements positive

, and adding them to the
58 #run -off -triangle
59 b = b+1 #changing colomn
60 }
61 a = a+1 #changing rows
62 }
63 cat ( "\n\n\n Upper Tr iang l e \n\n\n" )

C.2 R-code for Section 3.1

This is how Table 3.1 and Table 3.2 were made. In addition, these matrices were
used in the Kaminsky approach as well.

1 ####### Fire ##########
2 #####################
3 #Number of accidents#
4 #####################
5 AccidentYear = unique ( BrannTableUse [ , 1 ] )
6 DevelopmentYear = unique ( BrannTableUse [ , 2 ] )
7 UpperTriangleN = matrix ( rep (NA) , length ( AccidentYear ) , length ( AccidentYear ) )
8 rownames( UpperTriangleN )=AccidentYear
9 colnames ( UpperTriangleN )=DevelopmentYear
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10
11 a = 1 ; b=1
12 for ( i in AccidentYear ) {
13 c = which( BrannTableUse [ , 1 ] %in% i ) #finding indexs.
14 b=1
15 for ( j in c ) {
16 UpperTriangleN [ a , b ] = BrannTableUse [ j , 3 ]
17 #run -off -triangle with accident numbers
18 b = b+1 #changing colomn
19 }
20 a = a+1 #changing rows
21 }
22 UpperTriangleN [ i s .na( UpperTriangleN ) ] = 0
23
24 UpperTriangleN
25
26 ######## Car ##########
27 #####################
28 #Number of accidents#
29 #####################
30 AccidentYearBi l = unique ( Bi lTableUse [ , 1 ] )
31 DevelopmentYearBil = unique ( Bi lTableUse [ , 2 ] )
32 UpperTriangleNBil = matrix ( rep (NA) , length ( AccidentYearBi l ) , length (

AccidentYearBi l ) )
33 rownames( UpperTriangleNBil )=AccidentYearBi l
34 colnames ( UpperTriangleNBil )=DevelopmentYearBil
35
36 a = 1 ; b=1
37 for ( i in AccidentYearBi l ) {
38 c = which( Bi lTableUse [ , 1 ] %in% i ) #finding indexs.
39 b=1
40 for ( j in c ) {
41 UpperTriangleNBil [ a , b ] = BilTableUse [ j , 3 ]
42 #run -off -triangle with accident numbers
43 b = b+1 #changing colomn
44 }
45 a = a+1 #changing rows
46 }
47 UpperTriangleNBil [ i s .na( UpperTriangleNBil ) ] = 0
48
49 UpperTriangleNBil

The delay-dependent mean for the fire and car insurance data was calculated, and
this was also used to implement the Kaminsky approach.

1 ##########################
2 ##### average ##############
3 ##########################
4 UpperTriangleA = UpperTriangle
5
6 xik = c ( )
7
8
9 UpperTriangleA [ i s .na( UpperTriangleA ) ] = 0

10
11 for ( i in 1 : length ( AccidentYear ) ) {
12 xik [ i ] = sum( UpperTriangleA [ , i ] ) /sum( UpperTriangleN [ , i ] )
13 }
14
15 plot ( 0 : 5 , x ik )
16
17 ######### Car ############
18 ##########################
19 ##### average ##############
20 ##########################
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21 UpperTriangleABil = UpperTr iangleBi l
22
23 xikk = c ( )
24
25
26 UpperTriangleABil [ i s .na( UpperTriangleABil ) ] = 0
27
28 for ( i in 1 : length ( AccidentYearBi l ) ) {
29 xikk [ i ] = sum( UpperTriangleABil [ , i ] ) /sum( UpperTriangleNBil [ , i ] )
30 }
31
32 plot ( 0 : 6 , xikk )

C.3 R-code for Section 3.2

The code below implements the Chain Ladder method on both the fire and car
insurance data as seen in Section 3.2.1 and 3.2.2. A run-off triangle with incremental
losses that was obtained in C.1 will be used to move forward with the Chain Ladder
method.

