
Monotone Regression
in high (and lower) dimensions

Solveig Engebretsen
Master’s Thesis, Spring 2016

Cover design by Martin Helsø

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Abstract
In this thesis, we first present an overview of monotone regression, both in the
classical setting and in the high dimensional setting. High dimensional data
means that the number of covariates, p, exceeds the number of observations, n.
It is often reasonable to assume a monotone relationship between a predictor
variable and the response, especially in medicine and biology. The monotone
regression methods for the high dimensional data setting that are considered are
the liso regression method and the monotone splines lasso regression method (to
our knowledge, the only two methods). Both these methods are special forms of
penalised regression. The performances of these two high dimensional methods
in the classical setting are studied and compared to the performances of existing
methods for monotone regression developed for the classical setting, known as
MonBoost, scam and scar. The two high dimensional methods work well also
in the classical setting, but they do not outperform the existing methods. The
two methods can still be useful in the classical setting, since they can be used
in situations where the monotonicity directions of the effects are not known, in
contrast to the existing methods and also perform automatic variable selection.
Furthermore, we investigate the robustness of the monotone splines lasso method
to the number of interior knots used to fit the monotone splines and find that it
is very robust. In addition, two new methods for fitting a partially linear model
where the non-linear covariates are assumed to have a monotone effect on the
response are developed. These two methods can be used in the setting where
p > n as well as in the classical setting. To our knowledge, no such methods
have been developed in the past. The first method, PLAMM-1, is a straight
forward extension of the monotone splines lasso method to the partially linear
setting. The second method developed, PLAMM-2, is a method with two penal-
ties, one on the linear parameters and one on the non-linear parameters. In this
last case, estimation has to be performed iteratively, and we prove convergence
of the iterative scheme. The estimation, selection and prediction performances
of the methods are investigated by simulation experiments in different settings.
Through the simulation experiments, the methods are shown to work well in both
the classical settings and in the high dimensional setting where the number of
observations is not too small. We also apply the partially linear monotone model
to a medical dataset where clinical covariates enter the linear part and genomic
covariates are assumed to have a monotone effect on the outcome.

i

Acknowledgments
First and most importantly, I want to thank my supervisor Ingrid K. Glad. Thank
you for your tremendous encouragement, support and optimism. Thanks for al-
ways taking time to meet with me for guidance and discussion and for introducing
me to this interesting field.

I would also like to thank the study hall Parameterrommet for great discuss-
ions, cups of tea, social events and group training classes.

In addition, I want to thank Sjur Reppe for providing the bone mineral data,
making it possible for me to try out the methods developed on a real data set.

I am very grateful to my family for always being there for me. A special thanks
to Andreas for being a great team player with your help, love and support.

iii

Contents
Abstract i

Acknowledgments iii

List of abbreviations viii

1 Introduction 1

2 Linear regression in higher dimensions 3
2.1 High dimensional data and penalised regression 3
2.2 Selection of the penalty parameter 4

2.2.1 Cross-validation . 5
2.3 Ridge regression . 6
2.4 Lasso regression . 6

2.4.1 Adaptive lasso . 8
2.4.2 Group lasso . 9
2.4.3 Cooperative lasso . 9

3 Monotone regression 11
3.1 Regression splines . 11
3.2 Monotone regression overview . 12

3.2.1 MonBoost . 13
3.2.2 Shape constrained additive models (Scam) 15
3.2.3 Shape constrained additive regression (Scar) 16

4 Monotone regression when p > n 18
4.1 Liso regression . 18
4.2 Monotone splines lasso regression 19
4.3 Simulation example in the high dimensional setting 22
4.4 Importance of the number of knots in monotone splines lasso . . . 29

5 Comparison of monotone methods when p < n 35
5.1 Variable selection and estimation in simulation experiments 36

5.1.1 Strong signal and independent covariates 36
5.1.2 Weak signal and dependent covariates 46

5.2 Prediction performance . 47
5.3 A situation where a linear model is not sufficient 52
5.4 Boston housing data . 55
5.5 Conclusion on the performance of monotone splines lasso 60

v

6 Partially linear monotone models 62
6.1 Fitting the partially linear model using monotone splines 65
6.2 PLAMM-1 . 66

6.2.1 Properties . 67
6.2.2 Adaptive scheme for PLAMM-1 67
6.2.3 Simulation experiment . 68

6.3 PLAMM-2 . 72
6.3.1 Convergence of PLAMM-2 73
6.3.2 Adaptive scheme for PLAMM-2 75
6.3.3 Simulation experiment . 76

6.4 Comparison with scam . 82
6.4.1 Prediction performance . 82

6.5 High dimensional setting . 86
6.5.1 Slightly simpler setting . 94

6.6 Conclusion on the performance of the methods 98
6.7 Linear or non-linear . 100
6.8 Illustration of the methods using bone mineral density data 102

6.8.1 Increased number of genes 111

7 Concluding remarks 116
7.1 Further work . 118

References 122

Appendices 123

A Robustness to the distribution of the design matrix 123

B Tables 134

C R-code for monotone splines lasso 142

D R-code for liso 147

E R-code for lasso 148

F R-code for lm, scam and scar 150

G R-code for PLAMM-1 and APLAMM-1 151

H R-code for PLAMM-2 and APLAMM-2 157

vi

List of abbreviations
1CTP Carboxy-terminal telopeptide of type 1 collagen.

Ad. lasso Adaptive lasso.

Ad. liso Adaptive liso.

Ad. MS-lasso Adaptive monotone splines lasso.

age Proportion of owner units built prior to 1940.

AGL Adaptive group lasso.

AIC Akaike information criterion.

APLAMM-1 Adaptive partially linear additive monotone method 1.

APLAMM-2 Adaptive partially linear additive monotone method 2.

BIC Bayesian information criterion.

BMD Bone mineral density.

BMI Body mass index.

crime Crime rate by town.

FP False positives.

GCV Generalised cross-validation.

GL Group lasso.

gMDL g-prior minimum description length.

indus Proportion of non-retail business acres per town, serves as a measure of
amount of industry.

LAND Linear and non-linear discoverer.

Lasso Least absolute shrinkage and selection operator.

Liso Lasso isotone.

MS-lasso Monotone splines lasso.

viii

MSE Mean squared error.

NOX Concentration of nitrogen oxides.

PE Prediction error.

PLAMM-1 Partially linear additive monotone method 1.

PLAMM-2 Partially linear additive monotone method 2.

PTH Parathyroid hormone values.

rad Index of accessibility to radial highways.

Scam Shape constrained additive models.

Scar Shape constrained additive regression.

SNR Signal to noise ratio.

tax The cost of public services.

TP True positives.

vitD Vitamin D.

zn Proportion of a town’s residential land zoned into lots greater than 25 000
square feet.

ix

1 Introduction
In this thesis, we work with methods for monotone regression. Especially in
biology, it is often reasonable to assume monotonicity. Methods for monotone
regression in both higher and lower dimensions are presented. Tutz and Leiten-
storfer (2007) write that "It is surprising that most of the literature on monotonic
regression focuses on the case of unidimensional covariate x and metrically scaled,
continuous response variable y". To our knowledge, not much work has been done
in the multidimensional setting, and we will try to give an overview of the meth-
ods available for monotonic regression in the multidimensional setting. We will
especially consider the methods developed by Tutz and Leitenstorfer (2007), Pya
and Wood (2014) and Chen and Samworth (2015). These are all methods de-
veloped for the classical regression setting, where the number of observations is
larger than the number of covariates. In the high dimensional data setting, we
will study the liso regression method by Fang and Meinshausen (2012) and the
monotone splines lasso regression method by Bergersen et al. (2014).

In our times, there is almost no limit to how much data we can measure and
store. Large data sets might have to be distributed on clusters of computers in
order to be processed and analysed, which asks for special care in the design
of statistical methods used. A special kind of large data sets are those usually
referred to as high dimensional data, which are characterised by the fact that the
number of parameters p is a lot greater than the number of observations n, so
p >> n. For such data, the problem is not necessarily the size and storage, but
the fact that most conventional methods do not give unique solutions when p > n.
We need regression methods that can analyse these high dimensional data. An
example of high dimensional data is genomic data, where gene expressions are
treated as possible explanatory variables for some disease. Another example from
astronomy is galaxy spectra with flux measurements at thousands of different
wavelengths which are used to explain a physical condition of the galaxies, for
instance redshift, as in Lee and Izbicki (2016).

Before we can go into the methods for monotone regression, we need to in-
troduce the theory and the methods for linear regression. In this thesis, we
will mostly consider penalisation methods for analysing high dimensional data.
We will especially consider the lasso penalty (Tibshirani, 1996) with variations.
These methods use a penalty on the parameter estimates to impose restrictions
so that the methods can be used in the high dimensional data setting. The
type of penalty used depends on the aim of the method, for instance preserving
monotonicity.

Additive penalisation methods have been developed, allowing for non-linear
effects in the high dimensional setting. In a recent paper, Bergersen et al. (2014)
developed a method for fitting a regression model where the effects are monotone
and non-linear. This is done by fitting functions that describe the effect of the
covariate on the response by monotone splines and using a proper penalty term

1

encouraging monotonicity. We will use this method throughout the thesis and
consider different properties. We study robustness to the number of interior knots
used to fit the monotone splines and whether or not the method is applicable in
the classical setting (p < n).

We also develop two new methods for fitting additive partially linear mod-
els. Additive partially linear models are models where some of the covariates
are assumed to have a linear effect on the response, and some are assumed to
have a non-linear effect on the response. We consider the special case where the
non-linear effects are assumed to be monotone, and use monotone splines to fit
the model. The first method we develop, PLAMM-1, is a straight forward ex-
tension of the monotone splines lasso method to the partially linear setting. The
second method, PLAMM-2, is an iterative procedure with two penalties – one
on the linear parameters and one on the non-linear parameters. We also prove
convergence of the iterative method.

The thesis is organised as follows: in section 2, basic theory and linear regress-
ion methods for high dimensional data are presented. In section 3, we consider
methods for fitting additive models and give an overview of existing methods for
monotone regression in the classical setting. In section 4, two methods for fitting
a monotone regression model in the high dimensional setting are described. These
methods are the liso method (Fang and Meinshausen, 2012) and the monotone
splines lasso method (Bergersen et al., 2014). To our knowledge, these are the only
two existing methods for performing monotone regression in the high dimensional
setting. The methods are also illustrated with a simulation example. We study
robustness of the monotone splines lasso to the number of interior knots used to fit
the estimated functions. In section 5, we evaluate and compare the performance
of the monotone regression methods in the low dimensional data case where
p < n. We also apply the methods to the Boston housing data, which is a data
set with house value and different explanatory variables. In section 6, we present
existing methods for additive partially linear models in the high dimensional data
setting and we develop two new methods for additive partially linear models
using monotone splines lasso, so that the effects of the non-linear covariates are
restricted to being monotone. The two methods are also tried out on a data
set with bone mineral density as response and clinical and genomic variables as
covariates.

2

2 Linear regression in higher dimensions
Before we can start with the monotone regression methods, we need to look into
the simple linear regression methods.

We consider observed data (x1, y1), (x2, y2), . . . , (xn, yn), where xi ∈ Rp, so p
is the number of parameters, and n is the number of observations. The standard
linear model is

Yi = β0 +

p∑
j=1

βjxij + εi (i = 1, . . . , n), (2.1)

where xij is the value of covariate j for the ith observation and εi, i = 1, . . . , n,
are assumed to be independent and identically distributed normal random vari-
ables with mean 0 and variance σ2. The parameters βj ∈ R are the regression
coefficients. Let y = (y1, y2, . . . , yn)′, β = (β0, β1, . . . , βp)

′, ε = (ε1, ε2, . . . , εn)′

and

X =

1 x11 . . . x1p

1 x21 . . . x2p
...

...
...

...
1 xn1 . . . xnp

 .

Then the linear model can also be written on matrix form as

Y = Xβ + ε.

To estimate the linear model, the standard approach is the method of ordinary
least squares. The ordinary least squares solution, β̂ββ, is given as the minimiser
of the residual sum of squares, so

β̂ββ = argminβββ(y −Xβββ)T(y −Xβββ).

Differentiating with respect to βββ, we see that the solution is given by

β̂ββ = (XTX)−1XTy,

when the matrix XTX is invertible. When p > n, which is the case with high
dimensional data, XTX is singular, so we can not use the ordinary least squares
estimates. We will in this section consider some of the statistical methods used
to fit this linear model in cases with high dimensional data.

2.1 High dimensional data and penalised regression
In high dimensional data, there are more parameters than observations, so p > n,
or even p >> n. Thus there are more unknown parameters than equations, and
the ordinary least squares method can no longer be used to fit the data to the
linear regression model. The minimiser of the residual sum of squares is no longer
unique when there are more parameters than observations.

3

The methods presented in this section can also be useful in the classical sett-
ing, to reduce the mean squared error. Including many covariates will often
give a high model complexity, and a large variance in the parameter estimates.
Leaving out relevant covariates will increase the bias. So there is a bias-variance
trade-off. We do not want the fitted model to be too close to the training data
(the data used to fit the model), because this will make the fitted model useless
for generalisation and prediction (Hastie et al. (2011), section 2.9). To prevent
this overfitting and/or to make the problem feasible in the high dimensional
setting, we have to eliminate some of the parameters by using a subset selection
method and/or use a complexity regularisation on the parameters. This will
lead to more bias, but less variance and might improve the predictions. Subset
selection methods retain a subset of the variables and discard the other. Since
this is a discrete process, subset selection methods can suffer from high variability.
Shrinkage methods, which shrink the size of the fitted parameters, do not suffer
as much from high variability as subset selection methods (Hastie et al. (2011),
section 3.4).

For an Lq regularisation (Vidaurre et al., 2013), the parameter constraint
||β||q < s for some s, where || · ||q is the Lq norm, is used. This constraint leads
to shrinkage of the estimates. Minimising the residual sum of squares with the
Lq regularisation is the same as considering the problem

β̂ = argminβ||y −Xβ||22 + λ||βββ||qq, (2.2)

where there is a one-to-one correspondence between s and λ. The parameter
λ is called the penalty parameter and it controls the level of regularisation. In
the classical setting where p < n, the solution will converge towards the least
squares solution as λ → 0. The larger λ, the closer to zero will the parameter
estimates be. Note that the intercept is not penalised, since that would make the
other parameter estimates dependent on the origin of y. Normally the data is
centered, if not, a non-penalised intercept is included in βββ. The data is normally
also standardised so that the penalty does not depend on the measurement scale
of the covariates.

For the case with L1 regularisation, some of the regression coefficients can be
set to exactly zero. This is due to the non-differentiability of the L1 norm at zero.
Hence L1 regularisation methods perform variable selection as well as shrinking
the estimates. This is illustrated in section 2.4.

2.2 Selection of the penalty parameter
A criterion is needed for selecting the optimal penalty parameter in for instance
equation (2.2). There are several approaches for estimating the optimal penalty
parameter. Two famous criteria for choosing the penalty parameter are AIC
(Akaike information criterion) and BIC (Bayesian information criterion). The

4

AIC value for our model with normal noise is given by (Hastie et al., 2011,
section 7.5)

AIC(λ) =
1

n

n∑
i=1

(yi − ŷi)2 + 2
df(λ)

n
σ̂2,

where ŷi is the predicted value of yi using the fitted model considered, df(λ) is
the degrees of freedom for the fitted model with penalty parameter λ, n is the
number of observations and σ̂ is an estimate of the variance of ε. The higher
complexity of the model, the larger will the degrees of freedom for the model be.

The BIC value for our model with normally distributed noise is given by
(Hastie et al., 2011, section 7.7)

BIC(λ) =
1

n

n∑
i=1

(yi − ŷi)2 +
log(n)

n
df(λ)σ̂2.

The AIC criterion and the BIC criterion both work as a balance between good fit
(low value of the first term) and complexity (the more complexity, the higher value
of the last term). The model chosen by the AIC criterion or the BIC criterion
is the model with the smallest AIC or BIC value, respectively. Typically, lower
complexity leads to less variance, but more modelling bias, and higher complexity
leads to more variance, but less modelling bias. So AIC and BIC try to find the
optimal balance between bias and variance. Another popular method for selecting
the optimal penalty parameter is the method of cross-validation, which will be
treated in the next section.

2.2.1 Cross-validation

One commonly used approach for selecting the penalty parameter is the method
of cross-validation. Cross-validation is a method for estimating the prediction
error of a model. In a K-fold cross-validation scheme, the data is split randomly
into K equally sized (or roughly equal) folds. For each value of λ (or for each
model considered), the kth fold is left out, and the model is fitted by using the
remaining data in the other K − 1 folds. This fitted model is used to predict
the response for the observations in fold k. This is repeated for k = 1, . . . , K.
Let κ(k) be the set of indices for observations in fold k. Then an estimate of
the prediction error for each value of λ, PE(λ), is given by (Hastie et al., 2011,
section 7.10)

PE(λ) =
K∑
k=1

∑
i∈κ(k)

(yi − ŷi)2,

where ŷi is the predicted value of yi. This can be used as a model selection
criterion. For each model considered (each value of λ), we calculate the cross-
validated prediction error, and then we choose the model (λ) with the smallest
value of the estimated prediction error.

5

2.3 Ridge regression
The ridge method is a shrinkage method for fitting the linear regression model,
applicable also in a high dimensional data setting. Ridge regression minimises
the residual sum of squares with an L2 penalisation. So the estimated coefficients
are the solution to equation (2.2) with q = 2 (Hastie et al. (2011), section 3.4)

β̂ridge = argminβ||y −Xβ||22 + λ

p∑
j=1

β2
j .

The penalty parameter λ can be chosen by for instance the method of cross-
validation. The ridge method shrinks the coefficients with an amount controlled
by λ, but it does not perform variable selection (no coefficients are estimated to
exactly zero). This makes it harder to see which coefficients are important for the
response, and it also makes it harder to interpret the final model. However, the
ridge regression method is better at prediction than the lasso regression method
(see section 2.4) in some situations, for instance when the covariates are correlated
(Vidaurre et al., 2013).

2.4 Lasso regression
A different method for fitting the linear regression model which can be used in
the high dimensional setting is the least absolute shrinkage and selection operator
(lasso) (Tibshirani, 1996). Lasso is a method which minimises the residual sum
of squares, subject to an L1 constraint. So we want to solve problem (2.2) with
q = 1, that is

β̂ββlasso = argminβββ||y −Xβ||22,

under the restriction
p∑
j=1

|βj| ≤ s.

The corresponding Lagrangian is

β̂ββlasso = argminβββ||y −Xβ||22 + λ

p∑
j=1

|βj|, (2.3)

where there is a one-to-one correspondence between s and λ. The penalty para-
meter λ is often chosen by a cross-validation method to minimise the prediction
error.

The lasso method is based on an assumption of sparsity. That is, it assumes
that a model with few covariates is more realistic than a model which includes
small contributions of all the variables. This means that only a few variables are
important. Since the lasso method uses an L1 regularisation, it both shrinks the

6

Figure 1: Sketch of contour curves for the residual sum of squares, with the
constraint region for a) the L1 penalisation (corresponding to lasso regression)
and b) the L2 penalisation (corresponding to ridge regression). The figure is from
Tibshirani (1996).

parameter estimates and performs variable selection. The fact that lasso performs
variable selection makes it a very attractive method, since the traditional methods
for variable selection are not satisfying in the high dimensional setting. Forward
stepwise regression is based on univariate analysis and is thus very biased, and
best subset selection methods are too computationally demanding when there are
many parameters (Vidaurre et al., 2013). As mentioned in section 2.3, the ridge
method does not perform variable selection. This is also illustrated in Figure 1. In
Figure 1, a two-dimensional situation is considered, so there are two parameters,
β1 and β2. The residual sum of squares has elliptical contours centered at the
ordinary least squares estimate (which minimises the residual sum of squares).
With an L1 penalty, the constraint region for the parameters is a diamond with
corners at the origin, given by |β1|+ |β2| ≤ s. This is due to the fact that the L1

penalty is not differentiable at the origin. If the contour curve for the residual
sum of squares intersects with the constraint region at a corner, variable selection
is obtained. For the L2 penalty, the constraint region for the parameters is a disc
given by β2

1 + β2
2 ≤ s. The disc does not have corners, so variable selection is not

obtained (Hastie et al., 2011, section 3.4).
In Zou and Hastie (2005), three limitations of the lasso method are discussed.

7

The first one is that in the situation where p > n, the lasso method selects at
most n variables. This is clearly a limitation, since there might be more than
n important variables. Since ridge does not leave out any variables, it clearly
does not have this limitation. The second limitation is that if we have groups of
covariates being highly correlated, the lasso tends to select any one of these co-
variates and leave the rest out. Again, this is avoided with ridge regression, since
ridge regression does not perform variable selection. The parameter estimates of
correlated variables are shrunken towards each other with ridge regression (Hastie
et al. (2011), section 3.4). The last one is that when the data are correlated, ridge
regression often performs better than lasso regression in prediction, as also noted
in section 2.3. In the following sections, improvements and variations of the lasso
penalty are considered.

2.4.1 Adaptive lasso

The optimal λ for the lasso method is often found by cross-validation to optimise
the prediction error. The λ which is optimal for prediction error is often too
low for the purpose of correct variable selection (that is, selecting the true un-
derlying model). This may cause the lasso method to select too many variables
(Bühlmann and van de Geer (2013), section 2.5). The adaptive lasso method
(Zou, 2006) is an improvement of the lasso method, which attempts to correct
for the overestimation, using a two-stage approach. Let β̂ββinit be an initial guess of
the parameter values, typically the parameter estimates from a lasso estimation,
that is, the solution to equation (2.3). Then, as in Bühlmann and van de Geer
(2013) (section 2.8), the adaptive lasso estimates, β̂ββadapt, are given by

β̂ββadapt = argminβββ||y −Xβββ||22 + λ

p∑
j=1

|βj|
|β̂init,j|

,

where for instance cross-validation can be used to estimate the optimal λ for
this problem. When β̂init,j = 0, 1/|β̂init,j| will be infinitely large, so we have the
property

β̂init,j = 0⇒ β̂adapt,j = 0.

Hence there are never more parameters in the adaptive lasso than in the one-stage
lasso approach. Furthermore, if the initial parameter value, β̂init,j, is small, then
1/|β̂init,j| will be large, so the penalty will be large. Similarly, if β̂init,j is large, the
penalty will be small. Since a large β̂init,j indicates that parameter number j is of
importance (keep in mind that the covariates are standardised), the parameters
are penalised according to the relative importance from the initial estimation,
and the method can be used to reduce the number of irrelevant variables.

8

2.4.2 Group lasso

In some cases, some of the covariates in the linear model might be grouped,
so that the parameter vector βββ contains grouped parameters. This can for in-
stance happen when one of the explanatory variables is a factor. The index set
{1, . . . , p} of βββ is partitioned into groups G1,G2, . . . ,Gk, where k is the number
of groups/factors. If covariate number j is just a simple numerical covariate,
then its group will contain only one parameter. Let |Gi| denote the number of
parameters in group i, and let

βββGj
= {βr; r ∈ Gj}.

When the variables are grouped, we often do not want one of the variables to be
taken out of the model, while the other variables are kept. So we have to use
a method which ensures that either all the parameters within a group are set
to zero, or that all are non-zero. This is done by using the group lasso penalty
(Yuan and Lin, 2006)

k∑
j=1

mj||βββGj
||2 ≤ s,

where mj is a weight chosen to balance group sizes, typically mj =
√
|Gj|

(Bühlmann and van de Geer (2013), section 4.2). The parameter estimates are
then found by

β̂ββ = argminβββ||y −Xβββ||22 + λ
k∑
j=1

mj||βββGj
||2,

where again there is a one-to-one correspondence between s and λ. Depending
on the size of the regularisation parameter, the estimated coefficients will satisfy
either βββGj

= 0 in all components, or that all components in βββGj
6= 0. This is due

to the non-differentiability of the square root function at the origin (note that
the penalty term is a square root function of the parameters).

If all the groups consist of singletons (so that the covariates are not really
grouped), then the group lasso penalty is equal to the L1 penalty, and the problem
is reduced to the same problem as in equation (2.3).

2.4.3 Cooperative lasso

The cooperative lasso is an enhancement of the group lasso, which can be used
to obtain sign-coherent parameter estimates within a group when fitting a linear
regression model. To obtain the sign-coherent group lasso variable selection, the
cooperative lasso penalty (Chiquet et al., 2012) is used

||βββ||coop =
k∑
j=1

||βββ+
Gj
||2 + ||βββ−Gj

||2,

9

where βββ+
Gj

= max(βββGj
, 0) and βββ−Gj

= max(−βββGj
, 0). The parameter estimates are

then found by
β̂ββcoop = argminβββ||y −Xβββ||22 + λ||βββ||coop,

where, as before, λ controls the regularity. This penalisation scheme favours
sign-coherent solutions, in the sense that it penalises more on sign-incoherent
solutions. When the penalty parameter goes to zero, sign-coherence is no longer
guaranteed (Chiquet et al., 2012). So if the regularisation parameter is small, the
solution might be sign-incoherent.

The cooperative penalty was originally proposed for multi-task learning with
related networks with Gaussian Graphical Models (Chiquet et al., 2011). When
genes interact, there is a statistical dependence between the expressions of the
genes. Gaussian Graphical Models can be used to model multiple dependence
patterns. An example of a related network is gene interactions from data mea-
sured on slightly different stem cells (wild and mutant).

Another application of the cooperative lasso that is mentioned in Chiquet
et al. (2012) is when there are groups of ordered categorical variables. To ob-
tain monotonicity, the variables can be given quantitative values reflecting the
order. However, there might not be a reasonable/known numerical difference be-
tween the levels. The cooperative lasso can be used in this situation by biasing
the effects of the levels on the response variable towards a monotone solution,
without having to quantify the levels. Another application is when there is redun-
dancy in the variables and sign-coherence is expected. One example is redundant
noisy measurements of the same unobserved variable. Then sign-coherence is
expected, since all the measurements should be positively correlated with the un-
observed variable. Sign-coherence is also expected when predicting closely related
responses.

The cooperative lasso penalty can also be used to obtain a monotone spline,
and will be used later in the monotone splines lasso regression method.

10

3 Monotone regression
Instead of the linear model (2.1), the more general additive model (Hastie and
Tibshirani, 1986) is considered

Yi = β0 +

p∑
j=1

gj(xij) + εi (i = 1, . . . , n), (3.1)

where the gjs are unknown smooth functions to be estimated. A natural approach
is to fit the functions gj by splines, so that each gj is a linear combination of spline
basis functions. This brings us back to a linear problem, which there are methods
for solving. In the setting where there are more parameters than observations, a
group lasso procedure can be used, where for each covariate, there is a group of
spline basis function coefficients used to represent gj. This is done in for instance
Huang et al. (2010).

3.1 Regression splines
A spline is a function consisting of piecewise polynomials joined at points called
knots. These piecewise polynomials are the spline basis functions. Let m be the
number of spline basis functions, and let sj(x), j = 1, . . . ,m, denote the spline
basis functions. Then a spline is given by

g(x) =
m∑
j=1

βjsj(x),

where βj are the basis coefficients, and the spline is a linear combination of the
basis functions. If the spline basis functions are polynomials of degree l, then the
spline has l−1 continuous derivatives at the knots (Hastie et al., 2011, section 5.2).
If the spline has K knots, then the number of basis functions needed to fit the
spline is m = K + l (Ramsay, 1988). Examples of splines are piecewise constant
functions, piecewise linear functions which are continuous at the knots, piecewise
quadratic functions which are continuous at the knots and have continuous first
derivatives at the knots and so on. One of the most common spline bases is the
B-spline basis. In this thesis, we will mostly work with I-splines, see section 4.2.

Splines are often used to fit a general function. Fitting a spline means finding
the βjs which give the best fit to the function. To fit a spline, we need to select
the order of the spline, the number of knots and the placement of the knots. The
knots are often placed at the quantiles of the variable. In the statistical setting,
the function we want to fit is normally unknown, but we have some observations
which we use to fit the spline function. Then βj could be found as the least
squares solution.

11

3.2 Monotone regression overview
It is often reasonable to assume that the relationship between the explanatory
variable and the response is monotonically increasing or decreasing. For example,
it is common to assume that the relationship between some measure of cognitive
performance of children and age is a monotonically increasing function, and it is
not plausible that this relationship is linear (Bollaerts et al., 2006). In medicine,
we often have monotone relationships between two variables, for example between
the amount of exercise and serum cholesterol level (Schell and Singh, 1997).

Many of the methods developed for monotone regression are developed for
the univariate case, with only one predictor variable. Barlow and Brunk (1972)
use isotonic step functions to fit regression models in the one dimensional setting.
Dette et al. (2006) also develop a method for unidimensional monotone regression.
There the inverse of the monotone regression function is estimated first, and
then inverted to find the estimate of the monotone regression function. In the
multidimensional setting, the inverse would not be unique, and this method is
thus not trivial to generalise to the multidimensional setting. He and Shi (1998)
develop a method for univariate monotone regression using monotone B-spline
smoothing and Meyer (2008) develops a method for shape-restricted regression
splines using I-splines, for the one-dimensional case.

It is more challenging, but of course more relevant, to consider multiple re-
gression, as we rarely have only one predictor variable. Ramsay (1988) develops
a method for monotone regression using I-splines, which can also be used in the
multivariate setting. Bacchetti (1989) developed a method for additive isotonic
regression. In Bacchetti (1989), each function is fitted by an isotonic step func-
tion, and the method is based on an iterative cyclic optimisation scheme starting
with an initial guess for all the functions, and then iteratively updating cyclically
one by one keeping the other functions at their currently best guess and min-
imising the loss with respect to the current function by a unidimensional isotonic
regression method. This is repeated until convergence is obtained. Tutz and Leit-
enstorfer (2007) use the ideas of Ramsay (1988) in combination with monotone
boosting. Pya and Wood (2014) use P-splines to fit a regression model where
some of the functions are fit by functions with shape constraints, and the rest
have no shape constraint. Chen and Samworth (2015) also develop a method for
regression with different shape constraints on the functions. The method in Chen
and Samworth (2015) is based on using different basis functions with different
constraints on the parameters, depending on what shape restriction is imposed.
Meyer (2013) developed a method very similar to the method in Chen and Sam-
worth (2015). All these methods are developed for lower dimensional regression.
In the high dimensional data setting, with p > n, we will consider the only two
available methods to our knowledge, namely the liso regression method (Fang
and Meinshausen, 2012) and the monotone splines lasso (Bergersen et al., 2014).
This is done in section 4. In this section, the monotone regression methods de-

12

veloped by Tutz and Leitenstorfer (2007), Pya and Wood (2014) and Chen and
Samworth (2015) are considered.

3.2.1 MonBoost

The method developed in Tutz and Leitenstorfer (2007) is called the MonBoost
method. MonBoost estimates the model given in equation (3.1), where some of
the functions gj are restricted to being monotone. Tutz and Leitenstorfer (2007)
only consider monotonically increasing functions, but it is easy to see how the
algorithm can also be used for monotonically decreasing functions. One could
also have a mixture of the two.

Let gj be approximated by a basis expansion, where the basis functions are
the I-spline basis functions of order two, given on closed form in section 4.2.
These are monotonically increasing basis functions. A sufficient condition for
monotonicity is then that all the basis coefficients are of the same sign. Since we
only consider monotonically increasing functions, we want a solution where all
the basis coefficients are nonnegative. The basis expansion is given by

g̃j(x) =
m∑
k=1

βjkI
(l)
k (x),

where g̃j(x) is the approximation of gj. In Ramsay (1988) and Bergersen et al.
(2014), a small number of knots is used. In MonBoost, many interior knots are
used, and boosting is used to avoid overfitting. In Tutz and Leitenstorfer (2007),
sigmoidal basis functions are also an option, in addition to the I-spline basis
functions.

The concept of boosting is to combine many weak learners (in classification,
a weak learner is one that is only slightly better than random guessing) to obtain
a good predictor. Componentwise boosting is used, so that each weak learner
only changes the contribution of one variable. Here, the contribution of one basis
function is updated in each iteration. The more iterations, the closer will the
model be fitted to the training data. Thus, we need a stopping criterion for
determining when we should stop. This stopping criterion should estimate when
there is an optimal balance between a good fit and complexity. In MonBoost,
both AIC and the g-prior minimum description length (gMDL) are implemented.
gMDL is a hybrid between AIC and BIC, see Tutz and Leitenstorfer (2007) or
Bühlmann and Yu (2006) for more details. It is also possible to regularise by
using a shrinkage parameter which shrinks the learner for each iteration. In
MonBoost, this is done by using a ridge regression estimate as the weak learner,
with a quite large value of λ. We will give the algorithm for MonBoost as in Tutz
and Leitenstorfer (2007) in the one dimensional case. Remember that

g̃j(x) =
m∑
k=1

βjkI
(l)
k (x).

