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Abstract

Prostate cancer is a disease characterized by severely heterogeneous behav-

ior. Some tumors remain indolent, and without risk for the patient for many

years, while others can progress to life threatening disease rapidly. This rep-

resents a challenge when choosing therapeutic modalities for patients diag-

nosed with prostate cancer, as the aggressiveness of the therapy should be in

concordance with the aggressiveness of the disease. The clinical management

of prostate cancer continues to be controversial, without clear consensus on

choice of diagnostic tests or treatment modality. In this study the potential

of using functional magnetic resonance imaging(MRI) to assess the aggres-

siveness of prostate cancer has been explored, and parameters obtained from

dynamic contrast enhanced(DCE) MRI have been correlated to clinical data

obtained from biopsies and post-surgical examinations of the prostate gland.

Particularly the prognostic power of hypoxia levels, and the ability of MRI

to reflect the levels of hypoxia have been examined.

The aims of this study is to combine and correlate data from functional

MRI, molecular signatures of hypoxia, and tumor hypoxia, with the goal be-

ing prediction of prostate cancer aggressiveness. The endpoints of prostate

cancer aggressiveness in this study is the clinical data obtained from assess-

ment of histopathological specimens at the time of surgery.

This project included 79 patients diagnosed with intermediate and high-

risk prostate cancer(D’Amico risk classification), referred to Oslo University

Hospital, Radiumhospitalet, for surgical treatment. In vivo functional MRI

examination, DCE imaging of the prostate, were preformed on the patients

within a few days prior to surgery. Within 24 hours prior to surgery the

patients received a dose of pimonidazole, either intravenously or orally, by

pill, to act as a hypoxia marker which was used to assess the hypoxia in the

prostatectomy specimens after the surgery.

The dynamic images provided have been analyzed using pharmacokinetic
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models, to obtain parameters that relates to the tumor physiology, and in

particular, to parametrize the blood perfusion in the tumor. The blood per-

fusion is assumed to be related to the distribution of oxygen, and thus the

hypoxic regions can potentially be identified.

The methods used in this project were not able to reveal any strong correla-

tions between the pharmacokinetic parameters and the pimonidazole stain-

ing, or between the pimonidazole staining and the clinical parameters com-

monly used for assessment of prostate cancer aggressiveness(Gleason score,

Tumor- node- metastasis staging, and prostate specific antigen serum lev-

els). Some weak correlation (R = 0.40, p < 0.05) were observed between

pimonidazole staining and tumor size.
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1. Introduction

Prostate cancer is among the most frequently diagnosed cancers in the west-

ern world[14], and it is the single most common type of cancer in Norwegian

men[28]. Over the past two decades the occurrence of prostate cancer in the

western world, including Norway, has increased substantially, but the mortal-

ity rates has remained relatively constant. The increase in diagnosed prostate

cancer incidence may be related to an increase in the use of Prostate-specific

antigen(PSA)-testing for early diagnosis, improved biopsy techniques, or in-

creased public awareness. It is not, however, reflected in the mortality rates

related to prostate cancer. The disparity between reported incidence and

mortality rate leads to the probable conclusion that only a small fraction of

diagnosed low-risk prostate cancers will progress to life-threatening disease

during the lifetime of the patient [14]. Yet, even though only a small pro-

portion of patients diagnosed with prostate cancer will die from the disease,

prostate cancer was, according to Kreftregisteret, the third most frequent

cause of cancer-related deaths in Norway in 2014[39]. Prostate cancer is

a heterogeneous disease with varied biology, and in some cases the disease

can be aggressive and fatal if untreated, whilst many patients can remain

symptom-free for a long time, even without any treatment. This represents a

considerable challenge in making it difficult to predict the need for treatment

in the individual patient. Patients with diagnosed prostate cancer run the

risk of either being over- or under-treated. Over-treatment may result in un-

wanted, and unneeded complications related to surgery or radiation-therapy

in patients who could have otherwise lived on with a non-aggressive prostate

cancer. Under-treatment could result in patients dying, who could have oth-

erwise been saved with a more aggressive treatment modality. In 2010 Hernes
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et al. published a paper on treatment practice in Norway, where statistical

data from Kreftregisteret were analyzed. Their data indicated some evidence

of over-treatment of low-risk patients and under-treatment of intermediate-

and high-risk patients[23].

A prerequisite for being able to offer correct treatment is reliable infor-

mation on the prevalence and aggressiveness of the disease. This is today

determined on a combined basis of clinical examination(digital rectal explo-

ration and trans-rectal ultrasound), blood samples(determining the amount

of prostate-specific antigen), and histological examination of tissue-biopsies.

These examinations form the basis on which the treatment modality is cho-

sen. However, clinical assessment of tumor aggressiveness and extent is lim-

ited by poor accuracy of digital rectal examination[21], and Histopatological

evaluation of tumor aggressiveness is limited since less than one percent of

the prostate gland is represented in the biopsies. Some tumors may also be

inaccessible using trans-rectal biopsy. Therefore, preoperative biopsies may

not demonstrate the most aggressive tumor[27][4]. Thus, there is a need for

noninvasive diagnostic techniques to depict the extent and heterogeneity of

the cancer with fairly high spatial resolution.

Hypoxia, or oxygen depletion, has been shown to correlate to poor prog-

nosis, and poor treatment response in cancer[20], and is therefore a potential

candidate as a bio-marker of cancer. Oxygen is transported to the tissue

through diffusion from the capillaries, and has a limited diffusion range.

Thus, the tissue needs to have a certain minimum capillary-density in order

to stay sufficiently oxygenated. As a tumor grows it displaces the vascula-

ture in the region, cutting off the oxygen supply to the tumor tissue, and

construction of new blood vessels is required to oxygenate the tumor. The

construction of blood vessels is done through the process of angiogenesis, but

in tumors this process is highly unstructured, resulting in a chaotic capillary

architecture. To ensure sufficient oxygenation the capillaries must be able

to support enough blood-flow to allow enough oxygen to be available for dif-

fusion into the tissue. Poorly constructed vascular architecture may result
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in low blood flow, or low vascular permeability, resulting in hypoxic regions

of tissue. Magnetic Resonance Imaging(MRI) has the potential ability to

depict tissue characteristics, such as vascularization, blood-flow, cellularity,

and vascular permeability, with a fairly high temporal and spatial resolution.

MRI can thus assess tissue heterogeneity in both the time- and spatial di-

mensions, possibly identifying regions of potentially hypoxic tissue.

In 2010 a study was designed at Radiumhospitalet to examine to what de-

gree advanced MR-techniques could be used to identify hypoxic tumors in

prostate cancer. Patients having tumors with anticipated high metastatic

potential according to D’Amico risk categories were subjected to a selection

of different modalities of MR-examination, prior to a surgical removal of

the prostate gland(prostatectomy). Prior to the surgery the hypoxia marker

pimonidazole was also administered to the patients, so that the prostate-

ctomy specimens could be immunostained and provide a measurement on

the hypoxia of the tumor. The prostatectomy specimens also provides other

pathological data to act as a gold standard, against which the MRI-analysis

can be compared. The aim of this thesis is to use the Dynamic Contrast-

Enhanced MR-images(DCE-MRI) provided by the study, and analyze the

dynamics of the contrast agent(CA) in the tissue to obtain parameters de-

scribing the blood perfusion through the tumor. The goal is to be able to

assess the vascular characteristics of the tumor, and compare them to the

pathological data provided by the prostatectomy specimens.
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2. Background

2.1 Prostate cancer

Cancers in general are characterized by abnormal growth of cells, which tends

to proliferate in a manner that bypasses the regular control-mechanisms of

cell-growth in the body. Cancer is a common term to describe several dif-

ferent diseases, all of which share the characteristics of abnormal cell growth

and uncontrolled proliferation. Different cancer types do however display

highly different biological behavior. Some cancer types can result in solid tu-

mors, while others, like leukemia, does not. Even within cancers of the same

type the biological behavior can be very different between individual cancers.

Although the majority of cancer tumors arises from one singular cell, some

tumors display a high degree of intra-tumor heterogeneity, meaning that the

cells of the tumors display a large difference in phenotypic features, such as

proliferation rate, metastatic potential, degree of differentiation, vasculariza-

tion and metabolism [41].

2.1.1 Tumor physiology and vascularization

All cells require oxygen and nutrients to survive. These are transported to

the cell by a complex network of blood vessels and capillaries in the organs

called the vasculature. From the vasculature the oxygen and nutrients diffuse

into the tissue and into the cells. As a tumor grows, it eventually reaches a

size where passive diffusion of nutrients and oxygen is insufficient to sustain

continued growth. As the diffusion limit for oxygen in tissue is about 100−
200µm, additional vasculature is required to reach the central cells of a large
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tumor[26]. Accordingly, the tumor induces the production of new vessels

through the process of angiogenesis. Angiogenesis is a process where new

blood vessels are grown from preexisting vessels, and is a crucial step in the

path to forming a solid tumor. Without angiogenesis a tumor cannot grow,

and will remain small without any threat of progressing to lethal disease or to

metastasize[16]. Angiogenesis is induced by an increase of the gene regulatory

protein Hypoxia Inducible Factor-1α(HIF-1α), which is provoked in response

to low oxygen levels[2], thus the process of angiogenesis is a response to low

oxygen levels in the tissue. The vasculature produced from angiogenesis in

tumors is, however, uniquely different from that of normal tissue[36], as it

is characterized by vigorous and unstructured proliferation. The difference

in vasculature in normal and tumor tissue, for three different tissue types, is

shown in figure 2.1.

Figure 2.1: Illustration of the differences between cancerous tumors (lower
panel) and the corresponding host tissue (upper panel) in terms of vascular
architecture. The images shows the blood-vessel structure in three different
types of tissues. The figure is taken from Vaupel[36].

The chaotic and vigorous way of creating the vasculature leads to struc-

turally defective, leaky, and in terms of perfusion, ineffective micro-vessels.
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In turn this results in irregular and heterogeneous blood flow[36][2]. The

blood perfusion has also been shown to vary amongst different tumor types,

different tumors of the same type, and to show large intra-tumor variations

and temporal instability[17]. This abnormality of the blood flow is poten-

tially detectable with dynamic contrast enhanced MRI, which detects the

exchange of CA between tissue and vasculature.

2.1.2 Hypoxia and pimonidazole staining

Hypoxia is a state of low oxygen concentration in the tissue. Tumor cells pro-

liferate quickly and require large amounts of oxygen. In tumors the supply

of oxygen is also often limited by poor vascular architecture and low blood

supply. As hypoxia induces angiogenesis, which leads to poorly constructed

vasculature leading to poor oxygen supply, further fueling the process of

angiogenesis, malignant tumors tends to be particularly prone to becoming

hypoxic[20]. Hypoxic cells are often devided into two subgroups according to

the cause of hypoxia[26]: Acute, or perfusion limited hypoxia, and chronic, or

diffusion limited hypoxia. Acute hypoxia is caused by a temporary decrease

in blood supply resulting from e.g. a temporary obstruction of the vessels.

Chronic hypoxia is due to the diffusion limit of oxygen in tissue, making

cells located at a distance close to the diffusion limit from the blood vessels

hypoxic[20].

Pimonidazole hydrochloride is a molecular compound that forms covalent

bonds with cellular macromolecules when the oxygen concentration is be-

low 1.3%[30]. Thus, poorly oxygenated regions of tissue will accumulate

pimonidazole, making it possible to visualize the hypoxic regions in a prosta-

tectomy specimen. Administering pimonidazole to patients before surgically

removing the prostate gland allows for immunostaining of sections of the

gland to identify regions, and quantify, degrees of hypoxia in the tissue.
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2.1.3 Clinical classification of prostate cancer

Prostate cancer is a cancer type with particularly heterogeneous biology[9].

Some tumors can remain indolent for many years, whilst others rapidly

progresses to a life-threatening disease. Many different classifications, and

prognostic factors exists to stratify patients into groups with different can-

cer aggressiveness(Gleason score and prostate specific antigen level), tumor

extent(tumor- node- metastasis-classification) and risk or recurrence(D’Amico

risk classification). In the following the classifications used in this study are

introduced.

Prostate specific antigen

Prostate specific antigen(PSA) is a protein that is produced by the cells of the

prostate. It is mainly released into the seminal fluid, and only small amounts

are leaked in to the circulatory system in normal prostate[33]. In patholog-

ical prostate tissue, however, the amount of PSA leaked into the blood is

increased, and elevated PSA levels in the blood is thus a sensitive marker

for prostate cancer[33]. However, despite being an organ-specific marker,

it is not a cancer-specific marker as several benign conditions can result in

elevated PSA levels. Prostatitis and benign hyper prostatic hyperplasia (en-

largement of the prostate) are both conditions that can result in higher PSA

values in the blood [1]. Furthermore, prostate cancer can be present in men

without elevated PSA values in the blood[1].

