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Preface

Abstract
In this thesis we will study the phase space, Ph(A), for an associative k-
algebra A. The phase space can be considered as a noncommutative tangent
bundle. We will derive algebraic notions of points, curves, tangent vectors
and vector fields, in addition to study differentiation of vector fields, and look
at what are called integrable distributions.
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Introduction

In the article Non-commutative phase spaces, and generalized de rham com-
plexes [Lau14], Olav Arnfinn Laudal defines the phase space Ph(A) of an
associative k-algebra A, where k is a field. The phase space can be consid-
ered as the noncommutative tangent bundle; we will see that the collection
of maps from the phase space of A into the field k gives us all tangent vectors
at all points of A. Oddbjørn Mathias Nødland continued Laudal’s work in
his master’s thesis Noncommutative tangent bundle: The phase space [Nø12].
We will in this thesis proceed by exploring how we can use the phase space
to give an algebraic variant of certain aspects of differential geometry. The
thesis is structured as follows:

In Chapter 1 we will give a quick walk-through on how to construct the
phase space Ph(A) for a k-algebra A. We will, in particular, look at the
phase space of rings of the form

k < x1, x2, . . . , xn > /I,

where I is an ideal of k < x1, x2, . . . , xn >.

Chapter 2 consists of algebraic definitions of points, curves, infinitesimal
curves, tangent vectors and vector fields. In addition we will give an example
to show why it is necessary for the phase space to be noncommutative.

Having defined vector fields and tangent vectors, we will in Chapter 3
see how we can take the derivative of vector fields with respect to tangent
vectors and with respect to other vector fields. After that we will generalize
the derivative to what is called an affine connection, and look at two appli-
cations; torsion fields, and differentiation of vector fields along curves.

In the last chapter, Chapter 4, we will study a certain type of subset of
the phase space Ph(A), i.e., instead of looking at the collection of all tangent
vectors at all points, we will only choose some tangent vectors at each point.
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2 INTRODUCTION

By use of the coproduct of noncommutative rings, we will find a condition
for when the phase space of a curve or a subspace of A corresponds to such
a subset.

Throughout the thesis, we will assume that k is an algebraically closed
field, and homomorphisms are always k-algebra homomorphisms. The reader
should be familiar with basic manifold theory and algebraic geometry.



Chapter 1

The phase space

In this section we will give a short introduction to the construction of the
phase space, Ph(A), for an associative k-algebra A, following [Nø12] and
[Lau14]. The construction involves a certain kind of map called a derivation.

Definition 1.0.1. Assume that A and B are associative k-algebras. A
derivation D : A→ B is a k-linear map satisfying the Leibniz rule

D(fg) = D(f)κ(g) + κ(f)D(g)

for some homomorphism κ : A→ B.

Let A/k−alg denote the category where the objects are homomorphisms
κ : A → R for k-algebras R, and where the morphisms are commutative
diagrams,

A

R1 R2

κ1 κ2

φ

For simplicity, an object A→ R will often just be referred to as a k-algebra R,
and a morphism, i.e. a commutative diagram, as a homomorphism R1 → R2.

Assume that A→ S and A→ Ph(A) are two objects in A/k-alg. Let

Derk(A,R)

be the set of all derivations from A into R, and

HomA/k(Ph(A), R)

the set of all homomorphisms (in A/k-alg) from Ph(A) into R, where R is
some k-algebra. Then

Derk(A,−) : A/k-alg → Sets

3



4 CHAPTER 1. THE PHASE SPACE

and
HomA/k(Ph(A),−) : A/k-alg → Sets

are functors from A/k-alg into the category of sets. Our goal is to find an
object A→ Ph(A) such that

Derk(A,−) ∼= HomA/k(Ph(A),−).

Assume that we have an object A → Ph(A) and a derivation d : A →
Ph(A) satisfying the following universal property: For all derivations D ∈
Derk(A,R) there is a unique k-algebra homomorphism φ : Ph(A) → R
such that φ ◦ d = D. Then Derk(A,−) ∼= HomA/k(Ph(A),−). The im-
plication the other way holds as well: If an object A → Ph(A) satisfies
Derk(A,−) ∼= HomA/k(Ph(A),−), there is a derivation d : A → Ph(A)
(corresponding to the identity map in HomA/k(Ph(A), Ph(A))) satisfying
the universal property above. Thus, there is an object A → Ph(A) such
that Derk(A,−) ∼= HomA/k(Ph(A),−) if and only if there is an object
A → Ph(A) and a derivation d : A → Ph(A) satisfying the universal prop-
erty. If such an object A→ Ph(A) exists, it is unique up to unique isomor-
phism (a proof can be found in [Nø12]).

For an associative k-algebra A, ι : A → Ph(A) can be constructed by
letting Ph(A) be the algebra generated by the symbols a and da for all
a ∈ A, subject to the two relations

1. k-linearity: d(ra) = rda for all r ∈ k and a ∈ A,

2. the Leibniz rule: d(ab) = dab+ adb for all a,b ∈ A,

and letting ι : A → Ph(A) be the inclusion map. In the special case where
A is of the form

A = k < x1, x2, . . . , xn > /I,

we have

Ph(A) = k < x1, x2, . . . , xn, dx1, dx2, . . . , dxn > /(I, dI),

where (dI) is the ideal generated by the elements df for all f ∈ I. To
prove this, it is enough to show that there is a derivation d : A → Ph(A)
satisfying the universal property. First, note that ι is well-defined since it
sends the ideal I to zero. Let d : A → Ph(A) be the map that sends a ∈ A
to da ∈ Ph(A). The ideal I will then be sent to zero, so it is well-defined.
Suppose D : A→ R is a derivation,

D(fg) = D(f)κ(g) + κ(f)D(g),
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where κ : A→ R is an object in A/k-alg. We define φ by letting

φ(xi) = κ(xi)

and
φ(dxi) = D(xi).

This is well-defined, and φ ◦ d = D. It is also unique, because it is the only
way we can define φ: Let xi, xj ∈ A and ψ : Ph(A)→ R any homomorphism
satisfying ψ ◦ d = D. Then

ψ(d(xixj)) = ψ(dxixj + xidxj)

= ψ(dxi)ψ(xj) + ψ(xi)ψ(dxj)

= D(xi)ψ(xj) + ψ(xi)D(xj).

But since ψ ◦ d = D, we also have that

ψ(d(xixj)) = D(xixj)

= D(xi)κ(xj) + κ(xi)D(xj),

so ψ(xi) = κ(xi) = φ(xi) for all i = 1, 2, . . . , n. Since the object ι : A →
Ph(A) with the derivation d : A → Ph(A) satisfies the universal property,
we know that ι : A→ Ph(A) is the unique (up to unique isomorphism) object
such that

Derk(A,−) ∼= HomA/k(Ph(A),−).

For a k-algebra A, we call the unique object A→ Ph(A) satisfying

Derk(A,−) ∼= HomA/k(Ph(A),−)

the phase space of A. As pointed out earlier, an object in A/k-alg will just
be referred to as a k-algebra. Hence whenever Ph(A) or A are mentioned,
we mean the homomorphism ι : A → Ph(A) and the identity map on A,
respectively.

Example 1.0.2. The polynomial ring A = k[x, y] may be written as

A = k < x, y > /(xy − yx)

= k < x, y > /([x, y]).

Therefore,

Ph(A) = k < x, y, dx, dy > /([x, y], dxy + xdy − dyx− ydx)

= k < x, y, dx, dy > /([x, y], [dx, y] + [x, dy]).

♣
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Example 1.0.3. Let

A = k[x, y]/(y − x2)
= k < x, y > /([x, y], y − x2).

The phase space will then be

Ph(A) = k < x, y, dx, dy > /I

where
I = ([x, y], y − x2, [dx, y] + [x, dy], dy − xdx− dxx).

♣

Because Ph(A) is an associative k-algebra, we can construct

Ph(Ph(A)) = Ph2(A).

Let the derivation corresponding to the identity homomorphism Ph(A) →
Ph(A) be called d0 instead of d, and d1 ∈ Der(Ph(A), Ph2(A)) be the deriva-
tion corresponding to the identity homomorphism Ph2(A)→ Ph2(A). Then
Ph2(A) is generated by all symbols f and d1f , where f ∈ Ph(A), or, equiv-
alently, by all symbols a, d0a, d1a and d1d0a, where a ∈ A.

Example 1.0.4. Let A be the ring from the previous example:

A = k[x, y]/(y − x2).

We saw that
Ph(A) = k < x, y, d0x, d0y > /I,

where

I = ([x, y], y − x2, [d0x, y] + [x, d0y], d0y − xd0x− d0xx).

Ph2(A) will then look like

k < x, y, d0x, d0y, d1x, d1y, d0d1x, d0d1y > /(I, J),

where the ideal J = d1I is generated by the following elements:

[d1x, y] + [x, d1y],

d1y − xd1x− d1xx,
[d1d0x, y] + [d0x, d1y] + [d1x, d0y] + [x, d1d0y],

d1d0y − d1xd0x− xd1d0x− d1d0xx− d0xd1x.

♣



7

We can continue in this way, and construct

Ph3(A) = Ph(Ph2(A)),

Ph4(A) = Ph(Ph3(A)),

and in general
Phn(A) = Ph(Phn−1(A))

for all n ∈ N. We let Ph0(A) = A. In addition to the derivations

dn : Phn(A)→ Phn+1(A),

we have the canonical homomorphisms

ιn0 : Phn(A)→ Phn+1(A).

