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Abstract

We start out by reviewing the theory of symbols over number fields, emphasizing how this
notion relates to classical reciprocity laws and algebraic K-theory. Then we compute the
second algebraic K-group of the fields Q(

√
−1) and Q(

√
−3) based on Tate’s technique

for K2(Q), and relate the result for Q(
√
−1) to the law of biquadratic reciprocity.

We then move into the realm of motivic homotopy theory, aiming to explain how
symbols in number theory and relations in K-theory and Witt theory can be described
as certain operations in stable motivic homotopy theory. We discuss Hu and Kriz’ proof
of the fact that the Steinberg relation holds in the ring π∗α1 of stable motivic homotopy
groups of the sphere spectrum 1. Based on this result, Morel identified the ring π∗α1 as
the Milnor-Witt K-theory KMW

∗ (F ) of the ground field F . Our last aim is to compute
this ring in a few basic examples.
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Introduction

From reciprocity laws to K-theory

In number theory, one ubiquitous problem is that of solving equations over finite fields. In
the case of quadratic equations, the problem led Legendre to introduce the symbols (−/q)
representing solvability of quadratic equations over Fq. The pinnacle of theory is the quadratic
reciprocity law of Gauss (Theorem 1.1) relating Legendre symbols over different primes.

Since the time of Gauss, the Legendre symbols have been generalized to arbitrary number
fields, and to symbols representing solvability over finite fields of equations of any degree. Most
notable are perhaps the Hilbert symbols

(−,−
v

)
, which we will introduce in Chapter 1. These

symbols satisfy properties like antisymmetry, bimultiplicativity and the relation(
x, 1− x

v

)
= 1. (1)

This last property turned out to be very important. Indeed, Steinberg’s work on central exten-
sions led him to study certain bimultiplicative maps with values in an abelian group satisfying
the relation (1) above [Tat76a]. Such maps are now called Steinberg symbols, and the relation
(1) is called the Steinberg relation. Hilbert symbols provide important examples of Steinberg
symbols.

By Matsumoto’s description of the second K-group K2(F ) of a field F , it turns out that
K2(F ) is the universal object with respect to Steinberg symbols. By formulating the classical
law of quadratic reciprocity in terms of Hilbert symbols on Q, this insight led Tate to the
discovery that the structure theorem for K2(Q) is actually equivalent to quadratic reciprocity.

Classification problems and Milnor’s conjecture

In every part of mathematics there are objects constructed for the purpose of classifying other
mathematical objects. For example:

• In the machinery of algebraic K-theory, we have the group K0 which classifies, e.g.,
isomorphism classes of finitely generated projective modules over a ring or classes of
vector bundles on a scheme. The higher algebraic K-groups also take into account certain
symmetry properties of the ground object of study.

• A classical problem that has been the subject of extensive study over the years is that of
classifying quadratic forms over fields. The so-called Witt ring W (F ) of a field F evolved
out of this problem, whose elements represents equivalence classes of quadratic spaces
over F .

• Parallel to the story of the Witt ring is that of the Galois cohomology H∗Gal(F ;−). It is
known for example thatH2

Gal(F ;F×sep)—where Fsep is the separable closure of F—classifies
equivalence classes of central simple algebras over the field F , while H1

Gal(F ;Z/2) is the
set of square classes of elements in F×.



Introduction

The algebraic K-theory, the Witt ring and the Galois cohomology of a field F are clearly highly
interesting invariants of F . What Milnor did in [Mil70] was to define a ring KM

∗ (F ), purely in
terms of generators and relations, which would serve as a sort of “best approximation” to the
Witt theory and Galois cohomology of F [Dug04, 1.7]. The Milnor K-groups KM

n (F ) agree
with algebraic K-theory for n equal to 0, 1 and 2, but not generally in higher degrees. Letting
I(F ) denote the fundamental ideal of the Witt ring W (F ), Milnor produced homomorphisms

KM
n (F )/2KM

n (F )

In(F )/In+1(F ) Hn
Gal(F ;Z/2)

and proved that these maps are isomorphisms in degrees 0, 1 and 2 as well as always being
surjective. But it required the machinery of motivic homotopy theory—invented during the
1990s—to prove Milnor’s conjecture that the maps are actually isomorphisms in every degree.
More on this in Chapter 2.

The settlement of the Milnor conjecture shed a whole new light on the theory of quadratic
forms over fields. For example, it made it possible to think about relations in both Witt theory
and Milnor K-theory as operations in stable motivic homotopy theory. More precisely, further
studies in motivic homotopy theory revealed that the stable motivic homotopy groups π∗α1
of the motivic sphere spectrum 1 could be described as the so-called Milnor-Witt K-theory
KMW
∗ (F ) of the ground field F . As the sphere spectrum is initial in the category of ring

spectra, any homotopy group πm+nαR of a ring spectrum R will inherit the relations in the
group πm+nα1 via the map πm+nα1 → πm+nαR induced by the unique unit map 1 → R. In
this regard, Milnor-Witt K-theory is a fundamental object in stable motivic homotopy theory.

One prime at a time. . .

By the fundamental theorem of arithmetic, there is an isomorphism of abelian groups

Q×
∼=−−→ Z/2⊕

⊕
p prime

Z

x 7−→ (sgn(x), ord2(x), ord3(x), . . . , ordp(x), . . . ).

Here sgn(x) is the sign of the rational number x, and ordp(x) is the p-adic valuation of x. This
isomorphism suggests that in order to solve a problem concerning the fieldQ, it might be helpful
to consider the problem in each completion Qp of Q, as well as in R. In other words, one should
consider one prime at a time. Hasse-Minkowski’s local-global principle [MH73, Corollary 2.4,
p.89] is a typical example of this, stating that a quadratic form defined over Q represents zero
if and only if it represents zero in each completion Qp, as well as in R. In fact, this local-global
philosophy is used extensively in class field theory, as we will see examples of in Chapter 1.

Turning to the realm of K-theory, it was Tate who was the first one out to compute the
group K2(Q). Using additive notation, the result is

K2(Q) ∼= Z/2⊕
⊕

p prime

K1(Fp).

Tate’s method of computation consisted of defining a filtration of K2(Q) by subgroups indexed
over the primes, and then analyzing each of these subgroups separately in order to “conclude
globally”. By Hilbert’s formulation of the known reciprocity laws by means of considering one
reciprocity symbol for each prime (see Theorem 1.55), Tate’s computation made it possible to
relate K-groups of number fields to reciprocity laws. More on all this in Chapter 3.

Tate’s computation of K2(Q) inspired Milnor to give a new proof of the structure theorem
for the Witt ring of Q [MH73, Theorem 2.1, p.88]:

W (Q) ∼= Z⊕
⊕

p prime

W (Fp).

iv



Again, the proof consists of defining a filtration of W (Q), one subgroup for each prime, and
considering one of these at a time.

In Chapter 5, we will see that this method also carries over to the case of Milnor-Witt
K-theory. More precisely, for n ≥ 2 we compute KMW

n (Q); the result being

KMW
n (Q) ∼= Z⊕

⊕
p prime

KMW
n−1 (Fp).

Outline

Chapter 1 provides background material for understanding number theoretic aspects of theK-
theory we consider in Chapter 3. This chapter has two main themes: First we give a more
or less detailed treatment of the properties of the number fields Q(

√
−1) and Q(

√
−3),

which is needed later on. We then move on to discuss symbols over number fields and
their relation to classical reciprocity laws. Number theoretic symbols are perhaps the
main connection between number theory and classical algebraic K-theory, so we make an
effort to introduce this concept thoroughly. In particular, we take a detour to visit class
field theory and the origins of tame symbols. It is of course possible to take the formula in
Proposition 1.52 as the definition of tame symbols and then move directly onto K-theory,
but we find it illuminating to consider a more unified treatment of all the different number
theoretic symbols, which is achieved by realizing these symbols as offspring of the local
reciprocity map of local class field theory. As a motivation, we provide some background
material on the history of reciprocity laws in the beginning of Chapter 1. We revisit
classical reciprocity laws in new guises in Section 1.6, finishing the chapter by taking a
closer look at biquadratic reciprocity.

Chapter 2 introduces some preliminary theory on classical algebraic K-theory. We also go
through the definition and basic properties of Milnor K-theory and Witt theory. Finally,
we briefly explain Milnor’s conjecture relating Milnor K-theory, Witt theory and Galois
cohomology.

Chapter 3 deals with some explicit calculations. Specifically, we compute the second K-
group of the fields Q(

√
−1) and Q(

√
−3) based on Tate’s technique for K2(Q). We hope

to illustrate how the arithmetic of the given number field reveals itself in the K-group,
e.g., by making use of previous results on units; the Euclidean algorithm; the structure of
residue fields and the ramification and splitting behavior of primes in these number fields.
In particular, we connect the result on K2(Q(

√
−1)) to the law of biquadratic reciprocity.

Chapter 4 is a brief introduction to motivic homotopy theory. The goal of this chapter is
to provide background material and motivation for studying Milnor-Witt K-theory. The
reader who wishes may therefore skip this chapter, as the definition of Milnor-Witt K-
groups is purely algebraic and does not involve any motivic machinery. Note however that
the defining generators and relations of Milnor-Witt K-theory have natural explanations
as elements in stable motivic homotopy groups. Moreover, a few results from this chapter
are used in the beginning of Chapter 5.

Chapter 5 aims to study how symbols in K-theory and Witt theory may be thought of as
coming from operations in stable motivic homotopy theory. We start out by explaining
Hu and Kriz’ proof that the Steinberg relation holds in certain stable motivic homotopy
groups, which was the starting point for Morel and Hopkins’ discovery of Milnor-Witt
K-theory. We take a brief look at how the ring spectrum map 1 → KGL behaves with
respect to the well known symbols in K-theory. Then we proceed to study the properties
of Milnor-Witt K-groups, and use similar methods as those of Chapter 3 to compute the
Milnor-Witt K-theory of Q and Q(

√
−1).

In Chapter 1, familiarity with some basic algebraic number theory is an advantage—for exam-
ple a rough equivalent of the first two chapters of [Jan96]. However, we provide references to

v



Introduction

all the results we are using. In Chapter 4, we leave out background material on model cate-
gories, simplicial sets, sites and abstract homotopy theory. The interested reader may consult
[DLØ+07] and [Hov99]. The remaining chapters should be fairly self-contained.
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Conventions and notation

Throughout this text, the symbol F will denote a field.
By saying that a number field F is Euclidean we mean that the ring of integers OF in F is

Euclidean with respect to the norm map Nm : OF → Z. By abuse of notation, we denote also
by Nm the counting norm Nm(a) defined on the set of integral ideals a of OF , i.e., Nm(a) is
the integer #(OF /a). Recall that, if a = (a) is a principal ideal of OF , then Nm(a) = Nm(a)
(see [Jan96, pp.42-45]).

We use the word “place” for an equivalence class of nontrivial absolute values on a number
field. Note that the word “prime” is often used for the same concept in the literature.

Following Gras [Gra03], the word “ramification” is—as opposed to classical literature—used
only in connection with finite places (i.e., the places corresponding to prime ideals in the ring
of integers); the phenomenon of real infinite places becoming complex in some extension of
number fields will instead be referred to as complexification (however, we shall rarely need to
make use of this term. The important thing to note is that infinite places are not included
when we speak about ramification).

When discussing algebraic K-theory of rings, we implicitly assume that all rings in con-
sideration are commutative and unital. This is done because we only apply the K-theoretic
machinery to such rings, and furthermore in order to avoid overstating the word commutative.
Note however that several of the constructions of Chapter 2 apply to any associative ring.

When we consider the algebraic K-groups Kn(F ) of fields in Chapter 2 and Chapter 3, we
will use multiplicative notation in order to keep in line with the notations of class field theory.
In the context of Milnor K-theory, however, we switch to additive notation (e.g., compare
{xy, z} = {x, z}{y, z} ∈ K2(F ) and {xy, z} = {x, z}+ {y, z} ∈ KM

2 (F )).
As we shall see in Chapter 4, we will denote by Sα the motivic sphere Gm. Note however

that the symbol S1
t is also often used in the literature (the t coming from the name “Tate

circle”); this explains the notation Σt := − ∧ Sα used in Section 5.2 of Chapter 5.
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CHAPTER 1

Results from Algebraic Number Theory

The history of reciprocity laws in number theory is impressively long and rich, to which several
great names in mathematics have contributed. Below we start out by reviewing a tiny fraction
of this story. From the time of Lagrange and Gauss, through the generalizations of Jacobi,
Eisenstein, Hilbert and Artin we arrive at Tate and his discovery of the connection between
reciprocity laws and K-theory. We then move on to study this connection in detail in the
subsequent chapters.

1.1 Reciprocity laws

The famous law of quadratic reciprocity was stated in its complete form by Lagrange, but it
was Gauss who first gave a full proof [Mil13b, vii]. Legendre introduced the symbols (p/q) for
distinct odd primes p and q, demanding(

p

q

)
:=

{
1 if p is a square modulo q;
−1 otherwise.

The Legendre symbols allow for a compact formulation of the quadratic reciprocity law, which
by now is the most common phrasing of the theorem:

Theorem 1.1 (Quadratic reciprocity [Lem00, p.vi]). Let p and q be two distinct odd primes.
Then (

p

q

)
= (−1)

p−1
2 ·

q−1
2

(
q

p

)
. (1.1)

Moreover, the following supplementary laws hold, for p an odd prime:(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 .

In other words, p is a square modulo q if and only if q is a square modulo p unless both p
and q are congruent to 3 modulo 4, in which case p is a square modulo q if and only if q is a
nonsquare modulo p.

There are several possible reasons as to why Gauss considered the quadratic reciprocity law
worthy of the name “aureum theorema” (golden theorem). First of all, the very existence of a
connection between two arbitrarily chosen prime numbers is quite astonishing in its own right.
Quadratic reciprocity strengthens the philosophy that in order to understand an object, we
should try to understand how it relates to other objects. In this case the objects are integers,
and the reciprocity law states that there is indeed a rather mysterious connection between two
prime numbers emanating as we turn to the “relative case”, i.e., look at their residue classes. This
train of thought has of course been exploited to its full extent throughout modern mathematics.
For example, it was the groundbreaking philosophy of Grothendieck that we should consider
morphisms between objects rather than just the objects themselves, and the zeroth K-group in



1. Results from Algebraic Number Theory

algebraic K-theory is an example of how we can understand a ring by understanding modules
over the ring.

Furthermore, the quadratic reciprocity law solves a certain inverse problem. Given a prime
number p, determining the integers that are quadratic residues modulo p is clearly a finite
problem as one can simply check all elements in the finite group Z/p. The inverse problem
however, i.e., fixing an integer n and asking for which primes p is n a quadratic residue modulo
p, is a question of seemingly an entirely different nature. It is now the strength of Formula
1.1 becomes apparent: The “infinite” inverse problem can be transformed into the finite direct
problem of determining the quadratic residues modulo n.

To study quadratic residues modulo primes is to study quadratic polynomials over finite
fields, and motivation for the latter is readily given by the Hasse-Minkowski theorem on the
local-global principle for quadratic forms. For instance, if q is an odd prime number the poly-
nomial f(x) := x2− q splits in Fp[x] if and only if (q/p) = 1. Thus, the problem of determining
the splitting of f modulo different primes is an example of an “inverse problem” as described
above: Each time one changes the prime p and asks for the splitting behavior over Fp one has
to compute a new Legendre symbol (q/p). Using quadratic reciprocity we convert the problem
into computing (p/q) instead—a much more comfortable task, requiring only to check the q
residue classes once and for all.

Example 1.2 ([Wym72, Example 1, p.573]). Let f(x) := x2 − 17, and let us determine all
primes p such that f splits over Fp. A priori, we must compute (17/p) for all p. However,
quadratic reciprocity yields (

17

p

)
=

(
p

17

)
since 17 ≡ 1 (mod 4). The quadratic residues modulo 17 are 1, 2, 4, 8, 9, 13, 15 and 16, hence
f splits over Fp if and only if p is congruent modulo 17 to one of the listed numbers.

The splitting of quadratic polynomials over a number field F modulo different primes is
closely related to the knowledge of the extension of F defined by the polynomial. In fact,
knowing of the set of prime ideals that split in an extension L/F of number fields is enough
to determine L [Mil13b, p.2]. Quadratic reciprocity is the key to determine which primes that
split in quadratic extensions of Q, and should therefore be considered the first step toward
understanding the splitting of prime ideals in arbitrary extensions of number fields. In other
words—as Milne notes in [Mil13b, p.3]—quadratic reciprocity should be viewed as the first
result in class field theory.

Based on the following description of the Legendre symbol one generalizes it to n-th power
residue symbols (see Definition 1.56 below):

Proposition 1.3. The Legendre symbol satisfies (p/q) ≡ p
q−1
2 (mod q).

Proof. The sequence

1 µ2 F×q F×q µ2 1α β

in which α(x) := x2 and β(y) := y
q−1
2 is clearly a complex by Fermat’s little theorem. To show

exactness at the second F×q , assume x ∈ F×q is such that x
q−1
2 = 1. Let ζ be a generator for

the cyclic group F×q with x = ζk, then

x
q−1
2 = ζk

q−1
2 = 1,

hence 2 | k, hence x is a square. Thus p is a square modulo q if and only if p
q−1
2 ≡ 1 (mod q).

Gauss noticed that the ring of Gaussian integers Z[i], where i2 = −1, was the appropriate
setting for a formulation of a biquadratic residue law [Lem00, p.vi]:

2



1.1. Reciprocity laws

Definition 1.4. Let π and τ be two distinct prime elements of Z[i] not dividing 2. The
biquadratic residue symbol (π/τ)4 is the unique element in µ4 = {±1,±i} satisfying(π

τ

)
4
≡ π

Nm(τ)−1
4 (mod τ).

We have (π/τ)4 = 1 if and only if x4 ≡ π (mod τ) has a solution in the Gaussian integers.

Definition 1.5. A Gaussian integer α is primary if α ≡ 1 (mod (1 + i)3).

Theorem 1.6 (Biquadratic reciprocity [Lem00, p.vii]). Let π and τ be distinct primary Gaus-
sian primes. Then (π

τ

)
4

= (−1)
Nm(π)−1

4 ·Nm(τ)−1
4

( τ
π

)
4
.

Moreover, the following supplementary laws hold:(
i

π

)
4

= i
Nm(π)−1

4 ,

(
1 + i

π

)
4

= iν−µ,

where the integers µ and ν are determined as follows: By Proposition 1.23, the group U1+i/(U
4
1+i)

of local units modulo fourth powers is isomorphic to µ4⊕〈3 + 2i〉⊕〈5〉. Using this isomorphism,
write π ≡ ik(3+2i)µ5ν (mod (U1+i)

4) (see Section 1.3.1 and Section 1.5 for explanation of the
notation).

Theorem 1.6 will be proved at the end of this chapter using power reciprocity. Later we will
also consider how biquadratic reciprocity is connected to the second K-group of Q(i).

The biquadratic reciprocity theorem settles a reciprocity law for the cyclotomic extension
Q(ζ4) = Q(i), and it is natural to ask whether there is a reciprocity law for each cyclotomic
field Q(ζp). Jacobi led the search for such a general law, but the failure of unique factorization
in these fields1 led to serious obstacles. It was not until Kummer’s invention of ideal numbers
that progress was made possible, and eventually it was Eisenstein who succeeded in finding a
reciprocity law for all odd primes [Lem00, p.vii]. In the following statement, we refer the reader
to Definition 1.56 and the discussion following it for the meaning of the symbols (−/α)n.

Theorem 1.7 (Reciprocity at odd primes [Lem00, p.vii]). Let p be an odd prime. We call an
element α ∈ Z[ζp] = OQ(ζp) primary if α is congruent to a rational integer modulo (1− ζp)2.

If α ∈ Z[ζp] is primary, then (α
a

)
p

=
( a
α

)
p

for all a ∈ Z prime to p.

The search for a complete generalization of quadratic reciprocity to arbitrary number fields
is one of the main objectives of algebraic number theory. Indeed, this is the content of Hilbert’s
ninth problem. Hilbert discovered that the classical law of quadratic reciprocity could be
phrased in terms of Hilbert symbols (see Definition 1.53) as a product formula∏

v∈PlQ

(x, y
v

)
= 1 (1.2)

for x, y ∈ Q×, and conjectured that a similar formula should hold for any number field F
[Lem00, p.viii]. This product formula was settled for abelian extensions of number fields by
the breakthrough of class field theory and Artin’s general reciprocity law, as we will see in
Theorem 1.55 (in which the notations used in (1.2) are also explained). We shall also see
explicitly that if we work over the number field Q(i), the corresponding product formula reduces
to the biquadratic reciprocity law.

Artin’s general reciprocity law will be stated in its idèlic form in Theorem 1.46 below, but
for completeness we also mention the classical ideal group version:

1The class group of Q(ζp) is trivial for 2 ≤ p ≤ 19; the first instance of a cyclotomic field with nontrivial
class group is Q(ζ23), where Cl(Q(ζ23)) ∼= Z/3 [Was82, p.353]. As p increases, the class number of Q(ζp) grows
exponentially [Was82, Theorem 4.20].

3
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Theorem 1.8 (Artin’s reciprocity law [Gra03, II 4.4]). Let F be a number field and L/F a
finite abelian extension. Let T be the set of ramified places in L/F and let m be a modulus built
from T . Then the Artin symbol αL/F : IT → Gal(L/F ) induces a canonical isomorphism

IT
PT,m,pos NmL/F (IL,T )

Gal(L/F ).
∼=

αL/F

Here IT is the group of fractional ideals of F prime to T , and m is an integral ideal of the
form m :=

∏
v∈T pnvv for some nv ≥ 0, where pv is the maximal ideal corresponding to the finite

place v. The group PT,m,pos is the group of principal fractional ideals (x) of F prime to T , with
x totally positive and satisfying ordv(x− 1) ≥ nv for all v ∈ T , i.e., x ≡ 1 (mod m).

Later Tate generalized the group isomorphism aspect of Artin’s reciprocity law via the
cohomological interpretation of class field theory. Specifically, Tate showed that—for L/F a
finite Galois extension—cup product with the fundamental class

uL/F ∈ Ĥ2(Gal(L/F ), CL)

induces a canonical isomorphism

x 7→ x ^ uL/F : Ĥr(Gal(L/F );Z) Ĥr+2(Gal(L/F );CL)
∼=

for all r ∈ Z; see [Gra03, p.109]. Here the Ĥr are Tate’s modified cohomology groups (see,
e.g., [Wei94, Definition 6.2.4]), and CL is the idèle class group of L, defined in Definition 1.39.
Tate was also the first to discover the connection between the second algebraic K-group and
reciprocity laws—more precisely, he computed the group K2(Q) and noticed that the method
was very similar to the formal part of Gauss’ first proof of quadratic reciprocity [Tat76a, p.318].
It involved induction over the primes and use of the Euclidean algorithm; we will return to this
in Chapter 3. It is this K-theoretic view on classical number theory we shall keep in mind in
the subsequent chapters.

As a final remark we mention that the story of the general reciprocity law is far from over:
Although class field theory solves Hilbert’s ninth problem in the case of abelian extensions of
number fields, the general case remains unsolved to this date.

1.2 Preliminary results on quadratic fields

Let d be a squarefree integer, and consider the field F := Q(
√
d). Recall the following result,

whose proof can be found in, e.g., [IR90, Proposition 13.1.1].

Proposition 1.9. The ring of integers OF in F = Q(
√
d) equals

OF =


Z[
√
d] if d ≡ 2, 3 (mod 4);

Z

[
1 +
√
d

2

]
if d ≡ 1 (mod 4).

Note that, by the fundamental identity [Mil13a, Theorem 3.34], if a rational prime p is
ramified in a quadratic extension F/Q, it is totally ramified, and similarly if p splits, it is
totally split.

Proposition 1.10. Consider the field F = Q(
√
d) where d is a squarefree integer. Let p ∈ Z

be a rational prime. Assume first that p > 2, then

• p ramifies ⇐⇒ p | d;

• p is inert ⇐⇒
(
d
p

)
= −1;

• p splits ⇐⇒
(
d
p

)
= 1.
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For the prime 2, we have the following.

• 2 ramifies ⇐⇒ d ≡ 2, 3 (mod 4);

• 2 is inert ⇐⇒ d ≡ 5 (mod 8);

• 2 splits ⇐⇒ d ≡ 1 (mod 8).

Proof. Write OF = Z[θ]. From Proposition 1.9 we see that the minimal polynomial f of θ is
either x2 − d or x2 − x− (d− 1)/4 according as d ≡ 2, 3 (mod 4) or d ≡ 1 (mod 4). Hence the
discriminant δF/Q is either 4d or d, so the odd prime p ramifies if and only if p | d (cf. [Jan96,
I Theorem 7.3]). If p - d, we have

OF
pOF

∼=
Z[x]

(p, f)
∼=

Fp[x](
f
) ,

where f is the reduction of f modulo p. Thus, if f splits modulo p we have OF /pOF ∼= Fp⊕Fp
by the Chinese remainder theorem; if f is irreducible modulo p we have OF /pOF ∼= Fp2—the
finite field with p2 elements. In the first case p splits; in the second case, p is inert. But f splits
modulo p if and only if (d/p) = 1, so this finishes the case when p is odd.

We turn to the case p = 2. We have seen that 2 | δF/Q if and only if d ≡ 2, 3 (mod 4), in
which case 2 ramifies. If d ≡ 1 (mod 4), the minimal polynomial f(x) = x2 − x − (d − 1)/4
of the extension F/Q is irreducible modulo 2 if and only if (d − 1)/4 ≡ 1 (mod 2), which is
equivalent to d ≡ 5 (mod 8). Similarly, f splits modulo 2 if and only if (d− 1)/4 ≡ 0 (mod 2),
which happens if and only if d ≡ 1 (mod 8).

Note that these results also give some information about the structure of the residue fields
at the different prime ideals. We record this as a proposition for future reference.

Proposition 1.11. If F is a number field and p ∈ SpecOF is a nonzero prime ideal above the
prime p ∈ Z, then

k(p) ∼= FNm p,

where k(p) := OF /p is the residue field of p.
In particular, if F = Q(

√
d) is a quadratic number field, we have the following description

of k(p):

• If p ramifies or splits, then k(p) ∼= Fp.

• If p is inert, k(p) ∼= Fp2 .