Gleason score

The Gleason scoring system is a cancer grading system that is unique for

prostate cancer. It was developed by Donald Gleason in 1966, and is based

solely on glandular architecture, and not structural abnormality of the cells.

Five different patterns of glandular architecture with increasing abnormal-

ity are graded from one to five, and the Gleason score is compiled from the

grade of the two most prevalent patterns in the biopsies or prostatectomy

specimen[31].
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The Gleason score is determined by the sum of the Gleason grades of the

two most prevalent patterns in the biopsies, giving a pure grade 3 biopsy a

Gleason score of 3 + 3 = 6, a grade 3 biopsy with regions of grade 4 is a

Gleason score of 3 + 4 = 7a, and a grade 4 biopsy with regions of grade 3

is a Gleason score of 4 + 3 = 7b. Gleason grade 1 is generally not reported,

and Gleason grade 2 is rarely used in contemporary practice, and thus the

Gleason scoring system categorizes cancers as Gleason scores 6, 7a, 7b, 8,

and 9− 10[31]. Examples of Gleason graded biopsies are shown in figure 2.2.

Figure 2.2: Examples of Gleason graded biopsies. The images are showing:
A) a grade 2 biopsy, with fairly well differentiated glands with moderate
spacing. B) a grade 3 biopsy, where the glands are starting to infiltrate each-
other. They are of variable size, and with distinctly infiltrative margins. C)
a grade 4 biopsy, consisting of complex and irregular glands. D) a grade 5
biopsy, with none, or only occasional gland formation. The images are taken
from http://oncolex.no [28]

.

Tumor- node- metastasis-staging

The tumor- node- meatastasis(TNM) staging aims to describe the severity

of a cancer based on the size and reach of the primary tumor, whether it has

spread to the lymph nodes, and also whether the cancer has metastasized or

not. Three different staging factors are reported:

• T - Size and reach of the primary tumor

• N - Spread to the lymphatic system

• M - Metastasis
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The staging is typically performed prior to treatment, and is called the clin-

ical stage(cT,cN,cM). Cancer can then be classified further after surgery or

biopsies, when the extent of the cancer is better known. This classification

is called the pathological stage(pT, pN, pM), and combines the results from

the clinical staging with results from surgeries or biopsies. In this study,

only the T-stage factor is reported, and it is determined according to the

recomandations of the international society of urological pathology(ISUP) of

2010 [25]:

• Tx: Unable to evaluate.

• T0: No evidence of primary tumor.

• T1: Clinically in-apparent tumor neither palpable nor visible by imaging.

• T2: Tumor confined within prostate.

−T2a: Tumor involves one half of one lobe or less.

−T2b: Tumor involves more than one half of one lobe, but not both lobes

−T2c: Tumor involves both lobes.

• T3: Tumor extends through the prostate capsule.

−T3a: Extracapsular extension (unilateral or bilateral).

−T3b: Tumor invades seminal vesicle(s).

• T4: Tumor is fixed or invades adjacent structures other than seminal vesi-

cles.

D’Amico risk classification

The D’Amico risk classification is a combined modality staging system that

aims to stratify patients into groups as either low, intermediate or high risk of

biochemical recurrence after radiotherapy or surgery. The prediction model

is based on the PSA levels, clinical TNM-stage, and biopsy Gleason score[22].

The definitions of the groups as originally described by D’Amico[15], are:

• Low-risk: cT1 or T2a, PSA≤ 10ng/ml and Gleason score ≤ 6.
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• Intermediate-risk: cT2b, PSA between 10ng/ml and 20ng/ml and a

Gleason score = 7.

• High-risk: T2c, PSA≥ 8, and Gleason score ≥ 8.

2.2 The basic physics of magnetic resonance

imaging

The hydrogen nuclei(protons) in the human body are positively charged spin-
1
2

particles, thus they carry a magnetic moment. In the natural state these

magnetic moments are completely incoherent, and the net magnetization of

the body is zero. In MRI the body is placed in an external magnetic field ~B0

which results in a net magnetization of the body ~M0 parallel to ~B0. A RF-

pulse is then used to excite the nuclei by flipping their magnetic moments

down in the plane normal to ~B0, and since the protons precess with the

larmor frequency about the B0-axis[19], this will induce a current in the

MR-scanner receiver coils giving rise to the signal used to reconstruct the

MR-image. This signal will decay with the nuclei relaxation through two

processes:

• Spin-lattice relaxation The process by which the magnetization along
~B0 is regained, returning to thermodynamic equilibrium with its sur-

roundings (the lattice). Characterized by the time-constant T1

• spin-spin relaxation The process by which the signal is gradually lost

because of the proton spins phase dispersion after the RF-pulse, due to

local inhomogeneities in the B-field arising from the magnetic moment

of neighbouring spins. Characterized by the time-constant T2.

In clinical MRI a series of RF-pulses are applied consecutively, in combination

with different constellations of magnetic gradient fields in order to manipulate

the image contrast by suppressing, or enhancing, the different relaxation

processes effect on the signal. Several different such pulse-sequences exists,

but it suffices in this brief introduction to mention that the net steady state
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transverse magnetization arising from the sequence used in this investigation,

the gradient echo sequence, behaves according to[6]:

Mt = M0
sinα(1− e−TR

T1 )

1− cosα(1− e−TR
T1 )

e−
TE
T2 (2.1)

where α is angle by which the magnetic moment is flipped(the amount of

excitation, determined by the amplitude and duration of the RF-pulse), TR

is the time between consecutive excitation pulses (repetition time) and TE

is the time between the RF-pulse and the signal echo (echo time).

Several books have been written on the subject, and for a more comprehensive

and exhaustive explanation, the interested reader is referred to [38] or [6].

2.3 Contrast agent effects on signal intensity

2.3.1 Contrast agent relaxivity

The effect on signal intensity by the presence of CA is given by the CAs

(CA) ability to alter the T1 and/or T2 relaxation times of the protons in the

vicinity of the CA. The ability of the CA to enhance the proton relaxation

rate (R1,2 = 1
T1,2

) is, according to the Solomon and Bloomberg equation,

defined in terms of its relaxivity [6]:

R1,2 =
1

T1,2
= R0

1,2 + r1,2C (2.2)

Where R0
1,2 are the T1 and T2 relaxation rates without the presence of CA,

C is the molar concentration of CA, and r1,2 are the relaxivity constants

( 1
T1
, 1
T2

) of the CA, and are dependent on the type of CA, and the tissue.

Note, however, that even though the enhancement of the relaxation rates of

the protons have a linear relationship with the concentration of CA, the sig-

nal response in MRI is in general not linear with CA concentration. Looking

at the signal response in a contrast enhanced gradient echo image, inserting
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Figure 2.3: Simulated dose response of a contrast enhanced MR-image

equation (2.2) into equation (2.1), the following equation for the signal in-

tensity is obtained:

SI(C) = kρ
sinα(1− e−TR(1/T1+r1C))

1− cosα(1− e−TR(1//T1+r1C)
e−TE( 1

T2
+r2C) (2.3)

When plotting this signal intensity (fig. 2.3) we can see that it is highly

non-linear. When the concentration is high, the T1 time is short enough

to allow full recovery of longitudinal magnetization within each TR. At this

point increasing the concentration does not result in any increased signal,

and the image is saturated. However, in the initial, low concentration range

we observe a fairly linear increase in SI with increased concentration. Fur-

thermore, the linear range is dependent on TR
T1

, and should thus be able to

be manipulated by correct scanner tuning. In the following this possibility

will be assessed.
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2.3.2 Signal intensity in a contrast enhanced spoiled

gradient echo image

The total transverse magnetization produced by the bulk of proton spins in

a steady state gradient-echo MRI sequence is given by:

MT = M0
sinα(1− e−TR

T1 )

1− cosα(1− e−TR
T1 )

e−
TE
T2

where α is the flip-angle, TE and TR is the echo time and the repetition

time respectively. The tissue-specific parameters are T1; the spin-lattice re-

laxation time, and T2; the spin-spin relaxation time.

The MR signal is proportional to the net magnetization, giving the signal

intensity as:

SI(T1, T2) = kρ
sinα(1− e−TR

T1 )

1− cosα(1− e−TR
T1 )

e−
TE
T2

Here k is a scanner-specific constant, and ρ is the proton density.

Assuming perfect spoiling of the transverse magnetization (i.e. TR >>

T2)makes the signal independent of T2. Further, when TR << T1 the

approximation e−
TR
T1 ≈ 1− TR

T1
can be made.

In this case the signal in a spoiled gradient-echo sequence is purely T1-

weighted, and given by:

SI = kρ
sinαTR

T1

1− cosαTR
T1

(2.4)

If the flip angle α is large, the term TR
T1

cosα ≈ 0, making the signal intensity

proportional to TR
T1

:

13



SI = kρ sin(α)
TR

T1

Applying equation 2.2 to find the signal response as a function of CA con-

centration C the following expression for the signal intensity is obtained:

SI(C) = kρ sin(α)TR(
1

T1
+ r1C) = SI0(1 + TRr1C)

SI(C)− SI0
SI0

= RSI = TRr1C (2.5)

where SI0 is the signal intensity without the presence of CA, and RSI

is the relative signal increase. Under the aforementioned assumptions the

relative signal increase is in other words directly proportional to CA concen-

tration.

Note however, that at very high concentrations of CA the assumption TR <<

T1 may no longer be valid, as the CAs effect on the tissue is to decrease the

T1-value. Making TR
T1

big decreases the linear range as illustrated in figure

2.3.

2.4 Pharmacokinetic modelling

By taking several images before, during and after the injection of CA, the

blood perfusion and CA exchange can be mapped over time in each voxel.

The temporal kinetics of the signal enhancement is dependent on the local

circulatory system, and can be analyzed using different strategies to obtain

descriptive, or semi-quantitative criteria, or even microvascular physiological

parameters [13].

Although the differentiation is somewhat arbitrary, a separation between two

different kinds of concentration time-curve analysis is usually made: semi-

14



quantitative analysis, where certain parameters are obtained directly from

the RSI time-curve, such as the time-to-peak, area under the time-curve

(AUC) or the slope of the washout curve. The other kind of analysis is one

which aims to describe the distribution of the CA by a mathematical model

of the perfusion and/or permeability and the volume fraction of different

kinds of tissue in the voxel. Then, by fitting the time-curve data to said

model, quantitative parameters describing the underlying physiology may be

obtained.

2.4.1 Semi-quantitative analysis

The uptake of CA may be assessed by the relative signal increase, or by

parameters that may be directly read from the RSI time-curve. Such pa-

rameters include the area under the curve (AUC) and the initial area under

the curve (iAUC), which reflects the total uptake of CA in the voxel, and

the uptake in the early stages after the infusion. The time-to-peak(TTP),

which is the time it takes for the signal to reach its maximum, reflecting

the wash-in rate of CA in the voxel. And the slope of the washout curve

which reflects the rate at which signal-enhancement is lost from the voxel.

These semi-quantitative measures are illustrated in a typical RSI time-curve

in figure 2.4.

Figure 2.4: Schematic figure showing a typical signal time-curve and the
semi-quantitative parameters. At time t = 60s the CA arrives in the region.
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Several investigators have found correlations between different semi-quantitative

parameters and various physiological properties in prostate cancer [12][11],

and others yet have used them successfully to monitor cancer growth and

treatment response[42]. Although these methods are fairly straightforward

to implement, they have certain obvious limitations. The parameters ob-

tained does not necessarily have any clear relation to any singular physical

trait, and may reflect several physiological features at once. In a study by

Walker-Samuel et al. the iAUC was found to display correlations with tissue

blood-flow, vascular permeability-surface-area product, tissue density, and

the extra-vascular extra-cellular volume fraction in the tissue of interest [37].

The degree to which these different physiological parameters contributes to

the iAUC is difficult to determine, and is at least partially influenced by

the somewhat arbitrary time-point set to define the end of the initial up-

take of CA. In addition, it is inherently difficult to quantitatively compare

results from different scan preformed at different times, and results from

semi-quantitative analysis are difficult to compare between different studies

and institutions, since these methods rely on analysis of the signal intensity

which is a measure without physical units that is influenced by technical

image acquisition parameters[5].