13

Let M denote the number of iterations. The algorithm is given in Algorithm 1,
where y is the vector with observed responses, and x is the vector with observa-
tions of the predictor. Since the estimated functions are constructed by ensuring

Algorithm 1 MonBoost
Initialise:

Standardise y to have mean zero, so µ̂µµ(0) = (ȳ, . . . , ȳ).
Iteration:

for l=1 to M do
u(l) = y − µ̂µµ(l−1) . Compute the current residuals
for k=1 to m do

Compute the ridge estimators β̂k with
tuning parameter λ for the model

u(l) = βkIk(x) + εεε.

end for
From the subset of components that fulfil the constraint
β̂

(l)
k = β̂

(l−1)
k + β̂k ≥ 0, choose the component γ̂(l) which

minimises ||u(l) − β̂kIk(x)||2.
if β̂(l)

k ≤ 0 for all k then
stop iteration.

else
γ̂(l) = k.

end if
Set

β̂
(l)
k =

 β̂
(l−1)
k + β̂k, if j = γ̂(l),

β̂
(l−1)
k , otherwise,

and
µ̂µµ(l) = µ̂µµ(l−1) + β̂γ̂(l)Iγ̂(l)(x).

end for

that all the estimated parameters are positive, the estimated function will ne-
cessarily be monotone. If there are no shape constraints on the function, we do
not need to consider only the subset of positive estimated parameters in the al-
gorithm. If the function is monotonically decreasing, only the subset of negative
estimated parameters is considered. The method is easily extended to the multi-
variate setting. Instead of only considering the m basis functions as candidates
for update in the algorithm, all p sets of m basis functions are considered. An
R-implementation of this algorithm is available, but it does not have the option
of a monotonically decreasing function.

14

In Tutz and Leitenstorfer (2007), they only consider applications in the classi-
cal setting. However, the algorithm would also work when p > n. There might be
a problem with the computational aspect, in that one would need many iterations
before obtaining a good fit.

3.2.2 Shape constrained additive models (Scam)

The method developed in Pya and Wood (2014) estimates the model given in
equation (3.1), where the functions have different optional shape constraints. The
model is fitted by using P-splines. P-splines are B-splines with a difference penalty
on adjacent B-spline coefficients. See Eilers and Marx (1996) for more details on
P-splines. The shape constraints on the functions have to be known a priori to use
this method. Among these constraints are the linear, monotonically increasing
and monotonically decreasing. Consider first the one dimensional setting, where

Y = g(x) + ε.

The function g(x) is approximated by a B-spline. Let Bk denote the spline basis
functions and γk denote the basis coefficients. Then we have

g̃(x) =
m∑
k=1

γkBk(x),

where m is the number of basis functions, and g̃ is the spline approximation of
g. A sufficient condition for the function g̃ to be monotonically increasing is that
γk ≥ γk−1. A reparametrisation is used, so that

γγγ = ΣΣΣβ̃̃β̃β,

where βββ = (β1, . . . , βm)′, β̃̃β̃β = (β1, exp (β2), . . . , exp (βm))′ and ΣΣΣ is such that
Σij = 0 if i < j and Σij = 1 if i ≥ j. Then this reparametrisation ensures that
the fitted function is monotonically increasing. Let Z denote the matrix with the
x observations represented in the B-spline basis. Then we have

g̃(x) = ZΣΣΣβ̃̃β̃β.

The reparametrisations necessary for other shape constraints are listed in Table
1 in Pya and Wood (2014).

To control the wiggliness of g̃(x), Pya and Wood (2014) introduce a penalty
term, penalising the squared differences between adjacent βk. The penalty is
given as ||Dβββ||22, where D is such that all elements are zero, except from Di,i+1 =
−Di,i+2 = 1 for i = 1, . . . ,m − 2. Note that the penalty is on the βββ and not on
the β̃̃β̃β.

In the multidimensional setting, it is assumed that all the functions have
mean zero, for unique identification of the functions. Let each shape constrained

15

function be represented by a model matrix on the form g̃j(xj) = ZjΣΣΣjβ̃̃β̃βj = MMM jβ̃̃β̃βj,
where xj are the observed values of covariate j. Let M denote the matrix with all
the Mj and β̃̃β̃β the vector with all the β̃̃β̃βj. If there are in addition linear covariates,
the design matrix with the linear covariates and the linear parameters are also
included in M and the parameter vector β̃̃β̃β. There are no penalties on the linear
parameters. In a similar manner, functions with no shape constraints can also be
added to the model, given as B-spline approximations, so that we have a design
matrix with the observations represented in the B-spline basis and a parameter
vector for the covariates with no shape constraints. The penalty term is on the
form βββTSλβββ, where Sλ =

∑p
j=1 λjSj and Sj = DT

j Dj. The parameters λj are
smoothing parameters. Given the λj, the solution, β̂ββ, is given as the minimiser
of

β̂ββ = argminβββ||y −Mβ̃̃β̃β||22 + βββTSλβββ.

This is solved by a Newton-Raphson like scheme. The smoothing parameters λj
are estimated by the AIC criterion or the generalised cross-validation (GCV). See
Pya and Wood (2014) for the algorithm for solving the problem and details on
the GCV.

This scheme is implemented in the R-package scam, and we will refer to this
method as scam.

3.2.3 Shape constrained additive regression (Scar)

The method developed in Chen and Samworth (2015) also estimates the model
in equation (3.1), where each function gj is assumed to satisfy one out of nine
possible shape constraints. It is assumed that it is a priori known which shape
constraint each function satisfies. Among these nine constraints are the linear
shape constraint, monotonically increasing and monotonically decreasing. A ta-
ble with the different shape constraints available and their label is given in Table
1. As before, all the functions are assumed to have mean zero, for unique identi-
fication of the functions.

Assume that the first d1 parameters have linear effects, and that each of the
remaining covariates belongs to one of the labels 2-9 in Table 1. Denote the label
of covariate j by lj. Let X be the design matrix of the observations, and let X(i)j

be the corresponding order statistics. Let s0j(xj) = xj for j = 1, . . . , d1. Then
let

sij =

I(X(i),j ≤ xj)− I(X(i),j ≤ 0), if lj = 2,
I(xj ≤ X(i),j)− I(0 < X(i),j), if lj = 3,
(xj −X(i),j)I(X(i),j ≤ xj) + X(i),jI(X(i),j ≤ 0), if lj = 4 or lj = 5,
(X(i),j − xj)I(xj ≤ X(i),j)−X(i),jI(0 ≤ X(i),j), if lj = 6,
(X(i),j − xj)I(X(i),j ≤ xj)−X(i),jI(X(i),j ≤ 0), if lj = 7 or lj = 9,
(xj −X(i),j)I(xj ≤ X(i),j) + X(i),jI(0 ≤ X(i),j), if lj = 8,

16

Shape constraint Label Shape constraint Label
Linear 1 Monotone increasing 2
Monotone decreasing 3 Convex 4
Convex increasing 5 Convex decreasing 6
Concave 7 Concave increasing 8
Concave decreasing 9

Table 1: Shape constraints supported by the scar method from Chen and Sam-
worth (2015).

where I is the indicator function. The functions sij are the basis functions. As is
seen from the basis functions, the fitted monotone functions will be step functions.
Then introduce the vector of weights, w, as

w = (w00, . . . , w0d1 , w1(d1+1), . . . , wn(d1+1), . . . , w1p, . . . , wnp)
′.

These weights satisfy{
wij ≥ 0, for every i = 1, . . . , n and every j with lj ∈ {2, 3, 5, 6, 8, 9},
wij ≥ 0, for every i = 2, . . . , n and every j with lj ∈ {4, 7}.

The solution is given by the w minimising

ŵ = argminw||y − (w00 +

d1∑
j=1

w0js0j(xj) +

p∑
j=(d1+1)

n∑
i=1

wijsij(xj))||22,

where y is the observed response and xj are the observations of covariate j. The
algorithm for solving the problem is given in Chen and Samworth (2015). It is
implemented in the R-package scar, and we will refer to this method as scar.

17

4 Monotone regression when p > n

In this section we present and work with methods for monotone regression in
the high dimensional data setting. The methods that are considered are the
liso method and the monotone splines lasso method. A simulation experiment is
included for illustration of the methods. In addition, we study the robustness of
the monotone splines lasso method to the number of interior knots used.

4.1 Liso regression
The most common method for modelling monotone relationships is to use isotonic
regression, which produces step functions instead of smooth functions. For high
dimensional data, there has been developed a method, lasso isotone (liso), which
combines isotonic regression with lasso. It is defined as the minimisation of the
liso loss, Lλ (Fang and Meinshausen, 2012), with respect to (g1, g2, . . . , gp). The
liso loss Lλ is given by

Lλ(β0, g1, . . . , gp) =
1

2
||y − β0 −

p∑
j=1

gj(X
(j))||22 + λ

p∑
j=1

∆(gj),

where X(j) is the jth column of X, and the gjs are bounded, univariate and
monotonically increasing functions. If gj is monotonically decreasing, the same
method/algorithm is used, but with reversed sign on the observed covariates.
The ∆(gj) denotes the total variation in gj

∆(gj) = sup
x∈R

gj(x)− inf
x∈R

gj(x).

The residual error only considers the value of gj at the observed points. Thus
for optimality, the bounds for gj should be at the extremal observed value of the
covariate. Outside the interval between the smallest and the largest observed
value of the covariate, the function should be flat. Any interpolation function
between the points minimising Lλ will be an optimal solution. Therefore, for
simplicity, right-continuous step functions are normally used, with knots at the
observation points. To perform the fitting of the liso method, we need to know a
priori if the covariates are monotonically increasing or monotonically decreasing.
The liso method can be improved by an adaptive procedure similar to what is
done in section 2.4.1. This improved method is called adaptive liso, and it can
be used without prior knowledge about the monotonicity directions of the func-
tions. So the adaptive liso has the advantage over the lower dimensional methods
for monotone regression that it does not need to be provided the monotonicity
directions. Let ĝinit

j for j = 1, . . . , p be initial liso fits for the functions. Let then

wj =

{
∞, if ∆ĝinit

j = 0,
1

∆ĝinit
j
, otherwise,

18

for j = 1, . . . , p. The adaptive liso fit is then given by

(ĝ1, ĝ2, . . . , ĝp) = argmin(g1,g2,...,gp)

1

2
||y − β0 −

p∑
j=1

gj(X
(j))||22 + λ

p∑
j=1

wj∆(gj).

Even though the adaptive liso does not have to be provided the monotonicity
directions, it does have the disadvantage of not guaranteeing a monotone fit, but
it shrinks the estimated functions towards monotone functions.

4.2 Monotone splines lasso regression
The monotone splines lasso method is a recently developed method for monotone
regression in high dimensions by Bergersen et al. (2014). With this method, the
fitted functions are smooth monotone functions. In applications, it is often more
reasonable to assume that the true underlying function is smooth (rather than
a step function as in liso). To apply the monotone splines lasso method, the
monotonicity directions do not need to be known a priori. Consider again the
model in equation (3.1), and assume that the functions gj can be approximated
by m spline basis functions of order l, so that

g̃j(x) =
m∑
k=1

βjkI
(l)
k (x),

where I(l)
k are the basis functions, βjk, k = 1, . . . ,m, are the basis coefficients

for covariate j in the spline basis and g̃j is a spline approximation of gj. If
there is no relationship between the response y and covariate j, then βjk = 0
for k = 1, 2, . . . ,m. The spline basis functions used are the integrated spline ba-
sis functions, I-spline basis functions. I-splines are integrals of M-splines, where
M-splines are positive splines. Since the integral of a positive function is monoton-
ically increasing, this ensures that the I-spline basis functions are monotonically
increasing. This again means that since the I-spline basis functions are mono-
tonically increasing, g̃j will be monotone as long as for each j, all the coefficients
βjk, k = 1, . . . ,m, have the same sign. So βjk, k = 1, 2, . . . ,m, are either all
nonnegative, all nonpositive or all zero.

The covariates are assumed to be transformed to [0, 1] (without loss of gener-
ality). Define the knot sequence 0 = t1 = t2 = . . . = tl < . . . < tl+K+1 = . . . =
tK+2l = 1. K is the number of internal knots, placed evenly at the quantiles of
the data. As also noted in section 3.1, the order, l, controls the continuity of the
fitted spline for each covariate. If l = 1, then the fitted function is continuous at
the internal knots. If l = 2, then the fitted function is continuous at the internal
knots, and has continuous first derivatives at the internal knots (Ramsay, 1988).
The number of spline basis functions needed to fit the function, m, is K + l. The

19

I-spline basis functions of order l = 2 are given by (Tutz and Leitenstorfer, 2007)

I2
k(x) =

0, if x ≤ tk,

(x−tk)2

(tk+1−tk)(tk+2−tk)
, if tk < x ≤ tk+1,

1− (tk+2−x)2

(tk+2−tk)(tk+2−tk+1)
, if tk+1 < x ≤ tk+2,

1, if x > tk+2.

We will use these I-spline basis functions of order two. The I-spline basis func-
tions of order two are plotted in Figure 2, where six interior knots are used,
equidistantly placed in [0,1]. As in Bergersen et al. (2014), the I-spline basis
functions are centered so that E[g̃j(x)] = 0, to ensure unique identification of the
functions. Let Z = (Z1, . . . ,Zp) be the n× pm design matrix with the covariates
represented in the I-spline basis, where Zj is the n×m design matrix for covariate
j represented in the I-spline basis. Let βββ be the corresponding vector of basis
coefficients. Then consider the minimisation problem

β̂ββ = argminβββ||y − Zβββ||22 + λ||βββ||coop,

where λ controls the regularisation as before, and a cooperative lasso penalty is
used to ensure that the estimated coefficients for each covariate are sign-coherent.
In Bergersen et al. (2014), λ is chosen by cross-validation. The estimated function
with the monotone splines lasso method is then

ˆ̃gj(x) =
m∑
k=1

β̂jkI
(l)
k (x).

Since the cooperative penalty has the variable selection property, the monotone
splines lasso method can perform variable selection. Then the whole group of
parameters for covariate j will be set to zero, so β̂jk = 0 for k = 1, . . . ,m. If the
covariate j is selected by the method, all the parameters within one group will
be nonnegative or nonpositive, as long as the penalty parameter is large enough
(see section 2.4.3).

The monotone splines lasso can also be improved by an adaptive procedure
in a similar way as described in section 2.4.1. This improved method is called
adaptive monotone splines lasso. Let β̂ββ

init
j be the initial fit for the basis coefficients

for covariate j, for j = 1, . . . , p. The adaptive monotone splines lasso estimates
are then given by

β̂ββ = argminβββ||y − Zβββ||22 + λ

p∑
j=1

wj(||βββ+
j ||2 + ||βββ−j ||2),

where βββj are the m basis coefficients corresponding to covariate j, and

wj =

{
∞, if ||β̂ββ

init
j ||2 = 0,

1

||β̂ββinit
j ||2

, otherwise.

20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

I2

Figure 2: I-spline basis functions of order two with six interior knots placed
equidistantly in [0,1].

21

4.3 Simulation example in the high dimensional setting
To demonstrate how the monotone regression methods work in the high dimen-
sional setting, we perform a simulation experiment similar to the simulation ex-
periment in Bergersen et al. (2014). There are n observations and p covariates.

We draw random variables x = (x11, x12, . . . , x1n, . . . , xp1, . . . , xpn), where the
xij are drawn from a standard normal distribution truncated to [0, 1].

The purpose of the simulation experiment is to compare estimation and vari-
able selection for different methods. As in Bergersen et al. (2014), the methods
considered are the monotone splines lasso, the adaptive monotone splines lasso,
the adaptive liso, lasso and the adaptive lasso. Bergersen et al. (2014) also looked
at BS-lasso, which is an adaptive group lasso method using B-splines, see Huang
et al. (2010). However, we do not consider this method in this thesis, since we
will only work with monotone regression methods.

For the monotone splines lasso and the adaptive monotone splines lasso, we
use the R-packagemslasso developed by Bergersen as described in Bergersen et al.
(2014). Six evenly distributed internal knots are used, placed at the quantiles of
the covariates. For the adaptive liso, we use the R-package scoop. For the lasso
and the adaptive lasso, we use the R-package glmnet. For all the methods, a 10-
fold cross-validation scheme is used to find the optimal penalisation parameter.

The goals of these methods are different. The monotone splines lasso method
and the liso method fit general monotone functions. Monotone splines lasso does
this by fitting smooth functions and liso does this by fitting step functions. Lasso
fits linear functions. All these methods are developed for high dimensional data.

As in Bergersen et al. (2014), the following functions are considered

g1(x) = − expx2,

g2(x) = − log(x+ 0.1),

g3(x) = 2 tanh(20x2) + 0.5 exp(x3),

and
g4(x) =

2 exp(10x− 5)

1 + exp(10x− 5)
.

Then let

yi = g1(xi1) + g2(xi2) + g3(xi3) + g4(xi4) + εi,

where εi ∼ N(0, σ2), and σ is chosen to control the signal to noise ratio (SNR),
so σ = sd(g(XA))/SNR, where g(XA) =

∑4
j=1 gj(xij), and A denotes the set of

true (active) covariates. sd is the standard deviation. The functions are centered
since the monotone splines lasso method and the liso method assume that the
expected values of the functions are zero. Let n = 50 and p = 1000, so that there
are 996 noise covariates.

22

We simulate 100 times, and if we get a non-monotonic fit for monotone splines
lasso (too small regularisation parameter, see section 2.4.3), the results for this
one simulation are discarded. The ratio of the number of times each true covariate
is selected, the mean number of true covariates selected (true positives, TP),
the mean number of false covariates selected (false positives, FP) and the mean
squared errors (MSE) for the fitted functions with the different methods are given
in Table 2. MS-lasso is the monotone splines lasso, Ad. MS-lasso is the adaptive
monotone splines lasso, Ad. liso is the adaptive liso and Ad. lasso is the adaptive
lasso. The mean squared errors are estimated by considering the value of the true
functions and the value of the fitted functions at the observation points. We see
from Table 2 that the monotone splines lasso method was best at selecting the
true covariates, but it also selected many false covariates. The adaptive monotone
splines lasso method selected fewer true covariates, but it decreased the number
of false positives substantially. The adaptive monotone splines lasso method was
better than adaptive liso in recovering the true model, both when considering
true and false positives. From Table 2, we observe that the adaptive monotone
splines method has the smallest estimation error among all the methods.

The estimated functions with monotone splines lasso and adaptive monotone
splines lasso are given in Figure 3. The estimated functions with adaptive liso
are given in Figure 4 and the estimated functions with lasso and adaptive lasso
are given in Figure 5. Note that in Figure 3, 200 curves are drawn, because
we have chosen to draw the estimated functions with monotone splines lasso
and adaptive monotone splines lasso in the same plot. This is done to make it
easier to compare these methods. Similarly, in Figure 5, the estimated functions
with lasso and adaptive lasso are given in the same plot. This gives an optical
impression of higher variability, so to get a correct impression of the variability,
it is necessary to separate the plots by colour. From Figure 3, it is apparent that
the functions fitted by adaptive monotone splines lasso are much closer to the
true function than the functions fitted by monotone splines lasso. This coincides
with the mean squared errors. From Figure 5 it is also clear that the adaptive
lasso method is better than the lasso method in recovering the true function. All
of the monotone regression methods seem to be good at recovering the shapes of
the functions.

The results from the simulation in this section were not identical to the simu-
lation results in Bergersen et al. (2014). This is not only due to randomness in the
observations (noise), but also because a different design matrix was used in the
simulations. In Appendix A, results from simulation experiments with different
random design matrices for each simulation run are given. In addition, simulation
experiments with a design matrix having good variable selection results for the
monotone splines lasso and a matrix having bad variable selection results for the
monotone splines lasso are performed.

From the simulations and the discussion in Appendix A, we find that the
liso regression method and the monotone splines lasso regression method are

23

Selection
g1 g2 g3 g4

MS-lasso 0.95 (0.22) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 0.79 (0.41) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. liso 0.73 (0.45) 1.0 (0) 0.99 (0.10) 1.0 (0)
Lasso 0.86 (0.35) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. lasso 0.74 (0.44) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
MS-lasso 3.95 (0.22) 24.48 (9.39)
Ad. MS-lasso 3.79 (0.41) 2.18 (3.82)
Ad. liso 3.72 (0.47) 3.35 (1.83)
Lasso 3.86 (0.35) 37.17 (17.25)
Ad. lasso 3.74 (0.44) 11.25 (3.70)

Estimation
g1 g2 g3 g4

MS-lasso 0.067 (0.031) 0.038 (0.023) 0.093 (0.020) 0.096 (0.047)
Ad. MS-lasso 0.036 (0.025) 0.015 (0.011) 0.045 (0.020) 0.047 (0.032)
Ad. liso 0.045 (0.030) 0.047 (0.031) 0.052 (0.021) 0.036 (0.024)
Lasso 0.12 (0.035) 0.082 (0.029) 0.12 (0.015) 0.17 (0.064)
Ad. lasso 0.079 (0.038) 0.051 (0.016) 0.11 (0.0070) 0.088 (0.043)

Table 2: Ratio of the number of times the different covariates are selected, ratio
of the total true (TP) and false positives (FP) and mean squared errors (MSE)
for the estimated functions in the simulation experiment considered in section
4.3, where SNR ≈ 4, p = 1000 and n = 50. Standard deviations are given in
parenthesis.

24

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

MS-lasso
Ad. MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

MS-lasso
Ad. MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

MS-lasso
Ad. MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

MS-lasso
Ad. MS-lasso

Figure 3: Estimated functions in the simulation considered in section 4.3 with
n = 50, p = 1000 and SNR ≈ 4 with the monotone splines lasso (grey) and the
adaptive monotone splines lasso (light grey). The true function is given in black.

25

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Adaptive Liso

Figure 4: Estimated functions in the simulation considered in section 4.3 with
n = 50, p = 1000 and SNR ≈ 4 with adaptive liso (grey). The true function is
given in black.

26

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Lasso
Adaptive lasso

Figure 5: Estimated functions in the simulation considered in section 4.3 with
n = 50, p = 1000 and SNR ≈ 4 with the lasso method (grey) and the adaptive
lasso method (light grey). The true function is given in black.

27

sensitive to the location of the observations. Clustering of observations will give
good function estimation in the local area of these points, but not on the whole
interval. To detect an effect of a variable, it is of course advantageous to have
observations in the area where the function is steepest, especially if it is quite flat
elsewhere.

We conclude that the results are in general better when the random xij are
drawn from a normal distribution with mean 0.5 and standard deviation 1, trun-
cated to [0, 1]. Since we find a symmetric distribution more reasonable, the
random variables in all the following simulation experiments in this thesis will be
drawn from this distribution. In addition, a different design matrix will be drawn
in each simulation, to cover more situations and to give a more fair comparison.

28

4.4 Importance of the number of knots in monotone splines
lasso

In the simulation with monotone splines lasso in section 4.3, six interior knots
placed evenly at the quantiles of the data were used to fit the splines to the
functions. We wish to study the importance of the number of knots used to fit
the functions. A greater flexibility for the function is obtained the more knots
used to fit it. However, the more data points there are to estimate each curve, the
better will each curve estimate be. With more knots, there are more spline basis
functions to fit, and thus less data points for each spline basis fit. In addition, if
too many knots are used, the estimated functions might overfit. Ramsay (1988)
argues that it is more important to fit each curve well, since there is little to
gain from having many knots if the function is poorly estimated between the
knots. He also states that in practice, there is often enough flexibility in the
curve with a single interior knot, so that we do not need a large number of
knots. Although splines in general are sensitive to the placement and number of
interior knots, Meyer (2008) argues that when there are shape-restrictions (such
as monotonicity), then the restricted regression splines are robust to the number
of knots. Delecroix and Thomas-Agnan (2000) state that the number of knots
recommended in an I-spline procedure (as with monotone splines lasso) is usually
much smaller than the number of observations.

We will check if the fits are actually robust to the number of knots used, since
inference and method comparison is problematic if the method is not robust to
the number of knots (Meyer, 2008). Since we are already in an over-parametrised
situation with lack of information, we do not want to use a model selection
criterion for selecting the number of knots when using monotone splines lasso,
so it is important that the model fit is robust to the number of knots used.
Following Ramsay (1988) and Delecroix and Thomas-Agnan (2000), we will not
test for many interior knots.

A simulation experiment similar to the previous simulation experiments is
performed, where the number of internal knots, K, vary. We consider K =
4, 5, 6, 7 and 8. As before, I-spline basis functions of order two are used. There
are n = 50 observations, p = 1000 parameters and SNR ≈ 4. To select the
optimal tuning parameter λ, 10-fold cross-validation is used. Let

yi = g1(xi1) + g2(xi2) + g3(xi3) + g4(xi4) + εi,

where εi ∼ N(0, σ2), and σ is chosen to control the signal to noise ratio (SNR).
The g-functions are as in section 4.3. The xij are drawn from a normal distribu-
tion with mean 0.5 and standard deviation 1, truncated to [0, 1].

The aim is to compare variable selection and estimation when varying the
number of interior knots. We simulate 100 times drawing new observations for
each simulation. The number of true and false covariates selected and the mean

29

squared errors for monotone splines lasso are given in Table 3. The number of true
and false covariates selected and the mean squared errors for adaptive monotone
splines lasso are given in Table 4. We see that there are no big differences between
the performance with the different number of knots for neither monotone splines
lasso nor adaptive monotone splines lasso. The selection performance of the
methods is very similar for the different number of interior knots. The estimation
errors are also very similar. The only notable difference is that the number of false
covariates selected by adaptive monotone splines lasso seems to be decreasing
with the number of interior knots. This is probably due to the fact that the
more interior knots you have, the more degrees of freedom are used to include
a covariate. However, the differences are small, and this effect is not present
for monotone splines lasso. Looking closer at one specific simulation, we get the
estimated mean squared errors given in Table 5. The fitted functions for g1 and
g4 for this simulation are given in Figure 6. We see from Figure 6 that the fitted
functions are very close to each other even though different number of spline basis
functions are used to fit them. From Table 5 we also have that the mean squared
errors are quite similar, and there is no systematic difference. So the monotone
splines lasso (and the adaptive monotone splines lasso) is robust to the number of
interior knots used, and it should be safe to use this method without estimating
the number of interior knots.

30

Selection
g1 g2 g3 g4

4 interior knots 0.87 (0.34) 0.98 (0.14) 0.99 (0.10) 0.99 (0.10)
5 interior knots 0.87 (0.34) 0.98 (0.14) 0.99 (0.10) 0.99 (0.10)
6 interior knots 0.88 (0.33) 0.98 (0.14) 0.99 (0.10) 0.99 (0.10)
7 interior knots 0.87 (0.34) 0.96 (0.20) 0.99 (0.10) 0.99 (0.10)
8 interior knots 0.88 (0.33) 0.97 (0.17) 0.99 (0.10) 0.99 (0.10)

TP FP
4 interior knots 3.83 (0.45) 15.66 (10.04)
5 interior knots 3.83 (0.45) 15.05 (9.60)
6 interior knots 3.84 (0.44) 15.23 (9.59)
7 interior knots 3.81 (0.49) 14.65 (9.52)
8 interior knots 3.83 (0.45) 14.90 (9.83)

Estimation
g1 g2 g3 g4

4 interior knots 0.069 (0.044) 0.077 (0.054) 0.10 (0.048) 0.11 (0.069)
5 interior knots 0.070 (0.043) 0.079 (0.053) 0.10 (0.048) 0.11 (0.069)
6 interior knots 0.072 (0.046) 0.077 (0.052) 0.10 (0.049) 0.11 (0.066)
7 interior knots 0.074 (0.049) 0.078 (0.052) 0.11 (0.063) 0.11 (0.068)
8 interior knots 0.075 (0.049) 0.078 (0.049) 0.11 (0.053) 0.11 (0.064)

Table 3: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions, with different number of interior knots for monotone splines lasso in
the simulation experiment considered in section 4.4. Standard deviations are
given in parenthesis.

31

Selection
g1 g2 g3 g4

4 interior knots 0.72 (0.45) 0.94 (0.24) 0.99 (0.11) 0.99 (0.11)
5 interior knots 0.76 (0.43) 0.94 (0.25) 0.99 (0.11) 0.99 (0.11)
6 interior knots 0.73 (0.45) 0.94 (0.23) 0.99 (0.11) 0.98 (0.15)
7 interior knots 0.70 (0.46) 0.93 (0.25) 0.99 (0.11) 0.98 (0.15)
8 interior knots 0.72 (0.45) 0.94 (0.24) 0.98 (0.15) 0.99 (0.11)

TP FP
4 interior knots 3.64 (0.61) 1.19 (2.97)
5 interior knots 3.67 (0.62) 0.82 (2.37)
6 interior knots 3.64 (0.63) 0.69 (2.01)
7 interior knots 3.60 (0.66) 0.37 (1.16)
8 interior knots 3.63 (0.64) 0.34 (1.11)

Estimation
g1 g2 g3 g4

4 interior knots 0.041 (0.030) 0.042 (0.041) 0.044 (0.035) 0.072 (0.063)
5 interior knots 0.042 (0.029) 0.041 (0.040) 0.046 (0.036) 0.071 (0.069)
6 interior knots 0.044 (0.029) 0.046 (0.041) 0.048 (0.040) 0.068 (0.055)
7 interior knots 0.045 (0.031) 0.048 (0.043) 0.051 (0.043) 0.073 (0.061)
8 interior knots 0.045 (0.033) 0.049 (0.043) 0.048 (0.036) 0.073 (0.065)

Table 4: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions, with different number of interior knots for adaptive monotone splines
lasso in the simulation considered in section 4.4. Standard deviations are given
in parenthesis.

32

Estimation

MS-lasso
g1 g2 g3 g4

4 interior knots 0.051 0.077 0.063 0.030
5 interior knots 0.048 0.071 0.054 0.026
6 interior knots 0.049 0.080 0.059 0.029
7 interior knots 0.046 0.072 0.048 0.022
8 interior knots 0.048 0.079 0.051 0.027

Ad. MS-lasso
g1 g2 g3 g4

4 interior knots 0.034 0.047 0.020 0.0093
5 interior knots 0.043 0.032 0.017 0.0097
6 interior knots 0.039 0.033 0.017 0.0084
7 interior knots 0.035 0.029 0.014 0.0063
8 interior knots 0.036 0.034 0.015 0.0087

Table 5: Mean squared errors for the different functions for one simulation with
monotone splines lasso and adaptive monotone splines lasso with different number
of interior knots for the simulation considered in section 4.4.

33

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

One MS-lasso simulation with different number of interior knots

x1

g 1

4
5
6
7
8

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

One AMS-lasso simulation with different number of interior knots

x1

g 1

4
5
6
7
8

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

One MS-lasso simulation with different number of interior knots

x4

g 4

4
5
6
7
8

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

One AMS-lasso simulation with different number of interior knots

x4

g 4
4
5
6
7
8

Figure 6: Estimated functions for g1 and g4 with different number of interior knots
with monotone splines lasso (left) and adaptive monotone splines lasso (right) in
the simulation considered in section 4.4. The true function is drawn in a solid
line.

34

5 Comparison of monotone methods when p < n

We intend to study the performance of the monotone splines lasso method de-
scribed in section 4.2 in the classical setting, where there are less parameters than
observations (so p < n), to see if the method can also be used in this setting.

This is done by performing simulation experiments, where data is simulated in
a similar manner as in section 4.3 and Bergersen et al. (2014), with n observations
and p parameters.

We draw random variables v = (v1, v2, . . . , vn),u = (u1, u2, . . . , un) and w =
(w11, w12, . . . , w1n, . . . , wp1, . . . , wpn), where ui, vi and wij are drawn from a normal
distribution with mean 0.5 and standard deviation 1, truncated to [0, 1]. We
choose to draw from this distribution rather than the one used in Bergersen et al.
(2014), since we find it more realistic to work with a symmetric distribution, as
noted in the end of section 4.3.

We let

xij =
wij + tui

1 + t
for j ∈ A ,

and
xij =

wij + tvi
1 + t

for j 6∈ A ,

where A is the set of true covariates. The dependence between the covariates
is controlled by t, and the covariates are independent when t = 0. This is the
same simulation set up as in Bergersen et al. (2014), except from the fact that
the random variables are drawn from a slightly different distribution.

As in section 4.3, we let

yi = g1(xi1) + g2(xi2) + g3(xi3) + g4(xi4) + εi,

where εi ∼ N(0, σ2), and σ is chosen to control the SNR. The g-functions are as
in section 4.3. The functions are centered as in section 4.3, since the monotone
regression methods assume that the expected values of the functions are zero.

