
Sleep Movement Analysis
using the Microsoft Kinect v1
Depth Sensor

Karine Gran Vifstad
Master’s Thesis Spring 2016

Sleep Movement Analysis using the Microsoft
Kinect v1 Depth Sensor

Karine Gran Vifstad

May 16, 2016

ii

Abstract

Sleep analysis can help improve sleep quality, and determine the ideal time
for waking up a person. Sleep analysis can be performed in different ways,
one of them is analysing the movements of the sleeping person, since large
movements usually means that the person is about to wake up.

There are multiple tools for sleep movement analysis, but usually they
are quite advanced, expensive and not affordable for usage in private homes.
Instead, this project explored the usage depth images from Microsoft Kinect
v1 to determine sleep movements, which is a cheaper alternative.

This project developed a program for detecting the frequency of move-
ments during sleep using Kinect v1. The process of performing sleep move-
ment analysis was done by taking images with certain intervals, and com-
paring a pixel in a certain position in one image by the pixel in the same
position in the subsequent image.

The project found some challenges which made the sleep movement anal-
ysis tricky to do at home, including positioning of the Kinect, noisy images,
and that detecting movements of people sleeping is harder than when they
are standing up.

Overall, the program was able to distinguish between large sleep move-
ments and smaller ones, and used this information to determine the sleep
quality of the patient. Further, the results of the program showed that it is
possible to create cheaper alternatives than the ones already developed.

iii

iv

Contents

1 Introduction 1
1.1 Project goal . 2
1.2 Project structure . 2
1.3 An Overview of Challenges . 3
1.4 Thesis outline . 4

2 Background 5
2.1 Sleep Research Timeline . 5
2.2 Sleep Stages - REM and NREM 6

2.2.1 Subdivision of NREM 6
2.3 Sleep Cycles . 7
2.4 Sleep monitoring . 8

2.4.1 Polysomnography . 8
2.4.2 Alternatives to polysomnography 9
2.4.3 Sleep as Android . 9

2.5 Articles about sleep surveillance 10
2.5.1 Electroencephalography 10
2.5.2 Sleep Movement Measured with EEG 10
2.5.3 Sleep Movement Measured with EEG and Video 12

2.6 Digital images . 12
2.6.1 Storing images . 13
2.6.2 Detecting humans in images 13

2.7 Classification . 15
2.7.1 Support Vector Machines 15

2.8 Microsoft Kinect . 16
2.8.1 Depth sensing technology 17

2.9 Depth space of Kinect . 19
2.10 Programming With Kinect . 20

2.10.1 Kinect Drivers . 20
2.10.2 Image processing . 21
2.10.3 Programming languages 21

v

vi CONTENTS

3 Related Works 23
3.1 The iWakeUp System . 23

3.1.1 How iWakeUp works 24
3.1.2 Background modeling and noise removal 24
3.1.3 Deriving wake-up rules 25

3.2 Human detection using depth information by Kinect 25
3.2.1 2D Chamfer Distance Matching 26
3.2.2 3D model fitting . 26
3.2.3 Extract contours . 27
3.2.4 Tracking . 27
3.2.5 Results from Xia’s method 27

3.3 Sleep Monitoring with Kinect V1 28
3.3.1 Kinect-based setup . 28
3.3.2 Kripke’s algorithm and Krüger’s adaption of it 29
3.3.3 Results from Krüger 30

3.4 Sleep Monitoring with Kinect V2 31
3.4.1 Sleep monitoring as part of a Smart Home 31
3.4.2 Sleep State Monitoring 32
3.4.3 Microsoft Kinect v2 . 32
3.4.4 Sleep Movement Measures 32
3.4.5 Sleep Movement Analysis 33

3.5 Comparison of the articles . 34

4 Material and Methods 35
4.1 Choosing programming language and libraries 35

4.1.1 OpenKinect . 35
4.1.2 OpenCV . 36
4.1.3 Python . 37

4.2 Setup of the Kinect . 37
4.2.1 First setup . 37
4.2.2 Second setup . 38

4.3 Depth Information from Kinect 40
4.3.1 How the pixels are stored 40
4.3.2 Testing the depth . 40

4.4 Frame differencing on depth images 41
4.4.1 Testing various slack 41
4.4.2 Testing slack of 55 on a sequence of 30 images 43

4.5 Performance test of for-loops vs. NumPy 44
4.6 Noise test . 44

4.6.1 Minimum and maximum values 45
4.6.2 Motion pixels of noise 45

CONTENTS vii

4.6.3 Test of noise compared to actual motion 46
4.7 Preprocessing . 48

4.7.1 Low-pass filters . 48
4.8 Kinect Scheduler . 49
4.9 Kinect Recorder . 49

5 Results and Discussion 51
5.1 Result of low-pass filtering . 51
5.2 Plot threshold . 53
5.3 Motion vector size . 53

5.3.1 Motion plots with different vector size 54
5.3.2 Choice of vector size 54

5.4 Sleep as Android application 58
5.4.1 Comparison with vector 9x16 59

5.5 Final motion results with vector 9x16 60

6 Conclusion and Further Work 67
6.1 Further Works . 68

6.1.1 Newest Kinect version 68
6.1.2 Other programming languages 68
6.1.3 Different sample sizes 68

Appendices 73

A Installation for OS X Mavericks 75
A.1 Homebrew . 75
A.2 Installing OpenCV and Python 76
A.3 Installing libfreenect (from OpenKinect) 76

B Python code for plotting motion based on the depth images 79

viii CONTENTS

List of Figures

2.1 Graph showing sleep cycles from midnight to 6.30 am. Stage
1-4 is NREM[25]. 8

2.2 Image of a polysomnography wires on a patient[23] 9
2.3 EEG patterns for different sleep stages[4] 11
2.4 Mona Lisa with varying amount of bits 14
2.5 SVM trained with samples from two classes[28] 16
2.6 The Kinect sensor . 17
2.7 Triangulation with Kinect[9] 18
2.8 Depth stream values[11] . 19
2.9 Distance from sensor in meters[11] 20

3.1 Architecture for iWakeUp . 24
3.2 Overview of Xia’s method[29] 26
3.3 Results from Xia’s method . 28
3.4 Parameters for Kripke and Krüger’s algorithms[14] 30
3.5 Temporal hypnogram for the second night from Krüger’s ex-

periments[14] . 31
3.6 [15] a) Detected joints for tracking and b) Major joints move-

ment per hour . 33

4.1 Skeleton joints from Kinect skeletal tracking 36
4.2 Setup 1 . 38
4.3 Setup 2 . 39
4.4 Image sequence with different sleeping positions with setup 1 . 42
4.5 Motion pixels with slack=55 for a 30 seconds sequence 43
4.6 A depth image with the black square representing the ROI . . 45
4.7 Number of pixels with value 255 (max). Plot a) shows values

from the entire image, plot b) shows values from a cropped
image. Note that both y-axis is in actual value, and not percent. 46

ix

x LIST OF FIGURES

4.8 Motion pixels from the 1200 noise images. Plot a) is the actual
values, and b) is in percent relative to the total amount of
pixels in the original or cropped image. 47

4.9 Motion recorded every 5 seconds for 5 hours. Plot a) is based
on the full image, and plot b) is based on cropped images. . . 47

5.1 Mean: Plots based on 3600 cropped images. Motion > 50
means that a slack of 50 was used. Plot a) is the original
images, while b) is low-pass filtered with a 11x11 mean kernel. 52

5.2 Gauss: Plots based on 3600 cropped images. Motion > 50
means that a slack of 50 was used. Plot a) is the original
images, while b) is low-pass filtered with a 11x11 gauss kernel. 52

5.3 Motion plot with blue threshold 53
5.4 Vector size 7x12 - 108 major incidents - 5 in the last half hour 55
5.5 Vector size 9x16 - 89 major incidents - 6 in the last half hour . 56
5.6 Vector size 11x20 - 71 major incidents - 4 in the last half hour 57
5.7 Sleep recording from Sleep as Android 58
5.8 Depth images for index 17285-17288. 60
5.9 First night. 9x16 vector resulted in 88 major incidents, where

8 occured during the last half hour. 62
5.10 Second night. 9x16 vector resulted in 89 major incidents,

where 6 occured during the last half hour. 63
5.11 Third night. 9x16 vector resulted in 50 major incidents, where

10 occured during the last half hour. 64
5.12 Fourth night. 9x16 vector resulted in 84 major incidents,

where 11 occured during the last half hour. 65

List of Tables

4.1 How the pixels look . 40
4.2 How the pixels are stored . 40
4.3 Motion pixels between frames with various slack. The images

emphasized in bold text contains major movements, and the
images in normal text contains minor or no movement. 42

4.4 Frame difference of 30 seconds with 1 sec interval 44

xi

xii LIST OF TABLES

Chapter 1

Introduction

"My alarm clock is jealous of
the relationship I have with my
bed."

- Unknown

Sleep is an important part of life, it affects both mood and performance
in your everyday life. The quality of sleep is a vital factor in the overall qual-
ity of human performance at daytime. It has been studied to great extent
to record sleep patterns and sleep disorders in detail. This is very useful to
detect for instance sleep apnea (temporarily pauses in breathing during the
night) which can be life-threatening when not treated correctly. Analysis of
brain waves, the oxygen level in your blood, heart rate and breathing are all
important factors to measure sleep behaviour, but this requires quite inva-
sive methods to register. Sleeping in a hospital bed with wires and electrodes
attached to the skin while sleeping, is not as comfortable as sleeping in the
bed at home, and this may effect the sleep measurement negatively. Body
movement can also be a good and descriptive way to analyze sleep, and this
can be done at home with just a camera.

Human sleep is characterized by periods of immobility, interrupted by
position changes, and research shows that body movement during sleep is
closely related to how deep the sleep is. Major movements indicate lighter
sleep, which would be the optimal time to wake up. Modern sleep trackers
and alarm clocks use motion to find the optimal time for awakening, to avoid
interruption of deep sleep which can lead to tiredness during the day. How-
ever, sleep is usually registered by a accelerometer, gyroscope or a heart rate
monitor, not by video.

1

2 CHAPTER 1. INTRODUCTION

The Microsoft Kinect was originally intended as a motion sensor for Xbox
gaming, but has been used in many other fields such as computer science,
electronic engineering and robotics. The reason why I chose to use Kinect is
because it has both depth vision and infrared camera, it is reasonably priced,
easy to get hold of, and a lot of people already own one together with their
Xbox. This thesis studies sleep movements recorded by the depth sensor of
a Microsoft Kinect v1.

1.1 Project goal
This thesis is going to explore the quality of the depth images provided by the
Kinect v1 sensor, in order to find major movements during sleep. Further,
I will research whether these movements are accurate enough to be used as
input to an alarm clock, and see if it provides good enough results to compete
with modern applications such as the "Sleep as Android" alarm clock.

The main goal of the thesis is to investigate if the Kinect depth sensor
can provide images which are accurate enough to decide whether the patient
is asleep or awake at different times during the night. This binary scoring is
used to evaluate sleep quality.

Is it possible to achieve precise motion recordings from a home made sleep
surveillance system?

1.2 Project structure
In order to achieve the project goal, the project was structured in the follow-
ing manner:

1. Finding the optimal setup for the sensor. The setup was limited by
housing regulations, as discussed in section 1.3, however it was impor-
tant to minimize blind spots and areas that were outside the range of
the depth sensor.

2. Investigating the accuracy of the depth information, in order to detect
noise.

3. Comparing consecutive frames by detecting pixels that have changed
value compared to the previous frame. Is the amount of motion pixels1
higher for frames with more movement?

1Motion pixels are the pixels that have changed value compared to the last frame.

1.3. AN OVERVIEW OF CHALLENGES 3

4. Testing different preprocessing methods in order to improve the result.
An improvement of the result could be an decrease of motion pixels in
images with low movement, and at the same time equal or increased
number of motion pixels in the images with more movement.

5. Registration of motion over a longer period of time. Create motion
plots from the data to show the major movements during the night.

1.3 An Overview of Challenges

Normally the Kinect sensor is used to detect standing people, in for instance
Xbox games where you control your game character by moving your hands
or body. The depth of the people playing is very different than the depth of
the wall behind them. In the case of sleep surveillance, the subject is lying
in a bed at approximately the same depth, so the Kinect should be placed
in the most optimal distance. The sensor is most accurate for the objects
within the range 0.8-4.0 meters[11]. Placing the Kinect within this range can
be challenging in a normal bedroom without a custom panel placed in the
ceiling which the Kinect can be mounted on.

Another challenge is that in order to make the surveillance as non-invasive
as possible the subject will be covered by a duvet which makes detecting
moving body parts harder. So the motion the kinect will detect is not directly
the person moving, but motion of the duvet and visible body parts like the
head and arms.