2.4.2 Quantitative analysis

In order to obtain parameters that relate more directly to the underlying

physiology a more rigorous method of data analysis is required. The goal is

to find a model that describes the distribution of CA by the physiological

processes such as blood flow/perfusion, vessel wall permeability, cell density

etc. The principal assumption, when performing such pharmacokinetic mod-

elling is that the body may be decomposed into several interacting subsys-

tems called compartments. Such compartments may be considered as units

of volume that the CA appears to occupy, into and out of which the CA

dynamically flows.
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Figure 2.5: Single compartment model. The blood capillaries are treated as
a reservoir from which CA is infused into the EES with a rate Ktrans, and
eliminated with a rate kep.

The CA is administered through an intravenous injection, and reaches the

tissue of interest from the blood vessels. In the case of Gd-DTPA, the CA

used in these experiments, its molecules are small enough to leak through the

capillary wall and into the tissue, but too big to enter the cells and is there-

fore confined to the extra-vascular extra-cellular space (EES). The simplest

pharmacokinetic model depicts each voxel in the MR-image as a single com-

partment, of which the CA occupies the fraction that is the EES. Into, and

out of this compartment the CA flows with a rate-constant Ktrans[min−1],

that is assumed to be the same in both directions. However since the CA

only can can occupy the fraction of the voxel-space that is the EES, the

back-flux to the blood plasma is given by the rate constant kep, defined by

Ktrans = νekep, where νe is the (dimensionless) EES-fraction of the total

volume. If the voxel-volume contains zero cells, νe will be equal to 1. This

simple model is illustrated in figure 2.5

Assuming no destruction or accumulation of CA within the EES the

concentration of CA in the voxel may then be expressed by the following

equation[35]:

dCt
dt

= KtransCp −KtransCe = KtransCp − kepCt (2.6)
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Where Cp is the concentration in the plasma, Ce is the concentration in the

EES, and Ct is the concentration in the unit volume(the voxel-volume). In

the last relation in eq. (2.6) the identity KtransCe = KtransνeCt = kepCt has

been used.

Eq. (2.6) can be solved using Laplace-transforms, using the fact that L[dC
dt

] =

sL[C] − C(0), and the linearity properties of the Laplace-transform[7], the

differential equation can be transformed to an algebraic equation, assum-

ing the concentration of CA in the unit volume at time t = 0 is zero, i.e.

Ct(0) = 0:

L[
dCt
dt

] = sL[Ct] = KtransL[Cp]− kepL[Ct]

Renaming L[C(t)] = ˜C(s) we obtain:

C̃t(s) =
Ktrans

s+ kep
C̃p(s)

This expression can be transformed back to the time-domain by an inverse

Laplace-transform, using the fact that L
[

1
s+α

]
= e−αt [7], giving:

Ct(t) = Ktranse−kept ∗ Cp(t) (2.7)

Where ∗ denotes the convolution operation:

Ktranse−kept ∗ Cp(t) = Ktrans

∫ t

0

Cp(τ)e−kep(t−τ)dτ

Thus, the concentration in the unit-volume of tissue may be regarded as

a response-function of the concentration in the blood-plasma.
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2.4.3 The Brix-model

In the simple one-compartment model described above (eq. (2.7)) knowledge

of the concentration in the blood-plasma at all times during the imaging

is required. The concentration of CA in the plasma as a function of time

is called the Arterial Input Function(AIF), and may either be measured by

sampling blood during the imaging, or estimated from images containing a

large vessel or artery. The estimation of the AIF from arteries in an image is

however troublesome, as concentrations in the arteries may be high enough

to fully saturate the image making accurate estimation of the concentration

difficult. The need for an accurate AIF may be avoided by extending the

model to include a second compartment that models the concentration in

the plasma as a response to a known infusion-rate of CA.

In the studies by Brix et al. a two-compartment model was proposed [10].

A plasma compartment was included, modelling the CA transport in the

plasma compartment and its exchange with the EES. The model is illus-

trated in figure 2.6. This model uses a linear one-compartment open model

to describe the CA in plasma, and incorporates the EES of the lesion as a pe-

ripheral compartment which is connected to the central plasma-compartment

by linear exchange processes in both directions.

The CA-kinetics may then be expressed by the following set of differential

equations:

dMp

dt
= Kin − (k12 + kel)Mp + k21Me (2.8)

dMe

dt
= k12Mp − k21Me (2.9)

Where Mp and Me are the amounts of CA in the plasma and the EES, respec-

tively. k12 and k21 are the rate constants [time−1] for transfer of CA between

the compartments, kel is the elimination rate from the plasma-compartment,
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Figure 2.6: Open two-compartment model. The tissue(unit volume) con-
tains a plasma-compartment with constant rate infusion, and a periph-
eral EES-compartment. Elimination occurs only from the central plasma-
compartment.

and Kin is the CA infusion rate [mass/time]. The concentration is related

to the total amount by Ci = Mi

Vi
where Vi is the volume of compartment i.

Assuming Vp >> Ve, i.e. the volume of the plasma compartment is much

larger than the volume of EES, the transport of CA between the EES and

the plasma will result in a negligible change the concentration in the plasma,

and the terms k12Mp and k21Me may be neglected in eq (2.8). This yields

the following set of differential equations describing the kinetics of the CA:

dCp
dt

=
Kin

Vp
− kelCp (2.10)

dCe
dt

=
Vp
Ve
k12Cp − k21Ce (2.11)

In the one-compartment model described earlier (eq.(2.6)) the assumption

was made that the transfer velocities between the plasma and the EES were

equal in both directions. By assuming no accumulation or different forms

of binding of the CA in the two compartments the same assumption can be

made again, giving k12Vp = k21Ve, or, equivalently Vp
Ve
k12 = k21. Acknowl-
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edging that k21 is the same as kep described in the one-compartment model,

and using the fact that the total concentration in the unit tissue-volume is

Ct = νeCe equation (2.11) may be written as:

dCt
dt

= νekepCp − kepCt (2.12)

In the study by Brix et al. the intravenous infusion of CA was given at a

constant rate for a period of time τ . With initial conditions Cp(0) = 0 and

Ct(0) = 0 the decoupled system of differential equations (2.10 and 2.12) has

a solution for t > τ [10]:

Cp(t) =
Kin

Vpkel
(ekelτ − 1)e−kelt (2.13)

Ct(t) =
Kin

Vp
νe

kep
kep − kel

(ekelτ − 1

kel
e−kelt − ekepτ − 1

kep
e−kept

)
(2.14)

In this investigation the CA was given as a rapid bolus, so equations

2.13 and 2.14 need to be altered to fit this somewhat different situation. By

letting τ tend to zero, a solution that fits this case is obtained. As τ → 0,

ekτ ≈ kτ + 1 giving the final solution to the concentration in the unit tissue-

volume as:

Ct(t) =
Kinνe
Vp

kep
kep − kel

(kelτ
kel

e−kelt − kepτ

kep
e−kept

)

=
Kin

Vp
νeτkep

e−kelt − e−kept

kep − kel
(2.15)

This expression(2.15) can now be inserted into eq (2.5) to obtain the signal

response in a dynamic contrast-enhanced T1-weighted spoiled gradient echo

image as a function of the physiological parameters kep and kel:
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SI(t)− SI0
SI0

= Akep
e−kept − e−kelt

kel − kep
(2.16)

Here A is a function, referred to as the amplitude, depending on the MR-

scanner parameters (TR,TE,α,B0), tissue-specific parameters (T10,Vp,νe)

and the type of CA, and its infusion rate (r1,Kinτ). Thus, in the approxi-

mations discussed, the shape of the temporal response-curve SI−SI0
SI0

is deter-

mined, apart from multiplication by the multidimensional amplitude A, by

the transfer rate kep between the plasma-compartment and the EES, and the

elimination rate kel from the plasma compartment.
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3. Methods and Materials

3.1 Patients

Between October 2011 and July 2012, 110 patients with biopsy- confirmed

prostate cancer who had been stratified for surgical treatment were recruited

to the ongoing study FuncProst at Oslo University Hospital, Radiumhos-

pitalet. Only patients with intermediate- or high-risk cancer, according to

D’Amico risk classification were included. In all participating patients, the

aggressiveness and extent of the cancer had been determined by routine digi-

tal rectal examination(DRE), and trans rectal ultra Sound(TRUS) preformed

at referral hospitals. Biopsies were preformed to determine the Gleason score.

The clinical data, including T-stage, obtained from DRE and TRUS, together

with Gleason score and histopathological T-stage deduced from the biopsies

are summarized in table 3.2 on page 28.

The study was approved by the regional committees for medical and health

research ethics(REK), and the patients provided written informed concent.

3.1.1 MRI

The participants underwent preoperative, multiparametric MRI using a 1.5T

Discovery MR450 MR scanner(GE Medical Systems, Erlangen, Germany).

The MRI protocol consisted of morphologic images(T1 weighted(T1W) and

T2-weighted(T2W)), and functional images(diffusion-weighted(DW) MRI and

dynamic contrast-enhanced(DCE) MRI). The details of the MR protocol are

listed in table 3.1 on page 25. For the functional images, the gadolinium-
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based CA Gd-DTPA was administered intravenously during the imaging. All

images, and associated meta-data, were transferred to the institutional pic-

ture and archiving system(PACS), and exported as .DICOM-files to separate

patient-folders for analysis.

3.1.2 Pimonidazole administration

The hypoxia marker pimonidazole hydrochloride(Hypoxyprobe Inc., Burling-

ton, MA, USA) was given to the patients 12-24 hours prior to surgery, to

identify regions- and quantify the degree of hypoxia post surgury. The pa-

tient group was devided into two subgroups, one consisting of 53 patients who

were given pimonidazole intravenously, and one consisting of the remaining

56 patients who were given the hypoxia marker orally, as a pill. The patients

received 500mg pimonidazole per m2 body surface, with a upper limit of

1000mg per patient.
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3.1.3 Radical prostatectomy

A radical prostatectomy, a full surgical removal of the prostate gland, was

preformed by a three-armed DaVinci system(Intuitive Surgical, Sunnyvale,

CA, USA). The gland was immediately transported from the operating room

to the pathology department for tissue biobanking. The localization and

extent of index tumor was predicted from the MR-images. By a combination

of low signal intensity in the T1W and T2W images, high signal intensity in

the heavily DW images, rapid wash-in and wash-out in the DCE images, and

by low apparent diffusion coefficient, the index tumor could be identified(see

figure 3.1).

Figure 3.1: Multiparametric MR-images used to identify index tumor. The
picture is taken from a paper by Ragnum et al.[30] produced from the
FuncProst study.

3.1.4 Histopathology

Based on the MR images two punch hole biopsies were taken from the tumor,

and the prostatectomy specimens were sliced and fixed according to standard

procedures described by Ragnum et al.[30]. Sections of the prostate gland

were stained with Hematoxylin and eosin stain(HE-stain) to indicate cellular

architecture. The punch hole biopsies, and prostatectomy specimen slices un-

derwent histopathological assessment, and were TNM classified, and graded

according to the Gleason-grading system.
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Immunohistochemistry was performed on slices containing index tumor, us-

ing standardized protocols. Hypoxic regions in the histological sections were

visualized by the staining of monoclonal mouse antibodies for pimonidazole,

and the staining patterns of malignant glands were evaluated blindly to other

immunuhistochemistry data[30]. Fractions of moderate to strong cytoplasmic

staining, and nuclear staining were determined independently by two study

pathologists, and given immunoscores from 0 to 5 where 0 = 0%, 1 = 1−10%,

2 = 11− 50%, 3 = 51− 90%, 4 = 91− 100%, 5 = 100%. Total pimonidazole

score is reported as the average of the cytoplasmic staining score, and the

nucleus staining score. The pimonidazole scores, Gleason scores from prosta-

tectomy specimens, and histopatological T-stages of the patient group are

summarized in table 3.2 of page 28. In the table the patients are devided

into two cohorts based on whether they recieved pimonidazole intravenously

or orally. The p-value listed in the table is the significance of the difference

between the cohorts as determined by a two sided student t-test. Pictures of

an example HE-section and a pimonidazole immunostained section are shown

in figure 3.2

Figure 3.2: Left: Pimonidazole immunostained section of the prostate gland.
The brown areas are regions of high concentration of pimonidazole, indicating
low oxygen concentration. Right: HE section with cancer foci (black circles).
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Patient and tumor characteristics IV cohort Pill cohort p-value Total
Age(years)

Mean ± SD 64.7± 6.0 62.7± 7.3 0.14 63.7± 6.7
Range 49− 75 45− 76 45− 76

Largest tumor extent
Mean ± SD 484.0± 419.4 303.4± 213.5 0.37 400.0± 348.7
Range 24− 2000 40− 900 24− 2000