Proof. We have k(p) ∼= FNm p by the definition of the counting norm Nm p as the number of
elements in k(p).

In the case when F is a quadratic number field, write pOF = Pe1
1 · · ·Pes

s for Pj ∈ SpecOF .
By the fundamental identity we have

s∑
j=1

ejfj = [F : Q] = 2,

where fj := [k(Pj) : Fp] are the local degrees. We have Pj = p for some j by assumption, and
since the extension F/Q is Galois, all the local degrees are equal [Lan70, Corollary 2, p.26].
Thus we can apply the results above to deduce the following:

• If p ramifies, then s = 1 and e1 = 2, thus f1 = 1. Hence k(p) is a degree 1 extension of
Fp, in other words isomorphic to Fp.

• If p splits, we get s = 2 and fj = ej = 1 (j = 1, 2). Hence k(p) ∼= Fp.

• That p is inert means that s = 1 and e1 = 1, thus f1 = 2. In other words, k(p) is a degree
2 extension of Fp. Hence k(p) ∼= Fp2 .
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δQ(
√
d)/Q −3 −4 −7 −8 −11 −15

M(Q(
√
d))

1

3

1

2

4

7

3

4

9

11

16

15

Table 1.1: Euclidean minima for the first six imaginary quadratic number fields.

The existence of a Euclidean algorithm on a number field simplifies certain K-theoretic
questions; we shall make use of this in Chapter 3. In the case of imaginary quadratic number
fields there are five instances for which there exists a Euclidean algorithm.

Proposition 1.12 ([Lem95, Proposition 4.2]). Let d < 0 be a squarefree integer and consider
the imaginary quadratic number field F := Q(

√
d). Let D denote the maximum distance from a

point in C to a lattice point of OF and let M(F ) := D2 be the Euclidean minimum (cf. [Lem95,
3.1]). Then

M(F ) =


|d|+ 1

4
if d ≡ 2, 3 (mod 4);

(|d|+ 1)2

16|d|
if d ≡ 1 (mod 4).

Remark 1.13. In Chapter 3, Lemma 3.1, we will essentially prove this proposition in the case
when d 6≡ 1 (mod 4).

Table 1.1 shows the values ofM(Q(
√
d)) for the first six imaginary quadratic number fields,

ordered by their discriminant.

Proposition 1.14 ([BT73, p.432]). A number field F is Euclidean if M(F ) < 1. Hence, by
Proposition 1.12, Q(

√
−d) is Euclidean for

d ∈ {1, 2, 3, 7, 11}.

1.3 The Gaussian integers

We consider the degree two extension F := Q(i) of Q, whose ring of integers OF in F is the
Gaussian integers Z[i] (which follows from, e.g., Proposition 1.9).

Proposition 1.15. The ring of Gaussian integers is a principal ideal domain.

Proof. Note that the discriminant of Q(i)/Q is δQ(i)/Q = −4, and since there is exactly one
pair of complex conjugate embeddings of Q(i) into C, the Minkowski bound for the extension
becomes

M =
2

22
· 4

π

√∣∣δQ(i)/Q

∣∣ =
4

π
.

By the Minkowski bound theorem ([Jan96, I Theorem 13.7]), any class in the ideal class group
Cl(Z[i]) is represented by a nonzero integral ideal a whose counting norm Nm(a) is bounded by
M . Since M < 2, we must have that Nm(a) = 1, i.e., a = Z[i], and thus the ideal class group
is trivial.

Remark 1.16. The above result follows of course also from the fact that Z[i] is Euclidean.

Remark 1.17. The field Q(i) is one of the in total nine imaginary quadratic number fields
with class number one; the other ones are Q(

√
−d) for

d ∈ {2, 3, 7, 11, 19, 43, 67, 167}.

Proposition 1.18. We have Z[i]× = µ(Q(i)) = µ4.
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1.3. The Gaussian integers

Proof. This follows directly from Dirichlet’s unit theorem ([Jan96, I Theorem 13.12]):

Z[i]× ∼= µ(Q(i))× Zr+c−1 = µ(Q(i)),

where r and c denotes respectively the number of real embeddings of Q(i), and the number of
complex conjugate pairs of embeddings.

To introduce some geometry to the picture, let us take a look at the fibers over the closed
points of SpecZ of the morphism X := SpecZ[i]→ SpecZ induced by the inclusion Z ↪→ Z[i].
Let p be a rational prime, then the fiber

X(p) = SpecZ[i]×SpecZ SpecFp

= Spec(Z[x]/(x2 + 1)⊗Z Fp)

= Spec(Fp[x]/(x2 + 1)).

Thus we see that determining the fibers X(p) is the same as determining the splitting of the
prime p in the extension Q(i)/Q. From Proposition 1.10 we have the following.

1. The prime 2 ramifies. Here we can also see at once that F2[x]/(x2 + 1) = F2[x]/(x+ 1)2,
and by the correspondence x 7→ i we get that 2Z[i] = (2, i+1)2 = (i+1)2. Geometrically,
the fiber is a nonreduced one-point scheme.

2. Assume p ≡ 1 (mod 4). By the first supplementary law of quadratic reciprocity we then
obtain (

−1

p

)
= (−1)

p−1
2 = 1.

Hence p splits, and the fiber consists of two points.

3. If p ≡ 3 (mod 4) then (−1/p) = −1, hence p is inert in the extension and the fiber consists
of one closed point.

Point 2 above illustrates a classical theorem of Fermat, namely that a rational prime p is the
sum of two squares if and only if p ≡ 1 (mod 4). Indeed, let Nm := NmQ(i)/Q : Z[i]→ Z be the
norm map a+ ib 7→ a2 + b2, so that p is a sum of two squares if and only if p lies in the image
of the norm map. If p splits, i.e., p = αβ in Z[i], then Nm(p) = p2 = Nm(α) Nm(β), and since
we assume neither α nor β is a unit we must have p = Nm(α) = Nm(β). Hence p is a sum of
two squares. But by the above discussion, p splits if and only if p ≡ 1 (mod 4).

Let us summarize the results above.

Proposition 1.19. The nonzero prime ideals of Z[i] are of the following forms:

• (1 + i) lying above 2.

• (a+ ib), which lies above the prime p ≡ 1 (mod 4) such that p = a2 + b2.

• (p), for p a rational prime congruent to 3 modulo 4.

By Proposition 1.11 we obtain the following result:

Proposition 1.20. Let p be a nonzero prime ideal of Z[i] above the prime p ∈ Z. Then the
residue field k(p) := Z[i]/p is of the following form:

k(p) ∼= FNm p =

{
Fp if p = 2 or p ≡ 1 (mod 4);
Fp2 if p ≡ 3 (mod 4).

Figure 1.1 depicts the analogy with Riemann surfaces: One thinks of the morphism

SpecZ[i] −→ SpecZ

as a two sheeted covering, ramified only above (2). In general, given a number field F 6= Q,
let δF denote its discriminant. By Minkowski’s theorem [Jan96, I Theorem 13.9], the extension

7



1. Results from Algebraic Number Theory

SpecZ

SpecZ[i]

(2) (3) (5) (7) (11) (13) (17)

(1 + i)

(3)

(2 + i)

(1 + 2i)

(7) (11)

(3 + 2i)

(2 + 3i)

(4 + i)

(1 + 4i)

Figure 1.1: The closed points of SpecZ[i], viewed as a two-sheeted covering of SpecZ.

F/Q is ramified, and the ramified prime ideals of OF are exactly those lying above a rational
prime p dividing δF . Let S be the set consisting of the infinite places of F together with the
finite places corresponding to the ramified primes, and let

OF,S := {x ∈ F : ordv(x) ≥ 0 for all v 6∈ S}

denote the ring of S-integers. Then

SpecOF,S = Spec(OF [1/δF ]) −→ SpecZ

is a finite étale covering. The fact that there are no unramified algebraic extensions of Q implies
that SpecZ is simply connected in the sense of étale fundamental groups: πét

1 (SpecZ) = 0
[Mor12b, p.36]. In this language, class field theory describes the maximal abelian quotient of
the étale fundamental group of the arithmetic scheme SpecOF in terms of the arithmetic of
the number field F itself.

1.3.1 Local structure

In this subsection we will make use of a few lemmas whose statement we defer until Section 1.5.1
after general notation has been introduced. The reader may therefore skip this at the first read-
ing and rather return when needed.

Later on we will need a few results on the structure of the local field Q(i)v for v a place
of Q(i)—in particular the place corresponding to the prime 1 + i. First of all, recall that if
v is a finite place of Q(i) lying above a rational prime p, then Q(i)v = Qp(i) (see [Gra03,
p.13]). In particular, Q(i)(1+i) = Q2(i) and thus Z[i](1+i) = Z2[i]. Let U1+i := Z2[i]×, and let
Un1+i := 1 + (1 + i)nZ2[i] denote the higher unit groups (cf. Definition 1.28).

Lemma 1.21. If α is a Gaussian integer relatively prime to 1 + i, then α has a primary
associate. In other words, α becomes primary after multiplication by a suitable power of i.

Proof. Since we assume α is coprime to 1 + i, α is a unit in Z[i]/(1 + i)3. Now

#(Z[i]/(1 + i)3)× = ϕ((1 + i)3) = Nm(1 + i)2(Nm(1 + i)− 1) = 4,

where ϕ is the Euler totient function on Z[i]. Thus there are 4 units, and we can take µ4 as a
system of representatives for (Z[i]/(1 + i)3)× since the powers of i are different modulo (1 + i)3.
Hence α = ik for some k ∈ {0, 1, 2, 3}, and the statement follows.

Proposition 1.22. We have Q2(i)× ∼= (1 + i)Z ⊕ µ4 ⊕ U3
1+i. Consequently U1+i

∼= µ4 ⊕ U3
1+i.

Proof. Let v denote the place corresponding to (1 + i). Note that any element α ∈ Uv can be
written as a power series

α = a0 + a1(1 + i) + a2(1 + i)2 + · · ·

8
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where an ∈ {0, 1} and a0 6= 0. Hence Uv = U1
v .

By Proposition 1.35 it is enough to show that U1
v
∼= µ4 ⊕ U3

v . Since

Z2[i]

(1 + i)3Z2[i]
∼=

Z[i]

(1 + i)3
,

the result of Lemma 1.21 holds also for U1
v , hence any α ∈ U1

v can be written as

α = i4−k(ikα) ∈ µ4 ⊕ U3
v

for some k. Since the powers of i are different modulo (1 + i)3 we have U3
v ∩ µ4 = 1, yielding

U1
v
∼= µ4 ⊕ U3

v .

Proposition 1.23. Let (U1+i)
4 be the group of fourth powers in Z2[i]×. Then

1. the group U1+i/(U1+i)
4 has order 64;

2. (U1+i)
4 = U7

1+i;

3. U1+i/(U1+i)
4 ∼= µ4 ⊕ 〈3 + 2i〉 ⊕ 〈5〉.

Proof. To ease the notation let v denote the place corresponding to (1 + i) and put π := 1 + i.

1. Since 4 = −π4 we have ordv(4) = 4, so Lemma 1.34 yields

(Uv : (Uv)
4) =

#µ4(Q2(i))

|4|v
=

4

Nm(π)− ordv(4)
= 26.

2. To show that (Uv)
4 ⊆ U7

v , take an α ∈ Uv. Note that by the proof of Proposition 1.22,
we may assume ikα is primary for some k ∈ {0, 1, 2, 3}, say

ikα = 1 + π3β

for some β ∈ Z2[i]. Then

α4 = (ikα)4 = 1 + 4βπ3 + 6β2π6 + 4β3π9 + β4π12

≡ 1 + 4βπ3 + 6β2π6 (mod π7)

Writing 4 = −π4 and 2 = (−i)π2 we get

α4 ≡ 1− βπ7 − 3iβ2π8 ≡ 1 (mod π7).

Hence (Uv)
4 ⊆ U7

v . Since (Uv : U7
v ) = q6

v(qv − 1) = 26 by Lemma 1.33 below (and the
notations used there), we have by 1 that (Uv : U7

v ) = (Uv : (Uv)
4), hence (Uv)

4 = U7
v .

3. Again by Lemma 1.33 we have

U1
v

U7
v

∼=
(

Z2[i]

π7Z2[i]

)×
∼=
(

Z[i]

π7Z[i]

)×
.

Choosing 3+2i ∈ U3
v , 5 ∈ U4

v and i ∈ Uv as generators for (Z[i]/π7)× yields the result.

1.4 The Eisenstein integers

Now we turn to the case F = Q(
√
−3). Since −3 ≡ 1 (mod 4), the ring of integers OF equals

Z[ω], where ω := (−1 +
√
−3)/2. The elements of Z[ω] are called the Eisenstein integers. Note

that ω is a primitive third root of unity, and that Z[ω] = Z[ζ6], where ζ6 is a primitive sixth
root of unity. The discriminant of the extension Q(

√
−3)/Q equals −3, so the same reasoning

as in Proposition 1.15 shows that Z[ω] is a principal ideal domain.

9
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1 + ω

Figure 1.2: Part of the lattice of integers in Q(
√
−3).

Proposition 1.24. The ring of Eisenstein integers is a principal ideal domain, and the units
are

Z[ω]× = µ6 = {±1,±ω,±ω2}.

Proposition 1.25. The norm of an Eisenstein integer a+ bω ∈ Z[ω] is given by Nm(a+ bω) =
a2 − ab+ b2.

Proof. Let α := a+ bω ∈ Z[ω] be an Eisenstein integer. If b = 0 we have Nm(α) = Nm(a) = a2,
so the statement is true in this case. If b 6= 0, a straightforward computation shows that the
minimal polynomial over Q of α is

x2 − (2a− b)x+ (a2 − ab+ b2),

and the norm Nm(α) is the constant term of the minimal polynomial.

Proposition 1.26. Consider the extension Q(
√
−3)/Q. If p ∈ Z is a rational prime, then

• p ramifies ⇐⇒ p = 3;

• p splits ⇐⇒ p ≡ 1 (mod 3);

• p is inert ⇐⇒ p ≡ 2 (mod 3).

Thus, the nonzero prime ideals of Z[ω] are of the following forms:

• (2 + ω) lying above 3 ∈ Z;

• (a+ bω) lying above the rational prime p ≡ 1 (mod 3) such that p = a2 − ab+ b2;

• (p), which lies above the prime p ∈ Z such that p ≡ 2 (mod 3).

Hence the Diophantine equation x2 − xy + y2 = p has a solution if and only if p = 3 or p ≡ 1
(mod 3).

Proof. By Proposition 1.10, only 3 ramifies. By Proposition 1.25 we have

Nm(2 + ω) = 3,

so the ideal (2 + ω) lies above (3), hence 3Z[ω] = (2 + ω)2.
Furthermore, we know by Proposition 1.10 that the prime 2 is inert. To show the rest of the

statement for p 6= 2, all we need is quadratic reciprocity. By Proposition 1.10, a rational odd
prime p 6= 3 splits in the extension if and only if (−3/p) = 1. By multiplicativity of Legendre
symbols, (

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
3

p

)
.

We consider two cases.
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SpecZ

SpecZ[ω]

(2) (3) (5) (7) (11) (13) (17) (19)

(2) (2 + ω)
(5)

(3 + ω)

(1 + 3ω)

(11) (17)

(1 + 4ω)

(3 + 4ω)

(2 + 5ω)

(3 + 5ω)

• If p ≡ 1 (mod 4), (3/p) = (p/3) by quadratic reciprocity. Hence(
−3

p

)
≡ (−1)

p−1
2 p ≡ p (mod 3),

i.e., (−3/p) = 1 if and only if p ≡ 1 (mod 3).

• If p ≡ 3 (mod 4) we have (3/p) = −(p/3), so(
−3

p

)
≡ −(−1)

p−1
2 p ≡ p (mod 3),

so also in this case we get that (−3/p) = 1 if and only if p ≡ 1 (mod 3).

Thus p splits if and only if p ≡ 1 (mod 3).

Proposition 1.27. Let p ∈ SpecZ[ω] be a nonzero prime ideal. Then the residue field k(p) is
given by

k(p) ∼=
{

Fp if p = 3 or p ≡ 1 (mod 3);
Fp2 if p ≡ 2 (mod 3).

1.5 Class field theory

We state some of the main results of local and global class field theory. From here we introduce
the notion of symbols over number fields, which serves as one of the first links between number
theory and algebraic K-theory. This section will also help to fix notations, of which we mostly
follow [Gra03].

Let F be a global number field, and let PlF denote the set of places of F . By Ostrowski’s
theorem [Gra03, I Theorem 1.2], PlF decomposes as a disjoint union

PlF = Pl0 ∪Pl∞

of finite and infinite places, respectively. Occasionally we will be interested in considering only
noncomplex places of F , the set of which will be denoted by Plnc

F .

Definition 1.28. Let v be a place of F . We will denote by:

• Fv the completion of F at v, with valuation ring Ov;

• πv a uniformizer of Fv, i.e., a generator of the maximal ideal pv of Ov (for v finite);

• k(v) := Ov/pv the residue field (for v finite);

• qv := #k(v) (for v finite);

• Uv := O×v the unit group, where we set Uv := R>0 when v is infinite real;

• Unv := 1 + pnv (n ≥ 1) the higher unit groups (for v finite);

11
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• µ(F ), µ(Fv) the groups of roots of unity of respectively F , Fv;

• m := #µ(F ), mv := #µ(Fv) (for v noncomplex);

• iv : F ↪→ Fv the embedding of F into its completion Fv at v.

For each place v ∈ PlF we shall make use of the corresponding valuation on F×. It is clear
that when v is a finite place, the corresponding valuation is just the pv-adic valuation. However,
it is convenient to also have a similar notion when v is infinite:

Definition 1.29. Let v ∈ Pl be a place of F . We denote the corresponding valuation by ordv,
and it takes the following forms:

• If v ∈ Pl0 is a finite place, ordv : F× → Z is the pv-adic valuation.

• If v is an infinite real place, the valuation ordv : F× → Z/2 is defined by:

ordv(x) :=

{
0, iv(x) > 0
1, iv(x) < 0.

• If v is an infinite complex place, we set ordv := 0.

1.5.1 On the higher unit groups

The higher unit groups Unv of the local field Fv form a filtration

Uv ⊇ U1
v ⊇ · · · ⊇ Unv ⊇ · · ·

of the unit group Uv, whose filtration coefficients Unv /Un+1
v are all finite. They allow us to

express Uv as the limit Uv = lim←−n Uv/U
n
v , hence Uv is a profinite group.

Proposition 1.30. The group Uv contains the (qv − 1)-roots of unity µqv−1.

Proof. By the general Fermat’s little theorem, the polynomial

f(x) := xqv−1 − 1

when reduced modulo pv has qv − 1 distinct roots in k(v)× ∼= µqv−1. By Hensel’s lemma, these
roots lift uniquely to qv − 1 distinct roots of f in Uv.

Remark 1.31. The map k(v)× ↪→ Uv which sends an element to its unique lift in Uv provided
by Hensel’s lemma is called the Teichmüller lift.

Lemma 1.32 ([Ser79, Proposition 6, p.66]). For any finite place v ∈ PlF we have a canon-
ical isomorphism Uv/U

1
v
∼= µqv−1

∼= k(v)×, and for each n ≥ 1 a noncanonical isomorphism
Unv /U

n+1
v
∼= k(v).

Lemma 1.33. Given v ∈ Pl0 and any n ≥ 1, let ϕ be the generalized Euler function, where
ϕ(pnv ) = qn−1

v (qv − 1). Then (Uv : Unv ) = ϕ(pnv ), and

Uv/U
n
v
∼= (Ov/pnv )×.

Proof. Note that we have exact sequences

1 Unv /U
n+1
v Uv/U

n+1
v Uv/U

n
v 1

for all n, i.e., (Uv : Un+1
v ) = (Uv : Unv )(Unv : Un+1

v ). When n = 1, this reads (Uv : U2
v ) =

qv(qv − 1) by Lemma 1.32; the general case follows by induction.
The second statement follows from the fact that the canonical surjective homomorphism

Uv −→ (Ov/pnv )×

u 7−→ u (mod pnv )

has kernel Unv .
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Lemma 1.34 ([Lan70, Proposition 6, p.47]). Let v be a finite place of F . For any n ≥ 1, let
(Uv)

n denote the group of n-th powers in Uv. Then

(Uv : (Uv)
n) =

#µn(Fv)

|n|v
,

where µn(Fv) is the group of n-th roots of unity contained in Fv, and | · |v is the v-adic absolute
value on Fv.

Proposition 1.35. For v a finite place of F , there is a decomposition

F×v
∼= πZ

v ⊕ µqv−1 ⊕ U1
v .

Proof. Any x ∈ F×v can be written x = π
ordv(x)
v u with u ∈ Uv. Since Uv/U1

v
∼= µqv−1 we have

an exact sequence
1 U1

v Uv µqv−1 1,

which splits by the Teichmüller lift µqv−1
∼= k(v)× ↪→ Uv.

Example 1.36. Let us show that any element of U1
p = 1 + pZp is in fact a square whenever p

is an odd rational prime. Indeed, for any x ∈ 1 + pZp, write x = 1 + py where y ∈ Zp. Then
we have the series expansion

x1/2 = (1 + py)1/2 = 1 +
y

2
p− y2

8
p2 +

y3

16
p3 − · · ·

which converges p-adically. The denominators are all powers of 2, hence invertible in Zp, so the
series converges to an element in 1 + pZp. Thus x has a square root in 1 + pZp. From this and
Proposition 1.35 above we can conclude for example that Z×p has only one subgroup of index
2, namely µ2

p−1 ⊕ (1 + pZp) = (Z×p )2.

1.5.2 Frobenius

Recall that if L/F is an extension of number fields and w a place of L above a finite place v of
F , there is a canonical isomorphism Gal(Lw/Fv) ∼= Dw [Mil13a, Proposition 8.10] where Dw is
the decomposition group of w:

Dw := {σ ∈ Gal(L/F ) : σw = w},

where the action of Gal(L/F ) on PlL is defined by

|x|σw′ := |σ−1(x)|w′

for any w′ ∈ PlL. There is a surjective homomorphism Dw → Gal(k(w)/k(v)) defined by
σ 7→ σ, where

σ(y + pw) := σ(y) + pw.

Its kernel is called the inertia group of w, and is denoted by Iw. If Lw/Fv is unramified, the
inertia group is trivial and thus we have an isomorphism Gal(Lw/Fv) ∼= Gal(k(w)/k(v)) in
this case. Now Gal(k(w)/k(v)) is a finite cyclic group, with a canonical generator which sends
y ∈ k(w) to yqv .

Definition 1.37. Suppose Lw/Fv is an unramified extension of local fields. The image in
Gal(Lw/Fv) of the canonical generator of Gal(k(w)/k(v)) under the isomorphism Gal(Lw/Fv) ∼=
Gal(k(w)/k(v)) is called the local Frobenius, and is denoted by

(Lw/Fv).

The image of (Lw/Fv) in Gal(L/F ) under the isomorphism Gal(Lw/Fv) ∼= Dw ⊆ Gal(L/F ) is
called the global Frobenius at w, and is denoted by(

L/F

w

)
.

13
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Remark 1.38. If w and w′ are two places above v, then the global Frobenius at w and w′ are
conjugate to each other [Jan96, p.126]. Hence they are equal if L/F is an abelian extension,
i.e., if Gal(L/F ) is abelian. In this case we will therefore denote by

(
L/F
v

)
the Frobenius at

any place above v.

1.5.3 Local and global class field theory

All the number theoretic symbols we shall consider in Section 1.6 are offspring of the local
reciprocity map, which will be introduced shortly in the discussion on local class field theory
(see Theorem 1.41). The treatment of global class field theory will be idèlic, i.e., we define the
global reciprocity map on the idèle group of the global field in consideration, as opposed to the
more classical ideal-theoretic definition. The idèle group, first introduced by Chevalley [Mil13b,
p.viii], is an object attached to a global field allowing for a unified treatment of the different
embeddings of the field into its completion at all places, including the infinite ones. We start
off by a brief introduction to the idèles before we move on to the local and global reciprocity
maps.

The restricted product
∐∏
i∈I Gi of a family of locally compact topological groups {Gi}i∈I

is by definition the subset of
∏
i∈I Gi consisting of all elements (gi)i∈I for which gi ∈ Ki for

almost all i, where Ki is some fixed compact subgroup of Gi. The restricted product is then a
locally compact group, and we provide it with a topology whose basis elements are of the form∏
iAi where Ai ⊆ Gi is open in Gi for all i and Ai = Ki for almost all i.

Definition 1.39. The idèle group of the number field F is the restricted product of the groups
F×v with respect to the compact subgroups Uv:

JF :=
∐∏

v∈PlF
F×v = {(xv)v∈PlF : xv ∈ F×v , xv ∈ Uv for almost all v}.

An element x of JF is called an idèle. We define the idèle class group CF as

CF := JF /i(F
×),

where i : F× →
∏
v∈Pl F

×
v is the injective map sending x ∈ F× to (iv(x))v.

We sometimes abbreviate JF and CF to J and C. By abuse of notation we may also write
simply F× for the image i(F×) when it is clear from context that we consider the subset of JF
and not of F .

As in the general case mentioned above, the idèles JF are endowed with a topology whose
basis elements are of the form ∏

v∈Pl

Vv,

where Vv is open in F×v for all v and Vv = Uv for almost all v. With this topology, the image
of F× in J under the diagonal embedding i becomes discrete.

Remark 1.40. Alternatively, one may define JF as the colimit

JF = lim−→
S⊆PlF

JF (S),

where S varies over all finite subsets of PlF containing the infinite places, and

JF (S) :=
∏
v∈S

F×v ×
∏
v 6∈S

Uv.

Yet another definition is to put JF := A×F , where AF is the adèle ring of F . However, due
to the multiplicative nature of class field theory, we shall not need to introduce adèles for our
purposes.

14



1.5. Class field theory

For any idèle x = (xv)v ∈ J, define the volume of x as

|x| :=
∏
v

|xv|v,

where | · |v is the absolute value on Fv. The volume map | · | : JF → R>0 is then continuous.
If we let J1 denote the kernel of the volume map, i.e., J1 := {x ∈ J : |x| = 1}, then F× is
contained in J1 by the product formula for absolute values [Jan96, II Theorem 6.4] and the
quotient J1/F× is compact [Lan70, Theorem 4, p.142]. This compactness result is an equivalent
formulation of the finiteness of the ideal class group and Dirichlet’s unit theorem.

