
Tabular Data Cleaning and
Linked Data Generation with
Grafterizer
Dina Sukhobok

Master’s Thesis Spring 2016

Tabular Data Cleaning and Linked Data
Generation with Grafterizer

Dina Sukhobok

May 18, 2016

Abstract

The volume of data being published on the Web and made available as Open Data
has significantly increased over the last several years. However, data published
by independent publishers are sliced and fragmented. Creating descriptive con-
nections across datasets may considerably enrich data and extend their value. One
way to standardize, describe and interconnect the information from heterogeneous
data sources is to use Linked Data as a publishing technology.

The majority of published open datasets is in a tabular format and the process
of generating valid Linked Data from them requires powerful and flexible methods
for data cleaning, preparation, and transformation. Most of the time and effort of
data workers and data developers is concentrated on data cleaning aspects. In spite
of the number of available platforms for tabular data cleaning and preparation, no
solution is focused on the Linked Data generation.

This thesis explores approaches for data cleaning and transformation in the
context of the Linked Data generation and identifies their challenges. This in-
cludes reviewing typical tabular data quality issues found in the literature and
practical use cases and their categorization in order to produce the requirements
on designing a solution in the form of the set of data cleaning and transformation
operations.

Furthermore, the thesis introduces the Grafterizer software framework, devel-
oped to assist data workers and data developers in preparing and converting raw
tabular data to Linked Data with simplifying and partially automating this pro-
cess. The Grafterizer framework is evaluated against existing relevant tools and
systems for data cleaning. The contribution of the thesis also includes extending
and evaluating reference software system to implement the needed data cleaning
and transformation operations. This resulted in a powerful framework for ad-

iii

dressing typical data quality issues and a wide range of supported data cleaning
and transformation operations.

iv

Contents

1 Introduction 1

1.1 Thesis Outline . 1

1.2 Overall Context . 2

1.3 Thesis Motivation . 4

1.4 Research Questions . 5

1.5 Thesis Contributions . 5

1.6 Research Methodology . 6

2 Related Work 9

2.1 Data Cleaning . 10

2.1.1 Data Cleaning in ETL Tools 10

2.1.2 Data Cleaning in Data Analysis 11

2.1.3 Types of Data . 13

2.1.4 Data Quality . 15

2.1.5 Data Anomalies . 18

2.2 The Semantic Web . 24

3 Problem Analysis 31

3.1 Data Cleaning and Transformation Cycle 31

3.2 Overview of Existing Approaches and Products 35

3.3 Requirements and Success Criteria 38

v

4 Grafterizer: A Flexible Framework for Tabular Data Cleaning and
Linked Data Generation 41
4.1 Framework Overview . 41
4.2 Core Components . 42

4.2.1 Grafter Pipes . 44
4.2.2 Grafter Grafts . 45

4.3 The Grafterizer Transformation Functions 46
4.4 The Grafterizer Graphical User Interface Design 51

5 Evaluation 57
5.1 Comparative Evaluation of Data Cleaning Capabilities 57
5.2 Comparative Evaluation with the R2RML Approach 64
5.3 Use Case Testing . 67

6 Conclusion 71
6.1 The Evaluation of Performed Work in Accordance with the Re-

quirements . 72
6.2 Directions for Future Work . 73

6.2.1 Automated Documentation of Data Quality 74
6.2.2 Automated Anomaly Detection 75
6.2.3 Intelligent Vocabulary Suggestion 75

6.3 Thesis Summary . 76

Appendices 79

A List of Acronyms 81

B Specification of the Developed Routines in Clojure 83

vi

List of Figures

1.1 Methodology for technology research adopted in this thesis 7

2.1 Overview of data warehousing [14] 11
2.2 Results of the survey of data scientists 12
2.3 Data anomalies categorized by scope of data quality problems . . 20
2.4 An example of data graph triple 25
2.5 The data graph with fully qualified URIs 26
2.6 Linked Open Data cloud . 29

3.1 Data cleaning and transformation cycle as a part of a developed
artifact . 32

3.2 Main components of the new product 39

4.1 The process of generating a semantic graph from tabular data . . . 41
4.2 Grafter’s architecture and Grafterizer 43
4.3 Pipes, performing tabular-to-tabular transformations 44
4.4 Graft, performing tabular-to-RDF transformations 45
4.5 The screenshot of Grafterizer’s GUI 52
4.6 Adding a new pipeline function 53
4.7 Adding a new utility function 53
4.8 RDF mapping in Grafterizer . 54
4.9 Casting to datatypes and assigning conditions during RDF mapping 55

5.1 The screenshot of NPD Fact Pages Grafterizer pipeline 66
5.2 The screenshot of NPD Fact Pages RDF mapping 66
5.3 PLUQI application screenshot 68

vii

List of Tables

2.1 A typical example of tabular dataset 14
2.2 Summary of data anomalies . 22

4.1 Summary of basic tabular transformations 48

5.1 Comparative summary of basic features supported by popular data
cleaning and transformation tools 60

A.1 List of acronyms . 82

ix

Acknowledgements

Here I would like to express my appreciation to a number of people whose help
and support guided me through the work on this thesis.

First, I was very fortunate to collaborate with many amazing mentors during
my time at SINTEF. The roundtable meetings and discussions have taught me
a collaborative work and were an endless source of inspiration. I thank Niko-
lay Nikolov for significant help in development, assistance, always being open to
answering my questions, and for immense patience to my lack of team working
experience. For the valuable support and guidance in technical questions, I also
thank Antoine Putlier. I also extend my gratitude to my external supervisor Arne
Berre.

I am particularly grateful to my main supervisor Dumitru Roman, for mo-
tivation, providing background, advice on research and writing, and inspiration
with new ideas. His contribution in my level of academic writing, professional
knowledge, and career is immeasurable.

Last but not least I would like to thank my friends and family for their support
and motivation.

xi

Chapter 1

Introduction

The growth of the volume of information being published on the Web and made
available as Open data have led to the need of interconnecting data and enriching
them with semantics. This can be supported by using Linked Data as a publishing
technology. At the same time, the task of data cleaning and transformation still
remains one of the most time-consuming parts of data workers job. This thesis is
focused on researching the approaches for data cleaning and transformation in the
context of Linked Data creation and introduces a software framework, developed
to support tabular data cleaning, transformation, and conversion to Linked Data.

1.1 Thesis Outline

This section shortly describes a thesis structure and provides an overview of what
parts of the research are discussed in each chapter.

• Chapter 1 - Introduction introduces the need for the new research in data
publishing and consumption process and defines the methodology intended
to be used in this thesis.

• Chapter 2 - Related Work describes relevant related works on data quality
and data quality issues, the Semantic Web and the role of data cleaning and
its semantic enrichment in the data publishing process.

1

• Chapter 3 - Problem Analysis explores the challenges in resolving data qual-
ity issues, possible approaches to data cleaning and transformation, reviews
existing tools and systems for data cleaning, and formulates requirements
for the artifact to be developed.

• Chapter 4 - Grafterizer: A Flexible Framework for Tabular Data Cleaning
and Linked Data Generation describes the developed artifact, its function-
alities, technologies used to build it, and its user interface.

• Chapter 5 - Evaluation contains the evaluation of the developed artifact,
describes scenarios of real-life use cases, where Grafterizer was used, and
discusses the main advantages of using Grafterizer as well as its shortcom-
ings.

• Finally, Chapter 6 - Conclusion summarizes this thesis, provides an estima-
tion of the contributions in terms of expected output and acquired results,
and identifies directions for the future work.

1.2 Overall Context

Data analysis activities are predicted to bring the vast majority of profit in compa-
nies in the nearest future, possible gain is estimated in billions and even trillions
of dollars1,2. In order to benefit from knowledge discovery from data, data analy-
sis should be performed on large quantities of data. In other words, data analysis
requires a lot of reliable datasets to be published in convenient, comprehensive,
and reusable form, and at the same time to be available without any restrictions.
According to Suju Rajan, director of research, Yahoo Labs,

Many academic researchers and data scientists don’t have access to
truly large-scale datasets because it is traditionally a privilege re-
served for large companies3.

1http://www.irishexaminer.com/lifestyle/features/dell-chief-executive-says-data-is-
the-next-trillion-dollar-opportunity-370608.html last accessed May 18, 2016

2http://www.idc.com/getdoc.jsp?containerId=prUS40560115 last accessed May 18,
2016

3http://finance.yahoo.com/news/yahoo-releases-largest-ever-machine-
140000758.html last accessed May 18, 2016

2

However, today publishing data on the Web is relatively straightforward in
terms of hardware and software. The economic incentives that justify data pub-
lication come from the reduced cost of data storage and processing. Emerging
technologies in data warehousing further contribute to ease of making data widely
available. Taken together, these incentives lead to a large amount of data, being
collected by public and private sector organizations, becoming widely available
through the World Wide Web and the quantity of published information is grow-
ing exponentially [16].

Although data have been extensively collected, stored and made available,
they are still not used in full capacity. There are several reasons limiting data
workers in consuming Open Data. One of the primary reasons is the lack of
simple approaches to interconnecting data from various publishers or even the
interrelated datasets from the same publisher.

Linking Data

Why is data interlinking so relevant? The main reason for this is the fact that,
very often, data analysis involves not just data directly describing the researched
area, but also other related information from different sources. To give an exam-
ple, a researcher could be focused on exploring a topic related to preserving the
environment, such as the effective management of water resources. Collecting
information for such research represents a great challenge since effective man-
agement of water resources involves the investigation of a wide range of interre-
lated problems. Gathering only the data directly related to water resources in one
particular geographical region is not enough to reach objective conclusions. To
maximize the effectiveness of the analysis, the study should include the data both
directly related to water systems, and data related to the wider context of water
resources management. In addition, information about water resources in adjacent
geographical regions may be relevant. Thus, this way of performing the research
must consider integrated water systems as a dynamic system of various water as-
sets, associated social and economic processes, and corresponding institutional
structures4. Using this approach the analysts may discover some new cause-and-

4https://www.unesco-ihe.org/academic-departments/integrated-water-systems-
governance last accessed May 18, 2016

3

effect relations, that cannot be seen when exploring data scoped only to the object
of the analysis.

Various organizations may be in possession of the required statistical data and
other information – including governments, water industry, environmental agen-
cies, public and private entities in water-dependent industries. The way through
which aforementioned organizations publish their data may be very different, e.g.,
data may come in different structures, same concepts in different datasets may be
described in different manners, etc. Even after transforming data to the unified
form, querying them still requires a lot of preparation, e.g., collecting the data and
putting them in a single database.

A great solution for the connecting structured data on the Web is provided
by Linked Data. The Linked Data set of best practices for publishing and inter-
linking data enables data being published to be discovered and used by various
applications [10].

1.3 Thesis Motivation

The process of preparing, cleaning and transforming open datasets to the Linked
Data is rather challenging. The first step is to bring data into usable form, easy
to manipulate and transform to Linked Data. The research literature refers to
the process of data cleaning in different ways, depending on the scope of the
resolved data quality issues. Data preparation [33, 6], data cleansing [31, 30],
data cleaning [5, 35], data wrangling [24, 23] and data tidying [46] are popular
ways to refer to the process of bringing data to the formats that can be easily
manipulated. To avoid disambiguation, in this thesis the process of resolving data
quality issues is referred to as data cleaning.

Once data are cleaned, they can be converted to the Linked Data format. This
requires mapping data to conceptual models and provisioning the data. Since both
data cleaning and data mapping are the relevant aspects of Linked Data generation,
they should be performed together as two sides of one unified transformation.

When data are properly cleaned and correctly linked, it significantly increases
their accessibility and reliability [6]. On the other hand, if data are not clean, and,
thus contain errors and inconsistencies, it may lead to false conclusions made by
data consumers (e.g., data analysts) and reduce trust towards data providers. The

4

process of data cleaning ensures a consistent structure of a dataset, thus making it
easy for an analyst or software programs to find and extract needed variables [46],
which makes data usage less time-consuming and more efficient.

At present, no unifying framework exists that supports data cleaning and data
mapping as two parts of a single process resulting in Linked Data creation. The
development of such a framework can significantly simplify data publication, in-
crease the speed of data publishing and extend the value of published data, pro-
viding more opportunities for reuse Linked Open Data in various applications and
contexts.

1.4 Research Questions

The questions answered in the scope of this thesis are:

• What is data quality and what data quality issues can occur?

• How is Linked Data generated from tabular data?

• What are the existing tools for tabular data cleaning and transformation?
What tasks are impossible or difficult to solve using them?

• What artifact can be developed to improve current state-of-the-art? What
data cleaning and transformation operations should it support and what
functionalities should be provided by its user interface?

• Is the developed artifact capable of performing cleaning and transformation
tasks in real-life scenarios? What improvements can be identified for the
future work?

1.5 Thesis Contributions

This thesis contributes to Grafterizer – a web-based framework for data cleaning
and transformations. Grafterizer is a part of DataGraft5,6 – a powerful cloud-based

5DataGraft is accessible at https://datagraft.net/
6Github open source project is accessible at https://github.com/dapaas/dapaas.github.io

5

platform for data transformation, publication, and hosting. DataGraft implements
the concept of data- and transformation-as-a-Service. The main goal is to let
data publishers and data workers concentrate on their immediate work without
the need to worry about technical details, and to simplify their work by maxi-
mizing the automation of data cleaning, transformation, and publication, as well
as supporting the reuse of previously performed data transformations. The core
DataGraft functionalities are transforming data, hosting it, and making it easily
accessible. The platform is actively developed and extensively used in various
contexts. The Grafterizer framework, as an essential part of it, provides support
for data cleaning and transformation functionalities.

Summary of Thesis Contributions

The contributions of the thesis include:

• Providing a categorized summary of tabular data quality issues based on
studied literature and practical use cases.

• Evaluating existing software tools and systems for tabular data cleaning and
transformation against the Grafterizer framework.

• Providing a categorized summary of tabular data cleaning and transforma-
tion operations that can solve most of the common data quality issues.

• Implementing needed data cleaning and transformation operations and ex-
tending the Grafterizer framework with the user interface to support needed
operations.

• Evaluating Grafterizer with real-life use case scenarios.

1.6 Research Methodology

The research process can be performed in two different forms:

Basic research is research for the purpose of obtaining new knowledge.

Applied research is research seeking solutions to practical problems [42].