PSA(ng/ml)
Mean ± SD 13.1± 0.4 12.2± 20.9 0.76 12.7± 16.0
Range 2.0− 42.0 2.2− 145.0 2− 145
≤ 10 26(49.0%) 39(76.5%) 65(62.5%)
> 100 and ≤ 20 21(39.6%) 8(15.7%) 29(27.8%)
> 20 6(11.3%) 4(7.8%) 10(9.6%)

Gleason score from core biopsies 0.16
5− 6 2(3.8%) 6(12.0%) 8(7.8%)
7a(3 + 4) 21(39.6%) 22(44.0%) 43(41.7%)
7b(4 + 3) 14(26.4%) 7(14.0% 21(20.4%)
8− 10 16(30.2%) 15(30.0%) 31(30.1%)

Gleason score from prostatectomy specimen 0.03
5− 6 2(3.8%) 6(12.0%) 8(7.8%)
7a(3 + 4) 19(35.8%) 25(50.0%) 44(42.7%)
7b(4 + 3) 15(28.3%) 12(24.0%) 27(26.2%)
8− 10 17(32.1%) 7(14.0%) 24(23.3%)

Clinical T-stage 0.55
T1c 22(43.1%) 23(51.1%) 45(46.8%)
T2a/T2b/T2c 19(37.3%) 21(46.7%) 40(41.7%)
T3 10(19.6%) 1(2.2%) 11(11.5%)

Histopatological T-stage 0.51
T2 16(30.2%) 21(42.0%) 37(35.9%)
T3a/T3b 37(69.8%) 29(58.0%) 48(64.1%)
T4 0(0.0%) 0(0.0%) 0(0%)

D’Amico risk classification 0.04
Low risk 0(0.0%) 3(6.0%) 3(2.9%)
Intermediate risk 24(45.3%) 28(56.0%) 52(50.5%)
High risk 29(54.7%) 19(38.0%) 48(46.6%)

Pimonidazole score 0.00
≤ 1.5 11(25.6%) 26(55.3%) 37(41.1%)
> 1.5 and < 3.5 23(53.3%) 19(40.4%) 42(46.7%)
≥ 3.5 9(20.9%) 2(4.3%) 11(12.2%)

Table 3.2: Sumarization of the patient and tumor characteristics

3.2 Pharmacokintic modelling

All images were analyzed using Matlab. The images were extracted from the

DICOM-files using the built in dicomread-function from the Image Process-

ing Toolbox. The images were then sorted to obtain a complete time-series

for the slice in which the tumor region of interest(ROI) was drawn by the

radiologist. The time of arrival of CA was different in each patient, due to

the difference in time taken to prepare and administer the injection of CA.

Since the model used(eq. (2.16)) assumes CA-arrival at t = 0, a routine for
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identifying the actual time of arrival of CA was made in order to be able

to compare the pharmocokinetic parameters across the patient-population.

This routine compared the relative changes in mean signal intensity between

each consecutive image to a set threshold. If the difference between image i

and i+1 was greater than the threshold, image i was set as image 0, and the

time t[i] was set as t = 0. Initially the threshold value was set to two times

the standard deviation of the difference between the two first pre-contrast

images, but due to large variations in the noise range between patients, a

global patient-independent value was used instead. The threshold level was

set by manually examining the arrival of CA in the iliac veins visible in the

image (see figure 3.3), and comparing it to the relative increase in the mean

signal intensity in the image for the first ten patients. The threshold value

was then controlled by comparing the arrival of CA by manual inspection,

to the arrival-time determined by the numerical routine for patients 11 to 50.

Figure 3.3: The difference in mean signal intensity between image i(left) and
image i+ 1(right) is greater than the threshold, thus image i is set as image
0, and the time t[i] was set as t = 0. The iliac veins used for manual control
of the arrival-time of CA are shown by the red markers.

Once the arrival time of CA was defined, the relative signal increase,

RSI = SI−SI0
SI0

, was determined for each pixel, by letting the mean pixel

intensity of the pre-contrast images define the relative signal at time t = 0:

SI0,i,j =
1

N − 1

N−1∑
n=1

SIi,j(n)
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Where SIi,j(n) is the signal intensity of pixel (i, j) in the n’th time-frame,

and N − 1 is the number of pre-contrast time-frames. The RSI time-curves

for each patient could then be interpolated over a standard time-vector which

is the same for all patients by letting the patient-specific value N define the

time t = 0:

RSIi,j(k) =
SIi,j(k +N)− SI0,i,j

SI0,i,j

Where k denotes the entry in the standardized time-vector, and k + N is

the corresponding entry in the patient-specific time-vector where the offset

in time is not accounted for. N is, as above, the frame-number in which the

CA appears in the region.

Once the RSI has been interpolated over the standard time-vector, the semi-

quantitative parameters can be extracted and compared between patients.

The AUC and iAUC was determined by numerical integration using the

trapezoidal method, defining the first 45 seconds as the initial uptake phase.

The trapezoidal method is defined, in terms of the RSI as:

∫ b

a

RSI(t)dt ≈ 1

2

K−1∑
k=1

(tk+1 − tk)[RSIk +RSIk+1]

Where K is the entry in the time-vector corresponding to the time t = b.

Thus, for the iAUC, with the first 45 seconds as the initial uptake phase

b = 45, K = 3. The AUC was calculated using K = 30−max(N), the num-

ber of frames after the arrival of CA in the patient with the latest arrival.

The time to peak was found by reading out the time at which the RSI was

at its maximum, and the washout gradient was found by a simple linear re-

gression fit to the RSI from three minutes and until the end of the imaging

sequence. The estimated semi-quantitative parameters were estimated pixel

by pixel and stored in corresponding parameter images.

In addition to the semi-quantitative parameters, the parameters A,kep and

kel from the Brix-model (equation 2.16) were estimated pixel by pixel by
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minimizing the sum Q of the square deviation between the measured sig-

nal intensities RSIi,j,k and the fitted model-value F (RSIi,j,k, t[k]), F (RSI, t)

being the function defined by equation (2.16):

Q =
30−N∑
k=1

(F (RSIi,j,k, t[k])−RSIi,j,k)2

Where 30 − N is the number of 15 second time steps in the interpolated

RSI-vector, and t[k] is the k’th entry in the standardized time-vector. The

computation was done iteratively with the ’trust-region-reflective’ algorithm

from Matlabs optimization toolbox, setting a lower bound on all parameters

to zero, as only positive values would represent a physically acceptable pa-

rameter. Again the estimated parameters were stored in parameter images

for further statistical analysis.

To limit the computation time, the parameters were estimated only for pixels

within the ROI surrounding the tumor. The ROI had been drawn by the

radiologists, and was available as a set of coordinates defining the vertices of

the polygon that is the ROI.

In addition to calculating the Brix-model parameters within the ROI sur-

rounding the tumor for all patients, the same parameters were calculated for

the entire prostate gland for the first 50 patients. This was done in order

to examine whether there was any statistical difference in the parameters

between the defined tumor and the rest of the prostate. The prostate gland

was delineated crudely, with approximately five pixels between the delin-

eation and the assumed edge of the prostate. This was done to ensure that

only prostate gland-tissue, and not surrounding muscle-tissue was included

in the region delineated.
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3.3 Statistical analysis

Once the Brix model had been fitted, its reliability was examined by assessing

the goodness of fit, and by examining the distributions of the residuals. The

residuals are defined as the difference between the measured values and the

values predicted by the model:

res = yi − ŷi (3.1)

and if the model is correctly specified, they should behave according to certain

criteria: If the model provides a complete explanation of the response, then

the residuals should arise from random error or noise, and should thus behave

as a sample from a normal distribution with mean zero. In addition, there

should be no dependence of the response variable on the residuals, or in other

words, the variance of the residuals should be constant(homoscedastic). The

residual distribution and the homoscedasticity was examined for the entire

patient-population, to check the models ability to account for the variation

in the measured data.

The measure used to compare the goodness of fit between patients, and

between single voxels, was the residual standard error:

sres =

√∑n
i=1(yi − ŷi)2
n− p

(3.2)

Where n is the number of data-points, and p is the number of predictors.

sres is an estimator of σε, the standard deviation of the errors. It has the

advantage of having the same natural units as the response variable, mak-

ing it easily interpretable as the the average distance that the data-points

falls from the regression line. The sres was used as a mean to identify pix-

els where the least squares algorithm had failed to supply the best fit of the

data. For a fit to be deemed reasonable the demand was made that sres ≤ 0.4

The Pearson product moment correlation test was used to search for lin-

32



ear correlation between the clinical prognostic factors and the calculated

DCE-MRI-parameters. The median values, as well as percentile values of

the pharmacokinetic parameters were correlated to the clinical data, and the

Pearson correlation coefficient and corresponding p-value was calculated. In

addition, the Spearman rank correlation-coefficient was calculated to search

for nonlinear correlation. All correlation analysis was done using the built-in

functions from matlabs statistics and machine learning toolbox.

A two sided student t-test was used to check for any statistical difference

between the parameters in the primary tumor and the rest of the prostate

for the first 50 patients. Additionally, a logistic regression was performed

with the Brix model parameters as predictors, and the binary outcome was

defined as 1 within the primary tumor, and 0 in the rest of the prostate. The

logistic regression was performed pixel by pixel, and cancer probability maps

of the entire prostate gland were created based on the logistic regression

model:

pi,j(x1,i,j, x2,i,j, x3,i,j) =
eβ0,i,j+β1,i,jx1,i,j1+β2,i,jx2,i,j+β3,i,jx3,i,j

1 + eβ0,i,j+β1,i,jx1,i,j1+β2,i,jx2,i,j+β3,i,jx3,i,j
(3.3)

where pi,j is the estimated probability of cancer in pixel i,j, xn,i,j are the

model predictors (the Brix model parameters) in pixel i,j, and βn,i,j are the

coefficients of the binomial fit in pixel i,j.

The predictive value of the logistic regression model was assessed by com-

puting the Dice- and Jaccard similarity coefficients between a mask of the

probability maps and a mask of the prostate gland. In the mask of the

prostate gland pixels had the value 1 within the primary tumor, and 0 oth-

erwise, and in the mask of the probability maps pixels had the value 1 where

the probability of cancer was larger than a set threshold, and 0 otherwise.

To obtain the optimal threshold value, a screening of Jaccard coefficients

with 100 different threshold values between 0 and 1 was performed, and the

threshold value that gave the closest match between the estimated proba-

bility and the delineated primary tumor across the patient population was
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chosen.

The computer routines generated are available in the appendix.
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4. Results

Out of the 110 patients initially recruited to the study, some withdrew for

various reasons before the surgery. For other patients the ROI specifying

the primary tumor was not available at the time of writing, thus the total

number of patients analyzed in this study is n = 48 in the IV cohort, and

n = 31 in the oral cohort.

4.1 RSI

Figure 4.1 shows the evolution of the RSI in two different patients. The figure

shows the prostate gland in the pre-contrast image, with the RSI overlaid

at different time points. At time t = 0 the CA appears in the iliac veins,

and spreads through the tissue by perfusion in the following images. The

primary tumor is delineated in the images. The signal intensity in the RSI

map is shown only for voxels that showed a signal increase larger than the

standard deviation of the absolute difference between two pre-contrast im-

ages, to separate actual signal increase from noise. There is a difference in

CA uptake patterns both within the tumor, and within the prostate gland

between the two patients: Patient A shows a relatively fast uptake, with

high RSI in the early stages, while patient B shows a slow initial uptake, but

with even higher uptake in the later time points. Difference in time activity

curve between tumorous tissue and non-tumorous tissue is also clearly dif-

ferent for these two patients: In patient A the primary tumor clearly has a

higher initial uptake than the surrounding tissue, while in patient B, no such

tendency is observed. Rather, patient B shows significant CA uptake outside
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the primary tumor. Figure 4.1 also illustrates the intra-tumor heterogeneity

that is present in many of the tumors. Patient A shows larger variations in

the RSI time-curve over the tumor than patient B, particularly in the early

phases.
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Figure 4.2 shows the RSI time-curve for two different voxels from regions

within the tumors with different uptake. The RSI overlaid onto the pre-

contrast image is shown to the left, and two voxels from regions with different

CA uptake in the primary tumor are marked. To the right the RSI time-curve

for the same two voxels are shown. This plot shows three different types of

RSI versus time curves: Type 1 is the type illustrated by the red voxel in

patient A, where the RSI in unit volume depicted is increasing throughout the

imaging time. Type 2 is shown by both voxels in patient B, where the unit

volume shows a relatively slow initial uptake and flattens out after the initial

wash-in of CA, reaching a plateau that persists throughout the imaging. The

type 3 curve is shown in the blue voxel of patient A, and is characterized by

a fast wash-in of CA to a maximum, followed by a fast wash-out.