A third challenge was the setup of the Kinect. It was hard to find a
good location for the sensor. The optimal setup would be to have the sensor
attached in the ceiling directly over the bed. However, because of housing
regulations I was not allowed to build a panel in the ceiling which the kinect
could be attached to. I also moved during the project, and therefore had to
change the setup during the recordings.

The results from the Kinect can either be stored as video or images.
Advantages with video is that recordings from one night only results in one
video file. However, images are easier to process, and it is easier to look at
single occurrences and confirm that there are actual motion in one particular
frame. The images from the kinect contain much noise, and this has to
filtered out. My setup of the Kinect contained more than just the bed area,
so the images also has to be altered to only contain the region of interest.

The last challenge concerns the Kinect itself: I experienced the sensor as
unstable. Some nights the program failed to open the device, and thus did
not record anything. To avoid this I had to unplug and plug the sensor after

4 CHAPTER 1. INTRODUCTION

every run. In addition to this, the sensor makes some noise and was blinking
during recording, so if I was awake at the time the sensor started, this made
it harder to fall asleep. The solution to this was starting the recordings in
the middle of the night, so I was already asleep.

1.4 Thesis outline
The first chapter is this introduction, including the problem statement, the
project plan and the issues that proved to be challenging. Chapter 2 covers
theory and background information necessary for the project. Chapter 3 in-
cludes related works in the area of detection of sleep movements. Chapter
4 presents materials and methods used for the implementation of the pro-
gram. Chapter 5 covers results, discussion and limitations within the thesis.
Chapter 6 contains the conclusion of the thesis and possible future work.

Chapter 2

Background

Sleep have always fascinated humans, but the mechanics of sleep remained
a mystery until the 20th century. This chapter will start with an overview
of important incidents regarding sleep research in section 2.1, and then go
into detail about sleep stages in section 2.2. Section 2.3 is dedicated to sleep
cycles, while section 2.4 covers sleep monitoring, including polysomnography
and alternatives to this. Section 2.5 gives a brief introduction to articles
about sleep surveillance. Digital images are covered in section 2.6 and a
short introduction to classification is covered in section 2.7. Finally, this
chapter ends by giving an introduction to Kinect; section 2.8 covers a general
introduction to Microsoft Kinect and the depth sensing technology used,
section 2.9 describes the depth space of Kinect, and section 2.10 is dedicated
to programming with Kinect.

2.1 Sleep Research Timeline

Sleep research has been an increasing field the past century. The webpage
www.howsleepworks.com has collected sleep research and provided a timeline
for sleep research through the years[27]. Following is an excerpt from the
timeline:

- 1924: Hans Berger, a German psychiatrist, records the first human elec-
troencephalogram (EEG) - a graphical representation of brain waves.

- 1925: Nathaniel Kleitman opens the world’s first sleep laboratory at
the University of Chicago, where he researched circadian rhythms, sleep
and wakefulness regulation and sleep deprivation.

- 1929: Hans Berger develops an electroencephalograph device to record

5

www.howsleepworks.com

6 CHAPTER 2. BACKGROUND

brain waves, and notes differences in brain activity during sleep and
wakefulness.

- 1937: Alfred Loomis, E. Newton Harvey and Garret Hobart identify
five distinct stages of sleep, with use of EEG traces.

- 1953: Nathaniel Kleitman and Eugene Aserinsky discover rapid eye
movement (REM) sleep, separating it from non-REM sleep.

- 1954: William C. Dement shows that sleep consists of cycles of different
stages of sleep, repeated four or five times a night.

- 1959: Michel Jouvet, a French physician, finds that REM sleep is a
totally distinct phase of sleep, where the brain activity is similar to
that during wakefulness.

- 1968: Rechtschaffen and Kales make a standardized terminology and
scoring system to classify the different sleep stages.

- 1975: The Association of Sleep Disorders Centers (changed name to
American Academy of Sleep Medicine in 1999) is established, with a
goal of bringing sleep medicine into the scientific mainstream.

- 2007: The American Academy of Sleep Medicine changes the model of
sleep stages, reducing the amount of non-REM sleep stages from four
to three.

2.2 Sleep Stages - REM and NREM

Human sleep is divided into two states: REM and NREM. The first state is
characterized by rapid eye movement (REM), small muscle twitches, changes
in autonomic activity and the absence of other body movements.

The other state is known as non-rapid eye movement sleep (NREM).
There are usually little or no eye movement during NREM, and the muscles
are not paralyzed as in REM sleep. NREM is divided into 3 substages[20]:

2.2.1 Subdivision of NREM

- Stage 1 is often referred to as a transition phase between awake and
asleep. This stage occurs mostly in the beginning of sleep. People
aroused from this stage often believe that they have been fully awake.

2.3. SLEEP CYCLES 7

- Stage 2 is considered to be a more stable sleep stage. No eye movement
occurs, and dreaming is very rare. The person sleeping is quite easily
awakened.

- Stage 3 - previously divided into stages 3 and 4 - is considered deep
sleep, or slow-wave sleep (SWS). Dreaming is more common in this
stage than in other stages of NREM sleep, although not as common as
in REM sleep. The content of SWS dreams tends to be disconnected,
less vivid, and less memorable than those that occur during REM sleep.
This is also the stage during which parasomnias1 most commonly occur.

NREM separation into 3 or 4 substages

NREM sleep was divided into four substages in the Rechtschaffen and Kales
standardization of 1968. This has been reduced to three substages in the
2007 update by The American Academy of Sleep Medicine (AASM)[24]. The
articles I have studied regarding sleep movement (section 2.5.2 and 2.5.3) are
written before 2007, and will therefore refer to 4 substages.

2.3 Sleep Cycles
During the night, humans cycle through these stages approximately four or
five times, with a duration of 90 to 110 minutes each. A typical sleep cycle
begins with light NREM sleep, progresses through the stages to deep sleep,
and then back again, followed by a very short period of REM, which is gen-
erally when dreams occur.

Figure 2.1 shows an example of normal sleep cycles during the night. The
graph shows that most of the deep sleep (stage 3 and 4) happens early in the
sleeping period, and that the duration of REM sleep increases later in the
night. People who do not go through the sleeping stages properly get stuck
in NREM sleep, and because muscles are not paralyzed a person may be able
to sleepwalk.

1Parasomnias refer to all the abnormal things that can happen to people while they
sleep, apart from sleep apnea. Some examples are sleep-related eating disorder, sleep-
walking, nightmares, sleep paralysis, REM sleep behavior disorder, and sleep aggression.
Parasomnias can have negative effects on people during the daytime, including sleepi-
ness[20].

8 CHAPTER 2. BACKGROUND

Figure 2.1: Graph showing sleep cycles from midnight to 6.30 am. Stage 1-4
is NREM[25].

2.4 Sleep monitoring

Sleep monitoring is usually done to diagnose sleep disorders, including nar-
colepsy and sleep apnea. The sleep stages are monitored to determine the
pattern and duration. Generally there are two ways to detect sleep quality.
The first is directly attaching sensors to the human body. The second is
recording of movements during sleep.

2.4.1 Polysomnography

By measuring electrical signals produced by brain and muscle activity, doc-
tors can evaluate the quality and quantity of sleep. The gold standard of
sleep monitoring today is polysomnography (PSG), which involves many in-
put channels such as brain activity, eye movement, muscle activity and heart
rhythm during sleep. This procedure is very invasive, it is usually performed
in a sleep lab, and it typically requires at least 22 wires attached to the
patient[22]. Figure 2.2 shows polysomnography wires on a patient. It goes
without saying that these wires will disturb the sleep quality.

2.4. SLEEP MONITORING 9

Figure 2.2: Image of a polysomnography wires on a patient[23]

2.4.2 Alternatives to polysomnography

Invasive lab-based monitoring may be replaced, at least partly, by actigraphy
as a basic method to measure sleep quality. Actigrapy (accelerometric move-
ment measurement) is a non-invasive method of monitoring human activity
cycles. A small actigraph unit is worn on the wrist to measure large motor
activity. The movements are continually recorded, and the data can later
be analyzed on a computer. Examples of consumer electronics relying on
frequency of wrist movement over time or similar information are Fitbit or
NikePlus. While these devices are popular tools to monitor sports and other
everyday motion during daytime, there is a common phenomenon to have
reservations against using them at night since they impair the sleep qual-
ity[14]. The focus of this work will be on using consumer electronics that do
not have immediate physical contact with the subjects.

2.4.3 Sleep as Android

Sleep as Android[26] uses actigraphy to recognize the sleep phases. The
method is not as precise as PSG, however it still provides comparable results.
The biggest advantage with actigrapy is the simple setup which makes it easy
to use at home.

Modern Android phones have a built-in accelerometer sensor which is
very sensitive. When placed on the bed, the app receives a record of the
movement over night. In deep sleep the muscular movements are suppressed,
so in this phase the sleep graph gets nearly flat. In contrast, during light sleep
is characterized by a tendency to turn around which exhibits as significant
peaks in the sleep graph.

10 CHAPTER 2. BACKGROUND

The body movements are directly related to the current sleep phase. In
general, the more movement the lighter the sleep. The sensors on current
Android smart phones are so sensitive, that even when the phone is placed
on the mattress near your body Sleep as Android is able to track significant
differences in the sleep patterns. Measuring the sleep cycles allows Sleep as
Android to do two important things:

- Finding the optimal wakeup time for the alarm clock

- Calculating light and deep sleep

2.5 Articles about sleep surveillance
Sleep research and surveillance is not a new invention. Research and surveil-
lance of sleep started in the beginning of the 20th century (see timeline in
section 2.1), and the way we sleep have not changed since then. For this
reason the basic articles regarding sleep are relatively old. Newer articles
about sleep is generally focused on new methods to observe sleep by using
more advanced technical equipment.

The first article in section 2.5.2 describes basic movements during sleep,
so even though it is from 1957, it is still relevant. Among others they found
a connection between body movements and EEG changes. EEG is explained
in section 2.5.1. Section 2.5.3 describes an article from 1982, when they
started using video as a means of monitoring sleep. The video equipment has
definitely improved since then, but the survey got good results. In spite of the
dramatic changes that have taken place in recording and storing techniques,
sleep staging has undergone surprisingly few changes.

2.5.1 Electroencephalography

Electroencephalography – or EEG – is a monitoring method to record electri-
cal activity in the brain. EEG measures voltage fluctuations resulting from
ionic current within the neurons of the brain. In clinical contexts, EEG refers
to the recording of the brain’s spontaneous electrical activity over a period
of time, as recorded from multiple electrodes placed on the scalp. EEG is
used to diagnose epilepsy, sleep disorders, coma, and brain death[19].

2.5.2 Sleep Movement Measured with EEG

The department of Physiology at the University in Chicago did a survey in
1957 to find a connection between EEG patterns and its connection to dream-

2.5. ARTICLES ABOUT SLEEP SURVEILLANCE 11

ing. In addition to eye motility, they observed body movement, because of
its possible relation to dreaming and its close association with EEG changes
during sleep.

Figure 2.3: EEG patterns for different sleep stages[4]

The survey describes two different kinds of body movement: major and
minor body movement. Major movement is when the whole body changes
position, while minor movement is stirring and limb movement. Body immo-
bility generally begins in descending stage 2, and ends in stage 3 or 4, just
prior to the ascending leap to REM. When major movements occur in the
deeper stages, the movements were always accompanied by an upward EEG
change, and this often represented the upward swing of a sleep cycle. If the
subject was in stage 2, a major movement would usually result in a fleeting
appearance of stage 1 or waking EEG, while minor movements caused little
apparent change.

In addition to finding a connection between body movements and EEG
changes, they also found that REM periods often started immediately after
a series of body movements, that the body was relatively motionless dur-
ing REM, and that movement often reoccurred at the end of REM. They
concluded that EEG, eye movement and body movement have cyclic varia-
tions throughout the night, and that the peaks of eye and body movements
coincide with the lightest phase (stage 1) of the EEG cycles[7].

12 CHAPTER 2. BACKGROUND

2.5.3 Sleep Movement Measured with EEG and Video

Another survey from 1982 explored the connection between brain state and
body position with two assumptions:

- Major body movements usually occur right before and after REM sleep.

- The longest periods of immobility are associated with deep NREM
sleep.

In addition to EEG, they used video surveillance together with the il-
lumination provided by a night-light to monitor four subjects, in hopes of
determining the relationship between movements and sleep cycle phase.

They performed an independent frame-by-frame video analysis with a
sampling rate of one frame per minute, and used the EEG recordings as
a reference. Various degrees of motion were detected, ranging from limb
twitches to major posture shifts. A major posture shift was defined as at
least a 45 degrees rotation of the body, or more than three limbs moving.
Immobility was defined from absolute no motion to maximum two limbs
changing place between frames. On average they counted 12.1 major position
shifts during the first 6 hours of sleep.