6

This thesis represents a special case of applied research – technology research.
The final goal of any technology research process is to develop an artifact (or
improve the existing one) that satisfies a set of collected requirements [42]. The
main steps to perform technology research are shown in Figure 1.1. This process

Figure 1.1: Methodology for technology research adopted in this thesis

consists of three main phases - problem analysis, innovation, and evaluation - and
is iterative by nature. During the first phase, the researcher becomes acquainted
with the research problem. This can be achieved by thorough literature study,
discussions with specialists in the given research area, and investigation of current
methods and artifacts. As a result of the aforementioned process, the researcher
produces a phrased problem statement unambiguously in specific terms [27]. The
final step in this phase is to state the potential needs for the artifact, i.e., to produce
working hypotheses and predictions about alleviating the defined problem. It may
be very helpful at this point of the process to consult with current and potential
artifact users. Potential needs should be expressed in terms of success criteria.
Success criteria establishment plays an important role in technological research.

7

This includes a set of requirements, the developed artifact should satisfy, and it
not only defines precise goals of the performed research but also serves as a way
of evaluating the resulting artifact.

After all the requirements have been collected and rephrased in the form of
success criteria, the next phase, innovation, starts. In this phase the researcher
looks for the possible problem solutions and applies them in practice. Naturally,
this phase ends with producing a prototype or ready-for-use software product.

In order to estimate the performed work, one should carefully analyze the cor-
respondence between an artifact and its requirements. This analysis represents the
final phase – artifact evaluation. Based on the results of the performed evaluation,
the researcher makes a conclusion about the performed work and identifies the ef-
fect of the developed product on the current state-of-the-art. The evaluation may
also prepare a basis for new research.

8

Chapter 2

Related Work

Several years ago technological advancements led to the significant reduction in
costs for data publication. This resulted in large amounts of data being generated,
collected, and disseminated through the Web. The quantity of published infor-
mation quickly outpaced the ability to process this information. The main reason
for this was that data were presented in human-, not machine-readable, and, very
often in their raw, "messy" form. These factors hinder automated data processing
and increase a time needed to extract valuable information from data.

To make data easy to be processed by software programs, it is necessary to
clean and standardize them. By removing data impurities, we significantly in-
crease chances of correct data interpretation.

However, data cleaning itself doesn’t make data easy to understand and does
not provide meaningful descriptions of data. To cope with this problem, in 2001
the first attempts to amend the Web were launched. A new form of the Web was
described in the article called “The Semantic Web” by Tim Berners-Lee, James
Hendler and Ora Lassila published in the Scientific American [9]. The main idea
was to make the Web content more machine-processable, and to achieve this,
it was suggested to enrich available information with semantics. This approach
resulted in the creation of the concept of the Semantic Web, which provides the
Linked Data model.

This chapter gives a basic introduction to data cleaning and the ways to provide
data description and interlinking with the help of the Semantic Web technologies.

9

2.1 Data Cleaning

The term "data cleaning" should be investigated in the context of data publishing
and data consumption, rather than an independent concept. The reason for this
is that outcome of data cleaning must answer the purpose of data publishing or
consumption. In particular, prior to finding ways to resolve data quality issues, it
is very important to know at what stage of work data quality should be assessed
and when data cleaning should be performed. To answer these questions, it is
necessary to get an overview of data publishing and data consumption activities.
Knowing the place of data cleaning in their workflow, it is easier to identify pos-
sible input and desired output of the data cleaning.

2.1.1 Data Cleaning in ETL Tools

Unlike locally stored homogeneous data, data published on the Web often involve
the task of integrating information from several heterogeneous data sources. In
terms of information integration, it is necessary to take into account data ware-
housing technologies. Elmasri and Navathe define a data warehouse as a collec-
tion of information and a supporting system, optimized for data retrieval [14]. The
entire data warehousing process is shown in Figure 2.1.

The process of integrating data from various data sources into a data ware-
house is aided by Extract-Transform-Load (ETL) tools. It covers collecting data
from input sources, possibly cleaning and transformation (i.e. reformatting them
to match the global schema) and their loading. The second step of the ETL flow
(“transform”) constitutes the main focus of this thesis. The output of this step
should be accurate data which is complete, consistent, and unambiguous [13].
Typically, commercial ETL tools have rather basic data cleaning capabilities and
there is usually no support for automated detection of data errors and inconsisten-
cies [35].

According to [12], data cleaning is estimated to take 50-80% of the develop-
ment time and cost in data warehousing projects.

10

Figure 2.1: Overview of data warehousing [14]

2.1.2 Data Cleaning in Data Analysis

Not only data publishers encounter the challenge of data cleaning. This task is
also an inevitable part of work in any data analysis task.

Data analysis technologies include simple statistical analysis, more complex
multidimensional analysis, data mining and knowledge discovery in databases
(KDD), and are aimed at extracting useful knowledge from explored data. The
knowledge discovery process has several phases [14]:

1. Data selection

2. Data cleaning

3. Data enrichment

4. Data transformation or encoding

5. Data analysis itself

11

6. Reporting and display of the discovered information.

It is easy to see that first four phases are very similar to data processing in the
data publishing process, and data analysts (also referred to as "data scientists"
or "business analysts") also work with data cleaning. A recent survey of about
80 data scientists, performed by CrowdFlower, known provider of a data enrich-
ment platform for data science teams, inspected various aspects of data scientists’
work. The results of this survey clearly identify data cleaning as the most time-
consuming and less enjoyable part of their work (Figure 2.2).

Figure 2.2: Results of the survey of data scientists1

1http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says/#514c427c7f75 last ac-
cessed May 18, 2016

12

To find a way to alleviate data publishers’ and data scientists’ work in data
cleaning, it is necessary to know, how to define and measure data quality. But
before studying a data quality, it is important to note, that data quality is closely
related to the type of data, for which quality is measured. Therefore, we should
first explore existing types of data.

2.1.3 Types of Data

Depending on how the data are organized, three types of data can be distinguished:

Structured data concerns, in the first place, tables in relational databases, and
is characterized by strict adherence of data to the associated schema. The
structured data represents only 10% of all electronic data2.

Semi-structured data may have some certain structure, but are not organized as
strictly, as structured data. Some distinguishable characteristics of semi-
structured data include: data attributes not known at the design time and
therefore data are not associated with pre-defined schema; attributes have
different representation among data entries; missing attributes for some en-
tries. Usually, in a semi-structured data, schema information is mixed in
with data values, which is why data of this type are often referred to as
self-describing data. Examples of semi-structured data are CSV tabular
formats, XML and JSON documents. Data stored in NoSQL databases are
also considered as semi-structured data.

Unstructured data , as their name suggests, don’t have any organization at all.
Typical examples are text documents or multimedia content [14].

Semi-structured and unstructured data at present comprise most of the infor-
mation available on the Web and the massive growth of data of these types3 has
inevitable implications for data publishing and data analysis technologies.

The most well-known and widely accepted (by data scientists) data presenta-
tion form is a tabular format, which is semi-structured data. Statistical data that

2http://www.ibmbigdatahub.com/blog/do-not-ignore-structured-data-big-data-
analytics last accessed May 18, 2016

3http://www.datasciencecentral.com/profiles/blogs/structured-vs-unstructured-
data-the-rise-of-data-anarchy last accessed May 18, 2016

13

data publishers make openly available is also mostly in a tabular format. Thus,
the research performed in this thesis is focused on tabular data as input and on
generated Linked Data as output. Therefore, in the first place, data quality should
be considered in the context of tabular data.

Prior to a more detailed investigation of data quality, it is important to provide
a basic vocabulary, describing structure and semantics of typical tabular dataset.

Most of the statistical datasets are tables and are composed of rows and
columns. Columns in tabular data are almost always labeled with column head-
ers.

Table 2.1: A typical example of tabular dataset

Name Age Gender
Alice 28 female
Bob 34 male

Datasets are intended to represent some part of the real world and each element
in a dataset should be mapped to objects of a real world. Therefore, tabular data
should be published in accordance with the following rules:

1. Each row represents an entity, which can be, for example, a person, place,
physical object or an event. Entities have a unique existence in the real
world.

2. Each column header represents an attribute of an entity.

3. Each column value represents a value of the corresponding attribute of an
entity.

4. Each table represents a collection of entities.

5. All entities in a collection have the same entity type.

To exemplify the statements made above, Table 2.1 provides a collection of data
about two entities of a type Person, having attributes Name, Age and Gender with
values of these attributes represented as values of corresponding columns. This

14

small vocabulary for tabular data’s structural elements is used for exemplifications
in the rest of the thesis.

2.1.4 Data Quality

When speaking about data quality, it is often to think about criteria such as data
accuracy (usually syntactic accuracy). The most common examples of syntactic
accuracy violation are misspellings, such as typos and phonetic errors. Indeed,
these errors are present in most data and they significantly affect data quality, but
accuracy is not the only side of data quality.

The term "data quality" has been extensively studied in many areas, such as
statistics, business management, and computer science. In computer science, data
quality has been intensively studied since the beginning of the 1990’s when the
problem of measuring and improving the quality of electronic data emerged [5].
At present, data quality is considered as a multidimensional concept. That means
that each specific aspect of data quality is captured by a data quality dimension
(sometimes also referred to as data quality criteria). Hence, in order to measure
overall data quality, each data quality dimension should be assessed.

The literature on data quality includes many taxonomies for data quality di-
mensions [6, 31]. With respect to the problem statement of this thesis and ex-
pected input data, the following data quality dimensions are identified as most
important:

Accuracy measures the distance between value v of a real-life entity attribute
and value v′ representing the same attribute in a dataset as a column value.
For example, when data describe certain infrastructure component, attribute
value specifying its type v′ = Bridge is correct while attribute value v′ =

Brdg is incorrect. Usually, two types of accuracy are distinguished:

• Syntactic accuracy defines whether value v′ belongs to the domain
range D, which is defined for the entity being represented. Thus, value
v′ = Road is syntactically correct, even though the described entity
is a bridge because this value corresponds to the domain of infrastruc-
ture types. Syntactic accuracy can be identified when domain range is
specified, i.e., it requires values to have certain data types.

15

• Semantic accuracy defines whether value v′ corresponds to true value
v. To continue the example given above, value v′ = Road is incorrect,
since it describes the real-life entity v = Bridge. Another name for
semantic accuracy is correctness.

Syntactic and semantic accuracy may coincide, since when syntactic accu-
racy is violated, it affects also a semantic accuracy. Clearly, the violation of
just semantic accuracy is typically more complex to detect than the violation
of syntactic accuracy. This may require complex comparison algorithms,
analyzing different tables describing various aspects of the same entities,
and often involves analyst’s judgment.

Completeness is defined as the extent to which a given dataset describes the cor-
responding part of a real world. Completeness may be measured in different
ways:

• Measurement completeness measures the presence of null values in
certain columns of a row (absence of value for certain attributes of
entity).

• Entity completeness measures the presence of null values in all columns
in a row (presence of empty attributes).

• Attribute completeness measures the presence of null values in certain
columns (absence of values for certain attribute for all entities in the
collection).

• Collection completeness measures the presence of null values in the
entire dataset (collection of entities).

Consistency captures the presence of contradictions and can further be divided
into two types – consistency of values within a dataset and consistency of
values between different datasets. Contradictions take place when schema
integrity constraints are violated. For example, a schema constraint may
require the attribute "Age" of an entity "Employee" to hold employee’s age
as the difference between current date and value of attribute "Birth date". If
column values for attributes "Age" and "Birth date" of the same entity do
not hold this constraint, they are inconsistent.

16

Uniqueness dimension measures redundancy of entities, described in a dataset.
When an entity is stored in a dataset two or more times, it means that the
data source contains duplicates. The duplication problem increases sig-
nificantly when multiple data sources need to be integrated, which often
happens both during data publication and data consumption. In this case,
the datasets often contain redundant data in different representations [35].
Clearly, to be able to identify duplication, the entities should be assigned
a primary key (one-attribute or composite), unambiguously distinguishing
the described entities. Uniqueness is sometimes considered as a special case
of consistency when the primary key schema constraint is violated. How-
ever, due to the frequency of occurrence of uniqueness violation and special
way of detection of duplicates problem, in scope of this thesis uniqueness
is presented by separate dimension.

The aforementioned data quality dimensions are used to measure a quality of
semi-structured tabular data, that needs to conform to some schema. Therefore,
these data quality measurements refer to the dataset schema types and constraints.

Linked Data can be considered as structured data. To evaluate the Linked Data
quality, one more data quality dimension should be taken into account – schema
quality dimension. Schema quality dimension is characterized by the following:

Correctness with respect to the model. Prior to the creation of relevant vocab-
ularies and Linked Data generation, data workers normally develop a data
model. Concepts and their attributes described in the data model should be
represented correctly in associated schema. Thus, for example, entities or
observations should form a concept, that is unique and has its own distin-
guishable identifier.

Correctness with respect to requirements is observed when the schema require-
ments in terms of model categories are represented correctly. For example,
if each order should have exactly one customer, the type of relationship
between entities Order and Customer should be "one-to-one", not "one-to-
many".

The minimalization dimension means conciseness of the Linked Data schema
and minimization of redundant schema and data elements.

17

The completeness of a schema measures the extent to which schema includes
all the necessary elements, i.e. attributes related to described entity or ob-
servation [5].

Another data quality dimension, applicable exclusively to Linked Data, is link-
ability completeness measuring the number of interlinked instances in a dataset
[4].

2.1.5 Data Anomalies

When a dataset does not satisfy given data quality criteria, it means that it contains
data anomalies. In order to provide higher data quality, these anomalies should
be detected and removed.

The sources of problems with the data may differ. The most common reason
of erroneous data is human errors during the manual production of the data. An-
other source for data quality issues is data schema evolution over time, which can
cause misinterpretation of new entity types or attributes. Finally, automated data
generation, such as information derived from sensors, carries its own issues, such
as errors due to the inferences from the environment or wrong calibration [25].

Although data quality issues differ from dataset to dataset, it is possible to
identify some common data anomalies. In order to use a systematic approach
to data cleaning and to alleviate further usage of the developed method for data
cleaning, it is necessary to explore possible data quality criteria violations and cat-
egorize them. To obtain a list of possible data anomalies, the research literature
on data quality, statistics, and data cleaning has been studied, including litera-
ture containing interview results with data workers [23] and literature using pure
logical reasoning to describe data quality issues [31, 35, 46].

Anomalies taxonomies in the research literature tend to be rather generic and
describe data quality problems for all types of data. According to the scope of
this thesis, we investigate only data anomalies inherent in tabular data aimed to be
transformed and published as Linked Data. There are several ways to categorize
data anomalies:

• By the scope of a data quality problem

• By the violated data quality dimension.

18

Addressing the scope of a data quality problem, data anomalies may occur
in single or multiple column values, in column headers, rows within a table or
across several tables (see Figure 2.3). Since column headers do not represent data
themselves but define the data structure, anomalies in column headers are treated
as schema quality issues.