We wish to compare estimation and variable selection for different methods.
The methods that are compared are the monotone splines lasso, the adaptive
monotone splines lasso, the adaptive liso, scam, scar and classical linear regression
using ordinary least squares. We use the R-function lm to fit the linear model. We
do not use the liso method for comparison, since it needs prior knowledge about
the monotonicity directions of the functions, while adaptive liso does not. Scam
and scar also need to be provided the monotonicity directions, but since there
are no alternative versions of these methods which do not need the monotonicity
directions, these methods will still be used for comparison. To estimate the
optimal penalisation parameter for monotone splines lasso and adaptive liso, a
10-fold cross-validation scheme is used. For the monotone splines lasso, six evenly
distributed internal knots placed at the quantiles of the observed data and I-spline

35

basis functions of order two are used, as before. Ten interior knots are used to fit
the functions with scam, and no shape constraints are put on the noise covariates.
The smoothing parameters for scam are chosen by the default GCV option in the
implementation. With scar, it is not possible to have no shape constraints on the
functions, so the noise covariates are fitted by a linear function.

In the classical linear regression setting, linear functions are fitted, but not
general monotone functions. The ordinary least squares, scam and scar assume
that p < n.

5.1 Variable selection and estimation in simulation exper-
iments

We intend to study and compare the performance of the monotone splines lasso
method to the performances of the other methods in the classical setting. We let
n = 80 and p = 7. We simulate 100 times, drawing new xij for each simulation. If
one of the simulation runs with the monotone splines lasso method does not give
a monotonic fit, the results from this one simulation run are discarded. Since
p = 7, there are four true covariates and three false (noise) covariates. The
number of true covariates selected, the number of false covariates selected and
the mean squared errors from the estimated functions to the true functions in
the observed points are recorded. The performance is studied in a situation with
large noise, SNR ≈ 2, and with less noise, SNR ≈ 4. Both dependent (t = 1) and
independent (t = 0) covariates are also considered.

5.1.1 Strong signal and independent covariates

The first situation considered is the situation with a strong signal and independent
covariates, so we let SNR ≈ 4 and t = 0. The number of true positives, the
number of false positives and the estimation errors for the estimated functions
are given in Table 6. Lin. mod is the ordinary least squares fit. Since the scar,
scam and linear regression method do not perform variable selection, we need a
criterion for whether or not a covariate is selected. The implementation of scam
and lm both provide p-values, so we choose to record the covariates which have an
effect on the response at significance level 0.05. The implementation of scar does
not provide any p-values, and therefore we do not record the selected variables
of scar, but we can still compare the mean squared errors of the fitted functions.

The fitted functions with the monotone splines lasso and the adaptive mono-
tone splines lasso are given in Figure 7. The fitted functions with the adaptive
liso are given in Figure 8. The fitted functions with scam are given in Figure
9. The fitted functions with scar are given in Figure 10 and the fitted functions
with the linear method are given in Figure 11.

We see from Table 6 that all the methods select all the true covariates in each
simulation. The adaptive monotone splines lasso method is the only method

36

which does not select any false covariates. Hence in variable selection, the adap-
tive monotone splines method seems to perform the best. The scam method
selects the most false covariates, followed by the linear method. Adaptive liso
selected slightly more false covariates than monotone splines lasso in this simu-
lation. Note however that the variable selection criterion for scam and the linear
method are not data driven, and the comparison is thus not completely fair.

Considering the estimation error, we find that the estimated functions with
scam are a lot closer to the true functions than the estimated functions with any of
the other methods. Scar and adaptive liso have quite similar mean squared errors,
and they have smaller estimation errors than the adaptive monotone splines lasso.
The adaptive monotone splines lasso has smaller estimation errors than monotone
splines lasso. We see from Figures 7, 8, 9 and 10 that all the monotone regression
methods are good at recovering the true shape of the functions. We also observe
that the estimated functions with scam are the most accurate.

The reason why adaptive liso performs better than monotone splines lasso
in estimation error is that it fits the function at all observation points, and the
mean squared error is measured by using the observation points. Since there are
relatively many observations, we will have a good fit here. Plots of the observa-
tions, the true function and the fitted function for adaptive liso and monotone
splines lasso for g2, from one simulation, are given in Figure 12. The fits for the
monotone splines lasso and the adaptive monotone splines lasso are almost insep-
arable in the figure. We see from the figure that all the estimated functions seem
to be capturing the shape of the true function well. The mean squared errors for
the fitted functions in Figure 12, calculated by using the observation points, are
0.013 for the fitted function with adaptive liso, 0.026 with monotone splines lasso
and 0.019 with adaptive monotone splines lasso. Using instead the overall mean
squared error (estimated by evaluating the function at equidistant points from
0 to 1 with a distance of 0.0001 between the points) from the fitted function to
the true function, we get that the mean squared error for adaptive liso is 0.067,
the mean squared error for monotone splines lasso is 0.021 and the mean squared
error for adaptive monotone splines lasso is 0.015, showing that adaptive liso was
not better at estimating the function, it was just closer to the true function at
the observation points. The mean squared errors for the estimated g2 for the full
function, averaging over all the 100 simulations, are 0.036 for the adaptive liso,
0.030 for the monotone splines lasso and 0.024 for the adaptive monotone splines
lasso.

In Figure 7, the clear benefits in using the adaptive monotone splines lasso
instead of the monotone splines lasso is no longer apparent. There is a benefit,
but the difference is less extreme than it was in the high dimensional setting.
We can see that the adaptive monotone splines lasso fits are a little closer to the
true function for g3, but the difference is not at all as obvious as in the higher
dimensional setting, comparing with for instance Figure 3. We did however see
from Table 6 that the estimation errors are smaller for the adaptive monotone

37

splines lasso method than for the monotone splines lasso method. However, the
differences in the high dimensional setting were more extreme, while here the
adaptive monotone splines lasso only has slightly smaller estimation errors than
monotone splines lasso. As already noted, the adaptive monotone splines method
also performed better at variable selection in this setting than the monotone
splines lasso.

Comparing the monotone splines lasso with the scam method, which is con-
structed for monotone regression in the classical setting, we see that the monotone
splines lasso method is not as good in estimating the functions, but it has less
false covariates, when including all the variables significant at significance level
0.05 for the scam method. It should be noted, however, that the 0.05 level is ar-
bitrarily set, while the variable selection for the monotone splines lasso is guided
by the penalty parameter λ, which is chosen by using cross-validation. So the
variable selection criterion for the monotone splines lasso is data driven. This
makes the comparison not completely fair for scam. It should also be noted that
the scam method is fed with more information about the functions, in that it is
provided with the monotonicity directions.

38

Selection
g1 g2 g3 g4

MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. liso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Scam 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Lin. mod 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
MS-lasso 4.0 (0) 0.08 (0.27)
Ad. MS-lasso 4.0 (0) 0 (0)
Ad. liso 4.0 (0) 0.09 (0.32)
Scam 4.0 (0) 0.30 (0.54)
Lin. mod 4.0 (0) 0.17 (0.38)

Estimation
g1 g2 g3 g4

MS-lasso 0.027 (0.017) 0.027 (0.017) 0.044 (0.017) 0.036 (0.017)
Ad. MS-lasso 0.032 (0.024) 0.021 (0.017) 0.025 (0.013) 0.034 (0.021)
Ad. liso 0.016 (0.011) 0.020 (0.0088) 0.020 (0.0080) 0.017 (0.0073)
Scam 0.0065 (0.0058) 0.0052 (0.0046) 0.010 (0.0063) 0.0078 (0.0058)
Scar 0.020 (0.0096) 0.022 (0.0098) 0.024 (0.0094) 0.023 (0.011)
Lin. mod 0.038 (0.013) 0.039 (0.014) 0.12 (0.020) 0.040 (0.0096)

Table 6: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation considered in section 5.1.1, where n = 80, p = 7,
SNR ≈ 4 and t = 0. Standard deviations are given in parenthesis.

39

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

MS-lasso
Adaptive MS-lasso

Figure 7: Estimated functions in the simulation considered in section 5.1.1 with
n = 80, p = 7, SNR ≈ 4 and t = 0 with the monotone splines lasso (grey) and
the adaptive monotone splines lasso (light grey). The true function is given in
black.

40

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Adaptive Liso

Figure 8: Estimated functions in the simulation considered in section 5.1.1 with
n = 80, p = 7, SNR ≈ 4 and t = 0 with the adaptive liso (grey). The true
function is given in black.

41

0.0 0.2 0.4 0.6 0.8 1.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x1

g 1

SCAM

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

x2

g 2

SCAM

0.0 0.2 0.4 0.6 0.8 1.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x3

g 3

SCAM

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x4

g 4

SCAM

Figure 9: Estimated functions in the simulation considered in section 5.1.1 with
n = 80, p = 7, SNR ≈ 4 and t = 0 with the scam method (grey). The true
function is given in black.

42

0.0 0.2 0.4 0.6 0.8 1.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x1

g 1

SCAR

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

x2

g 2

SCAR

0.0 0.2 0.4 0.6 0.8 1.0

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x3

g 3

SCAR

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x4

g 4

SCAR

Figure 10: Estimated functions in the simulation considered in section 5.1.1 with
n = 80, p = 7, SNR ≈ 4 and t = 0 with the scar method (grey). The true
function is given in black.

43

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Ordinary least squares

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Ordinary least squares

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Ordinary least squares

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Ordinary least squares

Figure 11: Estimated functions in the simulation considered in section 5.1.1 with
n = 80, p = 7, SNR ≈ 4 and t = 0 with the ordinary least squares (grey). The
true function is given in black.

44

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

3

x2

Y

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

3

x2

Y

MS-lasso
Adaptive MS-lasso

Figure 12: Observations with fitted functions and the true function for adap-
tive liso (left) and monotone splines lasso (right) for the simulation experiment
considered in section 5.1.1. In the left figure, the true function is given in a
solid line and the function fitted with adaptive liso is given in a dashed line. In
the right figure, the true function is given in a solid line, the estimated function
with monotone splines lasso is dashed and the estimated function with adaptive
monotone splines lasso is dotted.

45

5.1.2 Weak signal and dependent covariates

We now wish to see what happens when the covariates are dependent and the
signal is weaker. We thus simulate the situation with dependent covariates and
a strong signal, so SNR ≈ 4 and t = 1. We also simulate the case with a weaker
signal and independent covariates, so SNR ≈ 2 and t = 0. The ratio of true
covariates selected, the ratio of false covariates selected and the mean squared
errors for the estimated functions are reported. The results for SNR ≈ 4 and
t = 1 are given in Table 9. The results for SNR ≈ 2 and t = 0 are given in Table
10.

We see from Table 9 that when it comes to variable selection when we have
SNR ≈ 4 and dependent covariates (t = 1), adaptive liso seems to be the best
method. It selects all the true covariates, and has few false covariates. Adaptive
monotone splines lasso selects no false covariates, but it has problems selecting x1.
Monotone splines lasso performed better than adaptive monotone splines lasso,
in that it was much better at selecting the true covariates, while still selecting few
false covariates. However, monotone splines lasso performed slightly worse than
adaptive liso in this simulation, both in selecting the true covariates, and false
covariates. The linear method and scam select too many false covariates, but this
may also be due to the selection criterion we have chosen to use (p-values smaller
than 0.05), which does not penalise with the number of observations. If we had
instead used a selection criterion penalising with n to select the covariates for
the linear method and scam, like BIC, this might have been avoided. When it
comes to estimation error, scam outperforms all the other methods, followed by
scar. Adaptive liso here too performs better in estimation than both monotone
splines lasso and adaptive monotone splines lasso, but note that the mean squared
errors are measured in the observation points. Adaptive monotone splines lasso
performed slightly better than monotone splines lasso in estimation.

In Table 10, we see that when we have SNR ≈ 2 and t = 0, all the methods
are good at selecting the true covariates, except the adaptive monotone splines
lasso, which has problems selecting x1. However, adaptive monotone splines lasso
outperforms the other methods when it comes to false covariates. Adaptive liso
selects the most false covariates. Monotone splines lasso and scam also select a lot
more false covariates than the linear method. It is reasonable to assume that in
most scenarios, selecting the true covariates is more important than not selecting
false covariates, so that the adaptive monotone splines lasso performs worst in
this simulation. If avoiding selection of false covariates is the most important,
the adaptive monotone splines lasso method is the best in this situation. When
considering estimation error (measured in the observation points), we see that
the estimation errors are quite similar for adaptive liso and adaptive monotone
splines lasso, while the estimation errors for monotone splines lasso and the linear
method are larger. Again we find that scam outperforms all the other methods
in estimation error. Scar has the largest estimation error among all the methods.

46

If n is increased to 150 in the case with SNR ≈ 4 and t = 1, we get the
results in Table 11. All the methods manage to capture the true model well here,
except from the linear method, which selects too many false variables. Scam also
selects relatively many false covariates. This is due to the fact that the p-values
get very small with growing n, as noted earlier. All the methods select all the
true covariates, but adaptive monotone splines lasso is the only method which
selects no false covariates and is thus the best at variable selection. Adaptive
liso also selects almost no false covariates. In estimation error, scam again has
the smallest estimation error among all methods, followed by scar and adaptive
liso (measured in the observation points). We also see that the difference in
estimation error between adaptive monotone splines lasso and monotone splines
lasso is very small.

5.2 Prediction performance
To compare the methods, their prediction performances are also studied. This is
done by generating 500 new observations, (Xnew, ynew), from the same distribu-
tion as the training data, in the setting where SNR ≈ 4 and t = 0, and estimating
the prediction error, PE, as

PE =
1

500

500∑
i=1

(ynew
i − ŷnew

i),

where ŷnew
i are the predicted values of ynew

i , using the fitted models. For the linear
method and scam, the full fitted model is used for prediction, and not only the
significant covariates. We draw 100 such sets of size 500, and estimate the mean
prediction error over all the sets. In Table 7, the prediction errors in the setting
with n = 80 and p = 7 are given. The true underlying model is the same as
before, so there are three noise covariates. The prediction errors for the different
methods are also estimated in the setting where n = 200 and p = 20. The results
for this setting are given in Table 8. We see from Table 7 that when there are
not many noise covariates, the scam method is best at prediction. Second best
is the adaptive liso, but monotone splines lasso and adaptive monotone splines
lasso perform better than scar. The linear method is also better at prediction
than scar, but clearly worse than the other monotone methods. From Table
8, we see that when there are more noise covariates, the prediction errors were
smallest for the adaptive monotone splines lasso, followed by monotone splines
lasso. Adaptive liso and scam had the same prediction errors. Scar and the
linear method had larger prediction errors than all the other methods. So the
prediction error is better with monotone splines lasso when there are many noise
covariates, but when there are few noise covariates, scam performs better. In
both settings, adaptive monotone splines lasso had slightly smaller prediction
errors than monotone splines lasso.

47

Prediction error
MS-lasso Ad. MS-lasso Ad. liso
0.26 (0.070) 0.25 (0.070) 0.22 (0.059)

Scam Scar Lin. mod
0.20 (0.066) 0.47 (0.86) 0.38 (0.051)

Table 7: Prediction error for the different methods when n = 80, p = 7, SNR ≈ 4
and t = 0 for the simulation considered in section 5.2. Standard deviations are
given in parenthesis.

Prediction error
MS-lasso Ad. MS-lasso Ad. liso
0.15 (0.021) 0.14 (0.021) 0.16 (0.033)

Scam Scar Lin. mod
0.16 (0.029) 0.22 (0.13) 0.35 (0.029)

Table 8: Prediction error for the different methods when n = 200, p = 20,
SNR ≈ 4 and t = 0 for the simulation considered in section 5.2. Standard
deviations are given in parenthesis.

48

Selection
g1 g2 g3 g4

MS-lasso 0.99 (0.10) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 0.88 (0.33) 0.99 (0.10) 0.99 (0.10) 1.0 (0)
Ad. liso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Scam 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Lin. mod 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
MS-lasso 3.99 (0.10) 0.09 (0.29)
Ad. MS-lasso 3.86 (0.38) 0 (0)
Ad. liso 4.0 (0) 0.07 (0.26)
Scam 4.0 (0) 0.23 (0.49)
Lin. mod 4.0 (0) 0.53 (0.72)

Estimation
g1 g2 g3 g4

MS-lasso 0.020 (0.010) 0.026 (0.016) 0.031 (0.015) 0.028 (0.014)
Ad. MS-lasso 0.022 (0.014) 0.023 (0.018) 0.020 (0.016) 0.032 (0.021)
Ad. liso 0.016 (0.011) 0.020 (0.0088) 0.020 (0.0080) 0.017 (0.0073)
Scam 0.0031 (0.0022) 0.0026 (0.0025) 0.0039 (0.0039) 0.0030 (0.0027)
Scar 0.0095 (0.0063) 0.010 (0.0053) 0.011 (0.0051) 0.011 (0.0054)
Lin. mod 0.018 (0.0085) 0.016 (0.011) 0.059 (0.020) 0.024 (0.0089)

Table 9: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation considered in section 5.1.2, where n = 80, p = 7,
SNR ≈ 4 and t = 1. Standard deviations are given in parenthesis.

49

Selection
g1 g2 g3 g4

MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 0.89 (0.31) 0.99 (0.10) 1.0 (0) 1.0 (0)
Ad. liso 0.99 (0.10) 1.0 (0) 1.0 (0) 1.0 (0)
Scam 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Lin. mod 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
MS-lasso 4.0 (0) 0.36 (0.54)
Ad. MS-lasso 3.88 (0.35) 0.011 (0.10)
Ad. liso 3.99 (0.10) 0.67 (0.91)
Scam 4.0 (0) 0.27 (0.51)
Lin. mod 4.0 (0) 0.15 (0.36)

Estimation
g1 g2 g3 g4

MS-lasso 0.038 (0.029) 0.039 (0.029) 0.058 (0.030) 0.049 (0.030)
Ad. MS-lasso 0.037 (0.028) 0.040 (0.039) 0.044 (0.027) 0.052 (0.038)
Ad. liso 0.036 (0.025) 0.045 (0.024) 0.049 (0.026) 0.043 (0.025)
Scam 0.023 (0.018) 0.017 (0.015) 0.034 (0.023) 0.026 (0.018)
Scar 0.051 (0.028) 0.055 (0.031) 0.063 (0.031) 0.059 (0.034)
Lin. mod 0.042 (0.021) 0.043 (0.020) 0.13 (0.024) 0.044 (0.015)

Table 10: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation considered in section 5.1.2, where n = 80, p = 7,
SNR ≈ 2 and t = 0. Standard deviations are given in parenthesis.

50

Selection
g1 g2 g3 g4

MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. liso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Scam 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Lin. mod 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
MS-lasso 4.0 (0) 0.08 (0.27)
Ad. MS-lasso 4.0 (0) 0 (0)
Ad. liso 4.0 (0) 0.01 (0.10)
Scam 4.0 (0) 0.21 (0.54)
Lin. mod 4.0 (0) 0.92 (0.69)

Estimation
g1 g2 g3 g4

MS-lasso 0.012 (0.0060) 0.014 (0.0066) 0.017 (0.0064) 0.017 (0.0065)
Ad. MS-lasso 0.015 (0.0086) 0.010 (0.0081) 0.0077 (0.0044) 0.018 (0.0066)
Ad. liso 0.0054 (0.0023) 0.0061 (0.0023) 0.0061 (0.0023) 0.0056 (0.0016)
Scam 0.0012 (0.00086) 0.0012 (0.0011) 0.0018 (0.0013) 0.0014 (0.00097)
Scar 0.0046 (0.0020) 0.0055 (0.0022) 0.0053 (0.0018) 0.0059 (0.0019)
Lin. mod 0.016 (0.0057) 0.013 (0.0053) 0.060 (0.014) 0.023 (0.0055)

Table 11: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation considered in section 5.1.2, where SNR ≈ 4, t = 1,
p = 7 and n = 150. Standard deviations are given in parenthesis.

51

5.3 A situation where a linear model is not sufficient
The linear model can sometimes serve as a rough approximation to a monotone
effect, but it is not always so. In some settings, it might be harder for a linear
model to detect the monotone effect of a covariate. We consider a simulation
experiment with such data, using the monotone splines lasso, the adaptive mono-
tone splines lasso, ordinary least squares, lasso and adaptive lasso for the analysis.
This simulation experiment is kept in the classical setting, where n = 150 and
p = 20. The observations are drawn as before, with t = 1, so that the covariates
are dependent. We let

yi = g1(x1i) + g2(x2i) + g3(x3i) + g4(x4i) + g5(x5i) + εi,

where g1, g2, g3 and g4 are as in section 4.3, εi are random noise variables from a
normal distribution with mean 0 and variance chosen so that SNR ≈ 4. The last
function g5 is given as

g5(x) = 2 erf (5x),

where erf is the error function.
This function is not well fitted by a linear function, and we thus expect the

monotone splines lasso to capture the effect of this function better than the linear
methods. As before, we let the ordinary least squares select the variables which
are significant at level 0.05. The results are given in Table 12. We see from the
table that the monotone splines lasso method in fact was best at selecting x5.
The lasso method selected x5 more times than the adaptive monotone splines
lasso. The ordinary least squares method performed the worst at selecting x5

(estimating the effect to be significant). Even though lasso performed better than
adaptive monotone splines lasso in selecting x5, we note that lasso and adaptive
lasso select a lot more false covariates than all the other methods. Lasso selects
almost eight false covariates (on average) and the adaptive lasso selects four.
The adaptive monotone splines lasso method selects no false covariates, and the
monotone splines lasso selects very few in comparison with the lasso and the
adaptive lasso.

The estimated functions of g5 are given in Figure 13. As noted, the shape of
the true function is not well captured by a linear function, and we see that the
estimated functions with monotone splines lasso and adaptive monotone splines
lasso are a lot closer to the true function. Note also that again we have chosen to
draw the estimated functions with monotone splines lasso and adaptive monotone
splines lasso in the same plot, and the estimated functions with lasso and adaptive
lasso in the same plot. This causes an optical effect of larger variance for these
methods, since 200 curves are drawn in these plots, while for the ordinary least
squares method, only 100 curves are drawn.

52

Selection
g1 g2 g3 g4

MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 0.98 (0.15) 0.99 (0.10) 1.0 (0) 1.0 (0)
Lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. Lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Lin. mod 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

g5 TP FP
MS-lasso 0.96 (0.20) 4.96 (0.20) 0.45 (0.73)
Ad. MS-lasso 0.82 (0.39) 4.79 (0.41) 0 (0)
Lasso 0.86 (0.35) 4.86 (0.35) 7.71 (2.45)
Ad. Lasso 0.72 (0.45) 4.72 (0.45) 4.08 (1.90)
Lin. mod 0.44 (0.50) 4.44 (0.50) 0.90 (1.01)

Estimation
g1 g2 g3

MS-lasso 0.012 (0.0062) 0.017 (0.0091) 0.015 (0.0069)
Ad. MS-lasso 0.012 (0.0083) 0.014 (0.012) 0.0071 (0.0056)
Lasso 0.013 (0.0035) 0.011 (0.0044) 0.062 (0.015)
Ad. Lasso 0.014 (0.0042) 0.012 (0.0049) 0.059 (0.014)
Lin. mod 0.015 (0.0053) 0.013 (0.0059) 0.059 (0.014)

g4 g5

MS-lasso 0.015 (0.0076) 0.011 (0.0063)
Ad. MS-lasso 0.015 (0.011) 0.011 (0.0084)
Lasso 0.028 (0.0089) 0.036 (0.013)
Ad. Lasso 0.024 (0.0064) 0.036 (0.013)
Lin. mod 0.024 (0.0059) 0.036 (0.012)

Table 12: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation considered in section 5.3, where SNR ≈ 4, t = 1,
p = 20 and n = 150. Standard deviations are given in parenthesis.

53

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

x5

g 5

MS-lasso
Ad. MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

x5

g 5
Lasso
Ad. Lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

x5

g 5

Ordinary least squares

Figure 13: Estimated functions in the simulation considered in section 5.3 with
n = 150, p = 20, SNR ≈ 4 and t = 1 with the monotone splines lasso, the
adaptive monotone splines lasso, lasso, adaptive lasso and ordinary least squares.
The true function is given in black.

54

5.4 Boston housing data
We try out the different methods for monotone regression in the classical setting
using the Boston housing data set. The data consists of a response variable which
is the house value, and different explanatory variables. This data set is from
Harrison and Rubinfeld (1978) and is available in the R-library MASS. It consists
of n = 506 observations, 13 covariates and the house value (response). We will
consider the explanatory variables crime (crime rate by town), zn (proportion
of a town’s residential land zoned into lots greater than 25 000 square feet),
indus (proportion of non-retail business acres per town, serves as a measure of
amount of industry), NOX (a pollution variable representing air quality as the
concentration of nitrogen oxides), the mean number of rooms, age (the proportion
of owner units built prior to 1940), distance to employment centres, rad (index of
accessibility to radial highways), tax (the cost of public services), pupil-teacher
ratio and the proportion of the population that is considered as lower status.
We will not consider the covariate which gives the proportion of the population
being black, since this covariate is expected to have a parabolic effect (Harrison
and Rubinfeld, 1978). In addition, an indicator variable for whether or not it is
a riverside location is given in the data set, but we will only consider numerical
covariates. We will thus consider eleven predictors.

The methods that are used are monotone splines lasso, adaptive monotone
splines lasso, adaptive liso, scam and scar. The data set was also used with
adaptive liso in Fang and Meinshausen (2012).

For the scam and scar, we have to provide the monotonicity directions. In
Harrison and Rubinfeld (1978), they propose that crime should have a negative
effect on the house value, zn should have a positive effect, indus should have
a negative effect, the mean number of rooms should have a positive effect, the
distance should have a negative effect, rad should have a positive effect, tax
should have a negative effect and the pupil-teacher ratio should have a negative
effect. In addition, we assume that NOX and the proportion of the population
having lower status will have a negative effect on the house values. For age, we
do not know the monotonicity direction, so with scam we do not use any shape
constraints on age, while we set a linear shape constraint on age with scar.

For monotone splines lasso and adaptive monotone splines lasso, I-splines of
order two with six interior knots are used. The optimal tuning parameters for
monotone splines lasso, adaptive monotone splines lasso and adaptive liso are
estimated by 10-fold cross-validation. For scam, eight interior knots are used to
fit the functions and the smoothing parameters are chosen by the default GCV
option.

The estimated effects of the different covariates are given in Figures 14 and
15. All the variables are centered. Crime is selected by all the methods except
from scar. Scar does not perform variable selection, but the estimated function
is constant, which means that it has no estimated effect. The fit with adaptive

55

liso is not monotone, which is also noted in Fang and Meinshausen (2012).
Only scam estimates a non-constant effect of zn, and it has a small, linear and

positive effect. The effect of zn with scam is not significant on a 0.05 significance
level.

Indus is only selected by scam, but the effect is not significant. The estimated
effect is largest and decreasing for small values of industry, and then flattens out
to a constant function.

NOX is selected by all the methods, except from the adaptive monotone
splines lasso. The estimated effects are decreasing, but the estimated function
with adaptive liso is not monotone.

The mean number of rooms is selected by all the methods and has an increas-
ing effect. The estimated effects are quite similar, with a steeper increase the
more rooms.

Age is selected by scam and scar. The estimated effect with scar is small,
positive and linear (remember that a linear shape constraint was used), while the
estimated effect with scam is small and non-linear. With scam, the effect is not
significant.

Distance is selected by all the methods, and it has a decreasing effect on the
house value. For the estimated functions with monotone splines lasso, adaptive
monotone splines lasso, adaptive liso and scam, the effect is largest for smaller
values of distance.

Rad is selected by monotone splines lasso and scam. The estimated effect
with scam is quite large and positive. The estimated effect with monotone splines
lasso is positive, but small, and only visible for low values of rad. The estimated
effect with scam is also largest for smaller values of rad, then flattens out, before
increasing again for higher values of rad. Note that the estimated effect with
scam seems to be very affected by one extreme observation.

Tax is selected by monotone splines lasso, adaptive liso and scam and has a
negative effect. The effect is largest for lower values of tax for monotone splines
lasso and adaptive liso, while it is linear with scam.

The pupil-teacher ratio is selected by all the methods except from the adaptive
monotone splines lasso, and has a decreasing effect. The estimated effect with
monotone splines lasso is quite similar to the effect of scam, while the estimated
effects with adaptive liso and scar are somewhat smaller.

The proportion of lower status is selected by all the methods, and the esti-
mated effect is decreasing. The effect is higher for lower values of the proportion
of lower status. The estimated effects of proportion of lower status are very sim-
ilar for all the methods. The scam method would not run with a monotonicity
constraint on the proportion of lower status, so this function is fitted without
any constraints, and we see that the estimated function is not monotone. The
estimated function is decreasing, before hitting a breakpoint, and then it starts
to increase. This might be because many people can only afford the cheapest
homes, and there are only a limited amount of the cheapest homes.

56

The estimated models with the different methods are quite similar, but scam
and monotone splines lasso select quite many variables. The adaptive monotone
splines lasso only selects four variables. The estimated functions with the diff-
erent methods are also quite similar, but the estimated effects with scam are in
general larger. From the fitted functions, it seems like scam is very sensitive to
extreme/influential observations. This is especially prominent in the estimated
effects of rad and tax.

We know from the previous simulation experiments that the adaptive mono-
tone splines lasso is good at not selecting false covariates. We therefore trust
that all covariates selected by the adaptive monotone splines lasso method are
important covariates for explaining the house value. We thus believe that crime,
the mean number of rooms, distance and proportion of lower status should be
kept in the final model. NOX is selected by all the methods except from the
adaptive monotone splines lasso. However, the estimated function with adaptive
liso is very non-monotone and not very reasonable, and the effect with monotone
splines lasso is very small, so we do not believe that this covariate is important
for predicting the house value. Tax is selected by all methods except from the
adaptive monotone splines lasso and scar, but the estimated effects with mono-
tone splines lasso and adaptive liso are very small, and scam seems to be very
affected by one influential observation, so we do not think that tax is important
for house value. The pupil-teacher ratio is selected by all the methods except
adaptive monotone splines lasso and might have an important effect on the house
value. However, from the scale of the estimated effect, it seems to be less impor-
tant than the other four covariates that we have concluded have an important
effect. Since we have a relatively large n compared to the number of covariates,
we choose to trust the adaptive monotone splines lasso, and we conclude that
the variables important for explaining the house value are crime, mean number
of rooms, distance and the proportion of lower status.

57

0 20 40 60 80

-5
0

5
10

Crime

H
ou

se
 v

al
ue

MS-lasso
Ad. MS-lasso
Ad. Liso
Scam
Scar

0 20 40 60 80

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

zn

H
ou

se
 v

al
ue

Scam
Scar

-10 -5 0 5 10 15

0.
0

0.
5

1.
0

1.
5

Indus

H
ou

se
 v

al
ue

Scam
Scar

-0.1 0.0 0.1 0.2 0.3

-4
-2

0
2

4

NOX

H
ou

se
 v

al
ue

MS-lasso
Ad. Liso
Scam
Scar

-2 -1 0 1 2

-5
0

5
10

Rooms

H
ou

se
 v

al
ue

MS-lasso
Ad. MS-lasso
Ad. Liso
Scam
Scar

-60 -40 -20 0 20

-0
.5

0.
0

0.
5

Age

H
ou

se
 v

al
ue

Scam
Scar

Figure 14: Estimated functions for the Boston housing data, considered in section
5.4. The observed values of the covariates are given at the bottom of the plots.

58

-2 0 2 4 6 8

-5
0

5
10

15

Distance

H
ou

se
 v

al
ue

MS-lasso
Ad. MS-lasso
Ad.Liso
Scam
Scar

-5 0 5 10 15

-8
-6

-4
-2

0
2

4
6

Rad
H

ou
se

 v
al

ue

MS-lasso
Scam
Scar

-200 -100 0 100 200 300

-4
-2

0
2

4

Tax

H
ou

se
 v

al
ue

MS-lasso
Ad. Liso
Scam
Scar

-6 -4 -2 0 2

-3
-2

-1
0

1
2

3

Pupil-teacher ratio

H
ou

se
 v

al
ue

MS-lasso
Ad. Liso
Scam
Scar

-10 0 10 20

-1
0

-5
0

5
10

15
20

25

Proportion of lower status

H
ou

se
 v

al
ue

MS-lasso
Ad. MS-lasso
Ad. Liso
Scam
Scar

Figure 15: Estimated functions for the Boston housing data, considered in section
5.4. The observed values of the covariates are given at the bottom of the plots.

59

5.5 Conclusion on the performance of monotone splines
lasso

We have seen that in a setting with independent covariates and not too much
noise, the adaptive monotone splines method works well in lower dimensions,
while monotone splines lasso selects too many false covariates. Even though
there is some gain in estimation accuracy in using an adaptive step, the benefit
in function estimation when using adaptive monotone splines lasso instead of
monotone splines lasso is smaller than it was in the high dimensional setting. The
estimation errors for the estimated functions with the monotone splines lasso and
the adaptive monotone splines lasso are a lot larger than the estimation errors
using the scam method, which is developed for the classical setting.