Composing a homomorphism with a derivation gives a new derivation, so
dn+1 ◦ ιn0 is a derivation from Phn(A) to Phn+2(A) for all n ≥ 0. Since
Der(Phn(A), Phn+2(A)) ∼= HomA/k(Ph

n+1(A), Phn+2(A)), we know that
there is a map

ιn+1
1 : Phn+1(A)→ Phn+2(A)

such that dn+1 ◦ ιn0 = ιn+1
1 ◦ dn. But now we have that for all n ≥ 1, the

composition
dn+1 ◦ ιn1 : Phn(A)→ Phn+2(A)

is a derivation. Hence, there exists a homomorphism

ιn+1
2 : Phn+1(A)→ Phn+2(A)

such that dn+1 ◦ ιn1 = ιn+1
2 ◦ dn. Continuing like this, we get a family of

homomorphisms
{ιnj : Phn(A)→ Phn+1(A)}nj=0

for each n ≥ 0:

A Ph(A) Ph2(A) Ph3(A) · · ·
ι00

ι10

ι11

ι20

ι21

ι22

In this way we can construct Ph∞(A), which is the direct limit of this direct
system. We also get an induced derivation δ : Ph∞(A)→ Ph∞(A). For more
details about this construction, see [Lau14].
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Chapter 2

Curves, tangent vectors and
vector fields

2.1 Curves
In this section we will derive algebraic definitions of points and curves that
will correspond to the geometric definitions.

Let A = k[x1, x2, . . . , xn] be a polynomial ring. By defining a homomor-
phism

p : A→ k,

we assign to each xi, where i = 1, 2, . . . , n, an element ai ∈ k. This gives us a
point in kn. We could for instance let p(xi) = i for all i = 1, 2, . . . , n, which
gives us the point (1, 2, . . . , n) ∈ kn. Therefore we will have the following
definition of a point:

Definition 2.1.1. Assume A is a k-algebra. A point of A is a homomor-
phism p : A→ k.

Example 2.1.2. Let A = k[x, y]/(x2 + y2− 1). A homomorphism p : A→ k
then gives a point on the unit circle. ♣

A curve in A = k[x1, x2, . . . , xn] can be defined similarly. Let γ : A→ k[t]
be a homomorphism. This corresponds to a morphism between the spectra
of these rings,

γ̃ : Spec(k[t])→ Spec(A),

which is a map between two topological spaces. A curve in a topological space
X is a map from a line (or part of line; I ⊂ R) into X. The set of closed
points of Spec(k[t]), i.e., the set of maximal ideals, corresponds to the affine
line A1, so the morphism γ̃ actually defines a curve in X = Spec(A). Hence,

9
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the homomorphism γ from A into k[t] corresponds to a curve in Spec(A).
We will require γ to be surjective, because this implies that γ̃ is injective.

There are, however, other rings than polynomial rings. Consider A =
k[x, x−1]. It is not possible to find a surjective homomorphism from A into
k[t]. This is because we would have to map either x or x−1 to t, and xx−1 = 1
has to be mapped to 1, which implies that either x or x−1 must be mapped
to the inverse of t, but t does not have an inverse in k[t]. Again, let us look
at the spectrum of A. The ring A is actually isomorphic to S−1k[x], where
S = {xl}l≥0. The prime ideals of this ring are in one-to-one correspondence
with the prime ideals of k[x] that do not meet S. The only prime ideal in
k[x] that meets S is (x), so

Spec(A) ∼= {(0)} ∪ {(x− a) : a ∈ k, a 6= 0}.

In other words, Spec(A) is the affine line with the point 0 removed; A1 \{0}.
Therefore we must remove at least one point from the affine line Spec(k[t])
to be able to obtain an injective map. We could for instance let γ be a
homomorphism from A onto T−1k[t], where T = {tl}l≥0, by letting x be
mapped to t, and x−1 to 1

t
. Of course, Spec(T−1k[t]) = Spec(A), and the

morphism corresponding to γ,

γ̃ : Spec(T−1k[t])→ Spec(A),

is just the identity map. We arrive at the following definition:

Definition 2.1.3. Let A be a k-algebra. A curve in A is a surjective ho-
momorphism

γ : A→ B,

where B is a smooth k-algebra of dimension 1.

A point on a curve γ : A→ B is a homomorphism p : A→ k that factors
through γ, i.e. it is a composition q ◦ γ for some q : B → k.

Example 2.1.4. Let A = k[x, y] and γ : A → k[t] the homomorphism that
sends x to t and y to 0. The inverse image of the maximal ideal (t−a) ⊂ k[t],
where a ∈ k, is the ideal (x− a, y) ⊂ k[x, y]. Hence, if we identify Spec(k[t])
with A1 and Spec(k[x, y]) with A2, the map γ̃ : A1 → A2 sends a ∈ A1 to
(a, 0) ∈ A2, which gives us the horizontal line through the origin.

Let q : k[t]→ k send t to 3. Then q(γ(x)) = 3 while q(γ(y)) = 0. ♣

Example 2.1.5. Let A be as in the previous example, but define γ : A→ k[t]
to be the homomorphism such that γ(x) = t and γ(y) = t2. Again, we
identify Spec(k[t]) with A1, and Spec(A) with A2. A point a ∈ A1 then
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corresponds to the maximal ideal (t − a) ⊂ k[t], whose inverse image is
the ideal (x − a, y − a2) ⊂ Spec(A). This ideal corresponds to the point
(a, a2) ∈ A2. Thus, γ is a parabola.

Choose a point q : k[t] → k such that q(t) = 2. Then q(γ(x)) = 2 and
q(γ(y)) = 4. ♣

If γ is a curve, it is a map between two k-algebras A and B. Such a map
can be extended to a map between the phase spaces of these k-algebras. We
define γ∗ : Ph(A)→ Ph(B) as follows: For any a ∈ A, we let

γ∗(a) = γ(a)

and
γ∗(da) = dγ(a).

This map is well-defined, meaning γ∗(d(ab)) = dγ(ab), because

γ∗(d(ab)) = γ∗(dab+ adb)

= d(γ(a))γ(b) + γ(a)d(γ(b))

= d(γ(a)γ(b))

= d(γ(ab)).

Hence, whenever we have a homomorphism γ : A → B between two k-
algebras A and B (here B does not have to be smooth of dimension 1),
we can construct a map γ∗ : Ph(A) → Ph(B) giving us the following com-
mutative diagram:

Ph(A) Ph(B)

A B.

γ∗

d

γ

d

Sometimes we only want to look at a part of a curve. For instance, we
might want to look at the part of the curve γ : R→ R2, where γ(t) = (t, t2),
that starts at t = −2 and ends at t = 2. In algebra, this is not as easy.
Nevertheless, it is possible to define an infinitesimal part of a curve. In the
example above, this can be obtained by restricting γ to an interval (−ε, ε),
and letting ε be arbitrarily close to 0. As we have seen, homomorphisms
from a ring A into the ring k[t] correspond to maps from the affine line
A1 = Spec(k[t]) into Spec(A). If we were to look at an infinitesimal part of
the curve A1 → Spec(A), we could compose with the inclusion map

Spec(k[t]/(t− r)2)→ Spec(k[t]),
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where r ∈ k, yielding a map from Spec(k[t]/(t− r)2) into Spec(A). The only
maximal ideal in k[t]/(t− r)2 is (t− r), which corresponds to the point r in
A1. The inclusion map Spec(k[t]/(t − r)2) → Spec(k[t]) corresponds to the
quotient map

k[t]→ k[t]/(t− r)2,

so the composition Spec(k[t]/(t− r)2)→ Spec(k[t])→ A corresponds to the
composition

A→ k[t]→ k[t]/(t− r)2.

The next proposition tells us that we can do exactly the same for any smooth
k-algebra of dimension 1, not only for k[t].

Proposition 2.1.6. Let B be a smooth k-algebra of dimension 1, and let
m ⊂ B be a maximal ideal in B. Then

B/m2 ∼= k[t]/(t2).

Proof. Assume that B is a smooth local k-algebra of dimension 1 with max-
imal ideal m. Then we have the following short exact sequence:

0→ m/m2 → B/m2 → B/m→ 0.

Since dimk(m/m
2) = dim(B) = 1, and B/m ∼= k, dimk(B/m

2) = 2. Hence,
B/m2 ∼= k[t]/(t2).

Now assume that B is any smooth k-algebra of dimension 1, and that m
is a maximal ideal. Then Bm is a local ring with maximal ideal n = mBm.
Therefore, by the argument above, Bm/n

2 ∼= k[t]/(t2). But Bm/n
2 ∼= B/m2

(for a proof, see e.g. [Mil14, p. 21]). Thus, B/m2 ∼= k[t]/(t2).

Definition 2.1.7. An infinitesimal curve in A is a composition of a curve
γ : A→ B with the quotient map φ : B → B/m2, where m is a maximal ideal
in B.

Example 2.1.8. We let A and γ be as in Example 2.1.5. Composing with
the quotient map ρ : k[t]→ k[t]/(t2), we get a homomorphism A→ k[t]/(t2)
sending x to t and y to 0. ♣

If we want to choose a point p = q ◦ ρ ◦ γ, where q : k[t]/(t2) → k, on
the curve in this example, we have to let q(t) = 0. Then p(x) = p(y) = 0,
so we are looking at the infinitesimal part of the curve around the origin.
The following example shows us how to focus on a different part of the same
curve.
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Example 2.1.9. Assume that we want to look at the curve γ around the
point (2, 4). Let

ρ : k[t]→ k[t]/(t− 2)2

be the quotient map. In this case, a homomorphism q : k[t]/(t− 2)→ k has
to send t to 2, so

p = q ◦ ρ ◦ γ
sends x to 2 and y to 4. Hence, we are focusing on the curve around the
point (2, 4). ♣

Let us look more closely at the definition of an infinitesimal curve; γ : A→
k[t]/(t2). An element in k[t]/(t2) can be written as d + te where d, e ∈ k.
Thus, for any a ∈ A, we have

γ(a) = γ0(a) + tD(a),

where γ0 and D are maps from A into k. Since γ is a homomorphism, we
know that:

γ(ab) = γ(a)γ(b)

= (γ0(a) + tD(a))(γ0(b) + tD(b))

= γ0(a)γ0(b) + t(γ0(a)D(b) +D(a)γ0(b)) + t2(D(a)D(b)

= γ0(a)γ0(b) + t(γ0(a)D(b) +D(a)γ0(b)).

But we also have that γ(ab) = γ0(ab)+tD(ab). Therefore, γ0(ab) = γ0(a)γ0(b)
and D(ab) = γ0(a)D(b) +D(a)γ0(b), and γ0 is a homomorphism, while D is
a derivation.