19

20

Figure 2.3: Data anomalies categorized by scope of data quality problems

When data anomalies are categorized according to the affected data quality
dimension they can be divided into data anomalies violating accuracy, consistency,
completeness, uniqueness, and those, that affect several data quality dimensions.

A summary of extracted data anomalies for the purpose of this thesis is de-
scribed in Table 2.2.

21

22

Table 2.2: Summary of data anomalies

Scope Problem Data anomaly example Reasoning Affected data quality dimension

C
ol

um
n

va
lu

es

Illegal values bdate = 30.02.1987
Values outside of domain range. Date
30.02.1987 is illegal date

Accuracy: syntactic and semantic

Erroneous values bdate = 15.02.1987

Syntactically correct values, not contradict-
ing with other column values, but represent-
ing wrong attribute values for the entity. The
most difficult anomaly to identify

Accuracy: semantic

Inconsistent
column values

date = 30.02.1987, age = 18 Date of birth and age are inconsistent Consistency

Missing values
person1 = (name = "Alice Smith",
age = null)

One or several column values are missing Completeness
Consistency*

C
ol

um
n

he
ad

er
s

Column head-
ers containing
attribute values

observationEmpNo = (2014 = 123,
2015 = 157, 2016 = 170)

Observation about number of employees in
company contains values of attribute "year"
as column headers

Schema quality: correctness with
respect to the model

Incorrect column
headers

person1 = (name = "Alice Smith",
age = "female")

Column header is inconsistent with actual
attribute it holds

Schema quality: correctness with
respect to the model

Column headers
not related to
model

person1 = (name = "Alice Smith",
petName = "Polly")

Dataset describes attributes not relevant in
scope of the collection

Schema quality: correctness with
respect to the model

C
ol

um
n

va
lu

es
,

C
ol

um
n

he
ad

er
s Multiple values

stored in one
column

order1 = (number = 12345, ad-
dress = "New York, Harrison Street,
507")

Data anomaly takes place under the assump-
tion, that the data model requires storing ad-
dress in several attributes - city, street and
house number

Consistency,
Schema quality: correctness with
respect to the model

Single value is
splitted across
multiple columns

order1 = (number = 12345, city =
"New York", address = "Harrison
Street", houseNo = 507)

Data anomaly takes place under the assump-
tion, that the data model requires values of
address attribute to be stored in one column

Consistency,
Schema quality: correctness with
respect to the model

(Continued on Next Page)

23

Scope Problem Data anomaly example Reasoning Affected data quality dimension

R
ow

s
Duplicate rows

person1 = (name = "Alice Smith",
id = "12345")
person2 = (name = "Bob Johnson",
id = "12345")

Uniqueness of entity with primary key ID is
violated

Uniqueness

Row, describ-
ing entity not
belonging to a
collection

person1 = (name = "Alice Smith",
id = "12345")
person2 = (name = "MyCompany,
Inc.", id = "12346")

Same collection contains data about physi-
cal persons and company, i.e. another type
of entity - legal person. Type of described
entity should follow the schema.

Consistency

*Consistency violation because of missing values takes place in case of missing primary key value. In this way row describes an
entity, which has not a unique existence in the real world and therefore doesn’t satisfy defined schema.

2.2 The Semantic Web

A major part of Web content is not machine-accessible, i.e., although information
itself is available, it is still a challenge to process and interpret it completely auto-
matically. Difficulties and limitations in managing available data include search-
ing, extracting, and maintaining data.

The Semantic Web approach is aimed at representing the information con-
tained in World Wide Web in a way that is more advantageous in terms of data
consumption. The Semantic Web technologies are promoted by the World Wide
Web Consortium (W3C) – an international standardization organization, devel-
oping Web standards. This section provides information on basic Semantic Web
technologies used in this thesis.

One important term that is closely related to organizing data and represents
an essential part of the Semantic Web is an ontology. Ontology can be defined
as an explicit and formal specification of a conceptualization [19]. In the context
of the Semantic Web, the terms "ontology" and "vocabulary" are often used as
synonyms and describe concepts and relationships between concepts. Concepts
can be thought of as classes (types, categories) of entities of the real world. For
example, these can be persons, places, etc. The advantages of having a good data
ontology include the support for interlinking data and standardization of terms
for concepts and relationships between them. The number of ontologies have
been developed and are freely available on the Web. Data publishers, wishing to
take advantage of the Semantic Web are encouraged to adopt and extend existing
vocabularies to support data interlinking and standardization.

Another concept, that should be explained in the context of data organization
in the Semantic Web is data graph. Data graphs consist of resources and rela-
tionships between them. The basic building block of a data graph is a three-part
statement, commonly called a triple. The three parts composing a triple are sub-
ject, predicate and object. This way of constructing statements is very natural
and is analogous to constructing sentences in a natural language, where subjects,
verbs, and objects are used to express statements. Since information is stored in
the form of triples, knowledge bases of the Semantic Web data are often called
triplestores.

The easiest way to illustrate the terms introduced above is to use a simple

24

graph. Figure 2.4 illustrates one statement that can be constructed from Table 2.1,
where the subject is Alice, the predicate is gender and the object is female.

Figure 2.4: An example of data graph triple

Resource Description Framework

The formal language used to define basic graph structures in the Semantic Web
is RDF (Resource Description Framework). RDF statements can use different
syntax to be represented and interexchanged, e.g., XML syntax, N-Triples, Terse
RDF Triple Language (Turtle) etc. The following code describes the graph given
above in terms of a simple RDF/XML statement:

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <rdf:RDF
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:characteristic="https://www.example.com/PersonCharacteristics#">
6

7 <rdf:Description rdf:about="https://www.example.com/Person#Alice">
8 <characteristic:gender rdf:resource="https://www.example.com/genders#female" />
9 </rdf:Description>

10 </rdf:RDF>

Listing 2.1: A simple RDF statement

As its name suggests, the Resource Description Framework describes resources.
Resources may be any entities of the real world. To express the unique existence

25

of a described entity, every resource is identified by a Uniform Resource Identi-
fier (URI). URI’s are organized with the help of the namespaces. On line 5 in the
code in Listing 2.1, a namespace characteristic is defined, which has a namespace
URI "https://www.example.com/PersonCharacteristics#". The purpose of having
namespaces in RDF, as in any other language, is to avoid naming conflicts. Thus,
the data graph with fully qualified URIs looks like the graph depicted in Figure
2.5.

Figure 2.5: The data graph with fully qualified URIs

It is necessary to emphasize, that RDF is a standard language, used to express
data, but it doesn’t define the semantics of data. This is done with the help of
Resource Description Framework Schema (RDFS) and Web Ontology Language
(OWL). RDF Schema describes a domain in terms of classes and properties and
supports defining hierarchical relationships by using subclasses and subproperties.
The Web Ontology Language helps to express how the described data relates to
other data on the Web.

26

Querying Semantic Data

It is expected, that data based on the Semantic Web specifications is easier to
search and extract. Knowledge bases for Semantic Web data (triplestores) can be
queried with the help of SPARQL (SPARQL Protocol and RDF Query Language)
[18]. SPARQL is rather similar to SQL, whose syntax is familiar to many data
workers and developers.

SPARQL supports four forms of queries:

SELECT queries return a sequence of values defined by a query pattern in the
form of a table.

CONSTRUCT queries return RDF graph as a specified subset of the queried
data.

ASK queries return a boolean value, answering whether or not a query pattern
has a solution.

DESCRIBE queries return RDF graph, where the data variables to be returned
are defined not by a client, but by query endpoint.

1 PREFIX characteristic: <https://www.example.com/PersonCharacteristics#>
2

3 SELECT ?person
4 WHERE {
5 ?person characteristic:name "Alice" .
6 }

Listing 2.2: Example of SPARQL query

Listing 2.2 gives an example of a SELECT query. It is easy to see, that
SPARQL SELECT queries, just as SQL queries, have SELECT and WHERE
clauses. The important difference here is the presence of PREFIX keyword, iden-
tifying namespace used in the query.

27

Linked Open Data

Publishing data as a Linked Open Data covers two aspects: first, making data
open, i.e. available to everyone without any restrictions. This can be achieved
by publishing data under open licenses. The second aspect, linking data, implies
creating relationships between entities described in data expressed in machine-
readable form. The set of guidelines for publishing Linked Data on the Web was
defined by Tim Berners-Lee 4 and has following recommendations:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-
dards (RDF*, SPARQL).

4. Include links to other URIs so that they can discover more things [8].

The web of Linked Open Data is often visualized as a linked data cloud (Figure
2.6). The graph nodes in this figure represent datasets that have been published in
Linked Data format. The depicted nodes are based on the metadata collected by
contributors to the Data Hub5 data management platform and metadata extracted
from a crawl of the Linked Data on the Web conducted in April 2014.

4https://www.w3.org/DesignIssues/LinkedData.html last accessed May 18, 2016
5https://datahub.io/

28

29

Figure 2.6: Linked Open Data cloud 6

6http://lod-cloud.net/ last accessed May 18, 2016

Chapter 3

Problem Analysis

In the previous chapter, we defined data cleaning as a process of detecting and
removing data anomalies. This chapter provides more details on how these op-
erations are performed and concludes with a set of explicit requirements for the
artifact developed as part of this thesis to simplify data cleaning and transforma-
tion process.

3.1 Data Cleaning and Transformation Cycle

Comprehensive data cleaning comprises four general phases and is iterative by
nature. The phases of data cleaning are:

1. Data auditing aimed to detect data anomalies.

2. Definition of transformation workflow aimed to suggest a way to remove
data anomalies.

3. Execution of transformation workflow aimed to apply suggested transfor-
mation to data.

4. Verification of the executed transformation aimed to evaluate the results.

The generalized goal of this thesis is to develop an artifact supporting data clean-
ing and transformation to RDF. Hence, an input of raw tabular data should undergo

31

these four phases of data cleaning and be transformed to clean data either in tab-
ular or Linked Data format. The data cleaning cycle, as a part of a developed
artifact, is depicted in Figure 3.1.

Figure 3.1: Data cleaning and transformation cycle as a part of a developed artifact

Data Auditing

The first step in the data cleaning and transformation process is data auditing,
which is when data anomalies associated with a dataset are detected. The pro-
cess of identifying missing and erroneous values, duplicates, contradictions with
schema constraints, and other data anomalies is very time-consuming. The au-
tomation of this phase can significantly reduce the overall time required for data
cleaning. Various automated routines have already been developed for identify-
ing and solving data quality issues. However, fully automated approaches to data

32

cleaning suffer from a number of limitations. Many of the developed algorithms
for automated data anomalies discovery are able to identify potential data quality
issues. But nevertheless, user participation cannot be completely excluded and
human judgment is crucially important in the process of evaluating identified data
quality issues and choosing an appropriate method to fix them [26].

Automated data auditing is closely related to the schema definition. A number
of data quality dimensions described in Section 2.1.4 are defined as dataset schema
types and constraint violations. Therefore, automated methods of detecting data
quality issues require data worker to specify detailed schema on data.

When automated data auditing cannot help with detecting data anomalies, data
workers need to inspect the dataset manually. In this scenario, an important role
is played by appropriate data visualization [25]. In particular, good data ordering
makes it easier to scan data values in order to identify anomalies. Thereby, in
a sorted dataset, it is easier to notice "fuzzy" duplicates that can be missed by
automated duplicate detectors, since similar records will appear adjacent to each
other, or to identify extreme values, since they will appear at the beginning/end
of a sorted dataset. Visualization of raw data and extensive support of custom
dataset reordering significantly simplifies the process of manual data inspection,
which is performed in most cases, even when the automated data auditing systems
are available.

As a result of the first step of the data cleaning process, there should be a list
of data anomalies residing in the audited dataset.

Definition of a Transformation Workflow

After the data have been audited, and information about data anomalies is known,
the second phase, the definition of a transformation workflow, begins. During
this phase, the data worker specifies operations to perform on data in order to
eliminate data anomalies, enrich the data, or transform it into a form more suitable
for further audit, publication, or consumption. This step implies close interaction
with data worker since there are many ways to resolve data quality issues and,
therefore, data worker should assign precise cleaning logic. Thus, in the case
of missing data values, some default value may be used to replace null values,
rows with missing values can be removed from the dataset, lacking values may be

33

calculated out from known information, etc.

During this phase data may also either be extended with additional attributes,
making further data consumption more useful, or narrowed to a set of summaries
on data. In the case of creating Linked Data from tabular data, the explicit map-
ping of tabular values to a schema vocabulary should also be specified in this
phase.

The result of the definition of a transformation workflow phase is a set of
operations, containing all necessary details about which steps should be executed
on a dataset to obtain the desired result.

Execution of Transformation Workflow

The third step, transformation workflow execution, is performed after the defi-
nition of a transformation workflow. This step is executed automatically and the
implementation of the workflow should be applied in an efficient manner to all the
data that is intended to be transformed. In the context of this thesis, the expected
input data are assumed to be large-scale datasets.

The output of this step is transformed data. Depending on the defined trans-
formation workflow and desired form of the output, it can be either tabular data or
RDF data.

Verification of Executed Transformation

The last step of data cleaning and transformation cycle is verification of executed
transformation. Although some authors [36, 29] do not distinguish verification as
a separate step of data cleaning and transformation, this phase is very important
since it gives an evaluation of the performed transformation and determines a plan
for further action. After the verification of the performed transformation, in some
cases, transformed data may satisfy the defined data quality criteria, and cleaning
and transformation cycle is finished. In other cases, it may still have some data
quality issues, and the cycle of data cleaning and transformation starts again from
the phase of auditing data to eliminate the rest of data anomalies.

34

3.2 Overview of Existing Approaches and Products

In the process of performing any type of technological research, it is very impor-
tant to get acquainted with existing solutions for the researched problem. This
helps to determine the work already done in the researched area, simplifies identi-
fying present challenges and difficulties, and thus helps to set up the requirements
for the new solution. Currently, available software products for data cleaning and
transformation can be divided into several groups:

1. Spreadsheet software

2. Command line interface (CLI) tools

3. Programming languages and libraries for statistical data analysis

4. Complex systems designed to be used for interactive data cleaning and
transformation in ETL process.

The first group is comprised of spreadsheet software tools. Indeed, spread-
sheets are well-known to the most of the data workers, have a simple intuitive
interface, and require no advanced technical skills for their usage. Examples of
spreadsheet tools that can be used for tabular data cleaning are Libre Office Calc1,
Microsoft Excel2, Google Sheets3 and many others. A number of guidelines and
recommendations are available for learning how to clean tabular data with spread-
sheets. One good example is "A Gentle Introduction to Data Cleaning" series
from the School of Data community of data workers4. An important feature, that
makes spreadsheets very attractive for data workers is that spreadsheets are rep-
resented visually in tools. They display the input data, provide very simple and
intuitive interface for data manipulation and reflect the performed changes on data
immediately, providing the user with the possibility to verify the changes.