When the covariates are dependent, adaptive monotone splines lasso may
select too few covariates. Here, both adaptive liso and monotone splines lasso
perform better than the adaptive monotone splines lasso. The scam method
selects more false covariates, but is much better at capturing the true shape of
the functions. Note again that the selection criterion for scam is not data driven.
When we increase the number of observations, adaptive monotone splines lasso
does no longer have the problem of selecting too few true covariates, but it still
has estimation errors that are a lot larger than the estimation errors with scam.
In both scenarios with dependent covariates, adaptive monotone splines lasso
had slightly smaller estimation errors than the monotone splines lasso, and it
had the best selection performance among all the methods in the setting with
many observations (n = 150, p = 7).

With more noise, adaptive monotone splines lasso again might select too few
variables, while adaptive liso, monotone splines lasso and scam might select too
many (noise) variables. The adaptive monotone splines lasso method performed
worse than monotone splines lasso in selection, but it had slightly smaller mean
squared errors. Scam also here outperforms all the other methods in estimation.

We conclude that if the covariates are independent, adaptive monotone splines
lasso perform well in the classical setting. If there are dependent covariates
and few observations, then adaptive monotone splines lasso might detect too
few covariates, and monotone splines lasso, scam and adaptive liso will perform
better in variable selection. With more noise, none of the monotone regression
methods performed as well as the linear method in variable selection, but they
all performed quite well, with adaptive monotone splines lasso selecting too few
variables, and monotone splines lasso, adaptive liso and scam selecting too many.

Comparing the monotone splines lasso to the adaptive monotone splines lasso,
we had that the prediction performance was better for the adaptive monotone
splines lasso than for the monotone splines lasso. The estimation errors were
slightly smaller for the adaptive monotone splines lasso than for the monotone
splines lasso, but the difference in estimation is not at all as large as for the high
dimensional setting. The adaptive step decreases the number of false covariates,

60

but it may also give too few true covariates.
We have seen that the adaptive monotone splines lasso does not outperform

the scam method in the classical setting. The monotone splines lasso method has
the advantage of performing automatic variable selection, which scam does not
do. It also has the advantage that it does not need to be provided the monotonic-
ity directions of the functions, which scam does. This also makes the comparisons
a little unfair for monotone splines lasso, since scam is provided with more in-
formation about the functions. In all the simulation experiments, scam selected
all the true covariates, while adaptive monotone splines lasso had some prob-
lems in selecting x1. Adaptive monotone splines lasso had fewer false positives
than scam, but note that we decided to record all covariates significant at the
0.05 level for the scam method, while it would be better to use an information
criterion considering all possible models, and then selecting the best in terms of
the information criterion used. Monotone splines lasso has the disadvantage that
it does not guarantee a monotonic fit. The estimated functions with scam will
always be monotone. We also noted that scam outperformed the adaptive mono-
tone splines lasso in estimation error in all the simulation experiments. In the
Boston housing data example, we saw that scam is sensitive to influential obser-
vations. In the simulation experiments, we found that the scar method in most
settings (all except from the one where we had more noise) had smaller estimation
errors than the adaptive monotone splines lasso, but the difference was not as
large as with the scam method. In addition, note that scar was also provided the
monotonicity direction of the functions before the analysis. When considering
prediction error, scam performed better than both monotone splines lasso and
adaptive monotone splines lasso when we did not have many noise covariates, but
when we increased the number of noise covariates, monotone splines lasso and
adaptive monotone splines lasso performed better than scam. Monotone splines
lasso and adaptive monotone splines lasso had smaller prediction errors than scar
in both settings.

61

6 Partially linear monotone models
In additive partially linear models, some covariates are assumed to have a linear
effect on the response, and some are assumed to have a non-linear effect on the
response. In the classical setting, we have seen that the methods scam and scar
(described in sections 3.2.2 and 3.2.3) can be used to fit an additive partially linear
model, where there are different shape constraints on the non-linear functions.
There are also some existing methods which can be used for fitting additive
partially linear models in the high dimensional setting.

Liu et al. (2011) developed a method for fitting additive partially linear mod-
els with variable selection for the linear covariates. In a paper by Du et al. (2012),
a method for fitting the additive partially linear model with variable selection in
both the linear and the non-linear covariates was developed. Wei (2012) devel-
ops a method for additive partially linear models with grouped linear covariates
performing variable selection in the linear covariates. These methods all assume
that it is a priori known which covariates will (potentially) have a linear effect,
and which covariates will (potentially) have a non-linear effect. In this section,
we will first look closer at the additive partially linear models and methods for
fitting additive partially linear models, which can be used in the high dimen-
sional data setting. Then we will develop two new methods for fitting additive
partially linear models where the non-linear effects are assumed/restricted to be
monotone, using I-splines.

Let y be the observations. Let X denote the design matrix for the covariates
assumed to potentially have a linear effect on the response, and Z the design
matrix for the covariates assumed to potentially have a non-linear effect on the
response. Let d1 be the number of covariates with linear effect, and d2 the number
of covariates with non-linear effect. Then d1 +d2 = p, where p is the total number
of covariates. X is an n×d1 matrix and Z is an n×d2 matrix. Then the additive
partially linear model is

Y = Xβββ +

d2∑
k=1

gk(Z
(k)) + εεε,

where Z(k) is the kth column of Z and g1, g2, . . . , gd2 are unknown smooth func-
tions. Again it is assumed that E[gk(x)] = 0 for all k, for unique identification.

To fit the model, let the covariates in Z be transformed to the interval [0, 1],
and let the gks be approximated by spline functions. In Liu et al. (2011), the gks
are fit by functions from Sn, where Sn is the space of polynomial splines on [0, 1]
of order l. Let Gn be the space of functions h(z) = h1(z1) +h2(z2) + . . .+hd2(zd2)

with all hk ∈ Sn and
n∑
i=1

hk(zik) = 0. Then, if we are in the classical setting, we

want a g̃ ∈ Gn and β̂ββ so that

g̃, β̂ββ = argming,βββ||y −Xβββ − g(Z)||22,

62

where

g(Z) =

g1(z11) + g2(z12) + . . .+ gd2(z1d2)
g1(z21) + g2(z22) + . . .+ gd2(z2d2)

...
g1(zn1) + g2(zn2) + . . .+ gd2(znd2)

 ,

and zik is the ith observation of covariate k. Consider the situation with K
interior knots, and let bj,k(z) be the basis functions of degree l for covariate k.
Then all h ∈ Gn can be written as

h(z) = γγγ′b(z),

where

b(z) = (b11(z1), b21(z1), . . . , bK+l,1(z1), b12(z2), b22(z2), . . . ,

bK+l,2(z2), . . . , b1,d2(zd2), b2,d2(zd2), . . . , bK+l,d2(zd2))
′,

and

γγγ = (γ11, γ21, . . . , γK+l,1, γ12, γ22, . . . ,

γK+l,2, . . . , γ1,d2 , γ2,d2 , . . . , γK+l,d2)
′.

So an equivalent problem is to find γ̂γγ and β̂ββ so that

γ̂γγ, β̂ββ = argminγγγ,βββ||y −Xβββ − γγγ′b(Z)||22,

where

b(Z) = (b11(Z(1)), . . . , bK+l,1(Z(1)), b12(Z(2)), . . . ,

bK+l,2(Z(2)), . . . , b1,d2(Z
(d2)), . . . , bK+l,d2(Z

(d2)))′.

This is a linear regression problem, which can be solved by ordinary linear regress-
ion if the number of parameters is small enough. If not, subset selection and/or
regularisation is needed. Note that when counting the number of parameters, we
have to take into account the number of basis functions used to represent the
non-linear covariates.

In Liu et al. (2011) they use a general penalisation term on the linear com-
ponent, so the estimates are given by

γ̂γγ, β̂ββ = argminγγγ,βββ||y −Xβββ − γγγ′b(Z)||22 +

d1∑
j=1

pλj (|βj|) ,

with the lasso penalisation as a special case.

63

In Du et al. (2012), a method for simultaneous variable selection in the linear
and the non-linear part is proposed. With an initial guess for βββ, β̂ββ0, a first guess
for g = (g1, g2, . . . , gd2) is found by

ĝ = argming||y −Xβββ − g(Z)||22 + λ

d2∑
k=1

wj||gk||qq, (6.1)

where β̂ββ0 is inserted for βββ, ||gk||qq =
n∑
i=1

|gk(zik)|q and wj are optional weights.

With an initial guess for g, ĝ0, a first guess for βββ is found by

β̂ββ = argminβββ||y −Xβββ − g(Z)||22 +

d1∑
j=1

pλj (|βj|) , (6.2)

where ĝ0 is inserted for g.
So the estimates are obtained as follows: start with an initial guess for βββ,

β̂ββ0. Then the first guess for g, ĝ0, is found by plugging β̂ββ0 into equation (6.1).
The next guess for βββ, β̂ββ1, is found by plugging ĝ0 into equation (6.2). This
new estimate of βββ is then used to obtain a new estimate of g. The updating is
continued until convergence is reached. With appropriate penalisation terms, the
method will then perform variable selection both in the linear and the non-linear
parameters.

In Wei (2012), a method for variable selection and estimation in an additive
partially linear model with grouped linear covariates is considered, with variable
selection in the grouped linear covariates. The method developed uses splines to
approximate the functions for the non-parametric components. As before, there
are d1 linear covariates, and these are divided into k groups, G1,G2, . . . ,Gk. Let
βββGj

denote the vector of linear parameters for group j.
Let each of the non-parametric components be represented by m spline basis

functions sl(x) for l = 1, . . . ,m. Then gj(x) =
∑m

l=1 γjlsl(x) for j = 1, . . . , d2,
where d2 is the number of covariates with non-linear effect on the response. The
spline basis functions are centered for unique identification of the functions. Let γγγ
be the vector of basis coefficients for the non-linear components. Let Z′ be the de-
sign matrix for the covariates with non-linear effects on the response, represented
in the spline basis. The estimated parameters are then given by

β̂ββ, γ̂γγ = argminβββ,γγγ||y −Xβββ − Z′γγγ||22 + λ

k∑
j=1

mj||βββGj
||2,

where mj are weights, typically adjusting for group size, but can also be weights
for an adaptive scheme.

Although this was not done in Wei (2012), we see that this method can
easily be extended to include variable selection in the non-linear components

64

as well, by including the d2 groups of basis coefficients in the penalty term. Let
γγγj = (γj1, γj2, . . . , γjm) for j = 1, . . . , d2. Then consider

β̂ββ, γ̂γγ = argminβββ,γγγ||y −Xβββ − Z′γγγ||22 + λ(
k∑
j=1

mj||βββGj
||2 +

d2∑
j=1

wj||γγγj||2),

where wj are weights for the groups of basis coefficients, typically adjusting for
the number of basis coefficients. This will give variable selection in both the
linear covariates and the non-linear covariates.

6.1 Fitting the partially linear model using monotone splines
In some situations, it might be reasonable to assume that the non-linear functions
in an additive partially linear model are monotone. The ideas of monotone splines
lasso can be used to develop methods for fitting a partially linear model in which
some covariates are assumed to have a linear effect on the response, and some are
assumed to have a general monotone effect on the response. The method should
perform variable selection simultaneously in both the linear and the non-linear
variables. We assume that we know a priori which covariates have a linear effect
on the response, and which covariates have a monotone non-linear effect.

As before, let d1 be the number of covariates with a linear effect and let d2 be
the number of covariates with a non-linear monotone effect. Let X be the design
matrix for the covariates with linear effect, so X is an n × d1 matrix. Let Z be
the design matrix for the covariates with non-linear monotone effect, so Z is an
n × d2 matrix. All the covariates are transformed to the interval [0, 1] to avoid
scaling dependency in the penalty terms that are used for variable selection. Let
y be the observed responses. The model is then

Y = Xβββ +

d2∑
j=1

gj(Z
(j)) + εεε,

where Z(j) is the jth column of Z and the g-functions are unknown smooth
monotone functions. εεε is a vector of random noise. For identifiability it is assumed
that E[gj(x)] = 0 for all j. I-splines of order l with K interior knots are used to
represent the monotone functions. The number of basis splines needed to fit each
function is then m = K + l. So gj is approximated by

g̃j(x) =
m∑
k=1

γjkI
(l)
k (x),

where I(l)
k are the I-spline basis functions of order l as given in section 4.2 for

l = 2, γjk are the coefficients for covariate j in the spline basis and g̃j is a spline

65

approximation of gj. The I-spline basis functions are centered to ensure that
E[g̃j(x)] = 0 for unique identification of the functions.

Let Z′ = (Z′1, . . . ,Z
′
d2) be the design matrix for the covariates with non-linear

monotone effect on the response, represented in the I-spline basis. Z′ is then an
n× d2m matrix and Z′j is the n×m design matrix for covariate j. There is then
a grouping of the variables, where the first d1 groups are singletons, and the last
d2 groups are groups of group size m, corresponding to the m basis functions for
each covariate.

6.2 PLAMM-1
The first method for fitting our additive partially linear model that we propose is
a natural extension of the monotone splines lasso method, where the cooperative
penalty is used on all the parameters in the model. This was also mentioned (but
not carried out) in Bergersen et al. (2014). Let now X′ = (X,Z′) be the design
matrix with the linear covariates as the first d1 columns, and the monotone non-
linear covariates represented in the I-spline basis in the last d2 ·m columns. Then
X′ is an n× (d1 +d2 ·m) matrix. Let φφφ = (βββ,γγγ), where βββ is the vector with linear
parameters, and γγγ is the vector of basis coefficients. Then φφφ is a vector with
d1 + d2 ·m entries. Let Gj, j = 1, . . . , d1, d1 + 1, . . . , d1 + d2, denote the groups
of the covariates. Then φφφGj

= βj for j = 1, . . . , d1 and φφφGj
= (γj1, . . . , γjm) for

j = d1 + 1, . . . , d1 + d2. Consider the problem

φ̂φφ = argminφφφ||y −X′φφφ||22 + λ||φφφ||coop. (6.3)

For the covariates with linear effects there is only one parameter, so the corre-
sponding group consists of a singleton. The penalty term is

||φφφ||coop =

d1+d2∑
j=1

mj||φφφ+
Gj
||2 +mj||φφφ−Gj

||2,

where, as before, φφφ+
Gj

= max(φφφGj
, 0) and φφφ−Gj

= max(−φφφGj
, 0). Weights on the

penalty terms are now used, since the group sizes are not equal. The standard
group lasso weights are used so that for the linear terms, mj = 1, and for the
non-linear terms, mj =

√
m, where m is the number of I-spline basis functions

for each covariate. Note that for the linear terms

mj||φφφ+
Gj
||2 +mj||φφφ−Gj

||2 =
√
|βj|2 = |βj|,

which is the lasso penalty. So we have an L1 penalty for the linear parameters
and a cooperative lasso penalty (see section 2.4.3) for the γγγ parameters, with a
common penalty parameter λ. Solving equation (6.3) will then give us an additive
partially linear method with monotone splines lasso performing variable selection
simultaneously in the linear part and the non-linear part. We call this method

66

PLAMM-1, which stands for partially linear additive monotone method 1. As
before, λ is a tuning parameter controlling the regularisation, and can be chosen
by for instance cross-validation.

6.2.1 Properties

To study the properties of PLAMM-1, it is first assumed that each g-function
can be represented exactly as a monotone function in the basis with m I-spline
basis functions, so that

gj =
m∑
k=1

γjkI
(l)
k for j = 1, . . . , d2.

Theorem 2 in Chiquet et al. (2012) says that under appropriate conditions, the
estimators for the coefficients will be asymptotically unbiased and have the prop-
erty of exact support recovery. That is,

φ̂φφ
P−→ φφφ and P(S (φ̂φφ) = S)→ 1,

where S (φ̂φφ) is the estimated support, so it is the set of covariates selected by the
method, and S is the true support, so it is the set of the true covariates. This
means that under appropriate assumptions, the estimated parameters are con-
sistent, and the method will, with probability converging to one, select the true
model. Since the parameter estimates are consistent under these assumptions,
the linear parameters can be estimated with arbitrary small error, by increasing
n. Since we have assumed that the non-linear functions can be represented ex-
actly in the I-spline basis with m spline basis functions, these functions can also
be estimated with arbitrary small error by increasing n. The assumptions for
which these properties hold are given in (A1)-(A5) in Chiquet et al. (2012). We
have to assume that X′ and Y have finite fourth order moments and that the
covariance matrix of X′, E[X′X′T], is invertible. It is also assumed that in the
sign-incoherent groups, all the coefficients are non-zero. In addition, two variants
of the irrepresentable condition for the cooperative lasso are needed, which can
be found in (A4)-(A5) in Chiquet et al. (2012). The irrepresentable conditions
for lasso are conditions guaranteeing exact support recovery for the lasso (Zhao
and Yu, 2006).

6.2.2 Adaptive scheme for PLAMM-1

The method developed can be extended with an adaptive step. Let φ̂φφ
init

be the
initial fit obtained from solving equation (6.3). Then let

wj =

{
∞, if ||φ̂φφ

init
Gj
||2 = 0,

1/||φ̂φφ
init
Gj
||2, otherwise.

67

The adaptive solution is then

φ̂φφ = argminφφφ||y −X′φφφ||22 + λ

d1+d2∑
j=1

mjwj||φφφ+
Gj
||2 +mjwj||φφφ−Gj

||2,

where, as before, mj are weights typically balancing for group size. Standard
values are mj =

√
m for the non-linear terms and mj = 1 for the linear terms.

This adaptive method is called APLAMM-1.

6.2.3 Simulation experiment

In order to study the performances of PLAMM-1 and APLAMM-1, we perform
simulation experiments similar to the previous simulation experiments, but in a
partially linear setting. There are n observations, d1 covariates with a (poten-
tial) linear effect on the response and d2 covariates with a (potential) non-linear
effect on the response. Random variables xij and zik are drawn from a normal
distribution with mean 0.5 and standard deviation 1, truncated to [0, 1], where
j = 1, . . . , d1 and k = 1, . . . , d2. We then let

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + g1(zi1) + g2(zi2) + g3(zi3) + g4(zi4) + εi,

where εi ∼ N(0, σ2), and σ is chosen to control the signal to noise ratio (SNR).
(β1, β2, β3, β4) = (2, 2,−2,−2) and the g-functions are as in section 4.3. The
g-functions are centered, since this assumption is made about the functions for
unique identification. I-splines of order two are used to estimate the g-functions,
with six interior knots evenly distributed at the quantiles of the observed data.
The penalty parameter λ is chosen by 10-fold cross-validation.

A simple setting We start with a simple setting, where d1 = 10, d2 = 10,
n = 50 and SNR ≈ 4. There are thus six linear noise covariates and six non-linear
noise covariates. We simulate 100 times and new random variables are drawn for
each simulation. If one of the simulations results in an estimated function which
is not monotone, then the results for this one simulation are discarded. The
results for PLAMM-1 and APLAMM-1 with the standard

√
m group weights on

the penalty for the non-linear groups and weights 1 on the penalty for the linear
parameters, are given in Table 13. We see from Table 13 that the true model is
captured well in this setting. We observe the clear benefit in the adaptive step
in that the number of false covariates decreases. The estimation errors for the
functions are quite similar for PLAMM-1 and APLAMM-1, but the estimated
linear parameters are closer to their true values with the adaptive scheme. Note
that for g2, β2, β3 and β4, it seems like APLAMM-1 has selected the corresponding
covariates in more simulations than PLAMM-1, which is impossible. This is due
to the fact that the results for some simulations for APLAMM-1 are discarded,
since they did not provide a monotone fit.

68

From Table 13 we see that the methods select more of the non-linear covari-
ates than the linear covariates, both true and false. We also see that the estimates
for the linear parameters are way too small (in absolute value). Since there is a
penalty on the size of the linear parameters, we do expect them to be shrunken,
but these estimated parameters are very small. When we performed the simu-
lation, 12% of the simulations resulted in a non-monotone fit for one or more of
the non-linear covariates with PLAMM-1, while for the adaptive method, 24% of
the simulations resulted in a non-monotone fit for one or more of the non-linear
covariates. This indicates that the penalty for the non-linear terms is too small in
comparison to the penalty for the linear terms. We therefore investigate whether
a different penalty scheme will give us a more fair balance between the linear and
the non-linear covariates. This is done by adjusting the weights in the penalty
term. Remember that the penalty term is given by

||φφφ||coop =

d1+d2∑
j=1

mj||φφφ+
Gj
||2 +mj||φφφ−Gj

||2.

We let the weights mj for the penalty on the linear covariates be 1. We
simulate with the weights for the non-linear penalty terms being m0.6,m0.7,m0.8

andm0.9, keeping the linear weights at 1. Note thatm0.5 was what we used above.
The results for PLAMM-1 and APLAMM-1 with group weights m0.6,m0.7,m0.8

and m0.9 are given in Appendix B, in Tables B1, B2, B3 and B4, respectively.
From Table B1, we see that with weights m0.6 on the non-linear penalties, the
methods select more linear covariates in comparison to the results with

√
m

given in Table 13, but we still see that the methods seem to favour the non-
linear covariates since they select more false non-linear covariates than false linear
covariates. The estimated linear parameters are closer to the truth, but they are
still too small. From Table B2 where we have weights m0.7, the favouring of
the non-linear covariates is no longer that clear, even though we have some more
false non-linear covariates than false linear covariates. We see that less of the true
non-linear covariates are selected than the true linear covariates. The estimated
linear parameters are larger than they were with weights m0.6. With penalty
weight m0.7, 6% of the simulations with PLAMM-1 resulted in one or more non-
monotone fits, while 16% of the simulations with APLAMM-1 resulted in a non-
monotone fit. From Table B3, we see that when we have weights m0.8 on the
non-linear penalty terms, the methods select a little more false linear covariates
than false non-linear covariates, and more true linear covariates than true non-
linear covariates. The estimates of the linear parameters are even better than
they were for m0.7. The number of simulations resulting in a non-monotone fit
was 5% for PLAMM-1 and 14% for APLAMM-1. From Table B4 we see that with
weights m0.9 for the non-linear penalty terms, the linear covariates are favoured
even more than they were with m0.8. We therefore conclude that weights m0.7

or m0.8 give the best balance among the linear and non-linear covariates in this

69

simulation experiment. Since we want to avoid a non-monotone fit, we choose to
use m0.8 in all the following simulation experiments.

Looking closer at the results from the simulation with weights m0.8 in Table
B3, we see that both methods perform well. With APLAMM-1, we get a large
reduction in the false positives, and the estimated linear parameters are closer to
their true values than for PLAMM-1. The mean squared errors for the estimated
functions are slightly larger for APLAMM-1, and APLAMM-1 has more problems
in selecting g1. However, due to the substantial improvement in the false positives,
we conclude that APLAMM-1 performed better in this setting than PLAMM-1,
so we conclude that there is a benefit in using an adaptive scheme.

70

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 0.99 (0.11) 0.99 (0.11) 1.0 (0) 1.0 (0)
APLAMM-1 0.99 (0.11) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 3.97 (0.18) 3.54 (1.49)
APLAMM-1 3.99 (0.11) 0.39 (0.87)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.020 (0.019) 0.025 (0.022) 0.035 (0.021) 0.033 (0.029)
APLAMM-1 0.024 (0.025) 0.028 (0.026) 0.032 (0.020) 0.033 (0.028)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 0.99 (0.11) 0.99 (0.11) 0.98 (0.15) 0.98 (0.15)
APLAMM-1 0.99 (0.11) 1.0 (0) 0.99 (0.11) 1.0 (0)

TP FP
PLAMM-1 3.93 (0.45) 1.24 (1.11)
APLAMM-1 3.97 (0.23) 0.092 (0.29)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.51 (0.30) 1.55 (0.35) −1.54 (0.34) −1.56 (0.32)
APLAMM-1 1.67 (0.32) 1.68 (0.37) −1.65 (0.36) −1.68 (0.35)

Table 13: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.2.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. Standard deviations are
given in parenthesis.

71

6.3 PLAMM-2
Since we saw that the PLAMM-1 method developed in section 6.2 had trouble
with the balance between the penalties for the non-linear covariates and the
linear covariates, we develop a method for fitting the additive partially linear
model with monotone splines lasso using two penalty terms with different penalty
parameters, so we have one penalisation term for the linear coefficients and one
penalisation term for the non-linear monotone basis coefficients. We call this
method PLAMM-2 (partially linear additive monotone method 2), both because
it is our second method (method 2), and because it has two penalty terms instead
of one. As before, let βββ be the linear parameters corresponding to X and let γγγ be
the vector of basis coefficients corresponding to Z′. To perform variable selection
in both the linear and the monotone non-linear terms, we use an L1 penalty for
the linear parameters and a cooperative lasso penalty (see section 2.4.3) for the
γγγ parameters. If the linear variables are grouped, a group lasso penalty term on
the linear parameters can be used instead. We want to solve

β̂ββ, γ̂γγ = argminβββ,γγγ||y −Xβββ − Z′γγγ||22 + λ1||βββ||1 + λ2||γγγ||coop.

This is done in a similar way as in Du et al. (2012), as explained in the beginning
of this section. Start with an initial guess for βββ, and denote it by β̂ββ

(0)
. A first

estimate for γγγ, γ̂γγ(1), is then found by

γ̂γγ(1) = argminγγγ||y −Xβ̂ββ
(0)
− Z′γγγ||22 + λ2||γγγ||coop.

This estimate for γγγ is then used to find a first estimate for βββ, β̂ββ
(1)
, by

β̂ββ
(1)

= argminβββ||y −Xβββ − Z′γ̂γγ(1)||22 + λ1||βββ||1.

We continue updating using β̂ββ
(k)

to find γ̂γγ(k+1) by

γ̂γγ(k+1) = argminγγγ||y −Xβ̂ββ
(k)
− Z′γγγ||22 + λ2||γγγ||coop.

Then γ̂γγ(k+1) is used to find β̂ββ
(k+1)

by

β̂ββ
(k+1)

= argminβββ||y −Xβββ − Z′γ̂γγ(k+1)||22 + λ1||βββ||1.

This is repeated until convergence is reached in both β̂ββ and γ̂γγ, in terms of change in
squared distance between the current and the previous estimate. So we continue
until ||β̂ββ

(k+1)
− β̂ββ

(k)
||22 < εt and ||γ̂γγ(k+1) − γ̂γγ(k)||22 < εt for some tolerance level εt.

The penalty parameters λ1 and λ2 are computed for each iteration, for instance
by cross-validation.

72

6.3.1 Convergence of PLAMM-2

We investigate the convergence property of PLAMM-2, where the penalty pa-
rameters λ1 and λ2 are treated as fixed constants. Our algorithm follows the
same idea as von Neumann’s alternating projection algorithm, introduced in von
Neumann (1950), which is also used in for instance Xu and Zikatanov (2002).
Different applications of the algorithm of alternating projections are given in
Deutsch (1992). In von Neumann (1950), it is shown that if we have an algo-
rithm where we perform alternating projections onto two closed linear spaces,
then the result will converge to the projection onto the intersection of the two
closed linear spaces. The result is given in Theorem 13.7 on p. 55 in von Neumann
(1950). The theorem is restated here without proof

Theorem 6.1 (von Neumann (1950)). Let PA denote the projection operator onto
the set A. Assume that M and N are closed linear subspaces. If E = PM and
F = PN , then the sequence Σ1 of operators E,FE,EFE, FEFE, . . . has a limit
G. The sequence Σ2: F,EF, FEF, . . . has the same limit G, and G = PM∩N .

Let M be the column space of (X,Z′), under the constraint

||βββ||1 ≤ t1,

for some t1 > 0, and γγγ′ = γγγ, where βββ are the coefficients for the possible linear
combinations of the columns of X and γγγ′ are the coefficients for the possible linear
combinations of the columns of Z′. γγγ′ is a constant vector in M , so that when
projecting onto M , γγγ′ is not changed.

Projecting onto M then gives the solution to

argminβββ||y −Xβββ − Z′γγγ||22,

under the constraint
||βββ||1 ≤ t1,

for some t1 > 0, where γγγ is any given vector in Rd2·m, satisfying ||γγγ||coop ≤ t2.
Correspondingly, N is the column space of (X,Z′), where the coefficients for

the linear combinations of the columns of X are restricted to being held constant,
and the coefficients for the linear combinations of the columns of Z′ are restricted
to

||γγγ||coop ≤ t2,

for some t2 > 0.
Projecting onto N thus gives the solution to

argminγγγ||y −Xβββ − Z′γγγ||22,

under the constraint
||γγγ||coop ≤ t2,

73

for some t2 > 0, where βββ is any given vector in Rd1 , satisfying ||βββ||1 ≤ t1.
The projection onto the intersectionM∩N is thus the solution to our problem

β̂ββ, γ̂γγ = argminβββ,γγγ||y −Xβββ − Z′γγγ||22 + λ1||βββ||1 + λ2||γγγ||coop, (6.4)

where there is a one-to-one correspondence between λ1 and t1 and a one-to-one
correspondence between λ2 and t2. This is seen from the fact that the intersection
M ∩N contains the column space of (X,Z′) with linear combination coefficients
(βββ,γγγ)′, where the linear part βββ is restricted by ||βββ||1 ≤ t1 and the non-linear part
γγγ is restricted by ||γγγ||coop ≤ t2, and the solution we are seeking is the projection
onto this set.

If the setsM and N satisfied the assumptions of Theorem 6.1, we would know
from Theorem 6.1 that our iterative method converges to the desired solution.
However, to use the theorem, M and N need to be linear, and it is easy to see
that they are not: Let a1 = (βββ1, γγγ1)T be an element in M such that ||βββ1||1 = t1.
For M to be linear, it needs to be closed under scalar multiplication, so that for
any c ∈ R, ca1 is also an element in M . Let c be any scalar larger than 1, so
c > 1, and let a2 = ca1. Denote the linear parameters of a2 by βββ2. Then we have
that

||βββ2||1 =

d1∑
j=1

|βββ2j| = c

d1∑
j=1

|βββ1j| = c||βββ1||1 = ct1 > t1,

so a2 6∈ M , and M is thus not linear. Showing that N is not linear can be done
in exactly the same way.

In Bauschke and Borwein (1993), convergence of the von Neumann algorithm
for two arbitrary closed convex subsets of a Hilbert space is considered. Under the
assumption that H is a Hilbert space andM and N are closed, convex non-empty
subsets of H, Corollary 3.4 in Bauschke and Borwein (1993) gives us conditions
under which the von Neumann algorithm converges. We will restate Corollary
3.4 here without proof, as a theorem.

Theorem 6.2 (Bauschke and Borwein (1993)). If H is finite-dimensional and
the interior of M ∩N 6= ∅, then the alternating von Neumann sequence converges
(in norm).

Let H = Rd1+d2·m. Then H is finite-dimensional, since d1 and d2 are finite. It
is also a Hilbert space, since Rn is a Hilbert space for any finite n. We obviously
have that both M and N are subsets of H. Since M only has restrictions on the
linear parameters, and N only has restrictions on the non-linear parameters, the
interior of the intersection betweenM and N is clearly not empty, soM ∩N 6= ∅.
If we can show that M and N are closed, convex sets, Theorem 6.2 tells us that
we have convergence of our iterative algorithm. We start by giving the definition
of a convex set. The definition is as in Dahl (2009), section 1.4.

Definition 6.1. A set C ⊆ Rn is convex if (1−α)a+αb ∈ C whenever a,b ∈ C
and α ∈ [0, 1].

74

Lemma 6.3. M is a closed, convex set.

Proof. M contains an arbitrary constant linear combination of the column space
of Z′, given by the basis coefficients γγγ ∈ Rd2·m, satisfying ||γγγ||coop ≤ t2 and the
linear combinations of the column space of X with basis coefficients βββ, satisfying
||βββ||1 ≤ t1. Since the restriction area for βββ is closed and the set of possible values
for γγγ is closed, M is a closed set. It remains to show that M is convex. Let a1

and a2 be two elements in M . Denote the linear parts of a1 and a2 by βββ1 and βββ2

and their non-linear parts by γγγ1 and γγγ2, respectively. Let a = (1 − α)a1 + αa2,
for some α ∈ [0, 1]. If we can show that a ∈M , then we know that M is convex.
Denote the linear part of a by βββ and the non-linear part of a by γγγ. Then we have
that βββ = (1 − α)βββ1 + αβββ2 ∈ Rd1 and γγγ = (1 − α)γγγ1 + αγγγ2 ∈ Rd2·m. We need to
show that ||βββ||1 ≤ t1 and ||γγγ||coop ≤ t2. We have

||βββ||1 = ||(1− α)βββ1 + αβββ2||1 ≤ (1− α)||βββ1||1 + α||βββ2||1 ≤ (1− α)t1 + αt1 = t1,

and

||γγγ||coop = ||(1−α)γγγ1+αγγγ2||coop ≤ (1−α)||γγγ1||coop+α||γγγ2||coop ≤ (1−α)t2+αt2 = t2,

where we have used the triangle inequality. Hence, we have that a ∈ M , and M
is convex.