Example 2.1.10. Let A = k[x, y] and γ : A→ k[t] the curve where γ(x) = t
and γ(y) = t3. Compose with the quotient map ρ : k[t] → k[t]/(t − 1)2 to
obtain the homomorphism

δ = ρ ◦ γ : A→ k[t]/(t− 1)2

that maps x to t and y to 3t − 2. A point q : k[t]/(t − 1)2 → k must send t
to 1, which gives us the point p = q ◦ ρ ◦ γ on the curve sending both x and
y to 1. As we saw above, we can write δ = δ0 + tD. In this case δ0(x) = 0,
δ0(y) = −2, D(x) = 1 and D(y) = 3. ♣

2.2 Tangent vectors and vector fields
Assume that A = k[x1, x2, . . . , xn]/I for some ideal I ⊂ k[x1, x2, . . . , xn]. Let
us look at a homomorphism (in the category A/k − alg) Y : Ph(A) → k.
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This is actually a commutative diagram:

A

Ph(A) k.

ι

Y

Since ι is the inclusion map, Y gives a map from A into k. As we saw in
the previous section, this corresponds to a point. The map Y also assigns an
element in k to each dxi ∈ Ph(A). The n-tuple

(Y (dx1), Y (dx2), . . . , Y (dxn)) ∈ kn

can be interpreted as a tangent vector at the point

(Y (x1), Y (x2), . . . , Y (xn)) ∈ kn.

Example 2.2.1. Let A = k[x, y]/(y − x2). Then

Ph(A) = k < x, y, dx, dy > /I,

where
I = ([x, y], [dx, y] + [x, dy], y − x2, dy − dxx− xdx).

Now we will define a homomorphism Y : Ph(A) → k. Let Y (x) = a ∈ k.
Then, because y − x2 should be sent to 0, we must let Y (y) = a2. We
have chosen the point (a, a2) ∈ k2. To choose a tangent vector, we have to
decide where we should send dx and dy. Let Y (dx) = v ∈ k. The relation
dy − dxx − xdx forces us to have Y (dy) = Y (dx)Y (x) + Y (x)Y (dx) = 2av.
Hence, Y is the tangent vector (v, 2av) at the point (a, a2). If we for instance
let a = 2 and v = 1, we get the vector (1, 2) at the point (2, 4). ♣

Note that the derivative of the function f : R→ R2, where f(x) = (x, x2),
is (1, 2x). Multiplying with a y ∈ R gives the vector (y, 2xy), or (v, 2av) if
we let x = a and y = v.

A vector field should assign a tangent vector to each point in a space.
Above, we saw that if we choose a homomorphism Ph(A) → k, we have
also chosen a point because we get a map from A into k. If we instead look
at a homomorphism X : Ph(A) → A, we have the following commutative
diagram:

A

Ph(A) A.

ι id

X
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Since the diagram should commute, X must be the identity on A. Hence,
X does not make any decisions about the elements of A. Therefore we can
choose any point p : A → k we want, and the composition p ◦ X restricted
to A will just give that exact point. The composition also gives a tangent
vector. Hence, for each homomorphism p : A → k, the composition p ◦ X
gives us a point, and a tangent vector at that point.

Example 2.2.2. Let A = k[x, y]. Then

Ph(A) = k < x, y > /([x, y], [dx, y] + [x, dy]).

Define a homomorphism X : Ph(A)→ A by sending both x and y to them-
selves (it has to be the identity on A because of the commutative diagram),
and dx to x and dy to y. If we choose the point p : A → k that sends x
and y to 2 and 3, respectively, p(X(x)) = 2, p(X(y)) = 3, p(X(dx)) = 2
and p(X(dy)) = 3. Thus, p ◦X = Y is the tangent vector (2, 3) at the point
(2, 3). For a general point p, where p(x) = a and p(y) = b, we get the tangent
vector (a, b) at the point (a, b). ♣

Example 2.2.3. Let A = k[x, y]/(x2 + y2 − 1). The set Z(x2 + y2 − 1) =
Z(f) = {P ∈ kn : f(P ) = 0} defines the unit circle (if k = R). We have that

Ph(A) = k < x, y, dx, dy > /I,

where

I = ([x, y], x2 + y2 − 1, [dx, y] + [x, dy], dxx+ xdx+ dyy + ydy).

A homomorphism X : Ph(A) → A that sends both x and y to themselves
will always send [dx, y] + [x, dy] to 0 because A is commutative, so we only
have to make sure that dxx+ xdx+ dyy + ydy will be sent to 0. We can for
instance let X(dx) = −y and X(dy) = x. If we choose a point, let us say
p(x) = 1

2
and p(y) =

√
3
2

(notice that p(x2 + y2 − 1) = 0), then

P = (
1

2
,

√
3

2
)

and

v = (−
√

3

2
,
1

2
),

where P = (p(X(x)), p(X(y))) and v = (p(X(dx)), p(X(dy))). The vector v
is actually a tangent vector to the circle at the point P .
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Now we choose X a little differently. Let X(dx) = xy and X(dy) = −x2.
The element dxx+xdx+dyy+ydy is mapped to 0 by X, so it is a well-defined
homomorphism. Keeping our point p : A→ k, we see that in this case

P = (
1

2
,

√
3

2
)

and

v = (

√
3

4
,−1

4
).

Again v is tangent to the circle at the point P . ♣
In the case where A = k[x1, x2, . . . , xn]/I, we have seen that we can define

a tangent vector to be a homomorphism Ph(A)→ k and a vector field to be
a homomorphism Ph(A) → A. Thus, in the general case we will have the
following definition:
Definition 2.2.4. Let A be a k-algebra. A tangent vector in A is a
homomorphism (in A/k − alg)

Y : Ph(A)→ k.

A vector field on A is a homomorphism (in A/k-alg)

X : Ph(A)→ A.

For each point p : A → k, we can possibly have many tangent vectors
Y : Ph(A) → k such that Y ◦ ι = p, i.e., many tangent vectors at the same
point. We will call the set

{Y ∈ Hom(Ph(A), k) : Y ◦ ι = p}
of all tangent vectors at a point p : A→ k the tangent space to A at p.

Recall from Section 2.1 that an infinitesimal part of a curve, γ : A →
k[t]/(t2), can be written as a sum

γ = γ0 + tD,

where D : A → k is a derivation. But we also know that derivations from
A correspond to homomorphisms from Ph(A), so D : A→ k corresponds to
a homomorphism Y : Ph(A) → k, which is a tangent vector. So for each
infinitesimal curve, there is a corresponding tangent vector.
Example 2.2.5. In Example 2.1.10 we looked at the infinitesimal curve

δ : A→ k[t]/(t− 1)2

that sends x to t and y to 3t− 2. We saw that δ = δ0 + tD where D(x) = 1
and D(y) = 3. The corresponding tangent vector Y : Ph(A) → k sends dx
to D(x) = 1 and dy to D(y) = 3. So at the point (1, 1), we have the tangent
vector Y giving the direction of the curve at that point. ♣
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2.3 Noncommutativity of the phase space

In this section we will explain why it is necessary for the phase space to be
noncommutative. The theorem below is called the inverse function theorem
on manifolds, and can be found in [Lee12, p.79]. It states that whenever a
map between two manifolds induces an isomorphism of tangent spaces at a
point, it is invertible on a neighbourhood around that point.

Theorem 2.3.1. Let F : M → N be a smooth map between two smooth
manifolds M and N . For any p ∈M , F∗ : TpM → Tf(p)N is an isomorphism
if and only if there is a neighbourhood U ⊂M around p such that f |U : U →
f(U) is a diffeomorphism.

The next example will show us that when considering the commutativiza-
tion of the phase space, we get a contradiction to the inverse function theo-
rem.

Example 2.3.2. Let A = k[y] and B = k[x, y]/(y − x2), and let φ : A→ B
be the homomorphism sending y to y = x2. The corresponding morphism
between the spectra of A and B is just the map projecting any point on the
curve y = x2 to the y-axis. We can, as in the noncommutative case, extend
φ to a map

φ∗ : Ph(A)com → Ph(B)com,

where Ph(A)com and Ph(B)com denote the commutativizations of Ph(A) and
Ph(B):

Ph(A)com = k[y, dy]

and
Ph(B)com = k[x, y, dx, dy]/(y − x2, dy − 2xdx).

Since φ∗(dy) = dφ(y), dy is mapped to dy = 2xdx. Looking at the morphism
between the spectra, we see that we have a one-to-one correspondence be-
tween the tangent vectors at points along the curve y = x2 and the tangent
vectors at points along the y-axis (except for at the origin). However, if
U is any open neighbourhood (in the Zariski-topology) around any of these
points, there will always be two points on the curve mapping to the same
point on the y-axis. Thus, we can not find an inverse to this map. ♣

Since we can not find an inverse to the map in this example, it gives
a contradiction to the inverse function theorem. Consider instead the non-
commutative phase space. We can find a homomorphism from Ph(B) into
the noncommutative ring M2(k). We have seen that for a k-algebra A, a
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homomorphism γ : A → k[t]/(t2) can be written as a sum γ0 + tD, where
γ0 : A→ k is a homomorphism and D : A→ k is a derivation. The subset

{
[
a b
0 a

]
: a, b ∈ k}

of M2(k) is isomorphic to k[t]/(t2), so a map γ : A→M2(k) into this subset
gives us a point and a tangent vector. If instead the xi ∈ A, where we let
A = k[x1, x2, . . . , xn], are mapped to elements of the form[

a 0
0 b

]
∈M2(k),

we are looking at two points simultaneously. This is because there are two
homomorphisms from the set of such matrices into k; one sending the matrix
to a, and the other sending it to b. We can extend γ : A → M2(k) to a
homomorphism γ̃ : Ph(A) → M2(k). The following example shows us that
we have non-zero tangent vectors where we in the commutative case can only
have zero tangent vectors.

Example 2.3.3. Let B be as in the previous example. Define a map γ : B →
M2(k) by letting

γ(x) =

[
a 0
0 −a

]
,

where a 6= 0. Then, since y − x2 = 0, we must have

γ(y) =

[
a2 0
0 a2

]
.