However, despite their simplicity and interactive design, spreadsheet software
products have a number of limitations and disadvantages.

1https://www.libreoffice.org/discover/calc/
2http://www.microsoftstore.com/store/msusa/en_US/pdp/Excel-2016/productID.

323021400
3https://www.google.com/sheets/about/
4http://schoolofdata.org/courses/#IntroDataCleaning last accessed May 18, 2016

35

Firstly, working with spreadsheets is error-prone. Perhaps, the one most well-
known error made during spreadsheet data transformation occurred in Reinhart
and Rogoff’s austerity-justifying paper [37]. Two Harvard economists published
a highly influential piece of work, which contained a wrong conclusion due to
an erroneous Excel spreadsheet formula. Transformation workflow definition er-
rors in spreadsheets are rather difficult to identify – data and transformation code
are mixed together, significantly hindering the process of code review. Further-
more, conventional spreadsheets are typically limited in functionality and so are
incapable of coping with the most sophisticated data quality problems. One more
substantial disadvantage of spreadsheet tools is that they are not suitable for pro-
cessing truly large amounts of data.

To conclude, spreadsheet software tools were not initially created for data
cleaning, and, although they have a simple and attractive interface and allow to
perform basic data transformations, these environments are not entirely suitable
for processing large amounts of data.

Another broad group of tools for cleaning tabular data are command-line tools.
Such tools are typically reliable, provide a broad set of functionalities, give an
ability to automate data cleaning and conversion, and allow to make this task
repeatable. Repeatability can significantly reduce time and cost data needed for
transforming data.

One good example is csvkit [17], which is a suite of command-line tools for
working with tabular data in CSV format. CSV is a common format used in
many business, scientific and statistical applications. csvkit supports basic dataset
reordering, filtering data, merging data from several datasets and generating sum-
maries on columns. Another command-line tool for more detailed cleaning is
CSVfix5. Compared to csvkit, this tool has more capabilities to manipulate the
data, such as merging several columns into one, applying a standard function to
the column values etc.

Although the aforementioned command line interface tools provide good func-
tionality for data cleaning and in some cases even able to handle large volumes of
input data, they suffer from lack of convenient user interface .

5http://neilb.bitbucket.org/csvfix/manual/csvfix16/csvfix.html

36

The tools from a third group, programming languages and libraries, include,
for example, Agate 6 Python library for data analysis. This library provides pow-
erful data cleaning and data analysis capabilities. In the context of data trans-
formations, as part of data analysis, it is worth to mention the R7 programming
language for statistical computing and the data manipulation tools based on this
language, e.g., dplyr8 and tidyr9. The disadvantage of the tools from this group is
that they require users to have considerable knowledge in programming.

Examples of relevant commercial ETL tools supporting powerful and efficient
data transformations include Pentaho Data Integration10 and Trifacta Wrangler11.
These systems are designed specifically to support an ETL process and offer a
number of useful data manipulation functionalities. However, they were not cre-
ated to support Linked Data capabilities, and are thus of limited relevance to this
thesis.

The system, most closely related to the research performed in this thesis, is
OpenRefine12, which is a free, open-source tool for data cleaning. OpenRefine
provides an interactive user-friendly interface suitable for users with any level
of technical competence. Through the installed RDF Refine plugin13, OpenRe-
fine makes it possible to assign RDF mappings and generate RDF data out of
input tabular data. Nevertheless, the tool has notable limitations. Transformation
functions are tightly coupled to the application’s core and are thus not exposed
as an API. Furthermore, the transformation engine uses a multi-pass approach to
data transformation operations, thus, data manipulation is very memory-intensive,
wich prevents usage with large-scale datasets.

After the evaluation of state-of-the-art solutions for data cleaning and transfor-
mation, it is possible to make a plan for the contribution to be made in the scope of
this thesis. The resulted artifact should provide broad capabilities for data clean-
ing and transformation, support Linked Data generation, have a convenient user
interface and be able to handle large-scale datasets. The next section provides

6https://agate.readthedocs.org/en/1.3.1/
7https://www.r-project.org/
8https://cran.r-project.org/web/packages/dplyr/index.html
9https://blog.rstudio.org/2014/07/22/introducing-tidyr/

10http://community.pentaho.com/projects/data-integration/ last accessed May 18, 2016
11https://www.trifacta.com/products/wrangler/ last accessed May 18, 2016
12http://openrefine.org/ last accessed May 18, 2016
13http://refine.deri.ie/ last accessed May 18, 2016

37

detailed requirements and success criteria for the product to be developed.

3.3 Requirements and Success Criteria

The final part of problem analysis is establishing a set of requirements for the
software product to be developed. These requirements represent the descriptions
of what the system should do, the services that it provides and the constraints on
its operation. Functional requirements for a system depend, among other things,
on the expected users of the software [43]. We divide the expected users of the
developed platform in two broad groups:

• Data publishers, whose goal is to clean data and to prepare it for publica-
tion in tabular or Linked Data format.

• Data consumers, including data scientists, who perform data analysis, and
developers, who create new applications and services requiring intensive
use of published data.

Developers comprise a group of users, who have knowledge and experience in
programming, and may be willing to embed data cleaning and transformation
functionalities in their applications. Thus, they benefit from the software product
exposing an API for some of its routines.

Other groups of users may have different experience and level of knowledge
in programming. Although data scientists and data publishers may work in close
collaboration with the IT department of their company, they are typically domain
experts and their technical competence may vary [23]. These users have a broad
knowledge about the data they work with, how they were assembled, how they
should be interpreted, and which calculations should be performed on these data.
Typically, data scientists and data publishers have to spend a large amount of time
on repeating the same sequence of modifications on data when data is updated or
new datasets are collected. These users will benefit from an interactive GUI and
the possibility to re-use transformations with different input data.

In summary, the developed platform should have a comprehensive GUI to be
appropriate for data publishers and data consumers who don’t have much expe-
rience with using programming languages in their work. At the same time, it

38

should allow executing routines defined in an API or write custom code directly,
to support data scientists who are proficient in using advanced technologies for
data manipulation and developers, who wish to use platform functionalities in ex-
ternal applications. The desired components for the new software product and the
way they associate with users are shown in Figure 3.2.

Figure 3.2: Main components of the new product

As a part of the technology research in this thesis, the aforementioned require-
ments are hereby stated in a way, which will make it possible to evaluate the
software after the development.

Thus, the framework should:

R1. Provide routines to address the most typical data quality issues with tabular
data.

39

R2. Provide routines to automate the generation of RDF data out from tabular
data.

R3. Provide routines that are available for use by external applications.

R4. Provide routines that can handle large volumes of data.

R5. Have a comprehensive user interface that will make it possible to easily use
the basic framework capabilities for users with no proficiency in program-
ming.

R6. Have a comprehensive user interface that will simplify writing, debugging
and use of custom code to perform complex data manipulations for data
scientists with experience in programming.

R7. Provide input data visualization that will help in the visual detection of data
anomalies.

R8. Support an interactive transformation workflow with automatic execution
and instant feedback on changes to data.

R9. The transformation workflow should be easy to reuse.

Another source for discovering requirements is real-life scenarios [43]. Af-
ter the prototype development is finished, it will be tested with several use cases,
which may reveal new requirements for the tool or necessary corrections to exist-
ing ones.

40

Chapter 4

Grafterizer: A Flexible Framework
for Tabular Data Cleaning and
Linked Data Generation

4.1 Framework Overview

Grafterizer was developed as a web-based framework for data cleaning and trans-
formations and integrated in the DataGraft platform. The core goal of Grafterizer
is to support cleaning of tabular data and transforming it to an RDF graph. The
general process it supports is shown in Figure 4.1.

Figure 4.1: The process of generating a semantic graph from tabular data

41

Grafterizer is designed to support two types of transformations: tabular-to-
tabular and tabular-to-RDF. Tabular-to-tabular transformations take tabular data
in CSV format as an input and produce transformed tabular data in CSV format
as an output. Tabular-to-RDF transformations take tabular data in CSV format
as an input and produce RDF data in N-triples serialization format as an output.
The way these two types of transformations can be performed in Grafterizer is
discussed in Section 4.4.

4.2 Core Components

The two main components closely related to Grafterizer are Grafter1 – a software
library and domain specific language (DSL) for creating and executing data trans-
formations – and Graftwerk2 – a back-end service that supports exposing Grafter
transformations "as-a-service" and provides a RESTful API for executing these
transformations.

Graftwerk provides two core features:

1. Executing a specified transformation on the entire dataset and returning the
results in chosen format (either tabular or RDF).

2. Executing a specified transformation on the subset of data and returning the
results for this subset.

The second feature is essential in allowing an interactive live preview of the trans-
formation.

Grafter is a powerful software library and DSL for producing linked data
graphs from tabular data, which provides extensive support for tabular-to-tabular
data conversions and powerful ETL data transformations, suitable for handling
large datasets. Grafter was developed by Swirrl3, a company focused on develop-
ing Linked Open Data solutions for the public sector. The Grafter suite of tools
is implemented in Clojure4 – a functional programming language and Lisp dialect

1http://grafter.org/
2https://github.com/proDataMarket/graftwerk
3http://www.swirrl.com/
4https://clojure.org/

42

that runs on the Java virtual machine (JVM). The use of the JVM allows Clojure
to have access to the numerous libraries, available for JVM-based languages. Us-
ing a functional programming language, such as Clojure, is also is an advantage
in terms of data processing. The benefits of this choice include:

• Functional programs typically operate on immutable data structures. Since
the data structures cannot be modified, they can be shared without need to
ensure concurrency, which allows more efficient memory use.

• Most of functional languages, including Clojure, support lazy evaluation.
Lazy evaluation implies deferring the computation of values until they are
needed, which helps to avoid unnecessary computations and allows to use
infinite data structures.

• Functional languages use higher-order functions. This means ability to pro-
cess code as data and improves program modularity.

The grafter consists of several modules, that encapsulate its various function-
alities. The schema of Grafter’s architecture and its interaction with Grafterizer
can be seen in Figure 4.2.

Figure 4.2: Grafter’s architecture and Grafterizer

The two modules that are most relevant for this thesis are defined in names-
paces grafter.rdf and grafter.tabular. These modules are concentrated on sup-
porting two fundamental sides of Grafter transformations: cleaning tabular data
(tabular-to-tabular type of conversion) and transformation to Linked Data (tabular-
to-RDF type of conversion).

43

Figure 4.3: Pipes, performing tabular-to-tabular transformations

4.2.1 Grafter Pipes

The tabular data transformation process in Grafter is realized through a pipeline
abstraction, i.e., each step of a transformation is defined as a pipe – a function
that performs simple data conversion on its input and produces an output. These
functions are composed together in a pipeline, whereby the output of each pipe
serves as input to the next (see Figure 4.3).

Pipeline functions may be combined arbitrarily, whereby each combination
produces another pipeline. Each of these pipes is a pure Clojure function from
a Dataset to a Dataset , where Dataset is a data structure used to handle data in
Grafter. The example can be seen in a code sample below:

1 -> (read-dataset data-file)
2 (drop-rows 1)
3 (make-dataset move-first-row-to-header)
4 (mapc {:gender {"f" (s "female")
5 "m" (s "male")}}))

Listing 4.1: Example of Grafter’s pipeline

Each line from the example above is a function call that takes a Dataset and,
optionally, other parameters as an input, and returns a modified Dataset.

The functions’ uniformity in terms of input and output makes it very intuitive
for users to use pipelines for data manipulation.

44

4.2.2 Grafter Grafts

In order to publish dataset as Linked Data, the cleaned dataset needs to be con-
verted into a graph structure. While cleaning a dataset as tabular-to-tabular trans-
formation is handled by pipes, the tabular-to-RDF transformation is performed
with help of another type of Grafter function – graft (see Figure 4.4). A graft
takes a Dataset as input and produces a sequence of Quads. Quad is a data unit
similar to triples consisting of a subject, predicate, object and extended by context.

Figure 4.4: Graft, performing tabular-to-RDF transformations

Quads are formed from rows in a dataset. In addition to the dataset itself,
grafts receive a mapping specification, where quads elements (subjects, predi-
cates, objects and context) and their relations to dataset columns are described.
The example of a graft template can be seen in a code sample below:

1 (def make-graph
2 (graph-fn [{:keys [name sex age person-uri gender]}]
3 (graph (base-graph "example")
4 [person-uri
5 [rdf:a foaf:Person]
6 [foaf:gender sex]
7 [foaf:age age]
8 [foaf:name (s name)]])))

Listing 4.2: Example of Grafter’s pipeline

This sample of code shows use of graph-fn function. In the second line the
arguments to this function, which are dataset columns involved in the mapping,
are specified. The lines 3-8 represent the body of the function. The body of the
function is structured like this:

45

1 (graph graph-uri
2 [subject1 [predicate1 object1]
3 [predicate2 object2]]
4 [subject2 [predicate3 object3]])

Listing 4.3: The structure of graph-fn function

The graph-uri variable defines a context for the generated quads, whereas their
subjects predicates and objects are defined in nested vectors. The graph-fn func-
tion generates the sequence of quads according to the specified mapping for the
each row of the dataset.

4.3 The Grafterizer Transformation Functions

The Grafter library provides a set of useful functions for processing tabular data5.
However, some of the common data anomalies listed in Table 2.2 either cannot
be solved with help of functions provided by Grafter, or require more complex,
data-dependent combinations of Grafter functions. The intuitive solution to this
problem is to extend the Grafter library for tabular transformations with routines
performing the basic data transformation operations.

The designed set of routines should be usable as an extension to the Grafter
DSL and suitable for use when implementing graphical user interface compo-
nents. Hence, this set of routines may be referred to as application programming
interface (API), and the general guidelines for API development can be used dur-
ing the design and implementation process6.

Thus, the developed set of routines must satisfy the following requirements:

1. Completeness implies that the set of routines should be complete and sup-
port all the necessary routines.

2. Understandable and unambiguous routine names and specifications make
easier to memorize the API routines and understand purpose of their use.

3. Readability of resulting code makes the API easier to maintain.

5http://api.grafter.org/docs/0.6.0/grafter.tabular.html
6http://people.mpi-inf.mpg.de/~jblanche/api-design.pdf last accessed May 18, 2016

46

4. Safety of use. A well-designed routines should be capable of anticipating,
detecting and resolution of errors during the execution.

5. Extensibility implies ease of adding new routines to the set of already ex-
posed.

To ensure the first requirement, completeness, it is necessary to know the full
set of tabular data transformation operations, that should be supported. Based on
performed research on data anomalies, and, taking into consideration the features
supported by existing related systems, the basic operations on tabular data were
identified. This set is partially covered by Grafter capabilities, however, a signif-
icant part of essential data transformation operations do not have corresponding
functions in the Grafter API (see Table 4.1). The missing operations comprise the
set of routines that are developed as part of this thesis.