In the comparison of the observed posture shifts in the video frames
versus the polygraph, they saw that when there was no motion in the video,
the polygraph showed a descending NREM phase of the first sleep cycle.
The last movement observed in the video always happened before the EEG
showed the first sleep spindles. A spindle is a burst in the brain activity that
occurs during stage 2 sleep. In short, this means that they could measure the
transition between stage 1 (almost awake) to stage 2 (stable light sleep) from
the movement alone. The timing of the major body movement was connected
with specific stages of sleep. Most of the movement happened at the end of
REM sleep, or at the end of descending NREM sleep. Put differently; the
movements happened at the same time as the transition between NREM and
REM[1].

This means that a sufficiently detailed video record of nightly movements
can document sleep stage changes without using invasive monitoring devices
such as the polysomnography electrodes that they place on the skin.

2.6 Digital images
A digital image can be expressed as a 2-dimensional matrix, where each
element in the matrix is a sample of the original image. This sample is called
a pixel, or picture element, and more pixels gives higher accuracy. The pixels

2.6. DIGITAL IMAGES 13

are arranged in rows and columns, and the number of columns by the number
of rows is called the resolution of the image. Images from the Kinect has a
resolution of 640x480, which means there are 640 columns and 480 rows of
pixels. In total there are 307 200 pixels in each image from the Kinect. The
Kinect has a color camera which provides color images, and a depth camera
which gives grey scale images. Color images consist of pixels with typically
three intensities, such as red, green and blue (RGB). Grey images consist of
pixels with just a single value representing the shade of gray between the two
extremes black and white.

2.6.1 Storing images

Analog motives consists of continuous values, so when an image is stored
digitally, the values have to be quantized2 to a certain amount of levels.
Each pixel in the image is stored using n bits, which means that every pixel
value can be an integer ranging from 0 to 2n − 1. It is normal to use 8 bit
for grey images, and 3*8 bit for color images (8 bits per color channel). The
human eye is capable of detecting around 10 million unique colours, but it
is only able to detect approximately 30 shades of grey, depending on the
lighting. Figure 2.4 shows the famous Mona Lisa painting as a grey image
with various amount of bits.

2.6.2 Detecting humans in images

In the past few years, there has been much research in the area of human
detection. Much research is based on detection in color images. Common
methods involve statistical training based on local features, e.g. gradient-
based features such as HOG[6], and some involve extracting interest points
in the image, such as scale-invariant feature transform (SIFT)[17]. These
methods can provide highly accurate human detection.

However, color image based methods have difficulties finding the human
shapes when the background is complex, or the human is standing in a par-
ticular challenging pose. Using depth camera instead of color camera is more
robust to inconsistent colors and changing light because the objects must
occupy an integrated region in space[29].

2Quantization is the process of transforming a continuous sample to a discrete sample.

14 CHAPTER 2. BACKGROUND

(a) 8 bits (b) 4 bits

(c) 2 bits (d) 1 bit

Figure 2.4: Mona Lisa with varying amount of bits

2.7. CLASSIFICATION 15

2.7 Classification
In machine learning and statistics, classification is identifying to which set
of categories a new observation belongs, based on a training set of data
containing observations whose category membership is known.

In the terminology of machine learning[2], classification is considered su-
pervised learning, where a training set of correctly identified observations is
available. The corresponding unsupervised procedure is known as cluster-
ing, and involves grouping data into categories based on some measure of
characteristic similarity or distance.

This section contains a short description of Support Vector Machines, a
classification method used in chapter 3.

2.7.1 Support Vector Machines

Support vector machines (SVMs) are supervised learning models that analyze
data and recognize patterns. Given a set of training samples, each labeled
with one of two categories, an SVM training algorithm builds a model that
assigns new samples into one category or the other. This model is a repre-
sentation of the samples as points in space, mapped so that the samples from
the separate categories are divided by a clear gap that is as wide as possible.
New samples are then mapped into that same space and predicted to belong
to a category based on which side of the gap they belong to [28].

Figure 2.5 shows a maximum margin hyperplane (a line in the 2D case)
that separates the samples in two classes. The hyperplane can be written as
the set of points x satisfyingw·x−b = 0, where · denotes the dot product and
w the normal vector to the hyperplane. The parameter b

‖w‖ determines the
offset of the hyperplane from the origin along the normal vector w. When the
training data are linearly separable, two hyperplanes can be selected in such
a way that they separate the data and there are no points between them, and
then maximize the distance between the hyperplanes. The region bounded
by them is called "the margin". These hyperplanes can be described by the
equations w · x− b = 1, and w · x− b = −1.

The samples lying on the margin are called the support vectors. In figure
2.5 there are no samples lying inside the margin, but this is not always the
case. Sometimes it is not possible to find a hyperplane that can split the
classes. In this case a soft margin can be applied to find a hyperplane that
splits the samples as cleanly as possible, while still maximizing the distance
to the nearest cleanly split sample. This method introduces slack variables
in the equation which means that a certain amount of samples are allowed
inside the margin.

16 CHAPTER 2. BACKGROUND

Figure 2.5: SVM trained with samples from two classes[28]

2.8 Microsoft Kinect

The Microsoft Kinect was originally developed for the Xbox video game
console. It is a motion sensing input device that enables users to interact
with their console through speech and gestures, which means they don’t need
an external game controller. Human-computer interaction has always been
an active research field in computer vision, but it is difficult to achieve with
normal color cameras. By using the third dimension (depth), Kinect has
made the task much easier.

Because of its low cost and wide availability, Kinect has extended far
beyond the gaming industry to computer science, electronic engineering and
robotics. In the first three months after the launch in November 2010, Kinect
sold 10 million devices, thus setting a new Guinness World Record for the
fastest-selling consumer electronics device[30].

2.8. MICROSOFT KINECT 17

Figure 2.6: The Kinect sensor

2.8.1 Depth sensing technology

Figure 2.6 shows the components of the Kinect. It consists of a color (RGB)
camera, an infrared (IR) projector and sensor, multiple microphones, and a
motorized tilt that enables you to adjust the camera up or down 27°in order
to find the best possible view. This thesis focuses on the IR projector and
camera which combined gives depth vision.

Structured Light Principle

The depth-sensing technology in the first version of Kinect (v1) is licenced
from the Israeli 3D sensing company PrimeSense (bought by Apple in 2013),
so the complete technical description is not available to the public, but the
technology is based on structured light. To determine the depth, PrimeSense
uses something they call "light coding". Light coding is structured light
emitted from the IR projector, and received by the sensor[30].

The Kinect’s infrared projector is an IR laser that moves through a diffrac-
tion grating, a kind of super prism, which splits the light into several beams
travelling in different directions. This gives us a set of infrared dots in a
pseudo random pattern. The set of dots have locally different neighborhoods
since the pattern is random. The original dot pattern is hardcoded into the
chip logic, and the relative geometry between the IR projector and IR camera
is known, which means a dot observed in an image can be matched with a
dot in the projector pattern.

The position of the object can be reconstructed using triangulation. Tri-
angulation is simple geometry where you can determine the location of a
point (or in this case a unique small neighborhood) by measuring angles to
it from known points at either end of a fixed baseline. The downside to the
structured light method is that the camera only works inside because sun-
light will wash of the light pattern, and multiple Kinects can confuse each
other[9].

18 CHAPTER 2. BACKGROUND

Figure 2.7: Triangulation with Kinect[9]

The matching gives us a depth map encoded with gray values; the darker
the pixel, the closer it is to the sensor. If the object is too close, too distant
or too small to create a unique neighborhood, the pixels are set to zero, and
will appear completely black[30].

Time-of-flight

Another method to measure depth is time-of-flight (TOF). This method is
used in the second version (v2) of Kinect. TOF measure the time delay from
the light leaves the emitter until it returns to the sensor. The distance can
be calculated from this simple formula:

D =
c ∗∆t

2
(2.1)

where c is the speed of light, t is the time, and you have to divide the answer
by 2 because the light travels twice the distance; from the emitter to the
scene, and back again to the sensor[10]. The CMOS sensor in Kinect v1 is
not capable of extracting the time of return from the modulated light.

2.9. DEPTH SPACE OF KINECT 19

2.9 Depth space of Kinect
The depth sensor captures gray scale images of everything visible in the field
of view or the sensor. Each pixel in the image contains the Cartesian distance
in millimeters from the camera plane to the nearest object at that particular
(x,y) coordinate, as shown in figure 2.8.

Figure 2.8: Depth stream values[11]

There are three values that indicate the depth that can not be reliably
measured at a location; too near, too far and unknown. The two first means
an object was detected, but was either too near or too far for the sensor to
get a reliable measure. The unknown value means no object was detected.
The default range of the Kinect sensor is 0.8 to 4.0 meters[11], so if an object
is outside this range it will get the value 0.

The Windows edition of the Kinect also has an available "near range" op-
tion which gives reliable measures within 0.4m to 3.0m. Figure 2.9 illustrates
the ranges.

20 CHAPTER 2. BACKGROUND

Figure 2.9: Distance from sensor in meters[11]

2.10 Programming With Kinect
In order to process the data from the sensor, there is need of a driver to
transfer the data to a computer, and an image analysis library together with
a programming language to manipulate the data. This section covers the
libraries and programming languages that were considered for the project.

2.10.1 Kinect Drivers

For a computer to be able to read the input from Kinect, it requires a driver
for the USB connection between the computer and the Kinect. Microsoft
chose by design to not protect this connection, so it is possible to use the sen-
sor for other purposes than Xbox gaming. There are three main drivers[12]:

- Microsoft: The first option is the official driver from Microsoft. This
was released together with a software development kit for Kinect, but
it only works on Windows with Visual Studio with C++ or C#.

- OpenKinect: The open source community OpenKinect has enabled
use of the Kinect with PCs through the library "libfreenect". This is
available for both Windows, Linux and OS X, and it has wrappers for
a lot of different programming languages[21].

- OpenNI: An industry-led, non-profit organization called OpenNI has
provided middleware and a basic driver to access the Kinect. One of
the founding members of OpenNI is PrimeSense, the company behind
the 3D technology behind Kinect. OpenNI supports the same operative
systems as OpenKinect.

2.10. PROGRAMMING WITH KINECT 21

- SimpleOpenNI: Simple version of OpenNI. Among others does not
contain skeleton tracking and gesture recognition.

2.10.2 Image processing

Image processing is the study of any algorithm that takes an image as input,
and returns an image as output. The reason we want to process an image
can be to detect and enhance a specific feature, to sharpen or correct colors,
to improve the image so it is "better" to look at, or image compression. The
following two subsections describes two image processing libraries considered
for this project.

MATLAB

MATLAB (matrix laboratory) is a proprietary (not open source) program-
ming language developed by MathWorks. MATLAB allows matrix manipula-
tions, plotting of functions and data, implementation of algorithms, creation
of user interfaces, and interfacing with programs written in other languages,
including C, C++, Java and Python[18].

OpenCV

OpenCV (http://opencv.org/) is an open source computer vision library, so
it is free to use. OpenCV is written in optimized C/C++. It is designed
for computational efficiency, and it focuses on real-time applications. The
library contains over 500 functions, including image processing, motion and
tracking, pattern recognition, classification and data analysis functions. The
library comes with an interface for C, C++, Python and Java, and supports
Windows, Linux, Mac OS, iOS and Android[3].

2.10.3 Programming languages

There are multiple programming languages that can be used to process the
data from the Kinect. This section provides an overview of the programming
languages that were considered for the system.

C++

The first option is to use C++ (pronounced "C-Plus-Plus"). C++ is an
object oriented programming language, developed by Bjarne Stroustrup as
an extension of the C language. C++ is considered to be an intermediate
level language, as it encapsulates both high and low level language features.

http://opencv.org/

22 CHAPTER 2. BACKGROUND

The language is compiled before runtime, and has focus on efficiency and
performance. C++ is one of the most popular programming language for
graphical applications, and works well with OpenCV[5].

Processing

Another option is to use Processing, which is a Java-based sketching lan-
guage. Processing uses the SimpleOpenNI library which makes it easy to
install the required software and start programming with Kinect. Processing
has its own image processing library.

Python

The final alternative that I considered is Python. Python is a high level
programming language, easy to read, and you can usually express concepts
in fewer lines of code than in Java or C++. Python works well with OpenCV,
and it supports plotting with the library called Matplotlib.

One disadvantage with Python is that is does not compile before runtime,
so for instance running nested for-loops are slow. But by using a Python
extension called NumPy, it is possible to use vectorization instead of loops.
Rewriting loops to arrays with a fixed size where all the elements are the
same datatype, allows aggregations such as summing to be performed by
pre-compiled C code.