Fire insurance data:
1 ##Cumulated Upper Triangle
2
3 CumulatedTriangle = t (apply ( UpperTriangle , 1 , cumsum) )
4 cat ( "\n\n\n Cumulated Upper Tr iang l e \n\n\n" )
5 CumulatedTriangle # cumulated run -off -triangle
6
7 J = length ( DevelopmentYear )
8
9 CLMest = rep (0 , J−1) #vector of zeros with length J-1, we dont have a estimate

for development year 0
10
11 for ( i in 2 : J ) {
12 CLMest [ i −1] = sum( CumulatedTriangle [ 1 : ( J−i +1) , i ] ) /sum( CumulatedTriangle [ 1 : ( J

−i +1) , i −1])
13 }
14 cat ( "\n\n\n Chain−Ladder Est imates \n\n\n" )
15 CLMest
16
17 cumulatedLowerTriangle = matrix ( rep (NA) , length ( AccidentYear ) , length (

AccidentYear ) )
18
19 for ( j in 2 : J ) {
20 for ( i in 1 : J ) {
21 i f ( i>J−j +1){
22 cumulatedLowerTriangle [ j , i ] = CumulatedTriangle [ j , J−j +1]∗prod (CLMest [ ( J

−j +1) : ( i −1) ] )
23 }
24 }
25 }
26
27 cat ( "\n\n\n Estimated Values \n\n\n" )
28 cumulatedLowerTriangle
29
30 CumulatedTriangle [ i s .na( CumulatedTriangle ) ] = 0
31 cumulatedLowerTriangle [ i s .na( cumulatedLowerTriangle ) ] = 0
32
33 cat ( "\n\n\n The Ful l Tr iang l e \n\n\n" )
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34 Fu l lTr i ang l e = CumulatedTriangle + cumulatedLowerTriangle
35 Fu l lTr i ang l e

Car insurance data:
1 ##Cumulated Upper Triangle
2
3 CumulatedTriangleBi l = t (apply ( UpperTriangleBi l , 1 , cumsum) )
4 cat ( "\n\n\n Cumulated Upper Tr iang l e \n\n\n" )
5 CumulatedTriangleBi l # cumulated run -off -triangle
6
7 J = length ( DevelopmentYearBil )
8
9 CLMest = rep (0 , J−1) #vector of zeros with length J-1, we dont have a estimate

for development year 0
10
11 for ( i in 2 : J ) {
12 CLMest [ i −1] = sum( CumulatedTriangleBi l [ 1 : ( J−i +1) , i ] ) /sum(

CumulatedTriangleBi l [ 1 : ( J−i +1) , i −1])
13 }
14 cat ( "\n\n\n Chain−Ladder Est imates \n\n\n" )
15 CLMest
16
17 cumulatedLowerTriangleBi l = matrix ( rep (NA) , length ( AccidentYearBi l ) , length (

AccidentYearBi l ) )
18
19 for ( j in 2 : J ) {
20 for ( i in 1 : J ) {
21 i f ( i>J−j +1){
22 cumulatedLowerTriangleBi l [ j , i ] = CumulatedTriangleBi l [ j , J−j +1]∗prod (

CLMest [ ( J−j +1) : ( i −1) ] )
23 }
24 }
25 }
26
27 cat ( "\n\n\n Estimated Values \n\n\n" )
28 cumulatedLowerTriangleBi l
29
30 CumulatedTriangleBi l [ i s .na( CumulatedTriangleBi l ) ] = 0
31 cumulatedLowerTriangleBi l [ i s .na( cumulatedLowerTriangleBi l ) ] = 0
32
33 cat ( "\n\n\n The Ful l Tr iang l e \n\n\n" )
34 Fu l lT r i ang l eB i l = CumulatedTriangleBi l + cumulatedLowerTriangleBi l
35 Fu l lT r i ang l eB i l

C.4 R-code for Section 3.3

The code for calculating the delay portabilities for both the fire and the car insurance
data can be found below.