The understandable and unambiguous routine names and specifications should
be defined after obtaining the full set of operations to be supported. The specifica-
tion of developed routines among with descriptions and examples is summarized
in Appendix B.

The readability of resulting code, safety of use and extensibility depend on the
correctness and good style of implementation. The developed routines have been
deployed at Clojars – a public repository for open source Clojure libraries7.

7https://clojars.org/grafterizer/tabular_functions

47

48

Table 4.1: Summary of basic tabular transformations

Scope Name Description Function name Supported
by Grafter

Application

R
ow

s

Add Row Create a new record in a dataset add-row no Dataset enrichment

Take Rows
Extract a selected row (sequence of
rows)

take-rows
rows

yes
Resolves anomaly: "Rows, de-
scribing entities not belonging to
a collection"

Drop Rows
Delete a selected row (sequence of
rows)

drop-rows
rows

yes
Resolves anomaly: "Rows, de-
scribing entities not belonging to
a collection"

Shift Row
Change a row’s position inside a
dataset

shift-row no
Reordering, simplifies anomaly
detection

Filter Rows
Filter rows for exact matches, regular
expressions, empty values, etc.

grep yes
Resolves anomaly: "Rows, de-
scribing entities not belonging to
a collection", "Missing values"*

Remove
Duplicates

Remove similar rows based on certain
column or set of columns

remove-duplicates no
Resolves anomaly: "Duplicate
rows"

Entire
dataset

Sort
Dataset

Sort dataset by given column names in
given order

sort-dataset no
Reordering, simplifies anomaly
detection

(Continued on Next Page)

49

Scope Name Description Function name Provided
by Grafter

Application
E

nt
ir

e
da

ta
se

t
Reshape
Dataset
(Melt)

Move columns to rows melt yes
Resolves anomaly: "Column
headers containing attribute val-
ues"

Reshape
Dataset
(Cast)

Move rows to columns by categorizing
and aggregating

cast no
Dataset enrichment, simplifies
anomaly detection

Group and
Aggregate

Group values by column or multiple
columns and perform aggregation (get
minimum, maximum or average value,
count or sum values in every group) on
the rest of columns

group-rows no
Dataset enrichment, simplifies
anomaly detection

C
ol

um
ns

Add
Column

Add a column with a manually speci-
fied value

add-column
add-columns

yes Dataset enrichment

Derive
Column

Add a column with values computed
from other columns

derive-column yes Dataset enrichment

Take
Columns

Take selected column(s) columns yes
Resolves anomaly: "Column
headers not related to model"

Drop
Columns

Drop selected column(s) remove-
columns

no
Resolves anomaly: "Column
headers not related to model"

(Continued on Next Page)

50

Scope Name Description Function name Provided
by Grafter

Application

C
ol

um
ns

Shift Col-
umn

Change columns’ order shift-column no
Reordering, simplifies anomaly
detection

Merge
Columns

Merge columns using custom separa-
tor

merge-
columns

no
Resolves anomaly: "Single
value is splitted across multiple
columns"

Split Col-
umn

Split column using custom separator split no
Resolves anomaly: "Multiple
values stored in one column"

Rename
Columns

Change column headers rename-
columns

yes
Resolves anomaly: "Incorrect
column headers"

Map
Columns

Apply function to all values in a col-
umn

mapc yes

Resolves anomalies: "Illegal
values", "Erroneous values",
"Inconsistent column values",
"Missing values", ""

Convert
Datatype†

Cast values in a column to specified
datatype

convert-
datatype

no
Resolves anomalies: "Illegal
values"

*Missing values anomaly can be resolved by filtering rows if data worker’s cleaning logic implies removing rows with missing values.
†Convert datatype function is oriented to XSD datatypes and therefore is used during RDF mapping rather than during tabular cleaning.

4.4 The Grafterizer Graphical User Interface De-
sign

The Grafter library is primarily targeted at software developers. As discussed in
Section 3.3, a significant part of expected Grafterizer framework users are domain
experts, who may have no or little experience in software development. However,
one of the fundamental requirements for the framework is to have a comprehensive
user interface. Thus, an essential part of the practical work in this thesis is the
implementation of Grafterizer’s GUI.

Grafterizer is designed as a web application and implemented in Angular JS8.
The list of technologies used in the development process includes:

• Grafter library and DSL for data transformations.

• Grafwerk back-end service for executing Grafter transformations.

• AngularUI9 suite for building user interfaces for developers using Angular
JS.

• Angular Material10 UI framework and implementation of Google’s Mate-
rial Design11 Specification.

• jsedn12 library for parsing and generation of Grafter/Clojure code.

The resulting framework supports building Grafter transformations in an easy
and interactive way. The basic functionalities are as follows:

Defining and editing data transformation workflows – operations of a trans-
formation workflow can be easily added, edited, reordered or removed. All
operations are defined with parameters, which can be changed at any time
when designing the transformation.

8https://angularjs.org/
9http://angular-ui.github.io/

10https://material.angularjs.org/latest/
11https://www.google.com/design/spec/material-design/introduction.html#

introduction-goals
12https://github.com/shaunxcode/jsedn

51

Live preview – the framework interactively displays the transformed dataset,
thus supporting a real-time evaluation of a defined transformation workflow.
Live preview feature also supports error reporting by notifying users about
errors during transformation execution in a pop-up window.

Sharing and reusing the data transformation workflows – this feature is sup-
ported by the integration with the DataGraft platform. Transformations cre-
ated with the help of Grafterizer are stored as a sequence of operations on
data and can be reused and copied.

Grafterizer’s user interfacfe(Figure 4.5) consists of a preview panel (on the
right side) and transformation definition panel (on the left side).

Figure 4.5: The screenshot of Grafterizer’s GUI

The transformation definition allows specifying transformation metadata and
the two types of Grafter’s transformations: tabular data cleaning and converting
tabular data to RDF. Furthermore, it displays the generated Clojure (Grafter) code.

Tabular-to-tabular transformations are specified in a visual presentation of a
Grafter pipeline, clearly demarcating the order of pipeline functions, used to pro-
cess the data. These functions include both Grafter routines and routines from the
extensions to Grafter developed as part of this thesis. The interface allows users
to specify parameters to functions (Figure 4.6) with a possibility to edit them later
on. When these parameters are edited, the preview shows the result immediately.
The user is also able to preview the state of the dataset on each step of the trans-
formation. A possibility to edit pipeline functions’ parameters, change the order

52

of pipeline functions and get immediate feedback simplifies a process of defining
the transformation workflow and the transformation workflow verification.

Figure 4.6: Adding a new pipeline function

Due to the inevitable variations in data quality issues, operations on data have
not been limited by the functions listed in previous section. Grafterizer allows
users to define their own custom functions on data (Figure 4.7) and include them
in the transformation pipeline. Having user-defined custom code as independent
utility functions provides an essential flexibility in transforming data, helps to en-
capsulate transformation logic and makes it possible to reuse the utility functions
at different points of a transformation.

Figure 4.7: Adding a new utility function

53

The general cycle of data cleaning and transformation, discussed in Section
3.1, corresponds well to Grafterizer’s workflow. The first step of the process, data
auditing, is performed by visual inspection of a dataset, which is supported by
the interactive preview functionality and aided by various reordering functions.
The definition of a transformation workflow is implemented as the process of
composing a transformation pipeline. The execution of a transformation workflow
takes place simultaneously with pipeline composition and the results are instantly
visualized in a live preview, thus making it possible to verify the transformation.

After data quality issues are solved, the dataset can be transformed to the
Linked Data graph. The RDF triple patterns that should appear in the resulting
linked data are designed by the user, whereby all triples’ subjects, predicates and
objects are specified manually through a mapping procedure. During the mapping
process column headers are mapped to RDF nodes in order to produce a set of
triples that corresponds to each data row (Figure 4.8).

Figure 4.8: RDF mapping in Grafterizer

Grafterizer supports reuse of existing RDF ontologies by providing a search-
able catalog of vocabularies and makes it possible to manage individual names-
pace prefixes. Each column in a dataset can be mapped as a URI node with names-
pace prefix assigned by user or literal node with a specified datatype. Grafterizer
also provides support for error handling when casting to datatypes. To support

54

Figure 4.9: Casting to datatypes and assigning conditions during RDF mapping

this, a routine for casting values to specified datatype was implemented among
with other developed Clojure functions. In addition, users may assign condition(s)
under which a triple or entire sub-graph should be generated (Figure 4.9).

If the RDF mapping is present in the transformation, Grafterizer automatically
performs tabular-to-RDF transformation. If the mapping is omitted, the executed
transformation will return tabular dataset.

To summarize, the innovation phase as a part of the technology research in
this thesis resulted in:

• Specifying the set of tabular data transformation operations that should be
supported.

• Implementing the subset of tabular data transformation operations, that are
not supported by Grafter DSL.

• Implementing the Grafterizer user interface in collaboration with the team
of software developers.

55

Chapter 5

Evaluation

This section performs a detailed evaluation, whereby the developed framework
is compared with relevant software products with similar capabilities, chosen ap-
proach to Linked Data generation is evaluated with resprect to the alternative one,
and the software is tested with real-life datasets.

5.1 Comparative Evaluation of Data Cleaning Ca-
pabilities

During the process of collecting the requirements for the artifact, several related
software products were examined. These tools served as the input to the specifi-
cation of operations on data that should be supported by the developed solution
and made it possible to evaluate Grafterizer in the context of subset of tools with
similar functionalities.

The software products used in the evaluation were chosen with respect to their
capabilities to perform data cleaning and transformation operations, expected in-
put (tabular data), the basic purpose of their operation and their popularity among
data workers. To define candidate products for the comparison, several recom-
mendations from various communities were taken into account1.

1https://theodi.org/blog/tools-for-working-with-csv-files last accessed May 18, 2016
https://multimedia.journalism.berkeley.edu/tutorials/cleaning-data/ last accessed May
18, 2016
http://govhack-toolkit.readthedocs.org/technical/tabular-data/ last accessed May 18,

57

The relevant tools chosen for the comparison can be categorized as follows:

• Command line interface tools:

– csvkit 0.9.12 – suite of utilities for converting to and working with CSV
data format.

– CSVfix 1.63 – command-line stream editor for CSV data.

• Programming language library for data analysis:

– Agate 1.3.14 – Python data analysis library.

• Spreadsheet software:

– Microsoft Excel 20165 – spreadsheet software for data manipulation
and data analysis.

• Complex systems designed to be used for interactive data cleaning and
transformation in ETL process:

– Trifacta Wrangler6 – an interactive tool for data cleaning and transfor-
mation, part of Trifacta’s data preparation platform.

– OpenRefine 2.67 – a desktop application for data cleaning and trans-
formation .

– Grafterizer 0.4.18 – a web-based framework for data cleaning and
transformations, part of DataGraft platform for data transformation
and publishing.

2016
http://digitalarchaeology.msu.edu/kb/2013/09/17/data-cleaning-transformation-
management-tools/ last accessed May 18, 2016
https://www.quora.com/What-are-the-best-data-cleansing-tools last accessed May 18,
2016

2https://csvkit.readthedocs.org/
3http://neilb.bitbucket.org/csvfix/manual/csvfix16/csvfix.html
4https://agate.readthedocs.org/en/1.3.1/
5http://www.microsoftstore.com/store/msusa/en_US/pdp/Excel-2016/productID.

323021400
6https://www.trifacta.com/products/wrangler/
7http://openrefine.org/
8https://datagraft.net/

58

Since the investigated software tools were designed for slightly different target
user groups, the inspected features were categorized in correspondence with their
effect on data. The categories are:

• Data reordering as a set of operations changing input data order.

• Data extraction as a set of operations taking a subset of data elements from
input data.

• Data manipulation as a set of operations changing values in input data.

• Data enrichment as a set of operations adding new values to a dataset.

• Data examining as a set of operations performing some analysis on a dataset
without changing input data.

The thorough comparative summary of features available in most popular tools
for data manipulation is given in Table 5.1.

59

60

Table 5.1: Comparative summary of basic features supported by most used data cleaning and transformation tools

Feature Solutions without GUI Advanced data manipulation systems with GUI
Agate
(Python library)

csvkit
(CLI tool)

CSVfix
(CLI tool)

MS Excel
(Spreadsheet)

Trifacta
Wrangler

OpenRefine Grafterizer

R
eo

rd
er

in
g

Sort data by
one or several
columns

order_by method
csvsort command, im-
possible to choose be-
tween sort types

sort command

impossible to sort by
several columns and
to choose between
sort types

Reorder
columns

Requires listing all the
columns in the desired
order

Requires listing all the
columns in the desired
order

Requires listing all the
columns in the desired
order

Reorder rows
manually
based on their
positions

Reshape
dataset

pivot, normalize and
denormalize methods

May require different
ways of implemen-
tation depending on
data

May require different
ways of implemen-
tation depending on
data

E
xt

ra
ct

io
n

Take a sub-
set of rows
by value or
condition
(filtering)

where method csvgrep command find command

Take a subset
of rows by
their positions

limit method, hard to
choose rows by num-
bers

only allows to select
rows to database

possible using macros

Remove dupli-
cates

unique method unique command

Take a subset
of columns

csvcut command exclude command

(Continued on Next Page)

61

Feature Solutions without GUI Advanced data manipulation systems with GUI
Agate
(Python library)

csvkit
(CLI tool)

CSVfix
(CLI tool)

MS Excel
(Spreadsheet)

Trifacta
Wrangler

OpenRefine Grafterizer
M

an
ip

ul
at

io
n

Modify a
column by
applying
a standard
or custom
function

possible as: compute
new column → re-
move old column →
rename new column

eval and edit com-
mands

Rename
columns
manually

rename method summary command

Rename
columns by
applying a
function to a
current column
name
Merge values
from several
columns

merge command
possible using GREL
code

Split values
from one col-
umn to several
columns

split_char command

(Continued on Next Page)

62

Feature Solutions without GUI Advanced data manipulation systems with GUI
Agate
(Python library)

csvkit
(CLI tool)

CSVfix
(CLI tool)

MS Excel
(Spreadsheet)

Trifacta
Wrangler

OpenRefine Grafterizer

Edit cell values
manually (re-
fer particular
cell)

E
nr

ic
hm

en
t

Concatenate
several
datasets

merge method csvstack command file_merge command possible using macros
possible using GREL
code

currently unavailable
in Grafterizer UI, but
possible to use via
join-dataset function

Relational
join of several
datasets

implemented in
agate-lookup exten-
sion

csvjoin command join command
possible using MS
Query

possible using GREL
code

currently unavailable
in Grafterizer UI, but
possible to use via
join-dataset function

Group and
aggregate for
one or several
columns

group_by method csvgroup command summary command

May require different
ways of implemen-
tation depending on
data

possible using GREL
code

Add new
column (com-
puted or with
custom values)

compute method
only possible to add
empty or fixed string

Add new row
with manu-
ally specified
values

only possible through
adding new column
and then transposing a
dataset

(Continued on Next Page)

63

Feature Solutions without GUI Advanced data manipulation systems with GUI
Agate
(Python library)

csvkit
(CLI tool)

CSVfix
(CLI tool)

MS Excel
(Spreadsheet)

Trifacta
Wrangler

OpenRefine Grafterizer
E

xa
m

in
in

g
Get statistics
on a dataset,
identify out-
liers

stdev_outliers and
Summary methods

csvstat command stat command
Faceting may help in
identifying outliers

Check for
spelling errors

possible through find-
ing similar records

possible through find-
ing similar records

Find similar
records

63

To summarize, Grafterizer supports most of basic functionalities provided by
other relevant data cleaning and transformation tools.