Figure 4.2: RSI time-curve from two selected voxels within the tumor for
patient A and B. The pixels marked with a blue square in the images to the
left are plotted as blue squares in the RSI time-curves to the right. Similarly
for the red circles.
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The distributions of CA in the primary tumors of patients A and B, shown as

cumulative distribution plots at four different time points figure 4.3, clearly

illustrates the heterogeneity of the CA accumulation within the tumor in

both time and space. The bottom plot in figure 4.3 shows that the tumor in

patient B has a fairly homogeneous accumulation of CA in the early stages,

but the CA becomes more and more heterogeneous as time passes. Patient

A on the other hand has a fairly constant distribution of CA throughout the

first four minutes of the imaging.

Figure 4.3: Cumulative distribution of the RSI within the primary tumors
of patient A, and B, at different time-points.

4.2 semi-quantitative parameters

4.2.1 Within patients

Figures 4.4 and 4.5 show the iAUC and AUC for patients A and B. Looking

at the iAUC map it is clear that the uptake in patient A is generally faster

than that in patient B. For both patients the initial uptake is, however,

heterogeneous showing regions of both high and low iAUC. Comparing the

iAUC in figure 4.4 to the AUC in figure 4.5 reveals one major difference
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between patients A and B. Whereas patient A shows areas of both low and

high iAUC, the map of the AUC is more homogeneous with a relatively low

total uptake throughout the patient, indicating that the areas of high iAUC

predominantly consists of voxels displaying type 3 time-curves. In patient B

areas of high initial uptake stands out as areas of high total uptake, which is

indicative of type 1 or 2 time-curves.

Figure 4.4: iAUC maps of the primary tumor in patients A (left) and B
(right). Patient A shows a much higher uptake of CA in the first 45 seconds
than patient B.

Figure 4.5: AUC maps of the primary tumor in patients A (left) and B
(right). Patient B shows a higher and more heterogeneous total uptake of
CA than patient A.
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TTP maps for patients A and B are shown in figure 4.6. The areas of

high iAUC in patient A corresponds to a low value in the TTP map, i.e. a

fast wash-in of CA. For the majority of voxels within the tumor of patient

B the TTP is more than four minutes, indicating type 1 or 2 time-curves.

Figure 4.6: TTP maps of the primary tumor in patients A and B. In patient
B most of the voxels show a time-to-peak larger than 250s, indicating a very
slow uptake of CA throughout the tumor.

Figure 4.7: Slope of the wash-out curve in the tumor of patients A and B. A
positive slope indicate that no wash-out phase was detected.
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Figure 4.7 shows the slope of the wash-out curve for patients A and B. The

regions of high iAUC and low TTP in patient A correspond to a steep wash-

out curve, resulting in a fairly homogeneous AUC throughout the tumor. In

patient B the slope of the wash-out curve is mainly positive throughout the

tumor, resulting in a similarity between the maps of the iAUC and the AUC,

and high TTP-values.

In summary, figures 4.4 through 4.7 paint a picture of two tumors with a

slightly different blood perfusion. In patient A, a high iAUC, low TTP and

negative wash-out slope indicates a tumor with a relatively fast blood ex-

change, where blood quickly washes in and out of the tumor tissue. Patient

B shows a slow influx and slow wash-out of blood, but has a high AUC, in-

dicating that the CA tends to accumulate in the region during the imaging.

4.2.2 Across the patient population

The median values of the semi-quantitative parameters for the entire pa-

tient population are shown in figure 4.8. The values are sorted in descending

order in terms of their median iAUC value. The data indicates a that tu-

mors with high iAUC tend to have a low TTP and a negative wash-out slope.

The normalized cumulative distributions of the semi-quantitative parameters

are shown in figure 4.9. The distributions of the median, the 5% percentile,

and the 95% percentile shows that TTP is particularly heterogeneous, both

within tumors, and between different tumors.

The distributions of the median values of the semi-quantitative parameters

are shown separately for the i.v. and the oral pimonidazole cohorts in figure

4.10. There were no significant differences between the parameters. The

p-values obtained from a two-sided student t-test is displayed over the his-

tograms.
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Figure 4.8: Plots of the median values of iAUC(top left), AUC(top right),
TTP(bottom left) and the wash-out slope(bottom right), sorted by decreas-
ing iAUC. The red line is the least squares regression line fitted to the data.

Figure 4.9: Normalized cumulative distributions of iAUC(top left), AUC(top
right), TTP(bottom left) and wash-out slope(bottom right). The figure
shows the distributions of the median, 5% percentile, and 95% percentile
of the parameters.
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Figure 4.10: Histograms of the median values of iAUC(top left), AUC(top
right), TTP(bottom left), and the wash-out slope(bottom right). The pa-
tients who had the pimonidazole administered intravenously are shown in
black, and patients who had the pimonidazole administered orally are shown
in red.

4.3 Fitting the Brix model

The fitting of the Brix model to the RSI time-curves is illustrated in figure

4.11. In table 4.1 the Brix model parameters corresponding to the fits are

listed. The blue unit volume in patient A (figure 4.11) has the fastest elimi-

nation of CA from the plasma kel, corresponding to a steep wash-out curve.

The red unit volume increases in RSI throughout the scan-time, and its kel

value is essentially zero. A qualitative examination of figure 4.11 and table

4.1 also shows that the maximum uptake is related to the amplitude A, and

that a steep increase in RSI is related to a high kep.
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Figure 4.11: The fitting of the Brix model for patients A(left) and B(right)
for the voxels indicated in figure 4.2.

A kep [s−1] kel [s−1] sres
Patient A:

Blue unit volume 1.81 0.08 0.002 0.14
Red unit volume 0.64 0.03 2.6× 10−14 0.17

Patient B
Blue unit volume 1.80 0.01 3.8× 10−4 0.12
Red unit volume 1.35 0.02 2.0× 10−4 0.17

Table 4.1: Values of the Brix model parameters associated with the model
fits in figure 4.11. The Blue unit volume references the data points marked
with blue squares in the figure, and the Red unit volume references the data
points marked with red circles.

The quality of the model fits are illustrated in figures 4.12 through 4.14.

At the top of figure 4.12 a plot of the residuals from the two example unit

volumes in patient A, shown in figure 4.11, are plotted against time, and at

the bottom a histogram of the residuals in the entire tumor of patient A is

shown together with a plot of the standard normal distribution.
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Figure 4.12: The residuals of the fitted Brix model. Top: The residuals
plotted as a function of time for the two unit volumes introduced in figure 2 in
patient A. No systematic behavior of the residuals indicates that the demand
of homoscedasticity is fulfilled. Bottom: Histogram of the residuals in the
entire tumor of patient A. The black line is the standard normal distribution
with mean µ = 0.0 and standard deviation σ = 0.18. The residuals comply
with the demand of normally distributed errors.
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Figure 4.12 reveals no systematic behavior of the residuals across the

measurements in the plot of the residuals as a function of time, i.e. there

is no indication of any systematic variance not accounted for by the model.

The histograms of the residuals show that they are normally distributed with

mean zero, thus the model is concluded to adequately describe the systematic

behavior of the measurements.

Figure 4.13 shows the histogram of the residual standard error sres in all

voxels of all patients. 0.8% of the voxels failed to comply with the demand

of sres < 0.4, and were excluded from further analysis. The rightmost bin in

the histogram in figure 4.13 contains these 161 voxels.

Figure 4.13: Histogram of sres for all voxels in all patients. The leftmost bin
contains the 161(0.8%) voxels with sres > 0.4.

Figure 4.14 shows the histogram of all the residuals in the tumors of all

the patients. The residuals are normally distributed with mean µ = 0, and

the Brix model is concluded to be capable of adequately accounting for the

systematic variations of the data.
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Figure 4.14: Histogram of the residuals from the fitted Brix model for all
voxels in all patients. The standard normal distribution with mean µ = 0.0
and standard deviation σ = 0.2 is shown in the black line.

4.4 Brix model parameters

4.4.1 Within patients

Figure 4.15 shows the Brix model parametric maps of patient A. Areas of high

kep and kel correspond to the areas of high iAUC, low TTP and steep wash-

out curve in figures 4.4,4.6 and 4.7, wheras the amplitude map is concordant

with the AUC map in figure 4.5.
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Figure 4.15: Parametric maps from the Brix modeling of the RSI time-curve.
A: The (dimensionless) amplitude A, B: The transfer rate constant from
blood plasma to the EES kep [s−1], C: The rate constant of elimination of
CA from the blood plasma kel [s−1], D: The residual standard error sres.
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4.4.2 Across patient population

Figure 4.16 shows the median values of the Brix model parameters for the

entire patient population, sorted in descending order in terms of their me-

dian amplitude. The least squares regression lines of the data are shown

by the red lines in the plots, indicating a weak tendency of high amplitude

tumors having a high kel. In one of the patients the median value of kep

was nonphysically high (more than 36 times higher than median of the other

patients), and that patient has thus been excluded from further analysis.

The overall distributions of the Brix model parameters for the patient popu-

lation are shown by normalized cumulative distributions in figure 4.17. The

figure shows the distributions of the median, the 5% percentile, and the 95%

percentile of the parameters, and of the residual standard error.

The distributions of the median values of the Brix model parameters are

compared between the two patient cohorts by histograms in figure 4.18. No

significant difference is observed between the cohorts in the Brix model pa-

rameters. The p-values from a two sided student t-test is displayed over the

histograms.

Figure 4.19 shows the correlations between the pharmacokinetic parameters.

A strong correlation between the kep and the iAUC, between the kel and the

wash-out, and between the amplitude and the AUC is observed.
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Figure 4.16: Plots of the median values of the Brix model parameters, sorted
by decreasing amplitude A. The plots show the amplitude(top left). kep(top
right), and the kel(bottom left).
*In one of the patients the median kep was nonphysically high, and has been
removed from this figure, and further analysis.



Figure 4.17: Normalized cumulative distributions of the median, 5% per-
centile, and 95% percentile of the amplitude A(top left), the kep(top right),
kel(bottom left), and sres(bottom left).

Figure 4.18: Histograms of the median values of the Brix model parameters
for all patients. Patients who were given pimonidazole intravenously are
shown in black, and patients who were given pimonidazole orally are shown
in red.
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A scatter plot of the median values of the pharmacokinetic parameters,

and their correlations to each other is shown in figure 4.19. The figure shows

how the different semi-quantitative and quantitative parameters are related.

Each sublot shows the median values of the parameters in the entire patient

population(both cohorts), n = 79.

4.5 Comparing image parameters to clinical

data

Of the clinical parameters in table 3.2 on page 28, three showed a signifi-

cant difference(p < 0.05) between the cohort that received the pimonidazole

intravenously and the cohort that recieved it orally. Pimonidazole score in

the IV cohort (mean: 2.3 SD: 1.1) was significantly higher than in the oral

cohort(mean: 1.5 SD: 1.2)(p = 0.001). Additionally the Gleason score from

the prostatectomy was higher in the IV cohort(mean: 7.4 SD: 0.9) than in

the oral cohort (mean: 7.0 SD: 0.9)(p = 0.03), and the D’Amico risk clas-

sification was higher in the IV cohort (mean: 2.5 SD: 0.5) than in the oral

cohort (mean: 2.5 SD: 0.6) (p = 0.04).

The parameters that showed a difference between the two cohorts at 5%

significance (p < 0.05) are shown with box plots in figure 4.20.

In figures 4.21 through 4.27 the median values of the image parameters are

plotted, and color coded according to the pimonidazolenidazole score of the

tumors: Green colored bars are tumors with pimonidazole score ≤ 1.5, blue

bars are tumors with pimonidazole score between 1.5 and 3.5, and red bars

are tumors with pimonidazole score ≥ 3.5.
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Figure 4.20: Box plots of the clinical factors that showed a statistical differ-
ence at 5% significance. The dark areas shows one standard deviation, and
the light areas shows the 95% confidence interval. The raw data distribution
is shown with black markers for the IV cohort, and red markers for the pill
cohort.

Table 4.2 shows the Pearson correlation coefficients of all parameters,

and table 4.3 shows the Spearman correlations coefficients. Significant cor-

relations are highlighted. Scatter plots and correlations, with p-values are

available in the appendix. In the table the median value in the tumor of the

pharmacokinetic parameters is shown.



Figure 4.21: The median iAUC of the patients in the two cohorts in descend-
ing order. Color coded according to pimonidazole score.