1 ######### Fire #############
2 ##########################
3 #########q’s##############
4 ##########################
5 TotalBrann = sum( UpperTriangleN ) + sum( Table2020 [ , 2 ] )
6 q = c ( )
7
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8 for ( i in 1 : length ( AccidentYear ) ) {
9 q [ i ] = sum( UpperTriangleN [ , i ] ) /TotalBrann

10
11 }
12 ######### Car ##############
13 ##########################
14 #########q’s##############
15 ##########################
16 Tota lB i l = sum( UpperTriangleNBil ) + sum( Bi lTable2020 [ , 2 ] )
17 qb i l = c ( )
18
19 for ( i in 1 : length ( AccidentYearBi l ) ) {
20 qb i l [ i ] = sum( UpperTriangleNBil [ , i ] ) /Tota lB i l
21
22 }

The R-code below was run to find the shape parameter:

1 ######## Fire ###############
2 ##########################
3 ########Y_ik ##############
4 ##########################
5
6 UpperTriangleY = UpperTriangle
7
8 UpperTriangleY [ i s .na( UpperTriangleY ) ] = 0
9

10 TikMatrix = UpperTriangleY/UpperTriangleN
11 TikMatrix [ i s .nan( TikMatrix ) ]=0 #Matrix with T_ik ’s, which are equal to Y_ik
12
13 ##########################
14 ######## Finding alpha #####
15 ##########################
16 n i s = rowSums( UpperTriangleN ) + Table2020 [ , 2 ] # The total amount of claims

that were reported from year 2009 to 2015
17 EmpVar = c ( )
18
19 for ( i in 1 : length ( AccidentYear ) ) {
20 a = TikMatrix [ , i ] [ TikMatrix [ , i ] !=0 ]
21 EmpVar [ i ] = (1/ ( length ( a )−1) )∗sum( ( a − xik [ i ] ) ^2) # Empirical variance
22 }
23
24 a_k = c ( )
25 a = c ( )
26 b = c ( )
27
28 for ( i in 1 : length ( AccidentYear ) ) {
29 j = 1 : n i s [ i ]
30 a [ i ] = xik [ i ]^2
31 b [ i ] = sum( (1/ j )∗dbinom( j , n i s [ i ] ,q [ i ] ) )
32 a_k [ i ] = ( a [ i ] /EmpVar [ i ] ) ∗b [ i ]
33 }
34
35 a_k [ i s .na( a_k ) ] = 0
36 a_k [ length ( AccidentYear ) ]= a_k [ length ( AccidentYear )−1] # the shape parameter

with the last element equal to the element before.
37
38 ##########################
39 ########Y_IK ##############
40 ##########################
41 Yikb i l = UpperTriangleABil/UpperTriangleNBil
42
43 Yikb i l [ i s .nan( Y ikb i l ) ] = 0
44
45 ############ Car ###########

67



APPENDIX C. R-CODE

46 ##########################
47 ######## alpha og varians ##
48 ##########################
49
50 n i s b i l = rowSums( UpperTriangleNBil ) + BilTable2020 [ , 2 ]
51 EmpVarbil = c ( )
52
53 for ( i in 1 : length ( AccidentYearBi l ) ) {
54 a = Yikb i l [ , i ] [ Y ikb i l [ , i ] !=0 ]
55 EmpVarbil [ i ] = (1/ ( length ( a )−1) )∗sum( ( a − xikk [ i ] ) ^2)
56 }
57
58 a_kb i l = c ( )
59 a b i l = c ( )
60 bb i l = c ( )
61
62 for ( i in 1 : length ( AccidentYearBi l ) ) {
63 j = 1 : n i s b i l [ i ]
64 a b i l [ i ] = xikk [ i ]^2
65 bb i l [ i ] = sum( (1/ j )∗dbinom( j , n i s b i l [ i ] , q b i l [ i ] ) )
66 a_kb i l [ i ] = ( a b i l [ i ] /EmpVarbil [ i ] ) ∗bb i l [ i ]
67 }
68
69 a_kb i l [ i s .na( a_kb i l ) ] = 0
70 a_kb i l [ length ( AccidentYearBi l ) ]= a_kb i l [ length ( AccidentYearBi l )−1]

These are the different plots of the Gamma distribution for different shape parame-
ters:

1 ####### Gammaplot ########
2 z = runif (10000 , 0 , 2)
3
4 Gamma1 = rgamma( z , 0 . 5 )/0 .5
5 Gamma2 = rgamma( z , 1)/1
6 Gamma3 = rgamma( z , 5)/5
7 Gamma4 = rgamma( z , 10)/10
8
9

