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Abstract

This thesis is devoted to the topic of one- and two-dimensional models of topological
superconductivity. We study the Kitaev chain subject to closed and open boundary
conditions. In the closed chain, we derive the energy spectrum, the ground state,
and the topological invariant viewed as a certain Berry phase. We study two-point
correlation functions and find enlarged values close to the topological phase tran-
sitions. The open chain is studied with focus on describing the degenerate ground
states for a simple parameter choice in the topological phase. Then, the open system
Hamiltonian is diagonalized numerically, and we model the order parameter with a
spatial dependency. Additional Majorana zero modes appear if the order parameter
changes sign. We also consider the p + ip model. The localization of a Majorana
zero mode, bound to a vortex that is described by Ginzburg-Landau theory, is found
numerically. We propose an argument that results in a non-Abelian exchange trans-
formation for a system of several vortices. The p + ip model is also studied on an
annulus; we approximate the ground state as a combination of boundary states and
calculate its energy. The results are compared to a numerical implementation, and
the agreement is convincing as the boundary separation becomes large compared to
other length scales.
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Røising for å alltid vise interesse og stor omsorg.

Henrik Schou Røising, 15.05.16, Oslo.





Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Material 5
2.1 Superconductivity – an Overview . . . . . . . . . . . . . . . . . . . . 5
2.2 BCS-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Electron-Phonon Interaction . . . . . . . . . . . . . . . . . . . 6
2.2.2 The Mean Field Hamiltonian . . . . . . . . . . . . . . . . . . 8
2.2.3 The Ground State and the Gap Equation . . . . . . . . . . . . 9

2.3 Ginzburg-Landau Theory . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Symmetries and Classification of Topological Superconductors . . . . 12
2.5 Majorana Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Quantum Computation with Majoranas . . . . . . . . . . . . . . . . . 19

2.7.1 Demonstration of Non-Abelian Braiding . . . . . . . . . . . . 20

3 The Closed Kitaev Chain 23
3.1 Bogoliubov-de-Gennes Hamiltonian . . . . . . . . . . . . . . . . . . . 24

3.1.1 Momentum Representation . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Quasiparticles and the Spectral Decomposition . . . . . . . . . 28

3.2 The Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Fermion Occupancies in the Ground State . . . . . . . . . . . 32
3.2.2 Quasiparticle Excitations . . . . . . . . . . . . . . . . . . . . . 35

3.3 Topological Invariant and the Berry Phase . . . . . . . . . . . . . . . 38
3.3.1 Calculating the Geometrical Phase . . . . . . . . . . . . . . . 39

3.4 Two-Point Correlation Functions . . . . . . . . . . . . . . . . . . . . 42
3.4.1 First Type of Correlation . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Second Type of Correlation . . . . . . . . . . . . . . . . . . . 44
3.4.3 Discussion and Remarks . . . . . . . . . . . . . . . . . . . . . 46

3.5 Comparing Periodic and Anti-Periodic Boundary Conditions . . . . . 47
3.5.1 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The Open Kitaev Chain 51
4.1 Introductory Demonstration of Edge Majoranas . . . . . . . . . . . . 51
4.2 The Ground State Subspace . . . . . . . . . . . . . . . . . . . . . . . 53



Contents

4.2.1 Odd N Ground States . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Even N Ground States . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Relation to the Closed Chain . . . . . . . . . . . . . . . . . . 57
4.2.4 Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Matrix Formulation of the Open Kitaev Chain . . . . . . . . . . . . . 59
4.4 Numerical Implementation, Results and Discussion . . . . . . . . . . 61

4.4.1 Results with Constant Order Parameter . . . . . . . . . . . . 61
4.4.2 Results with Spatially Varying Order Parameter . . . . . . . . 63
4.4.3 Discussion and Comparison with the Literature . . . . . . . . 64

5 The p+ ip Model and Vortices with Majorana Modes 69
5.1 Homogeneous System . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Derivation of the BdG Equations . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Majorana Zero Modes . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Radial Zero Mode Equation . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Solution Constraints . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Dimensionless Formulation . . . . . . . . . . . . . . . . . . . . 77
5.3.3 The Solutions in Limiting Cases . . . . . . . . . . . . . . . . . 78

5.4 The Vortex Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Numerical Solutions and Discussion . . . . . . . . . . . . . . . . . . . 81

5.5.1 Selected Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . 82

5.6 Braiding Majorana Vortices . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.1 Reflections and Concluding Remarks . . . . . . . . . . . . . . 87

6 Edge Modes in the p+ ip Model 89
6.1 Formulating the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 The Energy Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 A General Consideration . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Finding the Spinors . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.3 Inner Edge at ρ1 . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.4 Outer Edge at ρ2 . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.5 Calculating the Energy Splitting . . . . . . . . . . . . . . . . . 98
6.2.6 Interpretation and Consequences . . . . . . . . . . . . . . . . 100

6.3 Matrix Formulation by Discretization . . . . . . . . . . . . . . . . . . 101
6.4 Numerical Diagonalization and Discussion . . . . . . . . . . . . . . . 103

6.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.3 Discussion and Conclusive Remarks . . . . . . . . . . . . . . . 104

7 Experimental Activity and Conclusions 109
7.1 Experimental Status . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Concluding Remarks and Outlook . . . . . . . . . . . . . . . . . . . . 110

Appendices 113

A The Geometrical Phase 115
A.1 The Quantum Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Contents

A.2 A New Tensor Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B The Adiabatic Theorem 119

C Bessel Functions 123
C.1 Bessel Functions of the First and Second Kind . . . . . . . . . . . . . 123
C.2 Modified Bessel Functions of the First and Second Kind . . . . . . . . 125

D Code Attachment 127
D.1 Diagonalization of the Kitaev Chain . . . . . . . . . . . . . . . . . . . 127
D.2 The Radial Majorana Zero Mode Equation . . . . . . . . . . . . . . . 129

References 131





Chapter 1

Introduction

Topological phases of matter has emerged as a rapidly growing field of research
during the past decades. The discovery of the Quantum Hall, and later the Frac-
tional Quantum Hall effect, in the 80s led to an intense focus on quantum phases of
matter, both experimentally and theoretically. This type of matter is characterized,
qualitatively speaking, by certain properties that are robust against local perturba-
tions. New quantum numbers are introduced to characterize it, such as the ground
state degeneracy or quantized geometrical phases of the ground state. Moreover,
topological phases in superconducting systems may host Majorana boundary states
with non-Abelian exchange statistics. The apperance of these states is related to the
intrinsic properties of low-dimensional systems. In some systems of two dimensions,
particles being neither bosons nor fermions, called anyons, are predicted to occur [1].
Non-Abelian anyons, for instance, are expected to emerge in some filling fractions
of the Fractional Quantum Hall effect. They are considered particularly interest-
ing since they have a long-term application in topological quantum computation. In
contrast to quantum computation schemes based on spin states, topological qubits
may be highly non-local, and the information they carry is intrinsically protected
from decoherence.

Superconductivity is a well-studied phenomenon, built on firm experimental grounds.
A successful microscopic theory, today known as BCS-theory, was developed already
in the late 50s [2]. It is a mean field description where an attractive interaction be-
tween phonons and electrons leads to a condensate of Cooper-pairs. BCS-theory,
along with the phenomenological Ginzburg-Landau theory, were able of explaining
a broad range of phenomena in low-temperature superconductivity [3]. Later, a
systematic refinement of the theory of superconductors and insulators has led to
a classification where topological properties are taken into account. A complete
classification table for topological superconductors and insulators is now available
[4]. The classification can be used to predict the number of topological phases a
given model realizes. This is summarized in the form of an integer known as the
topological invariant. So, in what sense are topological superconductors suited for
hosting non-Abelian anyons, and in what form are they predicted to emerge? A part
of the answer lies in the electron spin pairing. Originally, Cooper-paired electrons
were taken to be of opposite spins. However, if equal spin states are paired up and
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2 Introduction Chapter 1

only one spin projection is active (effectively meaning that the models are spinless),
Majorana fermions are permitted to occur in the form of quasiparticles.

Majorana fermions in condensed matter systems are rather different than in high-
energy physics. Instead of appearing as fundamental particles in this context, a
Majorana operator is hermitian, γ† = γ, and an equally weighted superposition of
fermionic creation and annihilation operators. They may be said to constitute half
a fermionic degree of freedom. Consequently, pairing up two Majorana modes yields
a fermionic operator that may fill or empty one qubit state. Majorana modes are
expected to bind themselves to vortices in some two-dimensional superconducting
fluids [5]. Furthermore, the unitary transformation that encodes an adiabatic ex-
change of two Majorana modes, γ1 and γ2, has been shown to have a non-Abelian
nature, U = e

π
4
γ2γ1 [6]. Majorana modes are also expected to be localized on the

ends of superconducting nanowires with special spin-pairing or close to domain walls.
In principle, it sounds simpler to manipulate modes in a one-dimensional system.
However, exchange of particles in one dimension is intuitively impossible without
collision. This problem has been proposed avoided by constructing networks of wires
with T-shaped junctions and manipulation of the chemical potential [7]. Observation
of Majorana modes in condensed matter systems in itself would be an experimental
breakthrough. Although results from recent experiments, such as [8, 9], are subject
to some scepticism, there are reasons to believe that the definite confirmation of
Majorana fermions is tantalizing close.

1.1 Outline

In this thesis two toy models, of one and two spatial dimensions respectively, be-
longing to the same category class will be studied. We will explore a discrete, one-
dimensional chain first proposed by Alexei Kitaev in 2001 [10]. A two-dimensional
analogue, the p + ip model, will also be studied. These toy models models capture
the essential physics needed to understand the core of topological superconductiv-
ity. The goal of this work is to obtain a comprehensive understanding of the main
content of the models. Specifically, we will fill in omitted details in the brief pre-
sentation by Jason Alicea in [11]. In this process, several more specialized questions
that were not formulated a priori arise. Some of the concrete issues that will be
faced and an outline of the content in this thesis is given below.

In Chapter 2 we summarize the key concepts needed to put the effective models
appearing later in a wider context. This is done with emphasis on keeping the
description brief but concise. Central parts of BCS-theory and Ginzburg-Landau
theory are recapitulated. An introduction to topological superconductors, Majorana
fermions and anyons is given.

Chapter 3 is devoted to the Kitaev chain with closed boundary conditions. The
Hamiltonian is diagonalized and the ground state derived. Some effort is spent
on building intuition about the properties of both this state and excitations of it.
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Thereafter, we study how a certain Berry phase calculation separates the parame-
ters in a trivial and a topological phase. This motivates the last part of the chapter
where two-point correlation functions in the ground state are calculated. The ba-
sic question we ask is if, and potentially how, the transition between the quantum
phases manifest itself in these correlation functions. In particular, do the correla-
tion functions show signs of long range effects? Finally, we discuss the differences
between periodic and anti-periodic boundary conditions.

The Kitaev chain with open boundaries is studied in Chapter 4. We demonstrate
the possibility of Majorana zero modes localized on each end in the spirit of Kitaev’s
original argument [10]. We depart from Kitaev’s discussion by establishing what the
degenerate ground state subspace looks like for a simple choice of parameters. In
this process, it turns out that it is a non-trivial task to pick the correct ground
states from a set of three candidate states. Then, we study the open Kitaev chain
by numerical diagonalization, partly to obtain a visualization the energy spectrum
in the presence of zero modes. We study next a spatially varying order parameter.
It is of interest to explore if a kinked order parameter can give rise to additional
Majorana modes. This extends the study of domain walls in chemical potential,
which seems to be frequently discussed in the literature [7, 11, 12].

In Chapter 5 we study the two-dimensional p + ip model. First, a formal develop-
ment with a derivation of the diagonalization equations is presented. This is applied
when we solve the equations numerically for a non-homogeneous order parameter in
search of a Majorana zero mode solution. The order parameter is taken to describe a
symmetric vortex in accordance with a minimal Ginzburg-Landau description. This
extends known solutions with an infinitesimally small vortex core [13], and it nat-
urally calls for a numerical implementation. Finally, we suggest an argument that
results in an exchange transformation in a system of many Majorana vortices. Our
argument is seen to agree with Ivanov’s result [6], which in turn implies non-Abelian
statistics (we demonstrate this in section 2.7).

Chapter 6 is concerned with the p+ ip model on an annulus geometry. Specifically,
we are interested in calculating the energy splitting between Majorana modes lo-
calized on each of the circular boundaries. We approach the problem by finding
analytical approximations to zero modes of systems having only an inner and an
outer boundary respectively. A linear combination of these states is used as a trial
state describing the ground state of the two-edged system. An analytical compu-
tation, resulting in the energy splitting as function of the boundary separation, is
suggested. The result is tested by comparing the energy and the edge states with
solutions found by numerical diagonalization.

The content of the thesis is summarized in Chapter 7. Here, the work is supple-
mented with concluding remarks and a brief presentation of the experimental status
of topological superconductivity with realizations of Majorana fermions.
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1.2 Notation

The notation in this thesis is meant to be self-explained for a reader with background
in physics that has basic knowledge of quantum mechanics. Still, some conventions
are settled at this stage to avoid possible confusion. Occasionally, the Pauli matrices
will appear. They are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (1.1)

In Chapter 3 we use the symbols (ϕ, ϑ) to denote the polar angles in three dimen-
sions. In Chapter 5 and 6 the polar angle in two dimensions is denoted by θ. In
discrete formulations, δx,x′ is the Kronecker delta symbol being 1 if x = x′ and 0
otherwise. Whereas in continuum formulations we use the symbol δ(2)(r − r′) to
denote the two-dimensional Dirac delta function. The symbol Θ(ρ) is used to de-
note the Heaviside function, which is 1 if ρ > 0 and 0 if ρ < 0. Expressions with
repeated indices, such as fi = εijkgjk, are understood to imply summation over j
and k according to the usual summing convention, fi ≡

∑
j,k εijkgjk. The symbol

εijk denotes the three-dimensional Levi-Civita symbol being +1 if (i, j, k) is an even
permutation of (1, 2, 3) and −1 if (i, j, k) is an odd permutation of (1, 2, 3). It is 0 for
all other combinations of indices. Depending on the convenience and the respective
context, indices will mostly be separated by a comma. Unless being very clear from
the context, new notation that appear will be explained.



Chapter 2

Background Material

2.1 Superconductivity – an Overview

Although this thesis is devoted to modern theoretical models from around the begin-
ning of the 21st century, it is appropriate to put them in a wider historical context.
The purpose of this chapter is to revisit and recapitulate some of the ideas that were
developed over a long time span. This will provide the reader with an overview, and
it will motivate the effective models appearing in the main chapters (3 - 6). The
material in this section is based on [3].

The concept of superconductivity is more than a hundred years old but still highly
active in terms of research. In 1911 H. K. Onnes discovered that certain materials
exhibited zero electrical resistance below a (material dependent) critical temperature
Tc. The discovery of perfect conductivity was accompanied in 1933 by W. Meiss-
ner and R. Ochsenfeld findings of perfect diamagnetism. They found that external
magnetic field lines were expelled entirely and abruptly from some material samples
when the field strength was less than a critical value, H < Hc(T ). Superconductors
with this property are today referred to as being of type I. Shortly after this, F. and
H. London proposed two electrodynamic equations that, among other predictions,
suggested an exponential decay of the magnetic field into the sample. This was the
start of a microscopic approach to explaining superconductivity. A characteristic
length scale of the magnetic decay, λ, is called the penetration depth and is one of
two important length scales in the theory of superconductivity.

In 1950 a phenomenological theory by V. Ginzburg and L. Landau appeared. Apart
from successfully predicting several known phenomena, Landau-theory is today
known as a more general mean field approach to deriving macroscopic properties. We
will revisit this theory in more detail later, but simply mention here that another im-
portant length scale appears in this theory. The Ginzburg-Landau coherence length,
a, characterizes a spatial length over which the superconducting electron density,
ns, does not change significantly. Furthermore, the ratio between the two length
scales, κ = λ/a, turned out to reveal an important distinction, as first noticed by

5
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A. A. Abrikosov in 1957 [14]. He showed that κ = 1/
√

2 separated two types of
superconductivity. The previously known breakdown in flux penetration at Hc was
now seen to occur when κ < 1/

√
2. Materials with κ > 1/

√
2, however, was found

to have a continuous increase in magnetic flux penetration. This is known as type
II superconductivity. Materials with this property are characterized by two critical
field strengths, Hc1(T ) and Hc2(T ). Imagining that the external field H is increased
from zero, the magnetic breakdown of a type II material starts at Hc1(T ) and in-
creases continuously to Hc2(T ), where the breakdown is complete.

Abrikosov crucially discovered that for type II superconductors in the mixed state,
Hc1 < H < Hc2 , the magnetic flux penetrates the material sample in a regular grid
of flux tubes. Each tube carries one (superconducting) quantum flux unit,

Φ0 =
hc

2e
≈ 2.068 · 10−15 Wb. (2.1)

He named this intermediate phase the vortex lattice phase and performed a numerical
calculation showing that a square grid of flux tubes should be energetically favoured.
It later turned out that a triangular grid has a slightly higher preference in most
materials. These vortex grids were confirmed experimentally in 1967. Later, they
have been depicted beautifully by use of tunnelling spectroscopy. During 1957, a
complete and successful microscopic theory was proposed by J. Bardeen, L. Cooper
and J. R. Schrieffer [2]. Their theory is today referred to as BCS-theory.1

2.2 BCS-Theory

In BCS-theory weakly attracting pairs of electrons form a condensate and make
up the fundamental building blocks of superconductivity. These bound states were
investigated and presented by Cooper in 1956. The reason for the attraction will be
explained here superficially. Then, we will see how effective models arise using mean
field theory. Moreover, we recapitulate the BCS ground state and an important self-
consistent equation. This section is based on [3], but it contain elements from other
sources as indicated.

2.2.1 Electron-Phonon Interaction

Cooper showed that pairs of electrons will form in the Fermi sea as long as there
exist an arbitrarily weak attractive potential. Such a potential could originate from
a phonon-electron interaction. Briefly explained, the electrons polarizes the medium
they travel through by Coulomb attraction of positive grid ions. This forms a
small perturbation in the ion grid that can attract a second electron. Effectively,
it can be seen as the two electrons interacting attractively by a phonon mediator,

1In 1972 Bardeen, Cooper and Schrieffer were awarded the Nobel Prize for their contribution.
Abrikosov and Ginzburg were awarded the Nobel Prize (as late as) in 2003.
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analogous to QED and the electron-photon interaction. An effective Hamiltonian
of the system takes the following form in second quantized language (without the
Coulomb interaction) [15]:

H = Helectron +Hphonon + λVF

=
∑

k,s

εkc
†
k,sck,s +

∑

q,σ

h̄ωq

(
a†q,σaq,σ +

1

2

)
+ λ

∑

k,s,q

(Vqaq,‖c
†
k+q,sck,s + h.c.).

(2.2)

The free electron gas is described by Helectron, with sums running over all momenta
k and spin projections s ∈ {↑, ↓}. The kinetic energy is in the non-relativistic limit
given by εk = h̄2k2/(2me). Moreover, the fermion operators obey the canonical
anticommutation relations

{c†k,s, ck′,s′} = δk,k′δs,s′ and {ck,s, ck′,s′} = {c†k,s, c†k′,s′} = 0. (2.3)

The term Hphonon describes the quantized phonon vibrations with q as the phonon
mode, σ the phonon polarization2 and ωq = vq the phonon frequency. The phonon
spectrum has the usual Debye cutoff at ωD = v(6π2ρ)1/3 in a three dimensional solid
with ion density ρ [16]. As the phonons are bosons, they obey the commutation
relations

[aq,σ, a
†
q′,σ′ ] = δq,q′δσ,σ′ and [aq,σ, aq′,σ′ ] = [a†q,σ, a

†
q′,σ′ ] = 0. (2.4)

Finally, the interaction term, λVF , is known as the Fröhlich interaction Hamiltonian.
The parameter λ is a (small) coupling constant and Vq the scattering amplitude.
The interaction term describes a fermion with momentum k absorbing a phonon of
momentum q. When treating the Hamiltonian (2.2) perturbatively in λ, one can
obtain rules and draw interaction diagrams, like Feynman rules in QED. Deriving
this thoroughly is outside the scope of this presentation. Instead, we simply state
the result that VF gives rise to a scattering amplitude of the form [15]

〈k3,k4|VF |k1,k2〉 = |Vq|2
h̄ωq(

ε|k1+q| − εk1

)2 − h̄2ω2
q

δk1+k2,k3+k4δk1−k3,qδs1,s3δs2,s4 ,

(2.5)

to the order O(λ2) for scattering of initial fermion states 1 and 2 onto 3 and 4. The
important thing to notice about this expression is that it reflects an attractive inter-
action whenever |ε|k1+q|− εk1| < h̄ωq. In comparison, an electron-electron scattering
would be strictly positive and inversely proportional to q2, when neglecting the
electron screening effect. Dominance of the attractive potential over the repulsive
Coulomb interaction was originally proposed as the criterion for superconductivity
[2].

2There are three possible polarization directions in three dimension. However, the normal
modes do not generate charge density variations and should be excluded.
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2.2.2 The Mean Field Hamiltonian

We look at a phenomenological Hamiltonian taking the electron-phonon interaction
into account. Consider

H =
∑

k,s

εkc
†
k,sck,s +

∑

k,l

Vk,lc
†
k,↑c

†
−k,↓c−l,↓cl,↑, (2.6)

with Vk,l a Fourier transformed scattering potential including both the (screened)
Coulomb interaction and the electron-phonon interaction in (2.5). The Hamiltonian
pairs up states of opposite momenta and spin. In the mean field treatment we
introduce fluctuations around the averages,

δ(cc) ≡ c−l,↓cl,↑ − 〈c−l,↓cl,↑〉 and δ(c†c†) ≡ c†k,↑c
†
−k,↓ − 〈c†k,↑c†−k,↓〉, (2.7)

and assume that terms of order O(δ2) are vanishingly small. Inserting this into
equation (2.6) while introducing the order parameter,

∆(k) ≡
∑

l

Vk,l〈c−l,↓cl,↑〉, (2.8)

yields the mean field result

HMF =
∑

k,s

εkc
†
k,sck,s +

∑

k

(
∆(k)c†k,↑c

†
−k,↓ + ∆∗(k)c−k,↓ck,↑

)
−
∑

k

∆(k)〈c†k,↑c†−k,↓〉.

(2.9)

The last term is constant and of little interest. We see by construction that ∆(k) is
a parameter that implies correlations of the type 〈c−l,↓cl,↑〉. Such correlations would
be absent in a normal metal; the order parameter reflects Cooper pairing.

Above, Cooper pairs were formed with opposite spin. This was how it was origi-
nally treated in BCS-theory. However, it has later been generalized to other spin
configurations. We briefly pursue a more modern treatment and separate out spin
indices m and n in the order parameter,

HMF =
∑

k,s

εkc
†
k,sck,s +

∑

k

(
∆m,n(k)c†kc

†
−k + h.c.

)
. (2.10)

Here, the order parameter is conventionally allowed to have both a spin-singlet
component, which we denote by ∆s(k), and components in any of the three spin-
triplet configurations, denoted by d(k). For completeness, recall the spin-singlet
state, (|↑↓〉 − |↓↑〉)/

√
2, and the spin-triplet states, {|↑↑〉 , |↓↓〉 , (|↑↓〉 + |↓↑〉)/

√
2}.

We follow the convention in [4] and express the generalized order parameter as
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∆m,n(k) =
[

(∆s(k)1 + d(k) · σ) iσy

]
m,n

=

(
−dx + idy dz + ∆s

dz −∆s dx + idy

)

m,n

.
(2.11)

Above, we made use of the Pauli matrices and the vector containing them, σ =(
σx, σy, σz

)T
. The spin-singlet function is symmetric under spatial inversion,

∆s(−k) = ∆s(k), while the spin-triplet function is antisymmetric, d(−k) = −d(k),
making the generalized order parameter satisfy the Pauli exclusion principle,3

∆m,n(k) = −∆n,m(−k). (2.12)

Conventional superconductors have spin singlet pairing (d = 0) and Cooper pairs of
even angular momentum. The pairing is typically denoted after increasing angular
momentum, such as s-wave, d-wave, etc. Note that this nomenclature is similar to
that of atomic states in the periodic table [17]. Superconductors with spin triplet
pairing (∆s = 0) have Cooper pairs with odd angular momenta. The lowest angular
momentum configuration of this type is called p-wave, and it is experimentally exotic.
For instance, letting dx = dy = 0 and dz = kx ± iky would give a spinfull, chiral
p ± ip superconductor. A continuum and spinless version of this model is studied
in Chapter 5 and 6.

2.2.3 The Ground State and the Gap Equation

The Hamiltonian (2.10) can be diagonalized with a Bogoliubov transformation. This
approach is applied in some detail in Chapter 3. Instead of focusing on this method
here, we review how BCS originally searched for the ground state. We return to the
Hamiltonain in equation (2.6). A general ansatz for a N -particle ground state with
Cooper pairing could be [2]

|ψG〉 =
∑

{ki}

g(k1, . . . ,kN/2)c†k1,↑c
†
−k1,↓ · · · c

†
kN/2,↑c

†
−kN/2,↓ |0〉 , (2.13)

with the sums running over all momenta ki and |0〉 denoting the vacuum state,
which is destroyed by any ck,s operator. It is clearly a difficult combinatoric task to
determine the weighting coefficients g. However, BCS treated N statistically, which
basically corresponds to applying the grand canonical ensemble [16]. A simplified
ansatz (using multiplicative separation) for the ground state was taken to be

|ψG〉 =
∏

k

(uk + vkc
†
k,↑c

†
−k,↓) |0〉 , (2.14)

3The order parameter ∆m,n(k) should obey the Pauli principle because it involves a correlation
between two fermionic operators.
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with |uk|2 + |vk|2 = 1. Determining the weights uk and vk was set up as a variational
problem,

δ 〈ψG|H − µ
∑

k,s

c†k,sck,s |ψG〉 = 0. (2.15)

Including the term −µ〈N〉 moves the zero point in kinetic energy to the Fermi
surface,

∑
k εk = µ〈N〉. One may now parametrize the coefficients by an angle,

uk = cos θk and vk = sin θk, to take care of the normalization, and then minimize
with respect to θk. Going through these steps in detail becomes lengthy, so we
restrict ourselves to stating the result. The final self-consistent equation is known
as the gap equation (here for T = 0),

∆k = −1

2

∑

l

∆l√
(εk − µ)2 + ∆2

l

Vk,l. (2.16)

This determines the order parameter rigorously in principle, although it often has to
be treated numerically in practice. Analytical approximations of the order param-
eter can be obtained by applying certain simplifications. For instance by assuming
that Vk,l = −V is constant. The most important application of the gap equa-
tion is, however, to approximate the critical temperature (at finite temperatures
the equation is slightly modified). We will not pursue such approximations here,
but rather emphasise the existence and importance of this equation in conventional
BCS-theory. The gap equation will not be used in this thesis. Instead, we will apply
the phenomenological Ginzburg-Landau theory to approximate the order parameter
of a vortex.

2.3 Ginzburg-Landau Theory

In this section we establish some basic concepts related to Ginzburg-Landau theory
and vortices. It will be put to use in Chapter 5. Still, the presented material is
based on [3], unless otherwise specified.

In 1950, seven years before the microscopic theory of superconductivity was at hand,
V. Ginzburg and L. Landau proposed a macroscopic theory was able of predicting
several aspects of a second order phase transition. Their theory also proved to be
successful on systems with a non-homogeneous order parameter. The basic idea is
to assume that the free energy can be expanded in powers of an order parameter
φ, in vicinity of the critical temperature Tc. This parameter, φ, is assumed to be
zero in the normal phase, T > Tc. Close to the critical temperature the parameter
should be small, and the free energy can be expanded as a power sum,

F = Fn + λφ+ αφ2 + γφ3 +
β

2
φ4, (2.17)
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with Fn being the free energy in the normal phase, and the parameters λ, α, γ and β
being functions of (T − Tc). Requiring that φ = 0 should be a minimum of F in the
normal phase implies that λ = 0. Ginzburg and Landau associated the order param-
eter with a pseudo wavefunction, φ = ψ(r), describing the superconducting electron
density ns = |ψ(r)|2. This underpins that we now discard the term with φ3 (F must
be real and ψ is generally complex). A vector potential and a phenomenological
kinetic term is included, and we express the free energy density as

f(r) = fn + α|ψ(r)|2 +
β

2
|ψ(r)|4 +

1

2m∗

∣∣∣
(
−ih̄∇− e∗

c
A

)
ψ(r)

∣∣∣
2

, (2.18)

with m∗ and e∗ the effective mass and charge respectively. Intuitively, although not
settled at the time of formulation, m∗ = 2me and e∗ = −2e are the mass and charge
of a condensate Cooper pair. In 1959 L. Gor’kov established a relation between the
pseudo wavefunction ψ(r) and the order parameter in BCS-theory, ∆(r) [18]. Near
the critical temperature, the two quantities were shown to be directly proportional,
and Ginzburg-Landau theory was seen as a limiting case of BCS-theory.4

2.3.1 Vortices

A quantum vortex is characterized by a non-homogeneous region in the supercon-
ducting fluid, accompanied by the presence of angular momentum. In the vortex
core the superconducting electron density, ns, and consequentially the order param-
eter, drops to zero. For a rotationally symmetric vortex |ψ(r)|2 depends on r only.
Thus, the basic ansatz of such a vortex reads

ψ(r) = h(r)eiS(r), (2.19)

with h(r) some real function. If ψ(r) is assumed to be an eigenfunction of the
angular momentum operator, Lz = ih̄∂/∂θ, then S(r) = nθ for some arbitrary
n and θ being the polar angle. Moreover, requiring ψ(r, θ) to be single valued,
ψ(r, θ + 2π) = ψ(r, θ), implies the restriction n ∈ Z. This integer is called the vor-
ticity.