For the remainder of this section we assume that L/F is an abelian extension of F , i.e.,
that Gal(L/F ) is abelian. Let v be a place of F , and w | v a place of L above v.

Theorem 1.41 (Local Reciprocity Law [Gra03, II Theorem 1.4]). There exists a unique canon-
ical homomorphism

(−, Lw/Fv) : F×v −→ Gal(Lw/Fv),

called the local reciprocity map, or the local Artin map, satisfying the following properties.

1. The kernel of (−, Lw/Fv) is equal to the norm group

NmLw/Fv (L×w) = {NmLw/Fv (x) : x ∈ L×w},

and we have an exact sequence

1 NmLw/Fv (L×w) F×v Gal(Lw/Fv) 1.
(−,Lw/Fv)

2. If Lw/Fv is unramified, then

(x, Lw/Fv) = (Lw/Fv)
ordv(x)

for all x ∈ F×v .

3. The image of the unit group Uv under (−, Lw/Fv) is equal to the inertia group Iw, and
we have the exact sequence

1 NmLw/Fv (Uw) Uv Iw 1.

Theorem 1.42 ([Gra03, II Theorem 1.5]). For any subgroup N of F×v of finite index there exists
a finite abelian extensionM of Fv such that NmM/Fv (M×) = N . The mapM 7→ NmM/Fv (M×)
is a bijection between the set of finite abelian extensions of Fv and subgroups of Fv of finite
index. This bijection has the following properties, where the field extensions M1, M2 correspond
respectively to the groups N1 and N2:

1. M1 ⊆M2 if and only if N1 ⊇ N2;

2. M1M2 corresponds to N1 ∩N2;

3. M1 ∩M2 corresponds to N1N2;

4. if M1 ⊆M2 then Gal(M2/M1) ∼= N1/N2.

Example 1.43 ([Mil13b, 1.6, p.22], [Gra03, II Remark 1.4.6]). Suppose F = Q, L = Q(i), and
let v be the infinite real place of F , so that Fv = R. If w is a place of L above v, then Lw = C.
The local reciprocity map (−, Lw/Fv) = (−,C/R) is then given by

(x,C/R) = cordv(x)

for x ∈ R×, where c ∈ Gal(C/R) is complex conjugation. Note that

NmC/R(C×) = R>0 = ker(−,C/R)

(remember Definition 1.29). Finally, any subgroup N of R× of finite index is equal to either
R× or R>0. Indeed, N contains R×n for some n, and by the intermediate value theorem one
has R×n = R× if n is odd; R×n = R>0 if n is even.
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The local compactness of the idèle group makes it possible to define a global reciprocity map
whose components are the local reciprocity maps:

Definition 1.44. The global reciprocity map—or global Artin map—is defined for the extension
L/F as the map

ρL/F : JF −→ Gal(L/F )

x = (xv)v 7−→
∏
v∈PlF

(
xv, L/F

v

)
,

where
(
xv,L/F

v

)
is the image of (xv, Lv/Fv) ∈ Gal(Lv/Fv) in Gal(L/F ) under the isomorphism

Gal(Lv/Fv) ∼= Dv ⊆ Gal(L/F ).

Note that for an idèle (xv)v ∈ J, since xv ∈ Uv for almost all v and only finitely many places
v are ramified in L/F , property 2 of Theorem 1.41 tells us that

(
xv,L/F

v

)
= 1 for almost all v,

so ρL/F is well defined.

Definition 1.45. Given any place v ∈ PlF , the Hasse symbols
(
−,L/F
v

)
are defined on F× as:(

−, L/F
v

)
: F× −→ Gal(L/F )

x 7−→
(
iv(x), L/F

v

)
.

The following theorem—which states in terms of Hasse symbols that the diagonal embedding
i(F×) of F× in JF is contained in the kernel of the global reciprocity map—is one of the main
results of class field theory, and is considered as the generalization of the quadratic reciprocity
law of Gauss to arbitrary abelian extensions of number fields. This constitutes a partial solution
to Hilbert’s ninth problem.

Theorem 1.46 ([Gra03, II Theorem 3.4.1]). Let L/F be a finite abelian extension of number
fields. For any x ∈ F×, the following product formula holds:∏

v∈PlF

(
x, L/F

v

)
= 1.

Example 1.47 ([Gra03, II Example 3.4.2]). We calculate some Hasse symbols and illustrate
how Gauss’ quadratic reciprocity law is obtained from the product formula. Let p be an
odd prime number and take F = Q. We consider the extension L = Q(

√
p∗) where p∗ :=

(−1)(p−1)/2p. Write Gal(L/Q) = {±1}. We shall compute the Hasse symbols(
−1, L/Q

v

)
and

(
q, L/Q

v

)
,

where q is a rational prime and v runs through all places of Q. Now there is exactly one
archimedean place of Q, which we denote by ∞, and otherwise all the nonarchimedean places
correspond to prime numbers ` ∈ Q.

First of all, we have that the extension L/Q is ramified only at p. Indeed, since p∗ ≡
1 (mod 4), we know from the proof of Proposition 1.10 that the discriminant δL/Q = p∗. Thus,
only p ramifies in L/Q.

By Theorem 1.41 (2) we know that if we are given an x ∈ Q× and a place v of Q unramified
in L/Q which satisfies ordv(x) = 0, then

(
x,L/Q
v

)
= 1.

• Consider first
(
−1,L/Q

v

)
. We have ordv(x) = 0 for any v 6=∞, hence the only exceptional

places are p and ∞ in this case. The product formula yields∏
v

(
−1, L/Q

v

)
=

(
−1, L/Q

p

)(
−1, L/Q

∞

)
= 1,
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1.5. Class field theory

i.e.,
(
−1,L/Q

p

)
=
(
−1,L/Q
∞

)
. We must examine the extension of local fields

L∞/Q∞ = R(
√
p∗)/R.

If p ≡ 1 (mod 4), then p∗ = p and the extension is trivial. Thus
(
−1,L/Q
∞

)
= 1 in this

case. If p ≡ 3 (mod 4), then L∞ = C, and thus (again by property 2 of Theorem 1.41):(
−1, L/Q

∞

)
= (−1)ord∞(−1) = −1

(here we write Gal(C/R) = {±1}). Combining these two cases we get(
−1, L/Q

p

)
=

(
−1, L/Q

∞

)
= (−1)

p−1
2 .

• Now consider
(
q,L/Q
v

)
, which is equal to 1 except perhaps for v ∈ {p, q}. First, if q = p

we have
(
p,L/Q
v

)
= 1 for all v 6= p. But then the product formula is reduced to(

p, L/Q

p

)
= 1.

We may therefore assume q 6= p in the following.

• For v = p, to compute
(
q,L/Q
p

)
we must understand (q, Lp/Qp). Now since q 6= p we have

q ∈ Up = Z×p . Furthermore, the extension Lp/Qp is ramified, so we can only conclude by
property 1 in Theorem 1.41 that (q, Lp/Qp) = 1 if and only if q ∈ NmLp/Qp

(L×p ). But
we know that since Lp/Qp is ramified, the inertia group Ip has order 2, and hence by
property 3 in Theorem 1.41, the quotient group

Up/(Up ∩NmLp/Qp
(L×p )) ∼= Ip

has order 2. Thus Up ∩ NmLp/Qp
(L×p ) has index 2 in Up = Z×p . Hence (q, Lp/Qp) = 1

if and only if q belongs to a subgroup of index 2 of Z×p . But by Example 1.36, the only
subgroup of index 2 of Up = Z×p is

µ2
p−1 ⊕ U1

p = (Up)
2.

Therefore (q, Lp/Qp) = 1 if and only if q ∈ (Up)
2, which happens if and only if q ∈ F×2

p ,
i.e., if and only if q is a square modulo p. Thus we have that(

q, L/Q

p

)
=

(
q

p

)
,

• For v = q, since the extension Lq/Qq is unramified, we can use property 2 of Theorem 1.41
to get (

q, L/Q

q

)
=

(
L/Q

q

)
.

This Frobenius is trivial if and only if the extension Lq/Qq = Qq(
√
p∗)/Qq is trivial,

which happens if and only if p∗ is a square modulo q. In other words,(
q, L/Q

q

)
=

(
p∗

q

)
,

where (p∗/q) is the Kronecker symbol, which is the same as the Legendre symbol for
q 6= 2, and for q = 2 it is defined as(a

2

)
=

{
1 if a ≡ 1 (mod 8);
−1 otherwise.
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p (mod 8) p∗
(
p∗

2

)
(−1)

p2−1
8

1 p 1 1
3 −p −1 −1
5 p −1 −1
7 −p 1 1

Table 1.2:
(

2
p

)
= (−1)

p2−1
8 .

Thus the product formula yields (
q

p

)
=

(
p∗

q

)
.

Finally, for p and q odd primes, the formulation of quadratic reciprocity in Theorem 1.1 is
obtained from the above by using the multiplicativity of the Legendre symbols:(

p∗

q

)
=

(
(−1)

p−1
2

q

)(
p

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
,

yielding (
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

For q = 2 and p odd we get (2/p) = (p∗/2), but here we cannot use multiplicativity of the
symbols as above, since e.g., (3/2) = (5/2) = (15/2) = −1. Instead we check all possible values
for p (mod 8) (see Table 1.2), and find(

2

p

)
= (−1)

p2−1
8 .

Thus we have also obtained the supplementary law of quadratic reciprocity.

1.6 Symbols over number fields

We now turn to the notion of symbols over number fields which we later will connect to algebraic
K-theory. We mostly follow Gras’ presentation [Gra03, II §7]. As before, F denotes a number
field and v ∈ Plnc a place of F .

In this section we will disregard all infinite complex places. There are several reasons for
this exclusion. First, by our Definition 1.29, all infinite complex places have trivial valuation.
Secondly, we will repeatedly consider the group of roots of unity µ(Fv) of the local field Fv,
which is finite cyclic whenever v ∈ Plnc

F , but infinite if Fv = C. Finally, Moore has shown
that any continuous Steinberg symbol (see Definition 2.16) on C is in fact trivial (cf. [Mil71,
Corollary A.2]).

Definition 1.48. The local Hilbert symbol at v is the map

(−,−)v : F×v × F×v −→ µ(Fv)

defined by

(x, y)v :=
(y, Fv( mv

√
x)/Fv)( mv

√
x)

mv
√
x

.

Here (y, Fv( mv
√
x)/Fv) is the local reciprocity symbol for the cyclic extension Fv( mv

√
x)/Fv

evaluated at y ∈ F×v . It is an element of the Galois group Gal(Fv( mv
√
x)/Fv) and therefore

permutes the different mv-roots of x. Hence (y, Fv( mv
√
x)/Fv)( mv

√
x) and mv

√
x differ by a root

of unity.
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Proposition 1.49 ([Gra03, II Proposition 7.1.1]). The local Hilbert symbol is Z-bilinear, and
nondegenerate as a map on F×v /F

×mv
v × F×v /F

×mv
v . Furthermore, it satisfies the following

relations:

• (x, 1− x)v = 1 for all x ∈ F×v , x 6= 1 (Steinberg relation);

• (x,−x)v = 1;

• (x, y)v = (y, x)−1
v , for all x, y ∈ F×v .

Proof (following [Gra03]). We only show the Steinberg relation. Antisymmetry and the relation
(x,−x)v = 1 follow from the Steinberg relation; see Lemma 2.17.

To this end, by Theorem 1.41 it is enough to show that for x ∈ F×, the element 1 − x is
a norm in the extension M/Fv, where M := Fv( mv

√
x). Let d := [M : Fv], so that d | mv. By

Kummer theory (see e.g., [Gra03, I §6]) there is a t ∈ F×v such thatM = Fv(
d
√
t) and x = tmv/d.

Note that for any ξ ∈ µ(Fv) we have

NmM/Fv (1− ξ d
√
t) =

∏
σ∈Gal(M/Fv)

σ(1− ξ d
√
t)

=
d∏
j=1

(1− ζjdξ
d
√
t)

= 1− ξdt

where ζd is a primitive d-th root of unity.
Now let ζv denote a generator for µ(Fv). We claim that the element

mv
d∏
j=1

(1− ζjv
d
√
t) ∈M×

has norm equal to 1− x:

NmM/Fv

mv
d∏
j=1

(1− ζjv
d
√
t)

 =

mv
d∏
j=1

NmM/Fv (1− ζjv
d
√
t)

=

mv
d∏
j=1

(1− ζdjv t)

= 1− ζmvv t
mv
d = 1− x,

as desired.

For a finite place v ∈ Pl0, let ` denote the characteristic of the residue field k(v) = Ov/pv. By
Proposition 1.35 there is a decomposition F×v ∼= πZ

v ⊕ µqv−1 ⊕U1
v . This yields a decomposition

µ(Fv) = µqv−1 ⊕ µ(U1
v )

where µ(U1
v ) denotes the torsion part of U1

v , whose order is a power of `. With this decompo-
sition in mind we will from now on instead denote the group µqv−1 by µ(Fv)

reg and µ(U1
v ) by

µ(Fv)
1. If v is a real place at infinity, we will set µ(Fv)

reg := µ2 and µ(Fv)
1 := 1. Here we do

not consider complex places at infinity since ordv(x) = 0 for all x ∈ Fv for such a place. We
write

m1
v := #µ(Fv)

1.

There are only finitely many places v for which µ(Fv)
1 6= 1, and such places will be referred to

as irregular places. The places v with µ(Fv) = 1 are called regular.
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Definition 1.50. Let v be a noncomplex place of the number field F . The regular, or tame
Hilbert symbol at v, (−,−)reg

v , is the map on F×v × F×v defined by

(x, y)reg
v :=

(y, Fv( qv−1
√
x)/Fv)( qv−1

√
x)

qv−1
√
x

.

Remark 1.51. The regular Hilbert symbol is nothing more than a power of the local Hilbert
symbol at v:

(x, y)reg
v = (x, y)

m1
v

v = (xm
1
v , y)v.

Thus the results of Proposition 1.49 also hold for the regular Hilbert symbol.

Proposition 1.52 ([Gra03, II Proposition 7.1.5]). For any x, y ∈ F×v the following formula
for (x, y)reg

v holds:

(x, y)reg
v =

{
(−1)ordv(x) ordv(y)xordv(y)y− ordv(x) + pv, v finite;

(−1)ordv(x) ordv(y), v infinite real,

where we in the finite case identify µ(Fv)
reg with k(v)×.

Proof (following [Gra03]). First assume v is an infinite real place. Then, since µ(F×v ) = µ2 we
have

(x, y)reg
v =

(y, Fv(
√
x)/Fv)(

√
x)√

x
.

If iv(x) > 0, or in other words ordv(x) = 0, we have Fv(
√
x) = Fv = R. Therefore

(y, Fv(
√
x)/Fv) = 1, and hence

(x, y)reg
v = 1 = (−1)ordv(x) ordv(y).

If iv(x) < 0 so that ordv(x) = 1 we have Fv(
√
x)/Fv = C/R, and thus, as we saw in Exam-

ple 1.43, (y,C/R) = cordv(y) where c is complex conjugation. Hence

(x, y)reg
v = (−1)ordv(y) = (−1)ordv(x) ordv(y).

Now assume v is a finite place of F . For any x ∈ F×v we may write x = πnv u for some u ∈ Uv
and n = ordv(x). By bilinearity and antisymmetry of the Hilbert symbol it is therefore enough
to compute

(u, u′)reg
v , (u, π)reg

v , (π, π)reg
v ,

where u, u′ ∈ Uv and where πv is abbreviated by π.

• The extension Fv( qv−1
√
u)/Fv is unramified, hence

(u, u′)reg
v =

(u′, Fv( qv−1
√
u)/Fv)( qv−1

√
u)

qv−1
√
u

=
(
Fv(

qv−1
√
u)/Fv

)ordv(u′)
= 1

since ordv(u
′) = 0.

• For the symbol (u, π)reg
v we again use that Fv( qv−1

√
u)/Fv is unramified. We have

(π, Fv(
qv−1
√
u)/Fv) =

(
Fv(

qv−1
√
u)/Fv

)ordv(π)
=
(
Fv(

qv−1
√
u)/Fv

)
since ordv(π) = 1. Let σ denote the Frobenius (Fv( qv−1

√
u)/Fv). Then

(u, π)reg
v =

σ( qv−1
√
u)

qv−1
√
u
≡ ( qv−1

√
u)qv

qv−1
√
u
≡ u (mod pv)

by the properties of the Frobenius automorphism. Thus

(u, π)reg
v ≡ u = (−1)ordv(u) ordv(π)uordv(π)π− ordv(u) (mod pv).
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• Finally, to compute (π, π)reg
v we make use of the properties in Proposition 1.49. We have

(π,−π)reg
v = 1 = (π, π)reg

v (π,−1)reg
v ,

hence (π, π)reg
v = (−1, π)reg

v by antisymmetry. By the previous result with u = −1 we get

(π, π)reg
v ≡ −1 = (−1)ordv(π)2πordv(π)π− ordv(π) (mod pv).

By bilinearity, this concludes the proof.

Definition 1.53 (Hilbert symbols). For x, y ∈ F× and v a place of F , the Hilbert symbol at v
of order m = #µ(F ) is defined as(x, y

v

)
:=

σv( m
√
x)

m
√
x
∈ µ(F ),

where

σv =

(
y, F ( m

√
x)/F

v

)
is the Hasse symbol at v.

For any divisor n of m, we also define the Hilbert symbol of order n as(
−,−
v

)
n

:=

(
−,−
v

)m
n

.

Example 1.54. For F = Q and v ∈ PlQ, the Hilbert symbol
(−,−

v

)
is given by(

a, b

v

)
=

{
1 if ax2 + by2 = z2 has a nontrivial solution in Qv;
−1 otherwise,

for any a, b ∈ Q× [Dal06].

Theorem 1.55 (Product formula for Hilbert symbols). For any x, y ∈ F× and any n | m =
#µ(F ), the following product formula holds:∏

v∈PlF

(x, y
v

)
n

= 1.

Proof. The conclusion follows from the product formula for Hasse symbols (Theorem 1.46) and
the fact that if {σi}Ni=1 is a finite set of automorphisms in the Galois group of some abelian
extension L of F containing an n-th root z of an element x ∈ F×, we have

(
∏N
i=1 σi)(z)

z
=

N∏
i=1

σi(z)

z
∈ µ(F ).

Indeed, let σ, τ ∈ Gal(L/F ). Then

(στ)(z)

z
=
σ(τ(z))

z
· τ(z)

τ(z)

=
τ(σ(z))

τ(z)
· τ(z)

z

= τ

(
σ(z)

z

)
· τ(z)

z

=
σ(z)

z
· τ(z)

z
,

where the second equality holds because the extension is abelian, and the last equality holds
since τ acts trivially on F and µn ⊆ F×. The general case follows by induction.
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Definition 1.56. Let n > 1 be a natural number. For any x ∈ F× and any v ∈ Pl0 not
ramified in F ( n

√
x)/F , we define the n-th power residue symbol as

(x
v

)
n

:=

(
F ( n
√
x)/F
v

)
( n
√
x)

n
√
x

.

If p is the prime ideal corresponding to v, we also write(
x

p

)
n

:=
(x
v

)
n
.

Finally, for y ∈ F× such that all v | y is unramified in F ( n
√
x)/F , we define(

x

y

)
n

:=
∏
v|y∞

(x
v

)ordv(y)

n
,

where the product runs over all places v | y and all infinite real places.

Write σ =
(
F ( n
√
x)/F
v

)
for the global Frobenius at the finite place v, and let p denote the

prime ideal corresponding to v. Recall that, modulo p, σ raises elements to the power of
qv = Nm(p). Hence (

x

p

)
n

=
σ( n
√
x)

n
√
x
≡ x

qv−1
n (mod p),

so the n-th power reciprocity symbol is a direct generalization of the Legendre symbol (p/q) ≡
p
q−1
2 (mod q).

Proposition 1.57 ([Gra03, pp.204-205]). The n-th power residue symbols satisfy the following
properties (for any place v such that the given residue symbol is defined):

1.
(x
v

)
n

= 1 if and only if iv(x) is an n-th power in F×v ;

2.
(x
v

)
n

(y
v

)
v

=
(xy
v

)
n
;

3.
(x, y
v

)
n

=
(x
v

)ordv(y)

n
.

In particular, (x, πv
v

)
n

=
(x
v

)
n
.

Theorem 1.58 (The n-th power reciprocity law [Gra03, II Theorem 7.4.4]). Let n be a divisor
of m = #µ(F ). Suppose x, y ∈ F× are such that ordv(x) ordv(y) = 0 for any v ∈ PlF (i.e., x
and y are coprime), and ordv(x) = ordv(y) = 0 for all places v dividing n. Then(

y

x

)
n

(
x

y

)−1

n

=
∏
v|n

(x, y
v

)
n
.

Proof (following [Gra03]). By definition we have(
y

x

)
n

(
x

y

)−1

n

=
∏
v-n

(y
v

)ordv(x)

n

∏
v-n

(x
v

)− ordv(y)

n

since ordv(x) = ordv(y) = 0 for all v | n.
Since (x

v

)ordv(y)

n
=
(x, y
v

)
n
,
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we have (
y

x

)
n

(
x

y

)−1

n

=
∏
v-n

ordv(x)6=0

(y, x
v

)
n

∏
v-n

ordv(y)6=0

(x, y
v

)−1

n

=
∏
v-n

ordv(xy)6=0

(y, x
v

)
n

=
∏
v-n

(y, x
v

)
n
,

where the last two equalities follow since by assumption ordv(xy) 6= 0 ⇐⇒ ordv(x) 6= 0 or
ordv(y) 6= 0. By the product formula for Hilbert symbols this equals∏

v-n

(y, x
v

)
n

=
∏
v|n

(y, x
v

)−1

n
=
∏
v|n

(x, y
v

)
n
,

so this concludes the proof.

Let us return to the Gaussian integers. Recall the statement of biquadratic reciprocity
(Theorem 1.6): For distinct primary Gaussian primes π, τ , we have( τ

π

)
4

= (−1)
Nm(π)−1

4 ·Nm(τ)−1
4

(π
τ

)
4
.

Proof of Theorem 1.6. The following argument is due to Lenstra and Stevenhagen.
Since Q(i) only has complex places at infinity, and since (1 + i) is the only place dividing

n = 4, power reciprocity states that( τ
π

)
4

(π
τ

)−1

4
=

(
π, τ

(1 + i)

)
4

,

where the right hand side is the Hilbert symbol of order 4 at (1 + i). Thus we want to show(
π, τ

(1 + i)

)
4

= (−1)
Nm(π)−1

4 ·Nm(τ)−1
4 . (1.3)

Let v denote the place corresponding to (1 + i). Note that for a primary Gaussian prime α
we have α ∈ U3

v by definition (here we identify α with its image iv(α) in Uv). Thus α has
component 1 on µ4 in the decomposition of Z2[i]× of Proposition 1.22, and by Proposition 1.23
the same holds for the residue class of α in

Uv/(Uv)
4 ∼= µ4 ⊕ 〈3 + 2i〉 ⊕ 〈5〉.

We must therefore compute the Hilbert symbols
(
π,τ
v

)
4
for π and τ in the congruence classes

of 3 + 2i and 5 modulo (Uv)
4. According to the right hand side of Equation (1.3) we must show

that (π, τ
v

)
4

=

{
1 if π or τ ≡ 5 (mod (Uv)

4)
−1 if π ≡ τ ≡ 3 + 2i (mod (Uv)

4).

If α, β ∈ Z[i] satisfy ordv(αβ) ≥ 7, then by Proposition 1.23 (3) we have 1 − αβ ∈ (Uv)
4.

Using this we will show that
(

1+α,1+β
v

)
4

= 1.
First, note that (

1 + α,−α
v

)
4

= 1

by the Steinberg relation (cf. Proposition 1.49). Hence, using bilinearity, we get(
1 + α, 1 + β

v

)
4

=

(
1 + α, 1 + β

v

)
4

(
1 + α,−α

v

)
4

=

(
1 + α,−α(1 + β)

v

)
4

.
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Since 1− αβ ∈ (Uv)
4, we have(
−α(1 + β), 1− αβ

v

)
4

= 1 =

(
(1− αβ)−1,−α(1 + β)

v

)
4

.

Thus (
1 + α,−α(1 + β)

v

)
4

=

(
1 + α,−α(1 + β)

v

)
4

(
(1− αβ)−1,−α(1 + β)

v

)
4

=

(
1+α

1−αβ ,−α(1 + β)

v

)
4

.

Multiplying similarly in the second slot we obtain(
1 + α, 1 + β

v

)
4

=

(
1 + α,−α(1 + β)

v

)
4

=

(
1+α

1−αβ ,
−α(1+β)

1−αβ

v

)
4

=

(
1+α

1−αβ , 1−
1+α

1−αβ

v

)
4

= 1.

Since ordv(4) = 4, this finishes the case where at least one of π or τ is congruent to 5 modulo
(Uv)

4. For if π = 5 while τ equals 5 or 3 + 2i, then we can write π = 1 + α, τ = 1 + β where
ordv(αβ) ≥ 7.

For the remaining case we shall show that(
1 + α

1 + β

)
4

(
1 + β

1 + α

)−1

4

= −1

for some α, β ∈ Z[i] with ordv(α) = ordv(β) = 3, i.e., 1+α, 1+β ∈ U3
v \U4

v . Put α = (−i)(1+i)3

and β = −(1 + i)3. Using that

1 + α = 3 + 2i ≡ 1− i (mod 3− 2i),

we get
(

3+2i
3−2i

)
4

=
(

1−i
3−2i

)
4
. However,

(1− i)
Nm(3−2i)−1

4 = (1− i)3 = −2− 2i ≡ i (mod 3− 2i),

hence (
1 + α

1 + β

)
4

= i.

Since 1 + β is the complex conjugate of 1 + α we then have(
1 + β

1 + α

)
4

=

(
1 + α

1 + β

)
4

= −i,

where the bar denotes complex conjugation. Hence we end up with(
1 + α

1 + β

)
4

(
1 + β

1 + α

)−1

4

= −1.