10
11 plot (density (Gamma1) , xlim=c (−1 ,5) , yl im=c ( 0 , 1 ) , main="Gamma d i s t r i b u t i o n " )
12 legend ( " t op r i gh t " , c ( " alpha =0.5" , " alpha=1" , " alpha=5" , " alpha=10" ) , l t y= 1 : 4 ,

col=c (1 , 3 , 4 ,10) )
13 l ines (density (Gamma2) , l t y =2, col=3)
14 l ines (density (Gamma3) , l t y =3, col=4)
15 l ines (density (Gamma4) , l t y =4, col=10)

Below we are going to implement the Kaminsky approach using the delay-dependent
mean, the delay probabilities, run-off triangle with incremental claims and claim
numbers and the shape parameter.

Fire insurance data:

1 ##########################
2 ##### Simulering ###########
3 ##########################
4
5 q_t i l d e = matrix (0 , nrow =length ( AccidentYear ) , ncol = length ( AccidentYear ) ) #

empty matrix for the new delay probabilities.
6
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7 for ( i in 2 : length ( AccidentYear ) ) {
8 c = which( UpperTriangleN [ i , ] %in% 0)
9 for ( k in c ) {

10 q_t i l d e [ i , k ] = q [ k ]/(1−sum(q [ 1 : ( length ( AccidentYear )− i +1) ] ) ) #new delay
probabilities conditioned on the upper triangle.

11 }
12 }
13
14 LowerN = matrix (0 , nrow =length ( AccidentYear ) , ncol = length ( AccidentYear ) ) #

empty matrix for the lower triangle
15
16 LO = Table2020 [ , 2 ] #Leftover , claims that have not yet been settled by the

time we got the dataset
17
18 b = length ( AccidentYear )
19 for ( i in 2 : length ( AccidentYear ) ) {
20 i f ( i == 2) {
21 LowerN [ i , length ( AccidentYear ) ] = rbinom (1 , LO[ i ] , q_t i l d e [ i , ] [ q_t i l d e [ i , ]

!=0 ] )
22 }
23 LowerN [ i , b : length ( AccidentYear ) ] = rmultinom (1 , LO[ i ] , q_t i l d e [ i , ] [ q_t i l d e [

i , ] !=0 ] )
24 b = b−1
25 }
26
27 N = UpperTriangleN + LowerN #combining both matrices
28
29 LowerClaim = matrix (0 , nrow =length ( AccidentYear ) , ncol = length ( AccidentYear )

) # empty matrix for the lower triangle of incremental claims
30
31 for ( i in 2 : length ( AccidentYear ) ) {
32 c = which( UpperTriangleN [ i , ] %in% 0)
33 for ( k in c ) {
34 LowerClaim [ i , k ] = sum(rgamma(LowerN [ i , k ] , a_k [ k ] ) ∗xik [ k ] )
35 }
36 }
37
38 UpperTriangle [ i s .na( UpperTriangle ) ]= 0
39
40 Claims = UpperTriangle + LowerClaim #combining the matrices
41
42 CumulatedClaim = t (apply ( Claims , 1 , cumsum) ) aggregat ing to compare with the

chain ladder ones

Car insurance data:

1 ##########################
2 ##### Simulering ###########
3 ##########################
4
5 q_t i l d e b i l = matrix (0 , nrow =length ( AccidentYearBi l ) , ncol = length (

AccidentYearBi l ) )
6
7 for ( i in 2 : length ( AccidentYearBi l ) ) {
8 c = which( UpperTriangleNBil [ i , ] %in% 0)
9 for ( k in c ) {

10 q_t i l d e b i l [ i , k ] = qb i l [ k ] /(1−sum( q b i l [ 1 : ( length ( AccidentYearBi l )− i +1) ] ) )
11 }
12 }
13
14 LowerNbil = matrix (0 , nrow =length ( AccidentYearBi l ) , ncol = length (