Next, we consider constraints on the expansion in equation (2.18) due to supercon-
ducting effects. For simplicity, we neglect the kinetic part of the free energy in this
consideration. If the power expansion is enforced to have a finite minimum, we must
assume that β > 0. This means that if α > 0, then f has only the trivial minimum
at |ψ|2 = 0. This is the normal phase. On the other hand, α < 0 is called the
superconducting phase with minimum occurring at

|ψ∞|2 = −α
β
, (2.20)

4To be precise, Gor’kov derived the relation ψ(r) = ∆(r)
√

7ζ(3)n/(4πTc), with ζ being the
Riemann zeta function, n the number density of electrons in the normal metal, and Tc the critical
temperature [18].
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and the subscript indicating that this is the equilibrium value far from vortices. A
phase transition would formally occur if we let α ∝ (T − Tc) and β be constant. It
implies the normal phase for T > Tc. From now on, we consider a field free system,
A = 0, but with the kinetic term in (2.18) present. The dynamical equations may
then be determined as the variational problem δF/δψ∗ = 0,

δ

δψ∗

∫
dV f(ψ, ψ∗,∇ψ,∇ψ∗) = 0,

h̄2

2m∗
∇2ψ − αψ − β|ψ|2ψ = 0.

(2.21)

This is a non-linear, homogeneous differential equation. It is usually referred to as
one of the Ginzburg-Landau equations (here: without the vector potential). Finally,
we consider it on dimensionless form. Assume that T < Tc and redefine α→ −α > 0
such that both expansion coefficients are positive. We scale the wavefunction with
its equilibrium value, ψ∞ =

√
α/β, and introduce a length scale,

ψ̂ ≡ ψ

ψ∞
and ρ ≡ r

a
with a ≡ h̄√

2m∗α
∝ (Tc − T )−1/2. (2.22)

Altogether, this brings the equation to the form

∇2ψ̂ + (1− |ψ̂|2)ψ̂ = 0, (2.23)

where the derivatives are with respect to components of ρ. The length scale a is
called the Ginzburg-Landau coherence length. It determines the length scale over
which the order parameter reaches its equilibrium value if perturbed in some region.
Solving (2.23) with boundary conditions |ψ̂(ρ = 0)| = 0, |ψ̂(ρ = ∞)| = 1, with the
ansatz in (2.19), would correspond to the presence of a vortex at ρ = 0.

2.4 Symmetries and Classification of Topological

Superconductors

Recently, models for topological superconductors and insulators have been subject
to a comprehensive classification in terms of present or absent symmetries. A com-
plete ”periodic table” of the ten symmetry classes that exist for non-interacting
systems of fermions is now available [4]. The central result of the classification is
information of the number of topological phase transitions a given model supports,
which is summarized in the topological invariant. Typically, topological supercon-
ductivity can not be controlled in terms of a single, easily controllable parameter
tuned to make exotic properties appear. A topological phase transition does usually
manifest itself in some discrete change in the ground state that is not obtainable
by any continuous transformation. Invariance of quantities when the Hamiltonian
is subject to adiabatic deformations is loosely speaking what is meant by the word
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”topological”.

The three discrete symmetries that uniquely places a model in the classification
system will be described briefly. They are: the time-reversal symmetry (TRS) T ,
the particle-hole symmetry (PHS) P , and the sublattice symmetry (SLS) C. In
particular, they will be presented with focus on their appearance in superconducting
systems. Central elements from the presentation below is adapted from [4]. Assume
that a system is described by the Hamiltonian H. Then, we say that U is a symmetry
of H if U is an unitary (antiunitary) transformation, U † = U−1 (U † = −U−1), such
that H commutes (anticommutes) with U .

Time-Reversal Symmetry This symmetry comes in two flavours. When de-
scribing a spinful system of spin-1/2 particles, the time-reversal operator is given by
an antiunitary operator that squares to −1,

T = e−iπSyκ = iσyκ with T 2 = −1. (2.24)

Above, σy is the second Pauli matrix acting on spin-degrees of freedom and κ the
complex conjugation operator. However, for a spinless system one usually speaks of
a reduced time-reversal operator with a scalar structure,

T = κ with T 2 = +1, (2.25)

sometimes called the pseudo time-reversal symmetry operator. There are three
options. The standard nomenclature is to say that TRS is −1 for Hamiltonians
commuting with the spinful T operator, and that TRS is +1 for Hamiltonians
commuting with the scalar T operator. Absence of the symmetry is denoted by
saying that TRS is 0. A Hamiltonian commuting with the spinful time-reversal
operator, [H, T ] = 0, has an important property; every energy eigenvalue, En, is at
least doubly degenerate. This is known as Kramer’s degeneracy. It can be proven
by observing that if |n〉 is an eigenstate of H, then T |n〉 is also an eigenstate of H
with the same energy. And for a spinful system, these states are distinct since the
spin of the state is flipped when the operator is applied.

Particle-Hole Symmetry The particle-hole symmetry exchanges the roles of
creation and annihilation operators. There are generally three options for this sym-
metry as well. If it is present, the representative operator may square to either
P2 = ±1. One says that PHS is ±1 respectively. It could also be absent, in which
case one says that PHS is 0. However, we make this presentation more specialized
and exemplify how it appears for (spinless) superconducting Hamiltonians, referred
to as BdG (Bogoliubov-de-Gennes) Hamiltonians, with PHS equal to +1. This is
because we will study such models in this thesis, and it will suffice for the purpose
of this chapter. The result of a mean field treatment of an electron-phonon interac-
tion was seen in section 2.2. Motivated by this, consider the following general and
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spinless lattice model in position space with all types of quadratic fermion couplings
present,

H =
∑

i,j

hi,jc
†
icj +

1

2

∑

i,j

(
∆∗i,jcicj + ∆i,jc

†
ic
†
j

)
. (2.26)

This may be more compactly expressed by introducing

C ≡
(
c1, c2, . . . , cN , c†1, c†2, . . . , c†N

)T
and H̃ ≡

(
Ξ ∆
−∆∗ −ΞT

)
. (2.27)

Above, Ξ and ∆ are matrices with components hi,j and ∆i,j respectively. Exploiting
this notation allows us to express the Hamiltonian as

H =
1

2
C†H̃C +

1

2
Tr Ξ. (2.28)

The particle-hole operator of such systems is identified by an operator that exchanges
the creation and annihilation parts of C,

P = 1N ⊗ σxκ =

(
0 1N

1N 0

)
κ, (2.29)

with 1N being the N × N identity matrix and σx the first Pauli matrix. The
squared operator is here P2 = +1 (PHS is +1). Furthermore, {H̃,P} = 0. The
symmetry does also manifest itself in k-space, but this will be seen explicitly for the
Kitaev chain in Chapter 3. Any BdG Hamiltonian with the particle-hole symmetry
present has a spectrum constraint; for every positive energy eigenvalue Ek, there is
an eigenvalue with opposite sign, −Ek. Note, however, that each such pair of values
correspond to only one physical particle excitation. This reminds immediately of
the Dirac sea, where holes are the negative energy counterparts of ordinary matter.
In superconducting systems, on the other hand, the holes represent an artificial
doubling of the spectrum and do not correspond to physically distinct excitations.
We will be reminded of this interpretation occasionally. Still, we will sometimes
visualize both the positive and negative energy values for completeness.

Sublattice Symmetry The third symmetry is the sublattice symmetry (SLS), or
sometimes called the chiral symmetry. It may be defined as the product of the other
two symmetry operators,

C = T P . (2.30)

It is either present (SLS equal to 1) or absent (SLS equal to 0) and can always
be chosen to square to +1 [4]. More physically, it occurs for systems that can be
divided into a block structure of two subsystems such that the Hamiltonian only
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has non-zero matrix elements between the two subsystems.

The presence or absence of the three discrete symmetries discussed here, {T ,P , C},
is used to form the classification table of topological superconductors and insulators.
As seen from our discussion above, we have thus nine combinations of T and P ;
each can be 0 or ±1. The sublattice symmetry is uniquely given in terms of the first
two, except when both TRS and PHS are 0. In that case, SLS can either be 0 or 1.
This means that there are ten symmetry classes in total. Out of these, four goes in
the superconducting BdG category. The four BdG classes have the alienated names
D, C, DIII and CI.5

In this nomenclature, the models that will be investigated later belong to the D
class. This means that they have PHS equal to +1 and the two other symmetries
absent. The key result of the classification is that a D class model with dimension
d = 1 is expected to have a Z2 topological invariant, while d = 2 models have a Z
topological invariant. For the one-dimensional Kitaev chain we will derive how the
quantization of this number arise. In the notion of section 2.2, both models we will
study have p-wave pairing. Why is this type of pairing important? We will see that
the main feature of such pairing is that Majorana fermions may emerge as an edge
phenomenon in the topological phase.

2.5 Majorana Fermions

In 1937 Ettore Majorana showed that fermions being identical to their own an-
tiparticles were in accordance with Dirac’s description from 1928 [19]. The Dirac
equation for a relativistic spin-1/2 fermion field, ψ, of mass m reads

(iγµ∂µ −m)ψ = 0. (2.31)

Dirac found a complex basis for the γ matrices satisfying the Dirac algebra, {γµ, γν} =
2ηµν14, with ηµν being the Minkowski metric. This intrinsically demands complex
field solutions. Majorana modified this view by finding a purely imaginary basis for
the γ matrices,

γ0 = σy ⊗ σx, γ1 = iσx ⊗ 1, γ2 = iσz ⊗ 1, and γ3 = iσy ⊗ σy, (2.32)

such that the field solutions were allowed to be real [20]. For an operator with a
scalar structure, meaning that spin degrees of freedom are locked out, this is encoded
in that the Majorana mode is created by an hermitian operator. This is not possible
for a particle with electric charge. A Majorana fermion would therefore need to be
electrically neutral. In condensed matter physics, Majorana fermions takes place in
the form of quasiparticle excitations [11]. Generally, a quasiparticle is a collective

5The names of these classes are related to an old mathematical group classification due to Élie
Cartan.
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excitation with some properties similar to fundamental particles. In this context,
a quasiparticle is a linear combination of creation and annihilation operators. A
combination with equal weighting of particle and hole would qualify for electrical
neutralness – a necessity for Majorana fermions.

However, spin introduces an obstacle in superconducting systems. In an ordinary
s-wave superconductor for instance, the Cooper pairs are formed of electrons with
opposite spins. This makes quasiparticles have the schematic form a = uc†↑ + vc↓,
with u and v being (complex) weights. We see that spin effectively hinders the
possibility of a = a†. On the other hand, in a ”spinless” superconductor, i.e. a
system of fermions with only one active spin component, this problem is avoided.
It could occur in a p-wave superconductor if the only active spin sector is |↑↑〉 or
|↓↓〉. This is easy to phrase on theoretical grounds, but there are proposals on
how to effectively induce spinless p-wave superconductivity in semiconducting in
proximity of an ordinary s-wave superconductor [11]. We will not pursue these
ideas. Instead, we explore superficially the most exciting application of Majorana
fermions in condensed matter systems: their non-Abelian statistics. In order to do
that and to understand why it must be realized in two (or perhaps even one [7])
spatial dimensions, it is necessary to discuss anyons.

2.6 Anyons

In the late 70s Jon Magne Leinaas and Jan Myrheim argued that identical particles
in one and two dimensions can obey exchange statistics in a continuum of possi-
bilities intermediate to that of fermions and bosons [1]. Frank Wilczek explored
flux-tube models where the same type of particles emerged, and he introduced the
term anyons [21]. In this section we recapitulate superficially the core of the original
argument by Leinaas and Myrheim due to its fundamental implications.

One is used to think of quantum statistics as a symmetry constraint on many-particle
wavefunctions during the exchange of two particles. Fermionic wavefunctions are
antisymmetric while bosonic wavefunctions are symmetric. The starting point in
[1] is to describe the configuration space of identical particles properly. By bringing
the indistinguishability of identical particles into the formalism of the configuration
space, the (artificial) need of imposing symmetry constraints disappears. Let X
denote the configuration space of a single particle. It can for instance be X = R3 for
a free particle in three dimensions. The configuration space of N identical particles
is not simply the Cartesian product XN , because permutations of particles do not
represent distinct configurations. Assume therefore that the space remaining after
excluding permutations of coordinates is denoted by ENd in d dimensions. Let also
X be the Euclidean space Rd. Then, ENd separates into a space containing the
center-of-mass coordinate, Rd

CM, and a relative space, r(d,N),

ENd = Rd
CM × r(d,N). (2.33)
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Figure 2.1: The relative spaces in two and three dimensions. (a) A closed
curve ζ1 representing a possible particle exchange in the relative space r(2, 2).
The space may be constructed by cutting R2 along a line from the origin and
folding it around this line twice, resulting in a cone. By this construction, ±x
are represented by the same point on the cone. The loop ζ1 may not be deformed
into a point without passing through the singular point. Furthermore, loops with
a different number of windings around 0 can not be continuously deformed into
each other. (b) The curves ζ2 and ζ3 are closed curves in the projective space
RP2. This space is represented here as the two-sphere S2 with diametrically
opposite points identified. The loop ζ3 may be contracted to a point, but ζ2 may
not. However, the curve ζ2 traversed twice, ζ2 ◦ ζ2, can be contracted to a point.
Hence, ζ2 ◦ ζ2 can be continuously deformed into ζ3.

The relative space r(d,N) must be of dimension d(N − 1). Much of the remaining
discussion concerns identifying and describing this relative space in the case of two
particles, N = 2. The relative space has a singular point where the positions of
the two particles coincide. By removing the singular point, the relative space may
further be separated into the real positive line and a (d− 1)-dimensional projective
space RPd−1,6

r(d, 2) \ {0} = (0,∞)× RPd−1. (2.34)

The first part of this product identifies the distance between the two particles,
|x| = |x1 − x2|, and the projective space specifies the direction of the line connect-
ing them, ±x/|x|. For instance, with N = d = 2, there are four degrees of freedom
(d.o.f.) to uniquely specify the configuration space. In this case, R2

CM takes care of
two d.o.f. and one is accounted for in the inter-particle distance. The final d.o.f.
is taken care of by a point in RP1, intuitively the angle between a coordinate axis
and x. Insights of physical significance follow from exploring the topological prop-
erties of the relative space, in particular how d = 2 and d ≥ 3 are fundamentally
different in this aspect (d = 1 is peculiar since interchange of particles must involve
them passing through each other). An illustration of the fundamental difference is
depicted in Figure 2.1.

6Technically, each point in RPd−1 corresponds to a line though the origin of Rd.
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Consider first d = 2 and the relative space r(2, 2). This space is the plane R2 with
diametrically opposite points, x and −x, identified. One may represent this by
cutting the plane along a straight line from the origin and folding it around this
line twice to form a cone with the origin 0 as the cone tip. By this construction,
the points ±x becomes identical on the cone. A possible exchange of two particles,
illustrated by the curve ζ1 in Figure 2.1(a), is encoded by a loop that circulates the
singular point. This loop may not be shrunk to a point without passing through
the singular point. Furthermore, loops with a different number of windings around
the origin may not be continuously deformed into each other; they formally belong
to different homotopy classes. The fact that there are an infinity of topologically
distinct closed paths reflects a rich type of exchange statistics in d = 2. Exchanges
in an N -anyon system is described by a group structure known as the braid group,
BN .

The deformation of closed paths is rather different in d = 3. The projective space
RP2 may be constructed from the two-sphere S2 by identification of diametrically
opposite points x and −x. This is encoded in removal of, for instance, the southern
hemisphere of S2, which is what we have depicted in Figure 2.1(b). A closed curve
in the projective space, representing a particle exchange, may or may not be con-
tracted to a point. The curve ζ2 in Figure 2.1(b) is closed but can not be contracted
to a point when the endpoints are kept fixed. However, traversing it twice, ζ2 ◦ ζ2

(a double exchange), results in a loop that may be continuously shrunk to a point.
The two types of trajectories represent a single exchange (ζ2) and no exchange (ζ3),
and they constitute all topologically distinct possibilities.

This fundamental difference in the topology of closed paths in two- and three-
dimensional configuration spaces of identical particles becomes of physical signifi-
cance in the quantum description. A linear operator encoding parallel displacement
of wavefunctions in the Hilbert space generically takes the form

P = exp (iξ). (2.35)

In three dimensions, the possibility of contracting any curve traversed twice, as
depicted in 2.1(b), results in the condition that P 2 = 1. Thus, ξ = 0 and ξ = π, cor-
responding to bosons and fermions respectively, are the only options in three dimen-
sions. In other words, the two-particle symmetry condition ψ(x1,x2) = ±ψ(x2,x1)
is only implied for d = 3. In two dimensions, there is no particular restriction on
the phase ξ. Any additional winding around the singular point in Figure 2.1(a)
makes the two-particle wavefunction obtain a genuinely complex phase factor. The
phase is, then, some characteristic quantity of the two-particle system, usually called
the statistical phase. Exchanging anyons therefore yields ψ(x1,x2) = eiξψ(x2,x1).
Moreover, if ξ has a scalar structure the anyons are Abelian since the exchange op-
erators commute. More exotic is the possibility of a matrix structure in the phase,
ψa(x1,x2) = eiξαT

α
abψb(x2,x1), such that new states might be involved after the

particle interchange. This is the case for non-Abelian anyons.
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2.6.1 Braids

In a system of N anyons with initial and final positions {ri}Ni=1 at times ti and
tf respectively, there is a one-to-one correspondence with elements in the braid
group [12]. A N -braid is formally a set of N strings (or strands) confined within
two horizontal lines with fixed endpoints. Each string intersects any plane between
the two lines exactly once [22]. Physically, we may think of braids as world lines
or particle trajectories visualized with time in the vertical direction and position
projections in the horizontal direction; see Figure 2.2. The braid group BN consists
ofN−1 discrete exchange generators {σi}N−1

i=1 . The operator σi is a counter-clockwise
exchange of strings i and i + 1. Consequently, σ−1

i is a clockwise exchange of the
same pair of strings. The defining properties of the generators are

σiσi+1σi

i i+ 1 i+ 2

=

σi+1σiσi+1

i i+ 1 i+ 2

t

Figure 2.2: Diagrammatic illustration of the braid group identity σiσi+1σi =
σi+1σiσi+1. The braids may be interpreted as particle world lines with time in
the vertical direction and position projections in the horizontal direction.

σiσj = σjσi for |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for i ≤ N − 1.
(2.36)

The (binary) group operator is just the consecutive application of exchange op-
erations. In Figure 2.2 we have diagramatically depicted one of the Braid group
identities from (2.36). The simplest (trivial) case is N = 2 with σ1 as the only
generator. The group B2 is Abelian and isomorphic with the infinite cyclic group
(Z,+). Applying σ1 successively results in increased windings, and the identity el-
ement is never produced; the braid group is infinite. The picture becomes more
complicated in the case of Bn for n ≥ 2. In the next section we will explore a
non-Abelian representation of B4 that describes the exchange of Majorana modes
bound to vortices.

2.7 Quantum Computation with Majoranas

The theoretical foundation of quantum computation appeared around 1980 with the
basic idea of exploiting the superposition principle of quantum states. The interest
of this subject grew quickly after it was discovered that certain types of problems
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could be solved much faster on a quantum computer [12, 23]. For instance, simulat-
ing many-body quantum systems on a quantum computer can be done exponentially
faster than on a classical computer. Algorithms as Grover’s search algorithm, Shor’s
prime factorization algorithm and the Quantum Fourier transform algorithm should
in principle show a significant decrease in computation time. Realizing a quantum
computer is consequentially of great interest also outside academia; these algorithms
have a vast range of applications.

The qubit, |q〉, is a quantum analogue of the classical bit. It is generally a superposi-
tion of the classical bit ”states” 0 and 1, |q〉 = α |0〉+ β |1〉. Quantum computation
with qubits is based on three steps: initialization, unitary evolution and measure-
ment [12]. And in order for the computation to be universal, meaning that any
unitary operator can be represented, only a small set of elementary gates must be
available. Among the greatest challenges to overcome in constructing a functioning
quantum computer is handling errors, especially those caused by interactions with
the environment. A quantum superposition is a delicate object that will collapse,
ruining the computation, if influenced by any external interaction or measurement.
Thus, overcoming decoherence caused by the environment becomes truly important
in any realistic scheme.

The exotic properties of non-Abelian anyons may be used to form topological qubits.
Topological qubits encode information in the braiding of particles. This makes
them far superior when it comes to decoherence protection, at least in principle.
Topological qubits can be highly non-local in the sense that they may be constructed
from Majorana modes with arbitrary spatial separation. Moreover, this would make
them robust against local perturbations, in contrast to computation schemes with
spin based qubits. Below, we provide a simple example of how the braiding of four
Majorana modes localized in vortices may result in a state space rotation. The
example is inspired by [11].

2.7.1 Demonstration of Non-Abelian Braiding

Imagine a system of 2N well-separated vortices in a two-dimensional p-wave super-
conductor. Each vortex is assumed to bind a single Majorana zero mode. Note
that we in Chapter 5 will establish a detailed understanding of how this takes place,
especially how the Majorana modes are localized. In total, the set {γn}2N

n=1 contains
the distinct operators at our disposal. The Majorana operators satisfy the defining
properties

γn = γ†n and [H, γn] = 0. (2.37)

They are assumed to satisfy fundamental anticommutation relations similar to fermions,
adopting a common normalization convention [11],

{γn, γm} = 2δn,m. (2.38)
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Note how this last property makes it difficult to speak of the occupancy of a Ma-
jorana state. Trying to construct a number operator leads to the trivial result
nMF = γ†nγn = 1 (since γ2

n = 1). In other words, a Majorana mode is in this sense
always filled, and counting the occupancies is meaningless. Still, we may pair up two
Majorana operators to form an ordinary fermionic state. This pairing is merely a
choice of basis, and it clarifies why we need 2N Majorana modes to form N fermionic
operators. We define

cj ≡
1

2
(γ2j−1 + iγ2j). (2.39)

The reader may look at Figure 5.4 at this point to get a cartoon picture of the
situation. These operators can readily be checked to satisfy the canonical relations
{c†i , cj} = δi,j and {ci, cj} = {c†i , c†j} = 0. Occupation operators, nj = c†jcj, can
conveniently be formed, and they are used to denote the ground state manifold in
terms of the occupancy state |n1, n2, . . . , nN〉. For the matter of this demonstration
we simply state the result of adiabatically exchanging the vortices containing γj
and γj+1 in a clockwise manner. This discrete transformation is the key result of
Ivanov’s derivation [6],

σi :





γi 7→ γi+1

γi+1 7→ −γi
γj 7→ γj for j /∈ {i, i+ 1}

. (2.40)

In section 5.6 we will suggest an argument that results in the same transformation
rule. Consider the minimal (and non-trivial) example with two fermionic degrees of
freedom, N = 2. Assume that the initial ground state of the system is |n1, n2〉 ≡
|n1〉 ⊗ |n2〉, with n1 is the occupation number of the fermionic state formed by γ1

and γ2 according to (2.39). Similarly, n2 consists of γ3 and γ4. Hence, |n1, n2〉 is an
eigenstate of n1 = c†1c1 and n2 = c†2c2 by assumption. In order to study the action of
σi on |n1, n2〉, we need a unitary representation of the transformation rule in (2.40),
meaning an operator Ui satisfying

σi(γj) = UiγjU
†
i . (2.41)

Up to an undetermined phase factor, the unitary operator satisfying this is given by

Ui = exp
(π

4
γi+1γi

)
=

1√
2

(1 + γi+1γi). (2.42)

One may readily check that it satisfies the Braid group properties in (2.36). The
operators {Ui}3

i=1 constitute a representation of the Braid group, in this case B4.
The operator U2 affects γ2 and γ3 such that the state |n1, n2〉 is possibly left in a
linear combination of the four states spanning the ground state manifold,

M = {|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉}. (2.43)
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We define the fully filled state as |1, 1〉 ≡ c†1c
†
2 |0, 0〉 (the order is of importance in

what follows). Our system consists of two fermionic operators, c1 = 1
2
(γ1 + iγ2) and

c2 = 1
2
(γ3 + iγ4), with the inverse relations

γ1 = c1 + c†1, γ2 = −i(c1 − c†1), γ3 = c2 + c†2, γ4 = −i(c2 − c†2). (2.44)

Thus, acting with single Majorana operators on |n1, n2〉 can be summarized as

γ1 |n1, n2〉 = |1− n1, n2〉 ,
γ2 |n1, n2〉 = i(−1)n1 |1− n1, n2〉 ,
γ3 |n1, n2〉 = (−1)n1 |n1, 1− n2〉 ,
γ4 |n1, n2〉 = i(−1)n1+n2 |n1, 1− n2〉 .

(2.45)

Hence, we have the tools needed to see how U1, U2 and U3 act on the occupancy
states,

U1 |n1, n2〉 =
1√
2

(
1 + i(−1)1−n1

)
|n1, n2〉 ,

U2 |n1, n2〉 =
1√
2

(
|n1, n2〉 − i |1− n1, 1− n2〉

)
,

U3 |n1, n2〉 =
1√
2

(
1 + i(−1)2n1−n2+1

)
|n1, n2〉 .

(2.46)

The two-qubit state |n1, n2〉 is an eigenstate of U1 and U3 as anticipated. However,
the operator U2 is seen to rotate the state into a linear combination of two states. In
other words, the representation is non-Abelian, and the order of which one succes-
sively applies U operators do matter. Alternatively, we may represent the operators
as matrices, with the consequence that U2 is non-diagonal. We do this with the
basis states in the same order as in (2.43):

U1 =
1√
2

(
1−i 0 0 0

0 1+i 0 0
0 0 1−i 0
0 0 0 1+i

)
, U2 =

1√
2

(
1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

)
, U3 =

1√
2

(
1−i 0 0 0

0 1−i 0 0
0 0 1+i 0
0 0 0 1+i

)
.

(2.47)

Unfortunately, the two-qubit braiding operators U1, U2 and U3 alone do not allow
for universal quantum computation; they do not span all unitary transformations
[12]. However, there are schemes, even though we will not pursue them, on how to
approximate any quantum computation to arbitrary accuracy with only the braid
operations. Proposals have also been put forward on how to extend the set of
braiding operations with the gates needed to obtain universal computation.



Chapter 3

The Closed Kitaev Chain

We open the content of this thesis with a detailed study of a toy model of his-
torical impact. The motivation is to fill in details, and to gain a more complete
understanding than obtained with the presentation by Jason Alicea in [11]. By con-
sidering closed boundary conditions, we will be able to analytically derive the energy
spectrum and characterize the ground state. We explore how a certain Berry phase
distinguishes the two topological phases of the model. With this classification in
mind, it is of fundamental interest to study if fermionic correlation functions show
signs of the topological phase transition. This is done numerically.

In 2001 Alexei Kitaev proposed a toy model for spinless fermions on a one-dimensional
superconducting chain [10]. The model captures concisely the physics of topological
phenomena, and it has proven to be central in the field of topological superconduc-
tivity. The Kitaev Hamiltonian for a closed system is

H = −µ
N∑

x=1

c†xcx −
1

2

N∑

x=1

(
tc†xcx+1 + ∆eiφcxcx+1 + h.c.