Lemma 6.4. N is a closed, convex set.

The proof of Lemma 6.4 is identical to the proof of Lemma 6.3. We thus
omit it. We now have all the tools we need to prove that our iterative procedure
converges.

Theorem 6.5 (Convergence of PLAMM-2). Let d1 and d2 be finite. Then
PLAMM-2 converges to the solution of equation (6.4).

Proof. The result follows directly from Theorem 6.2, using Lemma 6.3 and Lemma
6.4. Theorem 6.2 says that the method converges if the interior of M ∩N is non-
empty, and M and N are both closed and convex sets. The interior of M ∩N is
obviously non-empty, as also noted above, since it contains all vectors with the lin-
ear part βββ satisfying ||βββ||1 ≤ t1 and the non-linear part γγγ satisfying ||γγγ||coop ≤ t2.
From Lemma 6.3 we have that M is closed and convex, and from Lemma 6.4 we
have that N is closed and convex. So we can apply Theorem 6.2, and we thus
have that our method converges to the solution of equation (6.4).

6.3.2 Adaptive scheme for PLAMM-2

PLAMM-2 can easily be extended with an adaptive step, in the same manner as
the other adaptive methods. Let β̂ββ

init
and γ̂γγinit be the initial parameter estimates

75

from equation (6.4). Then let

wj =

{
∞, if |β̂init

j | = 0,

1/|β̂init
j |, otherwise,

for j = 1, . . . , d1 and

wj =

{
∞, if ||γ̂γγinit

Gj
||2 = 0,

1/||γ̂γγinit
Gj
||2, otherwise,

for j = d1 + 1, . . . , d1 + d2, where γγγGj
= (γj1, . . . , γjm), the m basis coefficients

corresponding to each non-linear covariate j. We then estimate the parameters
as the solution to

β̂ββ, γ̂γγ = argminβββ,γγγ||y−Xβββ−Z′γγγ||22 +λ1

d1∑
j=1

wj|βj|+λ2

d1+d2∑
j=d1+1

wj||γγγ+
Gj
||2 +wj||γγγ−Gj

||2.

This is solved by an iterative scheme, similar to the non-adaptive method. We
use β̂ββ

(k)
to find γ̂γγ(k+1) by

γ̂γγ(k+1) = argminγγγ||y −Xβ̂ββ
(k)
− Z′γγγ||22 + λ2

d1+d2∑
j=d1+1

wj||γγγ+
Gj
||2 + wj||γγγ−Gj

||2.

Then γ̂γγ(k+1) is used to find β̂ββ
(k+1)

by

β̂ββ
(k+1)

= argminβββ||y −Xβββ − Z′γ̂γγ(k+1)||22 + λ1

d1∑
j=1

wj|βj|.

As before, start with an initial guess for βββ, and continue updating until conver-
gence is reached in both the linear and the non-linear parameters. The penalty
parameters λ1 and λ2 are tuning parameters computed by for instance cross-
validation. This adaptive extension is called APLAMM-2.

6.3.3 Simulation experiment

To compare PLAMM-2 to the PLAMM-1 method developed in section 6.2, we
perform a simulation experiment with the same set-up as in section 6.2.3, using
PLAMM-2 and APLAMM-2. So we have d1 = 10, d2 = 10 and n = 50. Our
initial guess for βββ is 0. We have an SNR of 4 and independent covariates. The
tuning parameters λ1 and λ2 for PLAMM-2 and APLAMM-2 are chosen by 10-
fold cross-validation. The results with PLAMM-2 and APLAMM-2 are given in
Table 14. We see that with PLAMM-2, the true model is captured quite well,
but it selects quite many false linear positives. For APLAMM-2, there are less

76

false positives, but the method has problems selecting g1. There is a benefit
in estimation in the adaptive step, both in the mean squared errors and the
estimated linear parameters, but due to the relatively large reduction in true
non-linear positives, there is no clear benefit in the adaptive step.

Comparing Table 14 to Table B3 and Table B4, which shows the results for
PLAMM-1 and APLAMM-1 where the weights on the non-linear penalty terms
are m0.8 and m0.9, respectively, we see that PLAMM-2 penalises the non-linear
covariates even more since for PLAMM-2, the number of false linear covariates
is larger. As noted, the selection of the true non-linear covariates is not so good
for APLAMM-2. So in this scenario, APLAMM-1 with weights m0.8 on the non-
linear groups performed better in recovering the true model. The estimated linear
parameters are closer to the true parameters for PLAMM-2 than for PLAMM-1,
but the mean squared errors for the fitted functions are larger. Note however
that with PLAMM-2, we get no non-monotone fits, and for APLAMM-2, only
3% of the simulations gave one or more non-monotone fits for the non-linear
functions. This is a lot better than for PLAMM-1 with weights m0.8, where 5%
of the simulations resulted in one or more non-monotone fits, and 14% resulted
in one of more non-monotone fits for the adaptive method. Note also that m0.8

was chosen because it had the best performance in this particular setting, so the
comparison is not completely fair.

We also try increasing n to n = 80 and see if the methods then perform
better. The results with n = 80 and weights m0.8 on the non-linear penalty
terms for PLAMM-1 and APLAMM-1 are given in Table 15. The results for
PLAMM-2 and APLAMM-2 with n = 80 are given in Table 16. It is seen from
Table 15 that with PLAMM-1, the true model is captured well now. All the
true covariates are selected, but we have some false covariates. With APLAMM-
1, we also have that all the true covariates are selected, but we have almost
no false covariates. We get small estimation errors for the fitted functions with
both methods, but the estimated linear covariates are a bit too small. Again, we
do shrink the parameters with the penalty, but the estimated linear parameters
seem to be shrunken more than the estimated functions, since the mean squared
errors for the functions are not that large. The estimated linear parameters are
closer to the true value for APLAMM-1 than for PLAMM-1. We conclude that
APLAMM-1 clearly performs better than PLAMM-1 in this setting. From Table
16 we see that PLAMM-2 also captures the true model well, but it has more
false linear covariates. The estimation errors for the fitted functions are larger
for PLAMM-2 than for PLAMM-1, but the estimated linear coefficients are much
closer to the true parameter values with PLAMM-2. APLAMM-2 has larger mean
squared errors for the fitted functions than APLAMM-1, but the estimated linear
parameters are closer to the true values for APLAMM-2. However, APLAMM-2
has more false covariates, and we therefore conclude that APLAMM-1 performed
the best also in this setting. For PLAMM-2, we also see that there is a clear
benefit in the adaptive step in this setting. The number of true positives is almost

77

Non-linear

Selection

g1 g2 g3 g4

PLAMM-2 0.97 (0.17) 0.99 (0.10) 1.0 (0) 1.0 (0)
APLAMM-2 0.67 (0.47) 0.90 (0.31) 0.99 (0.10) 0.97 (0.17)

TP FP
PLAMM-2 3.96 (0.20) 0.43 (0.90)
APLAMM-2 3.53 (0.72) 0.010 (0.10)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-2 0.061 (0.038) 0.069 (0.049) 0.089 (0.051) 0.086 (0.052)
APLAMM-2 0.045 (0.031) 0.061 (0.045) 0.069 (0.052) 0.085 (0.065)

Linear

Selection

β1 β2 β3 β4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 3.50 (1.90)
APLAMM-2 4.0 (0) 1.57 (1.30)

Estimated parameters

β1 β2 β3 β4

PLAMM-2 1.77 (0.37) 1.79 (0.40) −1.78 (0.38) −1.81 (0.38)
APLAMM-2 1.89 (0.33) 1.93 (0.40) −1.92 (0.40) −1.94 (0.37)

Table 14: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.3.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. Standard deviations are
given in parenthesis.

78

the same, while there is a large reduction in false positives. The estimated mean
squared errors are slightly smaller with APLAMM-2, and the estimated linear
parameters are closer to the true values. For PLAMM-1, 2% of the simulations
gave a non-monotone fit, while 6% of the simulations with APLAMM-1 resulted
in a non-monotone fit. For PLAMM-2, none of the simulations gave a non-
monotone fit, while for APLAMM-2, 3% of the simulations gave a non-monotone
fit. So all the methods perform well in this simulation setting.

79

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 1.38 (1.30)
APLAMM-1 4.0 (0) 0.011 (0.10)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.017 (0.015) 0.018 (0.015) 0.031 (0.017) 0.021 (0.012)
APLAMM-1 0.022 (0.021) 0.018 (0.016) 0.024 (0.015) 0.024 (0.013)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 1.69 (1.18)
APLAMM-1 4.0 (0) 0.032 (0.18)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.75 (0.20) 1.71 (0.22) −1.76 (0.21) −1.70 (0.21)
APLAMM-1 1.86 (0.20) 1.80 (0.23) −1.86 (0.21) −1.79 (0.23)

Table 15: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.3.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 80. The weights for the penalties
on the non-linear groups are m0.8. Standard deviations are given in parenthesis.

80

Non-linear

Selection

g1 g2 g3 g4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 0.99 (0.10) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 0.38 (0.75)
APLAMM-2 3.99 (0.10) 0 (0)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-2 0.033 (0.023) 0.030 (0.019) 0.051 (0.023) 0.043 (0.022)
APLAMM-2 0.040 (0.032) 0.024 (0.020) 0.032 (0.022) 0.041 (0.023)

Linear

Selection

β1 β2 β3 β4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 3.21 (1.58)
APLAMM-2 4.0 (0) 1.34 (1.39)

Estimated parameters

β1 β2 β3 β4

PLAMM-2 1.85 (0.23) 1.87 (0.24) −1.87 (0.23) −1.81 (0.24)
APLAMM-2 1.96 (0.22) 1.99 (0.23) −1.97 (0.22) −1.93 (0.23)

Table 16: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.3.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 80. Standard deviations are
given in parenthesis.

81

6.4 Comparison with scam
In the simple setting with d1 = 10, d2 = 10 and n = 50, it is possible to
compare with the scam method (see section 3.2.2). We do not compare with
the scar method, since we would have to put constraints on the non-linear noise
covariates, and we do not know what constraints are reasonable for these non-
linear noise covariates. The scam method is a method for fitting a regression
model with different shape constraints on the functions. We thus let the first d1

have a linear constraint, and for the d2 covariates with non-linear monotone effect,
we give the monotonicity directions for the first four true covariates, and we let
the remaining covariates have a general non-linear effect, since we do not know
which monotonicity direction to put on the noise covariates in the simulation
experiment. The scam procedure uses B-spline smoothing, so one would generally
use quite many interior knots and smooth the fitted functions. However, since
we then quickly get into trouble with having more parameters than observations,
we use four interior knots to estimate all the non-linear functions. For scam, we
report the variables as selected if they are significant at level 0.05.

The results with scam are given in Table 17. Comparing Table 17 to Tables
B3 and 14, we see that scam is good at selecting the true linear covariates, as
were all the other methods. Only APLAMM-1 with weights m0.8 selected fewer
false linear positives, but the scam method selects quite many non-linear false
positives compared to the other methods. Only PLAMM-1 has more false non-
linear positives. Note that the selection criterion for scam is not data driven,
and the comparison is thus not completely fair. Scam selects more true positives
than APLAMM-1 (which we in the previous section concluded performed best in
variable selection out of the other four methods in this simulation experiment),
but it selects more false positives, both linear and non-linear. Since capturing
the true covariates is often more important than avoiding false covariates, we
conclude that scam performed slightly better than APLAMM-1 in selection.

In estimation of the functions, we see that scam has smaller estimation errors
than PLAMM-2 and APLAMM-2, but larger estimation errors than PLAMM-1
and APLAMM-1. However, considering the estimated linear parameters, scam
outperforms all the other methods. We conclude that in capturing and estimating
the true model, scam seems to perform best in this lower dimensional setting, but
again note that scam was given more information than the other methods, since
it was provided the monotonicity directions of the four functions with monotone
effect on the response.

6.4.1 Prediction performance

In order to compare the methods, we also consider the prediction performances
in the setting n = 50, d1 = 10 and d2 = 10 for the different methods. This is done
in a similar manner as in section 5.2. We generate 500 new observations from the

82

Scam method for the additive partially linear model

Selection
g1 g2 g3 g4

0.94 (0.24) 1.0 (0) 1.0 (0) 1.0 (0)

β1 β2 β3 β4

1.0 (0) 1.0 (0) 1.0 (0) 0.99 (0.10)

Non-linear TP Non-linear FP Linear TP Linear FP
3.94 (0.24) 0.64 (0.89) 3.99 (0.10) 0.48 (0.75)

Estimation
g1 g2 g3 g4

0.035 (0.021) 0.026 (0.022) 0.087 (0.043) 0.045 (0.028)

Estimated parameters

β1 β2 β3 β4

1.97 (0.41) 2.00 (0.42) −2.02 (0.40) −1.98 (0.44)

Table 17: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.4 with the scam method, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50.
Standard deviations are given in parenthesis.

83

Prediction error
PLAMM-1 APLAMM-1 PLAMM-2
0.49 (0.12) 0.48 (0.18) 0.74 (0.20)

APLAMM-2 Scam
0.77 (0.34) 0.77 (0.26)

Table 18: Prediction error for the different methods when n = 50, d1 = 10,
d2 = 10 and SNR ≈ 4 for the simulation considered in section 6.4.1. Standard
deviations are given in parenthesis.

same distribution as the data used to fit the model with the different methods,
and then we estimate the mean prediction error of these 500 observations. We
repeat this 100 times, and we report the mean prediction error of these 100
repetitions. The estimated prediction errors for the different methods are given
in Table 18. The predictions with scam are based on the full fitted model, and not
only the significant variables. We see that the prediction error for APLAMM-1
is the smallest among all the methods, but the prediction error for PLAMM-1
is almost as good. The prediction errors for the other methods are a lot larger.
The scam method and APLAMM-2 obtained the same prediction error, while
PLAMM-2 obtained a slightly smaller prediction error.

We also record the prediction errors in the setting where we increase the
number of observations to n = 80. Here we use six interior knots for the non-
linear functions with scam, since we have more observations. The results are
given in Table 19. We see that APLAMM-1 performs the best also in this setting,
followed by PLAMM-1. APLAMM-2 performs better than scam, and scam has
a smaller prediction error than PLAMM-2. So PLAMM-1 and APLAMM-1 have
smaller prediction errors than the scam method, while PLAMM-2 and APLAMM-
2 perform roughly equally well as the scam method in prediction. Note that the
improvements on prediction error in the adaptive step are not large in this setting,
for neither PLAMM-1 nor PLAMM-2.

84

Prediction error
PLAMM-1 APLAMM-1 PLAMM-2
0.36 (0.066) 0.34 (0.071) 0.43 (0.084)

APLAMM-2 Scam
0.40 (0.084) 0.42 (0.099)

Table 19: Prediction error for the different methods when n = 80, d1 = 10,
d2 = 10 and SNR ≈ 4 for the simulation considered in section 6.4.1. Standard
deviations are given in parenthesis.

85

6.5 High dimensional setting
In order to study the performances of PLAMM-1 and PLAMM-2 in the high di-
mensional data setting, we perform simulation experiments in a more complicated
situation, with more covariates with no effect on the response, having p >> n.
Let d1 = 500, d2 = 500, n = 50 and SNR ≈ 4.

The true underlying model is the same as before, so we have 496 linear noise
covariates and 496 non-linear noise covariates. We simulate 100 times drawing
new random variables for each simulation. All the tuning parameters are chosen
by 10-fold cross-validation. We record the number of true covariates selected
(true positives) and the number of false covariates selected (false positives). If
one of the fitted functions from a simulation is non-monotone, the results from
this simulation is discarded. The mean squared error from the estimated function
to the true function in the observed points and the mean of the estimated linear
coefficients are reported. The results with PLAMM-1 and APLAMM-1 for this
simulation are given in Table 20. Here the weights

√
m is used on the penalty

for the non-linear groups. We see from Table 20 that the selection performance
is quite bad, especially when it comes to selecting the linear covariates. The
methods select almost no linear covariates, neither true nor false. They are
better at selecting the non-linear covariates, but also here the methods are far
from selecting the true model. The estimation errors are quite good for g1 and
g2 both for PLAMM-1 and APLAMM-1. For g3 and g4, the estimation errors are
very large. The estimation error is smaller for APLAMM-1 than for PLAMM-
1. We see that the estimated linear covariates are a lot smaller (in absolute
value) than the truth for PLAMM-1. The estimated linear parameters are slightly
better for the APLAMM-1, but note that these estimates are not based on many
simulations, since the linear covariates were rarely selected.

86

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 0.20 (0.40) 0.35 (0.48) 0.50 (0.50) 0.60 (0.49)
APLAMM-1 0.11 (0.32) 0.22 (0.42) 0.41 (0.49) 0.49 (0.50)

TP FP
PLAMM-1 1.65 (1.24) 8.0 (9.51)
APLAMM-1 1.23 (1.11) 2.6 (3.78)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.12 (0.062) 0.15 (0.097) 0.29 (0.16) 0.24 (0.13)
APLAMM-1 0.081 (0.053) 0.069 (0.062) 0.19 (0.13) 0.12 (0.079)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 0.06 (0.24) 0.03 (0.17) 0.08 (0.27) 0.04 (0.20)
APLAMM-1 0.011 (0.11) 0.022 (0.15) 0 (0) 0.011 (0.11)

TP FP
PLAMM-1 0.21 (0.52) 0.18 (0.57)
APLAMM-1 0.044 (0.26) 0.022 (0.15)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 0.16 (0.15) 0.57 (0.42) −0.26 (0.37) −0.27 (0.40)
APLAMM-1 0.71 0.63 NA −2.17

Table 20: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5, where SNR ≈ 4, d1 = 500, d2 = 500 and n = 50. Standard deviations are
given in parenthesis.

87

Choice of weights We saw in the simulation experiment that PLAMM-1 se-
lected almost no linear covariates. Therefore, the weights must be imbalanced.
To compensate for this, we need to penalise the non-linear terms even more in
comparison to the linear terms. This was also noted in section 6.2.3, where we
concluded that weights m0.8 on the non-linear penalty terms gave a good balance
in the simulation setting considered.

As noted earlier, the standard group lasso penalty (Yuan and Lin, 2006)
multiplies the parameter norms with the square root of the group size to penalise
the larger groups more. However, in standard group lasso, there is only one
parameter for each covariate, while there are here m parameters for each non-
linear covariate. These parameters have additive effects, since the I-spline basis
functions of order two, I2

k(x), take the value 1 for x > tk+2. This may be the
reason why we do not get fair penalty balance, and why it was not possible for us
to find similar additive partially linear methods with variable selection by using
groups of spline basis functions in the literature.

In Simon and Tibshirani (2012), they argue that when there are correlated
features within a group (as with I-splines), a different choice of penalty is better.
They claim that the standard penalty used in Yuan and Lin (2006) is designed
for uncorrelated features with orthonormal design matrices, even though a lot of
the applications have been used for general problems with correlated features.
Simon and Tibshirani (2012) introduce the standardised group lasso, where the
penalty is given by

J∑
j=1

|Gj|0.5||X(j)βββ(j)||2,

where J is the number of groups, βββ(j) is the vector of parameters corresponding
to group j and X(j) is the design matrix for the covariates in group j.

Unfortunately, it is not possible to use this penalty with the currently availa-
ble implementation of cooperative lasso which is used for the implementation of
monotone splines lasso, since it takes as input a vector of weights with one scalar
weight for each group, and it is not in general possible to write ||X(j)βββ(j)||2 as
w||βββ(j)||2 for any w ∈ R.

Solving the group lasso problem by first orthonormalising the design matrices
within each group, running the standard group lasso and then transforming back
to the coefficients in the original basis turns out to give the same results as
the standardised lasso when the group sizes are smaller than n for every group.
However, if we use this approach and orthonormalise the design matrix for one of
the covariates represented in the I-spline basis, then the basis functions would no
longer be monotone, and using the cooperative lasso penalty will no longer solve
our problem. We thus stick with our ad hoc penalisation scheme with m0.8.

The results for PLAMM-1 and APLAMM-1 when n = 50, d1 = 500, d2 = 500
and mj = m0.8 for the non-linear groups of covariates, where again m is the
number of I-spline basis functions, and mj = 1 for the linear covariates, are given

88

in Table 21. Comparing Table 20 to Table 21, we see that with weights that
penalise the non-linear covariates more, we get a huge improvement. With this
weighting scheme, the methods select a lot more of the linear covariates, and
estimate them better. We also have slightly more true non-linear covariates, and
less false non-linear covariates. The mean squared errors for the fitted functions
for the non-linear covariates are quite similar for PLAMM-1, while for APLAMM-
1, the estimation errors are somewhat larger when we penalise the non-linear
covariates more. We see that the balance between the linear and the non-linear
covariates is more fair, but it may seem like the methods now favour the linear
covariates a little more than the non-linear covariates. Even though the methods
perform much better in selection with this weighting scheme, they still perform
quite badly. They are not close to selecting the true underlying model.

PLAMM-2 The results for PLAMM-2 and APLAMM-2 in this high dimen-
sional setting are given in Table 22. We see from Table 22 that PLAMM-2 and
APLAMM-2 favour the linear covariates over the non-linear covariates, since they
include more of the false linear covariates. This coincides with what we have seen
in the previous simulation experiments. Since including a false covariate with a
non-linear effect costs more in terms of degrees of freedom, it is desirable that
the method rather selects a false linear covariate, than a false non-linear covari-
ate. Comparing Table 22 to Table 20, we see that PLAMM-2 and APLAMM-2
perform much better in selection. They select a lot more of the linear covariates
and estimates them better. PLAMM-2 does however have slightly larger mean
squared errors for the non-linear functions than PLAMM-1, and APLAMM-2 has
slightly larger mean squared errors for the non-linear functions than APLAMM-1,
but the differences are not big. Even though they perform better than PLAMM-1
and APLAMM-1, they still perform quite badly. They are not close to selecting
the true underlying model.

Comparing Table 22 to Table 21, we see that the performances of PLAMM-
2 and APLAMM-2 and the performances of PLAMM-1 and APLAMM-1, re-
spectively, with weights m0.8 on the non-linear penalty terms are quite similar.
PLAMM-2 selects more true non-linear covariates, more false covariates, both lin-
ear and non-linear, and less true linear covariates than PLAMM-1. The estima-
tion errors for the fitted non-linear functions and the estimated linear parameters
are quite similar. Comparing APLAMM-2 to APLAMM-1 with weights m0.8, we
see that APLAMM-2 selects more true non-linear covariates, more true linear co-
variates and more false covariates, both linear and non-linear. The mean squared
errors for the fitted functions are quite similar, but the linear parameters are es-
timated a little better with APLAMM-1. It is not clear that there is a benefit in
the adaptive step for PLAMM-2 here. APLAMM-2 has fewer true positives, but
the number of false positives decreases substantially. The estimation is better for
APLAMM-2 than for PLAMM-2. With APLAMM-2, only 9% of the simulations

89

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 0.18 (0.39) 0.41 (0.49) 0.51 (0.50) 0.59 (0.49)
APLAMM-1 0.11 (0.32) 0.29 (0.46) 0.38 (0.49) 0.47 (0.50)

TP FP
PLAMM-1 1.69 (1.29) 4.66 (4.88)
APLAMM-1 1.25 (1.20) 1.89 (2.29)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.11 (0.067) 0.17 (0.10) 0.28 (0.15) 0.29 (0.15)
APLAMM-1 0.084 (0.037) 0.13 (0.094) 0.19 (0.12) 0.19 (0.13)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 0.47 (0.50) 0.48 (0.50) 0.48 (0.50) 0.52 (0.50)
APLAMM-1 0.38 (0.49) 0.38 (0.49) 0.39 (0.49) 0.46 (0.50)

TP FP
PLAMM-1 1.95 (1.33) 12.08 (9.60)
APLAMM-1 1.61 (1.30) 6.53 (6.22)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 0.80 (0.59) 0.84 (0.55) −0.89 (0.55) −0.76 (0.49)
APLAMM-1 1.35 (0.66) 1.31 (0.68) −1.44 (0.57) −1.26 (0.66)

Table 21: Ratio of the number of times the different covariates are selected,
ratio of the total true and false covariates selected, mean squared errors for the
estimated functions and estimated linear coefficients in the simulation considered
in section 6.5, where SNR ≈ 4, d1 = 500, d2 = 500, n = 50 and the weights are
the group size to the power 0.8. Standard deviations are given in parenthesis.

90

resulted in a non-monotone fit, while for APLAMM-1 with weights m0.8 on the
non-linear groups, 21% of the simulations resulted in a non-monotone fit. So
even though PLAMM-2 and APLAMM-2 select more false covariates, they are
at least as good as PLAMM-1 and APLAMM-2 in selecting the true covariates,
and since PLAMM-2 and APLAMM-2 are more robust to non-monotone fits, we
conclude that PLAMM-2 or APLAMM-2 performed the best in this setting, but
all methods perform quite badly.

Increased number of observations We try increasing the number of ob-
servations, so that n = 150. The results from this simulation experiment for
PLAMM-1 and APLAMM-1 with weights

√
m on the non-linear terms are given

in Table B5 in Appendix B. The true model now seems to be captured very well,
with all the true covariates selected in every simulation. We have small estimation
errors, especially for the estimated functions, but the estimated linear parameters
are also a lot closer to the truth than they were with n = 50 (Table 20). For
PLAMM-1, we see that the number of false non-linear covariates selected is very
large. For APLAMM-1, the number of false non-linear covariates selected has
decreased substantially, but there are still a lot more false non-linear covariates
than false linear covariates. This is in agreement with the previous results – the
methods seem to favour the non-linear covariates. In addition, in the simulation
experiment with 150 observations, almost half of the simulations for APLAMM-1
resulted in one or more non-monotone fits for the non-linear covariates. Again,
this coincides with what we saw in the previous simulation experiments in section
6.2.3 and section 6.5, and the discussion in section 6.5. We need to penalise the
non-linear parameters more, since the penalisation parameter is not large enough
for us to get a sign-coherent solution, see section 2.4.3.

We tried using weights mj = m0.8 for the penalties on the non-linear groups
with n = 150. The results are given in Table B6 in Appendix B. We see that we
now have a more fair balance between the linear and non-linear covariates, with
less false non-linear covariates than what we saw in Table B5 with mj =

√
m,

and more false linear covariates. The mean squared errors for the estimated
functions are larger when the non-linear parameters are penalised more, but the
estimated linear parameters are closer to the true values. Even though increasing
the weights to m0.8 for the non-linear parameters gave a better balance between
the linear and non-linear covariates, this was not large enough to avoid the prob-
lem with obtaining non-monotone fits. In fact, more than half of the simulations
with APLAMM-1 now resulted in one or more non-monotone fits.

In Table B7, the results for PLAMM-2 and APLAMM-2 for this setting are
given. These simulations were very computationally intensive, and the results are
therefore only based on 50 simulations. We see that the results with PLAMM-
2 and APLAMM-2 are also very good in this setting. All the true covariates
are selected in every simulation. PLAMM-2 has quite many false covariates, but

91

Non-linear

Selection

g1 g2 g3 g4

PLAMM-2 0.28 (0.45) 0.39 (0.49) 0.56 (0.50) 0.66 (0.48)
APLAMM-2 0.14 (0.35) 0.30 (0.46) 0.40 (0.49) 0.47 (0.50)

TP FP
PLAMM-2 1.89 (1.29) 8.92 (11.12)
APLAMM-2 1.31 (1.08) 2.01 (3.33)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-2 0.12 (0.078) 0.17 (0.13) 0.26 (0.13) 0.29 (0.16)
APLAMM-2 0.074 (0.054) 0.10 (0.074) 0.18 (0.13) 0.21 (0.14)

Linear

Selection

β1 β2 β3 β4

PLAMM-2 0.42 (0.50) 0.45 (0.50) 0.46 (0.50) 0.51 (0.50)
APLAMM-2 0.36 (0.48) 0.41 (0.49) 0.38 (0.49) 0.49 (0.50)

TP FP
PLAMM-2 1.84 (1.60) 13.99 (13.81)
APLAMM-2 1.65 (1.49) 7.80 (7.71)

Estimated parameters

β1 β2 β3 β4

PLAMM-2 0.78 (0.60) 0.79 (0.48) −0.84 (0.61) −0.92 (0.59)
APLAMM-2 1.23 (0.72) 1.29 (0.57) −1.34 (0.67) −1.36 (0.69)

Table 22: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5, where SNR ≈ 4, d1 = 500, d2 = 500 and n = 50. Standard deviations are
given in parenthesis.

92

APLAMM-2 has substantially decreased the number of false covariates. The esti-
mation errors and the estimated coefficients are slightly better with APLAMM-1
than with APLAMM-2. APLAMM-2 also had the problem of obtaining non-
monotone fits in this simulation setting, but it had fewer non-monotone fits than
APLAMM-1.

We conclude that there is a huge benefit in estimation and selection in the
adaptive step, both for PLAMM-1 and PLAMM-2. APLAMM-1 with weights
m0.8 performed the best in this setting. However, if obtaining monotone fits is
important, then PLAMM-1 with weights m0.8 performed the best.

93

6.5.1 Slightly simpler setting

Since one of the benefits of the methods developed is that they can be used in the
high dimensional data setting (as opposed to scam), we also include a simulation
experiment in a slightly simpler high dimensional data setting. We let d1 = 100,
d2 = 100, n = 80 and the signal to noise ratio be 4. The true underlying model
is the same as before. The results with PLAMM-1 and APLAMM-1 where the
weights for the penalties on the non-linear groups are m0.8, are given in Table
23, and the results for PLAMM-2 and APLAMM-2 are given in Table 24. All
methods perform very well in this setting. APLAMM-1 clearly performs the best
among all the methods. It selects all the true covariates (both linear and non-
linear) and it selects very few false covariates. It has the smallest estimation
errors among all the methods, and only APLAMM-2 is better at estimating the
linear parameters.

In Table 23, the benefit in the adaptive step is very clear. Both PLAMM-1
and APLAMM-1 select all the true covariates, but the number of false positives
is substantially decreased with the adaptive step. The mean squared errors for
the estimated functions are a lot smaller with the adaptive method, and the
estimated linear parameters are closer to their true values.

In Table 24, the benefit in the adaptive step is not so clear. APLAMM-2 has
problems selecting g1. The number of false positives decreases with the adaptive
step, the estimation errors for the functions are clearly smaller, and the estimated
linear parameters are closer to the true values.

None of the simulations with PLAMM-1 resulted in a non-monotone fit. For
APLAMM-1, 31% resulted in one or more non-monotone fits. For PLAMM-2, no
simulations resulted in a non-monotone fit, while for APLAMM-2, 3% resulted
in one or more non-monotone fits.

The prediction errors are also estimated, and they are given in Table 25. We
see that the estimated prediction error for APLAMM-1 is the smallest among all
the methods. Second best is the prediction error for PLAMM-1. The estimated
prediction error for APLAMM-2 is smaller than the estimated prediction error
for PLAMM-2. So in prediction error, there is a benefit in the adaptive step for
both methods.

94

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 10.19 (6.52)
APLAMM-1 4.0 (0) 0.17 (0.51)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.029 (0.021) 0.034 (0.027) 0.053 (0.029) 0.041 (0.020)
APLAMM-1 0.024 (0.018) 0.020 (0.017) 0.026 (0.018) 0.028 (0.019)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0(0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 13.1 (5.95)
APLAMM-1 4.0 (0) 0.42 (1.01)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.54 (0.30) 1.62 (0.27) −1.59 (0.27) −1.59 (0.30)
APLAMM-1 1.78 (0.26) 1.86 (0.22) −1.82 (0.24) −1.82 (0.27)

Table 23: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5.1, where SNR ≈ 4, d1 = 100, d2 = 100 and n = 80. The weights for the
penalties on the non-linear groups are m0.8. Standard deviations are given in
parenthesis.

95

Non-linear

Selection

g1 g2 g3 g4

PLAMM-2 0.98 (0.14) 0.99 (0.10) 1.0 (0) 1.0 (0)
APLAMM-2 0.93 (0.26) 0.98 (0.14) 1.0 (0) 0.99 (0.10)

TP FP
PLAMM-2 3.97 (0.17) 4.14 (4.78)
APLAMM-2 3.90 (0.31) 0.072 (0.33)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-2 0.051 (0.035) 0.051 (0.039) 0.078 (0.057) 0.070 (0.053)
APLAMM-2 0.044 (0.029) 0.035 (0.034) 0.048 (0.049) 0.057 (0.058)

Linear

Selection

β1 β2 β3 β4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 17.6 (11.3)
APLAMM-2 4.0 (0) 5.85 (5.75)

Estimated parameters

β1 β2 β3 β4

PLAMM-2 1.58 (0.30) 1.59 (0.29) −1.60 (0.31) −1.60 (0.31)
APLAMM-2 1.88 (0.25) 1.91 (0.27) −1.90 (0.27) −1.91 (0.26)

Table 24: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5.1, where SNR ≈ 4, d1 = 100, d2 = 100 and n = 80. Standard deviations are
given in parenthesis.