AccidentYearBi l ) )
15
16 LObil = BilTable2020 [ , 2 ] #Leftover
17
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18 b = length ( AccidentYearBi l )
19 for ( i in 2 : length ( AccidentYearBi l ) ) {
20 i f ( i == 2) {
21 LowerNbil [ i , length ( AccidentYearBi l ) ] = rbinom (1 , LObil [ i ] , q_t i l d e b i l [ i , ] [

q_t i l d e b i l [ i , ] !=0 ] )
22 }
23 LowerNbil [ i , b : length ( AccidentYearBi l ) ] = rmultinom (1 , LObil [ i ] , q_t i l d e b i l [

i , ] [ q_t i l d e b i l [ i , ] !=0 ] )
24 b = b−1
25 }
26
27 Nbi l = UpperTriangleNBil + LowerNbil
28
29 LowerClaimbil = matrix (0 , nrow =length ( AccidentYearBi l ) , ncol = length (

AccidentYearBi l ) )
30
31 for ( i in 2 : length ( AccidentYearBi l ) ) {
32 c = which( UpperTriangleNBil [ i , ] %in% 0)
33 for ( k in c ) {
34 LowerClaimbil [ i , k ] = sum(rgamma( LowerNbil [ i , k ] , a_kb i l [ k ] ) ∗xikk [ k ] )
35 }
36 }
37
38 UpperTr iangleBi l [ i s .na( UpperTr iangleBi l ) ]= 0
39
40 Cla imsb i l = UpperTr iangleBi l + LowerClaimbil
41
42 CumulatedClaimbil = t (apply ( Cla imsbi l , 1 , cumsum) )

C.5 R-code for Section 3.4

In Section 3.4 we did a bootstrap simulation with the parameters estimated when
implementing the Kaminsky approach.

1 ##Parametric Bootstrap
2 B=1000 #number of bootstrap simulations
3 O=100 #number of reserve estimation per b in 1 to 1000
4
5 #Getting data from the data study
6 q_f i r e = c (0 .6922038475 , 0 .2078974013 , 0 .0249746878 , 0 .0091123861 ,

0 .0030374620 , 0 .0003374958)
7 x ik_f i r e = c (25019 .18 , 198022 .11 , 1496973 .73 , 2270749 .29 , 3168072 .58 ,

55505 .00)
8 a_f i r e = c (0 .11003951 , 0 .04011376 , 5 .13440851 , 1 .14195556 , 1 .09100836 ,

1 .09100836)
9 n i_f i r e = c (346 , 411 , 416 , 451 , 831 , 508)

10
11 q_car = c (0 .335106383 , 0 .310505319 , 0 .065159574 , 0 .035239362 , 0 .017287234 ,

0 .003989362 , 0 .002659574)
12 xik_car = c (6139 .23 , 19604 .18 , 187759 .12 , 278311 .91 , 349472 .30 , 252329 .29 ,

90585 .00)
13 a_car = c (0 .05039394 , 0 .07562587 , 0 .61855204 , 1 .59851134 , 7 .38483021 ,

2 .09441464 , 2 .09441464)
14 n i_car = c (77 , 146 , 173 , 216 , 223 , 378 , 291 )
15 ##################################
16
17 #by changing the parameters below we can implement the bootstrap simulation

for both datasets.
18 q =q_f i r e
19 x i= xik_f i r e
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20 a = a_f i r e
21 n i= ni_f i r e
22
23 n = length ( n i )
24
25 #making empty matrices
26 BMC = matrix (0 , n , B) ; BCL=matrix (0 , n , B) ; BKa=matrix (0 , n , B)
27 OMC = matrix (0 , n , O) ; OCL=matrix (0 , n , O) ; OKa=matrix (0 , n , O)
28
29 #Bootstrapping
30 for (b in 1 :B) {
31 for ( o in 1 :O) {
32 z = matrix (0 , n , n ) ; N = matrix (0 , n , n ) #empty matrices
33
34 #### Modeling z’s and n’s######
35
36 for ( i in 1 : n) {
37 N[ i , ] = t ( rmultinom (1 , n i [ i ] , q) ) #simulating claim counts , one row at

the time
38 }
39
40 for ( i in 1 : n) {
41 for ( k in 1 : n) {
42 z [ i , k ] = sum(rgamma(N[ i , k ] , a [ k ] , a [ k ] ) ∗x i [ k ] ) #simulating claim sizes ,