)
. (3.1)

Above, cx denotes the annihilation operator of a spinless fermion at site x. We
define cN+1 ≡ c1 so that the N -site chain obeys periodic boundary conditions. The
chemical potential is denoted by µ, t is the real and positive neighbouring site
hopping strength, ∆ is the superconducting energy gap (the order parameter) and
φ a superconducting phase. The fermion operators obey canonical anticommutation
relations,

{cx, c†x′} = δx,x′ and {cx, cx′} = {c†x, c†x′} = 0. (3.2)

The discrete Kitaev chain has a notable similarity with the Ising model. Despite the
affinity with onsite terms and nearest neighbour couplings along the chain, the Ising
model is semi-classical – classical in the sense of involving commuting variables and
quantum mechanical in the sense of describing quantized spins – while the Kitaev
chain plays the role of being a truly quantum analogue.

23
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3.1 Bogoliubov-de-Gennes Hamiltonian

Discrete Fourier transforms ck of the operators cx are introduced. The context
should reveal clearly when we refer to momentum space operators (subscript k or l)
and when we refer to real space operators (subscript x or y),

ck =
1√
N

N∑

x=1

eikx
2π
N cx and cx =

1√
N

N∑

k=1

e−ikx
2π
N ck. (3.3)

The Kronecker delta function δk,k′ of period N in this discrete formulation may be
expressed in terms of a sum of complex exponentials,

δk,k′ =
1

N

N∑

x=1

e−i(k−k
′)x 2π

N , (3.4)

and will appear in the deduction below. This formula may be proven by using the
summation of a geometric series. The Fourier transformed operators are defined
for k-values 1 ≤ k ≤ N , but we can by periodicity extend the allowed range. In
particular, when for example −k appears in the following deduction, it is understood
to be equivalent to N−k. The transformed operators obey similar anticommutation
relations as in equation (3.2). This follows from (3.2), (3.3) and (3.4),

{c†k, ck′} =
1

N

N∑

x=1

e−ikx
2π
N

N∑

x′=1

eik
′x′ 2π

N {c†x, cx′} = δk,k′ . (3.5)

The relations {c†k, c†k′} = {ck, ck′} = 0 follow analogously.

3.1.1 Momentum Representation

The different terms in the Hamiltonian are brought to Fourier space. First, the
onsite terms:

H1 ≡ −µ
N∑

x=1

c†xcx

= − µ
N

N∑

k,k′=1

N∑

x=1

ei(k−k
′)x 2π

N c†kck′

= −µ
N∑

k=1

c†kck

= −µ
2

N∑

k=1

(c†kck − c−kc†−k)−
1

2
µN.

(3.6)
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The last term is constant, and we redefine the ground level energy by neglecting it.
Next, the kinetic terms are transformed:

H2 ≡ −
t

2

N∑

x=1

(c†xcx+1 + h.c.)

= −1

2

t

N

N∑

k,k′=1

N∑

x=1

(ei[−kx+k′(x+1)] 2π
N c†kck′ + h.c.)

= − t
2

N∑

k=1

(eik
2π
N c†kck + h.c.)

= −t
N∑

k=1

1

2
(eik

2π
N + e−ik

2π
N )c†kck

= − t
2

N∑

k=1

cos

(
2πk

N

)
(c†kck − c−kc†−k)−

t

2

N∑

k=1

cos

(
2πk

N

)
.

(3.7)

Again, the last term is constant and may be neglected. Finally, we transform the
superconducting Cooper terms:

H3 ≡ −
1

2
∆

N∑

x=1

(eiφcxcx+1 + h.c.)

= −1

2

∆

N

N∑

k,k′=1

N∑

x=1

(eiφei[kx+k′(x+1)] 2π
N ckck′ + h.c.)

= −∆

2

N∑

k=1

(eiφe−ik
2π
N ckc−k + h.c.)

= −∆

2

N∑

k=1

(
eiφ

2

(
e−ik

2π
N − eik 2π

N

)
ckc−k + h.c.

)

=
∆

2

N∑

k=1

(
ieiφ sin

(
2πk

N

)
ckc−k + h.c.

)
.

(3.8)

To simplify notation we denote k′ = 2πk
N
∈
[

2π
N
, 2π
]

and relabel k′ → k. This means
that when −k appears in the following, it is understood to be equivalent to 2π − k.
The operator c†k creates a fermion excitation of momentum k. We introduce B as
the Brillouin zone; the discrete set of momentum numbers,

B =
{2π

N
n | n ∈ {1, 2, . . . , N}

}
. (3.9)

In the continuum limit, N → ∞, B approaches the interval (0, 2π]. We stress that
there are two particular values of k that must be treated with care. Trying to form
pairs of k and −k from B, the two values k = 0 and k = π are the only ones that
do not have a pairing partner. This is related to the formation of Cooper pairs in
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the ground state. The values k = 0 and k = π will be of importance later, and they
appear in B as follows:

k = 0 ∈ B and k = π ∈ B if N is even,

k = 0 ∈ B and k = π /∈ B if N is odd.
(3.10)

Two functions are introduced to compactify the notation,

εk ≡ −t cos k − µ and ∆k ≡ −i∆eiφ sin k. (3.11)

The terms may be collected to express the transformed Hamiltonian as

H = H1 +H2 +H3

=
1

2

∑

k∈B

(
εk(c

†
kck − c−kc†−k) + ∆kc−kck + ∆∗kc

†
kc
†
−k

)

=
1

2

∑

k∈B

(
c†k, c−k

)( εk ∆∗k
∆k −εk

)(
ck
c†−k

)

=
1

2

∑

k∈B
C†kHkCk,

(3.12)

with

Ck ≡
(
ck
c†−k

)
and Hk ≡

(
εk ∆∗k
∆k −εk

)
. (3.13)

The matrix Hk acts as a two-level Hamiltonian that relates particles and holes of
opposite momenta. It is referred to as the BdG Hamiltonian. The particle-hole
symmetry that was mentioned in section 2.4 is visible in Hk. This symmetry can
be phrased in terms of a single-spinor operator τ , in contrast to P from section 2.4,
which acted on a vector containing all fermion operators,

τ ≡
(

0 −1
1 0

)
κ = −iσyκ, (3.14)

with κ as the complex conjugation operator. Letting τ act on a spinor has the effect
of exchanging particles and holes.1 By construction, τ anticommutes with Hk,

{Hk, τ} = 0. (3.15)

1It could be noted that there is an apparent similarity between τ and the time-reversal operator
T discussed in section 2.4. The Kitaev chain consists of spinless fermions and the scalar time-
reversal operator is simply T = κ. This is, however, generally not a symmetry of the Kitaev chain.
If, on the other hand, both t and ∆eiφ are strictly real (i.e. φ = nπ for some integer n), then
[H, T ] = 0 and the model obeys an additional symmetry, TRS equal to +1. This is subtle, but it
means that the model moves from symmetry class D to BDI in the classification table [4]. We will
return to this when studying the Kitaev chain with open boundaries.
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This implies that the spectrum of Hk is symmetric, i.e. that the energy eigenvalues
come in pairs of opposite signs. More explicitly, the eigenvalues of Hk are

± Ek = ±
√
ε2k + |∆k|2 = ±

√
(t cos k + µ)2 + ∆2 sin2 k. (3.16)

The function Ek reveals that the spectrum is gapped for all µ except at the two
values µ = ±t. A plot of the spectrum is shown in Figure 3.1. Assume now

that
(
u∗k, v∗k

)T
is the eigenvector belonging to the positive eigenvalue +Ek (the

coefficients are chosen this way for convenience). In other words,

1
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Figure 3.1: Energy spectrum as function of momentum k ∈ (−π, π] and chemi-
cal potential µ in the range µ ∈ [−1.5t, 1.5t]. Parameters ∆ = t = 1.0 were fixed.
The gap closes at k = π for µ = t and at k = 0 for µ = −t.

(
εk ∆∗k
∆k −εk

)(
u∗k
v∗k

)
= Ek

(
u∗k
v∗k

)
⇒

v∗k =
Ek − εk

∆∗k
u∗k.

(3.17)

Normalization of the eigenvector is imposed,

|uk|2 + |vk|2 = 1⇒

|uk|2 =

(
1 +

(Ek − εk)2

|∆k|2
)−1

=
Ek + εk

2Ek
.

(3.18)

The squared coefficients, |uk|2 and |vk|2, can alternatively be expressed as
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|uk|2 =
1

2

(
1 +

εk
Ek

)
and |vk|2 =

1

2

(
1− εk

Ek

)
. (3.19)

Sometimes, they are referred to as coherence factors [24]. Some key observations
are summarized beneath.

|uk| → 0 and |vk| → 1 as µ� t,

|uk| → 1 and |vk| → 0 as µ� −t,

|u0| =
{

0 if µ > −t
1 if µ < −t and |v0| =

{
1 if µ > −t
0 if µ < −t ,

|uπ| =
{

0 if µ > t

1 if µ < t
and |vπ| =

{
1 if µ > t

0 if µ < t
.

(3.20)

We are generally free to choose uk and vk up to k-dependent (complex) phase factors,
eiαk . Following the convention by Read and Green [24], one of uk or vk can be taken
to be real and positive. Let therefore uk ∈ R+ be given by the positive square root
of equation (3.18) with u−k = uk. The other coefficient is allowed to be complex,
vk ∈ C, and is odd in k, v−k = −vk. Both properties of vk are given by equation
(3.17), ensured by ∆∗k in the denominator; recall that ∆k is both complex and odd
in k. Since the operator τ anticommutes with Hk we have that

Hkτ

(
u∗k
v∗k

)
= −τHk

(
u∗k
v∗k

)
= −Ekτ

(
u∗k
v∗k

)
. (3.21)

Hence, the second eigenvector of Hk is τ
(
u∗k, v∗k

)T
=
(
−vk, uk

)T
.

3.1.2 Quasiparticles and the Spectral Decomposition

The tools needed to diagonalize Hk are readily available. According to the matrix
diagonalization theorem, define U such that

Hk = UDU † with D =

(
Ek 0
0 −Ek

)
, (3.22)

and

U =

(
u∗k −vk
v∗k uk

)
=

1√
2Ek

( √
Ek + εk − ∆∗k

|∆k|
√
Ek − εk

∆k

|∆k|
√
Ek − εk

√
Ek + εk

)
. (3.23)

A new operator basis is introduced; let quasiparticle annihilation operators be de-
noted by ak. They are defined according to
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(
ak
a†−k

)
≡
(
uk vk
−v∗k u∗k

)(
ck
c†−k

)
. (3.24)

These operators, ak, are thus linear combinations of creation and annihilation oper-
ators with opposite momenta. A quasiparticle excitation, created by a†k, will carry
a fraction of the normal fermion charge. At this point we note from the explicit
expressions of uk and vk certain characteristics of such an excitation. In the limit
µ � −t the operator ak reduces to ak → ck. Similarly, ak → c†k as µ � t. Fur-
thermore, observe that the quasiparticle operators obey the same anticommutation
relations as normal fermions, found by using (3.5) and (3.18),

{ak, a†k′} = {ukck + vkc
†
−k, u

∗
k′c
†
k′ + v∗k′c−k′}

=
(
|uk|2 + |vk|2

)
δk,k′

= δk,k′ .

(3.25)

The relations {ak, ak′} = {a†k, a†k′} = 0 follow as well. This means that the quasipar-

ticles obey Fermi-Dirac statistics. In other words, (ak)
2 = (a†k)

2 = 0. Finally, the
spectral decomposition of the Hamiltonian is

H =
1

2

∑

k∈B
C†kHkCk

=
1

2

∑

k∈B
C†kUDU †Ck

=
1

2

∑

k∈B

(
a†k, a−k

)(Ek 0
0 −Ek

)(
ak
a†−k

)

=
1

2

∑

k∈B
Ek(a

†
kak − a−ka†−k)

=
∑

k∈B
Eka

†
kak −

1

2

∑

k∈B
Ek.

(3.26)

Again, a constant energy term arises. It can be neglected by a redefinition of the
ground level energy. The Hamiltonian is diagonal in the new operators, indicating
that quasiparticles are non-interacting. Moreover, they act as the fundamental exci-
tations of the system. During the derivation we encountered two energy eigenvalues,
±Ek, for each value of k. The above expression reveals, however, that quasiparti-
cles are exclusively positive energy excitations. Hence, we will only care about the
upper band in Figure 3.1 from this point. If one instead were to define bk = a†k as
the quasiparticle operators – this is essentially equivalent to interchanging particles
and holes – the result would have had opposite sign. The Hilbert space governed by
the many-body Hamiltonian (3.26) is 2N -dimensional since each quasiparticle site
can be either filled or empty.
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3.2 The Ground State

Let a single-particle vacuum state of Fourier mode k be denoted by |0, k〉. This state
is by definition annihilated by the ck operator. Similarly, with |0, x〉 we refer to an
empty fermion state with real space position x. The Fourier space N -body vacuum
state, denoted simply by |0〉, is formally a tensor product state of single-particle
vacuum states,

|0〉 ≡
⊗

k∈B
|0, k〉 . (3.27)

The ground state of the Hamiltonian (3.26) is denoted by |Ω〉. Since Ek ≥ 0 with
equality only possible for k = 0 or k = π, the ground state can be constructed to
have zero energy if it is annihilated by all the ak operators. Of course, the constant
energy term in the Hamiltonian (3.26) is neglected. The defining criterion of |Ω〉 is
thus that

ak |Ω〉 = 0 ∀k ∈ B. (3.28)

In other words, the ground state contains no quasiparticles. This construction is
achieved by expressing |Ω〉 as the product

|Ω〉 = M
∏

k∈B
ak |0〉 , (3.29)

with M as a normalization constant. It ensures ∀l ∈ B that

al |Ω〉 = Mal
∏

k∈B
ak |0〉 = M ′

∏

k∈B,k 6=l
ak(al)

2 |0〉 = 0. (3.30)

The constant M ′ is possibly different from M by a sign from the anticommutation
relations. It is instructive to express |Ω〉 as a product of paired states with opposite
momenta. This is done by letting the product run over half of the values in B.
Observe that

aka−k |0〉 = (ukck + vkc
†
−k)(ukc−k − vkc†k) |0〉

= −vk(uk + vkc
†
−kc
†
k) |0〉 .

(3.31)

A subset of B is defined for notational convenience,

B+ ≡ {l ∈ B | l < π} ⊂ B. (3.32)

The Cooper paired part of |Ω〉 can therefore be expressed according to (3.31) as
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∏

k∈B+

aka−k |0〉 ∝
∏

k∈B+

(1 + gkc
†
−kc
†
k) |0〉 =

∏

k∈B+

egkc
†
−kc
†
k |0〉 , (3.33)

with

gk ≡
vk
uk

=
∆∗k

Ek + εk
. (3.34)

Terms of power greater than one, when expanding the exponential operator in (3.33),
vanishes due to Fermi-Dirac statistics, (ck)

2 = (c†k)
2 = 0. As pointed out earlier, it is

important to include the single operators that can not be paired up as above, k = 0
and k = π, separately. Consequently, we are forced to make a distinction between
N being even or odd. In addition, the parameter regime will have a critical impact
on the two single operators a0 and aπ, determined by the properties of |u0| and |uπ|
as summarized in (3.20). Up to the possible phase factor in vk, we have that

a0 =

{
c0 if µ < −t
c†0 if µ > −t and aπ =

{
cπ if µ < t

c†π if µ > t
. (3.35)

Consider an even number of sites N , so that both modes k = 0 and k = π are
present. Using (3.33), and making sure that both a0 |Ω〉 = aπ |Ω〉 = 0, yields the
final result result,

|Ω〉 = A
∏

k∈B+

egkc
†
−kc
†
k








1 if µ < −t
c†0 if |µ| < t

c†0c
†
π if µ > t


 |0〉 . (3.36)

Above, A is a normalization constant. Note that |Ω〉 is constructed by pairs of
fermions with opposite momenta in accordance with the BCS result [3]. However, the
two unpaired operators alter the number of fermions in the ground state depending
on the parameter regime. It could also be mentioned that this result gives a more
precise description than the somewhat loosely stated ground state in equation (8) in
[11]. The number of fermions being even or odd will be denoted by fermion parity.
It may be encoded by the operator

P ≡ (−1)
∑
k∈B nk = eiπ

∑
k∈B nk =

∏

k∈B
(1− 2nk) . (3.37)

We return more thoroughly to the impact of this operator in section 5.6. The
eigenvalue, +1 (−1), corresponds to an even (odd) number of fermions. It is now
explicitly seen that

〈P 〉Ω = 〈Ω|P |Ω〉 =

{
−1 if |µ| < t

+1 if |µ| > t
. (3.38)
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Note that the k = π Fourier mode is not present when N is odd. We will extend
these observations in section 3.5 and leave this merely as an observation at this
stage.

3.2.1 Fermion Occupancies in the Ground State

It is of general interest to understand some basic aspects of the ground state. For
instance, how the fermions are distributed in this state. Since the Kitaev chain with
periodic boundary conditions is translational invariant, we expect the occupation
number on some site to be independent of the site position – a flat fermion distribu-
tion. Keeping in mind that the ground state is annihilated by all the ak operators,
we find first the occupation of a given Fourier mode,

〈nk〉Ω = 〈Ω| c†kck |Ω〉
= 〈Ω| (uka†k − v∗ka−k)(u∗kak − vka†−k) |Ω〉
= |vk|2

=
1

2

(
1 +

t cos k + µ√
(t cos k + µ)2 + ∆2 sin2 k

)
.

(3.39)

This expression is in agreement with the occupation of the modes k = 0 and k = π
as discussed in (3.20). Namely, 〈nk=0〉Ω = 1 if µ > −t (and zero otherwise) and
〈nk=π〉Ω = 1 if µ > t (and zero otherwise), which is also reflected in (3.36). The
total fermion expectation number of the ground state is simply

〈ntot〉Ω =
∑

k∈B
〈nk〉Ω

=
1

2

(
N +

∑

k∈B

t cos k + µ√
(t cos k + µ)2 + ∆2 sin2 k

)
.

(3.40)

In the thermodynamic limit, the sum can to a good approximation be replaced by
an integral. The increment in k was previously defined to be δk = 2π/N as seen
from equation (3.9). Hence,

∑

k∈B

t cos k + µ√
(t cos k + µ)2 + ∆2 sin2 k

=
1

δk

∑

k∈B
δk

t cos k + µ√
(t cos k + µ)2 + ∆2 sin2 k

≈ N

2π

∫ 2π

0

dk
t cos k + µ√

(t cos k + µ)2 + ∆2 sin2 k
,

(3.41)

and in the special case of µ = 0 this integral can be computed exactly since

∫ 2π

0

dk
t cos k√

t2 cos2 k + ∆2 sin2 k
= 0. (3.42)
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Thus, half of the available sites are filled for µ = 0. The value 〈nk〉Ω may also be
discussed in the limiting cases µ � −t and µ � t. From (3.20) we see that 〈nk〉Ω
tends to 1, and thereby 〈ntot〉Ω → N , as µ � t. When µ � −t we see that 〈nk〉Ω
tends to 0 and that 〈ntot〉Ω → 0. The occupation number of a single site in real
space can be calculated by using the definition in equation (3.3),

〈nx〉Ω = 〈Ω| c†xcx |Ω〉

= 〈Ω|


 1

N

∑

k,k′∈B
e−ix(k−k′)c†k′ck


 |Ω〉

= 〈Ω|


 1

N

∑

k,k′∈B|k 6=k′
e−ix(k−k′)c†k′ck +

1

N

∑

k∈B
c†kck


 |Ω〉

=
1

N

∑

k∈B
〈Ω| c†kck |Ω〉

=
1

N

∑

k∈B
|vk|2.

(3.43)

The sum with the k 6= k′ vanishes identically, as seen when expressing the ck opera-
tors in terms of ak operators. Hence, we are left with a flat distribution of occupation
numbers in real space as anticipated. A simple relation between 〈nx〉Ω evaluated at
±µ may be established. This is found by combining the relations (3.39), (3.41) and
(3.43), still in the large N limit:

〈nx(µ)〉Ω + 〈nx(−µ)〉Ω
=

1

N

∑

k∈B

(
|vk(µ)|2 + |vk(−µ)|2

)

=
1

N

∑

k∈B

(
1 +

t cos k + µ

2
√

(t cos k + µ)2 + ∆2 sin2 k
+

t cos k − µ
2
√

(t cos k − µ)2 + ∆2 sin2 k

)

≈ 1 +
1

4π

∫ 2π

0

dk

(
t cos k + µ√

(t cos k + µ)2 + ∆2 sin2 k
+

t cos k − µ√
(t cos k − µ)2 + ∆2 sin2 k

)

= 1 +
1

4π

(∫ 2π

0

dk
t cos k + µ√

(t cos k + µ)2 + ∆2 sin2 k

+

∫ π

−π
du

−t cosu− µ√
(t cosu+ µ)2 + ∆2 sin2 u

)

= 1 +
1

4π

(∫ 2π

0

dk f(k)−
∫ π

−π
du f(u)

)
.

(3.44)

When splitting up the integrals above, a change of variables was made in the second
integral, u = k − π. The function f(k) refers to the integrand that appears in
both final integrals. There is a simple theorem stating that if f(x) is an integrable
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periodic function of period a, then
∫ a

0
dx f(x) =

∫ a+b

b
dx f(x) ∀ b ∈ R. Since f(k)

is a periodic function, this theorem ensures that the two integrals above cancel.
Therefore,

〈nx(µ)〉Ω + 〈nx(−µ)〉Ω = 1, (3.45)

meaning that the fermion occupation number of a general site on the chain is an-
tisymmetric about 1/2 when considered as a function of µ. Before closing these
remarks we comment on a connection to statistical mechanics. Recall that 〈nk〉Ω =
|vk|2. Using the anticommutation relations (3.5) also reveals that 〈n2

k〉Ω = 〈nk〉Ω.
This means that the variance of the Fourier mode occupation is

σ2
nk

= 〈n2
k〉Ω − 〈nk〉2Ω = 〈nk〉Ω (1− 〈nk〉Ω) . (3.46)

It can be recognized as the variance of the Bernoulli distribution.2 Moreover, it is
identical to the particle number variance obtained with the Fermi-Dirac distribution
in the grand canonical ensemble [16].3 It is thus natural to interpret (3.46) as re-
flecting the underlying Fermi-Dirac statistics. Since the Kitaev chain is a mean field
model, it would be meaningful to see that the average particle number fluctuations
tend to zero in the thermodynamic limit. We found an expression for 〈ntot〉Ω in
equation (3.40). To discuss the variance of ntot, an expression for 〈n2

tot〉Ω is needed.
This is a tedious calculation, and it does not add any insights to the computation
from the previous paragraphs. We therefore state our result:

〈n2
tot〉Ω =

∑

k,l∈B
〈c†kckc†l cl〉Ω = 2

∑

k∈B
|vkuk|2 +

(∑

k∈B
|vk|2

)2

. (3.47)

In turn, the variance becomes

σ2
ntot

= 〈n2
tot〉Ω − 〈ntot〉2Ω = 2

∑

k∈B
|vkuk|2. (3.48)

Both coherence factors |uk|2 and |vk|2 are typically of order unity (particularly never
greater than 1). For instance, averaging |vk|2 over k was earlier seen to result in
1/2 when µ = 0. As a rough estimate, the variance therefore scales with N as
σ2
ntot
∼ N since (3.48) instructs us to sum up N terms of order unity. Equivalently,

σntot ∼
√
N . According to equation (3.40) the expected number of fermions on the

chain analogously scales with N as 〈ntot〉Ω ∼ N . Therefore, the relative fluctuations
of the total occupation number must scale with N as

σntot

〈ntot〉Ω
∼ 1√

N
. (3.49)

2The Bernoulli distribution is the Binomial distribution, Pm(〈nk〉Ω) = 〈nk〉mΩ + (1−〈nk〉Ω)1−m,
with one trial.

3The fermionic grand canonical single-particle partition function is Z = 1 + e−(ε−µ)/(kT ) for an
excitation of energy ε at temperature T .
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This corresponds to the particle number fluctuations in the grand canonical ensem-
ble [16]. And in fact, finding the BCS ground state was historically treated as a
variational problem in this ensemble [2, 3].

3.2.2 Quasiparticle Excitations

The focus is turned to excitations of the ground state. Since the diagonal Hamilto-
nian (3.26) suggests that the fundamental excitations of the system are quasiparti-
cles, we are interested in finding the quasiparticle occupation number distribution
in real space. We define

|ϕx〉 = φ†x |Ω〉 with φx ≡
1√
N

∑

k∈B
e−ikxak. (3.50)

The state |ϕx〉 is interpreted as a quasiparticle with localization around position x.
An occupation operator is introduced,

ρ(x) ≡ c†xcx, (3.51)

such that for instance 〈nx〉Ω = 〈Ω| ρ(x) |Ω〉. In this nomenclature the charge expec-
tation value is 〈Q〉Ω =

∑N
x=1 〈Ω| q ρ(x) |Ω〉 = Nq〈nx〉Ω if all fermions have charge

q. We are interested in calculating 〈ϕx0| ρ(x) |ϕx0〉 – the fermion occupation of site
x with a qasiparticle state located at x0. Since the ground state gives rise to flat
distribution of occupation numbers, this new function is expected to introduce a per-
turbation in this background distribution. The perturbation is expected to depend
only on the relative distance x− x0,

〈ϕx0| ρ(x) |ϕx0〉 ≡ 〈nx〉Ω + S(x− x0). (3.52)

First, observe that

〈ϕx0| ρ(x) |ϕx0〉 = 〈Ω|φx0ρ(x)φ†x0
|Ω〉

=
1

N

∑

k,l∈B
e−ix0(k−l) 〈Ω| akc†xcxa†l |Ω〉 . (3.53)

The quasiparticle operators should be anticommuted to the opposite sides in the
expression 〈Ω| akc†xcxa†l |Ω〉 to annihilate the ground state. Since the quasiparticle
operators are linear combinations of the ck operators, the non-vanishing anticom-
mutation relations between ck and cx are needed in this procedure. Using (3.2) and
(3.5) we find the only non-vanishing relation,

{c†x, ck} =
eikx√
N
. (3.54)

This yields, by using that ak = ukck+vkc
†
−k, the anticommutation relations we need,
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{c†x, ak} =
eikx√
N
uk and {cx, ak} =

eikx√
N
vk. (3.55)

Using the above relations repeatedly gives

〈Ω| akc†xcxa†l |Ω〉 = 〈Ω|
(
eikx√
N
uk − c†xak

)(
e−ilx√
N
u∗l − a†l cx

)
|Ω〉

=
uku

∗
l

N
eix(k−l) + 〈Ω| c†xaka†l cx |Ω〉

=
uku

∗
l

N
eix(k−l) + δk,l 〈Ω| ρ(x) |Ω〉 − 〈Ω| c†xa†lakcx |Ω〉

=
uku

∗
l

N
eix(k−l) + δk,l〈nx〉Ω

− 〈Ω|
(
e−ilx√
N
v∗l − a†l c†x

)(
eikx√
N
vk − cxak

)
|Ω〉

=
uku

∗
l

N
eix(k−l) + δk,l〈nx〉Ω −

vkv
∗
l

N
eix(k−l).

(3.56)

This may be inserted back into (3.53) to obtain

〈ϕx0 | ρ(x) |ϕx0〉 =
1

N

∑

k,l∈B
e−ix0(k−l) 〈Ω| akc†xcxa†l |Ω〉

=
1

N

∑

k,l∈B
e−ix0(k−l)

[
eix(k−l)

N
(uku

∗
l − vkv∗l ) + δk,l〈nx〉Ω

]

= 〈nx〉Ω +
1

N2

∑

k,l∈B
ei(x−x0)(k−l)(uku

∗
l − vkv∗l ).

(3.57)

Assume now that vk has no complex phase factor depending on k. The coefficient
uk is already assumed to be real. Thus, we realize that

wk,l ≡ uku
∗
l − vkv∗l (3.58)

is symmetric in k and l, wk,l = wl,k, and real, wk,l ∈ R. Therefore, the sum in (3.57)
can be expressed as Fourier-like sum of an even function,

〈ϕx0| ρ(x) |ϕx0〉 = 〈nx〉Ω +
2

N2

∑

k,l∈B|l<k
wk,l cos

(
(x− x0)(k − l)

)

+
1

N

(
1− 2〈nx〉Ω

)
.

(3.59)

This is on the same form as the ansatz in (3.52). Note that the last term in (3.59)
stems from the sum over the diagonal elements, wk,k, and it is suppressed in the large
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N limit. The expression for the perturbation, S(x − x0), is not very transparent
other than having a dependency on x− x0. It can not be easily evaluated since the
coefficients wk,l depend intricately on the parameters µ, t and ∆. A numerical study
of the function S(x− x0) can be seen in Figure 3.2 where the function is plotted for
a range of chemical potentials. The distribution reveals a well-defined localization
of the quasiparticle excitation with a slight overlap to the neighbouring sites of x0.
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Figure 3.2: Fermion occupancy in quasiparticle excitation, S(x − x0), with
x0 = 15 for N = 50 sites. The parameters were fixed to ∆ = 0.5 and t = 1.0. (a)
µ ≤ 0 and (b) µ ≥ 0. Note that the two top panels with red graphs are identical.
Coloured disks indicate the integer positions along the chain. The excitation
S(x − x0) is sharply peaked around x0. The peak is positive for µ � −t as the
quasiparticle excitation is mainly particle. Similarly, the peak is negative peak
for µ� t as the quasiparticle excitation is mainly hole.