Thus, we are looking at the points (a, a2) and (−a, a2). We can extend this
map to a homomorphism γ̃ : Ph(B)→M2(k). Let

γ̃(dx) =

[
0 1
−1 0

]
and

γ̃(dy) =

[
0 0
0 0

]
.

Since

γ̃(dxx+ xdx) =

[
0 0
0 0

]
,
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dy − dxx− xdx is mapped to 0, so γ̃ is well-defined. Note that if we look at
Ph(A)com instead, we must have

γ̃(dy − 2xdx) =

[
0 0
0 0

]
,

so if dy is mapped to 0, we must map dx to 0 as well. ♣

The example tells us that we need the phase space to be noncommutative
in order to have enough tangent vectors such that we do not get an isomor-
phism on differentials. Then the inverse function theorem does not apply, so
we do not get a contradiction.
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Chapter 3

Differentiation of vector fields

3.1 Affine connections
We will begin this section by looking at differentiation of vector fields in
differential geometry, following [Csi98, Unit 11]. Thereafter, we will give
corresponding algebraic definitions of differentiation, and generalize these to
what is called an affine connection.

In differential geometry, there is a natural way to define what it means to
take the derivative of a vector field on Rn with respect to a tangent vector.
Let X be a smooth vector field on a subset U in Rn, i.e., X is a map

X : U → TRn.

Let Y ∈ TpRn be a tangent vector at a point p ∈ U , and γ : [−ε, ε] → U a
smooth curve such that γ(0) = p and γ′(0) = Y . The derivative of X with
respect to Y is denoted by ∇YX, and it is defined as

∇YX = (X ◦ γ)′(0).

We can write X as a linear combination

X =
n∑
i=1

Xi
∂

∂xi

where each Xi : U → R is a smooth map, and (x, U) is a smooth chart on U
such that

x = (x1, x2, . . . , xn) : U → U

is the identity map. Then

(X ◦ γ)(t) = X(γ1(t), . . . , γn(t))

= (X1(γ1(t), . . . , γn(t)), . . . , Xn(γ1(t), . . . , γn(t))).

21
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Since Y = γ′(0) =
∑n

i=1
dγi
dt

(0) ∂
∂xi

∣∣∣
p
, we get

(X ◦ γ)′(0) = (
n∑
j=1

∂X1

∂xj
(p)

dγj
dt

(0), . . . ,
n∑
j=1

∂Xn

∂xj
(p)

dγj
dt

(0))

= (
n∑
j=1

dγj
dt

(0)
∂

∂xj

∣∣∣
p
(X1), . . . ,

n∑
j=1

dγj
dt

(0)
∂

∂xj

∣∣∣
p
(Xn))

= (Y (X1), . . . , Y (Xn))

=
n∑
i=1

Y (Xi)
∂

∂xi

∣∣∣
p
.

Hence the derivative is independent of the curve. The derivative of a vector
field can also be found with respect to another vector field to yield yet another
vector field. If X and Y are vector fields, ∇YX should be a map from Rn to
TRn, and we just let ∇YX(p) = ∇Y (p)X. For more detail on this, see

Now we want to do this in the algebraic case. In Section 2.2 we saw
that for each infinitesimal curve, there is a tangent vector corresponding to
the curve giving its direction at a point. We can also start with a tangent
vector Y , and get an infinitesimal curve by letting γ = γ0 + t(Y ◦ d) for any
homomorphism γ0 : A→ k.

Definition 3.1.1. Let X be a vector field and Y a tangent vector. Choose
an infinitesimal curve γ = γ0 + tD such that D = Y ◦ d. Then γ ◦ X =
γ0 ◦ X + t(D ◦ X). The derivative of X with respect to Y, ∇YX, is
defined as

∇YX = D ◦X.

Note that the derivative is independent of the curve sinceD◦X = Y ◦d◦X
(we do not even have to choose a curve). Also, it is easy to check that
∇YX : Ph(A)→ k is a derivation:

Y ◦ d ◦X(fg) = Y (d(X(f)X(g)))

= Y (d(X(f))ι(X(g)) + ι(X(f))d(X(g)))

= Y (d(X(f)))Y (ι(X(g))) + Y (ι(X(f)))Y (d(X(g)))

= (Y ◦ d ◦X)(f)(Y ◦ ι ◦X)(g)

+ (Y ◦ ι ◦X)(f)(Y ◦ d ◦X)(g)

But Der(Ph(A), k) ∼= Hom(Ph2(A), k), so ∇YX is isomorphic to a homo-
morphism from Ph2(A) into k.

To make this definition a little more clear, we should look at an example.
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Example 3.1.2. Let A = k[x, y]/(y − x2). Then

Ph(A) = k < x, y, dx, dy > /I,

where
I = ([x, y], y − x2, [dx, y] + [x, dy], dy − dxx− xdx).

A vector field X ∈ HomA/k(Ph(A), A) must act as the identity map on A, so
it has to send x and y to themselves. If we let X(dx) = 1 and X(dy) = 2x,
the ideal I will be sent to zero, hence it is a well-defined homomorphism. We
choose a tangent vector Y = p ◦ X where the point p : A → k sends (x, y)
to (2, 4), so Y sends (dx, dy) to (1, 4). The composition ∇YX = Y ◦ d ◦ X
now sends (dx, dy) to (0, 2), which actually is the rate of change of the vector
field with respect to the tangent vector.

Now let us look at another tangent vector, one that does not factor
through our vector field. Let

Y : Ph(A)→ k

be the tangent vector (2, 8) at the point (2, 4), i.e., Y (x) = 2, Y (y) = 4,
Y (dx) = 2 and Y (dy) = 8. In this case the derivative ∇YX sends (dx, dy)
to (0, 4). ♣

We should also be able to take the derivative of a vector field with respect
to another vector field. The definition is the same as for tangent vectors.

Definition 3.1.3. Let X and Y be vector fields. The derivative of X with
respect to Y is defined as

∇YX = Y ◦ d ◦X : Ph(A)→ A.

Again, this is a derivation, thus isomorphic to a homomorphism from
Ph2(A) into A.

Example 3.1.4. LetX be the vector field from the previous example. Define
X̂ : Ph(A)→ A to be another vector field such that X̂(dx) = x and X̂(dy) =
2y. Note that the tangent vector Y from Example 3.1.2, mapping x and y
to 2 and 4, and dx and dy to 2 and 8, is a tangent vector in this vector field;
if we let p be the point from the same example, p ◦ X̂ = Y . The derivative
of X with respect to X̂, ∇X̂X, maps dx to 0 and dy to 2x. If we compose
with p, we see that

p ◦ ∇X̂X = p ◦ X̂ ◦ d ◦X
= Y ◦ d ◦X
= ∇YX.

♣
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In general, if X : Ph(A) → B and Y : Ph(B) → C for some k-algebras
B and C, we can define the derivative of X with respect to Y to be Y ◦ d ◦
X ∈ Der(Ph(A), C), where d : B → Ph(B) is the derivation corresponding
to the identity homomorphism Ph(B) → Ph(B). To make it clear what
kind of maps X and Y are, we will denote the derivative by (∇B

C)YX, so
(∇B

C)YX = Y ◦ d ◦ X. Whenever B or C is equal to A, it will be omitted
in the notation ∇B

C . Thus, if X,Y ∈ HomA/k(Ph(A), A), we will just write
∇YX. We have the following properties:

Proposition 3.1.5. Let X, X1 and X2 be elements in HomA/k(Ph(A), B),
Y , Y1 and Y2 be elements in HomA/k(Ph(B), C), c ∈ C and f ∈ B. Then:

1. (∇B
C)Y1+Y2X = (∇B

C)Y1X + (∇B
C)Y2X.

2. (∇B
C)Y (X1 +X2) = (∇B

C)YX1 + (∇B
C)YX2.

3. (∇B
C)cYX = c(∇B

C)YX.

4. (∇B
C)Y (fX) = Y (f)(∇B

C)YX + Y (df)(Y ◦ ι ◦X).

Proof. The first three properties are straightforward to prove, so we will focus
on the last one:

(∇B
C)Y (fX) = Y ◦ d ◦ (fX)

= Y ◦ (ι(f)(d ◦X) + df(ι ◦X))

= Y (f)(Y ◦ d ◦X) + Y (df)(Y ◦ ι ◦X)

= Y (f)(∇B
C)YX + Y (df)(Y ◦ ι ◦X).

If both X and Y are vector fields, that is, if they are homomorphisms
from Ph(A) into A, we can simplify the fourth property a little:

∇Y (fX) = Y (f)∇YX + Y (df)(Y ◦ ι ◦X)

= f∇YX + Y (df)X.

This is because when Y is a vector field, it acts as the identity map on
elements of A.

In the case where we have surjective homomorphisms γ : A → B and
ψ : B → C, we may view B as a subspace of A, and C as a subspace of B.
This is because the corresponding morphisms between the spectra of the rings
will be injective. An elementX ∈ HomA/k(Ph(A), B) such thatX◦ι = γ will
give a tangent vector in A at each point of B, while a Y ∈ HomA/k(Ph(B), C)
such that Y ◦ ι = ψ gives a tangent vector in B at each point of C. This is
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depicted in the figure below. We let A = k[x, y, z], B = k[x, y] and C = k[t],
with γ : A → B sending x and y to themselves, and ψ : B → C sending
x to t and y to (t − 2)2. The vectors along the curve ψ are the vectors
given by Y : Ph(B) → C, and the dotted vectors are the vectors given by
X : Ph(A) → B. Notice that the vectors along the curve do not have to be
tangent to the curve. However, they must lie in the plane given by γ. Also,
the vectors in the plane may point out of the plane.

x

y

z

The following two properties tell us how we can restrict vector fields from A
to B and from B to C when taking the derivative.

Proposition 3.1.6. Let γ : A→ B and ψ : B → C be two surjective homo-
morphisms, and let X ∈ HomA/k(Ph(A), B), Y ∈ HomA/k(Ph(B), B) and
Z ∈ HomA/k(Ph(B), C) be maps such that X ◦ ι = γ and Z ◦ ι = ψ. Then:

(a) For all X̃ : Ph(A)→ A such that γ ◦ X̃ = X,

(∇B
B)YX = (∇B)Y ◦γ∗X̃.