one cell at the time
43 }
44 }
45
46 ####### Finding the "true" reserve #########
47 cumMC = t (apply ( z , 1 , cumsum) )
48
49 for ( i in ( 1 : n ) ) {
50 OMC[ i , o ] = cumMC[ i , n ] − cumMC[ i , n+1− i ] #finding the "true" reserves.
51 }
52
53 ####### Making matrices with "known" information #########
54 h = n ; d = n
55 knownN = N
56 knownz = z
57 for ( i in ( 2 : n ) ) {
58 for ( k in d : h) {
59 knownN [ i , k ] = 0
60 knownz [ i , k ] = 0
61 }
62 d = d−1
63 }
64 ###### Chain Ladder reserves ############
65 CLest = rep (0 , n )
66
67 cumCL = t (apply ( knownz , 1 , cumsum) )
68
69 for ( i in 2 : n) {
70 CLest [ i −1] = sum(cumCL [ 1 : ( n−i +1) , i ] ) /sum(cumCL [ 1 : ( n−i +1) , i −1])#

estimating the f_k’s
71 }
72
73 for ( g in 2 : n) {
74 for ( i in 1 : n) {
75 i f ( i>n−g+1){
76 cumCL[ g , i ] = cumCL[ g , n−g+1]∗prod ( CLest [ ( n−g+1) : ( i −1) ] ) #predicting
77 }
78 }
79 }
80
81 for ( i in ( 1 : n ) ) {
82 OCL[ i , o ] = cumCL[ i , n ] − cumCL[ i , n+1− i ] #finding the "true" reserves.
83 }
84
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85 ######### Kaminsky method ##########
86
87 Lo = rowSums(N) − rowSums(knownN) #Leftover
88 n i s = rowSums(N)
89
90 xik = c ( )
91
92 for ( i in 1 : n) {
93 xik [ i ] = sum( knownz [ , i ] ) /sum(knownN [ , i ] )
94 }
95 xik [ i s .nan( x ik ) ] = 0
96
97 q_t i l d e = matrix (0 , n , n )
98
99 x = n

100
101 for ( i in ( 2 : n ) ) {
102 for ( k in x : n) {
103 q_t i l d e [ i , k ] = q [ k ]/(1−sum(q [ 1 : ( n−i +1) ] ) ) #making new q’s given LO
104 }
105 x = x−1
106 }
107
108 LowerN = matrix (0 , n , n )
109
110 j = n
111 for ( i in 2 : n) {
112 LowerN [ i , j : n ] = rmultinom (1 , Lo [ i ] , q_t i l d e [ i , ] [ q_t i l d e [ i , ] !=0 ] ) #

predicting N’s
113 j = j−1
114 }
115
116 LowerClaim = matrix (0 , n , n)
117
118 x = n
119 for ( i in ( 2 : n ) ) {
120 for ( k in x : n) {
121 LowerClaim [ i , k ] = sum(rgamma(LowerN [ i , k ] , a [ k ] , a [ k ] ) ∗xik [ k ] ) #

simulating claims
122 }
123 x=x−1
124 }
125 KaC = LowerClaim + knownz
126
127 cumKa = t (apply (KaC, 1 , cumsum) )
128
129 for ( i in 1 : n) {
130 OKa[ i , o ] = cumKa [ i , n ] − cumKa [ i , n−i +1]
131 }
132
133 }
134
135 for ( i in 1 : n ) {
136 BMC[ i , b ] = mean(OMC[ i , ] )
137 BCL[ i , b ] = mean(OCL[ i , ] )
138 BKa[ i , b ] = mean(OKa[ i , ] )
139 }
140 print (b)
141 }
142
143 BootMC = c ( ) ; BootSdMC = c ( )
144 BootCL = c ( ) ; BootSdCL = c ( )
145 BootKa = c ( ) ; BootSdKa = c ( )
146 for ( i in 1 : n) {
147 BootMC[ i ] = mean(BMC[ i , ] ) /1000000 #finding the mean
148 BootSdMC [ i ] = sd (BMC[ i , ] ) /1000000 standard dev i a t i on
149 BootCL [ i ] = mean(BCL[ i , ] ) /1000000
150 BootSdCL [ i ] = sd (BCL[ i , ] ) /1000000
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151 BootKa [ i ] = mean(BKa[ i , ] ) /1000000
152 BootSdKa [ i ] = sd (BKa[ i , ] ) /1000000
153 }
154 #different ways of looking at the data
155 cbind (BootMC, BootCL , BootKa)
156 cbind (BootCL/BootMC, BootKa/BootMC)
157 cbind (BootSdMC , BootSdCL , BootSdKa)
158 cbind (BootSdCL/BootSdMC , BootSdKa/BootSdMC)