Finally, we shift the focus to fermion excitations of the ground state,

|ψx〉 = c†x |Ω〉 =
1√
N

∑

k∈B
eikxuka

†
k |Ω〉 , (3.60)

when expressed in terms of quasiparticle operators. Calculating 〈ψx0| ρ(x) |ψx0〉 is
very similar to the derivation of 〈ϕx0| ρ(x) |ϕx0〉. We therefore skip the intermediate
steps and state our result,

〈ψx0| ρ(x) |ψx0〉 = 〈nx〉Ω (1− 〈nx〉Ω) +
2

N2

∑

k,l∈B|l<k
hk,l cos

(
(x− x0)(k − l)

)

+
1

N

(
1− 〈nx〉Ω −

(
σntot/

√
N
)2
)
,

(3.61)

with

hk,l ≡ u∗kul(uku
∗
l − vkv∗l ). (3.62)
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Again, the final constant term comes from summing over the diagonal elements hk,k.
The function (3.61) is qualitatively similar to (3.59) for µ < 0. However, as µ � t
the whole distribution in (3.61) tends to 0. This is not strange; it simply means
that one hopelessly tries to excite the ground state with a fermion when all sites are
already occupied (recall that 〈nx〉Ω → 1 as µ� t).

3.3 Topological Invariant and the Berry Phase

We approach the task of establishing the topological invariant by computing a certain
geometrical phase (the reader is referred to Appendix A for details and a formal
derivation). The topological phase transition has a physical consequence in an open
system. There, the invariant will turn out to indicate whether the system supports
boundary Majorana fermions or not [10]. Our point of departure is to decompose the
BdG Hamiltonian, Hk, in a Pauli matrix basis. This is inspired by the prescription
outlined by Jason Alicea [11]. It has a geometrical appeal and makes a natural
connection to the geometrical phase. We will deviate from Alicea’s minimalistic
explanation and perform a calculation with associations of the original derivation by
Michael Berry [25]. The Hamiltonian as expressed in the momentum representation,

H =
1

2

∑

k∈B
C†kHkCk, (3.63)

is a sum over paired states in the Brillouin zone. The matrix Hk connects particles
and holes of momenta k and −k. Focusing on a single pair, Berry phase effects are
expected to occur if k is allowed to adiabatically sweep B [26]. We will consider
such a sweep and apply the formalism derived in Appendix A and B. With σ =(
σx, σy, σz

)T
denoting the Pauli matrix vector, we decompose

Hk = h(k) · σ =

(
hz hx − ihy

hx + ihy −hz

)
. (3.64)

Comparing with the matrix components from equation (3.13) the vector h(k) can
be directly read out,

h(k) =




∆ sinφ sin k
−∆ cosφ sin k
−t cos k − µ


 , (3.65)

with φ the superconducting phase as before. We think of φ, ∆ and µ as fixed
parameters, and k as varying in the interval B = (0, 2π] for convenience in this
section. Crucially, the vector h(k) in equation (3.65) is restricted to lie in the plane
spanned by the three points (0, 0, 0), (sinφ,− cosφ, 0) and (0, 0, 1). Moreover, its
components explicitly suggest that the curve in this plane is an ellipse. It is phrased
parametrically in k with center in (0, 0,−µ), one axis in the xy-plane of length ∆ and
the other axis along the z-axis of length t. For simplicity, we fix φ = 0 such that h(k)
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lies in the yz-plane. This is depicted in Figure 3.3. Note, for later reference, that the
direction of circulation is reversed if ∆ < 0. We will return to this observation when
considering the open Kitaev chain with a spatially varying order parameter. The
decomposition in equation (3.64) is just a rotated Pauli matrix. We may generally
parametrize it by its polar angles, (ϕ, ϑ),

y

z

∆

t

µ •

Trivial phase,

|µ| > t

h(k)

ϑ

k

(a)

y

z

∆

t
µ

•

Topological phase,

|µ| < t

h(k)

ϑ
k

(b)

Figure 3.3: A geometrical interpretation of the topological invariant. Here, it
is assumed that φ = 0 and ∆ > 0. The contour traced out by h(k) is denoted by
Γ. (a) If |µ| > t the origin is not inside in the contour traced out by h(k). (b)
The vector h(k) circulates the origin if and only if |µ| < t.

Hk = h(k) · σ = σh(ϕ, ϑ). (3.66)

The eigenvectors take the usual form for a rotated Pauli matrix (see for instance
[23]),

|h,+〉 =

(
cos ϑ

2

eiϕ sin ϑ
2

)
and |h,−〉 =

(
−eiϕ sin ϑ

2

cos ϑ
2

)
, (3.67)

corresponding to the eigenvalues ±|h| respectively.

3.3.1 Calculating the Geometrical Phase

As follows from the Adiabatic Theorem (the reader is directed to Appendix B for
a formulation of the theorem), the geometric phases, α±, accumulated by the two
states |h,±〉 are given by the contour integral (summation over i implied)

α± =

∮

Γ

dhi ai,±(h), (3.68)

with Γ referring to the closed elliptical contour shown in Figure 3.3 and a±(h) the
vector field derived in Appendix A. It has the components
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ai,±(h) = −i 〈h,±| ∂
∂hi
|h,±〉 . (3.69)

The differential change in the ith component of h, dhi, is caused by k running
through the Brillouin zone. Using Stokes’ Theorem enables us to rewrite the integral
in a way that will reveal important features,

α± =

∮

Γ

dh · a±(h) =

∫

S
dS ·

(
∇h × a±(h)

)
, (3.70)

with S referring to the area of a surface with Γ as boundary, × is the antisymmetric
vector product and

∇h ≡
(

∂
∂h1 ,

∂
∂h2 ,

∂
∂h3

)T ≡
(
∂1, ∂2, ∂3

)T
. (3.71)

The vector field appearing in the surface integral,

f±(h) = ∇h × a±(h), (3.72)

is closely related to the antisymmetric tensor field fij that is derived in Appendix
A.2. Making use of the Levi-Cevita symbol εijk, the components of f±(h) are related
to fjk,± by

fi,±(h) = εijk∂jak,±

=
1

2
εijk (∂jak,± − ∂kaj,±)

=
1

2
εijkfjk,±(h).

(3.73)

Hence, the expression derived in Appendix A for calculating the components fij
translates to a prescription for finding fi,±,

fi,n(h) = − i
2
εijl
∑

n′ 6=n

[〈n|∂jHk|n′〉 〈n′|∂lHk|n〉
(En − En′)2

− (j ↔ l)

]
, (3.74)

with |n〉 ∈ {|h,+〉 , |h,−〉} and (j ↔ l) referring to the previous expression with
indices j and l interchanged. Equivalently,

f±(h) = −i〈h,±|σ|h,∓〉 × 〈h,∓|σ|h,±〉
(E± − E∓)2

, (3.75)

since ∇hHk = σ as seen from equation (3.66). We apply the same trick as originally
performed by Michael Berry [26]; we temporarily rotate the axes such that ϑ = 0,
i.e. h = |h|ez. This means that
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|h,+〉 =

(
1
0

)
≡ |+〉 and |h,−〉 =

(
0
1

)
≡ |−〉 . (3.76)

Using Pauli matrices gives the quantities needed to evaluate (3.75),

〈+|σx |−〉 = 1, 〈+|σy |−〉 = −i, 〈+|σz |−〉 = 0 ⇒
〈+|σ |−〉 × 〈−|σ |+〉 = 2iez.

(3.77)

We arrive at a result that is general for a two-level system,

f±(h) = −i〈±|σ|∓〉 × 〈∓|σ|±〉
(E± − E∓)2

= −i±2iez
4|h|2

= ± h

2|h|3 .

(3.78)

The field f± is thus similar to a monopole source of charge 1/2 at the origin,
h = 0, which is exactly where the energy levels become degenerate. The phase from
equation (3.70) may be interpreted as the flux from this monopole field through
a surface S that has Γ as boundary. This is simply equal to half the solid angle,
denoted by ΩΓ, that the surface S covers. With our elliptical contour, it boils down
to whether the origin is inside the ellipse or not (see again Figure 3.3). If the origin
is inside the contour the solid angle is equivalent to that of half a sphere, namely
ΩΓ = 2π. If the origin is outside Γ the solid angle is trivial, ΩΓ = 0. To summarize,

α± =

∫

S
dS · f±(h) = ±ΩΓ

2
=

{
±π if |µ| < t

0 if |µ| > t
. (3.79)

Hence, the phase factors, ν = e−iα± , are restricted to being a Z2 integer. The pos-
sibilities are

• |µ| < t: The origin lies inside the contour Γ, and the ground state of Hk will
obtain a geometrical phase factor equal to ν = e−iα− = −1 during an adiabatic
sweep of k.

• |µ| > t: The origin is outside the contour Γ, and the ground state does not
obtain any non-trivial phase factor during the adiabatic evolution, ν = 1.

Thus, the quantization of ν is a consequence of k sweeping the entire Brillouin zone
adiabatically and focusing on the Berry phase obtained by a single Cooper pair.
The two values of ν reflect the two topologically distinct paths of h(k) (see again
Figure 3.3). It is perhaps more convenient to depict the difference in terms of the
unit vector h(k)/|h(k)| as Alicea does [11]. In the case of |µ| < t, this unit vector
must trace out a unit circle as k sweeps (0, 2π]. Whereas for |µ| > t, the normalized
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vector trace out only a part of the circle arc. As seen from Figure 3.3, this arc
contains the south pole if µ > t and the north pole if µ < −t.

The two types of trajectories, characterized by ν, classify the topological phases of
the model. Although not evident at the moment, the phase |µ| < t is denoted by
the topological phase. It will turn out to be the parameter regime that supports
edge Majorana modes in the open system. In contrast, |µ| > t is called the trivial
phase. Furthermore, it is no coincidence that the transitions, |µ| = t, occur exactly
at the gap closing points (see Figure 3.1) where the ground state in (3.36) undergoes
discrete changes in its fermionic content.

3.4 Two-Point Correlation Functions

The tools needed to calculate various correlation functions have been established
throughout the past sections. Given two observables, A and B, we define the two-
point correlation function as

C(A,B) ≡ 〈AB〉 − 〈A〉〈B〉. (3.80)

Mathematically, this quantity is the covariance of A and B. The following deduction
is separated in two types of fermionic correlations, which we denote by C1 and C2

respectively. We emphasise that this study is not based on any reference, but some
of the findings will turn out to be related to the discussion in [24]. The section is
concluded with a discussion of the results.

3.4.1 First Type of Correlation

We study the correlation describing annihilation of a fermion at site y when excited
at x. Both 〈c†x〉Ω = 〈cy〉Ω = 0, which is seen by expressing the cx operators in terms
of quasiparticle operators as before. Hence, we find that

C1(x, y) ≡ 〈c†xcy〉Ω − 〈c†x〉Ω〈cy〉Ω
=

1

N
〈Ω|
∑

k∈B
eikx(uka

†
k − v∗ka−k)

∑

l∈B
e−ily(u∗l al − vla†−l) |Ω〉

=
1

N

∑

k∈B
eik(x−y)|vk|2

=
1

2N

∑

k∈B

(
1− εk

Ek

)
cos
(
k(x− y)

)
.

(3.81)

This function is real valued, C1(x, y) : N2 → R, and it will be investigated numer-
ically. Intuitively, we expect the function to have a peak, centred at x = y, with
the value of the background distribution exactly at that point according to equation
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(3.43). The function C1(x, y = 15) is shown in Figure 3.4 for a representative range
of µ values and N = 50 chain sites. More interesting, however, is the long range
behaviour; is a fermion annihilation at one site affected by an excitation on a site
far away for arbitrary N?

0.0
0.2
0.4
0.6

Correlation function C1 (x,y) with fixed y

µ/t=0.0

0.0
0.2
0.4
0.6

µ/t=−0.5

0.0
0.2
0.4
0.6

C
o
rr
e
la
ti
o
n
 f
u
n
ct
io
n
, 
C

1
(x

,y
)

µ/t=−1.0

0 10 20 30 40 50
Chain position, x

0.0
0.2
0.4
0.6

µ/t=−1.5

(a)

−0.2
0.0
0.2
0.4
0.6
0.8

Correlation function C1 (x,y) with fixed y

µ/t=0.0

−0.2
0.0
0.2
0.4
0.6
0.8

µ/t=0.5

−0.2
0.0
0.2
0.4
0.6
0.8

C
o
rr
e
la
ti
o
n
 f
u
n
ct
io
n
, 
C

1
(x

,y
)

µ/t=1.0

0 10 20 30 40 50
Chain position, x

−0.2
0.0
0.2
0.4
0.6
0.8

µ/t=1.5

(b)

Figure 3.4: Correlation function C1(x, y) for fixed y = 15, t = 1.0, ∆ = 0.5 with
N = 50 sites. The coloured disks indicate the integer positions along the chain.
(a) µ ≤ 0 and (b) µ ≥ 0. Note that the two top panels with red graphs are
identical and kept for visual reference when comparing panels within the same
figure.

In order to address this question one may trace the values of C1(x, y) for large spa-
tial separation, |x − y| = N/2 − 1 (for even N), as a function of µ. The reason for
choosing |x−y| = N/2−1 is that the correlations generally seemed to be suppressed
exactly at |x−y| = N/2 (for even N). Stepping one site away was thus beneficial for
the purpose of visualizing non-vanishing correlations with large spatial separation.
We have shown this in Figure 3.5 for several system sizes. One can see how the long
range values are discontinuous at the critical points, µ = ±t. Numerically, it was
seen that rapid oscillations occurred for |µ| < t when ∆ � t. Indications of this
behaviour can be seen for N = 20 in Figure 3.5.

Observe next that C1(x, y) can be related to the inverse Fourier transform of a
certain expectation value. Glancing back at the deduction in equation (3.39), we
find the connection

1

N

∑

k∈B
e−ikx〈c†kck〉Ω = C1(0, x), (3.82)

which is a spatial translation of C1(x, y). Hence, C1(x, y) is basically the inverse
Fourier transform of the fermion Fourier mode occupation number 〈c†kck〉Ω.
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Figure 3.5: Correlation function C1(x, y) with |x− y| = N/2− 1 as function of
µ for several system sizes. The remaining parameters were fixed, ∆ = 0.5 and
t = 1.0. The phase transitions at µ = ±t are indicated with a yellow dashed line.
The inset plot shows the maximum value of |C1(x, y)| as function of reciprocal
system size.

3.4.2 Second Type of Correlation

The Kitaev Hamiltonian is a mean field model with Cooper pairing; terms of the
type 〈c†xc†y〉Ω are generally expected to be non-zero. Recall that such terms would
not be present in a normal metal. With the assumption of φ = 0 we define and
calculate a second type of correlation function,

C2(x, y) ≡ 〈c†xc†y〉Ω − 〈c†x〉Ω〈c†y〉Ω
=

1

N
〈Ω|
∑

k∈B
eikx(uka

†
k − v∗ka−k)

∑

l∈B
eily(ula

†
l − v∗l a−l) |Ω〉

= − 1

N

∑

k∈B
eik(x−y)v∗kuk

= −∆

N

∑

k∈B

sin k

2Ek
sin
(
k(x− y)

)
.

(3.83)

Just like C1(x, y), the function C2(x, y) is real valued (when φ = 0). Furthermore,
it is not unexpectedly proportional to the superconducting gap ∆. In Figure 3.6
the function C2(x, y = 15) is shown for a sample of µ values and N = 50 chain
sites. Analogous to our study of C1 Figure 3.7 visualizes the function C2(x, y) with
large spatial separation, |x − y| = N/2 − 1, as function of µ. It does not reveal
any discontinuity, but it exhibits qualitatively some of the same features as C1(x, y).



Section 3.4 Two-Point Correlation Functions 45

This function may also be related to the inverse Fourier transform of an expectation
value. We find that
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Figure 3.6: Correlation function C2(x, y) for fixed y = 15, t = 1.0, ∆ = 0.5 with
N = 50 sites. The coloured disks indicate the integer positions along the chain.
(a) µ ≤ 0 and (b) µ ≥ 0. Note that the two top panels with red graphs are
identical and kept for visual reference when comparing panels within the same
figure.
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Figure 3.7: Correlation function C2(x, y) with |x− y| = N/2− 1 as function of
µ for several system sizes. The remaining parameters were fixed, ∆ = 0.5 and
t = 1.0. The phase transitions at µ = ±t are marked with a yellow dashed line.
The inset plot shows the maximum value of |C2(x, y)| as function of reciprocal
system size.
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1

N

∑

k∈B
e−ikx〈c†kc†−k〉Ω =

1

N

∑

k∈B
e−ikx 〈Ω| (uka†k − v∗ka−k)(uka†−k + v∗kak) |Ω〉

= − 1

N

∑

k∈B
e−ikxv∗kuk

= C2(0, x).

(3.84)

As pointed out by Read and Green [24] – although their discussion concerns a two-
dimensional system – this latter function may be interpreted vaguely as the Cooper
pair size, motivated by the fact that Cooper pairs are bound states of fermions with
momenta k and −k.

3.4.3 Discussion and Remarks

Usually, one applies the term long range correlations if the correlation function
depends algebraically on |x − y|, in contrast to an exponential dependency. The
function C1(x, y) is generally not in any of these categories as Figure 3.4 and equa-
tion (3.81) indicate. However, one might suggest to do a more rigorous analysis
in an attempt to determine if there is a qualitative difference between the corre-
lations in the topological and the trivial phase. One approach to classifying the
difference could be to parametrize the correlations by some trial function, having
both an exponential and an algebraic decay, and statistically determine which part
is dominant [16]. This quickly becomes a tedious investigation without revealing
any revolutionary insights. Judging from Figure 3.4, the function C1(x, y) is only
seen to have values that are not highly suppressed whenever |x− y| � N/2.

The inset plot in Figure 3.5 reveals that the maximum correlation values of C1 with
large spatial separation scale approximately inversely with system size, ∼ 1/N . Re-
call that we consider a discrete chain with only nearest neighbour couplings. Thus,
it is not unexpected that an increment in the number of sites leads to such a decay
in the correlations. The correlations with great spatial separation will, by naive
extrapolation, disappear in the thermodynamic limit, N → ∞. The fact that the
correlations are enlarged at µ = ±t can be understood qualitatively from the closing
of the energy gap at these points. When the gap is close to zero, a close-to-zero-
energy excitation of the ground state could perturb almost undisturbed throughout
the system.

One might question the discontinuity seen at µ = ±t seen in Figure 3.5. Why does it
occur? In the previous section we discussed that the unit vector h(k)/|h(k)| traced
out a circle when |µ| < t. Whereas for |µ| > t, the vector spanned only a part of
the circle arc. The transition between these trajectories stem from discontinuities of
uk and vk, meaning the eigenvectors of Hk. The key properties in (3.20) do indeed
confirm this, in particular for k = 0 and k = π. It is therefore not unexpected that
a function depending heavily on |vk|2, as C1 indeed does, reflects this discontinuity.
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Moreover, this observation seems to be in accordance with a part of the discussion
of Read and Green [24]. They argue how the topological phase transition is rooted
in the topology of k-space and that this, in turn, should be reflected in the mean
field functions uk, vk, Ek and ∆k. We therefore vaguely interpret the observed dis-
continuity in the correlation function as reflecting the distinction between the trivial
and the topological phase of the model.

Figures 3.6 and 3.7 show some of the characteristics just discussed. The scaling
in the inset of Figure 3.7, approximately a ∼ 1/N relation,4 suggests once more
that the correlations with large spatial separation become suppressed in the ther-
modynamic limit. Some resonance or enlargement of the correlations occur close to
µ = ±t. At this point we adopt the interpretation of Read and Green that C2(0, x)
may be thought of as the Cooper pair size [24]. In this sense, we may state, by
looking at Figure 3.7, that the Cooper pairs are more loosely bound close to the
phase transitions where the energy gap is small.

Finally, one could a priori ask if it is of interest to investigate quasiparticle correla-
tions, such as 〈ϕ†xϕy〉Ω, 〈ϕ†xϕ†y〉Ω, 〈ϕxϕy〉Ω and 〈ϕxϕ†y〉Ω. By inspecting the definition
of these operators in equation (3.50), and by applying the defining property of the
ground state (3.28), however, it is clear that only one of these functions is non-zero,
namely 〈ϕxϕ†y〉Ω. It is trivially seen to be 〈ϕxϕ†y〉Ω = δx,y. This is no surprise since
the fundamental excitations of the system are non-interacting particles.

3.5 Comparing Periodic and Anti-Periodic Bound-

ary Conditions

We close this chapter with an observational note on anti-periodic boundary con-
ditions for completeness and later reference. Recall the discrete Fourier transform
that was introduced in the beginning of this chapter,

cx =
1√
N

N∑

k=1

e−ikx
2π
N ck. (3.85)

Requiring periodic boundary conditions can then be expressed by demanding that

cx=1 = cx=N+1 ⇒ eikN = 1, (3.86)

which results in k = 2πm/N for m ∈ {1, 2, . . . , N} as already seen. A superconduct-
ing flux quantum threading the closed Kitaev chain could be encoded by altering

4One may notice that the N = 20 line in Figure 3.7 deviates slightly from the linear scaling
tendency in the inset plot. The exact reason for this is unclear. Generally, however, this deviation
tended to be even larger as the system size was reduced further. Thus, some small system effect
plausibly disturbs the linear tendency.
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the boundary conditions to anti-periodic [24]. We may also think of this merely as
a mathematical modification of the boundary conditions. It means that we instead
require

cx=1 = −cx=N+1 ⇒ eikN = −1. (3.87)

The values of k satisfying this belongs to the set

B̄ ≡
{ π
N

(2n+ 1) | n ∈ {1, 2, . . . , N}
}
. (3.88)

It should be compared to (3.9), and it is seen that

k = 0 /∈ B̄ and k = π /∈ B̄ of N is even,

k = 0 /∈ B̄ and k = π ∈ B̄ of N is odd.
(3.89)

The differences between occupied modes for periodic and anti-periodic boundary
conditions are illustrated in Figure 3.8 in the topological phase, |µ| < t. Note that
the fermion parity of the ground state when |µ| < t, for both even and odd N , is −1
with periodic boundary conditions and +1 for anti-periodic boundary conditions. A
more complete collection of observations, based on the modes present or absent in
B and B̄, are summarized in Table 3.1. The resulting ground states are seen to be
in accordance with the two-dimensional analogue of the Kitaev chain that Read and
Green thoroughly analyse [24]. One difference from their discussion, though, is the
dispersion reflected in εk. The quadratic dispersion that is used in their discussion
gives rise to a different characterization of the topological phases, determined only
by the sign of µ.

Table 3.1: Comparison of ground state fermion parity for periodic and anti-
periodic boundary conditions in the closed Kitaev chain.

Boundary conditions
and number of sites,

N

Ground state
parity,
µ < −t

Ground state
parity, |µ| < t

Ground state
parity, µ > t

Periodic, even N +1 −1 +1
Periodic, odd N +1 −1 −1

Anti-periodic, even N +1 +1 +1
Anti-periodic, odd N +1 +1 −1

Another observation seems to be apparent in both our results and those of Read and
Green. Comparing the ground state parity for periodic and anti-periodic boundary
conditions (for even and odd N separately) reveals that they are opposite in the
topological phase and equal in the trivial phase.
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Figure 3.8: Illustration of (partly) occupied Fourier modes in the ground state
for even/odd N and for periodic/anti-periodic boundary conditions in the topo-
logical phase, |µ| < t. Paired states (Cooper pairs) are marked with dashed
ellipses, and unpaired states are highlighted with red boxes. The blue boxes indi-
cate present but unoccupied modes. The products are understood to run over B+

and a corresponding set B̄+ for periodic and anti-periodic boundary conditions
respectively.

3.5.1 Closing Remarks

In this chapter we have progressively built a detailed understanding of the closed
Kitaev chain. Discrete Fourier transforms allowed us to analytically diagonalize
the Hamiltonian and to find its energy spectrum. We derived a ground state with
Cooper-paired states and two unoccupied modes that depended on the parameter
regime. This detailed view adds information to the schematic description of the
ground state in [11]. Effort was spent in describing the fermion distribution in
the ground state and excitations of it. The fermion occupancy was seen to be
antisymmetric when consider as a function of µ, and it did not depend on the
chain site (translational invariance). Then, a Berry phase calculation was found
to distinguish the two parameter regimes |µ| < t and |µ| > t, reflecting two types
of curves traced out by h(k). With this characterization in mind we sought how
the topological phase transition manifested itself in two-point correlation functions.
In particular, correlation resonances and Cooper pairs of enlarged spatial extension
were observed at the transitions. Finally, we compared the ground state fermion
parity for periodic and anti-periodic boundary conditions, which depended on the
presences or absence of the unpaired operators c†0 and c†π.





Chapter 4

The Open Kitaev Chain

So far, we have examined analytical expressions to understand various aspects of the
closed Kitaev chain. As the boundary conditions are changed to open, one expects
the interior of the chain – assuming the system is large – to have the same intrinsic
properties as the closed one. Still, some qualitatively new phenomena may appear
due to the open boundary. The main feature is the possible appearance of Majorana
zero modes on the two ends [10]. Exploiting edge Majoranas in networks of one-
dimensional wires has been proposed as a protocol of probing particles with exotic
exchange statistics [7]. The Hamiltonian of the open Kitaev chain is

H = −µ
N∑

x=1

c†xcx −
1

2

N−1∑

x=1

(
tc†xcx+1 + ∆eiφcxcx+1 + h.c.

)
. (4.1)

We open this chapter with a revisit of Kitaev’s argument, demonstrating localized
Majorana modes for a special choice of parameters. Thereafter, we depart from
Kitaev’s discussion and establish a more complete understanding of the degenerate
ground states in terms of normal fermion occupancy states. We suggest and prove
an induction hypothesis concerning the form of these ground states. Then, we relate
these states to the unique one in the closed chain. Finally, we diagonalize the open
Kitaev Hamiltonian numerically. Instead of focusing on domain walls in chemical
potential, which is usually discussed in the literature [11, 12], we study the effect of
a spatially varying order parameter ∆ = ∆x. Especially, we are interested in seeing
the effect of an order parameter mimicking the profile of a vortex, even though this
construction may be artificial in one dimension.

4.1 Introductory Demonstration of Edge Majo-

ranas

The idea of Kitaev [10] is revisited to demonstrate that the Hamiltonian (4.1) sup-
ports a non-local fermionic operator formed by Majoranas. The fact that the fermion
is a Dirac-particle and physically distinct from its antiparticle (reflected in cx 6= c†x)
can be used to decompose the fermion operators in Majorana operators that lack

51
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this degree of freedom. For convenience, we merge the dependency of the supercon-
ducting phase into the definition,

cx ≡
1

2
e−i

φ
2 (γB,x + iγA,x), (4.2)

with

γα,x = γ†α,x and {γα,x, γα′,x′} = 2δα,α′δx,x′ . (4.3)

The fermion operators are in other words split into a real (B) and an imaginary
(A) part dictated by the subscript α ∈ {A,B}. There are in total 2N distinct γ
operators. Assume next that µ = 0 and ∆ = t. When (4.2) is inserted into the
Hamiltonian in (4.1), one finds after simplification that

H = − t
2

N−1∑

x=1

(c†xcx+1 + eiφcxcx+1 + h.c.)

= i
t

2

N−1∑

x=1

γA,x+1γB,x.

(4.4)

· · ·

γA,1 γB,1

c1 c2

γA,N γB,N

cN

· · ·

d1 dN−1

Figure 4.1: Top chain: fermionic operators cx are split up into two Majorana
operators. Bottom chain: pairing up Majorana operators from neighbouring cx
operators leaves a non-local operator formed by each end of the chain. The figure
is inspired by [5].