(b) For all Z̃ : Ph(B)→ B such that ψ ◦ Z̃ = Z,

(∇B
C)ZX = ψ ◦ (∇B

B)Z̃X.

Proof. (a) Assume that γ ◦ X̃ = X. Then

(∇B
B)YX = Y ◦ d ◦X

= Y ◦ d ◦ γ ◦ X̃
= Y ◦ γ∗ ◦ d ◦ X̃
= (∇A

B)Y ◦γ∗X̃.
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(b) Assume that ψ ◦ Z̃ = Z. Then

(∇B
C)ZX = Z ◦ d ◦X

= ψ ◦ Z̃ ◦ d ◦X
= ψ ◦ (∇B

B)Z̃X.

The following diagram gives an overview of all the different homomor-
phisms.

Ph(A) Ph(B)

A B C

X̃
Ỹ

X

γ∗

Z̃Y
Z

γ ψ

Note that since all homomorphisms X̃ : Ph(A)→ A and Z̃ : Ph(B)→ B act
as identity maps on A and B, respectively, the conditions γ ◦ X̃ = X and
ψ ◦ Z̃ = Z imply that X ◦ ι = γ and Z ◦ ι = ψ.

The maps γ and ψ are surjective, hence they give embeddings of Spec(B)
into Spec(A), and Spec(C) into Spec(B). Therefore B and C can be viewed
as subspaces of A and B, respectively. When X is a homomorphism from
Ph(A) into B such that X ◦ ι = γ, it has to send every a ∈ A to the same
element in B as γ, thus, it will give us tangent vectors in A at each point
of the embedding of B in A. The same reasoning tells us that Z consists of
tangent vectors in B at each point of the embedding of C in B.

In the first property of the proposition, we choose any vector field

X̃ : Ph(A)→ A

such that γ ◦ X̃ = X. This means that X is the restriction of X̃ to the
embedding of B in A. On the right side of the equality sign, we take the
derivative of X̃ with respect to Y ◦ γ∗. This is a homomorphism from Ph(A)
into B. We see that

Y (γ∗(a)) = Y (γ(a))

and
Y (γ∗(da)) = Y (dγ(a)),

so we can view Y ◦ γ∗ as the embedding of the vector field Y on B into A. It
will still only consist of tangent vectors in B, but we view them as part of A.
Now the derivative of X̃ with respect to Y ◦ γ∗ gives us a tangent vector at
each point of the embedding of B in A. On the left side of the equality sign,
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we take the derivative of the restriction of X̃ to B, X, with respect to Y .
Thus, what this property tells us, is that we can choose to restrict a vector
field on A to B before taking the derivative.

The second property is very similar. Here we start with two vector fields
X and Z, where X is a vector field on B in A, and Z a vector field on C in
B. Then we choose any Z̃ : Ph(B) → B, i.e. a vector field on B, such that
ψ ◦ Z̃ = Z, which means that Z is the restriction of Z̃ to the embedding of
C in B. The element (∇B

C)ZX ∈ Der(Ph(A), B) is then the derivative of X
with respect to the restriction of Z̃. On the right side of the equality sign,
we do the restriction after taking the derivative: (∇B

B)Z̃X is the derivative of
X with respect to Z̃, and by composing with ψ, we restrict ourselves to the
points of the embedding of C in B. In other words, we can choose whether
to restrict before or after taking the derivative.

In differential geometry, the notion of a derivative of a vector field, X,
along a tangent vector or another vector field, Y , can be generalized to what
is called an affine connection in the case where Y is a tangent vector, and
a global affine connection if Y is a vector field. It is defined to be a map
∇ sending X and Y to either a new tangent vector or a new vector field
(according to what Y is) such that ∇ satisfies four properties corresponding
to the four properties in Proposition 3.1.5 (see [Csi98, Unit 11]). We will do
something similar, but not exactly the same, here.

Definition 3.1.7. Let R be a k-algebra. We say that a k-algebra S is a
projection of R if there exists a surjective homomorphism φ : R→ S.

For a k-algebra R, we let Pr(R) denote the set of all k-algebras S that
are projections of R. When S is a projection of R, we have a surjective ho-
momorphism φ : R → S. The corresponding map γ̃ : Spec(S) → Spec(R) is
then an inclusion, so Spec(S) is a subspace of Spec(R). That is, a projection
corresponds to a subspace.

Definition 3.1.8. Let A be a k-algebra. An affine connection on A is a
collection of maps, one for each combination of k-algebras B ∈ Pr(A) and
C ∈ Pr(B),

∇B
C : HomA/k(Ph(A), B)×HomA/k(Ph(B), C)→ Der(Ph(A), C),

such that for all elements X, X1, X2 ∈ HomA/k(Ph(A), B), Z, Z1, Z2 ∈
HomA/k(Ph(B), C), c ∈ C and f ∈ B

1. (∇B
C)Z1+Z2X = (∇B

C)Z1X + (∇B
C)Y2X,

2. (∇B
C)Z(X1 +X2) = (∇B

C)ZX1 + (∇B
C)ZX2,
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3. (∇B
C)cZX = c(∇B

C)ZX,

4. (∇B
C)Z(fX) = Z(f)(∇B

C)ZX + Z(df)(Z ◦ ι ◦X),

and such that for all surjective homomorphisms γ : A → B and ψ : B → C,
the following two conditions are satisfied:

(a) For all Y ∈ HomA/k(Ph(B), B), and all X̃ : Ph(A) → A such that
γ ◦ X̃ = X,

(∇B
B)YX = (∇B)Y ◦γ∗X̃.

(b) For all Z̃ : Ph(B)→ B such that ψ ◦ Z̃ = Z,

(∇B
C)ZX = ψ ◦ (∇B

B)Z̃X.

Let us compare this definition to the definition of an affine connection in
differential geometry. There, an affine connection on a manifoldM is defined
to be a mapping, ∇, that to each pair of smooth vector fields X and Y on
M assigns a new smooth vector field ∇YX, and the mapping should satisfy
properties corresponding to the first four properties in Definition 3.1.8. Thus,
in differential geometry there is only one mapping, unlike here, where we
have one mapping for each pair of k-algebras B and C, B being a projection
of A, and C a projection of B. In addition, they do not have conditions
corresponding to the last two properties above. However, there is a result in
differential geometry saying that if X1, X2, Y1 and Y2 are vector fields such
that X1 and X2 agree on some open subset U , and Y1 and Y2 agree on some
open subset V , then

(∇YX1)|U = (∇YX2)|U
and

(∇Y1X)|V = (∇Y2X)|V
(a proof can be found in [Csi98, Unit 11]). In other words, the affine connec-
tion can be restricted to any open subset, and this yields an affine connection
on the open subset. It is also possible, by use of what is called Christoffel
symbols, to define affine connections on sets in an open cover ofM , and with
those define an affine connection on the whole manifold. This is exactly what
the last two properties above tell us that we can do here: Let γ : A→ B and
X ∈ HomA/k(Ph(A), B) be two maps, and assume that X̃1 and X̃2 are two
elements in HomA/k(Ph(A), A) such that

γ ◦ X̃1 = γ ◦ X̃2 = X.
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This means that the vector fields X1 and X2 agree on the projection B of A.
Suppose Y ∈ HomA/k(Ph(B), B) is a vector field on B. The first property
then states that

(∇B)Y ◦γ∗X̃1 = (∇B)Y ◦γ∗X̃2 = (∇B
B)YX.

On the other hand, if X ∈ HomA/k(Ph(A), B), and Z̃1 and Z̃2 are elements
in HomA/k(Ph(B), B) such that

ψ ◦ Z̃1 = ψ ◦ Z̃2 = Z

for some Z ∈ HomA/k(Ph(B), C) and ψ : B → C, then

ψ ◦ (∇B
B)Z̃1

X = ψ ◦ (∇B
B)Z̃2

X = (∇B
C)ψ◦ZX

by the second property. Composing with ψ gives a restriction from B to C.
If B = A or B = C, the restriction is from A to C.

3.2 Torsion fields
In this and the next section we will look at two applications of affine con-
nections; torsion fields and differentiation of vector fields along curves. We
start with torsion fields.

Composition of derivations does in general not give new derivations, but it
is easy to check that if B is some k-algebra, and D1 : B → B and D2 : B → B
are two derivations, then

D1 ◦D2 −D2 ◦D1 : B → B

is also a derivation.

Definition 3.2.1. Let A be a k-algebra, and let X and Y be two vector
fields on A, i.e. they are elements of HomA/k(Ph(A), A). The commutator
of X and Y , denoted by [X, Y ], is defined to be the derivation

[X, Y ] = DX ◦DY −DY ◦DX ,

whereDX andDY are the derivations corresponding toX and Y respectively.

Proposition 3.2.2. Let X and Y be vector fields on A, and ∇ the affine
connection on A such that

(∇B
C)Z2Z1 = Z2 ◦ d ◦ Z1

for all Z1 ∈ HomA/k(Ph(A), B) and Z2 ∈ HomA/k(Ph(B), C). Then

[X, Y ] = (∇XY −∇YX) ◦ d.
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Proof. Since the derivation corresponding to a vector field is obtained by
composing the vector field with the derivation d, we get

[X, Y ] = DX ◦DY −DY ◦DX

= (X ◦ d) ◦ (Y ◦ d)− (Y ◦ d) ◦ (X ◦ d)

= (X ◦ d ◦ Y − Y ◦ d ◦X) ◦ d
= (∇XY −∇YX) ◦ d.

Definition 3.2.3. Suppose we have an affine connection on the k-algebra A,
and let X and Y be two vector fields on A. Then the torsion field of X
and Y is defined as

T (X, Y ) = [X, Y ]− (∇XY −∇YX) ◦ d.

If T (X, Y ) = 0 for all vector fields X and Y on A, the connection is said to
be torsion free.