C.6 R-code for Section 3.5

In Section 3.5 we did a Monte Carlo simulation for two different loss distributions as
well as increasing the number of policies in a portfolio. We will start with the plots
of the new delay probabilities using the formula described in Section 3.5:

1 #MOnte Carlo simulasjon
2 m = 1000
3 L = 10 #pluss one for the left over
4 lm = 3
5
6 gamma = 0.2
7 q = exp(−gamma∗abs ( 0 : L−lm) ) ; q = q/sum(q) #the probabilities.
8 plot ( 0 : L , q , x lab = "Development years " , ylab = " Probab i l i t y " ) #plotting the

probability
9

10 MCR = matrix (0 , L+1, m) ; CLR = matrix (0 , L+1, m) ; KaR = matrix (0 , L+1, m) #
empty matrices

11
12 Ni = sample (250000 , L+1, replace = TRUE)
13 x i = rep (100 ,L+1) #delay dependet means
14 a = sample (1 , L+1, replace = TRUE) #shape parameter 1 or 0.5
15
16
17 for ( j in 1 :m) {
18 z = matrix (0 , L+1, L+1) ; n = matrix (0 , L+1, L+1) #empty matrices
19
20 ####### Modelling z’s and n’s########
21 for ( i in ( 1 : ( L+1) ) ) {
22 n [ i , ] = t ( rmultinom (1 , Ni [ i ] , q) ) #simulating claim counts , one row at the

time
23 }
24
25 for ( i in ( 1 : ( L+1) ) ) {
26 for ( k in ( 1 : ( L+1) ) ) {
27 z [ i , k ] = sum(rgamma(n [ i , k ] , a [ k ] , a [ k ] ) ∗x i [ k ] ) #simulating claim sizes ,

one cell at the time
28 }
29 }
30 ####### Finding the "true" reserve #########
31 cumMC = t (apply ( z , 1 , cumsum) )
32
33 for ( i in ( 1 : ( L+1) ) ) {
34 MCR[ i , j ] = cumMC[ i , L+1] − cumMC[ i , L+1+1− i ] #finding the "true" reserves.
35 }
36
37 ####### Making matrices with "known" information #########
38 b = L+1;d = L+1
39 knownn = n
40 knownz = z
41 for ( i in ( 2 : ( L+1) ) ) {
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42 for ( k in d : b) {
43 knownn [ i , k ] = 0
44 knownz [ i , k ] = 0
45 }
46 d = d−1
47 }
48 ###### Finding the CL reserve ##############
49 CLest = rep (0 ,L)
50
51 cumCL = t (apply ( knownz , 1 , cumsum) )
52
53 for ( i in 2 : (L+1) ) {
54 CLest [ i −1] = sum(cumCL [ 1 : ( L+1− i +1) , i ] ) /sum(cumCL [ 1 : ( L+1− i +1) , i −1])#

estimating the f_k’s
55 }
56
57 for ( g in 2 : (L+1) ) {
58 for ( i in 1 : (L+1) ) {
59 i f ( i>L+1−g+1){
60 cumCL[ g , i ] = cumCL[ g , L+1−g+1]∗prod ( CLest [ ( L+1−g+1) : ( i −1) ] ) #predicting
61 }
62 }
63 }
64 for ( i in ( 1 : ( L+1) ) ) {
65 CLR[ i , j ] = cumCL[ i , L+1] − cumCL[ i , L+1+1− i ] #finding the CL reserves.
66 }
67
68 ######### Kaminsky method ##########
69
70 Lo = rowSums(n) − rowSums(knownn) #Leftover
71 n i s = rowSums(n)
72
73 xik = c ( )
74
75 for ( i in 1 : (L+1) ) {
76 xik [ i ] = sum( knownz [ , i ] ) /sum(knownn [ , i ] )
77 }
78
79
80 q_t i l d e = matrix (0 , L+1, L+1)
81
82 for ( i in ( 2 : ( L+1) ) ) {
83 c = which(knownn [ i , ] %in% 0)
84 for ( k in c ) {
85 q_t i l d e [ i , k ] = q [ k ]/(1−sum(q [ 1 : ( L+1− i +1) ] ) ) #making new q’s given LO
86 }
87 }
88
89 LowerN = matrix (0 , L+1, L+1)
90
91 b = L+1
92 for ( i in 2 : (L+1) ) {
93 LowerN [ i , b : ( L+1) ] = rmultinom (1 , Lo [ i ] , q_t i l d e [ i , ] [ q_t i l d e [ i , ] !=0 ] ) #