By pairing up Majorana operators from neighbouring fermion sites, schematically
depicted in Figure 4.1, H is diagonalized. We define new operators,

dx ≡
1

2
(γA,x+1 + iγB,x). (4.5)
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They satisfy fermionic anticommutation relations,

{dx, d†x′} = δx,x′ and {dx, dx′} = {d†x, d†x′} = 0, (4.6)

allowing us to interpret them as fermionic degrees of freedom.1 This simplifies (4.4)
to

H = t

N−1∑

x=1

(
d†xdx −

1

2

)
. (4.7)

This diagonal Hamiltonian supports N − 1 states with constant energy spacing, t,
formed by the d†x operators. Two Majorana operators, however, are missing in this
Hamiltonian, namely γA,1 and γB,N . Thus, we define one non-local fermion operator,

d0 ≡
1

2
(γA,1 + iγB,N). (4.8)

This operator destroys an excitation of zero energy since it is absent in the Hamil-
tonian. Therefore, the ground state must be doubly degenerate. This is in contrast
to the closed Kitaev chain where the ground state was unique. Furthermore, the
Hamiltonian (4.7) should be compared to the trivial case t = ∆ = 0, in which it
takes the form

H = −µ
N∑

x=1

c†xcx. (4.9)

The two Hamiltonians (4.7) and (4.9) represent the two distinct phases of the open
Kitaev chain for the simplest choice of parameters. The latter Hamiltonian has a
unique ground state, while the primer has unpaired Majorana operators on the open
ends and degenerate ground states of opposite fermionic parity [10].

4.2 The Ground State Subspace

We take an analytical detour in an attempt obtain a more complete understanding
of the degenerate ground states for the simple choice of parameters µ = 0 and
∆ = t. It is of interest to find the many-body ground states expressed in terms of
product states with well-defined fermion occupancies. There are a total of 2N of
these states, representing all possible combinations of occupation numbers. This is,
of course, also the dimension of the Hilbert space of the system. Furthermore, how
are the degenerate ground state of the open system related to the unique ground
state, |Ω〉, in the closed system? This is a question we will try to answer in this
section. First, some notation must be introduced. The many-body vacuum with N

1In fact, one can pair up A- and B-types of Majorana operators from arbitrary sites to form
new fermionic operators.
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sites, denoted by |0N〉 for clarity in this section, is defined to be the product state
of zero fermion occupancy states in the position representation,

|0N〉 ≡
N⊗

x=1

|0, x〉 ≡ |00 . . . 0〉 . (4.10)

This state is destroyed by any cx operator. We define a state with some filled sites
to have the order of increasing indices on fermion creation operators. For instance,
the fully filled state, |11 · · · 1〉, is defined as

|11 . . . 1〉 ≡ c†1c
†
2 · · · c†N |0N〉 . (4.11)

Acting with a fermion operator on some general state may therefore result in picking
up a sign, depending on the fermion parity of the preceding part of the state. For
instance,

cj |α1α2 · · ·αj−1 1 αj+1 · · ·αN〉 = (−1)
∑j−1
i=1 αi |α1α2 · · ·αj−1 0 αj+1 · · ·αN〉 , (4.12)

with αi ∈ {0, 1}. We know that the ground state subspace is two-dimensional since
the fermionic operator d†0 creates an excitation of zero energy. Two orthogonal states
spanning the ground state, {|g1〉 , |g2〉}, are therefore defined to satisfy

d0 |g1〉 = d†0 |g2〉 = 0. (4.13)

The states are related by

d†0 |g1〉 = |g2〉 . (4.14)

We start by constructing a ground state candidate, |a〉, naively by applying all dx
for x ∈ {1, . . . , N − 1} on the vacuum state,

|a〉 ≡
N−1∏

x=1

dx |0N〉 . (4.15)

Normalization is taken care of later. The state |a〉 has by construction zero en-
ergy.2 An immediate question should be raised. The ground state subspace is
two-dimensional, and we have a set of three possible states at our disposal,

G ≡
{
|a〉 , d0 |a〉 , d†0 |a〉

}
. (4.16)

2Again, the constant energy term in (4.7) is understood to be neglected. Therefore, the Hamil-

tonian with t = ∆ and µ = 0 is simply H = t
∑N−1
x=1 d†xdx.
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By some means, one of the states in G must be eliminated as candidates for |g1〉
and |g2〉. In order to determine which, the state |a〉 should be calculated explicitly.
We will do this by observing a pattern occurring with just a few sites, propose a
hypothesis, and prove it by induction on the system size, N . The starting point is
to express the d operators in terms of ordinary fermion operators. Using equations
(4.2), (4.5) and (4.8) we find, assuming that φ = 0,

dx =
i

2

(
cx + c†x − cx+1 + c†x+1

)
and d0 =

i

2

(
cN + c†N − c1 + c†1

)
. (4.17)

To see the structure of |a〉 we look at the emerging pattern with N ∈ {2, 3, 4}.
Applying d operators successively yields

d1 |02〉 =
i

2

[
|10〉+ |01〉

]
, (4.18)

d2d1 |03〉 =

(
i

2

)2 [
|000〉 − |101〉 − |110〉 − |011〉

]
, (4.19)

d3d2d1 |04〉 =

(
i

2

)3 [
|0〉 ⊗

(
|10〉+ |01〉

)
⊗ |0〉 − |1〉 ⊗

(
|10〉+ |01〉

)
⊗ |1〉

+ |1〉 ⊗
(
|00〉 − |11〉

)
⊗ |0〉+ |0〉 ⊗

(
|00〉 − |11〉

)
⊗ |1〉

]
.

(4.20)

In (4.20) the states belonging to the end points are explicitly extracted to reveal a
pattern. It motivates our induction hypothesis, denoted by IN , on the general form
of |a〉,

IN : |a〉 ≡
N−1∏

x=1

dx |0N〉 =

(
i

2

)N−1 [
|0 b 0〉 − |1 b 1〉+ |0 c 1〉+ |1 c 0〉

]
. (4.21)

Above, |b〉 contains all 2N−3 combinations of odd (even) fermion parity states if N is
even (odd). All the states in |b〉 have the same relative weights of either +1 or −1.
Similarly, |c〉 contains all 2N−3 combinations of even (odd) fermion parity states if
N is even (odd). The relative weights of the states in |c〉 are also either +1 or −1.
We proceed by proving that IN ⇒ IN+1 when the number of sites is increased by
one in the chain. This is, by induction, enough to prove that IN holds for all N .

Proof. Assume first that N is odd. Thus, IN tells us that |a〉 takes the form in
(4.21) with |b〉 being an even parity state and |c〉 as an odd parity state. We must
show that |a′〉 ≡ dN |a〉⊗ |0〉 is in accordance with the description imposed by IN+1.
In other words, |a′〉 must have |b′〉 as an odd parity state and |c′〉 as an even parity
state since N + 1 is even. We find that
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|a′〉 ≡ dN |a〉 ⊗ |0〉

=

(
i

2

)N [
|0〉 ⊗

(
|b 1〉 − |c 0〉

)
⊗ |0〉 − |1〉 ⊗

(
|b 1〉 − |c 0〉

)
⊗ |1〉

+ |1〉 ⊗
(
|b 0〉+ |c 1〉

)
⊗ |0〉+ |0〉 ⊗

(
|b 0〉+ |c 1〉

)
⊗ |1〉

]

=

(
i

2

)N [
|0 b′ 0〉 − |1 b′ 1〉+ |0 c′ 1〉+ |1 c′ 0〉

]
,

(4.22)

with

|b′〉 ≡ |b 1〉 − |c 0〉 and |c′〉 ≡ |b 0〉+ |c 1〉 . (4.23)

Hence, |b′〉 is an odd parity state that contains all 2N−2 combinations, which follows
from the induction hypothesis. In addition, |c′〉 must be an even parity state con-
taining all 2N−2 combinations. This is exactly the properties required by IN+1. In
principle, we must also show that the same implication holds with N even. However,
this is not necessary since the only change would be an overall sign in the above
calculation, stemming from equation (4.12). We conclude that IN ⇒ IN+1 and IN
is true for all N .

The basic properties of the state |a〉 are now established by equation (4.21). At this
point it is convenient to split the discussion into even and odd N .

4.2.1 Odd N Ground States

According to (4.21), the state |b〉 contains combinations of even parity states with
relative weights of either +1 or −1. Analogously, |c〉 contains combinations of odd
parity states. Using once more the rule in equation (4.12) we find that

d†0 |a〉 = 0. (4.24)

In other words, the state d†0 |a〉 is trivial and should be excluded from G. Calculating
d0 |a〉 and normalizing the resulting states gives the proper ground states, |g1〉 and
|g2〉, and corresponding fermion parities:

d0 |a〉 7→ |g1〉 =
1√

2N−1

[
− |0 c 0〉+ |1 c 1〉+ |0 b 1〉+ |1 b 0〉

]
with P = −1,

|a〉 7→ |g2〉 =
1√

2N−1

[
|0 b 0〉 − |1 b 1〉+ |0 c 1〉+ |1 c 0〉

]
with P = +1.

(4.25)

Notice how all the 2N available combinations of parity states are involved in either
|g1〉 or |g2〉.
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4.2.2 Even N Ground States

Still, |a〉 is as described in (4.21), and it has |b〉 containing combinations of odd
parity states and |c〉 containing combinations of even parity states. Again, by using
the rule in equation (4.12) we find that

d0 |a〉 = 0. (4.26)

Hence, the state d0 |a〉 should now be excluded from G. Normalizing |a〉 and d†0 |a〉
results in the ground states, which this time are denoted by |g̃1〉 and |g̃2〉 to distin-
guish them from the odd N ground states,

|a〉 7→ |g̃1〉 =
1√

2N−1

[
|0 b 0〉 − |1 b 1〉+ |0 c 1〉+ |1 c 0〉

]
with P = −1,

d†0 |a〉 7→ |g̃2〉 =
1√

2N−1

[
|0 c 0〉 − |1 c 1〉 − |0 b 1〉 − |1 b 0〉

]
with P = +1.

(4.27)

4.2.3 Relation to the Closed Chain

The deduction above was restricted to the special case of ∆ = t and µ = 0. We have
just seen that the degenerate ground states involve all fermion occupancy states
with weights of equal magnitude. The basic parity properties found above are in
satisfactory accordance with Kitaev’s discussion [10]. However, our results give a
more detailed picture of the ground state subspace structure that is not transparent
a priori. Furthermore, we have seen that choosing the correct states from the set
of candidates in G depends non-trivially on whether the number of sites are even or
odd. A natural follow-up question is to ask what the relation between the degener-
ate ground states of the open chain and the unique ground state in the closed chain
is. Recall from Figure 3.8 that the state |Ω〉 in the periodic chain had P = −1 when
|µ| < t.

Imagine connecting the two ends of the open chain by adding the term λi t
2
γA,1γB,N

in equation (4.4) and gradually increasing λ from 0 to 1. Since the state |g1〉 (|g̃1〉) is
of odd parity when N is odd (even), it should correspond to the unique ground state
|Ω〉 for odd (even) N . Recall further the defining property of the ground state in the
periodic chain: it should be annihilated by any quasiparticle annihilation operator.
This is in perfect agreement with the deduction above since both |g1〉 and |g̃1〉 are an-
nihilated by d0 (and by construction all the other dx operators), d0 |g̃1〉 = d0 |g1〉 = 0.

Moreover, the state |Ω〉 was of even fermion parity with anti-periodic boundary
conditions. In this case, |g2〉 (|g̃2〉) would be the correct candidates for |Ω〉 for odd
(even) N . However, both |g2〉 and |g̃2〉 are annihilated by d†0 and not d0. Formally,
this is equivalent to introducing the term λi t

2
γA,1γB,N in the Hamiltonian but let

λ change from 0 to −1 instead. Anti-periodic boundary conditions may therefore
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be interpreted as a negative hopping between the ends of the open chain. To close
the focus on the degenerate ground states, we calculate the entanglement entropy
between the ends and the interior of the chain.

4.2.4 Entanglement Entropy

We seek further insight of the ground states with ∆ = t and µ = 0 by the dividing
the system into two parts. Let E (edge) be the subsystem consisting of the end
points, x = 1 and x = N , and I (internal) the internal part of the system, x ∈
{2, . . . , N − 1}. To keep our discussion concrete, we stick to odd N and make use of
(4.25). However, our results can be checked to remain equally valid for both ground
states with even N . We want to quantitatively establish the entanglement entropy
of the composite system I+E when being in one of the states |g1〉 or |g2〉. Generally,
if the system is in some state |ψ〉, the density operator of the full system is defined
to be

ρ ≡ |ψ〉 〈ψ| . (4.28)

The density operator of the subsystem E is found by tracing over the states from I
in ρ,

ρE = TrI (ρ) =
∑

i∈I
〈i|ρ|i〉 . (4.29)

The von Neumann entropy of ρE is then taken as a quantitative measure of the
entanglement entropy of the composite system [23],

SE = −Tr(ρE log ρE) = −
∑

k

λ
(E)
k log λ

(E)
k , (4.30)

with λ
(E)
k the kth eigenvalue of ρE . This framework is applied to |ψ〉 = |g1〉 and

ρ = |g1〉 〈g1|. To trace out the internal system one may split up the sum in odd and
even parity states in I ,

ρE =
∑

i∈I
〈i|ρ|i〉

=
∑

i∈I
i: P=−1

〈i|ρ|i〉+
∑

j∈I
j: P=+1

〈j|ρ|j〉 . (4.31)

The reason for this is that 〈i|ρ|i〉 only contributes for terms containing |c〉 〈c|. Fur-
thermore, we know from earlier that |c〉 contains 2N−3 states of odd parity with
weights equal to ±1. Therefore, 〈i|c〉 〈c|i〉 = 1 in the odd parity trace. Similarly,
the sum over even parity states picks out contributions with |b〉 〈b| in ρ. Hence,
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∑

i∈I
i: P=−1

〈i|c〉 〈c|i〉 =
∑

j∈I
j: P=+1

〈j|b〉 〈b|j〉 = 2N−3. (4.32)

This means that the reduced density matrix ρE is

ρE =
∑

i∈I
i: P=−1

〈i|g1〉 〈g1|i〉+
∑

j∈I
j: P=+1

〈j|g1〉 〈g1|j〉

=
1

4

(
|01〉 〈01|+ |10〉 〈10|+ |01〉 〈10|+ |10〉 〈01|

+ |00〉 〈00|+ |11〉 〈11| − |00〉 〈11| − |11〉 〈00|
)

=
1

4




1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1


 ,

(4.33)

with the vector representation of states in the order |00〉, |01〉, |10〉, |11〉. This
matrix has two eigenvalues, 0 and 1/2, both doubly degenerate. We are thereby left
with the following value of the entanglement entropy:

SE = −
∑

k

λ
(E)
k log λ

(E)
k = log 2. (4.34)

One arrives at exactly the same reduced density matrix when |ψ〉 = |g2〉, and for
both even N ground states as well. Since the dimension of E is dim(E) = 4, the
value SE is exactly 1/2 of its maximum. Intuitively, this is caused by the struc-
ture of ρE in (4.33), which respects fermion parity in the sense that only states of
equal parity are connected. To summarize, we may say that the degenerate ground
states are delicately polarized in a fermion parity sense; they are equally weighted
combinations of all pure states of either even or odd parity. Furthermore, there is
a significant entanglement between the edge and the internal part of the system in
the ground states. These aspects of the physical state space are valuable to keep in
mind, and they do not seem to be discussed in the literature.

4.3 Matrix Formulation of the Open Kitaev Chain

Recall the Kitaev Hamiltonian in (4.1),

H = −µ
N∑

x=1

c†xcx −
1

2

N−1∑

x=1

(tc†xcx+1 + ∆eiφcxcx+1 + h.c.). (4.35)

The task of finding the energy spectrum and eigenstates for a general parameter
choice can be formulated in terms of a matrix eigenvalue problem. The goal of this
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section is to establish this formulation. We split up terms using the anticommutation
relations in equation (3.2) to get a fully symmetrized version of the Hamiltonian.
Including all available combinations of operators leaves us with

H =− 1

2
µ

N∑

x=1

(
c†xcx − cxc†x

)
− 1

4

N−1∑

x=1

(
t(c†xcx+1 − cx+1c

†
x)

+ ∆eiφ (cxcx+1 − cx+1cx) + h.c.
)

+ const.

(4.36)

A column vector of fermion operators is introduced,

Ψ ≡
(
c1, c†1, c2, c†2, . . . , cN , c†N

)T
. (4.37)

The Hamiltonian can now be compactly written on a quadratic form,

H = Ψ†MΨ. (4.38)

Above, the matrixM is 2N×2N , hermitian, pentadiagonal and found by comparing
elements with equation (4.36),

M =
1

2




−µ 0 − t
2

∆
2
e−iφ 0 . . . 0 0 0

0 µ −∆
2
eiφ t

2
0 . . . 0 0 0

− t
2
−∆

2
e−iφ −µ 0 − t

2
. . . 0 0 0

∆
2
eiφ t

2
0 µ −∆

2
eiφ

. . . 0 0 0

0 0 − t
2
−∆

2
e−iφ −µ . . . 0 0 0

...
...

...
. . . . . . . . . . . . . . .

...

0 0 0 0 0
. . . µ −∆

2
eiφ t

2

0 0 0 0 0
. . . −∆

2
e−iφ −µ 0

0 0 0 0 0 . . . t
2

0 µ




.

(4.39)

Suppose that a matrix Q diagonalizes H such that

H = Ψ†Q†DQΨ, (4.40)

with D = diag(E1, . . . , E2N) containing the energy eigenvalues. Due to the particle-
hole symmetry, the energy spectrum is expected to be symmetric. We can force
it to be symmetric around E = 0 if we neglect the constant in equation (4.36).
The matrix M has twice the dimension of the number of fermionic degrees of free-
dom. Diagonalization will thus result in an overcounting, similar to the situation
encountered in the closed Kitaev chain and equation (3.26),

H =
1

2

N∑

i=1

Ei(d
†
idi − did†i ), (4.41)
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with di being quasiparticle annihilation operators,

di =
N∑

j=1

(q2i−1,2jc
†
j + q2i−1,2j−1cj). (4.42)

The numbers qi,j are the matrix elements of Q. Specifically, q2i−1,2j and q2i−1,2j−1 are
numerical weights giving information of how present the fermion and hole state j is
in the ith eigenstate respectively. The operators appearing in (4.42) are components
of the vector

d ≡
(
d1, d†1, d2, d†2, . . . , dN , d†N

)T
= QΨ. (4.43)

One way of visualizing the eigenstates, corresponding to the positive eigenvalue (in
front of d†idi), is to plot the coefficients q2i−1,2j and q2i−1,2j−1 against j ∈ {1, . . . , N}
to see the spatial distribution of the fermion content. Recall the Majorana zero
modes we are expecting for ∆ = t and µ = 0, γA,1 = −i(c1−c†1) and γB,N = cN +c†N .
These modes should be combined to form the zero energy fermionic d0 operator as
in equation (4.17), d0 = i(cN + c†N − c1 + c†1)/2. The appearance of d0, corresponding
to zero energy, can be used as a consistency check of the numerical implementation.
We will return to this in the discussion.

4.4 Numerical Implementation, Results and Dis-

cussion

The diagonalization problem outlined in the last section was implemented numer-
ically in a C++ script, and the results were plotted with Python. Since the linear
algebra package Armadillo in C++ offers a wide range of effective methods, it was
chosen as the preferred tool for the task [27]. The Armadillo package has a built-
in function called eig sym() that returns the eigenvectors and eigenvalues of any
symmetric matrix. For simplicity, the superconducting phase was fixed to φ = 0.
Then, the matrix M becomes real and symmetric, and the matrix diagonalization
theorem ensures that Q is orthogonal, QT = Q−1. The core of the C++ code can be
found attached in Appendix D.1. It exemplifies the implementation for a spatially
varying order parameter. However, as a first demonstration we fix ∆ = ∆0 = const.

4.4.1 Results with Constant Order Parameter

In the inset of Figure 4.2, a plot of the (double) energy spectrum with constant order
parameter is shown for a representative range of chemical potentials, µ ∈ [−2t, 2t].
Notice that there are exactly two values – meaning one fermionic state – approach-
ing zero energy at |µ| = t. At the transitions, µ = ±t, we observe that the energy
gap closes and reopens as |µ| < t, with two values staying at zero energy.
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Figure 4.2: Energy spectrum of an open Kitaev chain with constant order
parameter ∆ = ∆0 = 0.5. The main plot shows a zoomed energy spectrum close
to the phase transition µ = t. The inset shows the full spectrum plotted for
different values of chemical potential in the range µ ∈ [−2t, 2t] with the zoom
marked in red. The number of sites was set to N = 80, meaning that there are
160 energy eigenvalues for each value of µ. The hopping parameter was fixed to
t = 1.0.
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Figure 4.3: Fermion content of the lowest energy fermionic state in the open
Kitaev chain. The matrix coefficients q from equation (4.42) are plotted against
xj/N . This plot was produced with N = 50 sites, hopping parameter t = 1.0,
order parameter ∆ = ∆0 = 0.5 and chemical potential µ = 0.3t. The energy Ei
in the figure title refers to the numerically found (positive) eigenvalue.

In Figure 4.3 the coefficients q2i−1,2j (in front of c†j) and q2i−1,2j−1 (in front of cj),
with Ei corresponding to the smallest (positive) energy value, are plotted as function
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of j in the topological phase, µ = 0.3t. We observe that the coefficients have
significant contributions towards the two ends, and that the coefficients are of equal
absolute magnitude. Note also that the orthogonality of the eigenvectors, QTQ = 1,
determines the normalization of the matrix coefficients in this figure. We return to
the choices of parameters and a discussion of the results in the end of this section.

4.4.2 Results with Spatially Varying Order Parameter

Next, we study the effect of having a position dependent order parameter ∆ = ∆x.
This is partly motivated by the fact that we in the next chapter study how a single
Majorana mode is localized close to the core of a vortex in two spatial dimensions. A
vortex will there be characterized by an order parameter with a certain radial profile
approaching zero in the vortex center. Perhaps similar effects can take place with a
position dependent order parameter in a one-dimensional model. Let therefore ∆x

be a (real) function that at some point passes zero and has the asymptotic value
∆0. We propose the following parametrized model of a kinked order parameter:

∆x = −∆0 tanh
(

(x−N/2)/s
)
. (4.44)

This function crosses zero at x = N/2. Its steepness towards the crossing is con-
trolled by adjusting the parameter s. A priori, one might question the necessity of
a sign change in ∆x, so we will do exactly same analysis with |∆x| for comparison.
In Figure 4.4 we have plotted ∆x and |∆x| from equation (4.44) with s = 10 for
reference.
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Figure 4.4: Position varying order parameter, ∆x (red) and |∆x| (green). The
function ∆x is described in equation (4.44) and plotted here with s = 10 and
∆0 = 0.5. The number of sites was fixed to N = 80.
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A diagonalization similar to that with constant ∆ was implemented with the kinked
order parameter, both ∆x and |∆x|. The resulting energy spectra are shown in Fig-
ure 4.5. There is one immediate observation to be made. When ∆ changes sign, a
total of four energy values – meaning two fermionic degrees of freedom – approaches
zero energy at |µ| = t, whereas no additional zero energy states appear when the
sign of ∆ is constant. It can be seen in Figure 4.5(b) that one energy band is de-
flected into the gapped regime at |µ| < t, apparently the band that approaches zero
energy in Figure 4.5(a).

Finally, we provide a plot of the zero energy states as they appear with ∆ = ∆x

in Figure 4.5(a). Denote the two smallest (positive) energies by Ei and El. In
Figure 4.6 the matrix weighting coefficients q2i−1,2j, q2i−1,2j−1, q2l−1,2j and q2l−1,2j−1

are plotted as function of j. Note that the four coefficients are associated with
two fermionic annihilation operators, di and dl, as in equation (4.42). The weights
have all non-zero contributions on both ends of the chain (as before) and additional
weight in the central region where ∆x crosses zero.

4.4.3 Discussion and Comparison with the Literature

During these simulations, energy values appearing in pairs of opposite signs was
used as a program test. That is, the resulting energy values are supposed to respect
the particle-hole symmetry. Numerically, however, we observed that when N was
increased, or µ chosen sufficiently close to zero, the resulting ground state energy
become of equal magnitude as the floating point precision of the computer.3 Conse-
quently, the lowest energy pair did not appear exactly equal in absolute value. This
numerical violation the particle-hole symmetry also resulted in eigenstates rotated
within the ground state manifold, preferably giving weights on one or the other side
of the chain. This problem boils down to how the Armadillo function eig_sym()

specifically finds eigenvectors, and it could possibly have been avoided by developing
a code from scratch. Instead, we kept the system sizes small and used the appear-
ance of paired eigenvalues as an indication of whether the correct eigenvectors were
returned or not. Exactly this problematic effect was present when fixing ∆ = t and
µ = 0. Instead of observing the weights of d0 returned, the numerics yielded the
Majorana modes −c1 + c†1 or cN + c†N with weights on either side of the system. The
system size and parameters in the figures were chosen to avoid this problem, which
is the reason for using N = 50 and not N = 80 in Figure 4.3.

The results with constant order parameter demonstrate that there is a non-trivial
and important consequence of having an open Kitaev chain in the topological phase,
|µ| < t. Namely, that one Majorana zero mode emerge on each of the open ends.
The modes are the constituents of a fermionic operator associated with (exponen-
tially close to) zero energy. When the order parameter was varied spatially, ∆ = ∆x,
we observe in Figure 4.5(a) that two new Majorana modes appear when ∆ changes

3Typically, a number with double floating-point precision in C++ have 15-17 significant decimal
digits [27].
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Figure 4.5: Energy spectrum of open Kitaev chain with (a) ∆ = ∆x and (b)
∆ = |∆x|. The order parameter is given by equation (4.44) with s = 10 and
∆0 = 0.5. The main plots show the zoomed energy spectra close to the phase
transition µ = t. The insets show the spectra plotted for different values of
chemical potential in the range µ ∈ [−2t, 2t] with the zoom marked in red. The
number of sites was set to N = 80. The hopping parameter was fixed to t = 1.0.

sign. This basic observation was seen to be robust in s. Specifically, by increasing
s significantly – making the zero-crossing of ∆x more spread out in space – the
only observed change was that the central peaks in Figure 4.6 were widened. In
crucial contrast, new zero modes did never seem to appear with ∆x = |∆x|, still
independent of s. Moreover, the central zero modes appearing with ∆ = ∆x have a
significant overlap but they nonetheless coexist, i.e. they do not split in energy and
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Figure 4.6: Fermion content of the two lowest energy fermionic states in the
open Kitaev chain with position varying order parameter. The matrix coefficients
q, as in equation (4.42), are plotted against xj/N . This plot was produced with
N = 80 sites, hopping parameter t = 1.0, chemical potential µ = 0.3t and ∆ = ∆x

as in equation (4.44) with s = 10 and ∆0 = 0.5. The energies Ei and El refer to
the numerically found (positive) eigenvalues.

hybridize. This leads us to think that the sign change of ∆ has roots in topological
properties of the Kitaev chain.

While working with this problem we became aware of a recent article where sim-
ilar effects are studied. In [28] T. H. Hansson et al. discuss zero modes resulting
from π-junctions in ∆ on more general grounds. In their treatment, phase winding
junctions, where the phase of the order parameter winds by a position dependent
angle, are considered. They argue that a real order parameter going through zero
always gives rise to two additional zero modes in the topological phase for p-wave
chains. This happens regardless of the details on how the order parameter passes
zero. However, when the phase winding becomes genuinely complex, i.e. not rotat-
ing from 0 to π from one site to the next, no additional zero modes than those on
the ends of the chain appear.

The difference between complex and real junctions, they argue, is more deeply rooted
in symmetry classes. The authors observe that the Kitaev chain with real order
parameter and real hopping strength belongs to the BDI symmetry class (TRS
is +1), while it belongs to class D (TRS is 0) when they are both complex. A
BDI Kitaev chain has two distinct realizations of the topological phase. A key
observation supporting this view can actually be made from Figure 3.3. With φ = 0
we see that the transformation ∆→ −∆ alters the circulation of h(k) from clockwise
to counter-clockwise in the yz-plane. The two values ±∆ correspond to opposite
winding numbers, ν. In other words, ±∆ are distinct topological phases, and two
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zero energy Majorana modes appear on the boundary between the phases. The
simulations shown in Figure 4.5 and 4.6 are in agreement with and underpins this
conclusion. Finally, that ±∆ are distinct realizations of the topological phase might
explain the fact that we observe two coexisting zero modes with significant spatial
overlap in Figure 4.6. Overlapping zero modes are normally expected to split in a
finite ±E pair. With these remarks we conclude our discussion of the Kitaev chain.