96

Prediction error
PLAMM-1 APLAMM-1
0.50 (0.096) 0.35 (0.061)

PLAMM-2 APLAMM-2
0.67 (0.31) 0.53 (0.24)

Table 25: Prediction error for the different methods when n = 80, d1 = 100,
d2 = 100 and SNR ≈ 4 for the simulation considered in section 6.5.1. Standard
deviations are given in parenthesis.

97

6.6 Conclusion on the performance of the methods
We have seen that in a setting with enough observations and not too many noise
covariates (n = 80, d1 = 10, d2 = 10, four true non-linear covariates and four
true linear covariates), all the methods developed perform well both in selecting
the true underlying model and in estimation. There is a clear benefit in the
adaptive step for both PLAMM-1 and PLAMM-2. APLAMM-1 performed the
best among all methods, and there was no big problem in not obtaining monotone
fits. Weights m0.8 were used on the penalty terms for the non-linear groups
with PLAMM-1 and APLAMM-1. This is because we note that the weights for
the linear and the non-linear parameters are imbalanced, and by testing (trial
and error) different weighting schemes, we conclude that m0.8 gives the best
balance. With less observations (n = 50), APLAMM-2 might select too few true
covariates, while APLAMM-1 might result in non-monotone fits. For PLAMM-1
there is an improvement in the adaptive step, while for PLAMM-2, there is no
clear improvement in using the adaptive scheme. We conclude that APLAMM-1
performed the best in this setting, but it did result in some non-monotone fits.
Comparing with the scam method in this setting when n = 50, we saw that none
of our methods performed as well as the scam method, but they still performed
well. Again, scam is given more prior information than the other methods. In
prediction, the methods we developed performed better than or as well as the
scam method in these two settings.

In a high dimensional setting with many noise covariates and few observa-
tions (here we had n = 50, d1 = 500, d2 = 500, four true non-linear covariates
and four true linear covariates), none of the methods performed satisfactorily.
PLAMM-1 and PLAMM-2 select many false covariates and quite few true co-
variates. APLAMM-1 and APLAMM-2 select fewer false covariates, but also less
true covariates. With PLAMM-1 it is hard to find an optimal balance between
the non-linear terms and the linear terms, while still ensuring that we do not get
a non-monotone fit. Our ad hoc weighting scheme using m0.8 on the non-linear
covariates worked well in the scenario with n = 50, d1 = 10 and d2 = 10, the
scenario with n = 80, d1 = 10 and d2 = 10 , n = 80, d1 = 100 and d2 = 100, and
the scenario with n = 50, d1 = 500 and d2 = 500, but not in the scenario where
n = 150, d1 = 500 and d2 = 500.

When increasing the number of observations to n = 150, APLAMM-1 and
APLAMM-2 perform very well in estimation and selection. We observe a huge
benefit in the adaptive step, in that the number of false covariates decreases sub-
stantially, and the estimation errors and estimated parameters improve. How-
ever, as noted, with the adaptive methods there are many non-monotone fits.
APLAMM-1 performed slightly better than APLAMM-2 in estimation and selec-
tion, while APLAMM-2 had fewer non-monotone fits.

The simulations are also performed in a slightly simpler high dimensional
setting, with n = 80, d1 = 100 and d2 = 100. All methods perform well here,

98

but APLAMM-1 clearly performed the best. It did however result in quite many
non-monotone fits.

In general, PLAMM-1 performs better than PLAMM-2 in estimating the eff-
ects of the non-linear covariates, while PLAMM-2 estimates the linear parameters
better. We conclude that APLAMM-1 seems to be the best method among all the
methods developed, especially if it is not important to obtain monotone fits. For
PLAMM-2, the benefit in the adaptive step is not clear, since APLAMM-2 has
more problems selecting g1. Comparing prediction errors of the methods to the
prediction errors of their adaptive versions, we have that in the simpler setting
where d1 = 10, d2 = 10 and n = 50 and n = 80, the prediction performance for the
methods and their adaptive versions are quite similar. In the high dimensional
setting where n = 80, d1 = 100 and d2 = 100, there is a clear benefit in the
adaptive step for the prediction errors. In prediction, we also had that APLAMM-
1 performed better than APLAMM-2. If we are more interested in obtaining good
predictions than estimating the true effects of the covariates, then it might not
be so important to obtain monotone functions, and we would recommend using
APLAMM-1.

99

6.7 Linear or non-linear
The methods PLAMM-1 and PLAMM-2 developed for additive partially linear
models with monotone effects of the non-linear covariates and all the other exis-
ting methods that we have considered, assume that we a priori know which covari-
ates have a linear effect on the response, and which covariates have a non-linear
effect on the response. However, as noted in Lian et al. (2015), such knowledge
is rarely available, especially in a high dimensional setting. If you do not have
any prior knowledge about the effect of the covariates, one possibility is to let
the continuous covariates have a non-linear effect, and code the discrete variables
by dummy variables with linear effects, as is done in Du et al. (2012) and the
data example in section 6.8. With this coding of the discrete variables, there is
one constant effect for each level. There are no assumptions about linearity of
the variables, since there are no assumptions about the levels. The methods are
thus very flexible. In Liu et al. (2011), they first let the categorical variables have
a linear effect and the continuous variables have a non-linear effect. Then they
see which of the non-linear fitted functions resemble a linear function, and then
refit with these covariates as covariates with linear effects. However, this is too
cumbersome to do in the high dimensional data setting, as also noted in Lian
et al. (2015).

In Zhang et al. (2011), a method for separating the covariates into covariates
with linear effects and general non-linear effects, LAND (Linear and Non-linear
Discoverer), was developed. LAND distinguishes linear and non-linear terms,
performs variable selection and estimates the functions and the linear parameters.
They focus on the classical setting. The underlying model is as before, but we
now include the intercept term β0, so

Yi = β0 +

d1∑
k=1

βkxik +

d2∑
k=1

gk(zik) + εi,

where d1 is the number of linear components, d2 is the number of non-linear
components, X is the design matrix for the covariates with linear effects and Z is
the design matrix for the covariates with non-linear effects. The xik and zik are the
matrix elements of X and Z. Without loss of generality, the covariates are scaled
to [0, 1]. Since it is not assumed that it is a priori known which covariates will
have a linear effect, which will have a non-linear effect and which are irrelevant
for the response, we instead write the model as

Yi = β0 +

d1+d2∑
k=1

gk(xik) + εi,

where now X = (X,Z). The functions gk can be linear, general non-linear or
identically zero. The functions gk are assumed to lie in Hk, where Hk = {g :

100

g, g′ absolutely continuous, g′′ ∈ L2[0, 1]}, where L2[0, 1] is the space of square
integrable functions over [0, 1]. Then the space Hk has the following orthonormal
decomposition: Hk = {1} ⊗H0k ⊗H1k, where {1} is the mean space, H0k is
the linear subspace and H1k is the non-linear subspace. That is, H0k = {gk :

g′′k(x) = 0} and H1k = {gk :
∫ 1

0
gk(x)dx = 0,

∫ 1

0
g′k(x)dx = 0, g′′k ∈ L2[0, 1]}. Since

the function space can be decomposed into a linear part and a non-linear part,
every function gk ∈ Hk can be correspondingly decomposed into a linear and a
non-linear part (Zhang et al., 2011) as

gk(x) = β0k + βk(xk −
1

2
) + g1k(x),

where βk(xk − 1
2
) is the linear part and g1k is the non-linear part of gk. Let

g(xi) = β0 +
∑d1+d2

k=1 gk(xik). Then g ∈H , where

H = ⊗d1+d2
k=1 Hk = {1} ⊗

{
⊗d1+d2
k=1 H0k

}
⊗
{
⊗d1+d2
k=1 H1k

}
= {1} ⊗H0 ⊗H1.

If the estimated βk 6= 0 and the estimated g1k = 0, then covariate k is estimated
to have a linear effect. If the estimated g1k 6= 0, then covariate k is estimated to
have a non-linear effect. If the estimated βk = 0 and the estimated g1k = 0, then
covariate k is not selected (estimated to having no effect on the response). The
estimated g is given as the solution to

argming∈H

1

n

n∑
i=1

(yi − g(xi))
2 + λ1

d1+d2∑
k=1

w0k||P0kg||H0 + λ2

d1+d2∑
k=1

w1k||P1kg||H1 ,

where P0kg is the projection of g onto H0k, P1kg is the projection of g onto
H1k, xi is the vector of observed covariates for observation i, λ1 and λ2 are
tuning parameters used to control the regularisation of the linear and the non-
linear terms, respectively, and w0k and w1k are optional weights, which can for
instance be used for an adaptive scheme.

Even though the non-linear functions in LAND are general functions and
not necessarily monotone, LAND could be used to separate our covariates into
linear and non-linear covariates before performing the analysis with the methods
developed in this thesis. However, there is no openly available implementation of
the LAND procedure. Lian et al. (2015) also develops a method for separating
the covariates into linear and non-linear effects, which can be used in the high
dimensional data setting. The idea behind this method is similar to the LAND
(Lian et al., 2015). There is no openly available implementation of this method
either, but Lian et al. (2015) links to a non-existing page with an R-code for the
method. We have unsuccessfully tried to get in touch with the authors of these
two methods, asking for implementations of the methods.

101

6.8 Illustration of the methods using bone mineral den-
sity data

We now try out the methods developed in this section on a real data set. The
methods scam and scar (see sections 3.2.2 and 3.2.3) are not feasible in the setting
here, since this data set has more variables than observations. We will study a
bone mineral density data set, from Reppe et al. (2010). Parts of this data set
was also used for illustration in Bergersen et al. (2014). The data set consists of
84 post menopausal women who have had a transiliacal bone biopsy. The data
set contains various measurements for these women. These are measurements of
the bone mineral density (BMD) which is the response variable of interest, gene
expressions for 22 815 genes, age, body mass index (BMI), parathyroid hormone
values (PTH), vitamin D values (vitD) and carboxy-terminal telopeptide of type 1
collagen (1CTP) from blood samples. For one of the women, the vitamin D value
was missing, so we deleted this one observation and worked with the remaining
83 women.

This data is used to fit an additive partially linear model where the response
is the BMD. The gene expressions are assumed to have a general monotone effect
on the BMD, while the clinical variables are coded as dummy variables with one
constant effect on BMD for each level. With this coding, there are no assumptions
about linearity on the clinical variables, since we have made no assumptions about
the levels. This is a choice we make to be open to all sorts of effects from these
variables, but it would also be possible to let the clinical variables have a linear
effect on BMD (since they are all numerical variables, and not categorical). For
simplicity, only the 100 genes with the largest empirical variance are considered.
The idea of selecting the genes with the largest empirical variance is based on the
implicit assumption that the response will vary most with the covariates varying
the most (Hastie et al. (2011), section 3.4). This is also done in the study in
Zhou et al. (2011).

To code the clinical variables as dummy variables, they have to be categorised.
Age, PTH, vitamin D and 1CTP are categorised by data quantiles. BMI is cate-
gorised by the international classification from WHO 1. So we fit a partially linear
additive model where the clinical variables are coded as dummy variables with
linear effects on BMD, and the gene expressions are assumed to have monotone
effects on BMD.

First the clinical variables are categorised. Since there was only one of the
women who had a BMI low enough to be classified as underweight, we only work
with two categories for BMI, normal and overweight. A person is classified as
overweight if the BMI is higher than or equal to 25. So we make a new BMI
variable by

1http://apps.who.int/bmi/index.jsp?introPage=intro_3.html

102

http://apps.who.int/bmi/index.jsp?introPage=intro_3.html

BMI =

{
0, if BMI < 25,
1, otherwise.

All the other clinical variables are divided into three categories based on the
quantiles of the observations, so we make new age, PTH, vitD and 1CTP variables
by

Age =

low, if Age < 57,
medium, if 57 ≤ Age ≤ 68,
high, otherwise.

PTH =

low, if PTH < 3.6,
medium, if 3.6 ≤ PTH ≤ 4.8,
high, otherwise.

vitD =

low, if vitD < 66,
medium, if 66 ≤ vitD ≤ 96,
high, otherwise.

1CTP =

low, if 1CTP < 3.3,
medium, if 3.3 ≤ 1CTP ≤ 4.1,
high, otherwise.

The regression model is fitted by PLAMM-1, APLAMM-1, PLAMM-2 and
APLAMM-2. I-splines of order two, with six interior knots placed evenly at the
quantiles of the data, are used. To select the penalty parameters, a 10-fold cross-
validation scheme is used. For comparison, the regression model is also fitted by
a group lasso regression method, using the R-package grpreg. For the group lasso
regression, every gene expression is a group consisting of a singleton, and the
clinical variables are represented by groups of dummy variables for each clinical
variable. Note that with the group lasso method, the gene expressions are forced
to have linear effects, so it is not directly comparable to the other methods.

Our clinical variables are coded as grouped dummy variables. Since there is no
reason to assume sign-coherence, the dummy variables for each clinical variable
are not grouped in PLAMM-1 and APLAMM-1. They are thus all singletons.
We let the weights on the penalty terms be group size to the power of 0.8. To
still encourage grouping of the dummy variables for the same clinical variable
for APLAMM-1, the weights for the adaptive scheme are calculated as if the
variables were grouped, so that if one of the dummy variables for a level of a
clinical variable is estimated to zero and another is estimated to non-zero in the
initial fit, they will both be included as candidates for the adaptive fit. Explained
more thoroughly: let β̂1init and β̂2init be two parameter estimates from an initial
fit, corresponding to two different levels of the same clinical variable. Then both

103

their weights, w, for the adaptive scheme will be

w =

√
2√

β̂1

2

init + β̂2

2

init

,

so that if β̂1init = 0 and β̂2init 6= 0, the variable corresponding to β1 will still have
finite weight in the adaptive scheme.

We avoid this drawback with PLAMM-2 and APLAMM-2, since we can use
the group lasso penalty when fitting the linear part. So with PLAMM-2 and
APLAMM-2, the dummy variables corresponding to the same clinical variable
are grouped.

The estimated parameters for the clinical variables are given in Table 26. In
the table, GL is the group lasso regression method and AGL is the adaptive
group lasso regression method. The parameter βBMI

overweight is the difference in bone
mineral density between a woman with a BMI value classified as overweight and
a woman with a BMI value classified as normal (or underweight), when all other
covariates are kept the same.The parameter βAge

medium is the difference in bone
mineral density between a woman in the medium age group and a woman in the
lower age group. The parameter βAge

high is the difference in bone mineral density
between a woman in the high age group and a woman in the lower age group.
The parameters βPTH

medium, βPTH
high , βvitD

medium, βvitD
high , β1CTP

medium and β1CTP
high are similarly the

difference in bone mineral density between a woman being in the corresponding
group, compared to a woman being in the lower group.

We see from Table 26 that the only clinical variable selected by all the methods
is the PTH. The estimated parameters from all the different methods give the
estimated effect that the higher level of PTH, the lower bone mineral density.
Vitamin D is selected by all the methods except from APLAMM-1. From the
estimated parameters, it is seen that if one has a medium or high value of vitamin
D, the bone mineral density is lower than if one has a low value of vitamin D.
There does however not seem to be a big difference between bone mineral density
between the women having medium and high values of vitamin D. This is in
contrast to what one would expect, and there might be a confounding effect.
It might for instance be the case that women who are aware of their low bone
mineral density start taking vitamin D supplements. Vitamin D is used for
treatment and prevention of osteoporosis. However, Reid et al. (2014) present an
extensive study where they conclude that there is very little evidence of an overall
benefit of vitamin D supplements on bone mineral density. BMI is selected by
all the methods except from the adaptive group lasso. The effect is positive for
all the methods selecting BMI, so that the higher BMI, the higher bone mineral
density. This is as expected. Age is selected by all the methods except from
APLAMM-1 and the adaptive group lasso. The estimated effect of age is negative
for all the methods selecting age. The higher age, the lower bone mineral density,
again as one should expect. The estimated difference in bone mineral density

104

for the medium age group and the low age group is quite small. The estimated
difference in bone mineral density for the medium age group and the high age
group is a lot larger. 1CTP is only selected by PLAMM-1 and PLAMM-2, and
not by their adaptive versions. The sets of genes selected by the methods are
very similar. PLAMM-1 selects four genes, and APLAMM-1 selects two of these
genes. PLAMM-2 selects four genes. These four genes are the same genes that
were selected by PLAMM-1. APLAMM-2 selects two of these genes – the same
two genes as selected by APLAMM-1. The group lasso regression method selects
seven genes, among which four of them are the four genes selected by PLAMM-1
and PLAMM-2. The adaptive group lasso selects two genes – the same two genes
that are selected by APLAMM-1 and APLAMM-2. In Table 26, the monotonicity
directions for the estimated monotone functions and the estimated parameters
for the gene expressions for group lasso and adaptive group lasso are also given.
+ denotes that the estimated function is monotonically increasing, and − denotes
that the estimated function is monotonically decreasing.

The genes that are selected by all the methods are AFFX-M27830_M_at
and 210170_at (PDLIM3). The estimated effects of these genes with all the
methods are given in Figure 16 and Figure 17, respectively. The gene AFFX-
M27830_M_at was also selected by the monotone splines lasso regression analysis
on this data set in Bergersen et al. (2014) and in Reppe et al. (2010). We see
that the estimated functions for both the genes seem to be quite linear, but we
see some curvature in the estimated functions with the monotone methods. The
estimated functions with PLAMM-1 and PLAMM-2 are very similar. The adap-
tive versions are more different, but they are still quite similar. The two genes
that are selected only by PLAMM-1, PLAMM-2 and the group lasso method
are 221491_x_at and 235009_at. The estimated effects of these two genes on
BMD are given in Figure 18 and Figure 19, respectively. From Figure 18, we
see from the estimated monotone functions that the gene 221491_x_at seems to
have almost no effect for lower gene expressions, but after reaching a threshold,
the effect of the gene is large and steeply decreasing. This effect does not seem
to be fitted well by a linear function. From Figure 19, we see that the effect of
the gene 235009_at does not seem so important as the effect of the other genes,
considering the size of the effects (scale on y-axis). The estimated function with
PLAMM-2 is very small – it is almost flat. With PLAMM-1, there seems to be
no effect of the gene for low gene expressions, but after reaching a threshold,
the estimated function seems quite linear (and increasing). Note that all the
estimated functions are monotone.

105

Estimated parameters
PLAMM-1 APLAMM-1 PLAMM-2 APLAMM-2 GL AGL

β̂Age
medium 0 0 −0.17 −0.064 −0.021 0

β̂Age
high −0.39 0 −0.42 −0.11 −0.045 0

β̂BMI
overweight 0.68 0.64 0.80 0.67 0.50 0

β̂PTH
medium −0.32 −0.36 −0.61 −0.68 −0.53 −0.71

β̂PTH
high −0.56 −0.67 −0.91 −1.1 −0.73 −1.1

β̂vitD
medium −0.14 0 −0.45 −0.41 −0.19 −0.39

β̂vitD
high −0.14 0 −0.46 −0.39 −0.16 −0.35

β̂1CTP
medium 0 0 −0.045 0 0 0

β̂1CTP
high −0.10 0 −0.22 0 0 0

Estimated monotonicity direction
PLAMM-1 APLAMM-1 PLAMM-2 APLAMM-2 GL AGL

AFFX-M278-
30_M_at + + + + 0.50 0.60

210170_at − − − − −0.31 −0.23
221491_x_at − 0 − 0 −0.070 0
235009_at + 0 + 0 0.067 0
209480_at 0 0 0 0 0.051 0
236203_at 0 0 0 0 0.0061 0
210305_at 0 0 0 0 0.080 0

Table 26: Estimated parameters with the different methods for the bone mineral
density data from the data example in section 6.8. The monotonicity directions
for the selected genes are given for the monotone methods, and the estimated
linear parameters for the gene expressions are given for group lasso and adaptive
group lasso. GL is the group lasso method and AGL is the adaptive group lasso
method.

106

5 6 7 8

-1
.0

-0
.5

0.
0

0.
5

1.
0

AFFX-M27830_M_at

B
M
D

PLAMM-1
APLAMM-1
PLAMM-2
APLAMM-2
GL
AGL

Figure 16: Estimated effect of the gene AFFX-M27830_M_at in the bone min-
eral data example from section 6.8.

107

2 3 4 5 6 7

-1
.0

-0
.5

0.
0

0.
5

1.
0

210170_at

B
M
D

PLAMM-1
APLAMM-1
PLAMM-2
APLAMM-2
GL
AGL

Figure 17: Estimated effect of the gene 210170_at in the bone mineral data
example from section 6.8.

108

1 2 3 4 5 6

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

221491_x_at

B
M
D

PLAMM-1
PLAMM-2
GL

Figure 18: Estimated effect of the gene 221491_x_at in the bone mineral data
example from section 6.8.

109

2 3 4 5 6

-0
.1
5
-0
.1
0
-0
.0
5

0.
00

0.
05

0.
10

0.
15

235009_at

B
M
D

PLAMM-1
PLAMM-2
GL

Figure 19: Estimated effect of the gene 235009_at in the bone mineral data
example from section 6.8.

110

6.8.1 Increased number of genes

The model is also fitted with all the methods in a situation with more genes
included. The set-up is the same as before, but the genes considered are the 500
genes with the highest empirical variance.

Now the sets of genes selected by the methods differ more. This is not sur-
prising, especially since genes are often highly correlated. PLAMM-1 selects nine
genes and APLAMM-1 selects five of these genes. PLAMM-2 selects 24 genes,
which is a lot more than PLAMM-1. APLAMM-2 selects six of these. Among the
24 genes selected by PLAMM-2 are eight of the genes selected by PLAMM-1. All
these methods have three selected genes in common. All the estimated functions
for all the methods were monotone.

The group lasso selects 51 genes, which is a lot more than all the other meth-
ods. Among these are eleven of the genes selected by PLAMM-2 and six of the
genes selected by PLAMM-1. The adaptive group lasso selects 15 genes. Among
these are five of the genes selected by APLAMM-2 and three of the genes se-
lected by APLAMM-1. The three genes that are selected by all the partially
linear methods are also selected by the group lasso method, but the adaptive
group lasso method only selects two of them.

The estimated functions for the genes that are selected by all the partially
linear methods are given in Figures 20, 21 and 22. In Figure 20, we again have
some sort of threshold effect, where the effect of the gene expression of gene
206881_s_at seems to be quite small, until we hit a breakpoint, and the slope
gets steeper. The estimated effect is a lot larger with APLAMM-2 than with
the other methods. In Figure 21, we see that the effect of the gene expression of
the gene 223869_at seems to be quite linear, with some flattening for midrange
values. For the gene expression in Figure 22, we see that the gene 205959_at
also seems to have a threshold effect, but the effect is more extreme than what
we had for the gene 206881_s_at in Figure 20. This shape does not resemble a
linear function, which might be the reason why adaptive group lasso was the only
method which did not detect an effect of this gene. Note that the shape of the
estimated function resembles the shape of the function in Figure 13, a function
which was not well captured by a linear method.

In the setting where only 100 genes were considered, the genes AFFX-M27830-
_M_at and 210170_at (PDLIM3) were selected by all the methods. In the
setting with 500 genes, the gene AFFX-M27830_M_at is selected by all the
methods except from APLAMM-2, while the gene 210170_at is only selected by
PLAMM-1, APLAMM-1 and PLAMM-2.

The estimated parameters for the clinical variables with the methods in the
case with 500 genes are given in Table 27. We see that the clinical covariates se-
lected by the different methods and the estimates are quite similar to the situation
with 100 genes, comparing with Table 26. Age is not selected by APLAMM-2
and the group lasso method, as opposed to what we had earlier. BMI is now

111

2 3 4 5 6

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

206881_s_at

B
M
D

PLAMM-1
APLAMM-1
PLAMM-2
APLAMM-2
GL
AGL

Figure 20: Estimated effect of the gene 206881_s_at in the bone mineral data
example from section 6.8.1.

selected by all the methods, while adaptive group lasso did not select BMI in
the situation where we only considered 100 genes. The estimated effects of PTH,
vitamin D and 1CTP are very similar for the two situations.

112

5.5 6.0 6.5 7.0 7.5 8.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

223869_at

B
M
D

PLAMM-1
APLAMM-1
PLAMM-2
APLAMM-2
GL
AGL

Figure 21: Estimated effect of the gene 223869_at in the bone mineral data
example from section 6.8.1.

113

2 3 4 5

-0
.2

0.
0

0.
2

0.
4

0.
6

205959_at

B
M
D

PLAMM-1
APLAMM-1
PLAMM-2
APLAMM-2
GL

Figure 22: Estimated effect of the gene 205959_at in the bone mineral data
example from section 6.8.1.

114

Estimated parameters
PLAMM-1 APLAMM-1 PLAMM-2 APLAMM-2 GL AGL

β̂Age
medium 0 0 −0.018 0 0 0

β̂Age
high −0.38 0 −0.15 0 0 0

β̂BMI
overweight 0.49 0.61 0.57 0.60 0.20 0.11

β̂PTH
medium 0 −0.29 −0.79 −0.72 −0.95 −0.82

β̂PTH
high −0.30 −0.61 −0.98 −1.0 −1.0 −1.2

β̂vitD
medium 0 0 −0.54 −0.57 −0.44 −0.41

β̂vitD
high −0.073 0 −0.58 −0.73 −0.40 −0.45

β̂1CTP
medium 0 0 −0.053 0 0 0

β̂1CTP
high 0 0 −0.15 0 0 0

Table 27: Estimated parameters with the different methods for the bone mineral
density data from the data example in section 6.8.1. GL is the group lasso method
and AGL is the adaptive group lasso method.

115

7 Concluding remarks
In this thesis, we have tried to give an overview of methods developed for mono-
tone regression in both high dimensional and classical settings. The linear model
is a simple model with strong restrictions. Sometimes it is not sufficient to work
with a linear model, and a model which is a lot more flexible is the general addi-
tive model, which assumes that the effects of each covariate is a general function.
However, it is often reasonable to assume that the effect of a covariate is mono-
tone, especially in the life sciences. Then it is desirable to have methods which
incorporate this restriction/prior information to the model estimation. In this
thesis, different methods for monotone regression have been presented and stud-
ied. We have especially worked with monotone regression in the high dimensional
setting, in particular the liso regression method and the monotone splines lasso
method. In addition, two new regression methods for fitting a partially linear
model with monotone effects have been developed, building on ideas from the
monotone splines lasso method.

We have investigated robustness properties of the monotone splines lasso
method to the number of interior knots used to fit the monotone splines, and
concluded that the method is in fact robust. This is good news, because it means
that one does not have to use information in the data to select the number of
knots to use. This is especially important in the high dimensional data setting,
where there is in general lack of information.

In section 5, we studied the performance of the liso method and the monotone
splines lasso method in the classical setting. We found that both methods per-
form well in the classical setting in terms of selection and estimation, but they did
not outperform the scam method, which is a method constructed for monotone
(among other options) regression in the classical setting. The need for an adap-
tive step with the monotone splines lasso is less apparent in the low dimensional
setting than it was in the high dimensional setting. When it comes to prediction
performance in the classical setting, we found that the monotone splines lasso
and the adaptive monotone splines lasso methods performed better than scam
in a situation with many noise covariates, but with fewer noise covariates, scam
outperformed all the other methods. Even though the monotone splines lasso
method did not outperform the scam method, it is still a contribution to the ex-
isting methods. It has the property of automatic variable selection, the estimated
functions are smooth and it does not have to be provided the monotonicity di-
rections of the functions. To our knowledge, there are no other existing methods
with these properties.

In section 6, we worked with the partially linear model where the non-linear
functions were assumed to be monotone. Two methods were developed. The first
one, PLAMM-1, is a straight forward extension of the monotone splines lasso to
the partially linear setting. This method worked well in a simple classical setting,
but it did not have a fair penalty balance between the linear and the non-linear

116

covariates. Due to the problems with the balance between the linear and the
non-linear covariates, weights penalising more with larger group size (group size
to the power 0.8) are used instead of the standard group lasso weights (square
root of group size). A two-penalty method was also developed, PLAMM-2, with
different penalty parameters on the linear and the non-linear parameters, to avoid
the problem of not having a fair balance. The two-penalty problem was solved by
an iterative scheme, and convergence of this iterative method was proven. The
two methods were also extended with adaptive versions. In the classical setting,
PLAMM-2 also performed well. These methods have the advantage that they
can be used in the high dimensional data setting. To our knowledge, there exists
no other methods for partially linear additive models with monotone effects of
the non-linear covariates that can be used in the high dimensional setting. For
the scam method, the number of observations quickly becomes too small, since
splines are used to fit the functions.

In the high dimensional setting with 50 observations and many noise covari-
ates, none of the methods performed well. Increasing the number of observa-
tions to 150 gave a huge improvement in both selection and estimation, both
for PLAMM-1 and PLAMM-2. Both methods had problems in providing non-
monotone fits, and APLAMM-1 more frequently resulted in a non-monotone fit
than APLAMM-2. In a simpler high dimensional data setting, all the methods
perform well, while APLAMM-1 clearly performs the best.

PLAMM-2 is in general better at estimating the linear parameters, while
PLAMM-1 is in general better at estimating the monotone functions (smaller
mean squared errors). The estimated functions with PLAMM-1 were more fre-
quently non-monotone functions than the estimated functions with PLAMM-2,
while PLAMM-2 had a higher total number of false covariates selected.

In the classical setting, the methods were compared to the scam method.
All of the methods performed well in the classical setting, but the scam method
performed the best. Note however that the scam method is given more prior
information about the functions, since it is provided the monotonicity directions
of the true functions. The prediction performances of the methods were also
studied and compared, and the results show that APLAMM-1 was best at pre-
diction, closely followed by PLAMM-1, while PLAMM-2, APLAMM-2 and the
scam method have larger and quite similar prediction errors.

We recommend using APLAMM-1. It had the best selection and estimation
performance in most settings. It also performed the best in prediction. Conve-
niently, it is also more computationally efficient than PLAMM-2 and APLAMM-
2. The only problem with APLAMM-1 is that the estimated functions might not
be monotone. If it is important that the estimated functions are monotone, then
one of the other methods should be used instead. Note that the analysis on the
bone mineral data set resulted in no non-monotone fits.

117

7.1 Further work
The weights m0.8 on the penalties for the non-linear groups that we have chosen
to use for PLAMM-1 and APLAMM-1 were found by trial and error and are
quite ad hoc. It would be interesting to try the methods with the weights sugg-
ested by Simon and Tibshirani (2012), given in section 6.5. This was not done
in this thesis, since the currently available functions for fitting a model with a
cooperative penalty do not work with these weights, and reprogramming such a
complex optimisation algorithm would be far beyond the scope of this thesis.

With PLAMM-2, the two penalty parameters λ1 and λ2 are estimated by
cross-validation. They are therefore re-estimated in each iteration. It would be
interesting to study whether or not a different selection procedure for the penalty
parameters leads to different results. The iteration stops when the estimated
model parameters converge, but since the estimated parameters depend on λ1 and
λ2, a selection method which estimates the penalty parameters before the model
estimation might give better results. One could for instance use a generalised
cross-validation (GCV) approach. However, it is not straight forward to find
GCV expressions for these methods.

Another aspect is the computational efficiency. PLAMM-2 is very compu-
tationally demanding, and it will probably converge faster if the penalty para-
meters were estimated before the model fitting. In most of our simulation runs,
PLAMM-2 has not taken many iterations before converging, but each iteration
takes a long time, and therefore it is desirable to reduce the number of iterations.
In addition, the computation of each fit will be less time demanding if we do not
have to compute the cross-validation error for each iteration. The methods from
scoop which are used for the cooperative lasso penalty are very slow. It could
also be that a different iterative algorithm would have a faster convergence rate.
In general, improving the computational efficiency of the methods is a topic for
further work.

As mentioned in the thesis, it would also be interesting to try out a method
which separates the covariates into linear and non-linear covariates and use this
before or integrated in the analysis with PLAMM-1 or PLAMM-2. It would
also be interesting to develop a method for separation into linear and monotone
covariates which utilises the monotonicity property of the functions.

118

References
Bacchetti, P. (1989). Additive isotonic models. Journal of the American Statistical
Association, 84(405):289–294.

Barlow, R. and Brunk, H. (1972). The isotonic regression problem and its dual.
Journal of the American Statistical Association, 67(337):140–147.

Bauschke, H. H. and Borwein, J. M. (1993). On the convergence of von Neumann’s
alternating projection algorithm for two sets. Set-Valued Analysis, 1(2):185–
212.

Bergersen, L. C., Tharmaratnam, K., and Glad, I. K. (2014). Monotone splines
lasso. Computational Statistics & Data Analysis, 77:336–351.