predicting N’s
94 b = b−1
95 }
96
97 LowerClaim = matrix (0 , L+1,L+1)
98
99 for ( i in ( 2 : ( L+1) ) ) {

100 c = which(knownn [ i , ] %in% 0)
101 for ( k in c ) {
102 LowerClaim [ i , k ] = sum(rgamma(LowerN [ i , k ] , a [ k ] , a [ k ] ) ∗xik [ k ] ) #simulating

claims
103 }
104 }
105 KaC = LowerClaim + knownz
106
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107 cumKa = t (apply (KaC, 1 , cumsum) )
108
109 for ( i in 1 : (L+1) ) {
110 KaR[ i , j ] = cumKa [ i , L+1] − cumKa [ i , L+1− i +1]
111 }
112
113 print ( j )
114 }
115
116 RMC = c ( ) ; VarRMC = c ( )
117 RCL = c ( ) ; VarRCL = c ( )
118 RKa = c ( ) ; VarRKa = c ( )
119 for ( i in 1 : (L+1) ) {
120 RMC[ i ] = mean(MCR[ i , ] ) /1000000
121 VarRMC[ i ] = sd (MCR[ i , ] ) /1000000
122 RCL[ i ] = mean(CLR[ i , ] ) /1000000
123 VarRCL [ i ] = sd (CLR[ i , ] ) /1000000
124 RKa[ i ] = mean(KaR[ i , ] ) /1000000
125 VarRKa [ i ] = sd (KaR[ i , ] ) /1000000
126 }
127 #different ways of looking at the data
128 cbind (RMC, RCL, RKa)
129 cbind (RCL−RMC, RKa−RMC)
130 cbind (RCL/RMC, RKa/RMC)
131 cbind (VarRMC, VarRCL, VarRKa)
132 cbind (VarRCL/VarRMC, VarRKa/VarRMC)
133
134 #mean reserve
135 a1 = RMC
136 b= RCL
137 c = RKa
138
139 xrange = range ( 0 :L)
140 yrange = range (RKa)
141
142 plot ( xrange , yrange , type="n" , xlab="Report ing years " ,
143 ylab="Reserve " )
144 colors <− rainbow (L)
145 l i n e t yp e <− c ( 0 :L)
146 p lo t char <− seq (18 ,18+L , 1 )
147
148 l ines ( 0 : L , a1 , type="b" , l t y =1, col=1, lwd=1.5 , pch=1)
149 l ines ( 0 : L , b , type="b" , l t y =2, col=3, lwd=1.5 , pch=2)
150 legend ( " bottomright " , c ( "CL" , "Ka" ) , l t y= 1 : 2 , col=c (1 , 3) , pch=c ( 1 , 2 ) )
151
152 aa = VarRMC
153 bb= VarRCL
154 cc = VarRKa
155
156 xxrange = range ( 0 :L)
157 yyrange = range (VarRCL)
158
159 plot ( xxrange , yyrange , type="n" , xlab="Report ing years " ,
160 ylab="Reserve " )
161 colors <− rainbow (L)
162 l i n e t yp e <− c ( 0 :L)
163 p lo t char <− seq (18 ,18+L , 1 )
164
165 l ines ( 0 : L , aa , type="b" , l t y =1, col=1, lwd=1.5 , pch=1)
166 l ines ( 0 : L , bb , type="b" , l t y =2, col=3, lwd=1.5 , pch=2)
167 t i t l e ( "Exponent ia l l o s s e s " )
168 legend ( " t o p l e f t " , c ( "CL sd" , "Ka sd" ) , l t y= 1 : 2 , col=c (1 , 3 ) , pch=c ( 1 , 2 ) )
169
170 print ( a )
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