Figure 4.22: The median AUC of the patients in the two cohorts in descend-
ing order. Color coded according to pimonidazole score.



Figure 4.23: The median TTP of the patients in the two cohorts in descending
order. Color coded according to pimonidazole score.



Figure 4.24: The median wash-out of the patients in the two cohorts in
descending order. Color coded according to pimonidazole score.

Figure 4.25: The median amplitude, A, of the patients in the two cohorts in
descending order. Color coded according to pimonidazole score.



Figure 4.26: The median kep of the patients in the two cohorts in descending
order. Color coded according to pimonidazole score.

Figure 4.27: The median kel of the patients in the two cohorts in descending
order. Color coded according to pimonidazole score.
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A percentile screening of the correlation coefficients and the significance

between the pharmacokinetic parameters and the pimonidazole score is shown

in figures 4.28 and 4.29. The significance is higher in the high percentile re-

gion for correlations between pimonidazole score and kep in both cohorts,

and between pimonidazole score and the slope of the wash out curve in the

oral cohort. Additionally the kep, and iAUC shows a stronger correlation to

pimonidazole score in the lower percentile range in the oral cohort.

Figure 4.28: Percentile screening of the correlation between the semi-
quantitative parameters and pimonidazole score. The IV cohort is shown
in blue, and the oral cohort is shown in red. The right column shows the
Pearson R-coefficients, and the left column shows the p-values. The stapled
black line is the p = 0.05 significance line.
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Figure 4.29: Percentile screening of the correlation between the Brix model
parameters and pimonidazole score. The IV cohort is shown in blue, and
the oral cohort is shown in red. The right column shows the Pearson R-
coefficients, and the left column shows the p-values. The stapled black line
is the p = 0.05 significance line.
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4.6 Comparing the Brix model coefficients be-

tween index tumor and prostate tissue.

A two sided student t-test rejected the null-hypothesis that there was a dif-

ference in the Brix model parameters between the index tumor tissue, and

the rest of the prostate gland (p < 0.001). Thus, under the assumption that

the tissue outside the primary tumor is normal tissue, the Brix model pa-

rameters alone are insufficient to discriminate cancerous tissue. Examples of

the probability maps generated from a logistic regression, with Brix model

parameters as predictors, and location of the index tumor as a binary out-

come is shown in figure 4.30.

Figure 4.30: Cancer probability maps for six patients, based on the logistic
regression of the Brix model parameters. The index tumor is delineated.
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Figure 4.30 shows various success in terms of identifying the index tumor.

For most of the patients the regression model estimates severe probability of

cancer outside the primary tumor, and often in the peripheral zone of the

prostate gland. The probability cutoff that gave the highest concordance

between the probability maps and the location of the index tumor was a

cancer probability of 14%. The Dice and Jaccard similarity coefficients be-

tween the location of the primary tumor, and the mask of the probability

map generated with a cutoff of 14% are shown by histograms in figure 4.31.

Figure 4.31: Dice- and Jaccard similarity coefficients between the mask of
the probability maps and the location of the primary tumor in the first 50
patients. The Dice similarity coefficients (mean = 0.20, SD = 0.18) are shown
in red, and the Jaccard similarity coefficients (mean = 0.30, SD = 0.25) are
shown in black.
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5. Discussion

5.1 Results of this study

In this study the relationship between clinical information, pathological pa-

rameters obtained from biopsies and prostatectomy specimens, and pretreat-

ment DCE-MRI parameters for 79 prostate cancer patients has been ex-

amined. Particularly the relationship between DCE-MRI parameters and

hypoxia has been investigated. Some of the challenges of accurately assess-

ing the extent and aggressiveness of prostate cancer are apparent from table

4.2, where the linear correlations between several malignancy markers for

prostate cancer in common clinical use are shown. This table shows no sig-

nificant correlation between PSA and biopsy Gleason score or T-stage, and

only a very weak correlation between PSA and D’Amico risk classification

in the IV cohort. Additionally, no significant correlation is shown between

Gleason score and T-stage, and the D’Amico risk classification correlates only

moderatly to biopsy Gleason score, prostatectomy Gleason score in the IV

cohort, and weakly to clinical T-stage and pathological T-stage. This shows

the limitations of current methods of risk assessment and survival predic-

tion of patients with prostate cancer, as none of the clinical risk assessment

reliably predict cancer aggressiveness. Only two of the clinical parameters

showed a significant correlation to the pimonidazole score. Largest tumor

extent, and the pathological T-stage both showed moderate correlation to

pimonidazole score, showing that larger tumors tends to be more hypoxic.
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5.1.1 CA distribution

The uptake of CA within tumors varies largely between patients, and within

tumors of the same patient. Figure 4.3 shows that the distribution of CA

is severely heterogeneous in the tumors of both patient A and B. The same

figure also shows that the two patients has a very different temporal pattern

of CA uptake. Patient B, although it shows a fairly homogeneous concen-

tration of CA in the early stages, by the time four minutes have passed,

the distribution of the RSI is equally heterogeneous to that of patient A.

This difference in CA behavior between patients is also illustrated in the

cumulative distribution plots of the semi-quantitative parameters in figure

4.9. This illustrates the complexity of the CA behavior, both between pa-

tients, and within single tumors. Going back to figure 4.2, we see that the

two voxels in patient A show a similar time required to reach the maximum,

but the value of the maximum and the wash-out phase differs substantially.

Patient B shows a similar wash-in phase, and wash-out gradient, but with

different maximum uptake. These large intra-tumor differences in the RSI

time-curves are reflected in the maps of the pharmacokinetic parameters.

Figures 4.4 through 4.7 and 4.15 show the same tendencies in the maps of

the semi-quantitative and Brix model parameters. This complexity of the

contrast enhancement is, however, not reflected by the clinical parameters.

Table 4.2 shows no significant linear correlation between the median values of

any of the pharmacokinetic parameters and the clinical data, yet comparing

only the median values might be too simplistic. As the clinical parameters

are reported as a single number representing the entire tumor, it is not known

a priori which voxel values to extract from a high resolution parameter im-

age to find correlations. A percentile screening of the correlations between

image parameters and pimonidazole score is shown in figures 4.28 and 4.29.

Using this screening method allows for identifying the part of the parameter

distribution with the highest predictive value, and a more nuanced indication

of its robustness as a predictive parameter is achieved. Figures 4.28 and 4.29

show a band of significant, although relatively weak, correlations between the

pimonidazole score and kel at high percentiles. The oral cohort also showed
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significant correlations between the iAUC and pimonidazole score, and be-

tween the kep and the pimonidazole score at low percentiles, but this cohort

is relatively small (n = 31), and no equivalent result is seen in the IV cohort

(n = 48). This result is in accordance with a finding by Borren et al.[8]

who investigated the correlations between Gleason score, microvessel den-

sity (MVD), DCE-MRI parameters, and expression of HIF in whole mount

prostate specimen. They reported no correlation between expression of HIF

and MVD or DCE-MRI parameters(n = 15). Similarly Gettman et al.[18]

reported a lack of significance between MVD and PSA, Gleason grade or

clinical and/or biochemical recurrence(n = 307). Assuming the assumption

that hypoxia is related to poor prognosis holds, these results raises a question

on the relationship between vascular architecture, MVD, and hypoxia. A pri-

mary assumption when analyzing DCE-MRI data with respect to hypoxia is

that there is a relationship between the presence of CA (blood), the presence

of pimonidazole and the level of hypoxia. This relationship probably exists,

but it may be more convoluted than initially thought. Several mechanisms,

such as rate of oxygen metabolism and rate of pimonidazole metabolism,

could affect the levels of hypoxia and the pimonidazole score without beeing

reflected by the CA distribution.

5.1.2 Pharmacokinetic parameters

The correlations between the different pharmacokinetic parameters are shown

in figure 4.19. This figure illuminates what the semi-quantitative parameters

are reporting, in terms of the Brix model parameters. There is for example

a strong correlation between the iAUC and the kep, indicating that a fast

uptake of CA is related to what is assumed to be the transfer rate across

the vascular membrane. There is also a strong negative correlation between

slope of the wash-out curve and the kel, indicating that the wash out curve is

reporting on the elimination rate of CA from the plasma. These correlations

are, however, expected, as the bi-exponential function (eq. 2.16) used to fit

the model to the data are defining the parameters kep, and kel in terms of

the curve shape. Thus, a more interesting question is: Which physiological
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traits are the Brix model parameters actually reflecting? The kel is obviously

reflecting the rate of elimination of CA from the voxel, yet this is not nec-

essarily the same as the rate of elimination from the plasma compartment.

Particularly under the assumption that Ct = νeCe i.e. that the depicted

voxel (unit volume) does not contain a vessel, this assumption requires a

negligible transit time of the bolus through the capillary bed, i.e. the CA

has to eliminate from the unit tissue at the same rate as the venous elimi-

nation from the plasma. However, considering the irregular blood perfusion

through the tumor vasculature, there is reason to believe this assumption may

be violated in some cases regarding solid tumors. Thus, kel could contain in-

formation of capillary blood flow, and could also contain some information

on the transfer rate from the EES to the plasma. The transfer rate across

the capillary membrane is assumed described by kep, and is a function of the

permeability of the capillary membrane, tissue density, and surface area of

the membrane[34]. The Brix model assumes the transfer rates to be equal

in both directions across the membrane, i.e. the permeability is assumed

equal in both directions. If this assumption is not true, CA concentration

in the plasma will not be correctly specified, and the response in the tissue

may be erroneously estimated in the early stages of the infusion described by

kep. The amplitude A is a parameter of the Brix model that is particularly

difficult to intuitively comprehend. It has been reported to approximately

correspond to the size of the EES[34], yet it also includes information on

non-tissue specific parameters depending on the relaxation rate, and the in-

fusion rate of CA, and scanner specific parameters such as TR. Additionally

the amplitude contains information on the chemical components in the voxel

depicted through the relaxation time T10. Hence its relation to underlying

physiology is not clear.

The ambiguity in the interpretation of model parameters is an inevitable

result of using a simple model to describe a complicated system. There is

always a trade off between model complexity and the number of predictors

that can be identified, with low bias or variance, from real data. A more

complex model would require a larger data set(i.e. higher temporal resolu-
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tion in the images), in order to ensure sufficient predictive performance.

The ultimate arbiter of cancer aggressiveness is survival. Investigating this

requires long term follow up, with regular clinical examinations, and is be-

yond the scope of this thesis. However, other researchers have found correla-

tions between Brix model parameters and clinical outcome of patients with

cervical cancer[3]. In this regard, knowledge of the specific physiological trait

that is described by the model parameters is not needed, and a simple model

generally describing the main response of a complicated system suffices to

assess the cancer aggressiveness once the statistical significance, and predic-

tive power of the model is known. Fast influx of CA is a common criteria

for differentiation between malignant and benign tissue in several different

tissue types[24][29], including prostate cancer, and identifying the kinds of

RSI time curves that corresponds to fast CA uptake (the type 3 curve shown

in figure 4.2) can confidently be done from either semi-quantitative- or Brix

model parameters. However, in this study the goal was to investigate the

relationship between DCE-MRI parameters and hypoxia, to try to obtain a

more exhaustive assessment of prostate cancer aggressiveness.

In this study an attempt was made at identifying the primary tumor using

only the pharmacokinetic parameters from the Brix model through a logistic

regression. Figures 4.30 and 4.31 shows that the logistic regression model

was unable to identify the tumor, using only the Brix model parameters.

The assumption that the tissue outside the primary tumor was normal tissue

was a presumption for using this method. This is, however, debatable as

metastasis are not reported in the MR images. Additionally, no information

on prostatitis or benign hyper prostatic hyperplasia, which both are condi-

tions with the potential of affecting the blood perfusion, are available. The

technique of generating probability maps from a logistic regression model is,

however, a useful way of creating multiparametric maps that can be com-

pared to corresponding sections from the prostatectomy specimens. In order

to make such a comparison, though, a corresponding map of the wanted

outcomes is required.
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5.2 Critical appraisal

5.2.1 Pimonidazole sections

The pimonidazole score reported is a measure of the fraction of the cancer

cells that is shown to have a moderate to strong staining. Normal cells are

in other words not included when the pimonidazole score is calculated. This

means that the pimonidazole score is not a measure on the total tissue hy-

poxia, but a measure on the hypoxia of the cancer cells in the tissue. This

represents a problem in regions where cancer cells and normal cells are inter-

mixed, as the DCE-MRI doesn’t have the ability to make the differentiation

between normal and cancerous cells, but rather reflects the blood perfusion

independent of tissue type, and its constituent cells. Another challenge when

comparing the pharmacokinetic parameters to the pimonidazole score is the

absence of spatial resolution in the scoring system. The pimonidazole sec-

tions show significant heterogeneity in terms of staining, and sections with

low pimonidazole score may contain regions of severely high degrees of hy-

poxia. Examples of different sections with the same pimonidazole score are

shown in figure 5.1. This figure shows four patients with different staining

patterns, all with pimonidazole score = 2.5. The tumors can either be com-

posed of small areas showing a large degree of staining, as in patient B, large

areas showing moderate degrees of staining, as in patient D, or something in

between, as in patient A. These differences in pimonidazole staining patterns

are not reflected in the pimonidazole score, as the intra-tumor heterogeneity

is not reported.