We now turn to the supplementary laws stated in Theorem 1.6. The identity (i/π)4 =
i(Nm(π)−1)/4 is true by definition, so we need only concern ourselves with the symbol ((1+i)/π)4.
As noted in Theorem 1.6, we use the isomorphism

U1+i

(U1+i)4
∼= µ4 ⊕ 〈3 + 2i〉 ⊕ 〈5〉
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to write π ≡ ik(3 + 2i)µ5ν (mod (U1+i)
4). Multiplicativity of residue symbols yields(

1 + i

π

)
4

=

(
1 + i

3 + 2i

)µ
4

(
1 + i

2 + i

)ν
4

(
1 + i

2− i

)ν
4

.

We compute2: (
1 + i

3 + 2i

)
4

≡ (1 + i)
Nm(3+2i)−1

4 ≡ (1 + i)3 ≡ −i (mod 3 + 2i);

(
1 + i

2 + i

)
4

≡ 1 + i ≡ −1 (mod 2 + i);

(
1 + i

2− i

)
4

≡ −i (mod 2− 1).

Hence (
1 + i

π

)
4

= (−i)µ(−1)ν(−i)ν = iν−µ,

as desired.

2To solve congruences of Gaussian integers it can often be helpful to draw the lattice spanned by unit
multiples of the given Gaussian prime, and look at Gaussian integers relative to this lattice; see Figure 3.1 in
Chapter 3.
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CHAPTER 2

Algebraic K-theory

The zeroth algebraic K-group originated in Grothendieck’s work on his formulation of the
generalized Riemann-Roch theorem [Dal06]. Through his need to work on sheaves over a
scheme X there arose two definitions of algebraic K-groups, either of which is referred to as
the Grothendieck group of X: He defined K0(X) as a certain group built from isomorphism
classes of locally free sheaves of finite rank over X, and similarly a group G0(X) of classes of
coherent sheaves over X. If X is a regular variety, the two definitions coincide. If X is the
spectrum of a ring A, we have an alternate definition of the K-group of X. We consider the
monoid M consisting of isomorphism classes of finitely generated projective modules over A,
keeping in mind that such modules may be regarded as locally free OX -modules. Then K0(X)
is defined as the universal object with respect to monoid homomorphisms of M into various
abelian groups.

The functor K0 is the starting point for the definition of a series of functors attaching
important invariants to a ring. As a starter, we shall see in Example 2.4 that the torsion part
of K0(A) is precisely the ideal class group Cl(A) when A is the ring of integers in a number
field.

2.1 Classical K-theory of rings

There is a forgetful functor
U : Ab −→ CMon

from the category of abelian groups to the category of commutative monoids, which admits a
left adjoint—a “group completion functor”

(−)+ : CMon −→ Ab.

For a given commutative monoid M , the group M+ is called the Grothendieck group, or the
group completion of M . Thus, the Grothendieck group of M is a group M+ together with a
map i : M → M+ (not necessarily an injection) such that the following universal property is
satisfied. Given any abelian group G with a monoid map f : M → G, there is a unique map of
abelian groups f : M+ → G such that the following diagram commutes:

M M+

G

i

f
∃!f

One constructs M+ by adding formal differences as follows [Ros94, Theorem 1.1.3]. Define the
equivalence relation ∼ on M ×M by letting (x1, y1) ∼ (x2, y2) if and only if there is a t ∈ M
such that

x1 + y2 + t = x2 + y1 + t.

Then M+ = M ×M/ ∼.



2. Algebraic K-theory

Now let (C ,�) be a symmetric monoidal category (see [ML98, p.184] for a definition), and
assume that the isomorphism classes of objects of C form a set, which we denote by C iso. The
set C iso is then a commutative monoid with addition given by

[C] + [C ′] := [C�C ′],

where we write C�C ′ := �(C,C ′) for any C,C ′ ∈ C . The Grothendieck group of C is then
defined as

K�
0 (C ) := (C iso)+,

and is often abbreviated to K0(C ) if no confusion is likely to arise (although confusion will
occur in the case of K0 of schemes—see below).

To define K0 of a ring A, we take as our symmetric monoidal category the category P(A)
of finitely generated projective A-modules, with direct sum as the associated bifunctor.

Definition 2.1. The zeroth algebraic K-group K0(A) of the ring A is the Grothendieck group
of (P(A),⊕):

K0(A) := K⊕0 (P(A)).

Moreover, tensor product over A induces a ring structure on K0(A).

Example 2.2. If A is a principal ideal domain or a local ring, any finitely generated projective
A-module is free ([Ros94, Theorem 1.3.1], [Wei13, Lemma 2.2, p.11]). Since the rank is well
defined up to isomorphism, the map P(A)iso → Z≥0 defined by [An] 7→ n is an isomorphism.
By group completing the two monoids we obtain an isomorphism K0(A) ∼= Z.

To generalize the definition of K0 of a ring to arbitrary schemes, we consider the category
VB(X) of vector bundles over a scheme X. It turns out that the most satisfactory way of
defining K0 of X is to set

K0(X) := K0(VB(X)),

where the right hand side means K0 of VB(X) viewed as an exact category, and not as a
symmetric monoidal category. See [Wei13, II Ch.7] for details on K0 of an exact category.
Since VB(X) is not always a split exact category1, we have K0(X) 6∼= K⊕0 (X) in general.
On the other hand, if X = SpecA is an affine scheme, there is an equivalence of categories
P(A) ∼= VB(SpecA) [Wei13, p.51], hence K0(A) = K0(SpecA).

For any scheme X there is a rank map

rank : K0(X) −→ H0(X,Z)

induced by taking the rank of vector bundles, whose kernel K̃0(X) is called the reduced K-
theory of X. Here Z is the constant sheaf on X with group Z, and H0(X,Z) is viewed as a
subring of K0(X). Similarly, there is a determinant map

det : K0(X) −→ Pic(X)

induced by the determinant map on vector bundles sending a locally free rank n bundle F to
the line bundle det F =

∧n F . The map rank⊕det is a surjective ring homomorphism [Wei13,
Theorem 8.1, p.158].

Theorem 2.3 ([Wei13, Proposition 8.2.1, p.159]). If X is a 1-dimensional separated, regular
noetherian scheme, the map rank⊕det yields an isomorphism

K0(X) ∼= H0(X,Z)⊕ Pic(X).

Example 2.4. Let A be a Dedekind ring. Then the Picard group of SpecA is the ideal class
group Cl(A) [Har77, II Example 6.3.2], and since SpecA is connected we have H0(SpecA,Z) =
Z. Hence the theorem above yields

K0(A) ∼= Z⊕ Cl(A),

i.e., K̃0(A) ∼= ClA.
1E.g., taking X = P1

C, the exact sequence 0→ OX(−2)→ OX(−1)⊕2 → OX → 0 does not split.
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2.1.1 The functors K1 and K2

Let A be a ring. Recall the definition of the general linear group GL(A) as the colimit of the
directed system

GL1(A) ↪→ GL2(A) ↪→ · · · ,

where the injections of GLn(A) into GLn+1(A) are defined by M 7→
(
M 0
0 1

)
. Let eij(a) denote

the matrix which coincides with the identity matrix except having a in the (i, j)-position, where
i 6= j. Such a matrix is called an elementary matrix, and the elementary n×n-matrices generate
a subgroup En(A) of GLn(A). As in the above sequence we have maps En(A)→ En+1(A) for
each n, and the colimit of this system is denoted by E(A).

Lemma 2.5 (Whitehead). The group E(A) is the commutator subgroup of GL(A).

Whitehead’s lemma tells us that GL(A)/E(A) is the maximal abelian quotient GL(A)ab of
GL(A). This group was recognized by Bass to be the correct definition of K1(A):

Definition 2.6. The first algebraic K-group of the ring A is defined as

K1(A) := GL(A)/E(A).

A ring map A → B induces a map GL(A) → GL(B) preserving elementary matrices, and
hence a map K1(A)→ K1(B). Thus K1 is a covariant functor on the category of rings.

There is a determinant map det : GL(A)→ A×, which induces a map K1(A)→ A×. Denote
by SL(A) the kernel of the determinant map, and let SK1(A) := SL(A)/E(A). By realizing
A× as GL1(A), which then maps into GL(A), we obtain a split exact sequence

1 SK1(A) K1(A) A× 1.

Example 2.7. The kernel SK1(A) is known to be trivial for example when A is a local ring
[Wei13, III Lemma 1.4] or the ring of integers in a number field [BMS67]. In other words, we
get an isomorphism

K1(A) ∼= A×

in this case.

Definition 2.8. A central extension of a group G by an abelian group A is a short exact
sequence

1 A E G 1,
φ

where E is a group containing A as a central subgroup. A central extension is denoted by
(E, φ).

The central extensions of G form a category where a morphism ψ : (E, φ) → (E′, φ′) is a
homomorphism ψ : E → E′ over G, i.e., a commutative diagram

E E′

G

ψ

φ φ′

We may therefore define a central extension (E, φ) of G to be universal if (E, φ) is initial in
the category of central extensions of G.

Recall that a group G is perfect if it equals its commutator subgroup [G,G]. In other words,
a group is perfect if it has trivial abelianization, which is equivalent to the vanishing of the first
group homology H1(G,Z).

Theorem 2.9 ([Ros94, Theorem 4.1.3]). A group admits a universal central extension if and
only if it is perfect.
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We turn back to a quick study of the elementary matrices over a ring A. There are a few
evident relations satisfied by such matrices. First we have

eij(a)eij(b) = eij(a+ b).

Secondly, the commutator of two elementary matrices satisfies

[eij(a), ekl(b)] =

 1, j 6= k, i 6= l
eil(ab), j = k, i 6= l
ekj(−ab), j 6= k, i = l.

With this in mind, we define the Steinberg group as the group generated by symbols satisfying
the analog of the relations given above:

Definition 2.10. Let A be a ring and n ≥ 3 a natural number. The Steinberg group Stn(A)
of order n over A is defined as the free group generated by symbols xij(a), 1 ≤ i, j ≤ n, i 6= j,
a ∈ A, modulo the relations

1. xij(a)xij(b) = xij(a+ b);

2. [xij(a), xkl(b)] = xil(ab) if i 6= l;

3. [xij(a), xkl(b)] = 1 if j 6= k, i 6= l.

For every n there are natural maps Stn(A)→ Stn+1(A), and we let St(A) denote the colimit
of the directed system. Given a ring homomorphism f : A → B we get an induced map on
the free groups generated by the {xij(a) : a ∈ A} and {xij(b) : b ∈ B} by sending xij(a) to
xij(f(a)). This is compatible with the relations in St(A) and therefore factors through a map
St(A) → St(B). Hence the formation of Steinberg groups is functorial. Additionally there are
maps φn : Stn(A)→ GLn(A) for any n, given by xij(a) 7→ eij(a); clearly its image is precisely
the group En(A) generated by elementary n× n-matrices. Passing to the colimit, we obtain a
map φ : St(A)→ E(A).

Definition 2.11. The second algebraic K-group K2(A) of the ring A is defined as the kernel
of the map φ : St(A)→ E(A).

That K2 is a functor is a consequence of the functoriality of St(−) and E(−). From the
definition of K2 we have the exact sequence

1 K2(A) St(A) E(A) 1.
φ

The following theorem shows that this exact sequence is in fact a central extension of the group
E(A). In particular, K2(A) is an abelian group.

Theorem 2.12 ([Mil71, Theorem 5.10]). The group K2(A) is the center of the Steinberg group
St(A).

2.2 K2 of fields

The group K2(F ) for F a field has been extensively studied since the beginning of algebraic
K-theory. If F is a number field, K2(F ) contains much information about the arithmetic of F .
Later on we will see a few examples of this.

When it comes to computational questions on K2(F ), one rarely operates with the original
Definition 2.11. The first vast simplification on the description of K2(F ) is due to Matsumoto
(see Theorem 2.14), which allows for the computation of K2 of finite fields as well as K2 of some
number fields. In the computations in Chapter 3, we use only Matsumoto’s theorem along with
some number theory. To formulate Matsumoto’s theorem, we first look at the general case of
K2 of a ring A and later specialize to the case of a field.

30
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In order to construct elements of K2(A) for a given ring A, consider two elements a, b ∈
E(A) such that the commutator [a, b] = 1. Let x, y denote representatives for φ−1(a), φ−1(b),
respectively. Then [x, y] = xyx−1y−1 lies in St(A), and by definition φ([x, y]) = 1, so that [x, y]
is an element of K2(A). To see that the element [x, y] is well defined, note that if x′ is another
representative for φ−1(a), then x′ = xz for some z lying in the center of St(A). But then

[x′, y] = x′yx′−1y−1

= xzyz−1x−1y−1

= xyx−1y−1

= [x, y],

since z commutes with every element of St(A). We therefore let [φ−1(a), φ−1(b)] denote the
element [x, y] of K2(A) where x and y are any representatives for respectively φ−1(a) and
φ−1(b).

Definition 2.13. Let A be a ring and u, v ∈ A×. We define the Steinberg symbol {u, v} to be
the element [φ−1(d12(u)), φ−1(d13(v))] ∈ K2(A), where

d12(u) =

u 0 0
0 u−1 0
0 0 1

 , d13(v) =

v 0 0
0 1 0
0 0 v−1

 .

The Steinberg symbols give rise to an antisymmetric bilinear map

{−,−} : A× ×A× −→ K2(A),

satisfying the relation

{u, 1− u} = 1 for all u ∈ A× with 1− u ∈ A×

[Ros94, Lemma 4.2.14, Theorem 4.2.17]. When we restrict our attention to a field F , it turns
out that the group K2(F ) is generated by the symbols {u, v}:

Theorem 2.14 (Matsumoto [Mil71, §12]). The group K2(F ) is the free abelian group on the
generators {x, y}, where x, y ∈ F×, subject only to the following relations:

1. {x, 1− x} = 1 for any x 6= 1;

2. {x1x2, y} = {x1, y}{x2, y};

3. {x, y1y2} = {x, y1}{x, y2}.

Theorem 2.15 ([Mil71, Theorem 8.8]). There is an antisymmetric, bilinear pairing

K1(F )×K1(F ) −→ K2(F )

mapping (a, b) ∈ K1(F )×K1(F ) = F× × F× to {a, b} ∈ K2(F ).

Let us proceed to describe the universal property of K2(F ).

Definition 2.16. Let F be a field and G an abelian group written multiplicatively. A G-valued
(Steinberg) symbol on F is a bilinear map

(−,−) : F× × F× −→ G

such that (x, 1− x) = 1 whenever x ∈ F× \ {1}.

By Matsumoto’s theorem, any symbol (−,−) : F× × F× → G gives rise to a commutative
diagram

F× × F× K2(F )

G

{−,−}

(−,−)
∃!f

In other words, K2(F ) is the universal object with respect to symbols on F with values in
abelian groups, and the corresponding Steinberg symbol {−,−} is the universal symbol on F .
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Lemma 2.17. Let (−,−) : F××F× → G be a G-valued symbol on F . Then, for all x, y ∈ F×
we have

(i) (x,−x) = 1;

(ii) (x, y)−1 = (y, x);

(iii) (x, x) = (x,−1).

Proof. First, note that (1, x) = (1, x)(1, x) for any x ∈ F× by bilinearity, hence (1, x) = 1. In
particular, (1,−1) = 1 so that property (i) holds for x = 1. Therefore, assume that x 6= 1 and
write −x = (1− x)(1− x−1)−1. We then have

(x,−x) = (x, 1− x)(x, (1− x−1)−1) (2.1)

= (x, (1− x−1)−1) (2.2)

= (x, 1− x−1)−1 (2.3)

= (x−1, 1− x−1) = 1, (2.4)

where the equality at (2.3) holds since (x, 1 − x−1)(x, (1 − x−1)−1) = (x, 1) = 1. A similar
computation shows that (x, 1− x−1)−1 = (x−1, 1− x−1).

The antisymmetry follows from (i):

1 = (xy,−xy) = (x,−x)(x, y)(y, x)(y,−y) = (x, y)(y, x).

Similarly we get property (iii):

(x, x) = (x,−1)(x,−x) = (x,−1).

Theorem 2.18. For any finite field F , the group K2(F ) is the trivial group.

Proof. Let u denote a generator of the cyclic group F×. If x, y ∈ F×, write x = un, y = um.
Then in K2(F ) we have

{x, y} = {un, um} = {u, u}nm,

hence it suffices to show that {u, u} = 1.
If the characteristic charF = 2 we have u = −u, hence {u, u} = {u,−u} = 1 by Lemma 2.17

(i). We may therefore assume charF 6= 2.
Suppose that F has order q, where q is a power of an odd prime. The set

A := F× \ F×2

of nonsquares of F× contains (q − 1)/2 elements and is in bijection with the set

B := {1− v : v ∈ A}.

Suppose that A∩B = ∅. Since both A and B contain (q−1)/2 elements we can then write F×
as the disjoint union of A and B. But since 1 is a square, 1 6∈ A, and since 0 6∈ A we have that
1 6∈ B. Hence 1 6∈ A∪B, which contradicts the assumption that F× = A∪B. We can therefore
conclude that there are odd integers i, j such that uj = 1−ui, and thus 1 = {ui, uj} = {u, u}ij .
Writing ij = 2k + 1 for k an integer we therefore get that

1 = {u, u}2k+1 = {u, u}2k{u, u} = {u, u},

since {u, u}2 = 1 by the antisymmetry.

We now return to the number theoretic setting. Let F denote an algebraic number field and
v a place of F . Proposition 1.49 tells us that the local Hilbert symbol at v, defined in 1.48, is
in fact a symbol in the sense of Definition 2.16. Thus the same holds for the regular Hilbert
symbol of Definition 1.50.
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Definition 2.19. The global regular Hilbert symbol

(−,−)reg : F× × F× −→
⊕
v∈Plnc

µ(Fv)
reg

is defined via the regular Hilbert symbols at the different places v as

(x, y)reg := ((iv(x), iv(y))reg
v )v∈Plnc ,

where v runs over all noncomplex places of F .

Note that (x, y)reg indeed takes values in the direct sum, as (iv(x), iv(y))reg
v = 1 for almost

all v.
With this definition (−,−)reg becomes a symbol on F×, and it therefore factors through

K2(F ). We denote by hreg the induced map hreg : K2(F )→
⊕

v µ(Fv)
reg:

F× × F× K2(F )

⊕
v

µ(Fv)
reg

{−,−}

(−,−)reg

hreg

In a completely analogous manner we obtain the global Hilbert symbol,

F× × F× 3 (x, y) 7−→ ((iv(x), iv(y))v)v∈Plnc ∈
⊕
v∈Plnc

µ(Fv),

inducing a map
h : K2(F ) −→

⊕
v∈Plnc

µ(Fv).

We aim to compare the maps h and hreg. To this end, we start out with a small observation
before moving on to Moore’s theorem.

Observation 2.20. The Hilbert symbol can be described as(x, y
v

)
= i−1

v

(
(iv(x), iv(y))

mv
m
v

)
.

Proof. We have (iv(x), iv(y))
mv/m
v = (iv(x)mv/m, iv(y))v by bilinearity, and(

iv(y), Fv

(
mv

√
iv(xmv/m)

)
/Fv

)
=
(
iv(y), Fv

(
m
√
iv(x)

)
/Fv

)
;

the right hand side being the image under the local reciprocity map in Lv/Fv, where L :=

F ( m
√
iv(x)). Hence, letting σ denote the Hasse symbol σ :=

(
y,F ( m

√
x)/F

v

)
, we get

i−1
v

(
(iv(x), iv(y))mv/mv

)
=
σ( m
√
x)

m
√
x

=
(x, y
v

)
.

Now define a map
π :

⊕
v∈Plnc

µ(Fv) −→ µ(F )

by
π((ζv)v) :=

∏
v

i−1
v

(
ζ
mv
m
v

)
.

The above observation together with the product formula for Hilbert symbols shows that the
sequence

K2(F )
⊕
v∈Plnc

µ(Fv) µ(F ) 1h π

is a complex. That the sequence is in fact exact is the statement of Moore’s theorem, which is
also known as the reciprocity uniqueness theorem. It says that the relation

∏
v

(
x,y
v

)
= 1 is the

only relation between the Hilbert symbols.
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2. Algebraic K-theory

Theorem 2.21 (Moore [Gra03, II Theorem 7.6]). The sequence

K2(F )
⊕
v∈Plnc

µ(Fv) µ(F ) 1h π

is exact.

Definition 2.22 ([Gra03, II 7.6.2]). The kernel of

h : K2(F )→
⊕
v∈Plnc

µ(Fv)

is called the wild kernel, and is denoted WK2(F ). The kernel of hreg is called the regular, or
tame kernel, and is denoted by Rord

2 (F ).

Clearly we have WK2(F ) ⊆ Rord
2 (F ). In the notations of Moore’s theorem we have a

commutative diagram [Gra03, II Theorem 7.6]

1 WK2(F ) K2(F )
⊕
v∈Plnc

µ(Fv) µ(F ) 1

1 Rord
2 (F ) K2(F )

⊕
v∈Plnc

µ(F )reg 1

h

=

π

⊕m1
v

m

hreg

Nontriviality of the regular kernel occurs for example when the prime 2 splits in the extension
F/Q. This is due to the existence of a so-called “wild” 2-adic Hilbert symbol on such a field; see
Example 3.14. On the other hand, nontriviality of the wild kernel means that there are symbols
on F which do not come from Hilbert symbols—i.e., symbols that are detected by global, but
not by local class field theory. This means that there are global symbols defined on F which
cannot be expressed in terms of the Hilbert symbols

(
x,y
v

)
at different places v. Such symbols

are called exotic symbols. As Gras notes in [Gra03, p.214], at the present time no one has
managed to describe such a symbol explicitly. We will briefly revisit regular and wild kernels
in Chapter 3.

Remark 2.23. The regular kernel Rord
2 (F ) was identified by Quillen as K2(OF ). The lower

exact sequence in the diagram above is a special case of the localization sequence in higher
algebraic K-theory [Qui73, p.29]

· · · Kn+1(F )
⊕

p∈Spec(A)\{0}

Kn(k(p)) Kn(A) Kn(F ) · · ·

for A a Dedekind ring and F the field of fractions of A.

2.3 Milnor K-groups and Witt theory

In Chapter 5 we will discuss the motivic homotopy groups π∗α1 of the sphere spectrum. These
groups were identified by Morel in [Mor04a] as the so-called Milnor-Witt K-groups (defined in
Definition 5.6), introduced by Morel in the same article. Milnor-Witt K-theory is in some sense
a blend of Milnor K-theory and Witt theory, so let us here briefly review the definition and
basic properties of these objects.

Let F be a field. The Milnor K-groups were first defined in Milnor’s seminal paper [Mil70],
inspired by Matsumoto’s description of K2(F ).

For any n ≥ 0, let (F×)⊗n := F× ⊗Z · · · ⊗Z F
× be the n-fold tensor product of F×, where

we define (F×)⊗0 := Z.
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Definition 2.24. Let n ≥ 0. The n-th Milnor K-group KM
n (F ) of F is the group

KM
n (F ) := (F×)⊗n/

〈
a1 ⊗ · · · ⊗ an : aj ∈ F×, aj + aj+1 = 1 for some j

〉
.

We write {a1, . . . , an} for the image of a1 ⊗ · · · ⊗ an ∈ (F×)⊗n in KM
n (F ).

The Milnor K-theory KM
∗ (F ) is the graded ring KM

∗ (F ) :=
⊕

n≥0K
M
n (F ), where KM

n (F )
consists of the homogeneous elements of degree n.

Example 2.25. Theorem 2.18 shows that KM
n (Fq) = 0 for any n ≥ 2.

By Example 2.2 and Example 2.7, KM
n (F ) agrees with the algebraic K-theory Kn(F ) for

n = 0, 1, 2.

In [Mil70], Milnor establishes an analog of the regular map hreg : K2(F ) →
⊕

v∈PlncF
k(v)×

in Milnor K-theory (recall that k(v)× ∼= K1(k(v)):

Theorem 2.26 ([Mil70, Lemma 2.1]). Let F be field. For each discrete valuation v on F and
each n ≥ 1 there exists a unique homomorphism

∂v : KM
n (F ) −→ KM

n−1(k(v))

such that
∂v({πv, u2, . . . , un}) = {u2, . . . , un} ∈ KM

n−1(k(v))

and
∂v({u1, u2, . . . , un}) = 0

for all units ui ∈ O×v .

Using these maps, Milnor showed in [Mil70] that there are split exact sequences

0 −→ KM
n (F ) −→ KM

n (F (t))

⊕
p ∂p−−−−→

⊕
p∈Spec(F [t])\{0}

KM
n−1(F [t]/p) −→ 0,

where the direct sum ranges over all nonzero prime ideals of F [t]. Again, the method of
computation is attributed to Tate.

2.3.1 The Witt ring

The following is based on [MH73, Sch85, Wei13]. Let A be a ring and let M be an A-module.
A symmetric bilinear form over A is an A-bilinear map

β : M ×M −→ A

such that β(x, y) = β(y, x) for all x, y ∈M . The pair (M,β) is called a symmetric inner product
space over A if in addition the following conditions are satisfied:

• M is finitely generated and projective over A;

• the maps M → M∗ = HomA(M,R) given by x 7→ β(x,−) and y 7→ β(−, y) are bijective
(i.e., the form is nondegenerate).

A map f : (M,β)→ (M ′, β′) of inner product spaces over A is an A-module map f : M →M ′

such that β′(f(x), f(y)) = β(x, y). Thus we can form the category SBil(A) of inner product
spaces over A. An isomorphism in SBil(A) is called an isometry.

The category SBil(F ) becomes symmetric monoidal under orthogonal sum defined by

(M,β)⊕ (M ′, β′) := (M ⊕M ′, β ⊕ β′),

where (β ⊕ β′)(x⊕ x′, y ⊕ y′) := β(x, y) + β′(x′, y′). Moreover, tensor product over A provides
SBil(A)iso with the structure of a semiring. Hence the Grothendieck group K0SBil(A) becomes
a ring, called the Grothendieck-Witt ring of A. We write

GW (A) := K0SBil(A).
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If M ∈P(A), the associated hyperbolic space is defined as

H(M) := (M ⊕M∗,hM ),

where
hM ((x, α), (y, β)) := β(x) + α(y).

The adjoint map ĥM : M ⊕M∗ →M∗ ⊕M of h is then given by
(

0 idM∗
idM 0

)
.

Definition 2.27. The Witt ring W (A) of A is the quotient of GW (A) by the ideal generated
by hyperbolic spaces.