Chapter 5

The p + ip Model and Vortices
with Majorana Modes

A two-dimensional model with p-wave paired and effectively spinless electrons is
studied. First, we establish the formal framework for the model. This includes de-
riving the diagonalization equations. Thereafter, the idea of a space varying order
parameter will be pursued. In particular, we search for Majorana zero mode solu-
tions in an infinite system with a rotationally symmetric vortex. In 2007 V. Guriare
and L. Radzihovsky studied this system analytically in the limit where |∆(r)| is
non-constant in an infinitesimally small region [13]. We depart from their study
by using a vortex solution in accordance with Ginzburg-Landau theory. Moreover,
we propose an argument that implies non-Abelian exchange statistics in a system
of several vortices. This property is known from Ivanov’s compact consideration
[6]. However, our argument is, in contrast to Ivanov’s derivation, based on con-
servation of fermion parity. The p + ip mean field model, which is valid with a
non-homogeneous order parameter (see for instance [6, 12]), is given by

H =

∫
d2r ψ†(r)

(
− h̄2

2m
∇2 − µ

)
ψ(r) +

1

2

∫
d2r d2r′

(
ψ†(r)D(r, r′)ψ†(r′) + h.c.

)
.

(5.1)

Above, ψ†(r) is the creation operator of a spinless fermion in position r. The
operators satisfy fermionic anticommutation relations

{ψ(r), ψ†(r′)} = δ(2)(r − r′) and {ψ(r), ψ(r′)} = {ψ†(r), ψ†(r′)} = 0, (5.2)

with δ(2)(r − r′) being the two-dimensional Dirac delta function. The pairing func-
tion D(r, r′) is defined by

D(r, r′) = ∆

(
r + r′

2

)
(∂x′ + i∂y′)δ

(2)(r − r′). (5.3)

69
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We open the chapter with a brief presentation of the model in an in infinite system
with constant order parameter to point out the analogy to the closed Kitaev chain
and to motivate the topological classification.

5.1 Homogeneous System

We summarize some essential properties of the model as discussed in [11, 24] for
completeness. Assume that the order parameter is homogeneous, ∆(r) = ∆0e

iφ,
with φ some general phase and ∆0 a real, positive constant. The Hamiltonian in
(5.1) reduce to1

H =

∫
d2r

(
ψ†(r)

(
− h̄2

2m
∇2 − µ

)
ψ(r) +

∆0

2

(
eiφψ†(r)(∂x + i∂y)ψ

†(r) + h.c.
))

.

(5.4)

By introducing a momentum representation of the fermionic operators,

ψ(k) =

∫
d2r e−ik·rψ(r) and ψ(r) =

∫
d2k

(2π)2
eik·rψ(k), (5.5)

one may diagonalize the Hamiltonian. Inserting the transformed operators in the
Hamiltonian (5.4) and using

∫
d2r eir·(k−k

′) = (2π)2δ(2)(k − k′), results in the ex-
pression (compare with equation (3.12)),

H =
1

2

∫
d2k

(2π)2
Ψ†(k)H(k)Ψ(k), (5.6)

with

Ψ(k) ≡
(

ψ(k)
ψ†(−k)

)
and H(k) ≡

(
ε(k) ∆(k)

∆∗(k) −ε(k)

)
. (5.7)

Moreover, we introduced the functions

ε(k) ≡ h̄2k2

2m
− µ and ∆(k) ≡ i∆0e

iφ(kx + iky). (5.8)

The eigenvalues of H(k) define the quasiparticle spectrum and are given by

± E(k) = ±
√
ε(k)2 + |∆(k)|2 = ±

√(
h̄2k2

2m
− µ

)2

+ ∆2
0k

2. (5.9)

1This follows by making use of the Dirac delta function property
∫

dx f(x)∂x′δ(x−x′) = df(x′)
dx′ .
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A plot of the spectrum is shown in Figure 5.1; it should be compared to Figure 3.1.
In the present case, the energy gap closes only at µ = 0 for k = 0. We will not
derive a topological classification of this model similar to what was done in section
3.3. However, the energy spectrum in Figure 5.1, along with the knowledge estab-
lished in earlier chapters, should at this point give a strong indication that µ > 0
and µ < 0 determine the distinction between the topological and the trivial regime.
Read and Green demonstrated that µ > 0 should be characterized as the topological
and µ < 0 as the trivial phase [24]. The distinction, they showed, is reflected in
the long range behaviour of the inverse Fourier transform of the analogue of the
coefficient gk from equation (3.34). It decays exponentially in the trivial region and
algebraically in the topological region. We will simply keep this characterization in
mind and search for zero modes with the assumption that µ > 0.
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Figure 5.1: Energy spectrum as function of momentum k ∈ [−1, 1] and chemical
potential µ in the range µ ∈ [−1, 1]. Both the order parameter and the kinetic
prefactor were fixed to ∆0 = h̄2/(2m) = 1.0. The gap closes at k = 0 for µ = 0.

Read and Green also make a thorough analysis of the ground state for all four com-
binations of closed boundary conditions, i.e. periodic or anti-periodic in kx and/or
ky. The k = (0, 0) mode is present only with periodic boundary conditions in both
directions, and it essentially plays the same role as the unpaired mode k = 0 that
we encountered in the closed Kitaev chain.

5.2 Derivation of the BdG Equations

This section is devoted to a derivation of the Bogoliubov-de-Gennes (BdG) equations
for the general model in (5.1). The philosophy of our approach is inspired by [29],
but we fill in several details that were not found described in that reference. Recall
the Hamiltonian we are considering,
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H =

∫
d2r ψ†(r)

(
− h̄2

2m
∇2 − µ

)
ψ(r) +

1

2

∫
d2r d2r′

(
ψ†(r)D(r, r′)ψ†(r′) + h.c.

)
.

(5.10)

Assume that there is a countable set of many-particle operators, {Γn}∞n=1, that
diagonalize the Hamiltonian,2

H = EΩ +
∑

n

En Γ†nΓn, (5.11)

with EΩ as the ground state energy, which we simply neglect. The sum runs over
positive eigenvalues, En ≥ 0. Zero modes, denoted by γn corresponding to En = 0,
do clearly not contribute to this spectral decomposition. The ansatz (5.11) can be
motivated by the related expression we arrived at in the case of the closed Kitaev
chain. Recall from equation (3.26) that the positive and negative energy bands
merged in a single sum running over the positive eigenvalues. This had to do with our
definition of the quasiparticle operators being associated with positive energy. The
new field operators should preserve the fermionic statistics of the normal fermions.
We therefore impose them to satisfy

{Γn,Γ†m} = δm,n and {Γn,Γm} = {Γ†n,Γ†m} = 0. (5.12)

If we were to assume that the new operators should satisfy bosonic commutation
relations, we would quickly run into consistency problems with the completeness
relations that are soon to be derived. A Bogoliubov transformation determines the
relation between ψ(r) and Γn,

ψ(r) =
∑

n

(
un(r)Γn + v∗n(r)Γ†n

)
. (5.13)

Combining (5.13) with the anticommutation relations (5.2) and (5.12) leads to re-
strictions on the expansion coefficients, un(r) and vn(r), which are not described in
[29]. We find the following completeness relations :

∑

n

[
un(r)u∗n(r′) + vn(r′)v∗n(r)

]
= δ(2)(r − r′),

∑

n

[
un(r)v∗n(r′) + un(r′)v∗n(r)

]
= 0.

(5.14)

The two relations enable us to find the inverse transformation of (5.13). It can
quickly be verified, by inserting (5.13), that

2This basic assumption may be questioned as it seems that we demand a map from an uncount-
able infinity (set of fermion operators) to a countable one (set of quasiparticle operators). Since
we will focus on the zero energy modes, one may hope that subtleties related to this mapping will
not interfere with the argument.
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Γn =

∫
d2r
(
u∗n(r)ψ(r) + v∗n(r)ψ†(r)

)
. (5.15)

When this expression is combined with the anticommutation relations in (5.12), we
find a set of orthonormality relations in the continuous position space,

∫
d2r
(
u∗n(r)um(r) + v∗n(r)vm(r)

)
= δn,m,

∫
d2r
(
vn(r)um(r) + un(r)vm(r)

)
= 0.

(5.16)

One may think of (5.16) as orthogonality of two-components spinors,

φn(r) ≡
(
un(r)
vn(r)

)
, (5.17)

with the following type of inner product:

〈φn|φm〉 ≡
∫

d2r φ†n(r)φm(r). (5.18)

This spinor description will be used frequently in the next chapter. The most im-
portant consequence of demanding fermionic anticommutation of the Γn operators
is, however, obtained by combination of (5.11) and (5.12) (this idea is taken from
[29]),

[H,Γn] = −En Γn and [H,Γ†n] = En Γ†n. (5.19)

This is exploited to determine the equations that un and vn have to satisfy in order
to diagonalize the Hamiltonian.3 We calculate [H,ψ(r)] in two different ways. First,
we exploit (5.13):

[H,ψ(r)] =
∑

n

(
un(r)[H,Γn] + v∗n(r)[H,Γ†n]

)

=
∑

n

En
(
−un(r)Γn + v∗n(r)Γ†n

)
.

(5.20)

Secondly, we calculate [H,ψ(r)] explicitly. The pairing term in the Hamiltonian,
let it be denoted by H∆, should be slightly rewritten to easier evaluate [H∆, ψ(r)].
After making use of the properties of the Dirac delta function and the Fermi-Dirac
statistics, (ψ†(r))2 = 0, it may be expressed as

3Exploiting the relations in (5.19) to find the diagonalization condition should in principle
amount to the same as inserting (5.13) directly into the Hamiltonian and demand the off-diagonal
terms to vanish. However, the latter procedure quickly becomes a tedious approach.
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H∆ ≡
1

2

∫
d2r d2r′ ψ†(r)D(r, r′)ψ†(r′) =

1

2

∫
d2r ψ†(r)∆(r)∂z∗ψ

†(r). (5.21)

Above, the complex variable z = x+ iy was introduced such that

∂z∗ = ∂x + i∂y = eiθ(∂r +
i

r
∂θ). (5.22)

The hermitian conjugate of the pairing term, H†∆, simply commutes with ψ(r).
The commutator of the kinetic term in H and ψ(r) is trivially found by using the
anticommutation relations in (5.2). In total, the commutator evaluates to

[H,ψ(r)] =

(
h̄2

2m
∇2 + µ

)
ψ(r)− 1

2
{∆(r), ∂z∗}ψ†(r). (5.23)

Inserting the Bogoliubov transformation (5.13) in this expression and comparing
termwise with (5.20) gives

−EnunΓn +Env
∗
nΓ†n =

(
h̄2

2m
∇2 + µ

)
(unΓn + v∗nΓ†n)− 1

2
{∆(r), ∂z∗}(u∗nΓ†n + vnΓn).

(5.24)

Equating terms in front of Γn and Γ†n separately yields the BdG equations,

−
(
h̄2

2m
∇2 + µ

)
un(r) +

1

2
{∆(r), ∂z∗}vn(r) = Enun(r),

(
h̄2

2m
∇2 + µ

)
vn(r)− 1

2
{∆∗(r), ∂z}un(r) = Envn(r).

(5.25)

5.2.1 Majorana Zero Modes

Some of the above expressions are slightly altered for zero modes, γn. A Majorana
operator associated with zero energy is by definition hermitian and commutes with
the Hamiltonian,

γn = γ†n and [H, γn] = 0. (5.26)

The expansion (5.15) reveals that it must satisfy un(r) = v∗n(r), and it thereby
constitutes half a fermionic degree of freedom,

γn =

∫
d2r
(
u∗n(r)ψ(r) + un(r)ψ†(r)

)
. (5.27)
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The hermiticity of γn forces us to modify the fundamental commutation relations in
(5.12). We adopt a common normalization convention, for instance used in [5, 11],
and demand that

{γn, γm} = 2δn,m such that γ2
n = 1. (5.28)

In terms of the completeness relation in (5.16), normalization of the zero modes is
done according to

∫
d2r

(
u∗n(r)um(r) + u∗m(r)un(r)

)
= 2δn,m ⇒

∫
d2r |un(r)|2 = 1. (5.29)

The quantity |un(r)|2 is interpreted as describing the spatial probability density of
the zero mode.

5.3 Radial Zero Mode Equation

The formalism from the previous section will now be put to use. An equation
governing a Majorana zero mode bound to a vortex is derived. The starting point
of this derivation is inspired by [13]. However, we will depart from the description
in that reference when arguing how the vorticity (mod 2) determines if zero modes
are allowed. Moreover, we will in the next section combine the zero mode equation
with a vortex profile in accordance with a minimal Ginzburg-Landau description,
not restricting ourselves to studying infinitesimally small vortex cores. As far as
we know, this more complete description has not been explored in detail before.
The BdG equations will be solved numerically. They may, according to (5.25), be
formulated as4

(
− h̄2

2m
∇2 − µ 1

2
{∆(r), ∂z∗}

−1
2
{∆∗(r), ∂z} h̄2

2m
∇2 + µ

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
. (5.30)

Above, we suppressed the index n. An alternative formulation is

−
(
h̄2

2m
∇2 + µ

)
u(r) +

√
∆(r)∂z∗

[
v(r)

√
∆(r)

]
= Eu(r),

(
h̄2

2m
∇2 + µ

)
v(r)−

√
∆∗(r)∂z

[
u(r)

√
∆∗(r)

]
= Ev(r).

(5.31)

We consider an ansatz for the order parameter, ∆(r), describing a rotationally
symmetric vortex. Its radial profile is determined by some real function g2

` (r) (the
power of 2 is simply included for convenience),

4Notice that the matrix in (5.30) is traceless, meaning that its two eigenvalues take the form
±E. This manifestation of the particle-hole symmetry is also seen by observing that the matrix
anticommutes with Ξ ≡ σxκ, where κ is the complex conjugation operator.
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∆(r) = g2
` (r)e

i`θ+iπ. (5.32)

Above, we chose to include an overall sign; this sign does not reflect anything mea-
surable, and it functions merely as a redefinition of the order parameter to make the
following consideration more fluent. The integer ` ∈ Z is the vorticity, and h̄` is the
angular momentum of the vortex fluid. Recall from section 2.3 that the vorticity
is restricted to being integer by requiring that the order parameter is single valued.
This will in fact be a crucial observation in the argument below. Later, it will be
discussed how the `-dependency of the profile g2

` is determined. To keep notation
simple, the subscript in g` will sometimes be abbreviated. A Majorana mode is
characterized by

u(r) = v∗(r). (5.33)

This condition, in combination with E = 0, ensures that the two equations in (5.31)
reduce to the one and same. Therefore, it suffices to consider the first of them as
long as (5.33) is fulfilled. Inserting the vortex ansatz (5.32) with E = 0 results in
the (complex) equation

− h̄2

2m

( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
u(r)− µu(r)

− g(r)eiθ(
`
2

+1)
(
∂

∂r
+
i

r

∂

∂θ

)[
g(r)v(r)eiθ

`
2

]
= 0.

(5.34)

5.3.1 Solution Constraints

In order to discuss the solutions of this equation another argument is brought on
stage. If the vortex in equation (5.32) is well behaved there are no terms in the
Hamiltonian (5.1) that are singular at any point. Consequently, it is reasonable to
assume that the solutions behave smoothly as well. Therefore, the fermionic fields
ψ(r) are required to be single valued, ψ(r, θ + 2π) = ψ(r, θ). In turn, this puts
restrictions on u(r) and v(r) seen by the expansion in (5.13). Both u(r) and v(r)
must be single valued during a 2π winding of θ.

With these considerations in mind, one may try to transform away the polar angle
dependency in (5.34) and obtain a (real) radial equation. In particular, we assume
that the expansion coefficients are eigenstates of the angular momentum operator
and apply the separational ansatz

u(r) = ũ(r)eimθ and v(r) = ṽ(r)e−imθ, (5.35)

with m ∈ Z denoting quantized angular momentum. This is in accordance with the
criterion of single valued coefficients and the Majorana criterion (5.33), in particular
if ũ is real: ũ = ũ∗ = ṽ. Why the radial coefficient should be real will be understood
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more clearly in the next chapter. To phrase it shortly, if ũ was allowed to have
an imaginary component, the solution would be increasing exponentially for large
r. This is clearly in conflict with normalizability. Inserting (5.35) into (5.34), and
requiring the polar angle dependency to be transformed away, leads to the connection

m = (`+ 1)/2. (5.36)

Crucially, this contradicts the fact that m ∈ Z when ` is even. Thus, if ` is even we
are forced to implement an additional dependency on θ in ũ(r) in order to respect
the fermion fields being single valued: ũ(r) 7→ ũ(r) exp (iθ/2). However, letting ũ
be complex contradicts the realness criterion, ũ = ũ∗, and thereby equation (5.33).
In turn, if u(r) 6= v∗(r) the two equations in (5.31) are not identical any more, and
a possible solution of the equations does not describe a Majorana mode. We have
therefore, by assuming ` to be even, arrived at a contradiction. Note that this does
not prove that the equations (5.31) have no zero energy solutions for even vorticity.
It demonstrates that possible zero energy solutions can not be Majorana solutions
for even vorticity. Therefore, the possibility of Majorana zero modes for even ` is
excluded.

On the other hand, if ` is assumed odd we can apply the separational ansatz in
(5.35) with m = (` + 1)/2 to remove the angular dependency in equation (5.34)
identically. The equation then reduces to

− h̄2

2m

(
d2

dr2
+

1

r

d

dr
− 1

r2

(
`+ 1

2

)2
)
ũ− µũ− g2 dũ

dr
− gdg

dr
ũ− g2

2r
ũ = 0. (5.37)

Using more compact notation, ũ′ = dũ/dr etc., we arrive at a homogeneous, second
order differential equation,

h̄2

2m
ũ′′ +

(
g2 +

h̄2

2mr

)
ũ′ +

(
µ+

g2

2r
+ gg′ − h̄2

2mr2

(
`+ 1

2

)2
)
ũ = 0. (5.38)

Note that equation (5.38) has an explicit breaking of the symmetry in ` about ` = 0
that one might a priori expect. It can be traced back to arise from the ∂x+ i∂y term
in D(r, r′) in (5.3). This term makes the p+ ip model chiral, and it favours counter-
clockwise complex rotations. If one instead were to consider the p − ip model, the
resulting zero mode equation becomes equal to (5.38) with the replacement `→ −`.
The term containing ` is instead symmetric about ` = −1. Thus, ` = −1 will
represent the fundamental vortex, ` = −3 the next possible vorticity, and so on.

5.3.2 Dimensionless Formulation

Equation (5.38) is made dimensionless and ready for numerical implementation by
introducing new variables. In particular, length is scaled with the Ginzburg-Landau
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coherence length, a, as it appeared in section 2.3,

ρ ≡ r

a
, ξ ≡ h̄2

2m
, η ≡ a2

ξ
µ and g̃ ≡

√
a

ξ
g. (5.39)

The dimensionless vortex equation becomes

ũ′′ +

(
g̃2 +

1

ρ

)
ũ′ +

(
η +

g̃2

2ρ
+ g̃g̃′ − (`+ 1)2

4ρ2

)
ũ = 0, (5.40)

where the derivatives are with respect to ρ. Equation (5.29) determines the normal-
ization,

2π

∫ ∞

0

dρ ρ|ũ(ρ)|2 = 1. (5.41)

5.3.3 The Solutions in Limiting Cases

We consider two different limits of (5.40). First, we specialize to vanishing order
parameter. If g̃(ρ) = 0 and η > 0, the differential equation in (5.40) is, not surpris-
ingly, reduced to Bessel’s equation (the reader is referred to Appendix C for more
details),

ũ′′ +
ũ′

ρ
+

(
η − (`+ 1)2

4ρ2

)
ũ = 0 (5.42)

Two linearly independent solutions to this equation are spanned by Bessel functions,

{
J |`+1|

2

(
√
ηρ), Y |`+1|

2

(
√
ηρ)
}
. (5.43)

However, equation (5.41) tells us that ρ|ũ(ρ)|2 must be integrable for the solution to
be normalizable. This is not satisfied by the Bessel functions. To be more precise,
in Appendix C we prove that some absolute power of the nth order Bessel function,
|Jn(x)|p, is integrable only for p > 2. Hence, no zero modes appear if g̃(ρ) = 0.
Moreover, the Bessel function Yn(x) is not finite at x = 0 and should anyhow be
discarded as an acceptable solution of the problem. The contribution from the g̃-
dependent parts of the equation contributes crucially to an exponential suppression
of the solution, guaranteeing normalizability. Let us see this explicitly. We apply a
separation trick,

ũ(ρ) = χ(ρ) exp
(
− 1

2

∫ ρ

0

dρ′ g̃2(ρ′)
)
, (5.44)

which reduces equation (5.40) to
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χ′′ +
χ′

ρ
+

(
η −

(
g̃2

2

)2

− (`+ 1)2

4ρ2

)
χ. (5.45)

Thus, if the order parameter profile is g̃2(ρ) ≡ δ0 with δ0 constant and (δ0/2)2 <
η, equation (5.45) becomes Bessel’s equation for χ. Therefore, the solutions with
homogeneous order parameter are spanned by

{
J |`+1|

2

(
√
η − (δ0/2)2ρ)e−

δ0
2
ρ, Y |`+1|

2

(
√
η − (δ0/2)2ρ)e−

δ0
2
ρ
}
. (5.46)

These special cases help building intuition about the solutions. We now discuss
how to take a realistic vortex profile into account and then solve equation (5.40)
numerically.

5.4 The Vortex Profile

Recall the vortex ansatz from equation (5.32), ∆(r) = g2
` (r)e

i`θ+iπ. What remains
unspecified is the radial vortex profile, g2

` (ρ). It is not trivial to determine this
function rigorously. Still, BCS-theory offers one approach that was exploited by N.
Hayashi et al. in [30] for a s-wave type-II superconductor. The authors solve the
self-consistent gap equation to find the radial order parameter, even at finite tem-
peratures. Another method is based on the phenomenological theory of Ginzburg
and Landau. In section 2.3 Ginzburg-Landau theory was used to derive a non-linear
equation that the superfluid pseudo wavefunction should satisfy. We will apply so-
lutions of that equation as a description of the vortex.

In principle, the Ginzburg-Landau free energy should be extended for p-wave pairing,
but this will not be considered for several reasons. Firstly, determining g2

` properly
would have become a comprehensive process, and the focus of our analysis would be
shifted considerably towards a detailed description of vortices. Secondly, after a scan
of relevant literature, no easily accessible approach to the proper Ginzburg-Landau
description with p-wave pairing was found. Finally, and most importantly, the zero
mode solutions will turn out to have only a weak dependency on the specific shape
of the vortex profile. The basic and most important properties are already captured
by the minimal description from section 2.3. Recall the non-linear and dimensionless
superfluid equation,

∇2ψ̂ + (1− |ψ̂|2)ψ̂ = 0. (5.47)

Assume that the pseudo wavefunction is equal to the order parameter (up to an
unimportant sign), ψ̂(ρ) = g̃2

` (ρ)ei`θ. This is essentially the relation established
by Gor’kov, and in reality it is an approximation at zero temperature [3, 18]. To
be rigorous, we may include a factor of proportionality, but the prefactor will be
fixed such that limρ→∞ g̃

2
` (ρ) = 1 for simplicity in the simulations. For notational

convenience in this section we introduce
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f`(ρ) ≡ g̃2
` (ρ). (5.48)

Inserting ψ̂(ρ) = f`(ρ)ei`θ into (5.47) gives the radial equation

f ′′` +
1

ρ
f ′` +

(
1− `2

ρ2

)
f` − f 3

` = 0, (5.49)

with the boundary value conditions

f`(0) = 0 and f`(∞) = 1. (5.50)

The boundary values ensure that the vortex core is located at ρ = 0, and that the
fluid is homogeneous for large ρ. Some properties of f` close to the vortex core
may be deduced analytically before proceeding with the numerical implementation.
As a first approximation, we neglect the cubic term and (5.49) reduces to Bessel’s
equation. It means that f` in this limit is approximatively

f`(ρ) ≈ AJ|`|(ρ) =
A

Γ(|`|+ 1)

(ρ
2

)|`|
+O(ρ|`|+2) ∝ ρ|`| for ρ� 1. (5.51)

Above, we applied the small argument expansion of the Bessel function J|`|(ρ) (see
Appendix C), and A is some constant that in principle may depend on `. As ρ
increases, the cubic term in (5.49) becomes important, and an asymptotic solution
is of the form f`(ρ) = 1 + O(ρ−2). Let it be mentioned that there are reasonable
and analytic approximations to the solution, for example stated by A. Fetter in [31].
His discussion concerns |`| = 1 and the approximation reads

f|`|=1(ρ) ≈ ρ√
ρ2 + α2

, (5.52)

with α a parameter that could be adjusted to give the correct slope of the curve
for ρ = 0 by Taylor expansion. Another suitable approximation is mentioned by M.
Tinkham [3],

f|`|=1(ρ) ≈ tanh(ρ/β). (5.53)

The constant β should be chosen equal to α. Both approximations have the small ρ
expansion demanded by (5.51). The validity of these approximations in this context
can be discussed after implementing (5.40) numerically, since a slight modification
to the vortex profile will reveal how sensitive the solution ũ(ρ) is to f`(ρ).

A numerical solution of the two-point boundary value problem in (5.49) and (5.50)
was found and tabulated for |`| ∈ {1, 2, 3} by M. Kawatra and R. Pathria in 1966
[32]. Since the tabulated values easily can be interpolated to give results of high
precision, we do so instead of solving the problem again. Solving the equation again
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Figure 5.2: Radial profile of a stationary vortex, f`(ρ) = g̃2
` (ρ), as a function

of ρ for |`| ∈ {1, 3}. The reference data, taken from [32], are shown as coloured
circles with cubic spline interpolated values plotted as continuous curves. The
two approximations for |`| = 1 in equation (5.52) and (5.53) are shown for visual
reference as dashed curves. The constants α and β were chosen to agree with the
slope of the reference data at ρ = 0.

would not contribute with any new physical insights, and it involves instability
subtleties that are time consuming and must be handled carefully.5 In Figure 5.2 we
have visualized the reference data from [32] for |`| ∈ {1, 3} along with cubic spline
interpolated curves. As visual reference, we have also shown the two approximations
in (5.52) and (5.53). The interpolated values for f` are used in the next section where
(5.40) is solved numerically.

5.5 Numerical Solutions and Discussion

Numerical results were obtained by application of Runge-Kutta method of 4th order
for ordinary differential equations in a Python script. The basic Python script can
be found attached in Appendix D.2. It makes use of a compact module called
ODESolver that is described in [33]. We used a grid resolution of N = 800 in ρ.
The solutions were plotted for ρ ≤ 15 since they were typically localized within this
value for our choice of parameters. Initial conditions were chosen to agree with the
expected properties of the solution for small arguments. That is, when ρ � 1 and
f`(ρ)� 1, equation (5.42) and (5.43) predict that the solution inherits the properties
of J|`+1|/2. Therefore, with ` = −1, we fixed the initial conditions to ũ(0) = 1 and
dũ/dρ|ρ=0 = 0 since this agrees with the properties of J0. With ` = −3, we instead

5The basic strategy would be to apply a so-called shooting algorithm combined with an ordinary
differential equation solver, for instance the Runge-Kutta 4th order method [27].
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applied the conditions ũ(0) = 0 and dũ/dρ|ρ=0 = 1. Thereafter, the solutions were
normalized according to (5.41).

5.5.1 Selected Results

A representative selection of solutions to (5.40) are shown in Figure 5.3. In Figure
5.3(a) we have used the spline interpolated values for f`(ρ). As both visual and
numerical reference, a solution of the same equation with Fetter’s vortex approxi-
mation is shown in Figure 5.3(b). The effect of increasing η can be seen in Figure
5.3(c). Finally, the solution obtained with increased vorticity, ` = −3, is seen in
Figure 5.3(d). Even though the solutions of the vortex-free equations, f`(ρ) = 0, dic-
tated by equation (5.42), are non-normalizable, they are plotted with green dashed
curves for visual comparison (multiplied with the same normalization constant as the
true solutions). This is mainly to see how the solutions have similar oscillatory be-
haviour and agree for small radial arguments. The presented solutions extend those
presented by Gurarie and Radzihovsky [13] in the sense that they are not found in
the limit of an infinitesimally small vortex core. As a suggestion to quantify the
decay length of the solutions, we define a critical distance ρc, such that

|ũ(ρ > ρc)| ≤ p maxρ∈[0,∞) |ũ(ρ)| for some p ∈ (0, 1). (5.54)

With p = 0.01, the critical distances were computed to ρc = 8.1 and ρc = 8.2 for
the solutions in Figure 5.3(a) and 5.3(b) respectively. For the solutions in Figure
5.3(c) and 5.3(d), the values became ρc = 6.5 and ρc = 10.3 respectively. At the
critical distances ρc, the vortex profile, f`(ρc), was typically less than 5% away from
its asymptotic value. Hence, a single Majorana zero mode is localized within some
small multiple of a from the vortex center, at least for low vorticity.