Comparing absolute values of the pharmacokinetic parameters to a pimonida-

zole score obtained by the fraction of cancer cells with moderate or high levels

of hypoxia may be a comparison under a false analogy, as the heterogeneity

of both the maps of the pharmacokinetic parameters and the pimonidazole

sections gives reason to doubt whether a measure on the global distribution

of hypoxia is reflected in local tissue properties, assessed by the pharmacoki-

netic parameters.
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Figure 5.1: Examples of immunostained prostatectomy samples. All the
sections in this figure are reported as pimonidazole score = 2.5. Note that the
marked lines in the images are not necessarily concordant with the primary
tumor.
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5.2.2 Determining the time of arrival of CA

The images obtained in this study are acquired at a temporal resolution of

four images per minute. Comparing this resolution to a typical heart rate of

60 beats per minute, this means that the sampling resolution of the MRI is

insufficient to detect the pulsatile flow of the blood. This poses a problem

when determining the time of arrival of the CA in the images. The time of

arrival of the CA can not be unambiguously defined in terms of picture frame

number, introducing an uncertainty in the determination of S0. In one of the

30 patients used for controlling the threshold which determined the arrival

of CA, the routine disagreed with the manual inspections of the images,

introducing an error of approximately 6% in the estimation of S0(the exact

error varies a bit from voxel to voxel). This error is however small compared

to the noise in the pre-contrast images of the same patient, lying in the range

18%−20%, and the routine was deemed acceptably robust to handle the rest

of the patients.

5.2.3 Why sres and not R2?

In the field of pharmacological and biochemical research it appears to be com-

mon practice to use the coefficient of determination R2 when determining the

goodness of fit, even for non-linear models[32]. This is however problematic,

as using the R2 as a measure of the proportion of the data being explained

by the model implicitly assumes that the sum of square errors adds up in a

particular manner. The coefficient of determination is defined according to

equation 5.1:

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

= 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5.1)

Where yi are the measured data, ŷi are the model-estimated data, and ȳ is

the mean of the n datapoints. This definition assumes that the model sum

of squares (MSS =
∑n

i=1(ŷi − ȳ)2) and the residual sum of squares RSS =∑n
i=1(yi − ŷi)2) adds up to the total sum of squares TSS =

∑n
i=1(yi − ȳ)2),
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which is not generally the case for non-linear models. This means that R2

is not confined between 0 and 1, making it less intuitive to interpret, and

possibly confound or mislead a reader who is used to interpreting it as the

proportion of the total variability in the outcomes that is accounted for by

the predictors. In a paper by Spiess et al., where Monte Carlo simulations

were used to examine the validity of the coefficient of determination in non-

linear regression, R2 was concluded to poorly represent the performance of a

non-linear regression model, and was found to rarely be affected more than

in the third or fourth decimal place, even in scenarios with highly inferior

models[32].

5.2.4 Comments on the Brix model

In this study the Brix model (eq. (2.16)) was used to analyze the MR images,

and obtain physiological parameters. Brix’s solution can be shown to be a

reduced form of a general solution of the system of equations for a two-

compartment model[40]. The general solution has the form:

[
Cp

Ce

]
=

Kin

Vp(λ1 − λ2)

([
λ1 + k21

Vpk12/Ve

]
e−λ1t

′ − 1

−λ1
eλ1t −

[
λ2 + k21

Vpk12/Ve

]
e−λ2t

′ − 1

−λ2
eλ2t

)
(5.2)

where subscript p stands for the plasma compartment, and subscript e stands

for the EES. λ1 and λ2 are eigenvalues of the parametric matrix. As before

t′ = t when 0 < t ≤ τ , and t′ = τ when t > τ , where τ is the duration of the

CA injection. Under the assumption that the transfer velocities were equal

in both directions between the plasma and the EES, and that Vp >> Ve,

the eigenvalues are reduced to λ1 = −kel and λ2 = −kep, giving eq. 2.15.

The eigenvalue λ2 = −kep implies that the AIF (Cp) is assumed to be mono-

exponential for a bolus injection of CA, as the term λ2 + kep = 0. Thus the

model does not take into account the effect of the EES concentration of CA on

the elimination rate from the plasma. Whether this has severe implications
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on the validity of the model or not is probably somewhat dependent on the

tissue characteristics, but Yang et al.[40] advocates the importance of keep-

ing the k12 term in the model, and rather make the assumption kep >> kel

and k12 >> kel, which they argue is more realistic. Including a fourth pa-

rameter is, however, increasing the risk of over fitting the model, and would

require more data to ensure sufficient predictive performance. Thus explor-

ing a model with a separation between the transfer rates across the capillary

wall is not feasible with the current data with limited temporal resolution,

and limited number of data points.
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6. Conclusion and further work

Through this work there has been shown no convincing correlation between

the DCE-MRI data and clinical parameters obtained from preoperative tests,

biopsies or prostatectomy specimens. The reasons for this can be many, in-

cluding some discrepancy between the way in which the clinical data, and

the DCE-MRI analysis are reported. Extracting pathological information on

a tumor directly from pharmacokinetic parameters alone is difficult, as the

parameters generally reflects many different aspects of the tumor physiology,

and often reflects parts of the same physiological trait. Thus correlation stud-

ies are a useful way of assessing the diagnostic potential of the parameters.

The lack of correlations between the DCE-MRI data and, particularly, the

pimonidazole staining in this study does not, however, imply that assesse-

ment of hypoxia by DCE-MRI as a potential biomarker for prostate cancer

is impossible. This work could benefit from extensions in a number of ways.

For example the comparison between the pharmacokinetic parameters and

the pimonidazole sections could be done in a more refined way.

A potentially more comprehensive comparison could be done by scoring the

pimonidazole sections in terms of their level of staining, rather than the frac-

tion of the area that shows high staining. Either by perfoming a histogram-

analysis of e.g. the red channel in the digital images of the sections, where

a correlation screening of the red channel intensity percentiles can be per-

formed against the parametric maps. Or even better, by mapping the pixels

in the images of the sections to the corresponding voxels in the DCE-MR im-

ages to obtain high spatial resolution on the hypoxia measurement. Knowing

the spatial resolution of the hypoxia levels would allow for an analysis similar
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to the logistic regression analysis performed on the Brix model parameters in

this study, but with a map of the hypoxic regions of the tumor as a basis for

the outcome against which the regression is made. This would ensure a more

one to one comparison between the parametric maps and the pimonidazole

sections, and result in a higher specificity of the analysis.
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A. Appendix

A.1 Statistical plots
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Figure A.5: Percentile screening of the correlation between the semiquanti-
tative parameters and Gleason score from biopsies. The IV cohort is shown
in blue, and the oral cohort is shown in red. The right column shows the
Pearson R-coefficients, and the left column shows the p-values. The stapled
black line is the p = 0.05 significance line.
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Figure A.6: Percentile screening of the correlation between the Brix model
parameters and Gleason score from biopsies. The IV cohort is shown in blue,
and the oral cohort is shown in red. The right column shows the Pearson
R-coefficients, and the left column shows the p-values. The stapled black line
is the p = 0.05 significance line.
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Figure A.7: Percentile screening of the correlation between the semiquan-
titative parameters and Gleason score from prostatectomy specimens. The
IV cohort is shown in blue, and the oral cohort is shown in red. The right
column shows the Pearson R-coefficients, and the left column shows the p-
values. The stapled black line is the p = 0.05 significance line.

91



Figure A.8: Percentile screening of the correlation between the Brix model
parameters and Gleason score from prostatectomy specimens. The IV cohort
is shown in blue, and the oral cohort is shown in red. The right column
shows the Pearson R-coefficients, and the left column shows the p-values.
The stapled black line is the p = 0.05 significance line.
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A.2 Computer routines developed in this study

% A routine for extracting and sorting the images from the patient folders.

% The region of interest .txt file is located in the same folder,

% and includesthe slice number in which the tumor is drawn.

%This script extracts all the images in the folder that depicts

%this slice, as well as the roi.

clear

omit = [20 34 35 51 53 58 63 64 65 66 67 68 69 72 81 84 88 91 92 ...

93 94 96 98 99 101 103 105 107 108 109 110 111 112];

for i = 1:110

%Enter the folder of patient i:

path = sprintf('C:\\FuncProst\\Patient%03d',i);
try

cd(path)

catch

continue

end

%Find the filenames of the images in the folder.

%The names of the image-files differs somewhat from patient

%to patient, but they all contain a number in the title. This number is

%used by the function sort nat to sort the files in ascending order

%according to this number:

if any(i==omit) == 0;

files = dir('*.dcm');

cd('C:\\FuncProst\\Kode')
name = {files.name};
fileNames = sort nat(name);

numIm = length(fileNames);

cd(path)
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%Extract the images from the file, and stores them in the variable

%IM:

IM = zeros(256,256,numIm);

for k = 1:numIm

fileName = char(fileNames(k));

IM(:,:,k) = dicomread(fileName);

end

%Import the roi from the folder, and extract the number of the

%slice to be examined:

roi = dir('*.roi');

str = roi.name;

roi = importdata(str);

try

Roi = roi.data./3.0;

catch

Roi = roi./3.0;

end

%Extract the slice number from the roi filename:

try

Slice = str2double(str(length(str)-5:length(str)-4));

assert(~isnan(Slice))
catch

Slice = str2double(str(length(str)-4));

end

%Pick out the images of the relevant slice from IM:

for k = 1:30 % # of timesteps is 30

ImSlice(:,:,k) = IM(:,:,(k-1)*length(IM)/30+Slice);

end

slice(i) = Slice;

ROI(i) = {Roi};
patients(i) = {ImSlice};
clearvars ImSlice Roi Slice

end

94



end

clearvars -except omit slice ROI patients

cd('C:\\FuncProst\\Kode')

%This part determines the frame in which the CA arrives in the image, using

%the function start frame:

firstFrames = zeros(1,length(patients));

for i = 1:length(patients)

if any(i==omit) == 0;

firstFrames(i) = start frame(patients{i});
end

end

%Calculating the relative signal increase for each voxel, at each time

%point, and storing them in a structure called RSI.

RSI = cell(1,length(patients));

RSI int = cell(1,length(patients));

for k = 1:length(patients)

ims = patients{k};
patient = patients{k};
pre cont = patient(:,:,1:firstFrames(k)-1);

s temp = zeros(size(pre cont,1));

%create an s0 image as the average of the pre-contrast images.

for i = 1:size(pre cont,3)

s temp = s temp+pre cont(:,:,i);

end

s0 = s temp./size(pre cont,3);

clearvars s temp

%calculating the RSI, and setting s0 to one where it is zero, to avoid

%diverging values for the RSI.

rsi = zeros(size(s0,1),size(s0,2),size(ims,3));
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for i = 1:size(s0,1)

for j = 1:size(s0,2)

try

if s0(i,j) ~= 0

rsi(i,j,:) = (squeeze(patient(i,j,:))-s0(i,j))./s0(i,j);

else

rsi(i,j,:) = (squeeze(patient(i,j,:))-1);

end

catch

continue

end

end

end

try

RSI(k) = {rsi}; %regular RSI, containing all time-points

RSI int(k) = {rsi(:,:,firstFrames(k):end)}; %interpolated RSI

catch

continue

end

end

% This next part calculates the semi-quantitative parameters from the

% interpolated rsi. The parameters are calculated only within the index

% tumor. The parameters are stored in a cell structure called semiquant

for k = 1:length(patients)

roi = cell2mat(ROI(k));

rsi = cell2mat(RSI int(k));

AUC = zeros(size(rsi,1));

ttp = zeros(size(rsi,1));

iAUC = zeros(size(rsi,1));

washout = zeros(size(rsi,1));

L = size(rsi,3);

time = linspace(0,15*(L-1),L); %Creating the standard time vector

try

%Create a mask of the index tumor

bw = roipoly(patient(:,:,slice(k)),roi(:,1),roi(:,2));

for i = 1:size(rsi,1)

for j = 1:size(rsi,2);
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if bw(i,j) == 1

RSI = squeeze(rsi(i,j,:));

AUC(i,j) = trapz(time(1:(30-max(firstFrames))), ...