There is an augmentation ε : GW (A) → Z; this is simply the rank map. We let Î denote
the kernel of ε. The augmentation map induces a map on the Witt ring

εZ/2 : W (A) −→ Z/2;

its kernel I(A) is called the fundamental ideal. It is the ideal of even-dimensional forms. We
have I(A) ∼= Î as abelian groups, and the following diagram summarizes the situation:

0 Î GW (A) Z 0

0 I(A) W (A) Z/2 0

∼=

ε

εZ/2

Example 2.28. The case when A is a field F of characteristic not 2 is perhaps the most
studied. Any element u ∈ F× gives rise to a symmetric inner product space 〈u〉, where V = F
is the underlying vector space and β(x, y) := uxy is the bilinear form. We have 〈u〉 ∼= 〈u′〉 if
and only if u′ = a2u for some a ∈ F×. We will write 〈u, u′〉 for the sum 〈u〉⊕ 〈u′〉, and we have
〈u〉 ⊗ 〈u′〉 = 〈uu′〉.

The hyperbolic plane H is the inner product space (F 2, β), where β is given by the matrix
( 0 1

1 0 ). By diagonalizing we have H = 〈1〉 ⊕ 〈−1〉. The hyperbolic plane generates an ideal 〈H〉,
which is in fact equal to Z ·H. The ideal 〈H〉 is the ideal of hyperbolic spaces, and we have
W (F ) = GW (F )/〈H〉.

The need to consider Witt rings of arbitrary rings becomes apparent shortly: We shall see
in Example 2.35 and Theorem 2.36 that in order to describe the Witt ring of number fields, we
are forced to consider the Witt ring of the ring of integers as well as W (Fq) for q even.

The rings GW (F ) and W (F ) can be described by generators and relations as follows:

Theorem 2.29 ([Lam05, II Theorem 4.1]). The Grothendieck-Witt ring is the free abelian
group generated by symbols 〈u〉 for u ∈ F×, subject to the following relations.

1. 〈1〉 = 1,

2. 〈u〉〈v〉 = 〈uv〉,

3. 〈u〉+ 〈v〉 = 〈u+ v〉(1 + 〈uv〉)

whenever they make sense. Requiring the additional relation

4. 1 + 〈−1〉 = 0

one recovers the Witt ring.

The so-called Pfister forms are elements of the Witt ring of particular interest.

Definition 2.30. Let a1, . . . , an ∈ F×. The corresponding n-fold Pfister form is the 2n-
dimensional form

〈〈a1, . . . , an〉〉 :=

n∏
i=1

〈1,−ai〉 = (〈1〉 − 〈a1〉) · · · (〈1〉 − 〈an〉).
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q W (Fq) I(Fq) I2(Fq)

even Z/2 0 0

≡ 1 (mod 4) Z/2⊕ Z/2 Z/2 0

≡ 3 (mod 4) Z/4 Z/2 0

Table 2.1: The Witt ring and the fundamental ideal of finite fields.

Proposition 2.31 ([Lam05, X Proposition 1.2]). The n-th power In(F ) of the fundamental
ideal of F is generated as an abelian group by all n-fold Pfister forms.

There is a group homomorphism F×/F×2 → I(F )/I2(F ) induced by u 7→ 〈〈u〉〉; Pfister
showed that this is an isomorphism:

Theorem 2.32 (Pfister [MH73, Theorem 5.2]). There is a canonical isomorphism F×/F×2 ∼=
I(F )/I2(F ).

Example 2.33. The Witt ring of a finite field Fq is described in [MH73, p.87]; see Table 2.1.
In particular, we have I2(Fq) = 0 for any prime power q.

Example 2.34. Let us consider the case of ordered fields F . Recall the inertia theorem of
Jacobi and Sylvester [MH73, p.61], which says that any inner product space X over an ordered
field F is isomorphic to an orthogonal sum

X ∼= X+ ⊕X−,

where X+ is positive definite (i.e., x · x is positive for all nonzero x ∈ X+), and X− is negative
definite. Moreover, the ranks of X+ and X− are invariants up to isomorphism.

Suppose P is an ordering in F . In light of the inertia theorem one defines the signature
σP (X) of the inner product space X at P as the integer

σP (X) := rk(X+)− rk(X−).

For the rank 1 inner product space 〈u〉—where u ∈ F×—we have σP (〈u〉) = sgn(u), the sign
of u. One can show that the signature induces a well defined homomorphism on the Witt ring,
and that if F is an ordered field in which all positive elements are squares, then σP : W (F )→ Z
is an isomorphism (see [MH73, p.63]). In particular, we have W (R) ∼= Z.

Example 2.35. We have the following description of the Witt ring of Q:

W (Q) ∼= W (Z)⊕
⊕

p prime

W (Fp).

The original proof uses the Hasse-Minkowski theorem for quadratic forms over Q. In [MH73,
pp.88–89], Milnor gives an alternative proof not making use of the Hasse-Minkowski principle.
This proof is quite similar to Tate’s computation of K2(Q), which we will come back to in
Chapter 3.

There are analogs of the tame symbols also in Witt theory: If F is a number field, each
finite place v ∈ PlF and each choice of uniformizer πv gives rise to an additive homomorphism

∂πvv : W (F ) −→W (k(v))

sending a generator 〈uπnv 〉 of W (F ) to either 〈u〉 or 0 according as n ≡ 1 (mod 2) or n ≡ 0
(mod 2). The map ∂πvv is unique up to choice of uniformizer πv.

Theorem 2.36 ([MH73, IV Corollary 3.3]). If F is a number field, there is an exact sequence

0 W (OF ) W (F )
⊕
v∈Pl0

W (k(v)).
⊕
v ∂

πv
v
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The extent to which ∂ :=
⊕

v ∂
πv
v fails to be surjective is measured by the ideal class group:

Proposition 2.37 ([MH73, p.94]). There is an exact sequence

W (F )
⊕
v∈Pl0

W (k(v)) Cl(F )/Cl(F )2 0,∂

where the map
⊕

vW (k(v)) → Cl(F )/Cl(F )2 is defined by sending each generator 〈u〉 of
W (k(v)) to the ideal class of pv modulo Cl(F )2.

Example 2.38. If F equals Q(i) or Q(
√
−3) then Cl(F ) = 0, hence we have exact sequences

0 W (OF ) W (F )
⊕
v∈Pl0

W (k(v)) 0.∂

In [MH73, p.96], Milnor and Husemoller describe the groups W (OQ(
√
−d)) for d = 1, 2, . . . , 15.

In our case, the result is

W (Z[i]) ∼= Z/2⊕ Z/2; W (Z[ω]) ∼= Z/4.

2.3.2 Relation to Milnor K-theory

Let kMn (F ) denote the mod 2 Milnor K-theory

kMn (F ) := KM
n (F )/2KM

n (F ).

Thus we have kM0 (F ) = Z/2 and kM1 (F ) = F×/F×2, the square classes of elements in F×.
By definition of the fundamental ideal we have W (F )/I(F ) ∼= kM0 (F ), and by Pfister’s Theo-
rem 2.32 we have I(F )/I2(F ) ∼= kM1 (F ).

In [Mil70], Milnor establishes a unique homomorphism

sn : kMn (F ) −→ In(F )/In+1(F )

for each n ≥ 0, induced by

{a1, . . . , an} 7−→ 〈〈a1, . . . , an〉〉 (mod In+1(F )).

He proved that sn is surjective for all values of n and announced the famous Milnor conjecture,
asking whether sn is always bijective.

Before Milnor’s article [Mil70], Bass and Tate had discovered some connections between K2

and Galois cohomology [Tat76b]. Let F be a field of characteristic not 2, and let Fsep denote
its separable closure. We then have the Kummer sequence

1 µ2 F×sep F×sep 1.
(−)2

The start of the corresponding long exact sequence in Galois cohomology takes the form

0 Z/2 F× F× H1
Gal(F ;Z/2) 0.·2 δ

Here Hn
Gal(F ;M) := Hn(Gal(Fsep/F );M) = Hn

ét(F ;M), and H1
Gal(F ;F×sep) = 0 by the Hilbert-

Speiser-Noether Theorem 90 [Ser79, Ch.X]. Hence there is an isomorphism

kM1 (F ) ∼= H1
Gal(F ;Z/2).

Theorem 2.39 ([Tat76b, Theorem 3.1]). The isomorphism

{a} 7→ δ(a) : kM1 (F ) −→ H1
Gal(F ;Z/2)

extends uniquely to a ring homomorphism

hF : kM∗ (F ) −→ H∗Gal(F ;Z/2)

satisfying hF ({a, b}) = δ(a) ^ δ(b).
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In 1996—by the advent of motivic homotopy theory—Orlov-Vishik-Voevodsky brought clar-
ity to all the connections mentioned above. Indeed, they settled the Milnor conjecture by
showing that s∗ as well as h∗ are graded ring isomorphisms [OVV07]

kM∗ (F )

GrI(W (F )) H∗Gal(F ;Z/2)

s∗
∼=

h∗
∼=

where GrI(W (F )) := W (F )/I(F )⊕I(F )/I2(F )⊕· · · is the associated graded Witt ring. Every
known proof of this fact uses motivic homotopy theory.
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CHAPTER 3

On K2 of Some Imaginary Quadratic
Number Fields

In this chapter we look at the K-theory of the two imaginary quadratic number fields Q(
√
−1)

and Q(
√
−3). Specifically, we computeK2 of these fields and look at how the result for Q(

√
−1)

is connected with the law of biquadratic reciprocity.
In Tate’s computation of K2(Q) he defined a filtration

L2 ⊆ L3 ⊆ L5 ⊆ · · · ⊆ Lp ⊆ · · · ⊆ K2(Q)

of K2(Q), where for each prime p,

Lp := 〈{x, y} : x, y ∈ Z \ {0}, 1 ≤ |x|, |y| ≤ p〉.

Tate used induction and the Euclidean algorithm to show that Lp ∼= µ2

⊕
2<`≤pF

×
` , yielding

K2(Q) ∼= µ2 ⊕
⊕
p 6=2

F×p .

We aim to follow the same technique, only with slight modifications. In particular, the filtration
has to be defined differently due to the fact that there may be two primes with the same norm in
these number fields. Since we want to consider each prime separately, the norm is not sufficient
to distinguish between them.

Now the groups K2(Q(
√
−1)) and K2(Q(

√
−3)) are of course known, e.g., from [BT73,

p.429] where Tate computes the second K-group of the first six imaginary quadratic number
fields (ordered by their discriminants). Tate’s method of computation is based on a few general
results; here we will instead—as mentioned—give a direct computation based on the calculation
of K2Q mentioned above. This approach should work for all Euclidean imaginary quadratic
number fields, but not in general because of the need of an Euclidean algorithm. However, the
computation exemplifies how the arithmetic of the number field reveals itself in the K-group.

3.1 The group K2(Q(
√
−1))

Recall the situation from Chapter 2 for the global regular Hilbert symbol:

F× × F× K2(F )

⊕
v

µ(Fv)
reg

{−,−}

(−,−)reg

hreg

Here we specialize to the case when F = Q(i), where i2 = −1. Thus we have OQ(i) = Z[i], the
Gaussian integers. The map hreg : K2(Q(i)) →

⊕
v µ(Q(i)v)

reg will be our primary object of
study.
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γπ

α

β

Figure 3.1: Gaussian integers lying in the same relative position in the squares defined by π
are congruent modulo π.

First recall—as mentioned in Chapter 1—that if v is a finite place of Q(i) above a prime
p ∈ Z, then Q(i)v = Qp(i). Secondly, recall that we in Proposition 1.20 have described the
groups (Z[i]/pv)

× ∼= k(v)× ∼= µ(Q(i)v)
reg, so that we have a map

hreg : K2(Q(i)) −→
⊕

p prime
p≡1 (mod 4)

(
F×p
)2 ⊕ ⊕

p prime
p≡3 (mod 4)

F×p2

induced by the global regular Hilbert symbol. We aim to show that this is an isomorphism. To
begin with we need a few preliminary lemmas.

Lemma 3.1. For any finite place v of Q(i), there is a complete system of representatives
{αj}j=1,...,Nm(πv) for k(v) such that |αj | ≤ |πv|/

√
2 for each j (where |α| is the standard absolute

value of α, satisfying |α|2 = Nm(α)).

Proof. This is the Euclidean algorithm on the Gaussian integers and follows from Table 1.1
in Chapter 1, but we write out the details for convenience. Geometrically we can picture the
situation as follows (see Figure 3.1): Given α ∈ Z[i] \ {0} and π a prime element, consider
the lattice spanned by unit multiples of π. Then α lies in one of the squares in the lattice,
with distance at most |π|/

√
2 from a corner γπ. If β := α − γπ then β ≡ α (mod π) and

|β| ≤ |π|/
√

2.

Lemma 3.2. The group K2(Q(i)) is generated by elements {α, β} for which α, β ∈ Z[i] \ {0}.

Proof. Let {x, y} ∈ K2(Q(i)), then we may write x = α/β, y = α′/β′ for α, α′, β, β′ ∈ Z[i]
nonzero. Using the relations in Lemma 2.17 and bilinearity we then have

{x, y} = {αβ−1, α′β′−1}
= {α, α′}{α, β′−1}{β−1, α′}{β−1, β′−1}
= {α, α′}{β′, α}{α′, β}{β, β′},

where we have used that {γ−1, δ} = {γ, δ}−1 = {δ, γ}.

Remark 3.3. The same proof holds for K2(F ) whenever F is the quotient field of some integral
domain.

Definition 3.4. Let Λ∞ denote the following subgroup of K2(Q(i)):

Λ∞ := 〈{u, v} : u, v ∈ Z[i]× = µ4〉.
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Lemma 3.5. The group Λ∞ is trivial.

Proof. The generators of Λ∞ are of the form {u, v} with u, v ∈ Z[i]×. First, note that if either
u = 1 or v = 1, then {u, v} = 1 by the bilinearity. We consider the remaining cases:

• We already know that {i,−i} = 1 by the symbol properties. Therefore also {−i, i} =
{i,−i}−1 = 1.

• Again by the relations in 2.17 we have {i,−1} = {i, i}. But {i, i}{i, i} = {i,−1} = {i, i},
hence {i, i} = 1 = {i,−1} and also {−1, i} = 1.

• For the element {−1,−1} we now get {−1,−1} = {i2,−1} = {i,−1}{i,−1} = 1.

• Similarly as above we have that {−i,−1} = {−i,−i} and

{−i,−i}{−i,−i} = {−i,−1} = {−i,−i},

hence {−i,−i} = 1 and therefore also {−i,−1} = {−1,−i} = 1.

We aim to define a filtration of K2(Q(i)) indexed by the Gaussian primes. To start out, let
us list the finite places of Q(i) by increasing norm:

Pl0 = {v1, v2, . . . |Nm(πvn) ≤ Nm(πvn+1) ∀n}.

Definition 3.6. Let Pl0 be enumerated as above. For all n ≥ 1, let

Sn := {v1, v2, . . . , vn} ⊆ Pl0 .

Following the notation of Tate in [BT73], let KSn
2 Q(i) denote the following subgroup of K2Q(i):

KSn
2 Q(i) :=

〈
{α, β} ∈ K2Q(i) : α, β ∈ Z[i]×Sn

〉
,

where
Z[i]Sn = Z

[
i,

1

πv1
, . . . ,

1

πvn

]
is the ring of Gaussian Sn-integers.

The groups KSn
2 Q(i) then form a filtered system and thus we have K2Q(i) = lim−→n

KSn
2 Q(i).

Theorem 3.7. The global regular Hilbert symbol induces an isomorphism

K2(Q(i)) ∼=
⊕

v∈Plnc
Q(i)

k(v)× ∼=
⊕

p prime
p≡1 (mod 4)

(
F×p
)2 ⊕ ⊕

p prime
p≡3 (mod 4)

F×p2 .

Proof. We will use induction to show that for any n ≥ 1, the restriction of hreg to KSn
n Q(i)

yields an isomorphism KSn
n Q(i) ∼=

⊕n
j=1 k(vj)

×. To begin with we must show that KS1
2 Q(i) is

trivial. Note that S1 = {v1}, where v1 is the place above 2 ∈ Z, and that the Gaussian S1-units
consist of the torsion part µ4, and a free part generated by 1 + i.

Using bilinearity, Lemma 3.5 and the relation {x,−1} = {x, x}, we need only consider the
generating symbols {α, β} ∈ KS1

2 Q(i) where α, β = i, 1 + i. From the proof of Lemma 3.5 we
already know that {i, i} = 1, thus it remains to check the elements {1 + i, i}, {i, 1 + i} and
{1 + i, 1 + i}. But by the Steinberg relation we have

{−i, 1 + i} = 1.

Hence
1 = {−i, 1 + i} = {−1, 1 + i}{i, 1 + i},

and therefore
{1 + i, i} = {−1, 1 + i} = {1 + i, 1 + i}.
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But then {1 + i, i} = {i, 1 + i} and

{i, 1 + i} = {1 + i, i} = {−1, 1 + i} = {i, 1 + i}{i, 1 + i},

hence {i, 1 + i} = 1. In total we have

1 = {i, 1 + i} = {1 + i, i} = {1 + i, 1 + i},

so KS1
2 Q(i) is trivial—in other words KS1

2 Q(i) ∼= k(v1)×.

Lemma 3.8. For any n ≥ 1, the quotient group KSn+1

2 Q(i)/KSn
2 Q(i) is isomorphic to k(vn+1)×

Proof. Define a map
φ : k(vn+1)× −→ K

Sn+1

2 Q(i)/KSn
2 Q(i)

by
α 7−→ {α, π} (mod KSn

2 Q(i)),

where π := πvn+1 , and where we may assume Nm(α) ≤ Nm(π)/2 by Lemma 3.1. To show
that φ is a well defined homomorphism, assume αβ ≡ γ (mod π), say αβ = γ + δπ, where
|α|, |β|, |γ| ≤ |π|/

√
2. Then

|δπ| ≤ |αβ|+ |γ| ≤ |π|
2

2
+
|π|√

2
,

thus |δ| ≤ |π|/2 + 1/
√

2, which is less than |π| since Nm(π) > 2. Hence Nm(δ) < Nm(π), so
that δ ∈ k(vn+1)×. Now compute

1 =

{
γ

αβ
, 1− γ

αβ

}
=

{
γ

αβ
,
δπ

αβ

}
= {γ, δ}{γ, π}{αβ, γ}{δ, αβ}{π, αβ}{αβ, αβ}
≡ {γ, π}{π, αβ} (mod KSn

2 Q(i)),

where the last congruence holds since α, β, γ and δ all have norms bounded by Nm(π). Hence,
modulo KSn

2 Q(i) we have {αβ, π} = {γ, π}, which means that φ is multiplicative, and also well
defined by taking β = 1.

Furthermore we have that φ is surjective. Indeed, the group K
Sn+1

2 Q(i) is generated by
the elements of KSn

2 Q(i) in addition to the symbols {α, π} where α is a Gaussian Sn-unit
(remember that {π, π} = {−1, π}). This means that α ∈ k(vn+1)× and φ(α) = {α, π}, hence φ
is surjective and #(K

Sn+1

2 Q(i)/KSn
2 Q(i)) ≤ Nm(π)− 1.

Now let ζ denote a generator for the cyclic group k(vn+1)×. By Proposition 1.52 we then
have that

(ζ, π)reg
vn+1

= ζ ∈ k(vn+1)×.

But
(ζ, π)reg = hreg({ζ, π}),

hence {ζ, π} has order Nm(π)−1 inKSn+1

2 Q(i)/KSn
2 Q(i). Therefore the groupKSn+1

2 Q(i)/KSn
2 Q(i)

also has order at least Nm(π)−1. By the above inequality, its order must be exactly Nm(π)−1,
hence φ is an isomorphism.

To conclude the proof, let n ≥ 1 and assume by induction that KSn
2 Q(i) ∼=

⊕n
j=1 k(vj)

×

via hreg. We must show that hreg yields an isomorphism

K
Sn+1

2 Q(i) ∼=
n+1⊕
j=1

k(vj)
×.
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If an element x ∈ KSn+1

2 Q(i) maps to 1 under hreg, Lemma 3.8 states that x ∈ KSn
2 Q(i), and

so x = 1 by induction. Similarly, if u = (uj)
n+1
j=1 ∈

⊕n+1
j=1 k(vj)

×, we can find an element in
K
Sn+1

2 Q(i) mapping to un+1 by Lemma 3.8. By the induction hypothesis there is an element
in KSn

2 Q(i) mapping to (uj)
n
j=1, and so the product of these elements constitutes a suitable

preimage of u.

3.1.1 Connection with biquadratic reciprocity

Let us show how the structure of K2(Q(i)) is related to the law of biquadratic reciprocity. By
Theorem 3.7 there exist maps ψv : k(v)× → µ4 for all v - 2 such that the Hilbert symbol at the
place (1 + i) factors through

⊕
v-2 k(v)× via these maps:

Q(i)× ×Q(i)×
⊕
v-2

k(v)×

µ4

(−,−)reg

( −,−
(1 + i)

)
4

∏
ψv

In other words, for all x, y ∈ Q(i)× we have(
x, y

(1 + i)

)
4

=
∏
v-2

ψv((x, y)reg
v ).

Lemma 3.9. Let v be a finite place of Q(i) not lying above 2. If f is a map f : k(v)× → µ4,
then f satisfies

f(x) ≡ x
qv−1

4 δ (mod pv),

where δ ∈ {0, 1, 2, 3} and qv = Nm(pv).

Proof. Write q := qv. In the following, we abuse notation by identifying elements with their
image in k(v)×.

The map f is determined by where a generator of the cyclic group k(v)× is sent. If ζ denotes
a generator for k(v)×, then clearly ζ

q−1
4 equals i or −i, for if ζ

q−1
4 ∈ µ2 then ζ is a square or a

fourth power.
Assume first that f(ζ) = i. We consider two cases.

1. If ζ
q−1
4 = i, then f(x) = x

q−1
4 since their action on the generator coincide.

2. If ζ
q−1
4 = −i, then ζ3 qv−1

4 = i, hence f(x) = x3 q−1
4 .

Now if f(ζ) = iδ, where δ ∈ {0, 1, 2, 3}, then in case 1 above we have f(x) = x
q−1
4 δ for any

x ∈ k(v)×, and in case 2 we get

f(x) =
(
x
q−1
4

)3δ

= x
q−1
4 δ′

for δ′ ∈ {0, 1, 2, 3} with δ′ ≡ δ (mod 4).

Note that, by Proposition 1.52 and Observation 2.20,(
a, b

v

)
n

≡ ((a, b)reg
v )

qv−1
n (mod pv).

Thus, by applying the above lemma to the maps ψv above we get the relation of Hilbert symbols(
x, y

(1 + i)

)
4

=
∏
v-2

((x, y)reg
v )

qv−1
4 δv =

∏
v-2

(x, y
v

)δv
4
,
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Figure 3.2: Lattice spanned by unit multiples of an Eisenstein prime.

where δv ∈ {0, 1, 2, 3} for all v - 2. In other words, the structure of the group K2(Q(i)) gives
rise to a relation between Hilbert symbols of order 4. But Moore’s theorem says that there is
only one relation of Hilbert symbols, hence we must have δv = 1 for all v - 2. Since

(
x,y

(1+i)

)
4

takes values in {±1}, we have thus obtained the product formula for Hilbert symbols∏
v∈Plnc

Q(i)

(x, y
v

)
4

= 1,

which implies the biquadratic reciprocity law, as we have seen in Chapter 1.

3.2 The group K2(Q(
√
−3))

Now we turn to the case F = Q(
√
−3) = Q(ω), so that OF = Z[ω], the Eisenstein integers.

Here ω = ζ3 = (−1 +
√
−3)/2 is a primitive third root of unity. Again we consider the map

hreg : K2Q(ω) −→
⊕

v∈Plnc
Q(ω)

k(v)×

induced by the global regular Hilbert symbol.

Definition 3.10. Let Λ∞ denote the subgroup of K2Q(ω) generated by the elements {u, v}
for which u, v ∈ Z[ω]× = µ6 = {±1,±ω,±ω2}.

Lemma 3.11. We have Λ∞ = 1.

Proof. Note that, by using bilinearity and the relations for Steinberg symbols, any element
{u, v} for which u, v ∈ {−1,±ω,±ω2} is a product of the symbols {ω, ω}, {−1,−1}. We check
that these are trivial. Recall that ω−1 = ω2 and that 1 + ω + ω2 = 0 in the following.

• We have
{ω, ω2} = {ω, ω}{ω, ω},

but also
{ω, ω2} = {ω, ω−1} = {ω, ω}−1 = {ω, ω},

hence {ω, ω} = 1.

• Note that
1 = {−ω, 1 + ω} = {−1, 1 + ω}{ω, 1 + ω}
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by the Steinberg relation, hence

{1 + ω, 1 + ω} = {−1, 1 + ω} = {1 + ω, ω}.

Using that 1 + ω = −ω2, this yields

{1 + ω, ω} = {−1, ω}{ω2, ω} = {ω, ω}{ω, ω}2 = 1.

Hence we get

{−1,−1} = {ω(1 + ω), ω(1 + ω)}
= {ω, ω}{ω, 1 + ω}{1 + ω, ω}{1 + ω, 1 + ω}
= 1,

which concludes the proof.

As in Section 3.1 we now order the noncomplex places of Q(ω) by increasing norm,

Plnc
Q(ω) = Pl0 = {v1, v2, . . . |Nm(πvn) ≤ Nm(πvn+1

) ∀n},

and we let KSn
2 Q(ω) denote the subgroup of K2Q(ω) generated by elements {u, v} for u,

v ∈ Z[ω]×Sn . Here Sn denotes as usual the set Sn = {v1, . . . , vn} of the first n places of Q(ω) of
smallest norm.

By Proposition 1.26, Q(ω)/Q is ramified only at 3, hence the smallest value for Nmπv is 3.
Thus v1 is the place corresponding to the prime ideal (2 +ω), and by Proposition 1.27 we have
k(v1) ∼= F3.

Lemma 3.12. We have KS1
2 Q(ω) ∼= k(v1)× ∼= F×3 .