5.2 Comparative Evaluation with the R2RML Ap-
proach

As part of our comparative evaluation of the RDF mapping approach we exam-
ine R2RML (RDB to RDF Mapping Language) – a language for expressing cus-
tomized mappings from relational databases to RDF datasets [11]. In contrast to
the approach in Grafterizer, the R2RML approach requires the input data to be
stored in a relational database.

The R2RML approach is a rather attractive because the W3C recommenda-
tions provide standardised specifications for converting from relational databases
to semantic web data [11, 3] and a number of tools are available for performing
such a conversion [44]. However, due to the requirement to define a database
schema and to convert data into the relational database standards, it becomes in-
flexible when more complex data transformations are required. Building a com-
prehensive user interface using R2RML significantly depends on the details of the
implementation.

To conduct a comparison, we examined data provided by the Linked Open
NPD FactPages project9, that performs conversion of the Norwegian Petroleum
Directorate’s FactPages10 to Linked Open Data using the R2RML [41]. In terms
of the project, 70 tabular datasets (in the form of CSV files) were cleaned and
loaded to a MySQL11 relational database, after this a D2RQ12 map was generated
and used to dump database to RDF. Some steps of the data manipulation in this
project required a great effort:

• Creating a relational schema for the database. This required manual spec-
ifying of the database’s tables, columns, column datatypes, primary and
foreign keys.

9http://sws.ifi.uio.no/project/npd-v2/ last accessed May 18, 2016
10http://factpages.npd.no/factpages/
11http://www.mysql.com/
12http://http://d2rq.org/

64

• Prior to the loading data files into a relational database, they had to be
cleaned, whereby, for example, date and time values were converted into the
correct format for MySQL; values used to indicate null ("NA", "not avail-
able", "n/a", "N/A", "" and "NULL") set to the database null values; values
used to indicate unknown values ("?", "Not known") were transformed to
the standard string "UNKNOWN"; empty date values were converted to
"9999-12-31" date value.

• The identifiers of classes and properties in automatically generated D2RQ
map are too related to the database terms, and corresponding URIs are not
informative. For this reason, D2RQ map was edited manually [41].

The aforementioned project conclusion expresses some difficulties of data
transformation:

Significant amounts of additional (largely manual) effort were needed
to produce good quality RDF data, but this was due at least in part to
quality issues relating to the source data [41].

To find out whether or not Grafterizer can solve these difficulties, a subset of
5 tabular datasets was cleaned, mapped to the schema corresponding to D2RQ
map used in the aforementioned project and converted to an RDF graph. Example
screenshots for the created Grafterizer pipeline and RDF mapping can be seen in
Figure 5.1 and Figure 5.2 correspondingly.

65

Figure 5.1: The screenshot of NPD Fact Pages Grafterizer pipeline

Figure 5.2: The screenshot of NPD Fact Pages RDF mapping

66

The data cleaning operations, that were performed manually in the Linked
Open NPD FactPages project, were performed with help of Grafterizer data clean-
ing functions. This allows the defined transformation to be reused if the datasets
will be changed over time. Furthermore, Grafterizer provides a convenient inter-
face for the datatype conversion with the possibility to specify the output values
that will be used for empty or erroneous input values. This datatype conversion
can be defined directly during the RDF mapping. In addition, the RDF gener-
ation with Grafterizer doesn’t require having a relational database that excludes
difficulties with creating the database schema.

Thus, the conducted comparison makes it possible to conclude that the ap-
proach implemented in Grafterizer can significantly simplify tabular data cleaning
and allows faster data transformation by avoiding the overhead of having a step of
storing data in relational database.

5.3 Use Case Testing

This section contains short descriptions of real-life use case scenarios, in which
the Grafterizer framework was used to clean the input data and convert it to RDF
form. Each subsection contains basic information about the project, the number
of input tabular datasets, the encountered limitations and resulting improvements
in Grafterizer.

PLUQI: Personalized and Localized Urban Quality Index

Personalised Localised Urban Quality Index (or PLUQI for short) is a Web appli-
cation, that was developed by Saltlux13 company. PLUQI provides a visualization
of level of well-being and sustainability for the set of cities based on individual
preferences (Figure 5.3). One of the challenges associated with this project was
to collect and integrate together various data related to life quality in the points of
interest. The collected data was represented by tabular datasets, which had to be
cleaned and converted to Linked Data.

13http://saltlux.com/

67

Figure 5.3: PLUQI application screenshot

The main domains, considered in terms of life quality are:

• Daily life satisfaction: weather, transportation, community, etc.

• Healthcare level: number of doctors, hospitals, suicide statistics, etc.

• Safety and security: number of police stations, fire stations, crimes per
capita, etc.

• Financial satisfaction: prices, income, housing, savings, debt, insurance,
pension, etc.

• The level of opportunity: jobs, unemployment, education, re-education,
economic dynamics, etc.

• Environmental needs and efficiency: green space, air quality, etc.

The Grafterizer framework was used to prepare data and transform it to RDF.
Input datasets include:

• Cultural facilities: 4 datasets

68

• Traffic equipment: 1 dataset

• Green space: 2 datasets

• Highschools: 1 dataset

• Crime statistics: 1 dataset

• Highschools: 1 dataset.

Environmental Data (Smart Open Data)

Grafterizer was used to perform data transformations on datasets in the Smar-
tOpenData14 project. The datasets hold information from the biodiversity and
environment protection domains. Raw tabular data were cleaned and transformed
to RDF according to a model defined specifically for the project. Input datasets
for SmartOpenData project come from a total of 47 CSV files, which includes
42 TRAGSA Pilot files and 5 ARPA Pilot files. During the Smart Open Data
use case scenario, the required data transformations were performed as well via
another system for data transformation – OpenRefine.

InfraRisk: Identifying Critical INFRAstructure at RISK from
Natural Hazards

InfraRisk15 is a framework to identify and track the impact of natural hazards on
infrastructure networks (e.g. roads, rails). The knowledge base for the project was
created from 6 tabular datasets, cleaned and transformed to RDF with the help of
Grafterizer.

Other Examples

Other cases of using Grafterizer to clean tabular data and convert it to RDF in-
clude, for example, processing property-related data provided by Statsbygg16 , the

14http://www.smartopendata.eu/
15http://www.infrarisk-fp7.eu/
16http://www.statsbygg.no/

69

Norwegian government’s key advisor in construction and property affairs. In this
case data about public buildings in Norway was integrated with external informa-
tion about accessibility in buildings. The goals of this integration are to enrich
the currently available information about public buildings in Norway, and provide
a more efficient mechanism to share this data with external organisations and the
general public.

One more example of use, that is worth to mention is transforming data from
the CITI-SENSE17 project. In this scenario, Grafterizer was used to clean and
transform air quality sensor data.

Resulting Improvements and Evaluation Summary

During testing with these use cases, the need for implementing additional func-
tionalities was identified. The PLUQI use case scenario has revealed a need to im-
plement an interface for parameterizing user-defined utility functions. The Smart
Open Data use case scenario revealed the need to implement logic and interface
for sorting the dataset and removing duplicates. The improvements in RDF map-
ping part as a result of tool evaluation with this use case scenario were in imple-
menting a user interface for creating language-tagged string literals. The work
with the Infrarisk use case scenario revealed the need for assigning RDF map-
pings conditions. The conditions evaluate specified column values for each row,
whereas the output of conditional statement defines whether an RDF statement
will be created for this row.

After improving Grafterizer with the aforementioned functionalities, it was
possible to perform the data cleaning for all used input tabular datasets and gen-
erate valid RDF data from them.

17http://www.citi-sense.eu/

70

Chapter 6

Conclusion

As a problem statement for this thesis, there were identified challenges of sim-
ple integration of heterogeneous data sources. One attractive high-level solution
to easily and seamlessly merge the datasets is to follow the Semantic Web spec-
ifications and publish data in the Linked Data format. This requires converting
information about entities and relationships between them into the standardized
machine-readable RDF form.

At the same time, most the data consumers and data publishers spend too much
time and effort for data cleaning. Currently, the process of generating Linked
Open Data is additionally hindered by the absence of the unified framework for
data cleaning and transformation to RDF. In addition, the complexity of available
tools limits the opportunities for data manipulation for data workers with a lack
of programming experience.

To alleviate these problems, this thesis contributes with essential improve-
ments to an available framework for data cleaning and transformation to graph
data, providing the necessary functionalities to cope with common data cleaning
problems, while at the same time remaining simple – enough that non-programmers
can use it and flexible – enough that data developers can easily work with it. The
results of this thesis [45] have been accepted to the Extended Semantic Web Con-
ference1 (ESWC) – the international conference on Semantic Web technologies.

1http://2016.eswc-conferences.org/

71

6.1 The Evaluation of Performed Work in Accor-
dance with the Requirements

To evaluate the performed work, it is necessary to refer to the set of requirements,
defined in Section 3.3. According to these requirements, the developed artifact
should:

R1. Provide routines to address the most typical data quality issues with tabular
data. This requirement is satisfied with respect to the data quality issues
discussed in Section 2.1.5. The developed artifact supports the set of tabular
operations to resolve most common tabular data quality issues (Section 4.3).

R2. Provide routines to automate the generation of RDF data out from tabular
data. The developed artifact allows generation of RDF data out from tabular
data through the Grafter graph-fn function (Section 4.2.2).

R3. Provide routines that are available for use by external applications. The
routines for tabular data cleaning, as well as the routines for generating RDF
data are implemented as openly available and well-documented functions,
which allows to use them by external applications.

R4. Provide routines that can handle large volumes of data. The developed
routines can be effectively executed on large volumes of data. However,
the Grafterizer user interface has the limitation on the size of uploaded data
(data files shouldn’t be larger than 10 MB each).

R5. Have a comprehensive user interface that will make it possible to easily use
the basic framework capabilities for users with no proficiency in program-
ming. The Grafterizer user interface supports specifying a transformation
without using custom code. Specifying the transformation only through the
GUI for the functions discussed in Section 4.3 can eliminate the most com-
mon data quality issues. However, more sophisticated transformations still
require the user to have an experience in programming.

R6. Have a comprehensive user interface that will simplify writing, debugging
and use of custom code to perform complex data manipulations for data

72

scientists with experience in programming. The Grafterizer user interface
supports writing, debugging and using a custom code in the transformation
through the "Edit utility functions" capability (Section 4.4).

R7. Provide input data visualization that will help in the visual detection of data
anomalies. The Grafterizer interactive preview supports data visualization,
which helps in the visual detection of data anomalies (Section 4.4). Sev-
eral supported transformation functions also may be of help in the detection
of data anomalies (Sort Dataset, Shift Row, Shift Column, etc.). However,
Grafterizer doesn’t support the automated anomaly detection. This func-
tionality can be identified as a direction for future work.

R8. Support an interactive transformation workflow with automatic execution
and instant feedback on changes to data. The Grafterizer interactive pre-
view provides an immediate feedback on changes on data, that simplifies
the verification of executed transformation.

R9. The transformation workflow should be easy to reuse. Grafterizer treats the
defined set of operations on tabular data, declared custom utility functions
and RDF mappings as a single transformation object. Thus, being integrated
into DataGraft, it makes possible to reuse and share the transformation.

The performed evaluation results in the conclusion that Grafterizer is a viable
product, capable of performing complex data cleaning and transformation opera-
tions.

6.2 Directions for Future Work

Although the developed artifact satisfies the stated requirements and capable of
performing data cleaning and transformation with real-life datasets, there are still
many research opportunities. This section outlines potential areas for improve-
ment in future versions of Grafterizer.

73

6.2.1 Automated Documentation of Data Quality

One functionality that can significantly further ease the consumption of published
data is providing automated documentation of data quality. Linked Data provides
capabilities that allow data publishers to specify machine-readable information
about the quality of their data. Providing the data quality measurements is stated
as one of the most important recommendations for publishing data on the Web that
are described in [28] and can be expressed in terms of an existing Data Quality
vocabulary2 .

With the help of the aforementioned vocabulary the following information can
be provided in Linked Data format:

1. Statistics computed on dataset can indicate such observations as:

• A number of distinct external resources linked to the dataset.

• A number of distinct external resources used in the dataset.

• A number of distinct literals.

• A number of languages used in the dataset.

2. Availability – how data can be accessed now and over the time.

3. Processability – measures the level on which data is machine-readable.

4. Accuracy – measures how correct published data represents a correspond-
ing real-life entity.

5. Consistency – measures contradictions within a dataset.

6. Relevance – describes whether published data includes an appropriate amount
of data.

7. Completeness – describes whether dataset contains all data items represent-
ing a corresponding real-life entity.

8. Conformance – describes whether dataset follows accepted standards.

9. Timeliness – measures data actuality [1].
2https://www.w3.org/TR/vocab-dqv/

74

By enriching published data with a machine-readable data quality assessment,
data publishers significantly improve the process of dataset consumption. The au-
tomated generation of dataset quality information in terms of the aforementioned
vocabulary is an important feature for data publishers, who clean and transform
their data to RDF with the help of Grafterizer framework.

6.2.2 Automated Anomaly Detection

Another feature that could further simplify data cleaning process with Grafterizer
is automated anomaly detection.

Numerous algorithmic techniques, which are able to aid anomaly detection
in data have been developed by a various database and machine learning com-
munities. These include methods for automated type inference [15], detecting
erroneous and extreme values [21, 22] and schema matching [20, 34]. Some of
the aforementioned techniques are applicable with tabular data and can serve as
parts of functioning applications, e.g., type suggestion in messytables3 and schema
matching in CSV Lint4.