5.5.2 Discussion of the Results

The solutions in Figure 5.3(a) and 5.3(b) are strikingly similar. In fact, the com-
puted normalization integrals typically differed in the third leading digit for the two
solutions. This indicates that the solutions depend weakly on the detailed shape of
f`(ρ). The approximative approach of determining the vortex profile does, there-
fore, not imply a great loss of precision in the solution. In any case, we are merely
interested in illustrating basic properties of the Majorana modes and are not in the
need of high precision solutions to achieve this.

Recall that `, in addition to being the vorticity, according to equations (5.35) and
(5.36) also plays the role as the angular momentum of the solution. More precicely,
the spinor components u(r) and v(r) have angular momentum of ±h̄(` + 1)/2 re-
spectively. In Figure 5.3(d) the effect of increased vorticity is seen. The nodes of
the resulting Majorana zero mode are shifted radially outwards. A similar tendency
is observed in other quantum systems. For instance, the radial wavefunctions in the
hydrogen atom get nodes shifted further from the origin as the angular momentum
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ũ0  (Bessel)

f |ℓ |=1 (Fetter)

(b)

0 2 4 6 8 10 12 14 16
Radial coordinate, ρ

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
d
ia
l 
M
a
jo
ra
n
a
 c
o
m
p
o
n
e
n
t,
 ũ
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Figure 5.3: Radial Majorana zero mode component/wavefunction ũ(ρ) as func-
tion of radial distance ρ, i.e. units of the Ginzburg-Landau coherence length.
The solutions were normalized according to (5.41), and the radial vortex profile
is shown in red. The green dashed curves, ũ0(ρ), are the non-normalizable solu-
tions (Bessel functions) of the vortex-free equation, i.e. with ∆ = 0, multiplied
with the same normalization constant as ũ. The parameters were fixed to (a)
|`| = 1, η = 1.0, (b) |`| = 1, η = 1.0, (c) |`| = 1, η = 5.0, and (d) |`| = 3, η = 1.0.
In all figures, except for (b), the vortex profiles are cubic spline interpolations of
the reference data from [32]. In (b) the profile is given by Fetter’s approximation
from equation (5.52).

is increased [17].

Peculiarly, and as noted earlier, both the solutions ũ(ρ), and the vortex profile itself
f`(ρ), are approximatively Bessel functions for small arguments,

ũ(ρ) ∼ J |`+1|
2

(
√
ηρ) and f`(ρ) ∼ J|`|(ρ) when ρ� 1. (5.55)

The dependency on η here is roughly confirmed by the increased oscillation fre-
quency seen for η = 5.0 in Figure 5.3(c). It is interesting that only an odd-vorticity
vortex supports a single Majorana zero mode. One may qualitatively explain this by
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imagining that every unit of vorticity is induced by a fundamental vortex of |`| = 1,
with one Majorana zero mode bound to it. A vortex of vorticity n is thought of
as being formed by adiabatically merging n fundamental vortices. Furthermore, if
a pair of zero modes have great spatial overlap, they split in energy and hybridize
to a finite ±E pair, i.e. one positive energy quasiparticle. In this picture, only odd
` vortices will be able to leave a zero mode in excess. One may question next why
it seems that a single Majorana mode, which represent half a fermionic degree of
freedom, appears isolated. Since we consider an infinite system, there is no outer
boundary to host a second Majorana mode. This is perhaps artificial by construc-
tion since physical systems are finite. The consequence of having an outer boundary
is explored in the next chapter.

Some of the weaknesses related to our calculations have already been commented
on when discussing the vortex profile. One important simplification is the following.
The vortex profile we used was taken from a reference that is based on vortex
formations in superfluid Helium II (a certain phase of 4He [16]), which is known
to have conventional s-wave pairing. The model studied in this chapter, on the
other hand, have p-wave pairing. The ∂x + i∂y term in D(r, r′) induces an intrinsic
angular momentum in the order parameter. This is reflected in the fact that ` = −1
is the lowest lying rotation state. Partly in ignorance, we have neglected how p-wave
pairing affects the Ginzburg-Landau equation. Determining how to take this pairing
properly into account is left here as an open problem that it would be interesting to
study in future work.

5.6 Braiding Majorana Vortices

We suggest an argument that results in an exchange transformation in a system of
several Majorana zero modes. The transformation has a non-Abelian representation
as demonstrated in section 2.7. D. Ivanov minimalistically derived this transforma-
tion in 2001 [6]. His argument is compact and elegant, but the level of abstraction
is high. As an alternative route, we consider a consequence of preserved fermion
parity. I would like to thank Mats Horsdal for constructive aid in establishing this
argument. Still, let it be emphasised that we merely propose this argument, and
that the true physical content of it might turn out to be deficient.

Consider the expression (5.27) in the context of the solutions from the last sections.
Inserting (5.35) with m = (`+ 1)/2 and ` assumed odd yields the expansion

γ =

∫
d2r ũ(r)

(
e−iθ

`+1
2 ψ†(r) + eiθ

`+1
2 ψ(r)

)
. (5.56)

Above, ũ(r) is a radial solution like those from Figure 5.3. We imagine an idealized
system of 2N vortices with positions {rj}2N

j=1. Assume that the vortices at all times
are separated spatially by a distance much larger than the coherence length,
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|ri − rj| � a for i, j ∈ {1, . . . , 2N}, i 6= j. (5.57)

Thus, we neglect the energy splitting between the Majorana modes. In the next
chapter we will return heavily to the consequences of energy splitting on an annulus
geometry. For now, it suffices to mention that the splitting between two Majorana
modes in vortices was treated as a tunnelling problem by M. Cheng et al. in [34].
The result presented there, roughly speaking, is an energy splitting exponentially
small in the vortex separation. A cartoon picture of the situation is shown in Figure
5.4. Each vortex has exactly one Majorana zero mode, γj, bound to it,

γj =

∫
d2r ũj(r − rj)

(
e−iθ

`+1
2 ψ†(r − rj) + eiθ

`+1
2 ψ(r − rj)

)
. (5.58)

γ2

γ1 γ4

γ3

· · ·

γ2N−1

γ2N

c1 c2 cN

σ2

Figure 5.4: Illustration of 2N Majorana modes, thought of as localized in
vortices, paired up to form N fermionic operators. The ellipses encapsulate the
fermion operators. A basic exchange process is denoted by σ2, and it exchanges
γ2 and γ3 belonging to fermionic degrees of freedom c1 and c2 respectively.

The labels are chosen such that γj and γj+1 are paired up to form a normal fermion
operator. This is analogous to equation (4.2), and it may be thought of as choice of
basis,

cj =
1

2
(γ2j−1 + iγ2j) with {γi, γj} = 2δi,j and [H, γj] = 0. (5.59)

The ground state will have a degeneracy of 2N . This is because the fermion oc-
cupation numbers can take two values for each pair of Majoranas. In terms of γj
operators, the occupation number operators are

nj = c†jcj =
1

2
(1 + iγ2j−1γ2j) ∀ j ∈ {1, . . . , N}. (5.60)

An immediate consequence is that any two occupation operators commute, and
integer powers of the operators are trivial,

[ni, nj] = 0 and nmj = nj ∀m ∈ N. (5.61)
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The mean field Hamiltonians we have been considering conserve total fermion parity.
In other words, they only contain quadratic terms (schematically) like ψ†ψ, ψψ and
ψ†ψ†. Let P denote the total fermion parity operator of the system. Up to an overall
sign, this operator is represented to have the eigenvalues +1 if

∑
j nj is even and

−1 if
∑

j nj is odd, as in equation (3.37). Thus,

[H,P ] = 0 with P = eiπ
∑N
j=1 nj . (5.62)

This operator becomes particularly simple when expressed in terms of Majorana
operators, and it constitutes the core ingredient of this argument. We apply the
Campbell-Baker-Hausdorff formula to the exponential operator P . For the sake of
completeness, the relation for non-commuting operators A and B reads (from [23])

exp (A) exp (B) = exp

(
A+B +

1

2
[A,B] +

1

12

(
[A, [A,B]] + [B, [B,A]]

)
+ . . .

)
,

(5.63)

with dots indicating higher order commutators of A and B. Applying it to P in
(5.62), while using (5.61), yields a chain of simplifications,

P = eiπ
∑N
j=1 nj

=
N∏

j=1

∞∑

m=0

(iπ)m

m!
nmj

=
N∏

j=1

(
1 + nj

∞∑

m=1

(iπ)m

m!

)

=
N∏

j=1

(1− 2nj)

= (−i)N
N∏

j=1

γ2j−1γ2j.

(5.64)

We emphasise that the last expression is a product of anticommuting operators.
Assume next that Majorana γk and γl are exchanged adiabatically in a clockwise
manner without encapsulating any other vortices, as exemplified in Figure 5.4. If
the system prior to the change is in the ground state, the Adiabatic Theorem (see
Appendix B) ensures that it will remain in the 2N -dimensional ground state manifold
during the exchange. As the vortex in position rk is moved to position rl, the
Majorana operator can at most pick up a sign in order to remain real (γ† = γ). The
same applies for the vortex in position rl being moved to rk,

γk 7→ eiαγl and γl 7→ eiβγk, (5.65)

with α and β restricted to being integer multiples of π. The exchange have the
following effect on the parity operator:
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P = (−i)Nγ1γ2 · · · γk · · · γl · · · γ2N 7→ eiαeiβ(−i)Nγ1γ2 · · · γl · · · γk · · · γ2N

= −eiαeiβ(−i)Nγ1γ2 · · · γk · · · γl · · · γ2N

= −eiαeiβP.
(5.66)

The sign change above occurs as we apply anticommutator relations an odd number
of times, independent of |k − l|, to reconstruct the expression for P . The phases α
and β are dependent since we demand P to be invariant. It means that

eiαeiβ = −1. (5.67)

Hence, we have arrived at the conclusion that the operators γk and γl must pick
up opposite signs. The overall choice of sign change is a gauge choice. We take
γj 7→ γj+1 and γj+1 7→ −γj for the clockwise exchange of neighbouring pairs. The
operators not taking part in the exchange, γj for j /∈ {i, i+1}, are assumed to remain
unaffected, which is a locality assumption. The transformation rule for exchange of
neighbouring Majorana vortices may therefore be summarized as

σi :





γi 7→ γi+1

γi+1 7→ −γi
γj 7→ γj if j /∈ {i, i+ 1}

, (5.68)

which is the same transformation rule as presented by Ivanov [6]. In the introduc-
tory chapter, specifically in section 2.7, we demonstrated how a representation of
the transformation rule in (5.68) resulted in non-Abelian exchange statistics of the
Majorana vortices. We therefore close our derivation at this point and summarize
this chapter.

5.6.1 Reflections and Concluding Remarks

One of the limitations in the argument above is that it does not add any great in-
sights about the actual exhange process of vortices. We merely arrive at the same
conclusion as Ivanov by considering conservation of total fermion parity. The ex-
change operator in (5.68) is the result of a finite, discrete process. It would have
been more satisfactory to see this transformation rule as the result of a continu-
ous exchange calculation. However, how to set up this calculation properly is not
clear at the time of writing. Let it be mentioned that an exhaustive calculation
was proposed in a network of elementary Kitaev chains and T-shaped junctions
by J. Alicea et al. some years ago [7]. Their calculation supports the non-Abelian
transformation described by Ivanov, despite considering a construction of connected
one-dimensional systems. Understanding these exchange processes better and on a
more elementary level is something that would be interesting to study in future work.
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This chapter was opened with quite general considerations of the p+ ip model and a
formal derivation of the BdG equations. Thereafter, the discussion was specialized in
the sense that we searched for Majorana zero mode solutions with an order parameter
describing a symmetric vortex. We argued how single valued fermion operators led
to the conclusion that only vortices of odd vorticity support a Majorana zero mode.
With a vortex profile in accordance with a minimal Ginzburg-Landau description, we
solved the differential equation numerically. The simulations demonstrated that the
coherence length, a, is the scale over which the resulting Majorana mode is localized.
In a system of several well separated vortices – each supporting one Majorana mode
– we suggested an argument that resulted in an exchange transformation with a
non-Abelian representation.



Chapter 6

Edge Modes in the p + ip Model

In this chapter we study the p+ip model on an annulus, motivated by Jason Alicea’s
brief presentation in [11]. We seek a more complete and detailed understanding of
the edge modes. Specifically, we focus on how they split in energy and how the
splitting depends on the separation between the circular boundaries. Our approach
to calculating the energy splitting is not based on any reference. Still, we harvest
inspiration from [34, 35], of which we also compare our results to. The philosophy of
our approach is to approximate the ground state with a trial solution that consists
of edge modes from systems having only an inner and an outer edge respectively.
This is thought to be a good approximation when the boundary separation becomes
large. Mats Horsdal has participated with very useful advices in the calculation
procedure. Finally, the BdG equations are formulated as an eigenvalue problem by
discretizing derivatives. We solve the eigenvalue problem numerically using C++,
and the solutions are compared to analytical results for verification and comparison.
The Hamiltonian,

H =

∫
d2r ψ†(r)

(
− h̄2

2m
∇2 − µ

)
ψ(r) +

1

2

∫
d2r d2r′

(
ψ†(r)D(r, r′)ψ†(r′) + h.c.

)
,

(6.1)

has the corresponding BdG equations

(
− h̄2

2m
∇2 − µ 1

2
{∆(r), ∂z∗}

−1
2
{∆∗(r), ∂z} h̄2

2m
∇2 + µ

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (6.2)

Recall the operator ∂z∗ = eiθ(∂r + i
r
∂θ) and that ∆(r) denotes the superconducting

order parameter. The coefficients u(r) and v(r) are complex weights that form
quasiparticle operators according to

Γn =

∫
d2r
(
u∗n(r)ψ(r) + v∗n(r)ψ†(r)

)
. (6.3)

The quasiparticle operators are assumed to diagonalize H,
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H = EΩ +
∑

n

EnΓ†nΓn, (6.4)

with En > 0.

6.1 Formulating the Problem

The annulus geometry D, depicted in Figure 6.1, defines the topological domain
that we will restrict ourselves to. In polar coordinates this domain is

D =
{

(r, θ) | r ∈ [R1, R2], θ ∈ [0, 2π)
}
. (6.5)

x

y

Topological, D
µ > 0

Trivial

µ < 0

R1

R2

Figure 6.1: Annulus geometry D. It is defined to be a region in R2 within two
concentric rings of radii R1 and R2. In this region µ > 0 is constant and the
order parameter is constant in absolute value.

One simplification of Alicea’s approach is to neglect the kinetic term containing ∇2

in the Hamiltonian, which allows him to find simple analytical solutions for systems
that have only an inner and an outer boundary [11]. It is therefore of interest
to see the consequences of including the kinetic term and to perform a numerical
diagonalization of the system to find exact solutions. In contrast to the system in the
previous chapter, having an outer boundary is expected to result in the appearance
of an additional Majorana mode. Numerically, we will apply Dirichlet boundary
conditions,

un(R1, θ) = un(R2, θ) = vn(R1, θ) = vn(R2, θ) = 0. (6.6)

In other words, the wavefunctions vanish identically outside D. Formally, this is
achieved by letting µ → −∞ outside the topological disk. Analytically, however,
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this limit will not be taken immediately, but we comment on this throughout the
next section. We formulate the BdG equations as coupled differential equations and
make them dimensionless. Assume also that the order parameter takes the form

∆(r) = ∆0e
i`θ+iπ, (6.7)

with ∆0 constant and ` ∈ Z the vorticity. Again, an overall sign, which simply
means a redefinition of the order parameter, is included for convenience. One may
think of the angular momentum as being induced by a magnetic flux threading the
center (trivial) part of the disk, inducing a vortex. In the topological region, D, the
radial vortex profile has reached its asymptotic value ∆0. This is underpinned by
assuming that R1, R2 � a, with a the Ginzburg-Landau coherence length. In the
previous chapter we stressed that only odd values of ` supported the assumption of
single valued fermion fields. Thus, ` is assumed to be odd at this point. We apply
the same separation of variables for un(r) and vn(r) as before,

un(r) = ũn(r)eiθ
`+1

2 and vn(r) = ṽn(r)e−iθ
`+1

2 , (6.8)

such that the radial BdG equations are

− h̄2

2m

(
d2

dr2
+

1

r

d

dr
− 1

r2

(
`+ 1

2

)2
)
ũn(r)− µũn(r)

−∆0

(
d

dr
+

1

2r

)
ṽn(r) = Enũn(r),

h̄2

2m

(
d2

dr2
+

1

r

d

dr
− 1

r2

(
`+ 1

2

)2
)
ṽn(r) + µṽn(r)

+ ∆0

(
d

dr
+

1

2r

)
ũn(r) = Enṽn(r).

(6.9)

The equations are made dimensionless by introducing the variables

ρ ≡ r

a
, ξ ≡ h̄2

2m
, η ≡ a2

ξ
µ, δ0 ≡

a

ξ
∆0, and εn ≡

a2

ξ
En. (6.10)

The coupled equations in (6.9) become

−
(

d2

dρ2
+

1

ρ

d

dρ
− 1

ρ2

(
`+ 1

2

)2

+ η

)
ũn(ρ)− δ0

(
d

dρ
+

1

2ρ

)
ṽn(ρ) = εnũn(ρ),

(
d2

dρ2
+

1

ρ

d

dρ
− 1

ρ2

(
`+ 1

2

)2

+ η

)
ṽn(ρ) + δ0

(
d

dρ
+

1

2ρ

)
ũn(ρ) = εnṽn(ρ).

(6.11)
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The solutions may be represented by two-component spinors as mentioned briefly
in section 5.2,

φn ≡
(
ũn(ρ)eiθ

`+1
2

ṽn(ρ)e−iθ
`+1

2

)
. (6.12)

These spinors are normalized according to

〈φn|φn〉 ≡
∫

d2ρ φ†nφn = 2π

∫ ∞

0

dρ ρ
(
|ũn|2 + |ṽn|2

)
= 1. (6.13)

The compact notation

∇2 ≡ d2

dρ2
+

1

ρ

d

dρ
− 1

ρ2

(
`+ 1

2

)2

and ∂ ≡ d

dρ
+

1

2ρ
, (6.14)

will sometimes be applied. The BdG Hamiltonian acting on spinors, as in equation
(6.12), may therefore be expressed as

H =

(
−∇2 − η −δ0∂
δ0∂ ∇2 + η

)
. (6.15)

6.2 The Energy Splitting

We find an approximative expression for the ground state spinor of the system in
Figure 6.1. This is done with associations of the double well tunnelling problem
known from quantum mechanics [17]. We calculate approximative and asymptotic
zero energy spinors of the two systems containing only one edge each. A linear
combination of the spinors is used as a ground state trial spinor for the two-edged
system. The resulting energy becomes a function of the boundary separation ∆ρ =
ρ2 − ρ1. We stress that this calculation is done with the aim of obtaining a simple
closed form expression of the energy splitting. The procedure will reveal useful
insights and predictions that later can be compared to numerical results in the
correct limit.

6.2.1 A General Consideration

Consider a one-edged system H1, as in (6.15), with a chemical potential described
by a step function that separates a trivial region, η0 < 0, and a topological region,
ηT > (δ0/2)2 > 0,

η1(ρ) =

{
η0 if ρ ∈ [0, ρ1)

ηT if ρ ∈ [ρ1,∞)
. (6.16)
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Note that a topological region is in the p+ ip model characterized by η > 0, but the
additional assumption of η > (δ0/2)2 will turn out to imply spatial oscillations in the
wavefunctions. The consequences of this will be commented on in the discussion.
A similar system with an outer edge at ρ2 is described by H2 and the chemical
potential

η2(ρ) =

{
ηT if ρ ∈ [0, ρ2]

η0 if ρ ∈ (ρ2,∞)
. (6.17)

Assume further that the spinors

φ1 =

(
ũ1e

iθ(`+1)/2

ũ∗1e
−iθ(`+1)/2

)
and φ2 =

(
ũ2e

iθ(`+1)/2

ũ∗2e
−iθ(`+1)/2

)
(6.18)

are zero modes of H1 and H2 respectively,

H1φ1 = H2φ2 = 0. (6.19)

The situation is depicted qualitatively in Figure 6.2. Details related to this general
picture are progressively found throughout the next few subsections. The two-edged
system, H, is described by the combined chemical potential
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Figure 6.2: A qualitative picture of Majorana zero modes located on the circular
boundaries of an annulus. (a) System with an inner edge at ρ1 and a chemical
potential described by the step function η1(ρ) as in equation (6.16). (b) System
with an outer edge at ρ2 described by the step function η2(ρ) from equation
(6.17).

η(ρ) =





η0 if ρ ∈ [0, ρ1)

ηT if ρ ∈ [ρ1, ρ2]

η0 if ρ ∈ (ρ2,∞)

. (6.20)
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The full system can be expressed compactly in terms of the single-edged Hamilto-
nians,

H = H1 +

(
ηT − η0 0

0 −(ηT − η0)

)
Θ(ρ− ρ2)

= H1 + ∆η Θ(ρ− ρ2)σz

= H2 + ∆η Θ(ρ1 − ρ)σz,

(6.21)

with σz the third Pauli matrix, ∆η ≡ ηT − η0, and Θ(ρ) the Heaviside function.
We make ansatzes for trial spinors φ± that serve as candidates for the ground state
spinor of the full system. At the moment, these ansatzes are merely postulated. A
posteriori, it will turn out that the spinors are diagonal in the energy basis. Let

φ± =
1√
2

(φ1 ± iφ2) , (6.22)

assuming that both φ1 and φ2 are normalized. One might object that overlap inte-
grals, such as 〈φ1|φ2〉, contradict the normalization in φ±. However, it is expected
that φ1 and φ2 are (exponentially) localized around ρ1 and ρ2 respectively [11].
Therefore, if ρ2 � ρ1 the overlap integrals will be highly suppressed. The trial
spinors are used to find a general expression for E± = 〈φ±|H|φ±〉. First, observe
that several terms vanish identically. We expand E±,

E± = 〈φ±|H|φ±〉

=
1

2
〈φ1|H|φ1〉+

1

2
〈φ2|H|φ2〉 ±

i

2
〈φ1|H|φ2〉 ∓

i

2
〈φ2|H|φ1〉

= ± i
2

∆η 〈φ1|Θ(ρ1 − ρ)σz|φ2〉 ∓
i

2
∆η 〈φ2|Θ(ρ− ρ2)σz|φ1〉

= ± i
2

∆η

∫ 2π

0

dθ

∫ ρ1

0

dρ ρ φ†1σzφ2 ∓
i

2
∆η

∫ 2π

0

dθ

∫ ∞

ρ2

dρ ρ φ†2σzφ1

= ±πi∆η
∫ ρ1

0

dρ ρ (ũ∗1ũ2 − ũ1ũ
∗
2)∓ πi∆η

∫ ∞

ρ2

dρ ρ (ũ1ũ
∗
2 − ũ∗1ũ2) .

(6.23)

The reason why the diagonal terms vanish is seen by inserting the appropriate
expression from (6.21) while using (6.19). For instance,

〈φ1|H|φ1〉 = 〈φ1|H1 + ∆η Θ(ρ− ρ2)σz|φ1〉

= ∆η

∫ 2π

0

dθ

∫ ∞

ρ2

dρ ρ φ†1σzφ1

= 2π∆η

∫ ∞

ρ2

dρ ρ
(
|ũ1|2 − |ũ1|2

)
= 0.

(6.24)

Hence, calculating E+ = −E− is reduced to two radial integrals in (6.23). It is
interesting that both integrals run over trivial regions where η = η0 < 0. When
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actually calculating these integrals later, we do it in the limit |η0| � ηT > (δ0/2)2

and still get a finite contribution independent of η0. To insist on calculating the
splitting before taking this limit η0 → −∞ might seem counter intuitive, but it
actually turned out to be crucial while working with this problem. The next task
is to find approximations for the single-edged spinors described by ũ1 and ũ2. Note
further that since E+ = −E−, the two spinors φ± are particle-hole symmetric states.

6.2.2 Finding the Spinors

The general criterion for a Majorana mode is that Γ† = Γ. By looking back at (6.3),
it means that ũ = ṽ∗ after the separation of variables. Without making any further
assumptions on the realness of ũ or ṽ, we are free to make the separation

ũ(ρ) = f(ρ) + ig(ρ), (6.25)

with both f and g being real functions. Inserting this into (6.11) leads to two real
equations (the notation from (6.14) is used),

(
∇2 + η + δ0∂

)
f(ρ) = 0 and

(
∇2 + η − δ0∂

)
g(ρ) = 0. (6.26)

These equations are made more familiar by introducing

f(ρ) = χ(ρ)e−
δ0
2
ρ and g(ρ) = χ(ρ)e+

δ0
2
ρ. (6.27)

Both equations in (6.26) imply Bessel’s equation for χ(ρ),

d2χ

dρ2
+

1

ρ

dχ

dρ
+

(
η −

(
δ0

2

)2

− 1

ρ2

(
`+ 1

2

)2
)
χ = 0. (6.28)

The reader is referred to Appendix C for details about the properties of the solutions.
Assume first that η > (δ0/2)2, and define the frequency

ω ≡
√
η − (δ0/2)2. (6.29)

A general solution to (6.28) is in this case a linear combination of Bessel functions,

χ(ρ) = a1J |`+1|
2

(ωρ) + a2Y |`+1|
2

(ωρ) , (6.30)

with a1 and a2 integration constants. If instead η < (δ0/2)2, we define

λ ≡
√

(δ0/2)2 − η, (6.31)

and the general solution of (6.28) is a linear combination of hyperbolic Bessel func-
tions,
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χ(ρ) = b1I |`+1|
2

(λρ) + b2K |`+1|
2

(λρ) , (6.32)

with b1 and b2 integration constants. In order to do any predictive calculation
analytically, we will compute everything that follows in the limit ρ � 1/ω, 1/λ.
Hence, instead of using the general solutions in (6.30) and (6.32), we may use a
solution basis spanned by their asymptotic forms. This is the main simplification of
this calculation. The asymptotic forms of the Bessel functions and the hyperbolic
Bessel functions are (see Appendix C):

Jn(x) ∼
√

2

πx
cos

(
x− 2n+ 1

4
π

)(
1 +O(x−1)

)
,

Yn(x) ∼
√

2

πx
sin

(
x− 2n+ 1

4
π

)(
1 +O(x−1)

)
,

In(x) ∼ 1√
2πx

ex
(

1 +O(x−1)
)
,

Kn(x) ∼
√

π

2x
e−x
(

1 +O(x−1)
)
.

(6.33)

In this asymptotic limit the `-dependent term in (6.28) is suppressed since it falls
off with ρ as O(ρ−2). It will lead to approximative solutions that do not depend
on `, which clearly is a simplification. We return to this observation in the final
discussion. Observe also that all leading order terms in the asymptotic expansion
above have the dependency on 1/

√
x in common. We therefore separate this factor

to make the next sections simpler; this factor will be identically cancelled by the
polar coordinate Jacobian in the integrals from (6.23). Let

f(ρ) = F (ρ)/
√
ρ and g(ρ) = G(ρ)/

√
ρ. (6.34)

Thus, if η > (δ0/2)2, we use a basis spanning the asymptotic solutions,

F (ρ) = [A1 cos(ωρ) + A2 sin(ωρ)] e−
δ0
2
ρ,

G(ρ) = [B1 cos(ωρ) +B2 sin(ωρ)] e+
δ0
2
ρ.