Proof. We claim that the element x := {−1, 2 + ω} = {2 + ω, 2 + ω} is the only nontrivial
element in KS1

2 Q(ω). Note that

x2 = {−1, 2 + ω}2 = {1, 2 + ω} = 1,

so this element has order 2. Computing the regular symbol at v1 yields

(−1, 2 + ω)reg
v1 ≡ −1 (mod pv1)

by Proposition 1.52. Since the regular symbol factors through K2Q(ω), it follows that x is
nontrivial.

To conclude we must show that the rest of the symbols in KS1
2 Q(ω) are trivial. Using

Lemma 3.11 along with bilinearity and antisymmetry, we see that it is enough to show that
{2 + ω, ω} = 1. To this end, note that since 2 + ω = 1− ω2, the Steinberg relation yields

{ω2, 2 + ω} = 1.

Using that ω = ω−2, we thus get

{2 + ω, ω} = {2 + ω, ω−2}
= {2 + ω, ω2}−1

= {ω2, 2 + ω} = 1.

Theorem 3.13. The global regular Hilbert symbol induces an isomorphism

K2(Q(ω)) ∼=
⊕

v∈Plnc
Q(ω)

k(v)× ∼= F×3 ⊕
⊕

p≡1 (mod 3)

(F×p )2 ⊕
⊕

p≡2 (mod 3)

F×p2 .
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Proof. We proceed in the same manner as in Theorem 3.7, i.e., we use induction to prove
that KSn

2 Q(ω) ∼=
⊕n

j=1 k(vj)
×. Lemma 3.12 furnishes the base case of the induction. For the

induction step, we will again show that the map

φ : k(vn+1)× −→ K
Sn+1

2 Q(ω)/KSn
2 Q(ω)

defined by
φ(α) := {α, π} (mod KSn

2 Q(ω))

is a well defined isomorphism, where π := πvn+1
. Here α is to vary between all Eisenstein

integers of norm bounded by Nm(π)/3. This assumption can be made thanks to the Euclidean
algorithm on Z[ω] and Table 1.1, just as in Lemma 3.1.

To show φ is a well defined homomorphism, we proceed as before: If αβ = γ + πδ with |α|,
|β|, |γ| ≤ |π|/

√
3, then

|πδ| ≤ |α||β|+ |γ| ≤ |π|
2

3
+
|π|√

3
,

hence
|δ| ≤ |π|

3
+

1√
3
< |π|.

An identical computation as the one done in the proof of Theorem 3.7 yields that φ is well
defined and multiplicative. The proof of the bijectivity also follows from the same argument as
we have seen.

3.3 Tame and wild kernels, exotic symbols

In Section 2.2 we defined regular—or tame—kernels as well as the wild kernel (see Defini-
tion 2.22). The wild kernel WK2(F ) was shown by Bass and Tate to always be finitely gener-
ated [Tat71]. Here F can be any field. A deep theorem of Garland established that in the case
when F is a number field, WK2(F ) is in fact finite [Gar71].

The tame and wild kernels encode deep arithmetic information about the number field F .
For example, as conjectured by Birch-Tate and proved by Mazur-Wiles-Kolyvagin, if F/Q is a
totally real abelian extension we have the expression [Gra03, II Remark 7.8.2]

#Rord
2 (F ) =

w2

2[K:Q]
|ζF (−1)|.

Here ζF is the Dedekind zeta-function of F , and w2 is the largest integer n such that Gal(F (µn)/F )
is killed by 2 [Wei13, p.516].

The computation in the previous sections is of course intimately linked with the study of
the groups Rord

2 (F ) and WK2(F ). Indeed, the above computations show that the regular
kernel Rord

2 (F ) is trivial in the case when F = Q(
√
−1) or F = Q(

√
−3). In other words,

K2(Z[i]) = 1 = K2(Z[ω]) by Remark 2.23.

Example 3.14. In the case of a quadratic number field Q(
√
d), it is quite easy to give examples

for which there is a nontrivial regular kernel. For example, let F be the field Q(
√
d) where

d < 0 is a squarefree integer such that d ≡ 1 (mod 8). By Proposition 1.10, 2 splits in the
extension F/Q. Now let v be a place of F above 2. The fact that d ≡ 1 (mod 8) means that d
has a square root in Q2 by Hensel’s lemma, hence Fv = Q2(

√
d) = Q2. Thus(

−1,−1

v

)
=

(
−1,−1

2

)
= −1

by Example 1.54. This means that the element {−1,−1} is nontrivial in K2(F ). But the
formula for tame symbols (Proposition 1.52) along with the fact that

µ(Fv)
reg = µ(Q2)reg = 1

shows that {−1,−1} ∈ Rord
2 (F ). On the other hand we clearly have {−1,−1} 6∈WK2(F ) since

h({−1,−1}) is nontrivial on the component µ(Fv) = µ(Q2) = µ2.
Among the imaginary quadratic fields, the first instance of a nontrivial regular kernel occurs

for Q(
√
−7).
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Tate shows in [BT73, p.435] that the field F := Q(
√
−35) has Rord

2 (F ) nontrivial, yet there
are no local Hilbert symbols showing this. This is an example of an imaginary quadratic field
on which there is a symbol that cannot be expressed in terms of Hilbert symbols. Equivalently,
such a symbol is nontrivial on the wild kernel. These symbols are called exotic. Thus the wild
kernel is in some sense a measure of how many exotic symbols one can have on a number field.

Example 3.15. In [Keu97], Keune shows that if d < 0 is a squarefree integer with d ≡
2 (mod 16), the element {−1,−1} ∈ K2(Q(

√
d)) lies in the wild kernel.

Example 3.16. Hutchinson shows in [Hut04] that the imaginary quadratic fieldsQ(
√
d), where

d ≡ 2 (mod 16) is negative and squarefree, possess exotic symbols. Specifically, he shows that
there is a Steinberg symbol λ defined on Q(

√
d) with values in µ8 such that λ({−1,−1}) = −1.
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CHAPTER 4

Motivic Homotopy Theory

Motivic-, orA1-homotopy theory is a homotopy theory for smooth schemes, developed by Morel
and Voevodsky [MV99]. Letting SmF denote the category of smooth schemes over a field F ,
the basic goal is to create suitably nice unstable and stable homotopy categories from SmF , in
which the affine line A1 := A1

F plays the role of the unit interval. Now the naive approach
toward such a construction would be simply to directly lift the definition of a homotopy in
topology by saying two morphisms

f, g : X −→ Y

in SmF are A1-homotopic if there is a morphism

H : X ×F A1 −→ Y

such that H|X×{0} = f and H|X×{1} = g. This approach is however unsatisfactory. Indeed, the
resulting relation of “A1-homotopy” is not an equivalence relation, as it fails to be transitive.
And even if we consider the equivalence relation generated by “A1-homotopy” there is no
reasonable way in general to put a group structure on the resulting set of A1-homotopy classes
of morphisms that we would like to call “A1-homotopy groups” [Mor04a, 2.2].

Instead of the above approach, one could try to invoke the machinery of model categories
in order to create the desired homotopy category. But then the lack of certain categorical
properties of SmF becomes apparent: For example, one of the first properties demanded of the
category in order to put a model structure on it is bicompleteness, i.e., all small limits and
colimits exist. This is not fulfilled by SmF since this category does not have all quotients. To
fix this problem, one first enlarges the category SmF by considering instead the category

Pre(SmF ) := [Smop
F ,Set]

of presheaves on SmF . Thus Pre(SmF ) is the category whose objects are functors Smop
F → Set,

and whose morphisms are natural transformations. Via the Yoneda embedding

X 7→ HomSmF
(−, X) : SmF → Pre(SmF )

we identify SmF with the full subcategory of Pre(SmF ) consisting of representable functors.
Moreover, the category Pre(SmF ) is bicomplete since Set is bicomplete. But in order to put
a model structure on a functor category it is convenient to have a model structure on the
target category. So we replace Set by the model category S := [∆op,Set] of simplicial sets (see
[Hov99, DLØ+07]). Thus we further embed Pre(SmF ) into the category

∆opPre(SmF ) := [∆op,Pre(SmF )] = [Smop
F ,S ] = [∆op × Smop

F ,Set]

of simplicial presheaves. The embedding Pre(SmF ) ↪→ ∆opPre(SmF ) is given by considering
a presheaf X as a constant simplicial presheaf [n] 7→ X. Note that the category of simplicial
sets also embeds in ∆opPre(SmF ) by considering a simplicial set as constant on SmF , i.e., for
K ∈ S , define

K([n], X) := Kn ∈ Set

for all X ∈ SmF .



4. Motivic Homotopy Theory

The category ∆opPre(SmF ) has all the desired properties one can ask for, and is therefore
called the category of motivic spaces, denoted by MS(F ). The category of motivic spaces is
then provided with a model structure which generalizes the naive point of view, yielding the
notion of A1-weak equivalences.

Notation 4.1. We will identify a scheme X ∈ SmF with its corresponding representable
presheaf HomSmF

(−, X) ∈ Pre(SmF ). For a smooth subscheme Y ↪→ X we write X/Y for the
pointed sheaf associated to the presheaf U 7→ Hom(U, Y )/Hom(U,X).

We will denote byMS•(F ) the category of pointed motivic spaces. The categoryMS(F )
embeds inMS•(F ) via X 7→ X+ := X q Spec(F ), where X+ is pointed by Spec(F ).

Below we will briefly discuss the model structure on MS•(F ) and the construction of the
motivic unstable and stable homotopy category H•(F ) and SH(F ). However, background
material on, e.g., model categories is left out, as this is not the main objective of this thesis.
The curious reader may consult [Hov99].

On the homological side we also mention below the theory of motives and motivic cohomol-
ogy; in particular we will discuss Voevodsky’s construction of the derived category of geometric
motives.

4.1 The motivic unstable and stable homotopy category

The model structure onMS(F ) is constructed to take into account the Nisnevich topology on
SmF . This topology is finer than the Zariski topology, but coarser than the étale topology,
and is precisely what is needed to prove, e.g., descent theorems for algebraic K-theory and the
homotopy purity theorem.

Definition 4.2. A map f : U → X of schemes is completely decomposed at x ∈ X if there is
u ∈ U such that f(u) = x and the induced map on residue fields k(x)→ k(u) is an isomorphism.

Definition 4.3. Let X ∈ SmF . A covering {fi : Ui → X}i∈I is called a Nisnevich covering if
I is finite, all the fi’s are étale and for all x ∈ X there is an i ∈ I such that fi is completely
decomposed at x.

The Nisnevich coverings provide a basis for a Grothendieck topology on SmF , called the
Nisnevich topology. The resulting Nisnevich site is denoted (SmF )Nis.

Definition 4.4. A cartesian square

U ×X V V

U X

p

i

is called an elementary distinguished square in the Nisnevich topology if i is an open embedding,
p is étale and p−1(X \ U)

p−→ X \ U is an isomorphism of reduced schemes.

Proposition 4.5 ([Sev06, Proposition 6.1.11]). Given an elementary distinguished square (i, p)

as in Definition 4.4 above, the set {U i−→ X,V
p−→ X} forms a Nisnevich covering of X.

Moreover, a presheaf F on the Nisnevich site (SmF )Nis is a sheaf if and only if F (∅) = ∗
and for all elementary distinguished squares (i, p), the diagram

F (X) F (V )

F (U) F (U ×X V )

F(p)

F(i)

is a pullback square in Set.

We let ShvNis(SmF ) denote the category of sheaves on the Nisnevich site (SmF )Nis.
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Definition 4.6. The projective objectwise model structure on MS•(F ) is defined as follows.
Weak equivalences and cofibrations are defined objectwise—i.e., X → Y is a weak equivalence
in MS•(F ) if and only if X (X) → Y (X) is a weak equivalence in S for all X ∈ SmF , and
similarly for cofibrations. Fibrations are the maps having the right lifting property with respect
to acyclic cofibrations.

Now let Q denote a Nisnevich elementary distinguished square as in Definition 4.4, and let
Qhp denote the homotopy pushout of U ← U ×X V → V . Form the class of morphisms

Shp
Nis := {Qhp → X}Q ∪ {∅→ h∅},

where Q ranges over all Nisnevich elementary distinguished squares. Here ∅ means the empty
simplicial set, while h∅ is the presheaf represented by the empty scheme. The set {∅→ h∅} is
included only for technical reasons.

Definition 4.7. The local projective model structure on MS•(F ) is the Shp
Nis-localization of

the projective model structure onMS•(F ).

The local projective model structure makesMS•(F ) into a proper model category [Sev06,
Theorem 6.2.7]. This model structure takes into account certain relations that is needed to
prove for example the purity theorem for Thom spaces. However, one can show that there is a
full embedding of SmF into the homotopy category ofMS•(F ) with the local projetive model
structure [Sev06, Proposition 6.2.4]. In other words, no schemes are identified in this homotopy
category. Therefore we need to localize once more if we want the affine line to be contractible.

Definition 4.8. The motivic projective model structure on MS•(F ) is the left Bousfield lo-
calization of the local projective model structure with respect to S := {X ×F A1 → X}X∈SmF

.
The resulting homotopy category is the unstable motivic homotopy category H•(F ).

There are two kinds of circles in H•(F ): Familiar from topology we have the simplicial
circle S1 := ∆1/∂∆1, which is pointed by ∆0. On the geometric side we have the Tate circle
Sα := A1 \ {0}, pointed by 1. We will often identify Sα with the group scheme Gm. There is a
smash product on H•(F ), defined pointwise, which allows us to talk about the mixed spheres

Sm+nα := (S1)∧m ∧ (Sα)∧n.

Example 4.9. By taking complex realization we obtain Sm+nα(C) = Sm+n, where Sk is the
usual topological sphere. If we consider the real realization we get Sm+nα(R) = Sm.

In Section 4.2 we will see that there is a canonical isomorphism S1+α ∼= P1 in H•(F ). We
let ΣP1 denote the P1-suspension functor X 7→ P1 ∧X. The process of stabilizing with respect
to P1-suspension results in the stable motivic homotopy category SH(F ), which we elaborate
on next.

Definition 4.10. A P1-spectrum X = (Xn)n≥0 is a sequence of pointed motivic spaces Xn ∈
MS•(F ) together with structure maps σ : ΣP1Xn → Xn+1 for all n. A map f : X → Y
of spectra is a sequence of maps fn : Xn → Yn compatible with the structure maps, i.e., the
diagram

ΣP1Xn Xn+1

ΣP1Yn Yn+1

σX

ΣP1fn fn+1

σY

commutes for each n ≥ 0. We let Spt(F ) denote the category of P1-spectra. There is an
embedding Σ∞P1 : MS•(F ) → Spt(F ), where Σ∞P1X is the spectrum with constituent spaces
(Σ∞P1X)n := ΣnP1X and identity structure maps.

Definition 4.11. The sphere spectrum is

1 := Σ∞P1 Spec(F )+ ∈ Spt(F ).

This spectrum is initial in the category of ring spectra.
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We do not intend to go into details of the construction of the stable model structure on
Spt(F ); this can be found in, e.g., [Jar00]. The rough idea is however as follows. A map
f : X → Y of spectra is called a levelwise weak equivalence (resp. (co)fibration) if the component
maps fn : Xn → Yn are weak equivalences (resp. (co)fibrations) for all n. Thus the category
Spt(F ) inherits a model structure fromMS•(F ). The projective model structure on Spt(F ) is
defined by these levelwise fibrations and cofibrations. From this model structure one defines
a certain localizing set S of morphisms in Spt(F ), and weak equivalences are defined as the
S-local weak equivalences. The resulting model structure is the stable model structure. The
homotopy category of Spt(F ) with the stable model structure is the motivic stable homotopy
category SH(F ).

Theorem 4.12 ([Voe98]). We list a few properties of the category SH(F ).

• SH(F ) is a triangulated category, with simplicial suspension Σs := −∧S1 as shift functor.

• There are realization functors

SH

SH(F )

SHZ/2

ReC

F⊆C

ReR

F⊆R

Here SH denotes the topological stable homotopy category, and SHZ/2 is the Z/2-equivariant
stable homotopy category. The realization of the motivic sphere spectrum is the topological
sphere spectrum.

• SH(F ) satisfies Grothendieck’s six functor formalism [CD12].

In the category SH(F ) we can define stable motivic homotopy groups:

Definition 4.13. Let m,n ∈ Z and X ∈ Spt(F ). We write πm+nα(X) for the sheaf associated
to the presheaf of stable homotopy groups

U 7−→ colim
k

HomSH(F )(S
(m+k)+(n+k)α ∧ Σ∞P1U+, X)

where U ∈ SmF . The bigraded stable homotopy groups of X is πm+nα(X) := πm+nα(X)(SpecF ).

There is a description of the stable weak equivalences in the stable model structure on
Spt(F ) that is more in line with classical topology:

Theorem 4.14 ([Jar00, Lemma 3.7]). A map f : X → Y in Spt(F ) is a stable weak equivalence
if and only if f induces an isomorphism of presheaves πn+mαX → πn+mαY for all m,n ∈ Z.

Notation 4.15. The notation πp,q and Sp,q for the motivic homotopy groups and mixed spheres
is also often used in the literature. To transition between the two, use Sp,q = S(p−q)+qα.

We will use a star ? to denote bigrading, i.e., all indices (m,n) ∈ Z2, and an asterisk ∗ will
denote monograding (e.g., compare π? and π∗α).

The most fundamental objects in stable motivic homotopy theory are perhaps the homotopy
groups πm+nα1 of the sphere spectrum. Very few of these groups are known; indeed, since the
realization of 1 is the topological sphere spectrum, the groups πm+nα1 are at least as hard to
compute as the topological stable stems.

Morel’s A1-connectivity theorem [Mor05] shows that πm+nα1 = 0 whenever m < 0, and
in [Mor04a] the homotopy groups are computed for m = 0 (see Chapter 5, Theorem 5.1).
Chapter 5 is essentially devoted to the study of these groups for m = 0, which Morel identifies
as the Milnor-Witt K-theory of F (see Definition 5.6 in Chapter 5 for the definition). In
Chapter 5 we will see a few computations of the Milnor-Witt K-theory of different fields—in
other words, we compute πnα1 for different base fields F .

The groups π1+nα1 have recently been computed in [RSØ16], but the situation for higher
values of m is in general unknown to this date.
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4.2 Motivic spheres

In this section we list a few useful isomorphisms in H•(F ) [Voe98, Lemma 4.1].

Proposition 4.16. The Tate object T := A1/(A1 \ {0}) is weakly equivalent to the sphere
S1+α.

Proof. The homotopy colimit of the diagram ∗ ← A1 \{0} → ∗ equals the simplicial suspension
of A1 \ {0} [Str11, p.153]; identifying A1 \ {0} with Gm, this yields

hocolim(∗ ←− A1 \ {0} −→ ∗) = Σs(A
1 \ {0}) = S1 ∧Gm = S1+α.

On the other hand, the following diagram is a pushout by definition:

A1 \ {0} A1

∗ A1/(A1 \ {0}).

p

Since the upper arrow in the diagram above is a cofibration and all X ∈ SmF are A1-local
fibrant [Sev06, Lemma 6.2.16], the colimit of the above diagram coincides with the homotopy
colimit [Lur09, Proposition A.2.4.4]. Since A1 ' ∗ this yields A1/(A1 \ {0}) ' S1+α.

Proposition 4.17. In the pointed motivic homotopy category H•(F ) we have a canonical iso-
morphism

A1/(A1 \ {0}) ∼= P1,

and more generally,
An/(An \ {0}) ∼= Pn/Pn−1

for any n ≥ 1.

Proof. We prove the assertion for n = 1 by computing the homotopy pushout of

∗ ←− A1/(A1 \ {0}) −→ ∗

in a third way. Consider the diagram

A1 \ {0} A1

A1 P1

p

where the cofibrations are given by x 7→ x and x 7→ x−1. By gluing we obtain P1 as the pushout
of this diagram, hence by the results above we obtain the following isomorphisms of homotopy
pushouts:

P1 ∼= A1/(A1 \ {0}) ∼= S1+α.

Proposition 4.18 ([DI05, Example 2.11]). In H•(F ), we have a canonical isomorphism

An \ {0} ∼= S(n−1)+nα

for any n ≥ 1.
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4. Motivic Homotopy Theory

Proof (following [DI05]). We use induction on n. For n = 1 this follows by definition: A1\{0} =
Gm = Sα. For n = 2, we use the open covering A2 \ {0} = U ∪ V , where

U := (A1 \ {0})×A1,

V := A1 × (A1 \ {0}).

Then U∩V = (A1\{0})×(A1\{0}), andA2\{0} is the homotopy pushout of U ← U∩V → V in
the category of presheaves. Using that the projections from (A1 \{0})×A1 and A1×(A1 \{0})
onto A1 \ {0} are weak equivalences, we get the diagram

(A1 \ {0})× (A1 \ {0}) (A1 \ {0})×A1 A1 \ {0}

A1 × (A1 \ {0}) A2 \ {0}

A1 \ {0} P

p

∼

∼ ∼

where P is the pushout of the outer diagram

A1 \ {0} ←− (A1 \ {0})× (A1 \ {0}) −→ A1 \ {0}.

Since the arrows in the upper left square are cofibrations andMS•(F ) is a left proper model
category we have A2 \ {0} ' P , so we proceed to compute the pushout P instead. Consider
the diagram

∗ ∗ ∗

A1 \ {0} (A1 \ {0}) ∨ (A1 \ {0}) A1 \ {0}

A1 \ {0} (A1 \ {0})× (A1 \ {0}) A1 \ {0}

where the middle and lower horizontal maps are the projections onto the factors. The homotopy
colimits of the rows in this diagram are respectively ∗, ∗ and P , going from the top row to the
bottom row. We thus obtain the diagram ∗ ← ∗ → P , whose homotopy pushout is P . Here we
have used that

hocolim(X X ∨ Y Y ) = ∗.pr1 pr2

On the other hand, if we identify A1 \ {0} = Gm and compute the homotopy pushouts of the
columns, we obtain the diagram

∗ Gm ∧Gm ∗

whose homotopy pushout is Σs(Gm∧Gm) = S1+2α. This yields P = S1+2α, as we must obtain
the same homotopy type no matter which direction we start computing the homotopy pushouts.

For n > 2, one proceeds in the same manner as above: Cover An by open sets

U = (An−1 \ {0})×A1

V = A1 × (An−1 \ {0})

and perform a similar computation as above to obtain

An \ {0} ' Σs((A
n−1 \ {0}) ∧ (A1 \ {0})),

from which the result follows by induction.
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4.3 The algebraic K-theory spectrum

We will concern ourselves with the motivic P1-spectrum KGL representing algebraic K-theory.
Voevodsky defines this spectrum in [Voe98]; we start out by briefly recalling this construction.

For any N ≥ n, consider the Grassmannian Grn(AN ). There are canonical inclusions
Grn(AN ) ↪→ Grn(AN+1); let BGLn denote the union

BGLn := colim
m

Grn(An+m).

Furthermore, there are canonical inclusions

Grn(AN ) Grn+1(AN+1)

given by sending a linear subspace L of AN to L⊕ {0} ⊆ AN+1. Hence we can define

BGL := colim
n

BGLn = colim
n

colim
m

Grn(An+m).

The constituent spaces of the spectrum KGL will be the spaces KGL, where KGL is the fibrant
replacement of

Z× BGL :=
∐
Z

BGL .

The reason for taking a fibrant replacement lies in the definition of the structure maps P1 ∧
KGL→ KGL of KGL, which again relies on the isomorphism

HomH•(F )(P
1 ∧ (Z× BGL),Z× BGL) ∼= HomH•(F )(Z× BGL,Z× BGL)

of [Voe98, p.600]. Let
e : P1 ∧ (Z× BGL) −→ Z× BGL

be the map corresponding to the identity morphism of Z×BGL under the above isomorphism.
Since KGL is fibrant, e lifts to a map

e : P1 ∧KGL −→ KGL

in Spc•(F ).

Definition 4.19. The algebraic K-theory spectrum KGL has constituent spaces KGLn = KGL
and structure maps given by e : P1 ∧KGL→ KGL.

The spectrum KGL represents algebraic K-theory:

Theorem 4.20 ([Voe98, Theorem 6.9]). For any X ∈ SmF there are canonical isomorphisms

Km−n(X) ∼= HomSH(F )(S
m+nα ∧X+,KGL).

In particular, for X = SpecF we have Km−n(F ) ∼= πm+nαKGL.

In [PPR09], it is shown that this spectrum is essentially unique, and a product

µKGL : KGL ∧ KGL −→ KGL

is constructed, providing KGL with the structure of a ring spectrum [PPR09, Theorem 2.2.1].
This product is the unique map in HomSH(F )(KGL ∧ KGL,KGL) making the following diagram
commutative:

K0(X)×K0(X) K0(X)

πm(1+α)KGL(X)× πn(1+α)KGL(X) π(m+n)(1+α)KGL(X)

⊗

∼= ∼=

µKGL
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4.4 Motives

Voevodsky’s construction of the derived category of motives—which predates the birth of mo-
tivic homotopy theory—allows for a definition of the long sought motivic cohomology theory.
Originally it was Grothendieck and his collaborators who speculated upon the existence of such
a universal cohomology theory. This section is therefore meant as a short “history lesson”,
although we conclude with a discussion on the connection between motivic cohomology-, and
homotopy theory. In particular, we mention the “Hurewicz functor” H : H•(F ) → DMeff

− (F ),
relating homotopy on one side with homology on the other. We will also see in Theorem 4.30
that familiar objects like Milnor K-theory are found among the motivic cohomology groups.

The notion of a motive was introduced by Grothendieck in 1964 [Mil14]. The basic idea was
that motives should define a category through which all Weil cohomology theories should factor.
Grothendieck called the objects of this hypothetical category pure motives. Until now, the so-
called mixed motives have been defined. However, the existence of pure motives is equivalent
to the standard conjecture on algebraic cycles—a problem which is still unsolved.

Below we briefly illustrate the construction of Voevodsky’s derived categories of motives
DMgm(F ) and DMeff

− (F ). Roughly speaking, we start out with SmF , i.e., smooth schemes
over F , but we want this category to be Ab-enriched. So SmF is replaced with the category
CorF of finite correspondences, the definition of which relies on Suslin-Voevodsky’s theory of
relative cycles. Through a process of localization and idempotent completion we arrive at
the so-called category of effective geometric motives DMeff

gm(F ). Analogously to the situation
in stable homotopy theory, the category DMgm(F ) of geometric motives is then a stabilized
version of DMeff

gm(F ) [CD12].