Let ∇̃ denote the affine connection on A such that

(∇̃B
C)Z2Z1 = Z2 ◦ d ◦ Z1

for all Z1 ∈ HomA/k(Ph(A), B) and Z2 ∈ HomA/k(Ph(B), C). Since Propo-
sition 3.2.2 tells us that

[X, Y ] = (∇̃XY − ∇̃YX) ◦ d

for all vector fields X and Y on A, the torsion is actually

T (X, Y ) = [(∇̃XY − ∇̃YX)− (∇XY −∇YX)] ◦ d.

3.3 Vector fields along curves
In this section we will look at vector fields along curves. If we are given a curve
γ, a vector field along γ should assign a tangent vector in A to each point on
the curve. In Section 3.1 we saw that if γ : A → B is a homomorphism and
X : Ph(A) → B is such that X ◦ ι = γ, then X gives a tangent vector in A
at each point of the embedding of B in A given by γ. Hence, we have the
following defintion.
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Definition 3.3.1. Let γ : A → B be a curve in A. A vector field on A
along γ is a homomorphism X : Ph(A)→ B such that X ◦ ι = γ.

Recall that a curve is a surjective homomorphism A → B where B is
a smooth k-algebra of dimension 1. Note that the tangent vectors do not
have to be tangent to the curve. Also note that since a curve is given by a
surjective homomorphism, we can for every vector field X along a curve γ
find a vector field X̃ : Ph(A) → A on A that extends X. That is, we can
find an X̃ ∈ HomA/k(Ph(A), A) such that the following diagram commutes:

Ph(A)

A B.

X
X̃

γ

Having defined vector fields along a curves, it would be interesting to see
how a vector field X along a curve γ changes as we move along γ. In other
words; how can we define the derivative of X along the curve?

Assume that γ : A→ B is a curve in A. Let u : Ph(B)→ B be a vector
field on B. Composing u with γ∗ gives an embedding of the vector field u
into A. Therefore we give the following defintion.

Definition 3.3.2. Let γ : A → B be a curve in A. A homomorphism
Y : Ph(A) → B such that Y = u ◦ γ∗ for some u : Ph(B) → B is a tan-
gent vector field along γ.

Example 3.3.3. Let A = k[x, y], B = k[t] and γ : A → B be the curve
mapping x to t and y to t2. Define a vector field u : Ph(B) → B by letting
u(dt) = 1, and let Y = u ◦ γ∗. Then Y (dx) = 1 and Y (dy) = 2t. ♣

The next definition tells us how we can find the derivative of a vector
field along a curve with respect to a tangent vector field along the curve. We
will require that the tangent vector field consists not only of zero tangent
vectors. That is, if Y : Ph(A) → B is a tangent vector field along a curve,
we should have Y ◦ d 6≡ 0.

Definition 3.3.4. Suppose we have an affine connection on A. Let X be a
vector field along a curve γ : A → B, and Y : Ph(A) → B a tangent vector
field along γ such that Y ◦ d 6≡ 0. The derivative of X along γ with
respect to Y is denoted by DX, and is defined as

DX = (∇B)Y X̃,

where X̃ ∈ HomA/k(Ph(A), A) is a vector field on A such that γ ◦ X̃ = X.
If for every tangent vector field Y we have that DX(da) = 0 for all a ∈ A,
we say that X is a parallel vector field along γ.
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As we saw in Section 3.1, the condition that γ ◦ X̃ should equal X means
that X is the restriction of X̃ to γ. Thus, to see how a vector field along a
curve changes with respect to a tangent vector field, we use an affine connec-
tion on the tangent vector field and an extension of the vector field.

For the derivative to be well-defined, it can not matter which vector field
X̃ we choose. This is true by the next proposition.

Proposition 3.3.5. Assume that we have an affine connection on A, and
let γ : A→ B be a curve and Y : Ph(A)→ B a tangent vector field along γ.
If X̃1 and X̃2 are two vector fields on A such that γ ◦ X̃1 = γ ◦ X̃2, then

(∇B)Y X̃1 = (∇B)Y X̃2.

Proof. Since Y = u ◦ γ∗ for some u : Ph(B)→ B, we have

(∇B)Y X̃1 = (∇B)u◦γ∗X̃1

= (∇B
B)uγ ◦ X̃1

= (∇B
B)uγ ◦ X̃2

= (∇B)u◦γ∗X̃2

= (∇B)Y X̃2.

Let us look at an example where the affine connection is just the normal
derivative.

Example 3.3.6. Let γ : A → B and Y be as in Example 3.3.3, and let
X : Ph(A) → k[t] be the vector field along γ such that X(dx) = t and
X(dy) = 0 (vector fields along γ must always send x and y to γ(x) and
γ(y)). Assume that the affine connection on A is just the normal derivative,
i.e.,

(∇B
C)Z2Z1 = Z2 ◦ d ◦ Z1

for all Z1 ∈ HomA/k(Ph(A), B) and Z2 ∈ HomA/k(Ph(B), C). To find the
derivative of X along γ with respect to Y , we have to find a vector field
X̃ : Ph(A)→ A such that γ ◦ X̃ = X. Let X̃(dx) = x and X̃(dy) = 0. Then

DX(dx) = Y (d(X̃(dx)))

= Y (dx)

= 1
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and

DX(dy) = Y (d(X̃(dy)))

= Y (d(0))

= 0.

We can also choose X̃ to be the vector field where X̃(dx) = x and X̃(dy) =
y − x2 and get the same result, because

γ(X̃(dx)) = t

= X(dx)

and

γ(X̃(dy)) = t2 − t2

= 0

= X(dy),

so γ ◦ X̃ = X. ♣

When γ : A → B is a curve and X : Ph(A) → B is a vector field along
γ, we can as usual compose with a point p : B → k. This yields the tangent
vector p ◦X : Ph(A) → k from the vector field X at the point p ◦ γ on the
curve. We can also start with a tangent vector Xp : Ph(A) → k at a point
p ◦ γ on the curve, which means that Xp ◦ ι = p ◦ γ, and extend this to a
vector field along the curve. Just let X(da) = Xp(da) for all a ∈ A. But
given an affine connection on A, when is it possible to find a parallel vector
field X along γ such that p ◦X = Xp, i.e., such that X extends Xp?

Proposition 3.3.7. Assume that A is a polynomial ring in n indeterminates.
Let γ : A → k[t] be a curve and Xp : A → k a tangent vector at the point
p ◦ γ : A→ k on the curve. If the connection ∇ is the derivative of a vector
field with respect to another, there is a unique parallel vector field along γ
that extends Xp.

Proof. Let X : Ph(A)→ k[t] be the vector field along γ that sends xi to γ(xi)
and dxi to Xp(dxi) ∈ k, and let Y = u ◦ γ∗ be a tangent vector field along γ
such that Y ◦ d 6≡ 0. Then p ◦ X = Xp, and DX(dxi) = u(d(X(dxi))) = 0
because X(dxi) = Xp(dxi) ∈ k. Hence there exists a parallel vector field
along γ that extends Xp.

Assume now that X̃ : Ph(A) → k[t] is another vector field along γ such
that p ◦ X̃ = Xp, and such that for all tangent vector fields Y along γ, we
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have that DX̃ ◦ d ≡ 0. Write X̃(dxi) = fi(t) ∈ k[t]. Then for any tangent
vector field Y = u ◦ γ∗,

0 = DX̃(dxi)

= u(d(X̃(dxi)))

= f ′i(t)u(dt).

Since we require that Y ◦d 6≡ 0, we know that u(dt) 6= 0. Therefore f ′i(t) = 0,
and thus fi(t) = fi ∈ k. Then p(fi) = fi, so

Xp(dxi) = p(X̃(dxi))

= p(fi)

= fi.

We defined X such that X(dxi) = Xp(dxi), hence X(dxi) = fi = X̃(dxi),
and X̃ = X.

Definition 3.3.8. Let∇ be an affine connection on a k-algebra A, γ : A→ B
a curve and X a vector field along γ. Two points p : B → k and q : B → k
give rise to two tangent vectors Xp = p ◦ X and Xq = q ◦ X. When X
is a parallel vector field, two such tangent vectors are said to be parallel
transports of each other.



Chapter 4

Integrability

4.1 The coproduct of noncommutative rings

In this section we will prove a proposition that tells us that the coproduct of
noncommutative rings exists, following [KIBM96, Chapter 1.4]. This will be
useful when we in the next section study integrability.

Assume that R and S are two objects in a category C. Then the coproduct
of R and S is an object T together with two morphisms, R→ T and S → T ,
that satisfy the following universal property: For all other objects P with
morphisms R → P and S → P , there is a unique morphism T → P such
that the diagram

R T S

P

commutes.
In the category of commutative algebras, the coproduct over a ring A is

just the tensor product. For noncommutative algebras over a commutative
ring, we get something a little more complicated.

Proposition 4.1.1. Assume that R and S are rings, not necessarily com-
mutative, with homomorpshisms φ : A → R and ψ : A → S that make R a
right A-module and S a left A-module, i.e., they are A-algebras. Then there
is an A-algebra T and A-algebra homomorphisms iR : R→ T and iS : S → T
satisfying the following universal property: For any other A-algebra P , and
any A-algebra homomorphisms fR : R→ P and fS : S → P , there is a unique
A-algebra homomorphism f : T → P such that

f ◦ iR = fR

35
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and
f ◦ iS = fS.

T is the coproduct of R and S over A.

Proof. Let

C = R⊕ S ⊕ (R⊗AR)⊕ (R⊗A S)⊕ (S ⊗A R)

⊕ (S ⊗A S)⊕ (R⊗A R⊗A R)⊕ · · · ,

and let D be the ideal in C generated by elements of the form

a⊗ b− ab

and
1R − 1S,

where a and b are both in R or both in S, and 1R and 1S are the identity
elements of R and S, respectively. The coproduct of R and S over A is
the quotient T = C/D together with the homomorphisms iR : R → T and
iS : S → T that are just inclusion maps composed with the quotient map
C → C/D.