Chapter 3

Related Works

Sleep analysis and sleep movement analysis is not a new topic, nor is using
Kinect for other purposes than Xbox. There are many papers about the topic,
and I have researched how other projects have performed sleep movement
analysis with a near-infrared camera, how they used the depth information
from Kinect for human detection, and how they used Kinect v1 and v2 for
sleep monitoring.

This chapter focuses on four projects that used relevant or similar tech-
nologies and scientific methods. Section 3.1 describes a video-based alarm
clock from 2010. Section 3.2 is dedicated to a method for human detection
using Kinect from 2011. Section 3.3 is a project from 2014 about sleep moni-
toring using the first version of Kinect, and section 3.4 describes a sleep mon-
itoring system from 2015 which uses the second version of Kinect. Finally,
this chapter ends by comparing these projects with my project in section 3.5.

3.1 The iWakeUp System

The Journal of the Chinese Institute of Engineers published an article about
a video-based alarm clock called iWakeUp in 2010. It is written by Wen-
Hung Liao and Jen-Ho Kuo from the Department of Computer Science, and
Chien-Ming Yang and Ivy Y. Chen from the Department of Psychology.
The authors envisioned a smart living space where a data collection and
processing module named iWakeUp was installed in the bedroom to monitor
sleep in a non-invasive way. They refer to documentation that says that
waking up from light sleep will result in a better mental status than waking
up from deep sleep[16].

23

24 CHAPTER 3. RELATED WORKS

3.1.1 How iWakeUp works

The iWakeUp system works by setting an alarm time for when the user want
to wake up. At a certain time (for instance 30 minutes) prior to this pre-set
time, the monitoring system is activated. The system analyzes the incoming
video continuously to estimate the sleep status, and wakes the user if the
wakeup criteria is met. Figure 3.1 shows the overall setup for the system.

Figure 3.1: Architecture for iWakeUp

3.1.2 Background modeling and noise removal

If a robust background model is available, then it is easy to detect the move-
ments of the human subject by using frame differencing. The simplest way
to model the background is by using frame averaging, but this method was
not reliable for iWakeUp because they used an near-infrared camera. The
images from this camera were very noisy, and also sensitive to the bedroom
lighting changing gradually at dawn.

Instead of frame averaging, they used a method where they classified the
neighboring pixels in a region into three sets which was greater than, less
than or approximately equal to the previous pixel value. This means that
a slight change in a pixel’s intensity value did not result in a change in the
corresponding representation[8].

3.2. HUMAN DETECTION USING DEPTH INFORMATION BY KINECT25

The background model only dealt with noise at the individual pixel level.
All the motion pixels they found after removing the background noise, could
therefore not be interpreted as movement of the subject. There were still
some motion areas caused by noisy pixels. This was resolved using morpho-
logical filters to remove small and isolated blocks. There was also motion
outside the region of interest, which was resolved by only using the motion
data within the bed area.

3.1.3 Deriving wake-up rules

The outcome of the noise removal was a binary image that contained the
position of motion pixels. The number of motion pixels was called the global
motion amount. It is possible to compute the history of motion, and using
this together with the associated motion gradient to acquire the direction of
global movement. They found two types of motion pattern that indicated
wakefulness: Long term minor movements, and short term major movement.
These two types of motion resulted in two wakeup rules:

- The global motion exceeds ML for at least TL seconds

- The sum of the motion exceeds MS in TS seconds

Determining these parameters was done by using the support vector ma-
chine (SVM) model which is a supervised learning model used for data anal-
ysis and pattern recognition1. The time interval for motion computation was
decided to be 1 second. At each time interval, they collected the amount of
motion of the previous and following 7 seconds to create a 15-dimensional
feature vector. This vector became the input to an SVM to perform classifi-
cation of awake/asleep status.

On average their system registered three "awake" cases in the 30 min-
utes period before wakeup time, which should be enough for their system to
function as a reliable alarm clock.

3.2 Human detection using depth information
by Kinect

Another relevant project is the article "Human detection using depth infor-
mation by Kinect" written by Lu Xia, Chia-Chih Chen, J. K. Aggarwal from
the Department of Electrical and Computer at the University of Texas[29].

1More information about SVM is found in section 2.7.1 in the Background chapter

26 CHAPTER 3. RELATED WORKS

This article describes a method for detecting humans by using depth in-
formation from the Kinect. The method is hereinafter referred to as Xia’s
method2.

The first step of Xia’s method uses 2D chamfer distance matching to lo-
cate regions with possible heads in the image. These regions are then exam-
ined using a 3D head model which exploits the relational depth information
for verification. They also have a region growing algorithm to detect the
entire body belonging to the located head, and extracting the body contour.

Figure 3.2: Overview of Xia’s method[29]

3.2.1 2D Chamfer Distance Matching

2D chamfer distance matching is a scale invariant method that gives a rough
detection result with few false negatives3. The method uses Canny edge
detector to find all the edges in the image: If the amount of pixels in an edge
is below a certain threshold, the edge is eliminated.

Based on the edge image, they calculated a distance map where each
pixel contained the distance to the closest edge. A binary head template
was positioned around on the distance map, and a match was found when
the sum of the pixel values inside the template was below a threshold. The
process was repeated with the head template in different scales and rotations.

3.2.2 3D model fitting

The detected regions from 2D chamfer distance matching had to be verified
to see if the region actually was a head. Based on the depth of the match, it
could be calculate at roughly which height the head should be. Acceptable
location of the head was based on a regression result for the depth of the
head and its height which Xia presented in their article.

If the head had a radius within the range R = 1.33 ∗ height/2, then it
was verified as a real match. The actual radius of the head was already

2Xia’s method is not the official name, but the article did not give the method a name.
3A false negative is a result that is registered as negative, but really should have been

positive.

3.2. HUMAN DETECTION USING DEPTH INFORMATION BY KINECT27

calculated in the distance map; the pixel value at the center of the head
contour contained the distance to its nearest edge. A real head looks different
from different angles. In order to get a model which was invariant to different
views, they used a hemisphere as the 3D model for the head.

3.2.3 Extract contours

Based on the detected head in the last section, they wanted to extract the
overall contour of the person, so they could track hands and feet and recognize
the motion. In a depth array, the depth values of the person’s feet is the same
as the local ground, and when the person touches something, that object will
also be at the same depth.

To distinguish between feet and ground, Xia took advantage of the fact
that the feet generally appear upright regardless of posture. They used a
region growing algorithm to extract the whole body contour from the depth
array, assuming that the depth values on the surface of a human were con-
tinuous and varied only within a specific range.

3.2.4 Tracking

Tracking objects in depth images was based on two assumptions:

- the movements of the object

- that the neighboring frames should change smoothly

Tracking in this article started with finding the center of an detected blob
(contour of a person). Then the coordinates in the depth array of this center
was found. The speed of the blob was calculated from the coordinates of the
center in the neighboring frames. The following energy score (E) was used
to label the matches so they would get the smallest energy available:

E = (c− c0)2 + (v − v0)2 (3.1)

The coordinates of the person in the current frame is represented by c, and
c0 is the coordinates in the last frame. The speed in the current frame is
represented by v, and v0 is the speed in the last frame.

3.2.5 Results from Xia’s method

Xia’s method was evaluated using a sequence of depth images from the Kinect
in an indoor environment with at most two people in the images. Figure 3.3

28 CHAPTER 3. RELATED WORKS

shows examples from the detection result. The detection worked well in
most cases; There were no false positives4, and only a few false negatives.
Advantages with Xia’s method is that it easily adjusts to new datasets, and
that the 2D chamfer matching largely reduces computational costs. One
disadvantage with the method is that the tracking is dependant on accurate
head detection.

Figure 3.3: Results from Xia’s method

3.3 Sleep Monitoring with Kinect V1
The institute for Computer Science in Germany published an article called
"Sleep Detection Using a Depth Camera" in 2014, written by Krüger et
al.[14]. They presented a way to assess the quality of sleep within a non-
laboratory environment. They monitored their patients with a Kinect v1
device, and compared their results with the polysomnography-based gold
standard of sleep analysis.

3.3.1 Kinect-based setup

The project mounted the Kinect to a panel in the ceiling, in such a way that
the bed and the surrounding area was within the sensors visible range. There

4A false positive is a result that is registered as positive, but really should have been
negative.

3.3. SLEEP MONITORING WITH KINECT V1 29

was much noise at the edges of the bed and other furniture. The floor was
also a source of noise because of the high distance from the Kinect to the
floor. In order to find the relevant motion – as opposed to noise – in the
data, two measures of noise was computed:

- The first measure was a visual motion summary – an image – where they
averaged the sum of the pixel differences and divided with the amount
of frames. Equation (3.2) gives the average spatial distribution D:

D(pi,j) =
1

T

T−1∑
i=1

|pi,j(t)− pi,j(t+ 1)| (3.2)

- The second measure was the average change N per frame, in the form
of a plot. This is an average over the pixel differences divided by the
amount of pixels for each frame. Equation (3.3) gives an overview in
the temporal (time) domain:

N(t) =
1

nm

n∑
i=1

m∑
j=1

|pi,j(t)− pi,j(t+ 1)| (3.3)

These two measures where used on a 5 minutes test sequence with no
motion at all. In order to reduce noise, they had two strategies: First, they
smoothed the data by using a simple temporal box filter on the time series of
each pixel. The size of the filter window was 3 frames. Secondly, they only
considered the relevant part of the images by cropping the image to only
containing the bed itself. For all experiments described in the article they
used filtered and cropped images.

3.3.2 Kripke’s algorithm and Krüger’s adaption of it

Krüger’s experiment was inspired by an algorithm presented in an article
regarding sleep stage scoring using actigraph readings written by Kripke et
al[13]. Kripke measured actigraph activity once every 30 seconds, multiplied
these results with different weights, and achieved a final score xi ∈ 0, 1 given
at each time t = j, where xj = 0 meant inactive and xj = 1 meant active.

Krüger modified the original method by using different weights for the
input signal:

H(t) =
te∑

i=ts

h(i) ∗N(t− i) (3.4)

The input signal from the Kinect in the temporal domain was multiplied
with the parameters in figure 3.4. H ≥ α meant the subject was awake. The
paper did not provide the value of α.

30 CHAPTER 3. RELATED WORKS

Figure 3.4: Parameters for Kripke and Krüger’s algorithms[14]

3.3.3 Results from Krüger

Recordings over two nights resulted in both a spatial motion summary and
a temporal summary.

The spatial summary showed that the patient moved his head, hands and
feet. And even though the patient used a duvet, the motion was clearly
visible.

The temporal summary depicted by figure 3.5 shows the asleep and awake
incidents during the second night of experiments in form of a curve illustrat-
ing at which times the subject displayed significant activity. The hypnogram
marked with ground truth is measured with polysomnography. The rest of
the hypnograms are based on equation (3.4), using the parameters from fig-
ure 3.4 for Kripke and Gauss, while the constant hypnogram used a constant
parameter for all input.

I did not include the hypnograms for the first night of recordings because
the article says the measurements were not reliable. The unreliable recordings
was caused by a complex clinical sensor that the patient had to wear in order
to get the ground truth (PSG) recordings. The sensors caused discomfort
which disturbed the natural sleep pattern.

3.4. SLEEP MONITORING WITH KINECT V2 31

Figure 3.5: Temporal hypnogram for the second night from Krüger’s experi-
ments[14]

3.4 Sleep Monitoring with Kinect V2

The International Journal of Distributed Sensor Networks published a re-
search article in 2015 called "Sleep Monitoring System Using Kinect Sen-
sor"[15]. It is written by Jaehoon Lee, Min Hong and Sungyong Ryu from
the Republic of Korea. They write about how traditional sleep monitoring
requires many devices to be attached to the human body. In their paper they
implemented a sleep monitoring system with Kinect v2 which could detect
sleep movement and postures during sleep without using any body attached
devices.

3.4.1 Sleep monitoring as part of a Smart Home

The sleep monitoring system proposed in the article can be one of the el-
ements in a smart home5, where it can take care of or improve human life
through sleep state monitoring. Since the system does not require any inva-

5A smart home is a home equipped with lighting, heating, security, and electronic
devices that can be controlled by a time schedule or remotely from any location by phone
or computer.

32 CHAPTER 3. RELATED WORKS

sive sensing devices, the system can provide a natural and comfortable sleep
environment while collecting sleep related information.

3.4.2 Sleep State Monitoring

There are two options to detect sleep state:

- Body attached sensors: Directly attach sensors to the body, which
provides scientifically accurate sleep state information. A disadvantage
with this option is that the sensors leads to an uncomfortable sleep
environment, and this may negatively affect the measurements.

- Video: Recording body movements during sleep is more convenient,
and more comfortable for the patient. A disadvantage with video is
that it is more difficult to analyse the sleep state from images than with
body-attached sensors. In order to monitor the sleep state, it is essential
with image processing to extract the body from the background.