Bollaerts, K., Eilers, P. H., and Mechelen, I. (2006). Simple and multiple P-
splines regression with shape constraints. British Journal of Mathematical and
Statistical Psychology, 59(2):451–469.

Bühlmann, P. and van de Geer, S. (2013). Statistics for High-Dimensional Data
(Springer Series in Statistics). Springer.

Bühlmann, P. and Yu, B. (2006). Sparse boosting. The Journal of Machine
Learning Research, 7:1001–1024.

Chen, Y. and Samworth, R. J. (2015). Generalized additive and index models with
shape constraints. Journal of the Royal Statistical Society: Series B (Statistical
Methodology).

Chiquet, J., Grandvalet, Y., and Ambroise, C. (2011). Inferring multiple graphical
structures. Statistics and Computing, 21(4):537–553.

Chiquet, J., Grandvalet, Y., and Charbonnier, C. (2012). Sparsity with sign-
coherent groups of variables via the cooperative-lasso. The Annals of Applied
Statistics, 6(2):795–830.

Dahl, G. (2009). An introduction to convexity. Lecture notes, University of Oslo.

Delecroix, M. and Thomas-Agnan, C. (2000). Spline and Kernel Regression under
Shape Restrictions, pages 109–133. John Wiley & Sons, Inc.

Dette, H., Neumeyer, N., Pilz, K. F., et al. (2006). A simple nonparametric
estimator of a strictly monotone regression function. Bernoulli, 12(3):469–490.

Deutsch, F. (1992). The method of alternating orthogonal projections. In Approx-
imation Theory, Spline Functions and Applications, pages 105–121. Springer.

119

Du, P., Cheng, G., and Liang, H. (2012). Semiparametric regression models with
additive nonparametric components and high dimensional parametric compo-
nents. Computational Statistics & Data Analysis, 56(6):2006–2017.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11:89–102.

Fang, Z. and Meinshausen, N. (2012). Lasso isotone for high-dimensional ad-
ditive isotonic regression. Journal of Computational and Graphical Statistics,
21(1):72–91.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand
for clean air. Journal of environmental economics and management, 5(1):81–
102.

Hastie, T. and Tibshirani, R. (1986). Generalized additive models. Statistical
Science, 1(3):297–310.

Hastie, T., Tibshirani, R., and Friedman, J. (2011). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition (Springer
Series in Statistics). Springer.

He, X. and Shi, P. (1998). Monotone B-spline smoothing. Journal of the American
statistical Association, 93(442):643–650.

Huang, J., Horowitz, J. L., and Wei, F. (2010). Variable selection in nonpara-
metric additive models. The Annals of Statistics, 38(4):2282–2313.

Lee, A. B. and Izbicki, R. (2016). A spectral series approach to high-dimensional
nonparametric regression. Electronic Journal of Statistics, 10(1):423–463.

Lian, H., Liang, H., and Ruppert, D. (2015). Separation of covariates into non-
parametric and parametric parts in high-dimensional partially linear additive
models. Statistica Sinica, 25:591–607.

Liu, X., Wang, L., and Liang, H. (2011). Estimation and variable selection for
semiparametric additive partial linear models. Statistica Sinica, 21(3):1225–
1248.

Meyer, M. C. (2008). Inference using shape-restricted regression splines. The
Annals of Applied Statistics, 2(3):1013–1033.

Meyer, M. C. (2013). Semi-parametric additive constrained regression. Journal
of nonparametric statistics, 25(3):715–730.

Pya, N. and Wood, S. N. (2014). Shape constrained additive models. Statistics
and Computing, 25(3):543–559.

120

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science,
3(4):425–441.

Reid, I. R., Bolland, M. J., and Grey, A. (2014). Effects of vitamin D supplements
on bone mineral density: a systematic review and meta-analysis. The Lancet,
383(9912):146–155.

Reppe, S., Refvem, H., Gautvik, V. T., Olstad, O. K., Høvring, P. I., Reinholt,
F. P., Holden, M., Frigessi, A., Jemtland, R., and Gautvik, K. M. (2010). Eight
genes are highly associated with BMD variation in postmenopausal Caucasian
women. Bone, 46(3):604–612.

Schell, M. J. and Singh, B. (1997). The reduced monotonic regression method.
Journal of the American Statistical Association, 92(437):128–135.

Simon, N. and Tibshirani, R. (2012). Standardization and the group lasso penalty.
Statistica Sinica, 22(3):983.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288.

Tutz, G. and Leitenstorfer, F. (2007). Generalized smooth monotonic regres-
sion in additive modeling. Journal of Computational and Graphical Statistics,
16(1):165–188.

Vidaurre, D., Bielza, C., and Larranaga, P. (2013). A survey of L1 regression.
International Statistical Review, 81(3):361–387.

von Neumann, J. (1950). Functional operators, volume 2: The geometry of
orthogonal spaces.(am-22).

Wei, F. (2012). Group selection in high-dimensional partially linear additive
models. Brazilian Journal of Probability and Statistics, 26(3):219–243.

Xu, J. and Zikatanov, L. (2002). The method of alternating projections and
the method of subspace corrections in Hilbert space. Journal of the American
Mathematical Society, 15(3):573–597.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

Zhang, H. H., Cheng, G., and Liu, Y. (2011). Linear or nonlinear? Automatic
structure discovery for partially linear models. Journal of the American Sta-
tistical Association, 106(495):1099–1112.

121

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal
of Machine Learning Research, 7:2541–2563.

Zhou, S., Rütimann, P., Xu, M., and Bühlmann, P. (2011). High-dimensional
covariance estimation based on Gaussian graphical models. The Journal of
Machine Learning Research, 12:2975–3026.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American statistical association, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.

122

Appendices
A Robustness to the distribution of the design

matrix
The results from the simulation in section 4.3 were not identical to the results in
the simulation experiment in Bergersen et al. (2014). This is due to randomness
in the observations, but also due to the fact that our simulations are run with a
different design matrix. Consider again the situation where SNR≈4, n = 50 and
p = 1000, but where a different design matrix is drawn in each simulation. The
xij are drawn from the standard normal distribution, truncated to [0, 1], as in the
simulation experiment in section 4.3 and the simulation experiment in Bergersen
et al. (2014). We simulate 100 times. As before, if a simulation results in a non-
monotonic fit for monotone splines lasso, the results from this one simulation
are discarded. The ratio of the number of times each of the true covariates is
selected, the number of true covariates selected, the number of false covariates
selected and the mean squared errors for the fitted functions with the different
methods are given in Table A1. The fitted functions with the monotone splines
lasso method are given in Figure A1. The fitted functions with the adaptive liso
method are given in Figure A2 and the fitted functions with the lasso method
are given in Figure A3.

We see from Table A1 that the lasso and the adaptive lasso method are
best at selecting the true covariates, followed by monotone splines lasso and
adaptive monotone splines lasso. Adaptive liso performs the worst when it comes
to selecting the true covariates. All the monotone regression methods seem to
have a problem in selecting x1. However, when it comes to selection of false
covariates, the adaptive monotone splines lasso method outperforms all the other
methods. Therefore, the adaptive monotone splines lasso method was the best
at recovering the true model in this simulation.

From Figure A1, we again clearly see that the adaptive monotone splines
lasso method is better at fitting the true function than the monotone splines
lasso. From Figure A3 we also clearly see that the adaptive lasso method is
better than the lasso method. All of the monotone regression methods are again
good at recovering the shapes of the functions. From Table A1, we find that the
adaptive monotone splines method has the smallest estimation error among all
the methods in this simulation.

We observe that the results from this simulation are not as good for monotone
splines lasso as the results in Bergersen et al. (2014) and the results from the
simulation experiment in section 4.3. In this simulation experiment, new random
xij were drawn for each simulation. In Bergersen et al. (2014) and section 4.3,
the same design matrix was used in each simulation. The fact that we drew new

123

x-observations for each simulation may be the reason why we did not get so good
results with monotone splines lasso and adaptive monotone splines lasso for this
simulation experiment as in Bergersen et al. (2014) and section 4.3. Monotone
splines lasso and adaptive monotone splines lasso are sensitive to the placement
of the xij, since clustering of the observations will give good function estimation
in the local area of these points, but not on the whole interval. In addition, if
we have a function which is flat in some intervals and steep in other intervals, we
might not detect the effect of this function if there are not enough observations
in the steep areas. This can for instance happen with the function g1, which is
steepest for x between approximately 0.8 and 1.0 and quite flat otherwise.

Linear methods are not so sensitive to the placements since they estimate
one parameter which is a globally constant parameter, so it has the same value
on the whole interval for x. However, it is advantageous for the linear methods
to have observations at the endpoints of the interval, where the differences for
the linear effects are largest. The differences for linear effects are proportional
to the distance, and are therefore more apparent when there are observations
at the endpoints. In addition, if the function is very flat in one interval, and
steep in another, a linear function might not fit the function well, and a linear
method might have trouble selecting a variable with such an effect if there are
many observations in both types of intervals. An example of such a setting is
given in section 5.3.

Liso also seems to be sensitive to the locations of the observations, since we get
quite different results for adaptive liso in the simulation experiment in section 4.3
using the same design matrix in each simulation and the simulation experiment
using a different design matrix for each simulation.

Drawing new xij in a random fashion for all simulations will cover more situ-
ations and give a more fair evaluation of the method, and we therefore choose to
do this for all the other simulation experiments in this thesis.

Choosing an X from the previous simulation experiment which gave good
variable selection with monotone splines lasso ("good x") and an X which gave
bad variable selection with monotone splines lasso ("bad x") and simulating with
these matrices 100 times drawing new y-observations for each simulation, with
the same noise in the simulations with both the design matrices, gives the results
reported in Table A2. We see that monotone splines lasso and adaptive monotone
splines lasso perform very differently with the different X-matrices, even though
we have the same noise. So monotone splines lasso is strongly dependent on
the design matrix. Adaptive liso also performs worse with the "bad x", so it is
also sensitive to the design matrix. Lasso on the other hand performs (roughly)
equally well in the two scenarios, and thus seems not to be so sensitive to the
placement of the covariates. We look closer at the distribution of the X-matrices
in the histogram for x1 in Figure A4. These two matrices are surprisingly similar,
given that the results were so different. However, we immediately see that the
distribution for the observations giving good results seems to be more symmetric

124

Selection
g1 g2 g3 g4

MS-lasso 0.81 (0.39) 0.97 (0.17) 0.97 (0.17) 0.99 (0.1)
Ad. MS-lasso 0.62 (0.49) 0.97 (0.18) 0.98 (0.15) 0.99 (0.11)
Ad. liso 0.36 (0.48) 0.81 (0.39) 0.90 (0.30) 0.94 (0.24)
Lasso 0.91 (0.29) 0.98 (0.14) 0.97 (0.17) 0.99 (0.10)
Ad. lasso 0.91 (0.29) 0.98 (0.14) 0.97 (0.17) 0.99 (0.10)

TP FP
MS-lasso 3.74 (0.52) 14.34 (9.34)
Ad. MS-lasso 3.55 (0.70) 0.76 (1.93)
Ad. liso 3.01 (0.98) 5.27 (3.76)
Lasso 3.85 (0.50) 25.6 (11.4)
Ad. lasso 3.85 (0.50) 4.93 (3.45)

Estimation
g1 g2 g3 g4

MS-lasso 0.082 (0.050) 0.089 (0.060) 0.12 (0.069) 0.12 (0.079)
Ad. MS-lasso 0.047 (0.070) 0.052 (0.044) 0.054 (0.052) 0.064 (0.044)
Ad. liso 0.057 (0.037) 0.084 (0.072) 0.096 (0.092) 0.076 (0.076)
Lasso 0.062 (0.035) 0.084 (0.066) 0.27 (0.093) 0.18 (0.096)
Ad. lasso 0.036 (0.015) 0.042 (0.021) 0.17 (0.063) 0.073 (0.052)

Table A1: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation experiment considered in Appendix A, where SNR ≈
4, p = 1000 and n = 50. Standard deviations are given in parenthesis.

125

than the distribution for the observations giving bad results, and it has more
observations at the right endpoint.

To avoid the overweight of observations at the left endpoint, the same sim-
ulation experiment is performed, but where the xij are drawn from a normal
distribution with mean 0.5 and standard deviation 1, truncated to [0,1]. The
results are given in Table A3. Comparing Table A1 where the random variables
drawn have mean 0 to Table A3 where the random variables drawn have mean
0.5, we see that monotone splines lasso and adaptive liso perform better when
the data are symmetrically distributed around 0.5, both in true positives and es-
timation. The improvement for monotone splines lasso is more apparent than the
improvement for adaptive liso. The lasso performs worse in this scenario when
it comes to true positives and false positives. We especially see that adaptive
lasso has more problems in selecting x1. Looking at g1, we note that the fewer
observations around the right endpoint, the better can the function be fitted by a
straight line. This may be the reason why adaptive lasso now has more problems
selecting x1.

We also tried drawing xij from a uniform distribution on [0, 1]. The results
from this simulation are given in Table A4. Comparing the results from Table
A1 and Table A4, we see that the performance for the monotone splines lasso is
equally good when the random variables are drawn from the uniform distribution
and from the truncated standard normal distribution. The estimation errors are
quite similar, the number of true positives are the same, while the number of false
positives is slightly smaller when the observations are drawn from the uniform
distribution. The adaptive monotone splines lasso method performed better when
the random variables were drawn from the truncated standard normal distribu-
tion than when they were drawn from the standard uniform distribution, both
when it comes to true positives and false positives. The estimation errors are
very similar. The adaptive liso performs best when the variables are drawn from
the uniform distribution, in that it selects more true covariates, less false covari-
ates and the estimation errors are slightly smaller. The lasso and the adaptive
lasso perform worse when the variables are drawn from the uniform distribution
than when they are drawn from the truncated standard normal. Again this is
probably due to the fact that there now are more observations around the right
endpoint. The lasso and the adaptive lasso method perform quite similar when
the variables are drawn from a standard uniform distribution as to when they
are drawn from a normal distribution with mean 0.5 and standard deviation 1,
truncated to [0,1].

126

Selection

Good x
g1 g2 g3 g4

MS-lasso 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. MS-lasso 0.64 (0.48) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. liso 0.34 (0.48) 0.97 (0.17) 1.0 (0) 1.0 (0)
Lasso 0.99 (0.10) 1.0 (0) 1.0 (0) 0.99 (0.10)
Ad. lasso 0.99 (0.10) 1.0 (0) 1.0 (0) 0.99 (0.10)

TP FP
MS-lasso 4.0 (0) 16.31 (6.99)
Ad. MS-lasso 3.64 (0.48) 0.18 (1.14)
Ad. liso 3.31 (0.53) 4.10 (2.05)
Lasso 3.98 (0.20) 27.72 (11.72)
Ad. lasso 3.98 (0.20) 4.14 (2.61)

Bad x
g1 g2 g3 g4

MS-lasso 0.26 (0.44) 0.62 (0.49) 0.73 (0.45) 1.0 (0)
Ad. MS-lasso 0.16 (0.37) 0.41 (0.50) 0.59 (0.50) 1.0 (0)
Ad. liso 0 (0) 0.10 (0.30) 0.66 (0.48) 0.94 (0.24)
Lasso 0.96 (0.20) 1.0 (0) 1.0 (0) 1.0 (0)
Ad. lasso 0.96 (0.20) 1.0 (0) 0.99 (0.10) 1.0 (0)

TP FP
MS-lasso 2.61 (1.13) 13.89 (11.39)
Ad. MS-lasso 2.16 (1.13) 2.27 (3.19)
Ad. liso 1.70 (0.70) 9.39 (6.12)
Lasso 3.96 (0.20) 23.08 (11.52)
Ad. lasso 3.95 (0.26) 5.10 (2.82)

Table A2: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives for a fixed X in the simulation experiment
considered in Appendix A. SNR ≈ 4, p = 1000 and n = 50.

127

Selection
g1 g2 g3 g4

MS-lasso 0.88 (0.33) 0.98 (0.14) 0.99 (0.10) 0.99 (0.10)
Ad. MS-lasso 0.73 (0.45) 0.94 (0.23) 0.99 (0.11) 0.98 (0.15)
Ad. liso 0.46 (0.50) 0.78 (0.42) 0.88 (0.33) 0.96 (0.20)
Lasso 0.91 (0.29) 0.97 (0.17) 0.97 (0.17) 0.99 (0.10)
Ad. lasso 0.83 (0.38) 0.96 (0.20) 0.97 (0.17) 0.99 (0.10)

TP FP
MS-lasso 3.84 (0.44) 15.23 (9.59)
Ad. MS-lasso 3.64 (0.63) 0.69 (2.01)
Ad. liso 3.08 (0.90) 5.48 (3.61)
Lasso 3.84 (0.51) 29.6 (15.6)
Ad. lasso 3.75 (0.58) 10.2 (5.06)

Estimation
g1 g2 g3 g4

MS-lasso 0.072 (0.046) 0.077 (0.052) 0.10 (0.049) 0.11 (0.066)
Ad. MS-lasso 0.044 (0.029) 0.046 (0.041) 0.048 (0.040) 0.068 (0.055)
Ad. liso 0.058 (0.044) 0.080 (0.054) 0.091 (0.078) 0.080 (0.073)
Lasso 0.096 (0.055) 0.094 (0.056) 0.19 (0.061) 0.13 (0.085)
Ad. lasso 0.056 (0.043) 0.048 (0.034) 0.14 (0.039) 0.071 (0.050)

Table A3: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation experiment considered in Appendix A, where SNR ≈
4, p = 1000, n = 50 and the xij are drawn from a normal distribution with mean
0.5 and standard deviation 1, truncated to [0,1]. Standard deviations are given
in parenthesis.

128

Selection
g1 g2 g3 g4

MS-lasso 0.87 (0.34) 0.93 (0.26) 0.97 (0.17) 0.97 (0.17)
Ad. MS-lasso 0.59 (0.49) 0.86 (0.35) 0.92 (0.27) 0.92 (0.27)
Ad. liso 0.49 (0.50) 0.77 (0.42) 0.89 (0.31) 0.97 (0.17)
Lasso 0.91 (0.29) 0.96 (0.20) 0.97 (0.17) 0.99 (0.10)
Ad. lasso 0.85 (0.36) 0.96 (0.20) 0.97 (0.17) 0.98 (0.14)

TP FP
MS-lasso 3.74 (0.69) 13.74 (11.27)
Ad. MS-lasso 3.29 (1.02) 0.89 (2.82)
Ad. liso 3.12 (0.90) 4.84 (3.75)
Lasso 3.83 (0.59) 26.39 (12.86)
Ad. lasso 3.76 (0.64) 9.64 (4.56)

Estimation
g1 g2 g3 g4

MS-lasso 0.082 (0.053) 0.079 (0.057) 0.12 (0.086) 0.12 (0.072)
Ad. MS-lasso 0.042 (0.031) 0.042 (0.042) 0.062 (0.057) 0.071 (0.055)
Ad. liso 0.064 (0.048) 0.075 (0.065) 0.087 (0.085) 0.070 (0.067)
Lasso 0.091 (0.046) 0.095 (0.056) 0.19 (0.069) 0.13 (0.089)
Ad. lasso 0.050 (0.030) 0.053 (0.035) 0.14 (0.048) 0.071 (0.061)

Table A4: Ratio of the number of times the different covariates are selected, ratio
of the total true and false positives and mean squared errors for the estimated
functions in the simulation experiment considered in Appendix A, where SNR ≈
4, p = 1000, n = 50 and the xij are drawn from a standard uniform distribution.
Standard deviations are given in parenthesis.

129

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

MS-lasso
Adaptive MS-lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

MS-lasso
Adaptive MS-lasso

Figure A1: Estimated functions in the simulation considered in Appendix A with
n = 50, p = 1000 and SNR ≈ 4 with the monotone splines lasso (grey) and the
adaptive monotone splines lasso (light grey). The true function is given in black.

130

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Adaptive Liso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Adaptive Liso

Figure A2: Estimated functions in the simulation considered in Appendix A with
n = 50, p = 1000 and SNR ≈ 4 with adaptive liso (grey). The true function is
given in black.

131

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

x1

g 1

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x2

g 2

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

x3

g 3

Lasso
Adaptive lasso

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x4

g 4

Lasso
Adaptive lasso

Figure A3: Estimated functions in the simulation considered in Appendix A with
n = 50, p = 1000 and SNR ≈ 4 with the lasso method (grey) and the adaptive
lasso method (light grey). The true function is given in black.

132

An x-matrix giving good results

x1

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

An x-matrix giving bad results

x1

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Figure A4: Histogram of observed values of x1 for an X matrix giving good
detection of x1 and an X matrix giving bad detection of x1 for the simulation
experiment considered in Appendix A.

133

B Tables
Tables of results from different simulation experiments are given in this appendix.
Tables B1, B2, B3 and B4 show the results from the simulation experiment in
section 6.2.3 for PLAMM-1 and APLAMM-1 with weights m0.6, m0.7, m0.8 and
m0.9, respectively. Table B5 gives the results for the PLAMM-1 and APLAMM-1
in the high dimensional setting (section 6.5, with n = 150). Table B6 gives the
results for the same simulation experiment, but with weightsm0.8 on the penalties
for the non-linear parameters. Table B7 gives the results in this simulation setting
with PLAMM-2 and APLAMM-2.

134

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 0.97 (0.18) 0.99 (0.10) 0.96 (0.20) 0.98 (0.15)
APLAMM-1 0.96 (0.19) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 3.89 (0.54) 2.82 (1.55)
APLAMM-1 3.96 (0.19) 0.23 (0.59)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.022 (0.022) 0.031 (0.044) 0.039 (0.024) 0.035 (0.028)
APLAMM-1 0.026 (0.025) 0.034 (0.042) 0.036 (0.025) 0.039 (0.034)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 0.99 (0.10) 0.99 (0.10) 0.98 (0.15) 1.0 (0)
APLAMM-1 0.99 (0.11) 1.0 (0) 0.99 (0.11) 1.0 (0)

TP FP
PLAMM-1 3.96 (0.33) 1.36 (1.16)
APLAMM-1 3.98 (0.22) 0.12 (0.33)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.54 (0.30) 1.57 (0.35) −1.56 (0.33) −1.56 (0.36)
APLAMM-1 1.70 (0.32) 1.70 (0.39) −1.69 (0.36) −1.69 (0.39)

Table B1: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.2.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. The weights for balancing
group size are here m0.6. Standard deviations are given in parenthesis.

135

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 0.94 (0.24) 0.99 (0.11) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 2.12 (1.54)
APLAMM-1 3.93 (0.26) 0.17 (0.49)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.025 (0.025) 0.029 (0.025) 0.042 (0.026) 0.038 (0.029)
APLAMM-1 0.031 (0.028) 0.033 (0.027) 0.040 (0.029) 0.047 (0.040)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 0.99 (0.11) 1.0 (0) 0.99 (0.11) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 1.56 (1.13)
APLAMM-1 3.98 (0.22) 0.12 (0.33)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.57 (0.28) 1.59 (0.35) −1.57 (0.35) −1.60 (0.32)
APLAMM-1 1.73 (0.33) 1.73 (0.39) −1.71 (0.36) −1.74 (0.34)

Table B2: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.2.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. The weights for balancing
group size are here m0.7. Standard deviations are given in parenthesis.

136

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 0.91 (0.29) 0.99 (0.11) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 2.12 (1.54)
APLAMM-1 3.90 (0.31) 0.15 (0.47)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.028 (0.027) 0.032 (0.028) 0.047 (0.029) 0.042 (0.032)
APLAMM-1 0.033 (0.028) 0.035 (0.030) 0.044 (0.034) 0.052 (0.045)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 0.99 (0.11) 1.0 (0) 0.99 (0.11) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 1.88 (1.19)
APLAMM-1 3.98 (0.22) 0.21 (0.44)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.60 (0.30) 1.63 (0.36) −1.60 (0.36) −1.64 (0.32)
APLAMM-1 1.76 (0.32) 1.77 (0.39) −1.75 (0.35) −1.77 (0.34)

Table B3: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.2.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. The weights for balancing
group size are here m0.8. Standard deviations are given in parenthesis.

137

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 0.89 (0.32) 0.99 (0.11) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 1.49 (1.38)
APLAMM-1 3.87 (0.33) 0.080 (0.27)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.030 (0.027) 0.034 (0.028) 0.052 (0.033) 0.046 (0.034)
APLAMM-1 0.034 (0.028) 0.037 (0.032) 0.046 (0.035) 0.056 (0.048)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 0.99 (0.11) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 2.25 (1.35)
APLAMM-1 3.99 (0.11) 0.29 (0.55)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.65 (0.30) 1.68 (0.35) −1.66 (0.35) −1.69 (0.31)
APLAMM-1 1.79 (0.37) 1.80 (0.38) −1.78 (0.35) −1.81 (0.33)

Table B4: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.2.3, where SNR ≈ 4, d1 = 10, d2 = 10 and n = 50. The weights for balancing
group size are here m0.9. Standard deviations are given in parenthesis.

138

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 44.98 (13.21)
APLAMM-1 4.0 (0) 1.89 (5.73)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.019 (0.013) 0.018 (0.012) 0.032 (0.013) 0.024 (0.013)
APLAMM-1 0.0087 (0.0085) 0.0076 (0.0047) 0.012 (0.0076) 0.0095 (0.0071)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 2.72 (2.33)
APLAMM-1 4.0 (0) 0.057 (0.23)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.44 (0.16) 1.47 (0.19) −1.48 (0.17) −1.45 (0.20)
APLAMM-1 1.83 (0.15) 1.84 (0.18) −1.86 (0.16) −1.83 (0.17)

Table B5: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5, where SNR ≈ 4, d1 = 500, d2 = 500 and n = 150. Standard deviations are
given in parenthesis.

139

Non-linear

Selection

g1 g2 g3 g4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 14.16 (0.37)
APLAMM-1 4.0 (0) 0.41 (1.62)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-1 0.023 (0.013) 0.020 (0.012) 0.037 (0.014) 0.028 (0.014)
APLAMM-1 0.011 (0.0075) 0.0088 (0.0059) 0.013 (0.0085) 0.013 (0.010)

Linear

Selection

β1 β2 β3 β4

PLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-1 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-1 4.0 (0) 25.74 (11.6)
APLAMM-1 4.0 (0) 1.89 (6.64)

Estimated parameters

β1 β2 β3 β4

PLAMM-1 1.67 (0.17) 1.67 (0.17) −1.69 (0.17) −1.67 (0.19)
APLAMM-1 1.90 (0.15) 1.90 (0.16) −1.92 (0.14) −1.90 (0.16)

Table B6: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5, where SNR ≈ 4, d1 = 500, d2 = 500, n = 150 and the weights are the group
size to the power 0.8. Standard deviations are given in parenthesis.

140

Non-linear

Selection

g1 g2 g3 g4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 29.34 (27.22)
APLAMM-2 4.0 (0) 0 (0)

Estimation (MSE)

g1 g2 g3 g4

PLAMM-2 0.024 (0.016) 0.022 (0.017) 0.036 (0.014) 0.031 (0.016)
APLAMM-2 0.016 (0.011) 0.011 (0.0068) 0.015 (0.0063) 0.021 (0.012)

Linear

Selection

β1 β2 β3 β4

PLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)
APLAMM-2 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0)

TP FP
PLAMM-2 4.0 (0) 33.44 (22.41)
APLAMM-2 4.0 (0) 3.33 (2.25)

Estimated parameters

β1 β2 β3 β4

PLAMM-2 1.63 (0.21) 1.65 (0.18) −1.64 (0.19) −1.64 (0.16)
APLAMM-2 1.86 (0.18) 1.88 (0.17) −1.89 (0.17) −1.88 (0.16)

Table B7: Ratio of the number of times the different covariates are selected,
ratio of the total true and false positives, mean squared errors for the estimated
functions and estimated linear coefficients in the simulation considered in section
6.5, where SNR ≈ 4, d1 = 500, d2 = 500, n = 150. Standard deviations are given
in parenthesis.

141

C R-code for monotone splines lasso
Included is an R-script for how to use the monotone splines lasso, with the func-
tions for monotone splines lasso. These are slightly modified versions of the code
from http://folk.uio.no/glad/mslasso/. This is part of the code used in the
simulation experiments where we had four true covariates, see for instance section
4.3.

#S l i g h t l y modi f ied ve r s i on o f the implementat ion in
#h t t p :// f o l k . uio . no/ g l ad/mslasso/ , s ince the cross−

v a l i d a t i o n func t i on
#the re was not co r r e c t .

i s p l i n eDe s i gn <− function (x , knot . vec) {
#func t i on f o r computation o f I−Sp l i n e s o f degree 2 , c f

Ramsay 88
#modi f ied from h t t p ://www. s t a t . uni−muenchen . de/ i n s t i t u t /

l e h r s t u h l /semsto/ so f tware/

I <− numeric ()
deg <− 2
for (i in 1 : (length (knot . vec)−deg)) {

i f (x<knot . vec [i]) {
I [i] <− 0

}
i f (x>knot . vec [i +2]) {
I [i] <− 1

} else {
i f (x>=knot . vec [i] && x<=knot . vec [i +1]) {
I [i] <− (x−knot . vec [i]) ^2 / ((knot . vec [i +1]−knot .

vec [i]) ∗(knot . vec [i +2]−knot . vec [i]))
}
i f (x>=knot . vec [i +1] && x<=knot . vec [i +2]) {
I [i] <− 1−(knot . vec [i +2]−x)^2 / ((knot . vec [i +2]−

knot . vec [i]) ∗(knot . vec [i +2]−knot . vec [i +1]))
}

}
}
return (I)

}

monotone . b a s i s <− function (X, k , spline , xl , xr , i n t e r c e p t) {
Function which computes the va lue in the I−s p l i n e

142

http://folk.uio.no/glad/mslasso/

b a s i s and the knot v e c t o r .
n <− length (X)
dx <− (xr−x l)/ (k−1)
num. knots <− k−2

i f (spline==" i s p l i n e ") {
deg <− 2
knot . vec <− seq (xl−(deg−1)∗dx , xr+(deg−1)∗dx ,by=dx)
knot . vec [(deg+1) : (num. knots+2)] <− quantile (unique (as .

vector (X)) , seq (0 , 1 , length = (num. knots+2))) [−c (1 , (
num. knots+2))]

B <− t (apply (as .matrix (X) ,1 , " i s p l i n eDe s i g n " , knot . vec=
knot . vec))

}
r e s <− l i s t ("B"=B, "knot . vec "=knot . vec)
return (r e s)

}

monotone . s p l i n e s <− function (Xf ,num. knots) {
Function g i v i n g you the des i gn matrix in the I−s p l i n e

b a s i s .
pf <− ncol (Xf)
Z <− NULL
for (j in 1 : pf) {

x <− Xf [, j]
spline <− monotone . b a s i s (x , (num. knots+2) , " i s p l i n e " ,

x l = min(x) , xr = max(x) , FALSE)
z1 <− spline$B
Z=cbind (Z , z1)

}
Z <− scale (Z , c en t e r = TRUE, scale = FALSE)
return (Z)

}

monotone . l a s s o <− function (Xf , Yf , f ami ly f , num. knots f ,
lambda = NULL) {

Function f o r doing the ms−l a s s o f i t
groups <− as . vector (t (matrix (rep ((1) : (ncol (Xf)) , (num.

knot s f+2)) ,ncol (Xf) , (num. knot s f+2))))
Yc <− Yf−mean(Yf)
Z <− monotone . s p l i n e s (Xf , num. knot s f)
#pr in t (" F i t t i n g monotone l a s s o ")

143

c o op f i t <− coop . l a s s o (Z ,Yc , groups , family = fami ly f ,
i n t e r c e p t = FALSE, lambda = lambda)

ms f i t <− c o op f i t
return (ms f i t)

}

adapt ive . monotone <− function (Xf , Yf , f ami ly f , num. knots f ,
w, lambda = NULL) {

Function f o r doing the adap t i v e ms−l a s s o f i t .
groups <− as . vector (t (matrix (rep ((1) : (ncol (Xf)) , (num.

knot s f+2)) ,ncol (Xf) , (num. knot s f+2))))
Yc <− Yf−mean(Yf)
Z <− monotone . s p l i n e s (Xf , num. knot s f)
#pr in t (" F i t t i n g adap t i v e monotone l a s s o ")
adap t i v e c oop f i t <− coop . l a s s o (Z , Yc , groups , family =

fami ly f , wk = w, i n t e r c e p t = FALSE, lambda = lambda)
adapt ivems f i t <− adap t i v e c oop f i t
return (adapt ivems f i t)

}

cvmslasso <− function (Xfcv , Yfcv , K, method , num. knots ,w,
lambda) {

Cross−v a l i d a t i o n func t i on f o r ms−l a s s o and adap t i v e ms
−l a s s o .