To show that this is the coproduct, we need to give T a ring structure,
a map A → T that makes it an A-algebra, and show that it satisfies the
universal property. Let us start with the ring structure. Addition is done
componentwise. We define multiplication of two elements x1 ⊗ x2 ⊗ · · · ⊗ xn
and y1 ⊗ y2 ⊗ · · · ⊗ ym, where xi and yj are in R or S for all i = 1, 2, . . . , n
and j = 1, 2, . . . ,m, as follows:

(x1 ⊗ x2 ⊗ · · · ⊗ xn)(y1 ⊗ y2 ⊗ · · · ⊗ ym)

=


x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym if xn ∈ R, y1 ∈ S

or xn ∈ S, y1 ∈ R
x1 ⊗ x2 ⊗ · · · ⊗ xny1 ⊗ y2 ⊗ · · · ⊗ ym if xn, y1 ∈ R

or xn, y1 ∈ S.

Multiplication of general elements in T then follows naturally.
We give T an A-module structure by defining a homomorphism σ : A→ T

such that σ(a) = φ(a)⊗ ψ(a) ∈ T .
Now we must show that the universal property is satisfied, so let P be

an A-algebra with homomorphisms fR : R → P and fS : S → P . We want
to define a map f : T → P . Let x1⊗ x2⊗ · · · ⊗ xn be an element of T where
each xi is either in R or in S, and let

f(x1 ⊗ x2 ⊗ · · · ⊗ xn) = g1(x1)g2(x2) · · · gn(xn),
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where

gi =

{
fR if xi ∈ R
fS if xi ∈ S.

The homomorphism f can be extended linearly to a map from T into P .
What we must show, is that the following diagram commutes:

R T S

P

iR

fR
f

iS

fS

Let x ∈ R and y ∈ S. Then

f(iR(x)) = f(x) = fR(x)

and
f(iS(y)) = f(y) = fS(y),

hence the diagram commutes. To show that f is unique, assume that h : T →
P is any other map such that the diagram above is commutative. Each xi in
an element of the form x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ T comes from either R or S, so
for each i = 1, 2, . . . , n we let ji be the map such that

ji =

{
iR if xi ∈ R
iS if xi ∈ S.

Then

h(x1 ⊗ x2 ⊗ · · · ⊗ xn) = h(j1(x1)j2(x2) · · · jn(xn))

= h(j1(x1))h(j2(x2)) · · ·h(jn(xn))

= g1(x1)g2(x2) · · · gn(xn)

= f(x1 ⊗ x2 ⊗ · · · ⊗ xn).

Thus, h = f .

We will denote the coproduct of R and S over A by R ∗A S, and let r ∗ s
denote the image of r⊗ s ∈ C in D. The coproduct R ∗A S is then generated
by all elements of the form r∗s where r is a generator of R, and s a generator
of S.

Example 4.1.2. Let A = k[x, y], R = k < x, y, dx > /(xy − yx) and
S = k[x] with homomorphisms φ : A→ R and ψ : A→ S such that φ(x) = x
and φ(y) = y, and ψ(x) = x and ψ(y) = 0. All elements in S are elements in
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A, so 1∗s = φ(s)∗1 for all s ∈ S. Hence R∗AS is generated by the elements
x ∗ 1, y ∗ 1 and dx ∗ 1. Define a map f : R ∗A S → k < x, dx > by letting
f(x ∗ 1) = x, f(y ∗ 1) = 0 and f(dx ∗ 1) = dx. It is surjective, and since

y ∗ 1 = 1 ∗ ψ(y)

= 1 ∗ 0

= φ(0) ∗ 0

= 0,

it is also injective. Therefore

R ∗A S ∼= k < x, dx >= Ph(k[x]).

♣

4.2 Integrability
In this section we will assume that A is a polynomial ring,

A = k[x1, x2, . . . , xn].

We have seen that Ph(A) can be considered as the tangent bundle of A; it
consists of all points and all tangent vectors at each point. But what if we for
each point were to pick out only some of the tangent vectors? Could we then
find a subspace of A whose tangent space at each point consists of exactly
the tangent vectors we have chosen?

First, let us look at how we can choose only some tangent vectors at each
point.

Definition 4.2.1. A distribution ∆ on A is a quotient of Ph(A),

∆ = Ph(A)/J ,

where J is an ideal of Ph(A), such that the quotient map φ : Ph(A) → ∆
composed with the inclusion map ι : A→ Ph(A) is injective.

Since φ ◦ ι : A → ∆ is injective, A lies inside ∆, so in ∆ we have all the
points of A. Let X : Ph(A) → A be a vector field on A that factors though
∆. This means that there is a homomorphism X̃ : ∆ → A such that the
diagram

Ph(A) ∆

A

X

φ

X̃
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commutes. Because X̃ sends every element in J to 0, and φ is the quotient
map,X must also send every element in J to 0. Thus, at each point p : A→ k,
the collection of vector fields that factor through a distribution ∆ = Ph(A)/J
will only consist of some of the tangent vectors in A at p, i.e., those that send
all f ∈ J to 0. Therefore we will consider a distribution ∆ as a subset of the
set of all tangent vectors at all points of A.

Example 4.2.2. Let A = k[x, y] and J = (dy), so ∆ = Ph(A)/(dy). A
homomorphism from A to k that factors through ∆ sends dy to 0, while
there is no restriction on dx, so in ∆ we have all the tangent vectors where
the component in the y-direction is 0. ♣

Example 4.2.3. Again we let A = k[x, y], but let ∆ = Ph(A)/(dx−x, dy−
y). In this case we only have one choice of tangent vector Y at each point
p : A → k, where p(x) = a and p(y) = b for some a, b ∈ k; dx must be sent
to a, and dy to b. ♣

In Section 2.1 we defined a curve in A to be a homomorphism ψ : A→ B,
where B is a smooth k-algebra of dimension 1. In general, we can define an r-
dimensional subspace of A to be a surjective homomorphism ψ : A→ B,
where B is a smooth k-algebra of dimension r ≤ n. Our goal is to find
out when the tangent vectors at a point in a distribution coincide with the
tangent vectors in the tangent space to a subspace at the same point, so
our question now is how we can restrict the points in a distribution ∆ to
a subspace of A. In the previous section, we constructed the coproduct of
noncommutative A-algebras. The injection

φ ◦ ι : A→ ∆

and a subspace
ψ : A→ B

give ∆ and B A-module structures. We can therefore form the coproduct
∆∗AB. It is generated by elements f ∗b, where f ∈ ∆ and b ∈ B. Since A lies
inside ∆, among these we will have the elements xi∗1 for i = 1, 2, . . . , n. But
xi ∗ 1 = 1 ∗ ψ(xi), so the coproduct restricts the points of ∆ to the subspace
ψ. Thus, the coproduct ∆ ∗A B consists of all points of the subspace ψ, and
all the tangent vectors of ∆.

Example 4.2.4. Let A and ∆ be as in Example 4.2.2, and let ψ : A → B,
where B = k[x], be the curve that sends x to x and y to 0. Look at ∆ ∗A B.
The element y ∗ 1 is 0 because

y ∗ 1 = 1 ∗ ψ(y) = 1 ∗ 0 = 0.
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Therefore, when choosing a point ∆∗AB → k, we must send y ∗1 to 0, while
x ∗ 1 can be sent to any element of k. The coproduct restricts the points of
∆ to the x-axis, which is exactly the curve ψ.

If we for instance let ψ send y to 2 instead, a homomorpshism ∆∗AB → k
must send y ∗ 1 to 2 since y ∗ 1 = 1 ∗ ψ(y) = 1 ∗ 2. As above, x ∗ 1 can be
sent to any element in k, so again the coproduct restricts the points of ∆ to
the curve ψ. ♣

Notice that in this example, we can choose any point p : A→ k and find a
curve ψ : A→ B through that point (meaning q ◦ψ = p for some q : B → k)
such that the tangent space at each point of the curve is given by the tangent
vectors of ∆ at that point. These curves are the horizontal lines; if p(x) = a
and p(y) = b, we let ψ(x) = x and ψ(y) = b. The tangent vectors

{Y ∈ HomA/k(Ph(B), k) : Y ◦ ι = q}

at any point q ◦ ψ on this curve are all the tangent vectors with no y-
component, which are all the tangent vectors in ∆ at that point. Since
Ph(B) gives all the tangent vectors at all points of B, we should have

∆ ∗A B ∼= Ph(B).

This is indeed the case with the isomorphism

β : ∆ ∗A B → Ph(B)

sending x ∗ 1 to x, y ∗ 1 to b, dx ∗ 1 to dx and dy ∗ 1 to 0.
In general, if ψ : A→ B is a subspace, we have seen that we can define a

homomorphism ψ∗ : Ph(A)→ Ph(B) by letting ψ∗(a) = ψ(a) and ψ∗(da) =
dψ(a) for all a ∈ A. Since the map ψ is surjective, we know that for all b ∈ B
there is an a ∈ A such that ψ(a) = b. Therefore we have that for all b ∈ B,

1 ∗ b = 1 ∗ ψ(a) = a ∗ 1

for some a ∈ A. Thus the coproduct is generated by the elements xi ∗ 1 and
φ(dxi) ∗ 1 for all i = 1, 2, . . . , n. We can construct a map

β : ∆ ∗A B → Ph(B)

by sending xi ∗ 1 to ψ∗(xi) = ψ(xi) and φ(dxi) ∗ 1 to ψ∗(dxi) = dψ(xi).

Ph(A) ∆ ∆ ∗A B Ph(B)

A B

φ

ψ∗

β

ι

ψ

ι
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This is exactly the homomorphism that gave the isomorphism above between
∆∗AB and Ph(B). Whenever β is an isomorphism, the tangent vectors of ∆
at any point of the subspace given by ψ are the same as the tangent vectors
of Ph(B) at that point.

In Example 4.2.3 we can not find a curve ψ through each point such that
the map β, as defined above, becomes an isomorphism. There is only one
choice of a tangent vector at each point, so the tangent space at any point of
a curve A→ B will consist of more tangent vectors than those we have in ∆
at the same point. The only possibility we have to get an isomorphism, is if
we choose a point instead of a curve. That is, let B = k, and let ψ : A → k
send x and y to a ∈ k and b ∈ k, respectively. Then ψ∗(dx) = d(ψ(x)) = 0
and ψ∗(dy) = d(ψ(y)) = 0, so the map β : ∆ ∗A B → Ph(B) sends x and y
to themselves, while dx and dy are both sent to 0. This works well if a =
b = 0, because at the origin we have no tangent vectors. At any other point,
however, this is not an isomorphism. In fact, it is not even a homomorphism.