3.4.3 Microsoft Kinect v2

The project used Microsoft Kinect v2 to detect and track the body move-
ments. The second version of Kinect provides the position of 25 joints, the
detection range is better than the previous Kinect v1, and the v2 sensor uses
the more accurate time-of-flight as opposed to v1’s structured light6. To-
gether with Kinect v2, they used Visual Studio with C++ and OpenCV to
detect and track body movements during sleep.

3.4.4 Sleep Movement Measures

Kinect v2 provides x, y and z position of 25 joints, and the distance of
objects to the depth sensor. They stored (x,y,z) for 19 critical joints every
half second, and figure 3.6a) shows the detected joints from the article. The
total sleep movement of 19 major joints is shown in figure 3.6b). They used
Euclidian7 distance between the previous and current position of the joints
to obtain the total movement.

6The two depth sensing technologies time-of-flight and structured light are described
in 2.8.1 in the Background chapter.

7The Euclidean distance between points p and q is the length of the line segment

connecting them:
n∑

i=1

(qi − pi)
2.

3.4. SLEEP MONITORING WITH KINECT V2 33

(a) (b)

Figure 3.6: [15] a) Detected joints for tracking and b) Major joints movement
per hour

3.4.5 Sleep Movement Analysis

To test the system, they monitored 20 students for 7 hours where their bodies
were not covered with any blankets to accurately detect the motion. They
found that the sleep movement value was sharply altered when the body po-
sition changed. When the body posture stabilized again, the detected motion
was also stable. For each hour during the night they got 7200 measures of
the motion from 19 joints – SM – where c denotes the current position, and
p denotes the previous position:

SM =
19∑
i=1

√
(Xic −Xip)2 + (Yic − Yip)2 + (Zic − Zip)2 (3.5)

By adding all the SM values for each hour, they got HMS (Hourly Sleep
Movement) values ranging from 0.0 to 5.5, which they standardized to range
from 0.0 to 1.0. They judged the sleep quality of the students based on the
following HMS values:

- Good (deep sleep): 0 < HMS < 0.25

- Normal (normal sleep): 0.25 ≤ HMS < 0.59

- Bad (light sleep): 0.59 ≤ HMS ≤ 1.0

In the article, they included a table with the amount of movement per
hour given in HMS values, and also an overall grade (Good, Normal or Bad)
of the sleep quality for each of the students. The article does not say anything
more about whether these values were accurate, or if the students in question
agreed with the sleep quality grade they got.

34 CHAPTER 3. RELATED WORKS

3.5 Comparison of the articles
This section contains a short summary of each article, with the key findings
that is used further in this thesis.

iWakeUp: The iWakeUp article used a near-infrared camera (not Kinect)
to monitor sleep. They removed the noise in the images with morphologi-
cal filters, and only used the bed area to avoid noise sources outside the
ROI. They made wakeup rules where the global motion had to exceed a cer-
tain threshold for a certain amount of time for an incident to be considered
"awake". At each second they gathered the motion from 7 seconds before
and after, to perform asleep/awake-classification on this 15-dimensional fea-
ture vector. On average the system registered three "awake" cases in the 30
minutes before wakeup time.

Xia: Xia’s method described in "Human detection using depth informa-
tion by Kinect" proved not so relevant for sleep tracking because the method
required people standing in order to track them. Further, the method was
based on a accurate head detection, which can be difficult if the head is
covered by a duvet. However, some knowledge was still relevant: They men-
tioned summing pixel values and comparing this with a certain threshold.
The article also provided an assumption regarding object tracking: When an
object moves, the neighboring frames should change smoothly.

Kinect V1: The most relevant article was about sleep monitoring using
Kinect V1. They cropped the images to just contain the bed. The patients
were allowed to use duvet, and the kinect recordings still showed a significant
amount of movement. They found the pixel value difference between frames,
and multiplied this input with certain parameters, in order to make hypno-
grams from the input with asleep or awake cases. The results from Kinect
v1 was compared with results from polysomnograpy, and it turned out that
the Kinect recordings obtained similar good results.

Kinect V2: The last article was mostly relevant for further works where
a Kinect v2 sensor could be used. They used skeletal tracking, so the patients
could not use blankets. They also used the more accurate time-of-flight
depth sensing technology. An important point to take further was that they
confirmed that when the body position changed, so did the sleep movement
output in their system.

Chapter 4

Material and Methods

This chapter describes material and methods used to exploit the depth in-
formation from the Kinect. The chapter starts by explaining the choice of
programming language and libraries necessary to program with the Kinect
in section 4.1. Further, section 4.2 describes the setup of the system. Section
4.3 is dedicated to exploration of the depth information from the Kinect, and
section 4.4 focuses on the frame difference on the depth images. Section 4.5 is
a speed test, and section 4.6 explores the noise in the images. Preprocessing
of the images is covered in section 4.7. Finally, the chapter ends with section
4.8 that covers an implementation of a scheduler used to start the Kinect
recording at night, and the code for the actual recording in section 4.9.

4.1 Choosing programming language and libraries
A big decision in this project was choosing driver, image processing library
and programming language. There were many options, but after some trial
and test runs I ended up with OpenKinect, OpenCV and Python. This
section explains the reason behind the choices.

4.1.1 OpenKinect

OpenKinect with the library libfreenect is one of the drivers for Kinect. It
can be used to control the motor, accelerometer, led light and audio, and
supports both color and depth images.

Advantages

An advantage with libfreenect is that it has support for motor control, which
is important to get the Kinect in the correct angle before filming.

35

36 CHAPTER 4. MATERIAL AND METHODS

Disadvantages

One disadvantage with libfreenect is that, unlike OpenNI, it does not support
skeletal tracking (see figure 4.1). Detection of the skeleton joints of the user
can give useful results to compare with the results from the depth data. On
the other hand, the skeleton feature requires that the subject is not covered
by a duvet, which goes against the purpose of the project - uninvasive sleep
surveillance.

Figure 4.1: Skeleton joints from Kinect skeletal tracking

4.1.2 OpenCV

I first considered using MATLAB since I had previous experience with using
MATLAB for image processing and image analysis earlier. MATLAB is an
independent language, meaning there is no need for an extra language, but
it is possible.

Advantages

Advantages with OpenCV is that it is open source. Another advantage is
that it is faster than MATLAB, and it comes with an interface for Python. 1
hour of images with a frequency of 1 image per second produces 3600 images.
For a whole night there is a lot of images to process, so speed is important.

4.2. SETUP OF THE KINECT 37

4.1.3 Python

The original plan was to use C++ since this was used in some of the articles
I had read about Kinect programming. However, C++ made the project a
lot harder considering I had little experience with C++. Instead of learning
a new language, I tested the Java-based Processing language, since I already
know Java.

Processing uses SimpleOpenNI to connect with Kinect, and it provides
its own image processing library. In regards to installation it was basically
plug-and-play. One huge disadvantage was that the included image library
did not have all the necessary functions, and using OpenCV together with
Processing did not work. Instead, I tried using Python with OpenCV and
libfreenect.

Advantages with Python

Advantages with Python is that I already was familiar with the language,
and there is little code redundancy (as opposed to for instance Java). The
installation process was more complicated, but there are a lot of tutorials
available. The installation of Python with OpenCV and OpenKinect for OS
X Mavericks is provided in Appendix A.

4.2 Setup of the Kinect
Regarding the setup of the system, I took the following requirements into
account:

- The distance between the bed and the sensor can not be smaller than
0.8 meters, and not larger than 4 meters because of the range of the
Kinect.

- There can be no natural sunlight, since sunlight ruins the structured
light pattern from the Kinect’s IR emitter.

- There can be no obstacles between the camera and the user.

4.2.1 First setup

Finding a good position for the Kinect was challenging. The first attempt
was simply placing the Kinect at a table next to the bed. This did not work
out since the bed and the person got registered at the same depth. The
second attempt was duct taping the Kinect to a book shelf above the bed,

38 CHAPTER 4. MATERIAL AND METHODS

shown in figure 4.2. However, recording over night was not possible with
the first setup because it was not safe for the person sleeping. One of the
main goals with this project was to avoid intrusive methods to record sleep,
and getting hit in the head with the sensor should probably be defined as
intrusive. The first setup is used in section 4.4 and 4.7.

Figure 4.2: Setup 1

4.2.2 Second setup

The second setup worked out much better, see figure 4.3. The Kinect was
placed on top of a book shelf with no risk of falling down. The distance from
the sensor to the nearest point in bed was 1.5 meters (middle of body), and
the furthest was 2.5 meters (position of head). For this setup, the Kinect
default range of 0.8m - 4.0m suffices, since the upper body is within this
range. The second setup is used in all the sections except 4.4 and 4.7.

4.2. SETUP OF THE KINECT 39

Figure 4.3: Setup 2

40 CHAPTER 4. MATERIAL AND METHODS

4.3 Depth Information from Kinect
The libfreenect library provides depth images from the Kinect with the func-
tion sync_get_depth(). This function returns raw depth values in millimeters
(e.g. 1200 mm). On the other hand, OpenCV shows images where each pixel
only has values ranging from 0-255. For the depth information to make sense
for OpenCV, I converted the raw values to uint8, which is an eight bit un-
signed integer. Unsigned means that there are only positive values. One bit
can be either 0 or 1, and since there are 8 bits, that gives 28 = 256 different
values.

4.3.1 How the pixels are stored

The images from Kinect have a resolution of 640x480 pixels. An image
is usually represented as a two-dimensional array, but the pixels from the
Kinect are stored in a one-dimensional array. An advantage with a one-
dimensional array is that the computations are faster than a two-dimensional
array. However, the formula for getting a pixel from a specific position is a
bit more advanced. Table 4.1 and 4.2 illustrates the mapping between how
the pixels look and how they are stored.

Table 4.1: How the pixels look

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Table 4.2: How the pixels are stored

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To find the pixel value in position (x,y) in the image, the following
formula is used, where width is 640 for the Kinect images:

index = x+ y ∗ width (4.1)

4.3.2 Testing the depth

The default mode of the Kinect has a range between 0.8m and 4.0m, with
optimal light conditions. Two test cases was done to see how many pixels
could be measured by the Kinect.

4.4. FRAME DIFFERENCING ON DEPTH IMAGES 41

The first test was done with a white wall approximately 1.5 meters away
from the sensor. The result showed that more than 98.5% of the pixels could
be measured.

Another test run was done against a window at night. The result of
this test showed that only 86.9% of the data was measured. By closing the
curtains in front of the window this number was increased to 98.7%. These
numbers will of course vary with different tests, but the conclusion is that
the amount of unmeasured data is reduced in a closed environment.

4.4 Frame differencing on depth images

Frame differencing is comparing the values in the same pixel position in two
consecutive frames/images to get the average change – the motion – per
frame:

F (t) =
1

nm

n∑
i=1

m∑
j=1

|pi,j(t)− pi,j(t+ 1)| (4.2)

By comparing the consecutive frames in an image sequence, I found the
number of pixels that changed between frames. Figure 4.4 consist of 8 images
with different sleeping positions. The pixel value in position (x,y) in image
4.4b was compared to the pixel value at the same position in the previous
image 4.4a. If the difference exceeded a certain threshold (called slack in
table 4.3), the amount of motion pixels is increased by 1.

This first test is done with the first setup, described in figure 4.2.1. There
is no preprocessing of the data, except that the raw data from the Kinect is
reduced to 256 levels.

4.4.1 Testing various slack

Performing frame difference on the images requires a threshold to decide
whether the difference is counted as a motion pixel or not. Deciding the
value of this threshold – or slack – is done in this section. This section is
also based on the image sequence in figure 4.4.

Table 4.3 shows the percentage of pixels that have moved compared to
the previous image, i.e., difference ab means image b) (4.4b) compared to
image a) (4.4a). This was done for all eight images.

The numbers marked with bold are supposed to be bigger than the other
numbers, as there are major changes in these images, see images d), e) and
f) compared to their previous images. It is desirable that the images with

42 CHAPTER 4. MATERIAL AND METHODS

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Image sequence with different sleeping positions with setup 1

little movement have the lowest possible percentage change, and that the
images with large movement have a high percentage compared to the others.

Percentage of changed pixels with various slack
0 10 20 30 40 50 60 70

ab 49.1% 1.1% 0.5% 0.3% 0.3% 0.2% 0.1% 0.1%
bc 77.0% 18.9% 9.7% 5.7% 3.5% 1.8% 1.0% 0.6%
cd 83.6% 43.9% 25.0% 16.9% 12.5% 9.3% 6.7% 5.2%
de 80.1% 40.9% 21.8% 15.7% 12.1% 10.0% 8.4% 7.2%
ef 85.9% 41.0% 24.0% 16.9% 11.7% 8.1% 6.0% 4.3%
fg 84.2% 32.4% 17.2% 9.3% 5.0% 2.9% 2.1% 1.8%
gh 79.6% 21.6% 11.5% 7.3% 4.4% 2.7% 2.0% 1.7%

Table 4.3: Motion pixels between frames with various slack. The images
emphasized in bold text contains major movements, and the images in normal
text contains minor or no movement.