Definition 4.21. Let S be a regular scheme and let X ∈ SchS be an S-scheme. Let Z(X)
denote the free abelian group on the prime cycles of X (see [Ful98]). The group Cequi(X/S, 0)
of relative cycles of dimension 0 is the subgroup of Z(X) generated by the points x ∈ X such
that {x} → S is finite and surjective (where {x} is given the reduced scheme structure).

The groups of relative cycles will form the Hom-sets in the category CorF :

Definition 4.22. Let X,Y ∈ SmF . The group of finite correspondences from X to Y is

CorF (X,Y ) := Cequi(X ×F Y/X, 0).

A generator in Cequi(X × Y/X, 0) is called an elementary correspondence from X to Y .

We can compose correspondences: The composition of two elementary correspondences
V ∈ CorF (X,Y ), W ∈ CorF (Y,Z) is defined as the pushforward along the projection

p : X × Y × Z → X × Z

of the intersection product [T ] := (V × Z) · (X ×W ); see [MVW06, p.4].

Definition 4.23. Let CorF be the category whose objects are the objects of SmF , and whose
morphisms are correspondences: HomCorF (X,Y ) := Cequi(X × Y/X, 0).

Definition 4.24. Let
PST(F ) := [Corop

F ,Ab]

denote category of presheaves with transfers. For X a smooth F -scheme we let Ztr(X) denote
the representable presheaf with transfers Ztr(X) := HomCorF (−, X).

Defining X ⊕ Y := X q Y , it follows that CorF is an additive category with the empty
scheme as zero-object. The category CorF is also symmetric monoidal—see [MVW06, p.6] for
the definition of the tensor product ⊗tr on CorF . The homotopy categoryKb(CorF ) of bounded
chain complexes on CorF then becomes a tensor-triangulated category. We aim to localize the
category Kb(CorF ) with respect to a certain subcategory:

Definition 4.25. Let B be the localizing subcategory of Kb(CorF ) generated by:
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Homotopy invariance: For all X ∈ SmF , [X ×A1]→ [X] is in B.

Mayer-Vietoris: For each Zariski open covering X = U ∪ V of X, the map

[U ∩ V ] −→ [U ]⊕ [V ] −→ [X]

is in B.

We then define the category D̂M
eff

gm(F ) as the localization of Kb(CorF ) with respect to B:

D̂M
eff

gm(F ) := Kb(CorF )/B.

Finally, the category of effective geometric motives DMeff
gm(F ) is the idempotent completion (see

[Wei13, p.143]) of D̂M
eff

gm(F ).

We have a functor Mgm : SmF → DMeff
gm(F ) defined by the composition

SmF −→ CorF −→ Kb(CorF ) −→ D̂M
eff

gm(F ) −→ DMeff
gm(F ).

Here Kb(CorF ) → D̂M
eff

gm(F ) is the localization functor, and D̂M
eff

gm(F ) → DMeff
gm(F ) is the

full embedding into the idempotent completion, defined by X 7→ (X, idX). For X ∈ SmF , we
call Mgm(X) the effective geometric motive of X. The functor Mgm is monoidal, satisfying
Mgm(X ×Y ) = Mgm(X)⊗Mgm(Y ). We write Z := Mgm(SpecF ), as this object is the unit for
the tensor product on DMeff

gm(F ).
The reduced effective geometric motive M̃gm(X) of X ∈ SmF is defined by the distinguished

triangle
M̃gm(X) −→Mgm(X) −→ Z −→ M̃gm(X)[1].

Definition 4.26. The Lefschetz motive is

Z(1) := M̃gm(P1)[−2].

More generally, Z(n) := Z(1)⊗n for any n ≥ 0. Moreover, for any effective geometric motive
M in DMeff

gm(F ) we define its twist by n as M (n) := M ⊗ Z(n).

To construct the category DMgm(F ) of geometric motives we invert the Lefschetz motive:

Definition 4.27. The category of geometric motives DMgm(F ) is defined as having as its
objects pairs (M ,m), where M ∈ DMeff

gm(F ) is an effective geometric motive and m ∈ Z is an
integer. The morphisms are defined as

DMgm(F )((M ,m), (N , n)) := colim
k≥−m,−n

DMeff
gm(F )(M (k +m),N (k + n)).

In the category DMgm(F ), tensor product with the Lefschetz motive Z(1) is invertible. The
process of inverting an object of DMeff

gm(F ) to obtain the category DMgm(F ) is an analog of
the Spanier-Whitehead construction in topology. In fact, one can carry out this process in any
symmetric monoidal category [Voe98, p.588].

The Hom-groups in DMeff
gm(F ) are of great interest. In fact, they are one possible definition

of motivic cohomology:

Definition 4.28. For X ∈ SmF , let

Hp,q(X,Z) := DMeff
gm(F )(Mgm(X),Z(q)[p])

be the motivic cohomology of X with coefficients in Z. The index p is called the cohomological
degree, and q is called the weight.
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Example 4.29. Suppose X ∈ SmF is a connected scheme. By [MVW06, Lecture 4] there is a
quasi-isomorphism of motivic complexes Z(1)

∼−→ O×X [−1], where O×X is the sheaf of units in the
structure sheaf on X. This theorem can be used to describe some motivic cohomology groups
in weight one. The result is:

Hp,q(X,Z) =


0, q ≤ 1, (p, q) 6= (0, 0), (1, 1), (2, 1)

Z, (p, q) = (0, 0)

O×X(X), (p, q) = (1, 1)

Pic(X), (p, q) = (2, 1).

Milnor K-theory is also found along the diagonal motivic cohomology groups:

Theorem 4.30 ([MVW06, Theorem 5.1]). For any integer n ≥ 0 there is a natural isomorphism
Hn,n(SpecF,Z) ∼= KM

n (F ).

The effective geometric motives can be realized as a thick subcategory of the category of
effective motives:

Definition 4.31 ([MVW06, p.109]). Let DMeff
− (F ) denote the localization

DMeff
− (F ) := D−(ShvNis(CorF ))/A ,

where A is the localizing subcategory generated by complexes

Ztr(X ×A1)
Ztr(p)−−−−→ Ztr(X)

for any X ∈ SmF with p : X ×A1 → X being the canonical projection.

Theorem 4.32 (The embedding theorem [MVW06, p.110]). The category DMeff
gm(F ) embeds

as a full subcategory of DMeff
− (F ).

Theorem 4.33 ([MVW06, pp.110-111]). We list a few properties of the category DMeff
− (F ).

• (Mayer-Vietoris) Given a Zariski open covering X = U ∪ V of X ∈ SmF , there is a
Mayer-Vietoris distinguished triangle

Mgm(U ∩ V ) −→Mgm(U)⊕Mgm(V ) −→Mgm(X) −→Mgm(U ∩ V )[1]

in DMeff
− (F ).

• If E → X is a vector bundle, then the induced map Mgm(E ) → Mgm(X) is an isomor-
phism.

• (Projective bundle formula) Let E → X be a vector bundle of rank d + 1, giving rise to
the projective bundle p : P(E )→ X. The map p induces an isomorphism

d⊕
n=0

Mgm(X)(n)[2n]
∼=−→Mgm(P(E )).

• (Blowup triangle) If Z is a smooth closed subscheme of X ∈ SmF , let p : BlZ(X) → X
denote the blowup morphism. Then there is a distinguished triangle

Mgm(p−1(Z)) −→Mgm(Z)⊕Mgm(BlZ(X)) −→Mgm(X) −→Mgm(p−1(Z))[1]

in DMeff
− (F ).
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4.5 Overview

The following diagram is meant as a short overview of all the categories constructed above and
how they relate.

SmF MS(F ) H(F )

MS•(F ) H•(F ) Spt(F ) SH(F )

CorF Kb(CorF ) DMeff
gm(F ) DMeff

− (F )

Mgm

+ +

Σ∞
P1

H

i

Here i : DMeff
gm(F ) → DMeff

− (F ) is the full embedding from Theorem 4.32, and the “Hurewicz
functor” H : H•(F ) → DMeff

− (F ) is defined as follows. By Nisnevich sheafification we obtain
a functor MS•(F ) → D−(ShvNis(CorF )). This functor sends X × A1 → X to Ztr(X ×
A1) → Ztr(X), hence A1-weak equivalences of spaces are mapped to A1-weak equivalences of
complexes. It follows that this functor preserves localization, i.e., it induces the functor H. By
[Wei04, Lemma 2], H extends to a functor SH(F )→ DMeff

− (F ). We refer the reader to [Wei04]
for further details.
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CHAPTER 5

Symbols in Motivic Homotopy Theory

In Chapter 1 and Chapter 3 we have seen the importance of Steinberg symbols in number
theory. The aim of this chapter is to illustrate how elements in certain motivic homotopy
groups give rise to Steinberg symbols as well as Witt classes. These homotopy groups may
perhaps be thought of as more fundamental, since the relations of both Milnor K-theory and
Witt theory can be described by operations in stable motivic homotopy theory.

5.1 The Steinberg relation

Let a denote a rational point a : Spec(F )→ Gm of Gm. Then a induces a map of sheaves

[a] : S0 −→ Gm

by sending the nonbase point to a ∈ Gm(F ) and preserving the base point, and hence defines
an element [a] ∈ π−α1. If b is another rational point of Gm, then the smash product yields a
map

[a] · [b] ∈ HomSH(F )(S
0,Gm ∧Gm),

that is, [a] · [b] ∈ π−2α1. In [HK01], Hu and Kriz show that these elements satisfy the Steinberg
relation, i.e.,

[a] · [1− a] = 0 ∈ π−2α1.

Based on this result, Morel gives in [Mor04a, Ch.6] a full description of the homotopy groups
π∗α1 in terms of the graded Milnor-Witt ring KMW

∗ (F ) (defined in Section 5.3):

Theorem 5.1 ([Mor04a, p.40]). If F is a perfect field of characteristic not 2, then for each
n ∈ Z there is an isomorphism

πnα1 KMW
−n (F ).

∼=

Observe that this isomorphism switches degrees.

In addition to the elements [u] ∈ π?1, the following maps are of great interest in stable
motivic homotopy theory:

• By performing the Hopf construction [DI13] on the multiplication map Gm×Gm → Gm

one obtains a morphism

η : A2 \ {0} = S1+2α −→ S1+α = P1

given by A2 \ {0} 3 (x, y) 7→ (x : y) ∈ P1. This map represents an element η ∈ πα1; it
is the motivic analog of the Hopf fibration ηtop : S3 → S2 in topology. Indeed, we obtain
ηtop from η by taking complex realization:

ηtop : S1+2α(C) = S3 → S1+α(C) = S2.

In Section 5.3 we will mention that multiplication with the image of η in Milnor-Witt
K-theory is an isomorphism. It follows that η is not nilpotent. This is a major difference
from the situation in topology, where η4

top = 0.
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Gm ×Gm

y = 1− x
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Gm ∧Gm
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Figure 5.1: Suggested picture of the real points of Gm×Gm—where Gm is pointed by 1—and
of Gm∧Gm = (Gm×Gm)/(Gm∨Gm). The thick line is the graph of the Steinberg morphism
A1 \ {0, 1} → Gm × Gm, a 7→ (a, 1 − a). To the right we see that the image of this graph
becomes connected in Gm∧Gm, suggesting that the Steinberg morphism should extend to A1.

• The twist morphism
ε : Gm ∧Gm −→ Gm ∧Gm

defines a degree-zero element ε ∈ π01. Morel has shown that the elements η and ε satisfy
the relation

εη = η,

and that the graded ring π∗α1 is graded ε-commutative [Mor04a].

• For u ∈ F× we let 〈u〉 denote the degree-zero element

〈u〉 := 1 + η[u] ∈ π01.

Then ε is given by multiplication by −〈−1〉 [Mor04a].

We will revisit all the elements considered above when we discuss Milnor-Witt K-theory in
Section 5.3, although in a purely algebraic setting. But first we start out by explaining Hu and
Kriz’ proof [HK01] of the Steinberg relation in motivic homotopy theory.

The idea is to show that, after a single simplicial suspension (i.e., smashing with the sim-
plicial circle S1), the “Steinberg morphism”

a 7−→ (a, 1− a) : A1 \ {0, 1} −→ Gm ×Gm (5.1)

becomes nullhomotopic when Gm ×Gm is replaced by Gm ∧Gm. In other words, we want to
show that the composition

A1 \ {0, 1} −→ Gm ×Gm −→ Gm ∧Gm

extends to A1 after simplicial suspension (see Figure 5.1).
To begin with, we need a lemma on Zariski excision. Let X ∈ SmF be a scheme and

X = U ∪ V a Zariski open covering of X. Thus, in the category of motivic spaces there is a
pushout square

U ∩ V U

V X

Given such a covering of X, we have an analog in the motivic setting to excision in topology:
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5.1. The Steinberg relation

Lemma 5.2 (Zariski excision [MP02]). Let X = U ∪V be a Zariski open covering of X ∈ SmF .
Then we have the following isomorphisms in the category H•(F ):

1. U/(U ∩ V ) ∼= X/V ;

2. (X/U) ∨ (X/V ) ∼= X/(U ∩ V ).

Proof. In the category of motivic spaces we have the diagram

U ∩ V U

V X

∗ X/V

p

p

in which the two small squares are pushouts, hence X/V is the pushout of the large rectangle.
But the pushout of the rectangle is U/(U ∩ V ) by definition, hence X/V ' U/(U ∩ V ).

For the second claim, we make use of the first result along with the following pushout
diagram:

∗ U/(U ∩ V )

V/(U ∩ V ) X/(U ∩ V )

This yields an isomorphism

U

U ∩ V
∨ V

U ∩ V
X

U ∩ V
.∼

By 1 we have U/(U ∩ V ) ' X/V and V/(U ∩ V ) ' X/U , hence the result follows.

Now consider the space

X1 := (Gm ×Gm) q
Gm×{1}

(A1 × {1}).

That is, X1 is the pushout of Gm ×Gm and A1 × {1} along Gm × {1}, with attaching maps
the inclusions. For simplicity, we will in the following write V := [y − 1 = xz, y 6= 0] for the
affine scheme

V := Spec
(
F [x, y, y−1, z]/(y − 1− xz)

)
.

Let φ be the natural map

φ : X1 −→ V,

(a, b) 7−→
(
a, b,

b− 1

a

)
.

Lemma 5.3 ([HK01, Lemma 2]). The simplicial suspension Σsφ is a weak equivalence in
MS•(F ).

Proof. We consider the diagram

(Gm ×Gm) q
Gm×{1}

(A1 × {1}) [y − 1 = xz, y 6= 0]

(Gm ×A1) q
Gm×{1}

(A1 × {1}) [y − 1 = xz]

C D

φ

ψ
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5. Symbols in Motivic Homotopy Theory

i.e., diagram (5) in the article [HK01]. Here the two vertical columns are cofiber sequences,
where

C :=

(Gm ×A1) q
Gm×{1}

(A1 × {1})

(Gm ×Gm) q
Gm×{1}

(A1 × {1})
;

D :=
[y − 1 = xz]

[y − 1 = xz, y 6= 0]
.

Here the middle horizontal map is defined similarly as φ, and ψ is the induced map on cofibers.
Now we claim that both ψ and the middle horizontal map are equivalences. If so, the

statement follows, because we then have a diagram of the form

X1 X ′1 C ΣsX1 ΣsX
′
1 ΣsC

V V ′ D ΣsV ΣsV
′ ΣsD

φ ∼ ψ ∼ Σsφ ∼ ∼

hence the 5-lemma for triangulated categories [Wei94, Exercise 10.2.2] implies that Σsφ is an
equivalence.

To prove the claim, we start out by showing that both sides of the middle horizontal map
are A1-contractible. For the space to the right, note that the assignment

F [x, y, z] −→ F [s, t],

x 7−→ s;

y 7−→ 1 + st;

z 7−→ t

identifies
F [x, y, z]/(y − 1− xz) ∼= F [s, t],

hence
[y − 1 = xz] = Spec(F [x, y, z]/(y − 1− xz)) ∼= A2,

which is contractible in the motivic homotopy category. Turning the the space on the left, we
use again that A1 is contractible to obtain:

hocolim(Gm ×A1 ←− Gm × {1} −→ A1 × {1}) = hocolim(Gm ←− Gm −→ ∗) = ∗.

Thus (Gm×A1)qGm×{1}(A
1×{1}) ' ∗, and hence the middle horizontal map is an equivalence.

The next step is to show that ψ is an equivalence. In fact, we show that ψ is an isomorphism
of sheaves. Note that, by Zariski excision (Lemma 5.2) we have

D ∼=
[y − 1 = xz, y 6= 1]

[y − 1 = xz, y 6= 0, y 6= 1]

We claim that the right hand side is isomorphic to

C ′ :=
Gm × (A1 \ {1})
Gm × (A1 \ {0, 1})

.

Indeed,

Gm × (A1 \ {1}) ∼= Spec(F [t, t−1]⊗F F [s, (s− 1)−1])

∼= Spec(F [t, t−1, s, (s− 1)−1])

∼= Spec(F [u, u−1, v, v−1]),
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5.1. The Steinberg relation

where the last isomorphism is induced by the map F [u, v] → F [s, t] sending u to s and v to
s− 1. Furthermore, we have

[y − 1 = xz, y 6= 1] = Spec(F [x, y, z, (y − 1)−1]/(y − 1− xz))
∼= Spec(F [x, y, (xy)−1])

= Spec(F [x, y, x−1, y−1]),

so that Gm × (A1 \ {1}) ∼= [y − 1 = xz, y 6= 1], hence D ∼= C ′.
Now consider the diagram

Gm × {1} A1 × {1}

Gm × (A1 \ {0, 1}) Gm × (A1 \ {0}) (Gm × (A1 \ {0})) q
Gm×{1}

(A1 × {1}) ∗

Gm × (A1 \ {1}) Gm ×A1 (Gm ×A1) q
Gm×{1}

(A1 × {1}) C

p
(2)

p
(1)

p
(3) p

(4)

The square (1) is a pushout because the spaces Gm× (A1 \ {0}) and Gm× (A1 \ {1}) form an
open cover of Gm ×A1, with intersection Gm × (A1 \ {0, 1}). The square (2) is a pushout by
definition, and the space in the lower right corner of (3) is the pushout of the large rectangle
made by (2) and (3), which must coincide with the pushout of (3). Finally, note that C ′ is the
pushout of the large rectangle consisting of (1), (3) and (4). Since this pushout must coincide
with the pushout of (4), we have C ∼= C ′, thus C ∼= D.

Consider the composition

A1 \ {0, 1} Gm ×Gm X1 V,
φ

where the first map is the Steinberg morphism 5.1 and the second map is the induced map on
the pushout. This composition maps a ∈ A1 \ {0, 1} to (a, 1 − a,−1) ∈ V , and extends to a
map

A1 \ {1} −→ V

by letting a 7→ (a, 1− a,−1).
Symmetrically, define

X2 := (Gm ×Gm) q
{1}×Gm

({1} ×A1),

W := [x− 1 = yz, x 6= 0]

and a map

φ′ : X2 −→W,

(a, b) 7−→
(
a, b,

a− 1

b

)
.

Similarly as above, 5.1 extends to a map

A1 \ {0} −→W

a 7−→ (a, 1− a,−1).

Hence 5.1 also extends to a map

A1 −→ V q
Gm×Gm

W,

where V qGm×Gm
W means the pushout of V φ←− Gm ×Gm

φ′−→W .
By a similar argument as the one given in Lemma 5.3, Σsφ

′ is an equivalence.
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5. Symbols in Motivic Homotopy Theory

Theorem 5.4. The maps φ and φ′ induce an equivalence

Σs(Gm ∧Gm) ' Σs

(
V q

Gm×Gm

W

)
.

Hence, after simplicial suspension, the Steinberg morphism 5.1 extends to

ΣsA
1 −→ Σs(Gm ∧Gm).

Proof. First note that the colimit of the diagram

Gm × {1} ∗

{1} ×Gm Gm ×Gm

∗

is (Gm ×Gm)/(Gm ∨Gm) = Gm ∧Gm. Now consider the diagram

Gm × {1} A1 × {1}

{1} ×Gm Gm ×Gm X1

{1} ×A1 X2 P

p

p p

where P is the pushout of the lower right square. This diagram is an extended version of (11)
in [HK01]. Since the arrows in the upper left half-square are cofibrations, P coincides with the
homotopy colimit of the diagram

Gm × {1} A1 × {1}

{1} ×Gm Gm ×Gm

{1} ×A1

which is Gm ∧Gm by the discussion above since A1 ' ∗.
Finally, note that φ and φ′ induce maps from P = Gm ∧Gm to V qGm×Gm

W . Since Σsφ
and Σsφ

′ are equivalences, the induced map on pushouts yields an equivalence

Σs(Gm ∧Gm) ' Σs

(
V q

Gm×Gm

W

)
,

as desired.

5.2 On the ring spectrum map 1→ KGL

Since the sphere spectrum 1 is initial in the category of ring spectra, there is a unique map
from 1 to the algebraic K-theory spectrum KGL. This morphism induces a ring map

u : π?1 −→ π?KGL.
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5.3. The Milnor-Witt ring

The unit map 1→ KGL corresponds to a choice of generator for K0(F ) ∼= Z; indeed, we have

HomSH(F )(1,KGL) = π0KGL(F )
∼= K0(F )
∼= Z{[F ]}

by Chapter 2, Example 2.2. By composing with the unit map 1→ KGL we obtain morphisms

π∗α1 −→ π∗αKGL.

Below we will consider the map

π−α1 = HomSH(F )(Σ
−1
t 1,1) −→ HomSH(F )(Σ

−1
t 1,KGL) = π−αKGL,

where Σt = − ∧Gm denotes Gm-suspension.

Proposition 5.5. The map
u : π−2α1 −→ π−2αKGL

sends the element [a] · [b] ∈ π−2α1 to {a, b} ∈ K2(F ) = π−2αKGL.

Sketch of proof. By the identification π−αKGL ∼= K1(F ), it follows that the map u sends [a] ∈
π−α1 to {a} ∈ K1(F ). Since u is a ring map we obtain a commutative diagram

π−α1× π−α1 π−2α1

π−αKGL× π−αKGL π−2αKGL

K1(F )×K1(F ) K2(F )

∼= ∼=

The bottom horizontal map is the product on K1(F ), which sends ({a}, {b}) ∈ K1(F )×K1(F )
to {a, b} ∈ K2(F ) (cf. Theorem 2.15). The top horizontal morphism is the product in π−∗α1,
mapping ([a], [b]) to [a][b] ∈ π−2α1. Thus u([a][b]) = {a, b} ∈ K2(F ).

Proposition 5.5 tells us that many of the relations in K-theory comes from relations in
motivic homotopy groups of spheres. We move on to study these fundamental objects next—
albeit in the form of Milnor-Witt K-theory.

5.3 The Milnor-Witt ring

As mentioned at the beginning of this chapter, the so-called Milnor-Witt K-theory gives an
exact description of certain operations in stable motivic homotopy theory. In this section, we
proceed to study the Milnor-Witt K-groups in their own right.

Definition 5.6 (Hopkins-Morel [Mor04a, p.40]). The Milnor-Witt K-theory KMW
∗ (F ) of F is

the Z-graded associative ring freely generated by symbols [x] (x ∈ F×) in degree +1, and one
symbol η of degree −1, subject to the following relations:

1. [x][1− x] = 0 for all x ∈ F× \ {1},

2. [xy] = [x] + [y] + η[x][y],

3. η[x] = [x]η,

4. ηh = 0, where h := 2 + η[−1] ∈ KMW
0 (F )

for x, y ∈ F×.
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There is a natural map
KMW
∗ (F ) −→ KM

∗ (F )

sending [x] to {x} and η to 0, which yields a canonical isomorphism

KMW
∗ (F )/η ∼= KM

∗ (F ).

Indeed, the term η[x][y] in the second relation of Milnor-Witt K-theory is the obstruction for
additivity in KMW

∗ (F ).

Definition 5.7. For u ∈ F×, let 〈u〉 denote the degree-zero element

〈u〉 := 1 + η[u] ∈ KMW
0 (F ).

In particular, let ε := −〈−1〉.

Note the relation
εη = η.

Moreover, we have that
η(1 + 〈−1〉) = 0,

which is reminiscent of the defining relation of the Witt ring. In fact, the map F× → KMW
0 (F )

defined by u 7→ 〈u〉 induces an isomorphism GW (F )
∼=−→ KMW

0 (F ) [Mor12a, p.65], and for
n > 0, multiplication with ηn induces an isomorphism W (F )

∼=−→ KMW
−n (F ) [Mor12a, Lemma

2.10, p.65].
In addition to the mapsKMW

n (F )→ KM
n (F ) there are, for n ≥ 1, canonical homomorphisms

KMW
n (F ) −→ In(F ),

which maps an element [a1] · · · [an] of KMW
n (F ) to the class of the Pfister form 〈〈a1 . . . , an〉〉 ∈

In(F ) (defined in Chapter 2, Definition 2.30). A theorem of Morel shows how these maps relate:

Theorem 5.8 ([Mor04b]). The diagram

KMW
n (F ) KM

n (F )

In(F ) In(F )/In+1(F )

is a pullback square.

Example 5.9. Since I2(Fq) = 0 (cf. Table 2.1 in Chapter 2) for any finite field Fq, Theorem 5.8
implies that KMW

n (Fq) ∼= KM
n (Fq) for all n ≥ 1.

Lemma 5.10 ([Mor12a, Lemma 2.5, p.62 and Lemma 2.7, p.63]). For any x, y ∈ F×, the
following relations hold in KMW

∗ (F ):

1. [1] = 0.

2. [x][−x] = 0.

3. [x][x] = [x][−1] = [−1][x].

4. [x][y] = ε[y][x].

5.
〈
x2
〉

= 1.

Lemma 5.11. The element 〈x〉 = 1 + η[x] is a unit in KMW
0 (F ), whose inverse is 〈x−1〉.

Moreover, for any x, y ∈ F×, the following relations hold in KMW
∗ (F ):

1.
[
x
y

]
= [x]−

〈
x
y

〉
[y], hence [x−1] = −〈x−1〉[x].
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2. 〈xy〉 = 〈x〉〈y〉.

3. [x][y] = [y−1][x].

4. [xy] = [x] + 〈x〉[y].

5. [x2][y] = [x][y]− [y][x].