RSI(1:(30-max(firstFrames))));

iAUC(i,j) = trapz(time(1:3),RSI(1:3));

[peak,int] = max(RSI);

ttp(i,j) = time(int);

fo = fit(transpose(time(round(L/2):end)), ...

RSI(round(L/2):end),'poly1');

lincoeff = coeffvalues(fo);

washout(i,j) = lincoeff(1);

end

end

end

catch

continue

end

semiquant(k).AUC = AUC;

semiquant(k).iAUC = iAUC;

semiquant(k).timeToPeak = ttp;

semiquant(k).washout = washout;

end

% The following part calculates the Brix-model parameters by using the least

% squares algorithm provided by lsqcurvefit. It also allows for plotting the

% data and the fitted Brix model consequtively for visual inspection.

%Define the fitting function:

Brix = @(x,t)(x(1)*x(2)*((exp(-x(2)*t)-exp(-x(3)*t))/(x(3)-x(2))));

ub = [8,5,5]; lb = [0.0,0.0,0.0];%Upper and lower bounds for the parameters

x0 = [0.1,0.03,0.001]; %Initial guess value

dt = 15;

opts = optimset('lsqcurvefit');

optimset(opts,'Display','off');

tc = linspace(0,400,1000);

for k = 1:size(patients,2)
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if any(k==omit) == 0;

patient = patients{k};
firstFrame = firstFrames(k);

roi = ROI{k};
slicenb = slice(k);

%Create mask of index tumor:

bw = roipoly(patient(:,:,slicenb),roi(:,1),roi(:,2));

t = linspace(0,dt*(size(patient,3)-firstFrame), ...

size(patient,3)-firstFrame+1);

abrix bilde = zeros(size(patient,1));

kep bilde = zeros(size(patient,1));

kel bilde = zeros(size(patient,1));

resnorm bilde = zeros(size(patient,1));

rsi = cell2mat(RSI int(k));

residual = zeros(size(patient,1),30-firstFrame+1);

s0 = zeros(size(patient,1),size(patient,2));

for i = 1:size(patient,1)

for j = 1:size(patient,2)

if bw(i,j) == 1 %Only values in index tumor are calculated

ydata = transpose(squeeze(rsi(i,j,:)));

[s fit,resnorm,res] = lsqcurvefit(Brix,x0,t, ...

ydata,lb,ub,opts);

abrix bilde(i,j) = s fit(1);

kep bilde(i,j) = s fit(2);

kel bilde(i,j) = s fit(3);

resnorm bilde(i,j) = resnorm;

for m = 1:length(res)

residual(i,j,m) = res(m);

end

plot(tc,Brix(s fit,tc))

hold('on')

plot(t,ydata,'*')

hold('off')

ylim([0,3.5])

pause(1/10)

end

end

end
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% The script stores the parameter images, as well as the residuals,

% and the square sum of the residuals.

Abrix bilde(k) = {abrix bilde};
Kep bilde(k) = {kep bilde};
Kel bilde(k) = {kel bilde};
Resnorm bilde(k) = {resnorm bilde};
residuals(k) = {residual};

end

end

%Finally, all the calculated data are stored in one cell structure for easy

%access.

for i = 1:length(patients)

results(i).image = patients{i};
results(i).slice = slice(i);

results(i).firstFrame = firstFrames(i);

results(i).RSI = RSI{i};
results(i).RSI int = RSI int{i};
results(i).iAUC = semiquant(i).iAUC;

results(i).AUC = semiquant(i).AUC;

results(i).timeToPeak = semiquant(i).timeToPeak;

results(i).washout = semiquant(i).washout;

results(i).abrix = Abrix bilde{i};
results(i).kep = Kep bilde{i};
results(i).kel = Kel bilde{i};
results(i).roi = ROI{i};
results(i).resnorm = Resnorm bilde{i};
results(i).residuals = residuals{i};

end

for i = 1:106

resnorm = results(i).resnorm;

s res = sqrt(resnorm./(30-patient data(i).firstFrame));

results(i).s res = s res;

end

save('patient data','patient data','-v7.3')
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function start = start frame(Im)

% Callable function to determine the arrival of CA,

% it takes the sorted images of one patient as argument,

% and returns the frame number in which CA arrives.

means = zeros(size(Im,3),1);

for i = 1:size(Im,3)

bilde = Im(:,:,i);

means(i) = mean2(bilde);

sd(i) = std(nonzeros(bilde));

end

noise = sqrt((Im(:,:,1)-Im(:,:,2)).ˆ2);

mean = 0.5*(Im(:,:,1)+Im(:,:,2));

noise2 = sqrt((Im(:,:,2)-Im(:,:,3)).ˆ2);

baseline = mean2(means(1:3));

st = std(means(1:3))/max(means);

sRel = (means-baseline)/max(means);

stRel = st/max(st);

% for j = 1:size(Im,3)

% if means(j) > 1.2*thresh(k)

% start(k) = j-2;

% break

% end

% end

treshold = 0.02;

for j = 1:size(Im,3)

if sRel(j) > treshold

%start(k) = j-1;

start = j-1;

break

end

end

end
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% Routine to extract and sort the clinical data, as well as sorting out

% misfits in the Brix-model, and calculating median and percentile values

% for correlation.

load('results.mat')

k data = importfile('C:\FuncProst\141127 Database til K.xlsx');

pimo data = xlsread('c:\FuncProst\141218 Storsnitt, fra konsensusm+ te.xlsx ');

pimo score = pimo data(:,2);

for i = 1:length(k data.Patientnr)

if isnan(k data.Patientnr(i))

continue

else

p = k data.Patientnr(i);

age(p) = k data.Age(i);

PSA(p) = k data.PSA(i);

cT(p) = k data.cT(i);

pT(p) = k data.pT(i);

GleasonBiop(p) = k data.Glscorebiopsi(i);

GleasonPat(p) = k data.Glscorepat(i);

Risk(p) = k data.Risk classification(i);

size(p) = k data.Largest extent(i);

end

end

for ii = 1:length(results)

results(ii).age = age(ii);

results(ii).largest extent = size(ii);

results(ii).PSA = PSA(ii);

results(ii).GleasonBiop = GleasonBiop(ii);

results(ii).GleasonPat = GleasonPat(ii);

results(ii).cT = cT(ii);

results(ii).pT = pT(ii);

results(ii).risk = Risk(ii);

results(ii).pimo = pimo score(ii);

results(ii).mediAUC = median(nonzeros(results(ii).iAUC));

results(ii).medAUC = median(nonzeros(results(ii).AUC));

results(ii).medTTP = median(nonzeros(results(ii).timeToPeak));

results(ii).medWO = median(nonzeros(results(ii).washout));
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results(ii).medAbrix = median(nonzeros(results(ii).abrix));

results(ii).medkep = median(nonzeros(results(ii).kep));

results(ii).medkel = median(nonzeros(results(ii).kel));

end

IVcohort = results(1:53);

Pillcohort = results(54:end);

for k = 1:length(results)

if isnan(median(nonzeros(results(k).abrix)))

continue

else

abrix = results(k).abrix;

kep = results(k).kep;

kel = results(k).kel;

for m = 1:256

for n = 1:256

if results(k).s res(m,n)>0.4

abrix(m,n) = 0;

kep(m,n) = 0;

kel(m,n) = 0;

end

end

end

if k < 54

IVcohort(k).medAbrix = median(nonzeros(abrix));

IVcohort(k).medkep = median(nonzeros(kep));

IVcohort(k).medkel = median(nonzeros(kel));

else

p = p+1;

Pillcohort(p).medAbrix = median(nonzeros(abrix));

Pillcohort(p).medkep = median(nonzeros(kep));

Pillcohort(p).medkel = median(nonzeros(kel));

end

end

end
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% A routine for comparing the Brix model parameters between the index

% tumor and the rest of the prostate gland. This routine also performs

% the logistic regression, and generates the probability maps.

abrix prost = nonzeros(extractfield(patient data,'abrix prost'));

abrix tum = nonzeros(extractfield(patient data,'abrix'));

kep prost = nonzeros(extractfield(patient data,'kep prost'));

kep tum = nonzeros(extractfield(patient data,'kep'));

kel prost = nonzeros(extractfield(patient data,'kel prost'));

kel tum = nonzeros(extractfield(patient data,'kel'));

[Ra,pa] = ttest2(abrix prost,abrix tum);

[Rkep,pkep] = ttest2(kep prost,kep tum);

[Rkel,pkel] = ttest2(kel prost,kel tum);

p = @(b,x)(exp(b(1)+b(2)*x(1)+b(3)*x(2)+b(4)*x(3))/(1+exp(b(1)+ ...

b(2)*x(1)+b(3)*x(2)+b(4)*x(3))));

p map = zeros(256,256,50);

for ii = 1:50

if ii ~= 8

s1 = length(nonzeros(patient data(ii).abrix));

s0 = length(nonzeros(patient data(ii).abrix prost));

x1 = [nonzeros(extractfield(patient data(ii),'abrix')); ...

nonzeros(extractfield(patient data(ii),'abrix prost'))];

x2 = [nonzeros(extractfield(patient data(ii),'kep')); ...

nonzeros(extractfield(patient data(ii),'kep prost'))];

x3 = [nonzeros(extractfield(patient data(ii),'kel')); ...

nonzeros(extractfield(patient data(ii),'kel prost'))];

y = [ones(s1,1);zeros(s0,1)];

b = glmfit([x1 x2 x3],y,'binomial');

abrix = patient data(ii).abrix+patient data(ii).abrix prost;

kep = patient data(ii).kep+patient data(ii).kep prost;

kel = patient data(ii).kel+patient data(ii).kel prost;

for m = 1:256
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for n = 1:256

if abrix(m,n) == 0

continue

else

x = [abrix(m,n);kep(n,m);kel(m,n)];

p map(m,n,ii) = p(b,x);

end

end

end

else

continue

end

patient data(ii).p maps = p map(:,:,ii);

end
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%Callable function for calculating the similarities between two images

function [DiceCoef,JaccardCoeff] = DICE(roi,p map)

% set one image non-zero values as 200

roi(roi>0)=200;

% set second image non-zero values as 300

p map(p map>0)=300;

% set overlap area 100

OverlapImage = p map-roi;

% count the overlap100 pixels

[r,~,~] = find(OverlapImage==100);

countOverlap100=size(r);

% count the image200 pixels

[r1,~,~] = find(roi==200);

img1 200=size(r1);

% count the image300 pixels

[r2,~,~] = find(p map==300);

img2 300=size(r2);

% calculate Dice Coef

DiceCoef = 2*countOverlap100/(img1 200+img2 300);

JaccardCoeff = countOverlap100/(img1 200+img2 300-countOverlap100);

end
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% Routine for identifying the optimal probability cutoff to maximize

% the similarity between the probability maps and the location of the

% primary tumor.

clearvars -except patient data prob map

cutoff = linspace(0,1,101);

dice coeff = zeros(100,1);

jaccard coeff = zeros(100,1);

maxdice = zeros(50,1);

figure()

for k = 1:50

for i = 1:100

patient = k;

try

roi mask = 1*roipoly(patient data(patient).image(:,:,patient data(patient).slice),patient data(patient).roi(:,1),patient data(patient).roi(:,2));

prob mask = 1*(p map(:,:,k) > cutoff(i));

[JaccardCoeff, DiceCoeff] = DICE(roi mask,prob mask);

dice coeff(i) = DiceCoeff;

jaccard coeff(i) = JaccardCoeff;

catch

continue

end

end

str = sprintf('Pasientnummer %i',k);

plot(jaccard coeff,'b')

hold('on')

plot(dice coeff,'r')

%title(str)

xlabel('cutoff-p')

ylim([0,1])

%pause(0.3)

%hold('off')

[maxdice(k),ind(k)] = max(jaccard coeff);

best cutoff(k) = cutoff(ind(k));

patient data(k).dice = dice coeff;
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patient data(k).jaccard = jaccard coeff;

end

threshold = mean(best cutoff);

CO = round(mean(ind));

for ii = 1:50

J = patient data(ii).jaccard;

D = patient data(ii).dice;

Jac(ii) = J(CO);

Dic(ii) = D(CO);

end

histogram(Jac,10,'DisplayStyle','stairs','EdgeColor','k')

hold('on')

histogram(Dic,10,'DisplayStyle','stairs','EdgeColor','r')

legend('Jaccard coefficients','Dice coefficients')

ylim([0,20])

xlabel('Similarity coefficients')
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