Table 4.3 shows motion values with various slack:

- For zero slack it seems that there are more movement for fg than for
cd and de, which is incorrect.

- A slack of 20 and above looks usable since the numbers in bold are
higher than the others.

4.4. FRAME DIFFERENCING ON DEPTH IMAGES 43

- From the table it seems that a slack of 40-60 gives a good result for
these images since the percentage is significantly higher for the images
with major movements.

4.4.2 Testing slack of 55 on a sequence of 30 images

Plot 4.5 shows a 30 seconds sequence of recording with a slack of 55. The
exact values are included in table 4.4. In the table there are two peaks at
image #12 and #13 where there is approximately 90°rotation of the upper
body and some arm movement, and at #24 and #25 where there is another
90°movement, and motion of an arm and the head.

Figure 4.5: Motion pixels with slack=55 for a 30 seconds sequence

44 CHAPTER 4. MATERIAL AND METHODS

Img Motion Movement Img Motion Movement
#0 6.21% Arm #15 0.75%
#1 1.30% #16 0.70%
#2 4.42% #17 0.77%
#3 2.78% Shoulder #18 0.76%
#4 0.80% #19 2.88% Hand
#5 0.72% #20 2.74% Hand
#6 2.97% Forearm #21 3.28% Hand
#7 1.14% #22 2.50% Hand
#8 0.56% #23 6.41% Arm
#9 0.63% #24 21.25% 90°rotation
#10 5.76% Back #25 11.46% Arm, head
#11 8.65% Arm #26 3.09% Forearm
#12 13.49% 90°rotation #27 1.18%
#13 12.81% Both arms #28 6.19% Head
#14 4.34% Hand

Table 4.4: Frame difference of 30 seconds with 1 sec interval

4.5 Performance test of for-loops vs. NumPy

I mentioned in section 2.10.3 that since Python code is not compiled before
runtime, regular for-loops are really slow. I wanted to see how much faster
using NumPy arrays actually was, so I did a performance test on 1200 images
where both programs found the frame difference of the images. The runtime
for two nested for-loops was 1 minute and 47.9 seconds for processing all 1200
images. However, by using vectorization, the runtime was only 3.8 seconds.
Quite a difference! So obviously NumPy is used for the rest of the project.

4.6 Noise test

This section is dedicated to localize and hopefully decrease the sources of
noise in the depth images. Sources of noise comes from edges of the bed and
wall. The noise test is based on a sequence of 1200 images with 1 image
every second for 20 minutes. All the images depict an empty bed with no

4.6. NOISE TEST 45

actual motion.
One option to reduce noise is to only use the region of interest (ROI) in

the images, which in this case is equivalent to the bed region. Figure 4.6
shows a depth image with the ROI as a black square. The gray and white
part of the figure are the walls behind the bed.

Figure 4.6: A depth image with the black square representing the ROI

4.6.1 Minimum and maximum values

When the object is too close or too far away from the Kinect, the pixel values
is assigned to 0 or 255. Figure 4.7 shows the number of pixel that have 255 as
value. Plot a) have pixels from the entire image, and the maximum number
of pixels is 139 000 which is equivalent to 45% of the total pixels. Plot
b) contain pixels from a cropped image with only the bed area, and the
maximum amount of pixels is 12, which is 0.017% of the total pixels in the
cropped image.

Regarding the values set to 0, the cropped plot showed no zeros, and the
full image showed maximum 12 zeros, therefore I did not include those two
plots.

4.6.2 Motion pixels of noise

Figure 4.8 shows the motion pixels for the same image sequence. The black
graph is the full original image, while the blue graph represents the cropped
images. Plot 4.8a) shows that there is more actual noise in the full image
(black graph), while plot 4.8b) shows that in percent it is actually the cropped
images (blue graph) that has most noise.

46 CHAPTER 4. MATERIAL AND METHODS

(a) (b)

Figure 4.7: Number of pixels with value 255 (max). Plot a) shows values
from the entire image, plot b) shows values from a cropped image. Note that
both y-axis is in actual value, and not percent.

4.6.3 Test of noise compared to actual motion

The reason why I wanted to use cropped images was because these images
contained only the bed area, and processing this smaller area took approxi-
mately a quarter of the time. Section 4.6.1 shows clearly that using the full
image is unnecessary, especially considering that almost half the pixel values
is 255. However, based on the noise images described in the previous section
(4.6.2) it would seem that using the full image is less noisy percentage-wise,
so I was in doubt of whether to use cropped images or full images.

For this reason I also had to investigate how the motion plots looked with
actual motion compared to the plots with no motion. Figure 4.9 shows two
plots where 4.9a is motion pixels in the full image, and 4.9b is motion pixels
within the cropped image. The plots are based on a 3600 long image sequence
recorded over 5 hours. The noise becomes the minimum values in the plot,
and represents no motion. The plot shows that the noise in the full image is
about 10 percent, and in the cropped image it is about 20 percent. However,
the actual motion pixels from the cropped image has also increased, which
makes separating the motion from the noise much easier. This means that I
can continue with the cropped images.

4.6. NOISE TEST 47

(a) (b)

Figure 4.8: Motion pixels from the 1200 noise images. Plot a) is the actual
values, and b) is in percent relative to the total amount of pixels in the original
or cropped image.

(a) (b)

Figure 4.9: Motion recorded every 5 seconds for 5 hours. Plot a) is based on
the full image, and plot b) is based on cropped images.

48 CHAPTER 4. MATERIAL AND METHODS

4.7 Preprocessing

This section is dedicated to preprocessing methods to improve the images in
order to get a better result. One approach to reduce noise in the images is
by convolving the image with a low-pass filter. A low-pass filter passes low
values, and reduces or removes high values. It is especially good for reducing
noise within small neighborhoods, by finding single pixels with a lot different
value compared to its neighboring pixels, and reducing the outliers. One
disadvantage with low-pass filtering is that it blurs out the edges.

4.7.1 Low-pass filters

The algorithm iterates over all the pixel positions in the original image, for
each (x,y) position it calculates a new value for (x,y) in a new image based
on the values inside a size*size window. The actual calculations of this new
pixel value depends on the type of kernel used, and how blurred the image
becomes is decided by the size of the window.

Mean kernel

The mean kernel emphazises the average of the neighborhood. If the size of
the window is 3, the mean kernel has 1/9 at every space in a 3x3 matrix.

Mean = 1/9 ∗

1 1 1
1 1 1
1 1 1



Gauss kernel

Sometimes it can be preferable to use a kernel which emphasizes other fea-
tures than the average. One option is a gaussian kernel which emphasizes the
center pixel the most, and gives less weight to the neighbors. A Gauss-filter
blurs less than a mean filter of the same size. A 3x3 Gauss-filter looks like
this:

Gauss = 1/16 ∗

1 2 1
2 4 2
1 2 1



4.8. KINECT SCHEDULER 49

4.8 Kinect Scheduler

For recordings in middle of the night I used a Python scheduler library called
schedule. With this library it is possible to set day and time when the
program should run. For instance run the program every Monday to Friday
at 6AM.

1 import schedule, time, datetime
2 from kinect_record import Kinect
3

4 kinect = Kinect()
5

6 def job():
7 now = datetime.datetime.now()
8 strf = now.strftime("%Y-%m-%d %H:%M")
9 print ’Scheduler is running.. ’, strf

10 kinect.runLoop()
11

12 schedule.every().day.at("02:30").do(job)
13

14 while True:
15 schedule.run_pending()
16 time.sleep(1)

4.9 Kinect Recorder

This section contains the code for recording with Kinect.

1 #!/usr/bin/env python
2 import freenect
3 import os, time, datetime
4 import cv2
5

6 class Kinect:
7 def get_depth(self):
8 array,_ = freenect.sync_get_depth()
9 array = array.astype(np.uint8)

10 return array
11

12 def runLoop(self):
13 frequency = 1 # frames per second
14 terminate = 60*60*5/frequency

50 CHAPTER 4. MATERIAL AND METHODS

15

16 now = datetime.datetime.now()
17 strf = now.strftime("%m-%d-%H-%M")
18

19 # New directory every time - don’t overwrite other images
20 pathWithFilename = os.path.abspath("kinect_record.py")
21 splitted = os.path.split(pathWithFilename)
22 directory = splitted[0] + ’/29april/kinect’ + strf + ’_’ +

str(frequency) + ’sec_’
23

24 j=0
25 while os.path.exists(directory+str(j)):
26 j+=1
27 directory += str(j)
28 os.makedirs(directory)
29

30 print ’Kinect running every’, frequency, ’seconds. Folder’,
os.path.split(directory)[1]

31

32 i = 0
33 while True:
34 depth = self.get_depth()
35 cv2.imwrite(directory + ’/depth’ + str(i) + ’.jpg’, depth)
36 i += 1
37

38 # Close window on ESC or after X time
39 if cv2.waitKey(5) == 27 or i > terminate:
40 break
41

42 time.sleep(frequency)
43

44 cv2.destroyAllWindows()
45 print ’Kinect is finished!’

Chapter 5

Results and Discussion

This chapter contains the results from my sleep movement program, and
discussion about the results. Section 5.1 discusses the results of the low-
pass filtering methods described in the chapter of Material and Methods.
Section 5.2 introduces a threshold to separate noise from the actual motion
in the plots. Section 5.3 decides a vector size in order to find the largest
motion incidents during a recoring. Section 5.4 compared a Kinect recording
to a recording done with an Android application called "Sleep as Android".
Finally, the chapter ends with chapter 5.5 discussing motion plots based on
recordings from entire nights, using the parameters decided in the previous
sections of this chapter.

5.1 Result of low-pass filtering
The low-pass filtering described in section 4.7 was performed on the 3600
cropped image sequence from section 4.6.3. The amount of motion pixels for
each image was based on a slack of 50, which means that a pixel value change
between two frames were only counted if the absolute difference exceeded 50.

Figure 5.1 shows the original cropped image compared with the result
when using a 11x11 mean kernel. Figure 5.2 shows the same, only with an
11x11 gauss kernel.

Both b-plots has reduced the noise from 20% to approximately 10-15%,
and still kept the motion values on the same high value. Conclusion of this
section is that low-pass filtering improved the result. However, it did also
increase the runtime on the 3600 image sequence from 8.54 to 10.65 seconds,
or 25% time increase.

51

52 CHAPTER 5. RESULTS AND DISCUSSION

(a) (b)

Figure 5.1: Mean: Plots based on 3600 cropped images. Motion > 50 means
that a slack of 50 was used. Plot a) is the original images, while b) is low-pass
filtered with a 11x11 mean kernel.

(a) (b)

Figure 5.2: Gauss: Plots based on 3600 cropped images. Motion > 50 means
that a slack of 50 was used. Plot a) is the original images, while b) is low-pass
filtered with a 11x11 gauss kernel.

5.2. PLOT THRESHOLD 53

5.2 Plot threshold

As discussed in section 4.6 in the chapter of Material and Methods, the plots
contains 10-20% noise. This noise forms the base of all the plots. In order
to separate the actual motion from the noise, I decided on a threshold above
20% to represent the motion. Figure 5.3 depicts the threshold as blue dashes
in the motion plot.

Figure 5.3: Motion plot with blue threshold

The threshold could not be lower than 20% for two reasons:

- The threshold should be general, and work for all motion plots.

- It is better to classify an awake instance as asleep, than vice versa.

5.3 Motion vector size

The iWakeUp system[16] described in section 3.1, used a frequency of 1
second between images. At each time interval, they collected the amount

54 CHAPTER 5. RESULTS AND DISCUSSION

of motion of the previous and following 7 seconds to form a 15-dimensional
feature vector.

Inspired by iWakeUp system, I also made a vector of motion incidents.
Unlike iWakeUp, I decided to only look at motion above the 20% threshold
to avoid including noise as motion. For this reason, the vectors can only
include events where there were actual motion, so my vector size is smaller
than the one from iWakeUp.

The goal with the vector was to find the largest motion incidents where
there was major movement for a long time. This section tests different vector
sizes in order to decide which size is the best. The vector sizes is denoted as
axb. This means that there were a consecutive incidents within b seconds.

The time span of the vector is based on the vector length. For a vector
with length 7, the minimum possible difference between all indices in the
vector is 6 seconds, since there is 1 second between images. This time span
was decided to be 2 times the minimum time span. For a vector with length 7,
the sum of the absolute difference between the indices in the vector could be
maximum 6x2, so this vector size becomes 7x12. Note that most of the indices
is not included because their motion value did not exceed the threshold of
20%.