Future work should provide an interactive service for automated anomaly de-
tection. This feature should enable users to perform a basic spell checks, identify
similar records and define and validate a schema on the dataset (data types for
columns, acceptability of null values, uniqueness and other relevant information).

6.2.3 Intelligent Vocabulary Suggestion

One more feature that Grafterizer framework may benefit from is intelligent vo-
cabulary suggestion. Implementing the capabilities of automated RDF vocabulary
suggestion may significantly simplify the process of mapping tabular data to RDF
and thus reduce the complexity and time necessary for tabular-to-RDF data con-
version.

Capabilities to enable this functionality are provided by the ABSTAT linked
data summaries5 Web service and are available for integration.

3https://messytables.readthedocs.org/en/latest/ last accessed May 18, 2016
4http://csvlint.io/about last accessed May 18, 2016
5http://abstat.disco.unimib.it:8880/

75

The future service can be included as part of the RDF mapping process in
Grafterizer. It should provide the end-users with suggestions on the classes of
RDF statement subjects and objects, as well as suggestions on properties based
on dataset column names and context information.

6.3 Thesis Summary

The work performed in this thesis is described as follows:

1. Chapter 1 argues for the need for the new research in data publication and
consumption process.

2. Prior to the practical contribution itself, the related work was discussed in
Chapter 2. This includes studying a literature on data quality and defining
data quality through the set of data quality dimensions. Next, the data qual-
ity issues were introduced as the categorized set of data anomalies, which
should be resolved in order to increase the level of data quality. After data
quality problems were examined, the technologies that can further enrich
the data and increase its usability were studied.

3. The next stage of work is performing a problem analysis, that concludes in
identifying the set of requirements and a general workflow for the artifact to
be developed. This was done in Chapter 3.

4. Chapter 4 discusses a practical contribution through presenting the Grafter-
izer, an interactive framework for data cleaning and transformation. The
system’s novelty is in unifying two parts of Linked Data generation, data
cleaning and converting to RDF, and in the interactive user interface, sim-
plifying data transformation. The functionalities of the framework cover
resolving all groups of data anomalies identified during the problem analy-
sis.

5. The evaluation of the developed software was reported in Chapter 5, where
the referenced software was evaluated against existing relevant tools and

76

systems with similar functionalities. The evaluation also includes compar-
ing Grafterizer approach to Linked Data generation to the alternative ap-
proach (R2RML). An essential part of the evaluation is also an execution of
a set of the use case scenarios with the help of Grafterizer framework.

6. Finally, the overall thesis evaluation in accordance with the stated require-
ments was performed and directions for future work were identified in Chap-
ter 6.

To conclude, the work performed in this thesis allowed to make essential ex-
tensions to Grafterizer. At present, Grafterizer is a complete framework, capa-
ble of performing complex data cleaning and transformation operations, having a
convenient user interface with interactive preview and supporting the reuse of the
defined transformations.

77

Appendices

79

Appendix A

List of Acronyms

81

Table A.1: List of acronyms

Acronym Full name
API Application programming interface
CSV Comma separated values (format)
DSL Domain specific language
ETL Extract transform load
GUI Graphical user interface
JSON JavaScript Object Notation (format)
JVM Java virtual machine
KDD Knowledge discovery in databases
LOD Linked Open Data
OWL Web Ontology Language
RDB Relational database
RDF Resource description framework
RDFS Resource description framework
REST Representational state transfer
R2RML RDB to RDF Mapping Language
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
XML Extensible Markup Language
XSD XML Schema Definition

82

Appendix B

Specification of the Developed
Routines in Clojure

add-row

(add-row dataset [& values])
(add-row dataset position [& values])

Inserts new row into a dataset. Two options are available:

1. Takes a dataset and vector containing field values and appends new row to the end of a
dataset, e.g.

Given original dataset

:col1 :col2 :col3

1 2 3
4 5 6
7 8 9

function returns the following result:

(add-row dataset [10 11 12]) ; =>

:col1 :col2 :col3

1 2 3
4 5 6
7 8 9
7 11 12

83

2. Takes a dataset, row index and vector containing field values and inserts new row at the
specified position. If position index is negative or greater then total number of rows in a
dataset, the new row will be apended to a dataset.

Example Given original dataset

:col1 :col2 :col3

1 2 3
4 5 6
7 8 9

function returns the following result:

(add-row dataset 1 [10 11 12]) ; =>

:col1 :col2 :col3

1 2 3
10 11 12

4 5 6
7 8 9

(add-row dataset -2 [10 11 12]) ; =>

:col1 :col2 :col3

10 11 12
1 2 3
4 5 6
7 8 9

For both options if number of parameters denoting field values is less than current number
of columns in a dataset, lacking values for columns will remain empty. If number of parameters
denoting field values is greater than number of columns in a dataset, rest of the values will be
discarded.

84

cast

(cast dataset variable value f)

Cast function is reverse to melt. Given a dataset, variable-column, value-column and name
of aggregation function, it forms column headers by identifying distinct variables and populates
these columns by taking values and performing specified aggregation on them. Other columns are
treated as pivot keys.

For most common aggregations there exists a set of pre-defined functions:

• MIN

• MAX

• SUM

• AVG

• COUNT

• COUNT-DISTINCT

Example. Given original dataset:

:company-name :position :total-employed

Cisco Jr.Software developer 22
Cisco Sr.Software developer 10
Cisco Intern 2

Oracle corporation Assist.manager 2
Oracle corporation Sr.Software developer 38

IBM Assist.manager 2
IBM Jr.Software developer 8

Cisco Assist.manager 3
IBM Sr.Software developer 5
IBM Intern 4

function returns the following result:

(cast :position :total-employed "SUM") ; =>

:company-name :Jr.Software developer :Sr.Software developer :Intern :Assist.manager

Cisco 22 10 2 3
IBM 8 5 4 2

Oracle corporation 38 2

85

group-rows

(group-rows dataset colnames colnames-functions)

Given a dataset, vector of column names and set of maps of form colname function-or-
separator-name and creates a new dataset containg rows grouped by colnames from vector and
the result of applying functions to correspondent column values. If function name is not recog-
nized as a common aggregation function, argument will be used as a separator for merged values
Each function in a map should take sequence of values as a parameter and return a single value.

For most common aggregations there exists a set of pre-defined functions:

• MIN

• MAX

• SUM

• AVG

• COUNT

• COUNT-DISTINCT

Example 1. Given original dataset:

:firstname :lastname :order_num :total_items :total_cost

Alice Smith 11111 5 150
Bob Johnson 857 7 70

Alice Smith 11112 30 340
Alice Williams 505 1 170
Bob Johnson 858 3 370

Mary Williams 1543 1 15

function returns the following result:

(group-rows dataset [:firstname :lastname]
#_=> #{ {:total_items "SUM"} ; total number of items person ordered
#_=> {:total_cost "AVG"} ; average total cost per one order
#_=> {:order_num "COUNT"} ; number of orders person made
#_=> {:total_cost "MAX"}}) ; maximum total cost per one order =>

:firstname :lastname :order_num_COUNT :total_cost_AVG :total_items_SUM :total_cost_MAX

Alice Smith 2 245 35 340
Bob Johnson 2 220 10 370

Alice Williams 1 170 1 170
Mary Williams 1 15 1 15

86

Example 2. Given original dataset:

:name :phone-number

Alice 123-45-67
Bob 777-88-99

Alice 111-11-11

function returns the following result:

(group-rows dataset [:name] #{{:phone-nuber ", "}}) ; =>

:name :phone-number

Alice 123-45-67, 111-11-11
Bob 777-88-99

join-dataset
(join-dataset dataset filename concat-type)
(join-dataset dataset filename fkey id value)

Joins two datasets together. Two options are available:

1. Takes a dataset, filename and type of concatenation (either :v to concatenate datasets verti-
cally – append data from file to the right side of given dataset or :h to concatenate datasets
horizontally – append data from file to the bottom of given dataset).

Throws an error if number of columns/rows is not appropriate

Example 1. Given original dataset:

:name :age :gender

Alice 18 female
Bob 30 male

and file left-part.csv with content:

email, country
alice@example.com, Norway
bob@example.com, Norway

function returns the following result:

87

88

(join-dataset "left-part.csv" :v) ; =>

:name :age :gender :email :country

Alice 18 female alice@example.com, Norway
Bob 30 male bob@example.com, Norway

Example 2. Given the same original dataset and file ’other-persons.csv’ with content:

name, age, gender
John, 38, male
Mary, 27, female

function returns the following result:

(join-dataset "other-persons.csv" :h) ; =>

:name :age :gender

Alice 18 female
Bob 30 male
John 38 male

Mary 27 female

2. Takes a dataset, filename, column that acts as foreign key in original dataset and columns
for id and value in file.

Builds a lookup table from file and maps values in original dataset appropriately.

Example. Given original dataset:

:name :age :position

Alice 18 25
Bob 30 7

and file position-codes.csv with content:

code, description
1, manager
7, engineer
8, senior engineer

25, accountant

function returns the following result:

88

(join-dataset "position-codes.csv"
#_=> :position "code" "description") ; =>

:name :age :position

Alice 18 accountant
Bob 30 engineer

merge-columns
(merge-columns dataset columns separator)
(merge-columns dataset columns separator newname)

Merges several columns in one using specified separator between columns.
Two options are available:

1. Takes a dataset, vector of columns and separator and merges columns together. Column
containing the result of the merge gets the same name as the first column in the list of
arguments.

Example. Given original dataset:

:name :city :country e-mail

Alice Oslo Norway alice@example.com
Bob Trondheim Norway bob@example.com

function returns the following result:

(merge-columns [:city :country] ", ") ; =>

:name :city e-mail

Alice Oslo, Norway alice@example.com
Bob Trondheim, Norway bob@example.com

2. Takes a dataset, vector of columns, separator and new column name and merges columns
together.

89

Example. Given original dataset:

:name :city :country e-mail

Alice Oslo Norway alice@example.com
Bob Trondheim Norway bob@example.com

function returns the following result:

(merge-columns [:city :country] ", " :place) ; =>

:name :place e-mail

Alice Oslo, Norway alice@example.com
Bob Trondheim, Norway bob@example.com

remove-columns
(remove-columns dataset cols)
(remove-columns dataset indexFrom indexTo)

Removes columns from a dataset.
Two options are available:

1. Takes a dataset and vector of column names and creates a new dataset containing all
columns except of those that were specified

Example. Given original dataset:

:col1 :col2 :col3 :col4

1 2 3 4
5 6 7 8
9 10 11 12

function returns the following result:

(remove-columns [:col1 :col4]) ; =>

:col2 :col3

2 3
6 7

10 11

2. Takes a dataset and two indices and creates a new dataset containing all columns execept
of columns having indices within the specified interval (including both points)

90

Example. Given original dataset:

a b c d e f

0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2

function returns the following result:

(remove-columns 2 4) ; Remove columns having indices within the interval [2, 4] =>

a b f

0 0 0
1 1 1
2 2 2

remove-duplicates
(remove-duplicates dataset)
(remove-duplicates dataset colnames)

Removes duplicates from a dataset.
Two options are available:

1. Given a dataset sorts it and looks for rows having the same values across all columns and
leaves only one instance from each set of such rows, other rows(duplicates) will be removed
from a dataset.

Example. Given original dataset:

:name :age :gender

Alice 18 female
Bob 30 male

Alice 28 female
Alice 18 female
Bob 32 male

91

function returns the following result:

(remove-duplicates dataset) ; =>

:name :age :gender

Alice 18 female
Alice 28 female
Bob 30 male
Bob 32 male

2. Given a dataset and a column(sequence of columns) looks for rows having the same values
in the specified field(s) and leaves only the first encountered row in this sequence. Dataset
should be sorted in desired order before function is called

Example. Given original dataset:

:name :age :gender

Alice 18 female
Bob 30 male

Alice 28 female
Alice 18 female
Bob 32 male

function returns the following result:

(-> (sort-dataset dataset [:name :age] :alpha :desc)
#_=> (remove-duplicates [:name :gender])) ; Dataset is first sorted in
#_=> ; a such way, that the records about the same person are given in descending
#_=> ; order by age =>

:name :age :gender

Alice 28 female
Bob 32 male

shift-row
(shift-column dataset column)
(shift-column dataset column position-to)

Changes row’s position inside a dataset.
Two options are available:

92

1. Takes a dataset and row index and moves this row to the end of a dataset, data rows with
indices greater than specified index will be moved one position up.

Example. Given original dataset:

:col1 :col2 :col3

1 2 3
4 5 6
7 8 9

10 11 12

function returns the following result:

(shift-row dataset 1) ; =>

:col1 :col2 :col3

1 2 3
7 8 9

10 11 12
4 5 6

2. Takes a dataset and two row indices and moves row from index #1 to index #2. Other rows
will be shifted appropriately.

Example. Given original dataset:

:col1 :col2 :col3

1 2 3
4 5 6
7 8 9

10 11 12

function returns the following result:

(shift-row dataset 1 3) ; =>

93

:col1 :col2 :col3

1 2 3
7 8 9

10 11 12
4 5 6

shift-column
(shift-column dataset column)
(shift-column dataset column position-to)

Changes column’s position inside a dataset.

94

Two options are available:

1. Takes a dataset and column name/index and moves this column to the last position, data
columns with indices greater than specified index will be moved one position left.

Example. Given original dataset:

:a :b :c :d

1 2 3 a
4 5 6 b
7 8 9 c

function returns the following result:

(shift-column :b) ; =>

which is equivalent to

(shift-column 1) ; =>

:a :c :d :b

1 3 a 2
4 6 b 5
7 9 c 8

2. Takes a dataset, column name/index and index where this column should be moved, moves
given column to the specified index. Other columns will be shifted appropriately.

Example. Given original dataset:

:a :b :c :d

1 2 3 a
4 5 6 b
7 8 9 c

function returns the following result:

(shift-column :c 0) ; =>

95

which is equivalent to

(shift-column 2 0) ; =>

:c :a :b :d

3 1 2 a
6 4 5 b
9 7 8 c

sort-dataset

(sort-dataset dataset colnames-sorttypes)

Sorts dataset by given column names in given order. Column names and types of sorting are
given in a vector. Sorting priority is defined by order of column name – sorting type pair. Sorting
by multiple columns works as follows: if several rows have equal columns (first in the vector
of given columns) according to the given comparator type, these rows will be sorted by second
column and second comparator, if both first and second are equal, sorting will be performed by
the third column and third comparator etc.

Type of comparator used for sorting is defined as one of following:

• :ascalpha, :descalpha for alphabetical sorting (in ascending and descending order corre-
spondingly);

• :ascnum, :descnum for numerical sorting;

• :asclen, :desclen for sorting by field length;

• :ascdate, :descdate for sorting dates.