Definition 4.2.5. A distribution ∆ on a ring A is integrable if for each
point p : A→ k there is a subspace ψp : A→ B such that

1. p = q ◦ ψp for some q : B → k

2. β : ∆ ∗A B → Ph(B) is an isomorphism

Note that β depends on ψp. The first condition in the definition tells us
that the subspace ψp contains the point p. The second condition says that
for each point p̃ = q̃ ◦ ψp of the subspace, the tangent space of the subspace
at p̃ equals the collection of tangent vectors of ∆ at p̃.

Example 4.2.6. Let A = k[x, y] and ∆ = Ph(A)/(dy−dxx−xdx). Pick an
arbitrary point p : A→ k, i.e., p(x) = a and p(y) = b for some a, b ∈ k. The
curve ψp : A→ B, where B = k[x], that sends x to x and y to x2 + (b− a2)
goes through the point p; if we let q(x) = a, we have q ◦ ψp = p.

Let β : ∆ ∗A B → Ph(B) be defined as above. Then

β(x ∗ 1) = ψp(x) = x,

β(y ∗ 1) = ψp(y) = x2 + (b− a2),
β(dx ∗ 1) = dψp(x) = dx,

β(dy ∗ 1) = dψp(y) = dxx+ xdx.

Both elements y ∗ 1− (x2 + (b− a2)) ∗ 1 and dy ∗ 1− (dxx+ xdx) ∗ 1 are sent
to 0, but since

y ∗ 1 = 1 ∗ ψ(y)

= 1 ∗ x2 + (b− a2)
= x2 + (b− a2) ∗ 1,
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and
dy ∗ 1 = (dxx− xdx) ∗ 1,

these elements are actually 0. Hence β is injective. Because x ∗ 1 maps to x
and dx ∗ 1 maps to dx, the map is also surjective. ♣

As we learned from Example 4.2.3, not all distributions are integrable.
We will now look at a condition that is necessary for a distribution to be
integrable.

Definition 4.2.7. A distribution ∆ = Ph(A)/J is called involutive if for
all pairs of vector fields X, Y : Ph(A) → A that factor through ∆, the
homomorphism corresponding to the commutator [X, Y ] also factors through
∆.

Proposition 4.2.8. All integrable distributions are involutive.

Proof. Assume that ∆ = Ph(A)/J is an integrable distribution, and let X
and Y be two vector fields such that X(f) = Y (f) = 0 for all f ∈ J . We
must show that the homomorphism Z : Ph(A) → A corresponding to the
commutator [X, Y ] also factors through ∆.

Since ∆ is integrable, there is a k-algebra B such that we for each point
p : A→ k can find a surjective homomorphism ψp : A→ B such that

1. p = q ◦ ψp for some q : B → k,

2. the map β is an isomorphism.

The homomorphism ψp is surjective, so B is generated by the elements ψp(xi)
for i = 1, 2, . . . , n. For each p we can define vector fields σp : Ph(B) → B
and τp : Ph(B)→ B as follows:

σp : Ph(B)→ B

ψp(xi) 7→ ψp(X(xi)) = ψp(xi)

dψp(xi) 7→ ψp(X(dxi))

and

τp : Ph(B)→ B

ψp(xi) 7→ ψp(Y (xi)) = ψp(xi)

dψp(xi) 7→ ψp(Y (dxi)).

Because we have Ph(B) ∼= ∆ ∗A B = Ph(A)/J ∗A A/ker(ψp), all f ∗ 1 and
1 ∗ a, where f ∈ J and a ∈ ker(ψp), should be mapped to 0. That is, we
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should have ψp(X(f)) = ψp(Y (f)) = 0 and ψp(X(a)) = ψp(Y (a)) = 0. The
first equality holds because both X and Y send f to 0. Also, ker(ψp) ⊂ A,
so a ∈ A and X(a) = Y (a) = a. Therefore

ψp(X(a)) = ψp(Y (a)) = ψp(a) = 0.

Hence σp and τp are well-defined.
Let us look at the commutator [σp, τp]. It corresponds to a homomorphism

ξ : Ph(B)→ B where

ξ(ψp(xi)) = ψp(xi)

= ψp ◦ Z(xi)

and

ξ(dψp(xi)) = (σp ◦ d ◦ τp ◦ d− τp ◦ d ◦ σp ◦ d)(ψp(xi))

= σp ◦ d ◦ τp(dψp(xi))− τp ◦ d ◦ σp(dψp(xi))
= σp ◦ d ◦ ψp ◦ Y (dxi)− τp ◦ d ◦ ψp ◦X(dxi)

= ψp ◦X ◦ d ◦ Y (dxi)− ψp ◦ Y ◦ d ◦X(dxi)

= ψp ◦ (X ◦ d ◦ Y − Y ◦ d ◦X)(dxi)

= ψp ◦ Z(dxi).

Thus ξ = ψp ◦Z. But Ph(B) ∼= ∆ ∗AB, so ξ(f) = 0 for all f ∈ J . Therefore

ψp(Z(f)) = ξ(f) = 0,

which implies that Z(f) ∈ ker(ψp) for all f ∈ J . This is true for all p : A→ k,
so for all f ∈ J ,

Z(f) ∈
⋂

p : A→k

ker(ψp).

If we can show that ∩ker(ψp) = (0), we are finished. Assume that g ∈
∩ker(ψp). Then, by the first condition in Definition 4.2.5, p(g) = 0 for all
p : A→ k, which implies that g itself must be equal to 0. Hence,⋂

p : A→k

ker(ψp) = (0).

The proposition states that if a distribution is not involutive, it can not
be integrable either, so it gives us a necessary condition for a distribution to
be integrable. In manifold theory, there are similar notions of involutivity
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and integrability, and the condition is also sufficient, i.e., all involutive dis-
tributions are integrable. This result is called the Frobenius Theorem, and
can be found in [Lee12, Chapter 19]. The proof of this theorem builds on the
existence theorem for ordinary differential equations. It says that if we are
given a time-dependent vector field F : Rn×R→ TRn, we can through each
point in the space find a curve x : I → Rn such that for each t ∈ I, F (x(t), t)
is the tangent vector to the curve at the point x(t). That is,

dx

dt
(τ) = F (x(τ), τ)

for all τ ∈ I [Lee12, Appendix D]. Let us find similar algebraic notions.
A vector field on a k-algebra A is a homomorphism from Ph(A) into A.

If we want it to be dependent on time, we can just add another variable:
A ⊗k k[t]. Assume that A = k[x1, x2, . . . , xn]. Then A ⊗k k[t] is just the
polynomial ring k[x1, x2, . . . , xn, t]. A vector field that is dependent on time
should be a homomorphism

F : Ph(A⊗ k[t])→ A⊗ k[t].

However, we only want the vector space to consist of tangent vectors in A
(that depend on time), not in A⊗k[t], so we are only interested in where the
dxi, for i = 1, 2, . . . n, are mapped. Therefore we let F (dt) = 1, and write
F (dxi) = fi ∈ A ⊗ k[t] for all i = 1, 2, . . . , n. For each point of A, we want
a curve that goes through that point at a certain time. Let p : A⊗ k[t]→ k
be a homomorphism such that p(t) = t0 ∈ k and p(xi) = ai ∈ k for all
i = 1, 2, . . . , n. It consists of two homomorphisms, p1 : A→ k and p2 : k[t]→
k. The first map, p1, gives us a point in A, while p2 can be considered a
point of time. A map ψ : A ⊗ k[t] → k[t] where ψ(t) = t and p = q ◦ ψ for
some q : k[t]→ k is a curve that goes through the point p1 at the time p2. If
p = q◦ψ, we must have q(t) = t0, so q = p2. The homomorphism ψ maps each
xi ∈ A to a polynomial in k[t]. I.e., for every i = 1, 2, . . . , n, ψ(xi) = xi(t) for
some xi(t) ∈ k[t]. Let F̃ : Ph(k[t]) → k[t] be the homomorphism that maps
dt to 1, and assume

ψ ◦ F = F̃ ◦ ψ∗.

Suppose for a moment that all the elements in Ph(k[t]) commute. In that
case,

ψ∗(dxi) = dψ(xi) =
dxi
dt
dt.

If we now apply F̃ to this element, we see that F̃ (ψ∗(dxi)) = dxi
dt
. This is an

element in k[t], which is a commutative ring, so even though Ph(k[t]) does
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not commute, F̃ (ψ∗(dxi)) = dxi
dt

for all i = 1, 2, . . . , n. Now let us see where
ψ ◦ F maps dxi:

ψ(F (dxi)) = ψ(fi)

= fi(t, x1(t), x2(t), . . . , xn(t)).

By the assumption that ψ ◦ F = F̃ ◦ ψ∗, we have

dxi
dt

= fi(t, x1(t), x2(t), . . . , xn(t))

for all i = 1, 2, . . . , n. Thus, ψ is a curve through the point p such that its
derivative is given by the vector field F . In other words, the vector field
F consists of tangent vectors in A that are tangent to the curve. However,
given a vector field F that depends on time, it is not necessarily the case
that there is a curve ψ such that ψ ◦ F = F̃ ◦ ψ∗. This is illustrated by the
following example:

Example 4.2.9. Let A = k[x, y] and

F : Ph(A⊗ k[t])→ A⊗ k[t]

be the vector field mapping dx to x, dy to y and dt to 1. A curve

ψ : A⊗ k[t]→ k[t]

such that ψ ◦ F = F̃ ◦ ψ∗ must then satisfy dx
dt

= x(t) and dy
dt

= y(t), where
ψ(x) = x(t) and ψ(y) = y(t). The only possibility is that x(t) = y(t) = et,
but et is not an element of k[t]. Thus there is no homomorphism ψ : A⊗k[t]→
k[t] such that ψ ◦ F = F̃ ◦ ψ∗. ♣

This example shows us that we do not have an existence theorem equiv-
alent to that of differential geometry. Hence, we do not have a theorem
corresponding to the Frobenius Theorem either.
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