5.3.1 Motion plots with different vector size

The following three motion plots (5.4, 5.5 and 5.6) are all based on the same
image sequence. The sequence is 18 000 images long with 1 second between
images, which equals 5 hours of recording.

The red dots in all plots shows where there was major movement accord-
ing to the vector. Some of the dots are occluded, so in addition to the plots
I printed all the image indices for testing purposes.

The vector size, the number of major incidents, and the number of inci-
dents that happened during the last half hour are included in the caption of
the plots.

5.3.2 Choice of vector size

The final choice of vector size was based on the amount of big incidents in
the last 30 minutes of recording. This time period is the most important
if this data should be used as input to an alarm clock, as they did in the
article about the iWakeUp system (described in 3.1). The vector with most
incidents in the last half hour was 9x16.

5.3. MOTION VECTOR SIZE 55

Figure 5.4: Vector size 7x12 - 108 major incidents - 5 in the last half hour

False positives and false negatives

This section uses the terms false positives and false negatives. Since I am
looking for awake incidents, awake is considered positive. A false positive
means an incident was classified as awake, when the subject was actually
asleep. A false negative is the opposite; an incident classified as asleep when
the subject was awake.

As input to an alarm clock, it is preferable with false negatives from the
recordings. If the alarm clock starts ringing based on a false positive this
will result in an unpleasant awakening since the subject is actually in deep
sleep. Fewer incidents where I am sure that the subject is actually awake, is
a more reliable input.

56 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: Vector size 9x16 - 89 major incidents - 6 in the last half hour

5.3. MOTION VECTOR SIZE 57

Figure 5.6: Vector size 11x20 - 71 major incidents - 4 in the last half hour

58 CHAPTER 5. RESULTS AND DISCUSSION

5.4 Sleep as Android application

The application "Sleep as Android" described in section 2.4.3 measures light
and deep sleep with actigraphy. The build-in accelerometer sensor in my
phone measured sleep movements during the same Kinect recording as the
last section (5.3).

Figure 5.7: Sleep recording from Sleep as Android

Sleep as Android classified these times as light sleep for that particular
night:

- 02:05-02:20

- 02:50-03:00

- 03:50-04:30

- 05:00-05:25

- 05:45-06:45

- 07:20-07:26

- 07:45-07:55

5.4. SLEEP AS ANDROID APPLICATION 59

The Kinect recordings started at 02:30 AM, so in order to compare the
Android times with the Kinect plot, the indices have to be translated. Index
0 in the plot equals 02:30:00, and every consecutive index is 1 more second.
For index 3600, 1 hour has passed, so the time is 03:30:00. End time (image
18 000) is 07:30:00.

5.4.1 Comparison with vector 9x16

Since the red dots in the motion plots does not give the accurate time, I
printed the times. Times in black matches the times recorded with "Sleep as
Android", and times in blue are almost a match – decided to be maximum 5
minutes. There was no times that was completely wrong. The times below
does not match Sleep as Android perfectly. However, looking at the depth
images in figure 5.8, the numbers in blue does contain actual motion.

[’2:51:12’, ’3:55:19’, ’3:55:20’, ’3:55:21’, ’3:55:22’, ’3:55:25’, ’3:55:27’, ’3:55:28’,
’3:55:29’, ’3:55:30’, ’3:55:31’, ’3:55:32’, ’3:55:34’, ’3:55:35’, ’3:55:36’, ’3:55:37’,
’3:55:38’, ’3:55:39’, ’3:55:40’, ’3:55:41’, ’3:55:45’, ’3:55:46’, ’3:55:47’, ’3:55:48’,
’3:55:49’, ’3:55:50’, ’3:55:51’, ’3:55:53’, ’3:56:59’, ’3:57:00’, ’3:57:01’, ’3:57:02’,
’3:58:26’, ’3:58:27’, ’5:28:16’, ’5:28:17’, ’5:28:18’, ’5:28:20’, ’5:28:21’, ’5:28:22’,
’5:28:23’, ’5:28:24’, ’5:28:25’, ’5:28:26’, ’5:28:27’, ’5:28:30’, ’5:28:31’, ’5:28:32’,
’5:28:33’, ’5:45:32’, ’5:45:34’, ’5:45:36’, ’5:45:37’, ’5:45:38’, ’5:45:39’, ’5:45:40’,
’5:45:43’, ’5:45:44’, ’5:45:46’, ’5:56:13’, ’5:56:14’, ’5:56:16’, ’5:56:17’, ’5:56:20’,
’5:56:23’, ’5:56:24’, ’5:56:25’, ’5:56:26’, ’5:56:27’, ’5:56:28’, ’6:31:14’, ’6:31:15’,
’6:31:16’, ’6:51:47’, ’6:51:48’, ’6:51:49’, ’6:51:50’, ’6:51:51’, ’6:51:52’, ’6:51:53’,
’6:51:54’, ’6:51:55’, ’6:51:56’, ’7:18:03’, ’7:18:04’, ’7:18:05’, ’7:18:09’, ’7:18:11’,
’7:18:12’]

The last 6 times shown (’7:18:03’, ’7:18:04’, ’7:18:05’, ’7:18:09’, ’7:18:11’,
’7:18:12’) equals image 17285, 17286, 17287, 17291, 17293, 17294. Figure
5.8 shows the depth images with index 17285-17288. Looking at the original
images there is clearly motion of arms and upper body. (It is harder to see
the motion from the images included in this PDF, since you cannot place
them on top of each other to see the differences.)

60 CHAPTER 5. RESULTS AND DISCUSSION

(a) 17285
(b) 17286

(c) 17287 (d) 17288

Figure 5.8: Depth images for index 17285-17288.

5.5 Final motion results with vector 9x16

The next four pages contain motion plots of 5 hours of recording for consec-
utive 4 nights, where the vector size was 9x16. The code for making these
plots are provided in Appendix B. The spikes in the diagrams marked with
a red dot means that there were major movement.

The first night (figure 5.9) the red dots were evenly spread out over the
plot. That much major movement during the entire night, could indicate
that I did not sleep well the first night. It takes some time getting used to
the idea of recording yourself while you sleep. Also the light and noise from
the Kinect were disturbing.

The second night (figure 5.10) had the most major incidents, and the
least amount in the last half hour. This was the night when the "Sleep as
Android"-recording was done. The Android recording shows many incidents
of light sleep for this night.

The third night (figure 5.11) stands out compared to the other nights.

5.5. FINAL MOTION RESULTS WITH VECTOR 9X16 61

Night 1, 2 and 4 had 84-89 major incidents, while the third night had only
50 major incidents. I slept well the third night, or at least I did not move
as much as the other nights. There is a wide spike after 10800 which should
probably have a red dot.

The fourth night (figure 5.12) should probably have a red dot for the
thick spike before reaching 3600 images. This was the night with the most
incidents in the last half hour.

62 CHAPTER 5. RESULTS AND DISCUSSION

F
igure

5.9:
F
irst

night.
9x16

vector
resulted

in
88

m
ajor

incidents,
w
here

8
occured

during
the

last
half

hour.

5.5. FINAL MOTION RESULTS WITH VECTOR 9X16 63

F
ig
ur
e
5.
10
:
Se
co
nd

ni
gh
t.

9x
16

ve
ct
or

re
su
lte
d
in

89
m
aj
or

in
ci
de
nt
s,

w
he
re

6
oc
cu
re
d
du

ri
ng

th
e
la
st

ha
lf
ho
ur
.

64 CHAPTER 5. RESULTS AND DISCUSSION

F
igure

5.11:
T
hird

night.
9x16

vector
resulted

in
50

m
ajor

incidents,
w
here

10
occured

during
the

last
half

hour.

5.5. FINAL MOTION RESULTS WITH VECTOR 9X16 65

F
ig
ur
e
5.
12
:
Fo

ur
th

ni
gh
t.

9x
16

ve
ct
or

re
su
lte
d
in

84
m
aj
or

in
ci
de
nt
s,

w
he
re

11
oc
cu
re
d
du

ri
ng

th
e
la
st

ha
lf
ho
ur
.

66 CHAPTER 5. RESULTS AND DISCUSSION

Chapter 6

Conclusion and Further Work

Sleep movement analysis is a useful tool for improving sleep quality and for
determining when a person is sleeping heavily, and when a person is almost
awake. Performing sleep movement analysis at home is more comfortable
and cheaper than with PSG in a laboratory. I explored the usage of Kinect
to determine how well a person is sleeping. For this project I chose to use
OpenCV, Python and OpenKinect.

This project focused on sleep movements based on the theory that large
body movements during sleep means that the person is about to wake up.
This is based on research provided in chapter 3.

The setup of the Kinect turned out to be more challenging than first
assumed; the Kinect had to be placed above the bed without the risk of
falling down on the person sleeping. Multiple programs were made to analyse
the Kinect images. This project tried different thresholds and vector sizes in
order to improve the results.

The evaluation of the results were done by studying the plots and images.
Another comparison was done by comparing the times of the body movements
with the application Sleep as Android.

The results showed that Kinect depth sensor can provide images which
are accurate enough to decide whether the patient is asleep or awake at
different times during the night. By choosing a threshold of 20% and a vector
size of 7x12, I was able to find major body movements with the program.
Comparison of these results and study of the images showed that all body
movements found by the Kinect was indeed movements. Comparison with
Sleep as Android showed that this project was almost as precise at finding
body movements as the phone application.

Finally, my conclusion is that Kinect is a useful tool for determining the
amount of motion during sleep, and that this recorded motion can be used
as input to an alarm clock. The results can be improved by modifying the

67

68 CHAPTER 6. CONCLUSION AND FURTHER WORK

program further or extend the functionality.

6.1 Further Works
There are multiple desirable extensions or changes of the program that would
improve the results. This section covers some of these extensions or changes
with a short discussion of their effect.

6.1.1 Newest Kinect version

This project used Kinect v1 since this was the only available sensor from the
robotics lab at the university at the time this project was started. A change
could be to use the newest Kinect version. Kinect v2 uses Time-Of-Flight
which is more accurate than Structured Light for v1.

6.1.2 Other programming languages

Another change would be to test other languages for the image analysis.
This project chose to use OpenCV, Python and OpenKinect. However, it
would be interesting to try other languages and libraries and compare the
performance.

6.1.3 Different sample sizes

This project focused on a small sample size and I was the only sleeping
subject. Further testing with other subjects and other sample sizes would
probably be useful data for improving the program even more.

Bibliography

[1] Biber MP Aaronson ST Rashed S and Hobson J. “Brain state and
body position: A time-lapse video study of sleep”. In: Archives of Gen-
eral Psychiatry 39.3 (1982), pp. 330–335. doi: 10.1001/archpsyc.1982.
04290030062011. eprint: /data / Journals / PSYCH / 12353 / archpsyc _
39_3_011 . pdf. url: http : / / dx . doi . org / 10 . 1001 / archpsyc . 1982 .
04290030062011.

[2] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[3] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vi-
sion with the OpenCV Library. 1st. O’Reilly, 2008. isbn: 9780596516130.

[4] Penelope A. Bryant, John Trinder, and Nigel Curtis. Nature Reviews
Immunology. http ://www.nature . com/nri/ journal/v4/n6/fig_tab/
nri1369_F1.html. (Retrieved 16-October-2014). 2004.

[5] C++. https://www.techopedia.com/definition/26184/c-programming-
language. (Retrieved 6-May-2016).

[6] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for
human detection”. In: Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp. 886–893.

[7] William Dement and Nathaniel Kleitman. “Cyclic variations in EEG
during sleep and their relation to eye movements, body motility, and
dreaming”. In: Electroencephalography and Clinical Neurophysiology 9.4
(1957), pp. 673–690. issn: 0013-4694. doi: http://dx.doi.org/10.1016/
0013-4694(57)90088-3. url: http://www.sciencedirect.com/science/
article/pii/0013469457900883.

[8] Marko Heikkila and Matti Pietikainen. “A texture-based method for
modeling the background and detecting moving objects. IEEE trans-
actions on pattern analysis and machine intelligence”. In: 28.4 (2006),
pp. 657–662.

69

http://dx.doi.org/10.1001/archpsyc.1982.04290030062011
http://dx.doi.org/10.1001/archpsyc.1982.04290030062011
/data/Journals/PSYCH/12353/archpsyc_39_3_011.pdf
/data/Journals/PSYCH/12353/archpsyc_39_3_011.pdf
http://dx.doi.org/10.1001/archpsyc.1982.04290030062011
http://dx.doi.org/10.1001/archpsyc.1982.04290030062011
http://www.nature.com/nri/journal/v4/n6/fig_tab/nri1369_F1.html
http://www.nature.com/nri/journal/v4/n6/fig_tab/nri1369_F1.html
https://www.techopedia.com/definition/26184/c-programming-language
https://www.techopedia.com/definition/26184/c-programming-language
http://dx.doi.org/http://dx.doi.org/10.1016/0013-4694(57)90088-3
http://dx.doi.org/http://dx.doi.org/10.1016/0013-4694(57)90088-3
http://www.sciencedirect.com/science/article/pii/0013469457900883
http://www.sciencedirect.com/science/article/pii/0013469457900883

70 BIBLIOGRAPHY

[9] How the Kinect Depth Sensor Works in 2 Minutes. https : / / www .
youtube.com/watch?v=uq9SEJxZiUg. (Retrieved 9-August-2015).