Example 1. Given original dataset:

:a :b :c :d

2 string 1 01.01.2015
111 string 3 03.11.2015

44 longer string 9 03.03.2013
3 the longest string 6 25.12.2015

96

calling function with different parameters results in following datasets:

(sort-dataset dataset [{:a :ascalpha}]) ; sort by column :a in ascending alphabetical order
=>

:a :b :c :d

111 string 3 03.11.2015
2 string 1 01.01.2015
3 the longest string 6 25.12.2015

44 longer string 9 03.03.2013

Example 2. Given the same dataset, sort by column :a in descending alphabetical order

(sort-dataset dataset [{:a :descalpha}]) ; =>

:a :b :c :d

44 longer string 9 03.03.2013
3 the longest string 6 25.12.2015
2 string 1 01.01.2015

111 string 3 03.11.2015

Example 3. Given the same dataset, sort by column :a in ascending numerical order

(sort-dataset dataset [{:a :ascnum}]) ; =>

:a :b :c :d

2 string 1 01.01.2015
3 the longest string 6 25.12.2015

44 longer string 9 03.03.2013
111 string 3 03.11.2015

97

Example 4. Given the same dataset, sort by column :b in ascending order by field length

(sort-dataset dataset [{:b :asclen}]) ; =>

:a :b :c :d

2 string 1 01.01.2015
111 string 3 03.11.2015

44 longer string 9 03.03.2013
3 the longest string 6 25.12.2015

Example 5. Given the same dataset, sort by column :d in ascending order by date

(sort-dataset dataset [{:b :asclen}]) ; =>

:a :b :c :d

44 longer string 9 03.03.2013
2 string 1 01.01.2015

111 string 3 03.11.2015
3 the longest string 6 25.12.2015

Example 6. Given the same dataset, sort by column :b in ascending order by field length, for
equal values arrange by column :a in ascending order by length

(sort-dataset dataset [{:b asclen} {:a :asclen}]) ; =>

:a :b :c :d

2 string 1 01.01.2015
111 string 3 03.11.2015

44 longer string 9 03.03.2013
3 the longest string 6 25.12.2015

98

Example 7. Given the same dataset, sort by column :a in ascending order by field length, for
equal values arrange by column :b in ascending order by length

(sort-dataset dataset [{:a asclen} {:b :asclen}]) ; =>

:a :b :c :d

2 string 1 01.01.2015
3 the longest string 6 25.12.2015

44 longer string 9 03.03.2013
111 string 3 03.11.2015

split-column

(split-column dataset colname separator)

Given a dataset, column name and separator splits specified column into multiple by sepa-
rator. New columns get names of a form [original-column-name]_splitted_0, [original-column-
name]_splitted_1, ...

Example. Given original dataset:

:name :address :email

Alice New York, Harrison Street, 507 alice@example.com
Bob Richmond, Main Street, 17 bob@example.com

Mary NY, Harrison Street, 29, H0512 mary@example.com

function returns the following result:

(split-column :address #", ") ; =>

:name :address_splitted_0 :address_splitted_1 :address_splitted_2 :address_splitted_3 :email

Alice New York Harrison Street 507 alice@example.com
Bob Richmond Main Street 17 bob@example.com

Mary NY Harrison Street 29 H0512 mary@example.com

99

convert-literal

(convert-literal x dtype & {:keys [on-empty on-error lang-tag], :or {on-error false,
on-empty 0, lang-tag nil}})

Converts given value to the specified datatype.
Supported datatypes (with corresponding xsd types) :

Argument Datatype Value space

"byte" xsd:byte -128. . . +127 (8 bit)
"short" xsd:short -32768. . . +32767 (16 bit)

"double" xsd:double 64-bit floating point numbers
"decimal" xsd:decimal Arbitrary-precision decimal numbers
"integer" xsd:int -2147483648. . . +2147483647 (32 bit)

"long" xsd:long -9223372036854775808. . . +9223372036854775807 (64 bit)
"float" xsd:float 2-bit floating point numbers

"boolean" xsd:boolean true, false
"date" xsd:dateTime Date and time with timezone

"string" xsd:string Character strings

Optional keys:

:on-error – specifies value, that should be used to replace non-valid arguments. By default func-
tion replaces all non-valid values with 0 for all numeric types, "false" for data type boolean
and "31.12.2099" for dates

:on-empty – specifies value, that should be used to replace empty(nil) arguments. By default
function replaces all empty values with 0 for all numeric types, "false" for data type boolean
and "31.12.2099" for dates

:lang-tag – specifies a language tag used with string literals

By default for conversions to data type boolean following values are converted to false:

• false (as boolean);

• nil;

• "" (empty string);

• "false" (as string);

• "0" (as string);

• 0 (as integer).

100

References

[1] Riccardo Albertoni, Antoine Isaac, and Christophe Guéret. Data on the
Web Best Practices: Data Quality Vocabulary. Tech. rep. http://www.w3.org/TR/2015/WD-
vocab-dqv-20151217. W3C, 2015.

[2] G. Antoniou, F. van Harmelen, and R. Hoekstra. A Semantic Web Primer.
Cooperative information systems. MIT Press, 2012. ISBN: 9780262018289.
URL: https://books.google.no/books?id=tYb6AQAAQBAJ.

[3] Marcelo Arenas et al. A Direct Mapping of Relational Data to RDF. Tech.
rep. https://www.w3.org/TR/rdb-direct-mapping/. W3C, 2012.

[4] C. Batini and M. Scannapieco. Data and Information Quality: Dimensions,
Principles and Techniques. Data-Centric Systems and Applications. Springer
International Publishing, 2016. ISBN: 9783319241067. URL: https://books.

google.no/books?id=kJ_WCwAAQBAJ.

[5] Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Method-
ologies and Techniques (Data-Centric Systems and Applications). Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN: 3540331727.

[6] Carlo Batini et al. “From Data Quality to Big Data Quality.” In: J. Database
Manage. 26.1 (Jan. 2015), pp. 60–82. ISSN: 1063-8016. DOI: 10.4018/

JDM.2015010103. URL: http://dx.doi.org/10.4018/JDM.2015010103.

[7] I. Berlocher, S. Kim, and T. Lee. “Use case implementation.” In: v1.DaPaaS
Deliverable D5.2. 2014. URL: http://bit.ly/1Ib5uzJ.

[8] Tim Berners-Lee. “Linked Data.” In: 2006. URL: www.w3.org/DesignIssues/

LinkedData.html.

101

[9] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The semantic web.”
In: Scientific american 284.5 (2001), pp. 28–37.

[10] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data-the story
so far.” In: Semantic Services, Interoperability and Web Applications: Emerg-
ing Concepts (2009), pp. 205–227.

[11] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to
RDF Mapping Language. Tech. rep. https://www.w3.org/TR/r2rml/. W3C,
2012.

[12] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and
Data Cleaning. 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
2003. ISBN: 0471268518.

[13] Shaker H Ali El-Sappagh, Abdeltawab M Ahmed Hendawi, and Ali Hamed
El Bastawissy. “A proposed model for data warehouse ETL processes.” In:
Journal of King Saud University-Computer and Information Sciences 23.2
(2011), pp. 91–104.

[14] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Sys-
tems. 6th. USA: Addison-Wesley Publishing Company, 2010. ISBN: 0136086209,
9780136086208.

[15] Kathleen Fisher and David Walker. “The PADS Project: An Overview.”
In: Proceedings of the 14th International Conference on Database Theory.
ICDT ’11. Uppsala, Sweden: ACM, 2011, pp. 11–17. ISBN: 978-1-4503-
0529-7. DOI: 10.1145/1938551.1938556. URL: http://doi.acm.org/

10.1145/1938551.1938556.

[16] John F. Gantz et al. “The Diverse and Exploding Digital Universe: An Up-
dated Forecast of Worldwide Information Growth Through 2011.” In: IDC.
2008.

[17] Christopher Groskopf and contributors. csvkit. 2015. URL: https://csvkit.

readthedocs.org/.

[18] The W3C SPARQL Working Group. SPARQL 1.1 Overview. Tech. rep.
https://www.w3.org/TR/sparql11-overview/. W3C, 2013.

[19] Thomas R Gruber. “A translation approach to portable ontology specifica-
tions.” In: Knowledge acquisition 5.2 (1993), pp. 199–220.

102

[20] Laura M. Haas et al. “Clio Grows Up: From Research Prototype to In-
dustrial Tool.” In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’05. Baltimore, Maryland:
ACM, 2005, pp. 805–810. ISBN: 1-59593-060-4. DOI: 10.1145/1066157.

1066252. URL: http://doi.acm.org/10.1145/1066157.1066252.

[21] Joseph M Hellerstein. “Quantitative data cleaning for large databases.” In:
United Nations Economic Commission for Europe (UNECE) (2008).

[22] Victoria Hodge and Jim Austin. “A Survey of Outlier Detection Method-
ologies.” In: Artif. Intell. Rev. 22.2 (Oct. 2004), pp. 85–126. ISSN: 0269-
2821. DOI: 10 . 1023 / B : AIRE . 0000045502 . 10941 . a9. URL: http :

//dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9.

[23] Sean Kandel. “INTERACTIVE SYSTEMS FOR DATA TRANSFORMA-
TION AND ASSESSMENT.” PhD thesis. STANFORD UNIVERSITY, June
2013.

[24] Sean Kandel et al. “Research Directions in Data Wrangling: Visualizations
and Transformations for Usable and Credible Data.” In: Information Visu-
alization Journal 10 (4 2011), pp. 271–288. URL: http: / /vis .stanford.

edu/papers/data-wrangling.

[25] Sean Kandel et al. “Research Directions in Data Wrangling: Visuatiza-
tions and Transformations for Usable and Credible Data.” In: Informa-
tion Visualization 10.4 (Oct. 2011), pp. 271–288. ISSN: 1473-8716. DOI:
10.1177/1473871611415994. URL: http : / /dx .doi .org /10.1177/

1473871611415994.

[26] Sean Kandel et al. “Profiler: Integrated Statistical Analysis and Visualiza-
tion for Data Quality Assessment.” In: Advanced Visual Interfaces. 2012.
URL: http://vis.stanford.edu/papers/profiler.

[27] C.R. Kothari. Research Methodology: Methods and Techniques. New Age
International (P) Limited, 2004.

[28] Bernadette Farias Lóscio, Caroline Burle, and Newton Calegari. Data on
the Web Best Practices. Tech. rep. http://www.w3.org/TR/2016/WD-dwbp-
20160112. W3C, 2016.

103

[29] Jonathan I Maletic and Andrian Marcus. “Data Cleansing: Beyond Integrity
Analysis.” In: IQ. Citeseer. 2000, pp. 200–209.

[30] A. Manning. Databases for Small Business: Essentials of Database Man-
agement, Data Analysis, and Staff Training for Entrepreneurs and Pro-
fessionals. Apress, 2015. ISBN: 9781484202784. URL: https : / / books .

google.no/books?id=CU3BrQEACAAJ.

[31] Heiko Müller and Johann-Christph Freytag. Problems, methods, and chal-
lenges in comprehensive data cleansing. Professoren des Inst. Für Infor-
matik, 2005.

[32] M. Tamer Ozsu. Principles of Distributed Database Systems. 3rd. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2007. ISBN: 9780130412126.

[33] D. Pyle. Data Preparation for Data Mining. Data Preparation for Data Min-
ing v. 1. Morgan Kaufmann Publishers, 1999. ISBN: 9781558605299. URL:
https://books.google.no/books?id=hhdVr9F-JfAC.

[34] Erhard Rahm and Philip A. Bernstein. “A Survey of Approaches to Auto-
matic Schema Matching.” In: The VLDB Journal 10.4 (Dec. 2001), pp. 334–
350. ISSN: 1066-8888. DOI: 10.1007/s007780100057. URL: http://dx.

doi.org/10.1007/s007780100057.

[35] Erhard Rahm and Hong Hai Do. “Data Cleaning: Problems and Current
Approaches.” In: IEEE Data Engineering Bulletin 23 (2000), p. 2000.

[36] Vijayshankar Raman and Joseph M. Hellerstein. “Potter’s Wheel: An In-
teractive Data Cleaning System.” In: Proceedings of the 27th International
Conference on Very Large Data Bases. VLDB ’01. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001, pp. 381–390. ISBN: 1-
55860-804-4. URL: http : / / dl . acm . org / citation . cfm ? id = 645927 .

672045.

[37] Carmen M. Reinhart and Kenneth S. Rogoff. Growth in a Time of Debt.
Working Paper 15639. National Bureau of Economic Research, 2010. DOI:
10.3386/w15639. URL: http://www.nber.org/papers/w15639.

[38] B. Roberts. “Software tools integrated into platform.” In: DaPaaS Deliver-
able D4.2. 2015. URL: http://bit.ly/1PcM8v7.

104

[39] B. Roberts and R. Moynihan. “Documented methodology and guidelines.”
In: DaPaaS Deliverable D4.1. 2014. URL: http://bit.ly/1NMU8lJ.

[40] A. Simov et al. “Open Data PaaS prototype.” In: v.2. DaPaaS Deliverable
D2.3. 2015. URL: http://bit.ly/1Jj86s4.

[41] Martin G. Skjæveland, Espen H. Lian, and Ian Horrocks. “Publishing the
Norwegian Petroleum Directorate’s FactPages as Semantic Web Data.” In:
The Semantic Web – ISWC 2013. Ed. by Harith Alani et al. Vol. 8219.
LNCS. Springer Berlin Heidelberg, 2013, pp. 162–177. URL: SkLiHo -

ISWC2013.pdf.

[42] Ida Solheim and Ketil Stølen. Technology Research Explained. Tech. rep.
SINTEF A313. SINTEF, 2007.

[43] I. Sommerville. Software Engineering. International Computer Science Se-
ries. Pearson, 2011. ISBN: 9780137053469. URL: https://books.google.

no/books?id=l0egcQAACAAJ.

[44] Dimitrios-Emmanuel Spanos, Periklis Stavrou, and Nikolas Mitrou. “Bring-
ing Relational Databases into the Semantic Web: A Survey.” In: Semant.
web 3.2 (Apr. 2012), pp. 169–209. ISSN: 1570-0844. DOI: 10.3233/SW-

2011-0055. URL: http://dx.doi.org/10.3233/SW-2011-0055.

[45] Dina Sukhobok et al. “Tabular Data Cleaning and Linked Data Generation
with Grafterizer.” In: to appear in post-conference proceedings of ESWC.
2016. URL: http:/ /2016.eswc- conferences.org/program/posters-

demos.

[46] Hadley Wickham. “Tidy data.” In: The Journal of Statistical Software 59
(10 2014). URL: http://www.jstatsoft.org/v59/i10/.

105