Must be c a l l e d wi th a lambda sequence .
e r r o r <− matrix (NA, nrow = K, ncol = 100)
n = nrow(Xfcv)
ant f <− f loor (n/K)

i f (n==(K∗ant f)) {
set . seed (1)
f o l d <− sample (rep (1 :K, ant f))

} else {
f o l d <− sample (c (rep (1 :K, ant f) , 1 : (n−(K∗ant f))))

}

for (k in 1 :K) {
t e s t . ind <− which(f o l d == k)
trainX <− Xfcv[− t e s t . ind ,]
testX <− Xfcv [t e s t . ind ,]
trainY <− Yfcv[− t e s t . ind]
t e s t y <− Yfcv [t e s t . ind]

144

i f (method == "monotone . l a s s o ") {
cv . f i t <− monotone . l a s s o (trainX , trainY , " gauss ian " ,

num. knots , lambda)
Zte s t <− monotone . s p l i n e s (testX , num. knots)

} else i f (method == " adapt ive . monotone") {
cv . f i t = adapt ive . monotone (trainX , trainY , " gauss ian

" , num. knots ,w, lambda)
Zte s t <− monotone . s p l i n e s (testX , num. knots)

}
e r r o r . k <− (tes ty−predict (cv . f i t , newx = Ztes t))^2
e r r o r [k ,] <− colSums (e r r o r . k)

}
MSE <− colMeans (e r r o r)
return (MSE)

}

I s p l i n e 2 = function (x , tk , tk1 , tk2) {
i f (x < tk) {

return (0)
}

i f (tk <= x & x <= tk1) {
return ((x−tk)^2/ ((tk1−tk)∗(tk2−tk)))

}

i f (tk1 <= x & x <= tk2) {
return (1−(tk2−x)^2/ ((tk2−tk)∗(tk2−tk1)))

}

i f (x>=tk2) {
return (1)

}
}

l ibrary (scoop)
non . monotone <− NULL # Vector to s t o r e i n d i c i e s o f non−

monotonic f i t s .

f i t .ms <− monotone . l a s s o (x , y , f am i l y f = " gauss ian " , num.
knot s f = 6) # Monotone l a s s o f i t .

lambda . seq .ms <− f i t . ms@lambda # Extrac t lambda sequence
used .

145

cv .ms <− cvmslasso (x , y , K = 10 ,
method = "monotone . l a s s o " ,
num. knots = 6 , lambda = lambda . seq .ms) #

Cros s va l i d a t i on error f o r t h e s e lambdas .
coef .ms <− f i t . ms@coe f f i c i en t s
coef .ms <− coef .ms [cv .ms == min(cv .ms) ,] # Extrac t

c o e f f i c i e n t s wi th sma l l e s t p r e d i c t i on error .

weights . ams <− rep (10000000 , p) # Vector wi th adap t i v e
we i gh t s .

counter <− 1
for (i in 1 : p) {
Check i f the e i g h t c o e f f i c i e n t s f o r each p are zero .

i f (sum(coef .ms [counter : (counter + 7)]) != 0) {

i f (abs (sum(coef .ms [counter : (counter + 7)])) != sum(abs
(coef .ms [counter : (counter + 7)]))) {

Non−monotone f i t
non . monotone <− c (non . monotone , c (k , i))

}

i f (i == 1) {
tp1 .ms [k] <− 1

}

else i f (i == 2) {
tp2 .ms [k] <− 1

}

else i f (i == 3) {
tp3 .ms [k] <− 1

}

else i f (i == 4) {
tp4 .ms [k] <− 1

}

else {
fp .ms [k] <− fp .ms [k] + 1

}

weights . ams [i] <− 1/sqrt (sum(coef .ms [counter : (
counter + 7)]^2)) # Adaptive we i gh t s .

146

}
counter <− counter + 8 # Ind i c e s f o r next p .

}

f i t . ams <− adapt ive . monotone (x , y , f am i l y f = " gauss ian " ,
num. knot s f = 6 , w = weights . ams) # Adaptive

monotone f i t .
lambda . seq . ams <− f i t . ams@lambda # Extrac t lambda va l u e s .
cv . ams <− cvmslasso (x , y , K = 10 , method = " adapt ive .

monotone" ,
num. knots = 6 , w = weights . ams , lambda = lambda . seq

. ams) # Cros s va l i d a t i on error f o r lambda .
coef . ams <− f i t . ams@coe f f i c i en t s
coef . ams <− coef . ams [cv . ams == min(cv . ams) ,] # Extrac t

c o e f f i c i e n t s wi th sma l l e s t p r e d i c t i on error .

D R-code for liso
This is an R-script for how to use adaptive liso. This is part of the code used in
the simulation experiments where we had four true covariates, see for instance
section 4.3.

l ibrary (l i s o)

Liso cross−v a l i d a t i o n func t i on .
cv . f i t . l i s o <− do . ca l l ("cv . l i s o " , c (l i s t (x = x , y = y ,

monotone = FALSE)))
lambda .min . l i s o <− cv . f i t . l i s o $optimlam
Do the l i s o f i t f o r the opt imal lambda .
f i t . l i s o <− do . ca l l (" l i s o . b a c k f i t " , c (l i s t (x = x , y = y ,
lambda = lambda .min . l i s o , monotone = FALSE)))

weights . adapt ive <− l i s o . covweights (f i t . l i s o , s i g n f i n d =
TRUE) # Adaptive we i gh t s .

Cross−v a l i d a t i o n func t i on f o r the adap t i v e f i t .
cv . f i t . adapt ive . l i s o <− do . ca l l ("cv . l i s o " , c (l i s t (x = x , y

= y ,
monotone = FALSE, covweights = weights . adapt ive)))
lambda .min . adapt ive . l i s o <− cv . f i t . adapt ive . l i s o $optimlam
f i t . l i s o . adapt ive <− do . ca l l (" l i s o . b a c k f i t " , c (l i s t (x = x ,

y = y ,
lambda = lambda .min . adapt ive . l i s o , monotone = FALSE,

147

covweights = weights . adapt ive))) # Do the l i s o f i t f o r
the opt imal lambda .

Extrac t the f i t t e d parameters f o r the l i s o f i t .
f i t . l i s o . adapt ive2 <− do . ca l l (" l i s o . b a c k f i t " , c (l i s t (x = x

, y = y ,
lambda = lambda .min . adapt ive . l i s o , monotone = FALSE,
g ivebe ta = TRUE, covweights = weights . adapt ive)))

Check i f f i t t e d parameters are d i f f e r e n t from zero .
i f (sum(f i t . l i s o . adapt ive2 [1 : (n − 1)]) != 0) {

tp1 [k] <− 1
}

i f (sum(f i t . l i s o . adapt ive2 [n : (2 ∗ n − 1)]) != 0) {
tp2 [k] <− 1

}

i f (sum(f i t . l i s o . adapt ive2 [(2 ∗ n) : (3 ∗ n − 1)]) != 0) {
tp3 [k] <− 1

}

i f (sum(f i t . l i s o . adapt ive2 [(3 ∗ n) : (4 ∗ n − 1)]) != 0) {
tp4 [k] <− 1

}

sum . f <− 0 # Number o f f a l s e p o s i t i v e s .
for (i in 5 : p) {

i f (sum(f i t . l i s o . adapt ive2 [((i − 1) ∗ n − (i − 2)) : (i ∗ (
n − 1))]) != 0) {

sum . f <− sum . f + 1
}

}

fp [k] <− sum . f

E R-code for lasso
This is an R-script for how to use lasso and adaptive lasso. This is part of the
simulation experiments where we had four true covariates, see for instance section
4.3.

l ibrary (glmnet)

148

empty . f i t <− NULL # Vector to s t o r e the s imu la t i on
numbers wi th no s e l e c t e d parameters .

cv . f i t . l a s s o <− cv . glmnet (x , y , family = " gauss ian " ,
i n t e r c e p t = FALSE,

s tandard i z e = TRUE, alpha = 1) # Lasso cross−v a l i d a t i o n
f i t .

lambda .min <− cv . f i t . l a s s o$lambda .min
beta . l a s s o <− coef (cv . f i t . l a s so , s = lambda .min)
beta . l a s s o <− as .matrix (beta . l a s s o)
beta . l a s s o <− beta . l a s s o [−1] # Remove i n t e r c e p t .

weights . adapt ive <− rep (100000000 , p)
weights . adapt ive [beta . l a s s o != 0] <− 1/abs (beta . l a s s o [beta

. l a s s o != 0])

The adap t i v e l a s s o w i l l not work i f a l l e s t imated
parameters are zero .

i f (sum(beta . l a s s o) == 0) {
empty . f i t <− c (empty . f i t , k)

}

else {
#Adaptive l a s s o cross−v a l i d a t i o n f i t .
cv . f i t . adapt ive . l a s s o <− cv . glmnet (x , y , family = "

gauss ian " ,
i n t e r c e p t = FALSE, s tandard i z e =

TRUE,
alpha = 1 , pena l ty . factor =

weights . adaptive ,
exc lude = which(beta . l a s s o == 0))

lambda . adapt ive .min <− cv . f i t . adapt ive . l a s s o$
lambda .min

beta . adapt ive . l a s s o <− coef (cv . f i t . adapt ive . l a s so ,
s = lambda . adapt ive .min)

beta . adapt ive . l a s s o = beta . adapt ive . l a s s o [−1] #
Remove i n t e r c e p t .

}

149

F R-code for lm, scam and scar
This is an R-script for how to perform the fits with the ordinary least squares,
the scam and the scar. This is part of the simulation experiments with four true
covariates and three false covariates, see section 5.

l ibrary (scam)
l ibrary (s ca r)

f i t . lm <− lm(y ~ x) # Ordinary l e a s t squares f i t .
beta . o l s <− summary(f i t . lm)$coef f ic ients [, 1]
pva lues . o l s <− summary(f i t . lm)$coef f ic ients [, 4]

True and f a l s e p o s i t i v e s f o r lm .
i f (pva lues . o l s [1] < 0 . 05) {

tp1 . o l s [k] <− 1
}
i f (pva lues . o l s [2] < 0 . 05) {

tp2 . o l s [k] <− 1
}
i f (pva lues . o l s [3] < 0 . 05) {

tp3 . o l s [k] <− 1
}
i f (pva lues . o l s [4] < 0 . 05) {

tp4 . o l s [k] <− 1
}

for (i in 5 : p) {
i f (pva lues . o l s [i] < 0 . 05) {

fp . o l s [k] <− fp . o l s [k] + 1
}

}

x1 <− x [, 1]
x2 <− x [, 2]
x3 <− x [, 3]
x4 <− x [, 4]
x5 <− x [, 5]
x6 <− x [, 6]
x7 <− x [, 7]

Fi t t e d f unc t i on s wi th scar .
f i t . s c a r <− s ca r (x , y , shape = c ("de" , "de" , " in " , " in " , "

150

l " , " l " , " l "))

Fi t t e d f unc t i on s wi th scam .
f i t . scam <− scam(y ~ s (x1 , k = 10 , bs = "mpd") + s (x2 , k =

10 , bs = "mpd")
+ s (x3 , k = 10 , bs = "mpi") + s (x4 , k = 10 , bs =

"mpi") +
s (x5 , k = 10) + s (x6 , k = 10) + s (x7 , k = 10) −

1)

P−va l u e s f o r the c o v a r i a t e s wi th scam .
pvalues . scam <− summary(f i t . scam) [8] $s . pv

True and f a l s e p o s i t i v e s f o r scam .
i f (pva lues . scam [1] < 0 . 05) {

tp1 . scam [k] <− 1
}
i f (pva lues . scam [2] < 0 . 05) {

tp2 . scam [k] <− 1
}
i f (pva lues . scam [3] < 0 . 05) {

tp3 . scam [k] <− 1
}
i f (pva lues . scam [4] < 0 . 05) {

tp4 . scam [k] <− 1
}

for (i in 5 : p) {
i f (pva lues . scam [i] < 0 . 05) {

fp . scam [k] <− fp . scam [k] + 1
}

}

G R-code for PLAMM-1 and APLAMM-1
This is an R-script with methods (functions) for PLAMM-1 and APLAMM-
1. Some of these methods are equal to the methods in the monotone splines
lasso and are thus called without being stated. This is part of the simulation
experiments with four true non-linear covariates and four true linear covariates,
see section 6.2.3.

151

#Appropriate mod i f i c a t i on s o f the monotone s p l i n e s l a s s o
func t ions ,

#fo r a p p l i c a t i o n s to the p a r t i a l l y l i n e a r models .

part . l i n .ms <− function (X, Z , Y, family = " gauss ian " , num.
knots f ,

lambda = NULL, power = 0 . 8) {
Z matrix wi th non−l i n e a r e f f e c t s , X matrix wi th l i n e a r

e f f e c t s .
num. kno t s f i s the number o f i n t e r i o r knots .
power i s the exponent f o r group s i z e to ba lance f o r

d i f f e r e n t group s i z e s .
lambda i s an op t i ona l g r i d o f tuning parameters .

#Vector wi th group index f o r each column in the des i gn
matrix .

groups <− as . vector (t (matrix (rep ((1) : (ncol (Z)) , (num.
knot s f + 2)) ,

ncol (Z) , (num. knot s f + 2))))
groups <− c (groups , seq (ncol (Z) + 1 , ncol (Z) + ncol (X) ,

by = 1))
Yc <− Y − mean(Y)
Z_I <− monotone . s p l i n e s (Z , num. knot s f)
des ign .matrix <− cbind (Z_I , X)
w <− (tabulate (groups))^power
coop . f i t <− coop . l a s s o (des ign .matrix , Yc , groups ,
wk = w, i n t e r c e p t = FALSE, lambda = lambda)
return (coop . f i t)

}

ad . part . l i n .ms <− function (X, Z , Y, family = " gauss ian " ,
num. knots f ,

w, lambda = NULL, power =
0 . 8) {

#Z matrix wi th non−l i n e a r e f f e c t s , X matrix wi th l i n e a r
e f f e c t s .

num. kno t s f i s the number o f i n t e r i o r knots .
w are the adap t i v e we i gh t s .
power i s the exponent f o r group s i z e to ba lance f o r

d i f f e r e n t group s i z e s .
lambda i s an op t i ona l g r i d o f tuning parameters .

#Vector wi th group index f o r each column in the des i gn

152

matrix .
groups <− as . vector (t (matrix (rep ((1) : (ncol (Z)) , (num.

knot s f + 2)) ,
ncol (Z) , (num. knot s f + 2))))

groups <− c (groups , seq (ncol (Z) + 1 , ncol (Z) + ncol (X) ,
by = 1))

Yc <− Y − mean(Y)
Z_I <− monotone . s p l i n e s (Z , num. knot s f)
des ign .matrix <− cbind (Z_I , X)
weight <− (tabulate (groups))^power
coop . f i t <− coop . l a s s o (des ign .matrix , Yc , groups ,
wk = w ∗ weight , i n t e r c e p t = FALSE, lambda = lambda)
return (coop . f i t)

}

cv .ms . part . l i n <− function (X, Z , Y, K, method , num. knots ,
w = NULL, lambda , power = 0 . 8) {

Z matrix wi th non−l i n e a r e f f e c t s , X matrix wi th l i n e a r
e f f e c t s .

K i s the number o f f o l d s f o r the cross−v a l i d a t i o n .
method i s " par t . l i n " f o r the i n i t i a l f i t , or " adap t i v e

. par t . l i n " f o r the adap t i v e f i t .
num. kno t s f i s the number o f i n t e r i o r knots .
w are the adap t i v e we i gh t s .
lambda i s the g r i d o f tuning parameters , and must be

prov ided .
power i s the exponent f o r group s i z e to ba lance f o r

d i f f e r e n t group s i z e s .

e r r o r <− matrix (NA, nrow = K, ncol = 100)
n = nrow(X)
ant f <− f loor (n / K)

i f (n == (K ∗ ant f)) {
set . seed (1)
f o l d <− sample (rep (1 :K, ant f))

}
else {

f o l d <− sample (c (rep (1 :K, ant f) , 1 : (n − (K ∗ ant f))))
}

for (k in 1 :K) {
t e s t . ind <− which(f o l d == k)

153

trainX <− X[− t e s t . ind ,]
t ra inZ = Z[− t e s t . ind ,]
testX <− X[t e s t . ind ,]
t e s tZ = Z [t e s t . ind ,]
trainY <− Y[− t e s t . ind]
t e s t y <− Y[t e s t . ind]
i f (method == "part . l i n ") {

cv . f i t <− part . l i n .ms(trainX , tra inZ , trainY , "
gauss ian " , num. knots , lambda , power)

Zte s t <− monotone . s p l i n e s (testZ , num. knots)
}
else i f (method == " adapt ive . part . l i n ") {

cv . f i t = ad . part . l i n .ms(trainX , tra inZ , trainY , "
gauss ian " , num. knots , w, lambda , power)

Zte s t <− monotone . s p l i n e s (testZ , num. knots)
}
e r r o r . k <− (t e s t y − predict (cv . f i t , newx = cbind (Ztest

, testX)))^2
e r r o r [k ,] <− colSums (e r r o r . k)

}
MSE <− colMeans (e r r o r)
return (MSE)

}

l ibrary (scoop)

non . monotone <− NULL # Vector to s t o r e i n d i c i e s o f non−
monotonic f i t s .

num. knots <− 6

Pa r t i a l l y l i n e a r f i t wi th monotone s p l i n e s l a s so ,
x1 i s the matrix wi th l i n e a r e f f e c t s , x2 i s the matrix

wi th non−l i n e a r e f f e c t s .
f i t . part . l i n <− part . l i n .ms(x1 , x2 , y , " gauss ian " , num.

knot s f = num. knots) # Pa r t i a l l y l i n e a r f i t .
lambda . seq . part . l i n <− f i t . part . lin@lambda # Extrac t

lambda sequence used .
cv . part . l i n <− cv .ms . part . l i n (x1 , x2 , y , K = 10 ,

method = "part . l i n " , num. knots = num. knots ,
lambda = lambda . seq . part . l i n) #

Cros s va l i d a t i on error f o r t h e s e lambdas .
coef . part . l i n <− f i t . part . l i n@ c o e f f i c i e n t s
Extrac t c o e f f i c i e n t s wi th sma l l e s t p r e d i c t i on error

154

coef . part . l i n <− coef . part . l i n [cv . part . l i n == min(cv . part .
l i n) ,]

weights . adapt ive <− rep (10000000 , p) #Vector wi th adap t i v e
we i gh t s

counter = 1
for (i in 1 : d2) {
#Check i f the c o e f f i c i e n t s f o r each non−l i n e a r p are

zero .
i f (sum(coef . part . l i n [counter : (counter + num. knots + 1)

]) != 0) {
i f (abs (sum(coef . part . l i n [counter : (counter+num. knots

+ 1)])) !=
sum(abs (coef . part . l i n [counter : (counter + num. knots +

1)]))) {
non . monotone <− c (non . monotone , c (k , i))

}
i f (i == 1) {

tp1 [k] <− 1
}
else i f (i == 2) {

tp2 [k] <− 1
}
else i f (i == 3) {

tp3 [k] <− 1
}
else i f (i == 4) {

tp4 [k] <− 1
}
else {

fp [k] <− fp [k] + 1
}
weights . adapt ive [i] <− 1 / sqrt (sum(coef . part . l i n
[counter : (counter + num. knots + 1)]^2))

}
counter <− counter + num. knots + 2 #Ind i c e s f o r next p

}

Linear parameters .
beta1 [k] <− coef . part . l i n [counter]
beta2 [k] <− coef . part . l i n [counter + 1]
beta3 [k] <− coef . part . l i n [counter + 2]

155

beta4 [k] <− coef . part . l i n [counter + 3]

#Store i n d i c a t o r s f o r the l i n e a r v a r i a b l e s s e l e c t e d .
for (i in counter : (counter + d1 − 1)) {

i f (coef . part . l i n [i] != 0) {
i f (i == counter) {

tp1 . l i n [k] <− 1
}
else i f (i == (counter + 1)) {

tp2 . l i n [k] <− 1
}
else i f (i == (counter + 2)) {

tp3 . l i n [k] <− 1
}
else i f (i == (counter + 3)) {

tp4 . l i n [k] <− 1
}
else {

fp . l i n [k] <− fp . l i n [k] + 1
}
weights . adapt ive [d2 + i − counter + 1] <− 1 / abs (coef

. part . l i n [i])
}

}

f i t . ad . part . l i n <− ad . part . l i n .ms(x1 , x2 , y , " gauss ian " ,
num. knot s f = num. knots ,

w = weights . adapt ive) # Adaptive
p a r t i a l l y l i n e a r f i t .

lambda . seq . ad . part . l i n <− f i t . ad . part . lin@lambda #
Extrac t lambda va l u e s .

cv . ad . part . l i n <− cv .ms . part . l i n (x1 , x2 , y , K = 10 , method
= " adapt ive . part . l i n " ,

num. knots = num. knots , w = weights . adaptive
,

lambda = lambda . seq . ad . part . l i n) # Cross−
v a l i d a t i o n error f o r t h e s e lambdas .

coef . ad . part . l i n <− f i t . ad . part . l i n@ c o e f f i c i e n t s
Extrac t c o e f f i c i e n t s wi th sma l l e s t p r e d i c t i on error .
coef . ad . part . l i n <− coef . ad . part . l i n [cv . ad . part . l i n == min

(cv . ad . part . l i n) ,]

156

H R-code for PLAMM-2 and APLAMM-2
This is an R-script with methods (functions) for PLAMM-2 and APLAMM-2.
The methods in monotone splines lasso are called without definitions. This is
part of the simulation experiments with four true non-linear covariates and four
true linear covariates, see section 6.3.3.

l ibrary (scoop)
l ibrary (glmnet)

non . monotonic <− NULL # Vector to s t o r e i n d i c e s o f non−
monotonic f i t s .

num. knots = 6 # Number o f i n t e r i o r knots .

x1 i s the matrix wi th the l i n e a r c o va r i a t e s .
x2 i s the matrix wi th non−l i n e a r c o va r i a t e s .

t o l <− 10^(−4) # Convergence c r i t e r i o n .
beta . old <− rep (0 , d1) # Beta from l a s t s tep , f i r s t guess

.
beta .new <− NULL # Beta in current s t ep .
coef . old <− NULL # Sp l ine c o e f f i c i e n t s from l a s t s t ep .
coef .new <− NULL # Sp l ine c o e f f i c i e n t s in current s t ep .
y . now <− y − x1%∗%beta . old # What i s to be exp l a ined by

the s p l i n e s in the f i r s t run .
cont1 <− TRUE # Var iab l e to i n d i c a t e whether or not we

have convergence in the b e t a s . " cont " f o r cont inue .
cont2 <− TRUE # Var iab l e to i n d i c a t e whether or not we

have convergence in the s p l i n e c o e f f i e n c t s .
stop <− FALSE # Var iab l e to t e l l us whether or not to

s top .
i t e r <− 0 # Number o f i t e r a t i o n s .

while (! stop) {
This wh i l e loop cont inues u n t i l we have convergence in

both par t s .
i t e r <− i t e r + 1
print (c (" i t e r " , i t e r))
Monotone f i t wi th cu r r en t l y b e s t guess f o r be ta
f i t .ms <− monotone . l a s s o (x2 , y . now , " gauss ian " , num.

knot s f = num. knots)
lambda . seq .ms <− f i t . ms@lambda

157

cv .ms <− cvmslasso (x2 , y . now , K = 10 , method = "monotone
. l a s s o " ,

num. knots = num. knots , lambda = lambda . seq .ms)
coef .ms <− f i t . ms@coe f f i c i en t s
coef .ms <− coef .ms [cv .ms == min(cv .ms) ,]
coef .new <− coef .ms
i f (! i s . null (coef . old)) {

i f (sum((coef .new − coef . old) ^2) < t o l) { # Check f o r
convergence .

cont2 <− FALSE # Convergence in non−l i n e a r par t .
i f (! cont1) { # I f convergence in both parts , s top .
stop <− TRUE

}
}
else {

cont2 <− TRUE
}

}

i f (! stop) {
i f (sum(cv .ms == min(cv .ms)) == 1) { # Unique

es t imated tuning parameter .
ms . f i tted <− f i tted (f i t .ms) [, cv .ms == min(cv .ms)]

Extrac t f i t t e d y from s p l i n e par t .
}
else {

ms . f i tted <− 0
}
y . now <− y − ms . f i tted # Observa t ions to be exp l a ined

by the l i n e a r terms .
cv . l a s s o <− cv . glmnet (x1 , y . now , i n t e r c e p t = FALSE,

s tandard i z e = TRUE, alpha = 1) # Fit the
l i n e a r par t .

lambda .min . l a s s o <− cv . l a s s o$lambda .min
beta .new <− coef (cv . l a s so , s = lambda .min . l a s s o)
beta .new <− as .matrix (beta .new)

}
beta .new <− beta .new [2 : (d1 + 1)] # Remove i n t e r c e p t .
i f (sum((beta .new−beta . old) ^2) < t o l) { # Check f o r

convergence .
cont1 <− FALSE # Convergence in the l i n e a r parameters

.
i f (! cont2) { # I f convergence in both parts , s top .

158

stop <− TRUE
}

}
else {

cont1 <− TRUE
}
beta . old <− beta .new # Update be ta .
coef . old <− coef .new # Update s p l i n e c o e f f i c i e n t s .
y . now <− y − x1%∗%beta . old # Update y to be exp l a ined

by the s p l i n e s .
}

weights . l i n <− rep (100000 , d1) # Adaptive we i gh t s f o r the
l i n e a r terms .

Count t rue and f a l s e l i n e a r terms .
i f (beta .new [1] != 0) {
weights . l i n [1] <− 1 / abs (beta .new [1])
tp1 . l i n [k] <− 1

}
i f (beta .new [2] != 0) {

tp2 . l i n [k] <− 1
weights . l i n [2] <− 1 / abs (beta .new [2])

}
i f (beta .new [3] != 0) {

tp3 . l i n [k] <− 1
weights . l i n [3] <− 1 / abs (beta .new [3])

}
i f (beta .new [4] != 0) {

tp4 . l i n [k] <− 1
weights . l i n [4] <− 1 / abs (beta .new [4])

}
for (i in 5 : d1) {

i f (beta .new [i] != 0) {
fp . l i n [k] <− fp . l i n [k] + 1
weights . l i n [i] <− 1 / abs (beta .new [i])

}
}

weights . non l in <− rep (10000 , d2) # Adaptive non−l i n e a r
we i gh t s .

Count t rue and f a l s e c o v a r i a t e s wi th non−l i n e a r e f f e c t .
counter <− 1

159

for (i in 1 : d2) {
i f (sum(coef .new [counter : (counter + 7)]) != 0) {

i f (abs (sum(coef .new [counter : (counter + 7)])) !=
sum(abs (coef .new [counter : (counter + 7)]))) {

#Non−monotone f i t .
non . monotonic = c (non . monotonic , c (k , i))

}
i f (i == 1) {

tp1 .ms [k] <− 1
}
else i f (i == 2) {

tp2 .ms [k] <− 1
}
else i f (i == 3) {

tp3 .ms [k] <− 1
}
else i f (i == 4) {

tp4 .ms [k] <− 1
}
else {

fp .ms [k] <− fp .ms [k] + 1
}
weights . non l in [i] <− 1 / sqrt (sum(coef .new [counter : (

counter + 7)]^2))
}
counter <− counter + 8

}

t o l <− 10^(−8) # Convergence c r i t e r i o n .
coef . old . ad <− NULL # Sp l ine c o e f f i c i e n t s from l a s t s t ep .
coef .new . ad <− NULL # Sp l ine c o e f f i c i e n t s in current s t ep

.
beta . old . ad <− beta .new
beta .new . ad <− beta .new
y . now <− y − x1%∗%beta . old . ad # What i s to be exp l a ined

by the s p l i n e s in the f i r s t run .
cont1 <− TRUE # Var iab l e to i n d i c a t e whether or not we

have convergence in the b e t a s . " cont " f o r cont inue .
cont2 <− TRUE # Var iab l e to i n d i c a t e whether or not we

have convergence in the s p l i n e c o e f f i e n c t s .
stop <− FALSE # Var iab l e to t e l l us whether or not to

s top .

160

i t e r <− 0 # Number o f i t e r a t i o n s
while (! stop) {

This wh i l e loop cont inues u n t i l we have convergence in
both par t s .

i t e r <− i t e r + 1
print (c (" i t e r " , i t e r))
Monotone f i t wi th cu r r en t l y b e s t guess f o r be ta .
f i t . ams <− adapt ive . monotone (x2 , y . now , " gauss ian " , num.

knot s f = num. knots , w = weights . non l in)
lambda . seq . ad <− f i t . ams@lambda
cv . ams <− cvmslasso (x2 , y . now , K = 10 , method = "

adapt ive . monotone" , num. knot s f = num. knots ,
w = weights . nonl in , lambda = lambda . seq . ad)
coef . ams <− f i t . ams@coe f f i c i en t s
coef . ams <− coef . ams [cv . ams == min(cv . ams) ,]
coef .new . ad <− coef . ams
i f (! i s . null (coef . old . ad)) {

i f (sum((coef .new . ad − coef . old . ad) ^2) < t o l) { #
Check f o r convergence .
cont2 <− FALSE # Do not cont inue .
i f (! cont1) { # I f convergence in both parts , s top .
stop <− TRUE

}
}
else {

cont2 <− TRUE
}

}

i f (! stop) {
i f (tp1 . l i n [k] == 0 & tp2 . l i n [k] == 0 & tp3 . l i n [k] == 0
& tp4 . l i n [k] == 0 & fp . l i n [k] == 0) {

cont1 <− FALSE
}
else {

i f (sum(cv . ams == min(cv . ams)) == 1) { # Unique
pena l t y parameter .

ams . f i tted <− f i tted (f i t . ams) [, cv . ams == min(cv .
ams)] # Extrac t f i t t e d y from s p l i n e par t .

}
else {

ams . f i tted <− 0
}

161

y . now <− y − ams . f i tted # Observa t ions to be
exp l a ined by the l i n e a r terms .

cv . a l a s s o <− cv . glmnet (x1 , y . now , i n t e r c e p t = FALSE,
s tandard i z e = TRUE,

alpha = 1 , pena l ty . factor = weights . l i n ,
exc lude = which(beta .new == 0)) # Fit the

l i n e a r par t .
lambda .min . a l a s s o <− cv . a l a s s o$lambda .min
beta .new . ad <− coef (cv . a l a s so , s = lambda .min . a l a s s o

)
beta .new . ad <− as .matrix (beta .new . ad)

}
}
beta .new . ad <− beta .new . ad [2 : (d1 + 1)] # Remove

i n t e r c e p t .
i f (sum((beta .new . ad − beta . old . ad) ^2) < t o l) { # Check

f o r convergence .
cont1 <− FALSE # Do not cont inue .
i f (! cont2) { # I f convergence in both parts , s top .
stop <− TRUE

}
}
else {

cont1 <− TRUE
}
beta . old . ad <− beta .new . ad # Update be ta .
coef . old . ad <− coef .new . ad # Update s p l i n e c o e f f i c i e n t s

.
y . now <− y − x1%∗%beta . old . ad # Update y to be

exp l a ined by the s p l i n e s .
}

162

	Abstract
	Acknowledgments
	List of abbreviations
	Introduction
	Linear regression in higher dimensions
	High dimensional data and penalised regression
	Selection of the penalty parameter
	Cross-validation

	Ridge regression
	Lasso regression
	Adaptive lasso
	Group lasso
	Cooperative lasso

	Monotone regression
	Regression splines
	Monotone regression overview
	MonBoost
	Shape constrained additive models (scam)
	Shape constrained additive regression (scar)

	Monotone regression when p>n
	liso regression
	Monotone splines lasso regression
	Simulation example in the high dimensional setting
	Importance of the number of knots in monotone splines lasso

	Comparison of monotone methods when p<n
	Variable selection and estimation in simulation experiments
	Strong signal and independent covariates
	Weak signal and dependent covariates

	Prediction performance
	A situation where a linear model is not sufficient
	Boston housing data
	Conclusion on the performance of monotone splines lasso

	Partially linear monotone models
	Fitting the partially linear model using monotone splines
	PLAMM-1
	Properties
	Adaptive scheme for PLAMM-1
	Simulation experiment

	plamm-2
	Convergence of PLAMM-2
	Adaptive scheme for PLAMM-2
	Simulation experiment

	Comparison with scam
	Prediction performance

	High dimensional setting
	Slightly simpler setting

	Conclusion on the performance of the methods
	Linear or non-linear
	Illustration of the methods using bone mineral density data
	Increased number of genes

	Concluding remarks
	Further work

	References
	Appendices
	Robustness to the distribution of the design matrix
	Tables
	R-code for monotone splines lasso
	R-code for liso
	R-code for lasso
	R-code for lm, scam and scar
	R-code for PLAMM-1 and APLAMM-1
	R-code for PLAMM-2 and APLAMM-2