[10] Timo Kahlmann. “Range imaging metrology: Investigation, calibration
and development”. PhD thesis. University of Hannover, 2007.

[11] Kinect Range. https://msdn.microsoft.com/en-us/library/hh973078.
aspx#Depth_Ranges. (Retrieved 22-April-2016).

[12] Jeff Kramer et al. Hacking the Kinect. 1st edition. New York: Apress,
2012.

[13] Daniel F Kripke et al. “Wrist actigraphic scoring for sleep laboratory
patients: algorithm development”. In: Journal of sleep research 19.4
(2010), pp. 612–619.

[14] Björn Krüger et al. “Sleep detection using a depth camera”. In: Com-
putational Science and Its Applications–ICCSA 2014. Springer, 2014,
pp. 824–835.

[15] Jaehoon Lee, Min Hong, and Sungyong Ryu. “Sleep monitoring system
using kinect sensor”. In: International Journal of Distributed Sensor
Networks 2015 (2015).

[16] Wen-Hung Liao et al. “iWakeUp: A video-based alarm clock for smart
bedrooms”. In: Journal of the Chinese Institute of Engineers 33.5 (2010),
pp. 661–668.

[17] David G Lowe. “Object recognition from local scale-invariant features”.
In: Computer vision, 1999. The proceedings of the seventh IEEE inter-
national conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[18] MATLAB. https://en.wikipedia.org/wiki/MATLAB. (Retrieved 6-May-
2016).

[19] Ernst Niedermeyer and F. H. Lopes da Silva. Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields. 5th edition.
Lippincott Williams & Wilkins, 2005.

[20] NREM. https ://en.wikipedia .org/wiki/Non- rapid_eye_movement_
sleep. (Retrieved 24-April-2016).

[21] OpenKinect. http://openkinect.org/wiki/Main_Page. (Retrieved 11-
June-2014).

[22] Polysomnography. http://en.wikipedia.org/wiki/Polysomnography. (Re-
trieved 12-November-2014).

[23] PSG image. http : / / www . pittsburghdentalsleepmedicine . com/. (Re-
trieved 29-April-2016).

https://www.youtube.com/watch?v=uq9SEJxZiUg
https://www.youtube.com/watch?v=uq9SEJxZiUg
https://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
https://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Non-rapid_eye_movement_sleep
https://en.wikipedia.org/wiki/Non-rapid_eye_movement_sleep
http://openkinect.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Polysomnography
http://www.pittsburghdentalsleepmedicine.com/

BIBLIOGRAPHY 71

[24] Hartmut Schulz. “Rethinking sleep analysis”. In: J Clin Sleep Med 4.2
(2008), pp. 99–103.

[25] Sleep. http://en.wikipedia.org/wiki/Sleep. (Retrieved 11-June-2015).

[26] Sleep as Android. http ://sleep .urbandroid .org/documentation/core/
background/. (Retrieved 15-April-2015).

[27] Sleep Research Timeline. http://www.howsleepworks.com/research.html.
(Retrieved 28-April-2016).

[28] Support vector machine. http://en.wikipedia.org/wiki/Support_vector_
machine. (Retrieved 12-November-2014).

[29] Lu Xia, Chia-Chih Chen, and JK Aggarwal. “Human detection using
depth information by kinect”. In: Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2011 IEEE Computer Society Conference
on. IEEE. 2011, pp. 15–22.

[30] Zhengyou Zhang. “Microsoft Kinect Sensor and its Effect”. In: Multi-
Media, IEEE 19.2 (2012), pp. 4–10.

http://en.wikipedia.org/wiki/Sleep
http://sleep.urbandroid.org/documentation/core/background/
http://sleep.urbandroid.org/documentation/core/background/
http://www.howsleepworks.com/research.html
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine

72 BIBLIOGRAPHY

Appendices

73

Appendix A

Installation for OS X Mavericks

This section contains the instructions I used for installation of Python, OpenCV
and libfreenect (OpenKinect) on OS X 10.9 (Mavericks). The installation also
worked for 10.10 (Yosemite).

A.1 Homebrew

Homebrew (http://brew.sh/) is often referred to as the missing package man-
ager for OS X. Homebrew installs packages to their own directory and then
symlinks their files into /usr/local. Homebrew will not install files outside
its prefix, and you can place an installation wherever you like. Homebrew
formulas are just simple Ruby scripts.

Installing Homebrew

• Install Homebrew from http://brew.sh/

• Paste in Terminal (no blank spaces): ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

• Run brew doctor in Terminal. This is probably going to tell you that
/usr/bin comes before /usr/local/bin, which Homebrew depends on, so
change the PATH so /usr/local/bin comes first in your PATH. This only
affects the current shell, so add the following line to your .bash_profile:
export PATH=/usr/local/bin:/usr/local/sbin:$PATH

• Might have to change permissions to be able to install packages:
sudo chown -R $USER:admin /Library/Caches/Homebrew

75

http://brew.sh/
http://brew.sh/

76 APPENDIX A. INSTALLATION FOR OS X MAVERICKS

A.2 Installing OpenCV and Python
• Add homebrew/science, which is where opencv is located: "brew tap

homebrew/science"

• See options when installing: "brew info opencv"

• Install OpenCV: "brew install opencv"

• You can find OpenCV at "cd /usr/local/Cellar/opencv/"

• For the newest version of Python: "brew install python"

Linking Python to the OpenCV files (my OpenCV ver-
sion is 2.4.11_1)

• cd /usr/local/lib/python2.7/site-packages/

• ln -s /usr/local/Cellar/opencv/2.4.11_1/lib/python2.7/site-packages/cv.py
cv.py

• ln -s /usr/local/Cellar/opencv/2.4.11_1/lib/python2.7/site-packages/cv2.so
cv2.so

• Make sure everything works by running "python" in the terminal and
then typing "import cv2" in the python shell

• Also install matplotlib for plotting: "pip install matplotlib"

A.3 Installing libfreenect (from OpenKinect)
• Open a Terminal and type: brew install libfreenect

• Run "freenect-glview" (from anywhere in the terminal) to test that
libfreenect works properly.

• For libfreenect to work with Python, I had to make python bindings.
Go to https://github.com/OpenKinect/libfreenect

• Go inside the wrappers folder, and copy the python folder so you have
it locally on your computer

• Open the Terminal and cd to your new wrapper/python folder in the
terminal, and run: "python setup.py install".

https://github.com/OpenKinect/libfreenect

A.3. INSTALLING LIBFREENECT (FROM OPENKINECT) 77

• Plug in the Kinect. While still in the same wrapper/python folder, run:
"python demo_tilt.py".

78 APPENDIX A. INSTALLATION FOR OS X MAVERICKS

Appendix B

Python code for plotting motion
based on the depth images

1 #!/usr/bin/env python
2 import numpy as np
3 import cv2, os, datetime, sys
4 import matplotlib.pyplot as mp
5

6 height = 480
7 width = 640
8 slack = 50
9 frames = 18000

10 motion_list = []
11

12 start = datetime.datetime.now()
13

14 fileprefix = ’24april/kinect04-24-03-30_1sec/depth’
15 print fileprefix
16 prev_orig = cv2.imread(fileprefix + ’1.jpg’, cv2.IMREAD_GRAYSCALE)
17 prev_blur = cv2.blur(prev_orig, (11,11))
18 #prev_blur = cv2.GaussianBlur(prev_orig, (11,11), 0)
19

20 for i in range(2, frames):
21 filename = fileprefix + str(i) + ’.jpg’
22 img_orig = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
23 img_blur = cv2.blur(img_orig, (11,11))
24

25 prev = prev_blur[240:480, 20:320]
26 img = img_blur[240:480, 20:320]
27

79

80APPENDIX B. PYTHON CODE FOR PLOTTING MOTION BASED ON THE DEPTH IMAGES

28 diff = np.subtract(img, prev)
29 abs_diff = np.absolute(diff)
30 motion_int = (abs_diff > slack).sum()
31 motion_list.append(motion_int * 100.0/img.size)
32

33 prev_blur = img_blur
34

35 end = datetime.datetime.now()
36 print "Total processing time =", end-start
37

38 array = np.asarray(motion_list)
39 motion_len = (array > 20).sum()
40 motion_indices = np.where(array > 20)
41

42 seconds = np.asarray(motion_indices[0])
43 print "Number of incidents", motion_len
44

45 # Find incidents
46 incident_len = 9
47 incident_time_list = []
48 incident_index_list = []
49

50 for i in range(0, (len(seconds)-incident_len+1)):
51 part = seconds[i:(i+incident_len)]
52 diff_in_seconds = np.ediff1d(part)
53 diff_seconds_sum = diff_in_seconds.sum()
54

55 if(diff_seconds_sum < 16):
56 # convert to hours, minutes and seconds
57 start_time = 3*3600+30*60 # start 03:30
58 incident_time =

str(datetime.timedelta(seconds=seconds[i]+start_time))
59 incident_time_list.append(incident_time)
60 incident_index_list.append(seconds[i])
61

62 print "Number of big incidents:", len(incident_time_list)
63 print "Big incidents in time:", incident_time_list
64 print "Big incidents with index:", incident_index_list
65

66 def plotMotion(motion_list, titleString):
67 mp.ylabel(’Motion pixels in percent’)
68 mp.xlabel(’Image number’)
69 mp.title(titleString)

81

70 mp.plot(motion_list, ’k’) #motion
71 mp.plot([0, frames], [20, 20], ’b--’, linewidth=2) #threshold
72 y = 20 * np.ones(len(incident_index_list))
73 mp.plot(incident_index_list, y, ’ro’)
74 mp.xticks(range(0, frames+2, 3600))
75 mp.show()
76

77 plotMotion(motion_list, (’Motion pixels > ’ + str(slack) + ’
slack’))

	Introduction
	Project goal
	Project structure
	An Overview of Challenges
	Thesis outline

	Background
	Sleep Research Timeline
	Sleep Stages - REM and NREM
	Subdivision of NREM

	Sleep Cycles
	Sleep monitoring
	Polysomnography
	Alternatives to polysomnography
	Sleep as Android

	Articles about sleep surveillance
	Electroencephalography
	Sleep Movement Measured with EEG
	Sleep Movement Measured with EEG and Video

	Digital images
	Storing images
	Detecting humans in images

	Classification
	Support Vector Machines

	Microsoft Kinect
	Depth sensing technology

	Depth space of Kinect
	Programming With Kinect
	Kinect Drivers
	Image processing
	Programming languages

	Related Works
	The iWakeUp System
	How iWakeUp works
	Background modeling and noise removal
	Deriving wake-up rules

	Human detection using depth information by Kinect
	2D Chamfer Distance Matching
	3D model fitting
	Extract contours
	Tracking
	Results from Xia's method

	Sleep Monitoring with Kinect V1
	Kinect-based setup
	Kripke's algorithm and Krüger's adaption of it
	Results from Krüger

	Sleep Monitoring with Kinect V2
	Sleep monitoring as part of a Smart Home
	Sleep State Monitoring
	Microsoft Kinect v2
	Sleep Movement Measures
	Sleep Movement Analysis

	Comparison of the articles

	Material and Methods
	Choosing programming language and libraries
	OpenKinect
	OpenCV
	Python

	Setup of the Kinect
	First setup
	Second setup

	Depth Information from Kinect
	How the pixels are stored
	Testing the depth

	Frame differencing on depth images
	Testing various slack
	Testing slack of 55 on a sequence of 30 images

	Performance test of for-loops vs. NumPy
	Noise test
	Minimum and maximum values
	Motion pixels of noise
	Test of noise compared to actual motion

	Preprocessing
	Low-pass filters

	Kinect Scheduler
	Kinect Recorder

	Results and Discussion
	Result of low-pass filtering
	Plot threshold
	Motion vector size
	Motion plots with different vector size
	Choice of vector size

	Sleep as Android application
	Comparison with vector 9x16

	Final motion results with vector 9x16

	Conclusion and Further Work
	Further Works
	Newest Kinect version
	Other programming languages
	Different sample sizes

	Appendices
	Installation for OS X Mavericks
	Homebrew
	Installing OpenCV and Python
	Installing libfreenect (from OpenKinect)

	Python code for plotting motion based on the depth images