Proof. We only prove the last relation. Proof of the first assertion along with Item 1 and Item 2
is found in [Mor12a, Lemma 2.5, p.62]. Moreover, Item 3 is proved in [HT08, Lemma 2.7], and
Item 4 follows from the definitions.

By definition of Milnor-Witt K-theory we have

[x2] = 2[x] + η[x]2.

Multiplying from the right by [y] then yields

[x2][y] = 2[x][y] + η[x]2[y].

On the other hand, using the ε-commutativity [x][y] = ε[y][x] we have

[x][y]− [y][x] = [x][y]− ε[x][y]

= [x][y] + 〈−1〉[x][y]

= [x][y] + (1 + η[−1])[x][y]

= 2[x][y] + η[−1][x][y]

= 2[x][y] + η[x]2[y] = [x2][y],

where we have used that [−1][x] = [x]2.

Proposition 5.12 ([Mor12a, Proposition 2.13, p.67]). If any unit in F is a square, then for
each n ≥ 0 the canonical surjection

KMW
n (F ) −→ KM

n (F )

is an isomorphism.

Proof. By the second and fourth relation of Milnor-Witt K-theory along with the relation
[x][x] = [x][−1] we have

η[x2] = η(2[x] + η[x][−1]) = η[x](2 + η[−1]) = 0.

Since any unit in F is a square, this says that η[z] = 0 for all z ∈ F×. This implies additivity
in KMW

n (F ), i.e.,
[xy] = [x] + [y] + η[x][y] = [x] + [y].

Therefore the map KM
n (F ) → KMW

n (F ) which sends {x1, . . . , xn} to [x1] · · · [xn] is well de-
fined. Composing with the canonical map KMW

n (F )→ KM
n (F ), which sends η to 0, yields the

respective identities, so this map is an isomorphism.

Lemma 5.13 ([Mor12a, Lemma 2.6, p.63]). For all n ≥ 1, the group KMW
n (F ) is generated by

the products of the form [u1][u2] · · · [un], with [uj ] ∈ F×.

Proof. Clearly any generator of KMW
n (F ) is of the form ηm[u1] · · · [u`] where m, ` ≥ 0 and

`−m = n. The result follows from the relation η[x][y] = [xy]− [x]− [y].

Lemma 5.14. Suppose v is a discrete valuation on F . If π and π′ are two uniformizers, then

[π][π′] = [π][u]

for a unit u ∈ O×v .
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Proof. We may write π′ = −uπ for u a unit of Ov. Then

[π][u(−π)] = [π]([u] + [−π] + η[u][−π])

= [π][u] + [π][−π] + ηε[u][π][−π]

= [π][u]

since [π][−π] = 0.

Lemma 5.15 ([Mor12a, Lemma 2.14, p.67]). For any x ∈ F× and any n ∈ Z, we have the
following expression for [xn] ∈ KMW

1 (F ):

[xn] = nε[x],

where nε ∈ KMW
0 (F ) is defined as follows. If n ≥ 0, we set

nε :=

n∑
j=1

〈(−1)j−1〉,

and for n < 0, nε := −〈−1〉(−n)ε = ε(−n)ε.

Lemma 5.16 ([Mor12a, Corollary 2.8, p.63]). Given α ∈ KMW
n (F ) and β ∈ KMW

m (F ), we
have

αβ = εnmβα.

Thus the graded KMW
0 (F )-algebra KMW

∗ (F ) is graded ε-commutative.

In [Mor12a], Morel establishes the existence of an analog in Milnor-Witt K-theory to the
well known regular symbols in Milnor K-theory:

Theorem 5.17 ([Mor12a, Section 2.2]). For each discrete valuation v on F and each choice of
uniformizer π, there exists a unique homomorphism

∂πv : KMW
∗ (F ) −→ KMW

∗ (k(v))

commuting with product by η and satisfying

∂πv ([π][u2] · · · [un]) = [u2] · · · [un]

and
∂πv ([u1][u2] · · · [un]) = 0

for all units u1, . . . , un ∈ O×v .

Remark 5.18. In Milnor-Witt K-theory, the maps ∂πv depends on the choice of uniformizer.
For if π′ = uπ, where u ∈ O×v , then [π′] = [u] + [π] + η[u][π]. This differs from the situation in
Milnor K-theory, where {π′} = {u}+ {π}, hence ∂v(π′) = ∂v(π) in this case.

Using the technique of Tate, Morel establishes in [Mor12a, Theorem 2.24, p.73] a split exact
sequence

0 KMW
n (F ) KMW

n (F (t))
⊕

p∈Spec(F [t])\{0}

KMW
n−1 (F [t]/p) 0,

⊕
p ∂

π
p

similarly to the sequence in Milnor K-theory.
Theorem 5.17 also allows us to define sheaves of unramified Milnor-Witt K-groups [CF14,

p.5]. Let X ∈ SmF be an integral scheme, and let X(n) denote the set of points x ∈ X of
codimension n. We let k(X) denote the field of rational functions on X.
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Definition 5.19. For any X ∈ SmF , choose for each x ∈ X(1) a corresponding uniformizer πx.
Then, for each n ∈ Z we define

KMW
n (X) := ker

KMW
n (k(X)) −→

⊕
x∈X(1)

KMW
n−1 (k(x))

,
where the map is induced by the morphisms ∂πxvx .

Any morphism f : X → Y in SmF induces a homomorphism h∗ : KMW
n (Y ) → KMW

n (X)
[CF14, p.6], so that X 7→ KMW

n (X) is a presheaf on SmF . This presheaf is in fact a Nisnevich
sheaf [Mor12a], which is denoted by KMW

n .

5.4 Milnor-Witt K-theory of Q

In this section we aim to compute the groups KMW
n (Q) for all n ≥ 2.

Definition 5.20. Let Λ∞ ⊆ KMW
∗ Q be the graded subring of KMW

∗ Q generated by the
elements [−1]n ∈ KMW

n Q for n ≥ 0, and let Λn∞ denote the n-th graded piece of Λ∞. Thus Λn∞
is the subgroup of KMW

n Q additively generated by [−1]n.
Moreover, let Λ0 be the graded subring of KMW

∗ Q generated by η and the elements [a] with
a a positive rational number:

Λ0 := 〈η, [a] : a ∈ Q>0〉.
For any n ∈ Z we let Λn0 denote the n-th graded piece of Λ0.

Lemma 5.21. For any n ≥ 2 we have KMW
n Q = Λn∞ ⊕ Λn0 .

Proof. The relation [−1][a] = [a][a] implies that

([−1] + x)([−1] + y) = [−1]2 + [−1]x+ [−1]y + xy ∈ Λ∞ ⊕ Λ0

for any x, y ∈ Λ0.
Now, fix an n ≥ 2 and recall from Lemma 5.13 that KMW

n Q is generated by the symbols
[a1] · · · [an] for which ai ∈ Q×. If a1, . . . , an ∈ Q>0, then the observation above along with the
relation [−a] = [−1] + [a] + η[a]2 implies that any generator [±a1] · · · [±an] of KMW

n (Q) lies in
Λn∞ ⊕ Λn0 .

To conclude we must show that Λn∞∩Λn0 = 0. Recall again that Λn0 is generated by elements
of the form [a1] · · · [an] for ai ∈ Q>0. So suppose that k[−1]n ∈ Λn0 for some k 6= 0, say

k[−1]n =
∑
i

ki[a1i] · · · [ani],

with all the aji’s positive rationals and ki ∈ Z. Recall that the canonical map

KMW
n (Q) −→ In(Q)

maps a generator [a1] · · · [an] ∈ KMW
n Q to the Pfister form

〈〈a1, . . . , an〉〉 = (〈1〉 − 〈a1〉) · · · (〈1〉 − 〈an〉) ∈ In(Q).

Hence, passing to the Witt ring W (Q) we obtain the relation of Pfister forms

k〈〈−1, . . . ,−1〉〉 =
∑
i

ki〈〈a1i, . . . , ani〉〉 ∈ In(Q). (5.2)

We claim that such a relation is impossible. Indeed, consider the natural map W (Q)→W (R)
induced by the inclusion Q ↪→ R, giving rise to the same relation (5.2) in W (R). Let P denote
the standard ordering on R. Note that, since the aji’s are positive we have σP (〈aji〉) = +1 for
all i, j by Example 2.34. Hence

σP (〈〈a1i, . . . , ani〉〉) = σP ((〈1〉 − 〈a1i〉) · · · (〈1〉 − 〈ani〉)) =
∏
j

(σP 〈1〉 − σP 〈aji〉) = 0.

On the other hand, a similar computation shows that σP (〈〈−1, . . . ,−1〉〉) = 2n, hence the
relation (5.2) is impossible whenever k 6= 0.
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Lemma 5.22. For any n ≥ 1, the group Λn∞ is the free additive group generated by [−1]n.

Proof. Note that, since 〈−a〉 = −〈a〉 in the Witt ring, it follows that the canonical morphism
KMW
n Q→ In(Q) maps k[−1]n to

k〈〈−1, . . . ,−1〉〉 = k(〈1〉 − 〈−1〉)n = k(2〈1〉)n = k · 2n〈1〉.

By [MH73, Theorem 4.5, p.75], m〈1〉 6= 0 ∈W (Q) for any nonzero integer m. Hence k[−1]n 6=
`[−1]n whenever k 6= `.

Now we proceed in the same manner as for Milnor K-theory to show that

Λn0
∼=
⊕
p≥2

KMW
n−1 (Fp)

for any n ≥ 2. For each prime p and each n ≥ 2, Theorem 5.17 establishes a map

∂ :=
⊕

p≥2 prime

∂p : KMW
n (Q) −→

⊕
p≥2 prime

KMW
n−1 (Fp),

where we write ∂p := ∂p(p); p being the canonical choice of uniformizer for the place (p). Note
that Λn∞ ⊆ ker ∂ by Theorem 5.17.

Definition 5.23. Define a filtration

L2 ⊆ L3 ⊆ · · · ⊆ Lp ⊆ · · · ⊆ Λ0

of Λ0 ⊆ KMW
∗ Q by letting Lp be the subring

Lp := 〈η, [a] : a ∈ Z, 1 ≤ a ≤ p〉.

For each n ∈ Z, we let Lnp denote the n-th graded piece of Lp.

By Lemma 5.11, if [a] and [b] are elements of Lp then so are [ab] and [a/b]. Thus, by
Lemma 5.13 this filtration is exhaustive, i.e., lim−→p

Lp = Λ0.

Lemma 5.24. For each n ≥ 2, the group Ln2 is trivial.

Proof. We have [2][2] = [2][−1] = 0 by the Steinberg relation. Thus any generator [a1] · · · [an]
with ai ∈ {1, 2} is trivial.

Lemma 5.25. Let n ≥ 1. For any prime p > 2, let q be the largest prime < p. Then Lnp is
generated by Lnq along with elements of the form

ηm[p][a2][a3] · · · [an+m],

where the aj ∈ Z are units modulo p for all j ≥ 2.

Proof. Let x = ηm[a1] · · · [am+n] be a generator of Lnp , with 1 ≤ ai ≤ p. Using ε-commutativity
we may assume x is of the form x = ηm[p]k[ak+1] · · · [an+m] for some k ≤ n + m and ai units
modulo p. But then the result follows from the relation [p][p] = [−1][p] = [p][−1].

Lemma 5.26. Let p be an odd prime and let q be the biggest prime < p. Suppose i ≥ 2 and
aj ∈ Z such that a1 · · · ai ≡ c (mod p), say

∏
j aj = c+ pd, where |c| < p and |aj | < p for all j.

Then
[p][a1 · · · ai] ≡ [p][c] (mod Lq).
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Proof (following [Mor12a, Lemma 2.25, p.74]). We proceed by induction. For the case i = 2,
assume ab = c+ pd, with |a|, |b|, |c| < p. Note that

|pd| ≤ |ab|+ |c| ≤ (p− 1)2 + p− 1,

hence |d| < p. Since
pd

ab
+

c

ab
= 1

we have [
pd

ab

] [ c
ab

]
= 0.

Moreover, [
pd

ab

]
=

[
d

ab

]
+

〈
d

ab

〉
[p]

by Item 4 of Lemma 5.11. Thus

0 =

[
pd

ab

] [ c
ab

]
=

([
d

ab

]
+

〈
d

ab

〉
[p]

)[ c
ab

]
,

i.e., 〈
d

ab

〉
[p]
[ c
ab

]
= −

[
d

ab

] [ c
ab

]
.

Multiplying from the left by 〈d/(ab)〉−1
= 〈ab/d〉 we obtain

[p]
[ c
ab

]
= −

〈
ab

d

〉[
d

ab

] [ c
ab

]
∈ Lq.

Note that [
x

y

]
= [x]−

〈
x

y

〉
[y]

= [x]− [y]− η
[
x

y

]
[y]

by Lemma 5.11. Using this relation on [c/(ab)] and multiplying from the left by [p] get that

[p]
[ c
ab

]
= [p][c]− [p][ab]− η[p][ab]

[ c
ab

]
= [p][c]− [p][ab]− ηε[ab][p]

[ c
ab

]
.

Since

−ηε[ab][p]
[ c
ab

]
= η〈−1〉[ab][p]

[ c
ab

]
= η(1 + η[−1])[ab][p]

[ c
ab

]
= η[ab][p]

[ c
ab

]
+ η2[ab]2[p]

[ c
ab

]
∈ Lq

we thus have
[p][c] ≡ [p][ab] (mod Lq).

75



5. Symbols in Motivic Homotopy Theory

For the general case i > 2, write a2 · · · ai ≡ c′ (mod p). Then c ≡ a1 · · · ai ≡ a1c
′ (mod p).

By the second relation of Milnor-Witt K-theory and the induction hypothesis we have

[p][a1 · · · ai] = [p][a1] + [p][a2 · · · ai] + η[p][a1][a2 · · · ai]
≡ [p][a1] + [p][c′] + η[p][a1][c′] (mod Lq).

Now [p][a1] + [p][c′] + η[p][a1][c′] = [p][a1c
′], which we know from the case i = 2 equals [p][c]

modulo Lq. Hence [p][a1 · · · ai] ≡ [p][c] (mod Lq).

Theorem 5.27. For each n ≥ 2, the map ∂ =
⊕

p ∂p induces an isomorphism

KMW
n (Q) ∼= Z⊕

⊕
p≥2

KMW
n−1 (Fp) ∼= Z⊕

⊕
p≥2

KM
n−1(Fp).

Proof. The proof is similar to [Mor12a, p.76]. We fix an n ≥ 2. By Lemma 5.21 and Lemma 5.22
it remains to show that

Λn0
∼=
⊕
p≥2

KMW
n−1 (Fp).

As before, we use induction to prove that for each prime p, Lnp ∼=
⊕p

`=2K
MW
n−1 (F`); the statement

then follows.
To start the induction, note that KMW

m (F2) ∼= KM
m (F2) for each m ≥ 0 by Proposition 5.12.

But KM
m (F2) = 0 for m ≥ 1, hence Lemma 5.24 furnishes the base case of the induction.

Now let p be an odd prime. As in Chapter 3, it suffices to show that there is an isomorphism

φ : KMW
n−1 (Fp) Lnp/L

n
q ,

∼=

where q is the greatest prime less than p.
We first establish the map φ. Let µ(x) denote the endomorphism of the quotient of graded

Z-modules Lp/Lq defined by multiplication from the left by an element x ∈ Lp. Thus, if for
example x = ε[u], then µ(ε[u]) is the degree-1 homomorphism

µ(ε[u]) : Lp/Lq −→ Lp/Lq

ηm[p][u1] · · · [un+m] 7−→ ε[u]ηm[p][u1] · · · [un+m] = ηm[p][u][u1] · · · [un+m]

Let
Ep := Hom(Lp/Lq, Lp/Lq)

denote the graded associative ring of graded endomorphisms of Lp/Lq. We shall prove that the
maps

u 7→ µ(ε[u]) : F×p −→ (Ep)1

(where |u| < p) along with µ(η) ∈ (Ep)−1 satisfy the relations of Milnor-Witt K-theory.

1. For the Steinberg relation, take u 6≡ 1 (mod p). Then

µ(ε[u]) ◦ µ(ε[1− u]) = µ(ε2[u][1− u]) = 0.

2. Suppose u and v are units modulo p, with uv ≡ w (mod p). By Lemma 5.26 we then have

µ(ε[w])(ηm[p][u1] · · · [un+m]) = ηm[p][w][u1] · · · [un+m]

= ηm[p][uv][u1] · · · [un+m]

in Lp/Lq. Writing out [uv] = [u] + [v] + η[u][v] yields

µ(ε[uv]) = µ(ε[u]) + µ(ε[v]) + µ(η) ◦ µ(ε[u]) ◦ µ(ε[v]).
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The last two relations µ(η) ◦ µ([u]) = µ([u]) ◦ µ(η) and µ(η) ◦ µ(1 + 〈−1〉) = 0 follows similarly
from the relations in Lp/Lq.

Thus we obtain a graded homomorphism f : KMW
∗ (Fp) → Ep, with [u] 7→ µ(ε[u]). Under

the adjunction

Hom(KMW
∗ (Fp),Ep) ∼= Hom(KMW

∗ (Fp)⊗ Lp/Lq, Lp/Lq),

the morphism f ∈ Hom(KMW
∗ (Fp),Ep) corresponds to the map

f̃ : KMW
∗ (Fp)⊗ Lp/Lq −→ Lp/Lq

[u]⊗ y 7−→ f([u])(y) = µ(ε[u])(y) = ε[u]y.

By restricting f̃ to KMW
∗ (Fp)⊗ [p] we establish the desired map

φ : KMW
n−1 (Fp) −→ Lnp/L

n
q

ηm[u1] · · · [un+m−1] 7−→ ηm[p][u1] · · · [un+m−1].

By Lemma 5.25, φ is surjective. By Theorem 5.17, ∂p vanishes on Lnq and thus induces a map
∂p : Lnp/L

n
q → KMW

n−1 (Fp). Furthermore, the compostition

KMW
n−1 (Fp) Lnp/L

n
q KMW

n−1 (Fp)
φ ∂p

is the identity; indeed,

∂p(φ([u1] · · · [un−1])) = ∂p([p][u1] · · · [un−1]) = [u1] · · · [un−1]

by Theorem 5.17. By Lemma 5.13, KMW
n−1 (Fp) is generated by the elements [u1] · · · [un−1]. Thus

φ is an isomorphism.

Example 5.28. In the case n = 2, note that 2k[−1]2 ∈ Λ2
∞ is mapped to

2k{−1,−1} = k{(−1)2,−1} = 0 ∈ KM
2 (Q)

under the canonical map KMW
2 (Q)→ KM

2 (Q). On the other hand, if k is odd, then

k[−1]2 7→ {(−1)k,−1} = {−1,−1} 6= 0 ∈ KM
2 (Q).

Hence the kernel of the restriction of the canonical map KMW
2 (Q)→ KM

2 (Q) to Λ2
∞ is 2Λ2

∞.
By [MH73, Corollary 2.5, p.90], I3(Q) is the free additive group generated by 8〈1〉. Since

KMW
2 (Q) 3 2k[−1]2 7−→ k · 8〈1〉 ∈ I3(Q),

the canonical map KMW
2 (Q) → I2(Q) sends 2Λ2

∞ onto I3(Q) = Z · 8〈1〉. Moreover, for each
n ≥ 0 there is an inclusion

In+1(F ) −→ KMW
n (F )

given by
〈〈x1, . . . , xn+1〉〉 7−→ η[x1] · · · [xn+1].

The element
k · 8〈1〉 = k〈〈−1,−1,−1〉〉 ∈ I3(Q)

will thus be mapped to
kη[−1]3 = −2k[−1]2 ∈ 2Λ2

∞.

We may thus identify I3(Q) with the kernel of the map KMW
2 (Q)→ KM

2 (Q). This illustrates
the exact sequence

0 −→ I3(Q) −→ KMW
2 (Q) −→ KM

2 (Q) −→ 0

that Theorem 5.8 predicts.
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Example 5.29. Theorem 5.27 yields KMW
n (Q) ∼= Z for any n ≥ 3. On the other hand, for any

n ≥ 3 we have KM
n (Q) ∼= Z/2 by [Mil70, Example 1.8], and In(Q) ∼= Z by [MH73, Theorem

4.5, p.75]. The exact sequence

0 −→ In+1(Q) −→ KMW
n (Q) −→ KMW

n (Q) −→ 0

takes the form 0→ Z
·2−→ Z→ Z/2→ 0 whenever n ≥ 3.

Example 5.30. In light of Definition 5.19, we can define KMW
n (Z) := KMW

n (SpecZ). Theo-
rem 5.27 then shows that KMW

n (Z) = Z for n ≥ 2, and also that the sequence

0 KMW
n (Z) KMW

n (Q)
⊕
p≥2

KMW
n−1 (Fp) 0∂

is split exact. We do not expect this split exactness to hold for general number fields; indeed,
it is not true in general for the corresponding sequence in neither Milnor K-theory nor Witt
theory.

5.5 Milnor-Witt K-theory of Q(
√
−1)

Let us consider briefly the case of the Gaussian numbers. By [MH73, p.81], I3(F ) = 0 for any
totally imaginary number field F . This simplifies matters greatly, because then Theorem 5.8
implies that the map KMW

n (F ) → KM
n (F ) is an isomorphism in degrees n ≥ 2. However, it

is possible to obtain the isomorphism directly by the same method as we have seen. Let us
illustrate the case n = 2:

Definition 5.31. Define a filtration

L1 ⊆ · · · ⊆ Ln ⊆ · · · ⊆ KMW
2 (Q(i))

of KMW
2 Q(i) by letting

Ln := 〈η, [α] : α ∈ Z[i]×Sn〉 ∩K
MW
2 (Q(i)),

where the Sn are defined as in Definition 3.6 of Chapter 3.

As before, we have lim−→n
Ln = KMW

2 Q(i).

Lemma 5.32. The group L1 is trivial.

Proof. By Lemma 5.25, it is enough to show that the elements [u][u′], for u, u′ ∈ Z[i]×S1
, are

trivial. Note that [i][−i] = 0 by Lemma 5.10.

• By Item 5 of Lemma 5.11, we have:

[i][i] = [−1][i] = [i2][i] = [i][i]− [i][i] = 0.

Moreover,
[−1][−1] = [i2][−1] = [i][−1]− [−1][i] = [i][i]− [i][i] = 0.

• Note that [1 + i][−i] = 0 = [1− i][i] by the Steinberg relation. Using this we have:

[1− i] = [(1 + i)(−i)] = [1 + i] + [−i] + η[1 + i][−i] = [1 + i] + [−i].

Multiplying by [i] from the right we obtain

0 = [1− i][i] = [1 + i][i] + [−i][i].

Since [−i][i] = 0, this yields [1 + i][i] = 0.
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√
−1)

• The second relation of Milnor-Witt K-theory now gives [±1 ± i][u] = 0 for any u ∈ µ4;
indeed, if u′ ∈ µ4 we have

[u′(1 + i)][u] = [u′][u] + [1 + i][u] + η[u′][1 + i][u] = 0.

• By Item 3 of Lemma 5.11, [u][(1 + i)−1] = [1 + i][u] = 0 for any u ∈ {±1,±i, 1 + i}.

By the cases considered above, Lemma 5.14 assures that [1 + i][±1 ± i] = 0. Using the ε-
commutativity of Milnor-Witt K-groups we establish also the symmetric counterparts of all
cases above. Finally, we consider the general case [u(1+ i)n][u′(1+ i)m] for n,m ∈ Z, u, u′ ∈ µ4.
By the second relation of Milnor-Witt K-theory along with Lemma 5.15 and Lemma 5.16 we
have

[u(1 + i)n][u′(1 + i)m] = ([u] + nε[1 + i] + η[u]nε[1 + i])([u′] +mε[1 + i] + η[u′]mε[1 + i])

= [u][u′] +mε[u][1 + i] + ηnε[u][u′][1 + i]

+ nε[1 + i][u′] + nεmε[1 + i][1 + i] + ηnεmε[1 + i][u′][1 + i]

+ ηnε[u][1 + i][u′] + ηmε[u][1 + i] + η2nεmε[u][1 + i][u′][1 + i].

In the last expression, all terms vanish by the cases considered above, so this concludes the
proof.

From here on we proceed identically as in Theorem 5.27 to obtain the isomorphism:

Theorem 5.33. For each finite place v of Q(i), choose a uniformizer πv. Then the map
∂ :=

⊕
v ∂

πv
v induces an isomorphism

KMW
2 (Q(i)) ∼=

⊕
v∈Plnc

Q(i)

KMW
1 (k(v)) ∼=

⊕
v∈Plnc

Q(i)

KM
1 (k(v)).
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Final Remarks

The theory of motivic homotopy is quite new, and the discovery of Milnor-Witt K-theory is
even newer. Thus there are yet many unanswered questions. One possibility for further studies
is to try to see if there exist analogs of Hilbert symbols in Milnor-Witt K-theory—at least for
KMW

2 . Recall that in algebraic K-theory we have Moore’s theorem, stating that there is an
exact sequence

K2(F )
⊕
v∈Plnc

µ(Fv) µ(F ) 1.h π

Here the map h is induced by the Hilbert symbols defined on the number field F . As we have
seen in Chapter 2, the above exact sequence should be considered as a uniqueness theorem for
Hilbert reciprocity.

On the other hand, in [Lam05, p.159], Lam defines Hilbert symbols in Witt theory and uses
these to show that there is an exact sequence

0 −→ I2(Q)/I3(Q) −→
⊕
v∈PlQ

I2(Qv)/I
3(Qv) −→ Z/2 −→ 0,

which is interpreted as a uniqueness theorem for Hilbert reciprocity in Witt theory. This result
was originally proved for any global field F by Bass and Tate in the equivalent form [Mil70,
Lemma A.1]

0 −→ kM2 (F ) −→
⊕
v∈PlncF

kM2 (Fv) −→ Z/2 −→ 0

(remember that I2(F )/I3(F ) ∼= KM
2 (F )/2KM

2 (F ) = kM2 (F )). As there is a uniqueness of
reciprocity laws-theorem in both Milnor K-theory and Witt theory, this suggests that there
should also be a corresponding result in Milnor-Witt K-theory that specializes to the two
mentioned sequences. The first step toward such a result would be to define Hilbert symbols
on Milnor-Witt K-theory.
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