(6.35)

On the other hand, if η < (δ0/2)2, we use

F (ρ) = C1e
(λ− δ0

2
)ρ + C2e

(−λ− δ0
2

)ρ,

G(ρ) = D1e
(λ+

δ0
2

)ρ +D2e
(−λ+

δ0
2

)ρ,
(6.36)

where A1, . . . , D2 are integration constants. The asymptotic solutions above may
now be exploited to calculate the spinor φ1 (φ2) corresponding to H1 (H2). This is
done by patching together solutions on each side of the respective steps in chemical
potential. Extra subscripts on the constants from (6.29) and (6.31) will be added, ωT
and λ0, to remind ourselves on being in the topological or trivial regimes respectively.
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6.2.3 Inner Edge at ρ1

We calculate the spinor φ1 belonging to H1 with η1(ρ) as in equation (6.16). The
real solution, F , is denoted by FI when ρ < ρ1 and FII when ρ > ρ1. Analogously,
the imaginary solution is called GI for ρ < ρ1 and GII for ρ > ρ2. The functions are
patched together at ρ1 by making them continuous and differentiable,

FI(ρ1) = FII(ρ1) and
dFI

dρ
(ρ1) =

dFII

dρ
(ρ1), (6.37)

and similarly for GI and GII. The function GII is given by equation (6.35). However,
this function is exponentially increasing in ρ, and we are forced to put B1 = B2 = 0
in order to have limρ→∞GII(ρ) = 0. Thus, the solution has only a real component
for ρ > ρ1 and we may conclude that GI = 0. We take the real part of the solution
to be localized around ρ1. This just means a redefinition of the constants A1, A2,
C1 and C2 as they appear in (6.35) and (6.36), and it also makes the later patching
simple,

FI(ρ) = C1e
(λ0− δ02 )(ρ−ρ1) + C2e

(−λ0− δ02 )(ρ−ρ1),

FII(ρ) =
[
A1 cos

(
ωT (ρ− ρ1)

)
+ A2 sin

(
ωT (ρ− ρ1)

)]
e−

δ0
2

(ρ−ρ1).
(6.38)

We use (6.37) and additionally require that dFI(0)/dρ = 0 to avoid unwanted kinks
at the origin. The result is a real spinor component given by

ũ1(ρ) =
N1√
ρ

{
Θ(ρ1 − ρ)

[
be(λ0− δ02 )(ρ−ρ1) + e(−λ0− δ02 )(ρ−ρ1)

]

+ Θ(ρ− ρ1)

[
(b+ 1) cos

(
ωT (ρ− ρ1)

)
+
λ0

ωT
(b− 1) sin

(
ωT (ρ− ρ1)

)]
e−

δ0
2

(ρ−ρ1)

}
,

(6.39)

with N1 being a normalization constant and

b =
λ0 + δ0

2

λ0 − δ0
2

e2λ0ρ1 . (6.40)

To generally find N1, determined by 1 = 4πN2
1

∫∞
0

dρ ρ|ũ1|2, is tedious. Instead,
we carefully apply |η0| � ηT > (δ0/2)2 during the calculation and keep only the
greatest powers of λ0. In this limit, the exponential part of ũ1 for ρ < ρ1 shrinks
while the sinusoidal part for ρ > ρ1 is dominating; see Figure 6.2(a). After basic
integration we acquire the result

N1 ≈
√
δ0ηT
2π

1

λ0

e−2λ0ρ1 . (6.41)
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6.2.4 Outer Edge at ρ2

The system H2 is not fully a mirror reflection of H1, and this is due to the radial
nature of the problem. However, when ρ2 becomes large we can, based on exponen-
tial suppression, apply reasonable approximations. One may use the solutions in
(6.35) and (6.36) to set up the real solutions, FI and FII. After using (6.37), with
evaluation at ρ2 instead of ρ1, one runs into inconsistency problems when demanding
dFI(0)/dρ = 0. More intuitively, FI will have an unacceptable kink at the origin
due to its exponential dependency. This makes us require FI = FII = 0, and ũ2 is
consequentially restricted to being imaginary. We therefore study the solutions GI

and GII,

GI(ρ) =
[
B1 cos

(
ωT (ρ− ρ2)

)
+B2 sin

(
ωT (ρ− ρ2)

)]
e
δ0
2

(ρ−ρ2),

GII(ρ) = D1e
(λ0+

δ0
2

)(ρ−ρ2) +D2e
(−λ0+

δ0
2

)(ρ−ρ2). (6.42)

This time we may (only) fix D1 = 0 to have limρ→∞GII(ρ) = 0 (recall that λ0 >
δ0/2). Furthermore, if we assume that ρ2δ0/2 � 1, the derivative at the origin is
highly suppressed dGI(0)/dρ ≈ 0 due to the exponential part of the function. We
use the patching criterion in (6.37) at ρ2 on the remaining solution and obtain the
asymptotic spinor component

ũ2(ρ) =
iN2√
ρ

{
Θ(ρ2 − ρ)

[
cos
(
ωT (ρ− ρ2)

)
− λ0

ωT
sin
(
ωT (ρ− ρ2)

)]
e
δ0
2

(ρ−ρ2)

+ Θ(ρ− ρ2)e(−λ0+
δ0
2

)(ρ−ρ2)

}
.

(6.43)

Again, the normalization constant N2 is calculated by keeping only the greatest
powers of λ0 while assuming that ρ2δ0/2� 1. The result is

N2 ≈
√
δ0ηT
2π

1

λ0

. (6.44)

Note that there is a slight asymmetry in N1 and N2. This has to do exactly with
the assumption ρ2δ0/2� 1, such that terms of the order O(e−δ0ρ2) were neglected.

6.2.5 Calculating the Energy Splitting

The remaining task of calculating the energy splitting is now a matter of basic
integration. We focus on E+, since E− = −E+, and look at the two terms in (6.23)
separately, E+ ≡ E1 + E2. During the following calculation we make repeated use
of |η0| � ηT > (δ0/2)2 and keep only the terms with the greatest powers of λ0.
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Observe also that the constant b in equation (6.40) tends to b → e2λ0ρ1 and that
∆η ≈ |η0| ≈ λ2

0 in this limit. We find that

E1 = πi ∆η

∫ ρ1

0

dρ ρ

2iũ1Im(ũ2)︷ ︸︸ ︷
(ũ∗1ũ2 − ũ1ũ

∗
2)

≈ −2πN1N2 ∆η

∫ ρ1

0

dρ
[
be(λ0− δ02 )(ρ−ρ1) + e(−λ0− δ02 )(ρ−ρ1)

]

×
[
cos
(
ωT (ρ− ρ2)

)
− λ0

ωT
sin
(
ωT (ρ− ρ2)

)]
e
δ0
2

(ρ−ρ2)
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ωT
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δ0
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(6.45)

The other contributing integral, E2, is evaluated in the same limit,

E2 = −πi ∆η

∫ ∞

ρ2

dρ ρ

−2iũ1Im(ũ2)︷ ︸︸ ︷
(ũ1ũ

∗
2 − ũ∗1ũ2)

≈ −2πN1N2 ∆η

∫ ∞
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dρ
[
(b+ 1) cos

(
ωT (ρ− ρ1)

)
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λ0

ωT
(b− 1) sin

(
ωT (ρ− ρ1)

)]

× e− δ02 (ρ−ρ1)e(−λ0+
δ0
2

)(ρ−ρ2)

≈ −2πN1N2
λ0

ωT
(b− 1)eλ0ρ2e−

δ0
2

∆ρ ∆η

∫ ∞
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dρ e−λ0ρ sin
(
ωT (ρ− ρ1)

)

≈ −2πN1N2
λ2

0

ωT (λ2
0 + ω2

T )
(b− 1) ∆η sin(ωT∆ρ)e−
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2
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≈ −δ0ηT
ωT

sin(ωT∆ρ)e−
δ0
2

∆ρ.

(6.46)

Hence, the energy E+ = E1 + E2 is in the limit η0 → −∞ given by

E+(∆ρ) ≈ − 2δ0ηT√
ηT −

(
δ0
2

)2
sin

(√
ηT − (δ0/2)2∆ρ

)
e−

δ0
2

∆ρ . (6.47)

It is expected to be an asymptotic result valid when ∆ρ� 2/δ0 and both ρ1, ρ2 �
1/ωT . Note that since E1 = E2, within our approximation, terms of the type
〈φ+|H|φ−〉 = −E1 + E2 result in 0. This means that the spinors φ± are in fact
diagonal in the energy basis. The expression derived above has some important
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consequences that deserve being commented before we compare it to numerical
results.

6.2.6 Interpretation and Consequences

The Majorana (quasiparticle) operators corresponding to the spinors φ± are given
by (6.3),

Γ± =

∫
d2r

(
ũ∗1 ∓ iũ∗2√

2
ψ(r)e−iθ

`+1
2 +

ũ1 ± iũ2√
2

ψ†(r)eiθ
`+1

2

)
. (6.48)

The expression in equation (6.47) predicts that these Majorana operators are associ-
ated with zero energy excitations only for particular values of the domain separation,
which we denote by ∆ρc. Thus, a zero mode criterion,

∆ρc =
nπ√

ηT −
(
δ0
2

)2
, (6.49)

for integers n ∈ N. However, since the result is assumed to hold for large ∆ρ, the
integers n satisfying (6.49) may potentially be large. Whenever ∆ρ = ∆ρc there
are two degenerate ground states, |G1〉 and |G2〉 = Γ†+ |G1〉. The states |G1〉 and
|G2〉 can in principle be constructed with the same procedure as studied in detail
in section 4.2 for the open Kitaev chain. The zero mode condition gives strong
associations of an interference phenomenon. We interpret it as being caused by the
oscillating edge modes that convolute in a destructive manner when ∆ρ = ∆ρc. In
2013 B. Rosenstein et al. [35] studied the same circular system of small size, in our
terminology δ0∆ρ/2 ≈ 1. In that case, the same zero energy criterion is found in the
limit ηT � (δ0/2)2 by imposing Dirichlet boundary conditions on the wavefunctions
directly.

Generally, when ∆ρ 6= ∆ρc, equation (6.47) predicts that there is an energy split-
ting of E+ 6= 0 between the states |G1〉 and |G2〉. The oscillating sign of E+(∆ρ)
is reflecting an alternating preference on the ground state combination, i.e. φ+ or
φ−. For instance, if sin(ωT∆ρ) < 0, then E+ > 0 and φ+ is the positive energy
spinor, which we interpret as the physical ground state spinor. Recall that quasipar-
ticles were defined to have positive energy. This shifting preference on the ground
state combination is in contrast to the double well problem, in which the symmetric
configuration is the permanently preferred one [17]. Recall that we have assumed
that ηT > (δ0/2)2. If 0 < ηT < (δ0/2)2 the solutions in the topological region also
become hyperbolic with no spatial oscillations, meaning the effective solutions in
equation (6.35). It is expected to have the effect of replacing the sinusoidal function
in (6.47) with a hyperbolic sine. In other words, no true zero modes should occur
when 0 < ηT < (δ0/2)2. By the word ”true” we mean not taking into account
exponentially small energies.
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In 2010 M. Cheng et al. [34] calculated the energy splitting between Majorana modes
localized in two vortices of separation of R in the limit R� ξ, with ξ the coherence
length. They found an energy splitting of

E+ ≈
√

2

π
∆0

cos
(
kFR + π

4

)
√
kFR

e−
R
ξ , (6.50)

with kF =
√

2mεF −∆2
0/v

2
F and ∆0 � εF . It reminds of our result, expect for an

even stronger fall-off in separation in the additional factor of 1/
√
R. The Majorana

modes live on a circular boundary in the disk geometry we have studied. This is in
contrast to point-like vortices where (6.50) holds. The dimensional difference in the
platforms hosting the modes may intuitively explain this observation.

6.3 Matrix Formulation by Discretization

The BdG equations are now approached by discretization of the derivatives, with the
aim of formulating them as a matrix eigenvalue problem. This method is commonly
applied in computational physics [27]. We discretize the integration domain by some
(large) integer N and a corresponding step length h,

ρi = ρmin + ih, with h ≡ ρmax − ρmin

N + 1
. (6.51)

Above, we used the notation ρmin and ρmax instead of ρ1 and ρ2 to avoid confusion
with the discretized positions ρi. It means that we are interested in the solutions
on the N internal points, which we denote ũ(ρi) ≡ ũi ∀i ∈ {1, . . . , N}. Symmetric
approximations for derivatives are used,

d2ũ(ρ)

dρ2
≈ ũ(ρi + h)− 2ũ(ρi) + ũ(ρi − h)

h2
=

1

h2
(ũi+1 − 2ũi + ũi−1) , (6.52)

and

dũ(ρ)

dρ
≈ ũ(ρi + h)− ũ(ρi − h)

2h
=
ũi+1 − ũi−1

2h
. (6.53)

Both approximations have local truncation errors of O(h2). Inserting these approx-
imation in (6.11) leads to the discretized eigenvalue equations
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2
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]
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1
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]
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δ0

2h
ũi−1 −

δ0

2ρi
ũi −

δ0

2h
ũi+1 = εṽi.

(6.54)

It is convenient to express this as a matrix equation. We introduce several quantities
to have a manageable notation:

ai ≡ −
1

h2
− 1

2hρi
, bi ≡ −

1

h2
+

1

2hρi
, (6.55)

ci ≡
2

h2
+

1

ρ2
i

(
`+ 1

2

)2

− η, d ≡ δ0

2h
and ei ≡

δ0

2ρi
. (6.56)

Finally, a vector of coefficients is introduced,

Φ ≡
(
ũ1, ṽ1, ũ2, ṽ2, . . . , ũN , ṽN

)T
. (6.57)

The discretized BdG equations are now expressed as the eigenvalue problem

AΦ = εΦ, (6.58)

with A equal to the following 2N × 2N , heptadiagonal matrix:

A =




c1 −e1 a1 −d 0 0 0 0 . . . 0
e1 −c1 d −a1 0 0 0 0 . . . 0
b2 d c2 −e2 a2 −d 0 0 . . . 0
−d −b2 e2 −c2 d −a2 0 0 . . . 0
0 0 b3 d c3 −e3 a3 −d . . . 0

0 0 −d −b3 e3 −c3 d −a3
. . . 0

...
...

...
. . . . . . . . . . . . . . . . . .

...

0 0 0 0 0 0 0 0
. . . −eN

0 0 0 0 0 0 0 0 . . . −cN




. (6.59)

The matrix above is real but not symmetric. Still, the eigenvalues of A should be
real and respect the particle-hole-symmetry; they should come in pairs of opposite
signs – a readily available test of the implementation. Even though the symbol ε was
used in this section to denote dimensionless energy, we will denote the numerically
computed ground state energy by E0 in the remainder of this chapter.
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6.4 Numerical Diagonalization and Discussion

This section contains a brief description on how the eigenproblem formulation in
the previous section was implemented in C++. Then, we present a selection of re-
sults where the numerically computed solutions are compared to the approximative
solutions found in section 6.2. The chapter is closed with a discussion of the results
and conclusive remarks.

6.4.1 Implementation

In close analogy to the one-dimensional Kitaev chain diagonalization, the linear al-
gebra package Armadillo was used as tool. Specifically, its built-in eigenproblem
solver eig gen() was applied. Returned eigenvectors and eigenvalues, correspond-
ing to the smallest (positive) energy in absolute magnitude, were extracted and
written to text files.1 Normalization of the numerically found eigenvectors was done
according to (6.13) with the Trapezoidal rule. A symmetric spectrum was used as
a program test, indicating whether the discretization integer N was chosen large
enough or not. Notice that the matrix A has 2N eigenvalues, such that the numeri-
cally found spectrum becomes extensive when we tune the resolution up. Typically,
a full matrix diagonalization with N > 103 became slow and memory demanding.
The general structure of the core C++ script is not attached since it is a reuse of the
the code structure in Appendix D.1. Python and the plotting package matplotlib

were used for reading information from files and plotting results.

It is of interest to numerically compute the energy splitting as function of boundary
separation, mainly to see how the energy agrees with our analytical approximation
from equation (6.47). We denote the numerically computed value by E0(∆ρ) to
distinguish it from E+(∆ρ). The script that was written to find eigenvalues was
applied a large number of times. More precisely, we kept ρ1 fixed and let ρ2 take m
uniformly spaced values in some interval. For each value of ρ2, we set up the matrix
A and diagonalized it as before. For practical purposes, the value of N was kept
fixed as ρ2 increased, meaning that precision in practice is reduced with ∆ρ.

6.4.2 Results

The numerically computed wavefunctions should be compared to the asymptotic
spinors from section 6.2. We therefore summarize the one-edge spinors in the limit
η0 → −∞ (ρ1 and ρ2 are now used to denote the inner and outer boundaries again).
We stress that these approximations are valid when ∆ρ� 2/δ0 and ρ1, ρ2 � 1/ωT ,

1A pair of eigenvalues with clearly smaller magnitude than the rest, and of opposite signs,
were generally recognized in the spectrum when η > 0. When η < 0, no such pair appeared, in
agreement with the distinction between the topological and the trivial regime in the p+ ip model.
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φ1 =
N√
ρ

sin
(
ωT (ρ− ρ1)

)
Θ(ρ− ρ1)Θ(ρ2 − ρ)e−
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(ρ−ρ1)

(
eiθ(`+1)/2

e−iθ(`+1)/2

)
,
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ρ

sin
(
ωT (ρ2 − ρ)

)
Θ(ρ− ρ1)Θ(ρ2 − ρ)e−

δ0
2

(ρ2−ρ)

(
ieiθ(`+1)/2

−ie−iθ(`+1)/2

)
.

(6.60)

Normalized on the interval ρ ∈ [ρ1, ρ2], the constant N evaluates to

N =

√
δ0/

[
2π

(
1− (δ0/2)2

ηT

)]
, (6.61)

when terms of the order O(e−δ0∆ρ) are neglected. The linear combinations

φ± =
1√
2

(φ1 ± iφ2) (6.62)

are used as visual comparison to the numerically obtained solutions. To pick out
the correct combination, we simply checked the sign of sin(ωT∆ρ) numerically; if it
is negative φ+ is chosen and vice versa. Note that unless ∆ρ = ∆ρc, the spinors
in (6.60) do not, strictly speaking, obey the Dirichlet boundary conditions that the
two-edged system demands. They are still used as approximative solutions.

In Figure 6.3 we have plotted the lowest energy state resulting from a numerical
diagonalization of A with ` = −1 as coloured triangles for a representative sample of
positions. They are plotted along with the analytical approximations form equation
(6.62) and (6.60). The choice of ` was based on the previous chapter, in which we
discussed how ` = −1 corresponded to the fundamental vorticity. The parameters
are kept fixed but ∆ρ gradually increased through the subfigures (a) to (d). The
discretization integer was fixed to N = 1500. More details are provided in the figure
caption. In Figure 6.4 the numerically computed energy splitting, E0(∆ρ), and the
analytical approximation, E+(∆ρ), are plotted as function of ∆ρ, with the inner
boundary at ρ1 = 40 and the outer boundary in the range ρ2 ∈ [42, 60] for m = 500
uniformly spaced values. This simulation was done with the discretization integer
constantly fixed to N = 500.

6.4.3 Discussion and Conclusive Remarks

From Figure 6.3 we see that the trial spinors from (6.62) agree visually with the
numerical solutions. The edge modes are expectedly localized close to the bound-
aries and, as anticipated from equation (6.62) and (6.60), exponentially suppressed
towards the center part of the disk D. A general observation was made during the
simulations. When the energy of the ground state was close to the floating point
precision, typically of the order O(10−15), the resulting eigenvectors did not fit well
with the analytical approximations. This is related to the specific details of how the
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Figure 6.3: Radial Majorana component/wavefunction, ũ0(ρ) or ṽ0(ρ), as func-
tion of radial distance ρ for the lowest energy state. Parameters were fixed to
η = 1.0, δ0 = 0.5, ` = −1 with discretization integer N = 1500. The smallest
positive energy, denoted by E0, is displayed in the respective titles. Analytical
approximations, denoted here by ũapprox(ρ) or ṽapprox(ρ), corresponding to the
components of either φ+ or φ− from equation (6.62) and (6.60), are plotted as
continuous curves. Sample values from the numerical experiment are shown as
triangles. The inner boundary was kept at ρ1 = 40 and the outer boundary varied
according to (a) ρ2 = 60, (b) ρ2 = 80, (c) ρ2 = 100 and (d) ρ2 = 120. Even for
boundary separation, ∆ρ = 20, there is good agreement between the trial spinor
and the numerical solution.

solver eig gen() works. However, it is thought to stem from the fact that we could
receive rotations of eigenvectors within what is numerically seen as a zero energy
subspace. Problems related to this were generally avoided by reducing ∆ρ, and by
checking that the eigenvalues were returned in pairs of opposite signs. Note that
exactly the same problem was present and discussed in the diagonalization of the
open Kitaev chain.

The energy splitting from Figure 6.4 shows a satisfactory agreement between the
numerically obtained values and the analytical approximation when the boundary
separation increases. This is quite remarkable when considering all the simplifica-
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Figure 6.4: The energy splitting as function of boundary separation with pa-
rameters η = 1.0, δ0 = 0.5 and discretization integer N = 500 for ` = −1.
The value ρ1 = 40 was held fixed and ρ2 ∈ [42, 60] with m = 500 uniformly
spaced values. (a) The energies ±E0(∆ρ) – numerical values and continuous
curves – and E±(∆ρ) – analytical values and dashed curves – as function of ∆ρ.
(b) The logarithms log|E0(∆ρ)| and log|E+(∆ρ)| as function of ∆ρ. Already
for δ0∆ρ/2 ≈ 3, corresponding to ∆ρ ≈ 12 in the figure, the two curves are in
satisfactory agreement. The analytical approximation from equation (6.47) is
confirmed as a limiting result.

tions performed to arrive at the result. From a numerical perspective, these simula-
tions quickly became slow since a matrix of dimension 2N × 2N is diagonalized for
each of the m values of boundary separations. Hence, N was, just by consideration
of computation time, restricted to N = 500. The limited resolutions, determined by
m and N , also explain why the logarithmic values in Figure 6.4(b) do not diverge at
the critical boundary separations. Hitting the exact values of ∆ρc is very unlikely
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with a finite resolution.

One thing to notice about both the radial part of the spinors in (6.60) and the energy
splitting in (6.47), is that neither expression have any dependency on `. Of course,
the true solutions from (6.30) and (6.32) depend on `, but this information is lost in
the asymptotic solution basis. Performing the energy splitting calculation from sec-
tion 6.2 exactly with, for instance, ` = −1 will result in a more technical calculation.
This is because the Bessel functions are not perfectly periodic for small arguments.
It serves as a suggestive calculation that may be performed in an extension of this
work. Moreover, we have kept a particular focus on the assumption of ηT > (δ0/2)2.
This was seen to result in wavefunctions, and the energy splitting, having spatial os-
cillations. Assuming instead that 0 < ηT < (δ0/2)2 is expected to have the effect of
replacing sinusoidal functions with hyperbolic sines in the expressions above. It was
confirmed numerically that both the energy splitting and the edge modes became
purely exponential functions in this parameter regime. Furthermore, it basically
answers the main consequence of including the ∇2 term in the Hamiltonian. The
parametrical distinction between ηT > (δ0/2)2 and 0 < ηT < (δ0/2)2 reflects whether
wavefunctions and the energy splitting oscillate or not. With these remarks we close
our consideration of the p+ ip model.





Chapter 7

Experimental Activity and
Conclusions

7.1 Experimental Status

The prediction of Majorana fermions localized on the ends of nanowires has be-
come a hot experimental research topic. As mentioned earlier, the ultimate and
long-term goal is to utilize Majorana fermions in a topological quantum computer.
Ideally, one may imagine braiding Majoranas in a network of wires with voltage
gates and T-shaped junctions as described in [7]. However, experimentally verifying
Majorana fermions has proven to be demanding. Lately, several experiments have
shown promising evidence in accordance with predicted signatures. We will briefly
summarize two of the most influential experiments to illustrate how active this field
is. The figures in this section are reprinted with permission from the American As-
sociation for the Advancement of Science (AAAS).1

In 2012 V. Mourik et al. [8] reported from an advanced experiment. They performed
electrical measurements on a nanowire in contact with a s-wave superconductor and
a normal electrode on opposite ends. To effectively obtain spinless electrons, they
applied an external magnetic field B parallel to the wire and exploited the Zeeman
splitting (for instance discussed in [11]). A tunnel barrier was constructed by ap-
plying a negative voltage on a small gate beneath the nanowire. They measured the
differential conductance dI/dV and voltage V across the barrier, and in this way
they performed a tunnelling spectroscopy. The differential conductance spectra, for
a range of magnetic field strengths, revealed a zero-energy peak. One of the main
results of the experiment can be seen in Figure 7.1. The appearance of the peak was
interpreted as a strong indication of a Majorana zero mode. However, it should be
pointed out that the peak amplitude was much smaller than expected, and that the
wire appears to be short compared to the coherence length. The authors themselves
state that they are not aware of any mechanism, other than the existence of an
end-Majorana state, capable of explaining their results. But clearly, this does not

1Permission to reuse figures was also gained by email correspondence with the article authors.
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Figure 7.1: Differential conductance spectra, dI/dV versus voltage V , across
a tunnel barrier in an InSb nanowire in contact with a s-wave superconductor
at low temperature (70 mK). The different curves correspond to various applied
magnetic field strengths, plotted with a systematic offset for clarity. The two
green arrows indicate quasiparticle resonances, which can be used to quantita-
tively determine the induced gap ∆. A zero-voltage peak can be seen when the
magnetic field is approximately 100 mT < B < 400 mT. From [8]. Reprinted
with permission from AAAS.

guarantee that such explanations exist.

More recently, in 2014, S. Nadj-Perge et al. [9] used sophisticated techniques in an
attempt to realize a one-dimensional topological superconductor. They fabricated
iron atomic chains on the top of a superconducting layer of lead, see Figure 7.2(a).
The coupling of the iron chain to the conventional superconductor with strong spin-
orbit coupling was shown to allow for p-wave superconductivity without any applied
magnetic field (under these circumstances the chain is always in the topological
phase). Using scanning tunnelling microscopy, they were able to measure the dif-
ferential conductance spectra for different locations on the atomic chain, see Figure
7.2(b). The resulting spectra show a tendency of having zero-energy peaks at the
ends of the chain. This is evidence of a Majorana zero energy mode. Furthermore,
the spectra had the same characteristics as predicted by numerical experiments,
especially the occurrence of symmetrically placed in-gap states, seen more or less
as two peaks in the upper left panels of Figure 7.2(b). But again, the community
seems to be careful about drawing any definite conclusions before having seen more
signature effects, in particular on longer chains.

7.2 Concluding Remarks and Outlook

In this thesis, various aspects of topological superconductivity have been demon-
strated and explored, and the outcome has been rewarding. We have gradually
established details and obtained a more complete view than the schematic descrip-
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(a)

(b)

Figure 7.2: (a) Topography of a lead surface with islands and chains of iron
atoms (white arrows). In the upper left panel, some more or less pure iron chains
are shown with white scale bars of 50 Å for reference. (b) Differential conductance
spectra resulting from scanning tunnelling microscopy in an iron chain. Note that
the spectra are plotted with a constant offset for clarity. A tiny zero-energy peak
can be seen in the spectra at points 1 and 7. Their corresponding locations on
the chain are shown in the upper middle panel. The lower middle panel, with a
white scale bar of 10 Å, shows increased conductance in a region close to the end
of the chain. From [9]. Reprinted with permission from AAAS.

tions in [5, 11]. We started with a thorough study of the one-dimensional Kitaev
chain. The spectrum and the ground state were derived analytically for a closed
system. We found the ground state fermion parity to be altered just as µ passed
the topological phase transitions at ±t, which is not evident from [11]. Moreover,
the topological phase transition was reflected in a Berry phase calculation. The vec-
tor h(k) either did or did not circulate the origin, corresponding to the topological
and the trivial phase, respectively. Two-point correlation functions of great spatial
separation had enlarged values close to the phase transitions, and their maximum
values scaled linearly with reciprocal system size. We also found the fermion parity
of the ground state to be opposite when comparing periodic to anti-periodic bound-
ary conditions in the topological phase.

The Kitaev chain with open boundary conditions was used to demonstrate the possi-
bility of Majorana fermions at the ends in the topological phase. We pursued a par-
ticularly simple parameter choice, ∆ = t and µ = 0, and established details related
to the degenerate ground state subspace. It turned out to be non-trivial to choose
the correct ground states from a set of three candidate states, {|a〉 , d0 |a〉 , d†0 |a〉}
(from equation (4.16)). The degenerate ground states were also found to be greatly
entangled when separating the system ends from the interior. By picking the state
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with the correct fermion parity, one of the degenerate states was associated with the
unique ground state in the closed chain. This choice was in satisfactory agreement
with the defining property of the ground state in the closed system, acting as a con-
firmation of our result. Thereafter, we numerically studied the energy spectrum and
how it was affected by a space varying order parameter. Two additional Majorana
modes emerged for a real order parameter subject to a sign change. This was a
posteriori seen to be in accordance with the results in [28].

We proceeded by studying the p+ ip model. A set of consistency relations, includ-
ing the BdG equations that were implied by expansion of fermion operators in a
quasiparticle basis, were derived. The order parameter was then taken to describe a
symmetric vortex from Ginzburg-Landau theory. We argued how only odd vorticity
agreed with single valued fermion operators. The BdG equation for a Majorana zero
mode was solved numerically. A Majorana mode was typically localized within some
multiple of the Ginzburg-Landau coherence length from the vortex center. Our de-
scription of the vortex equation, and the scheme for solving it, may be extended in
future work. Especially with a more complete Ginzburg-Landau theory that takes
p-wave pairing rigorously into account. An idealized system of many vortex modes
was considered, and we proposed an argument that resulted in the same transfor-
mation rule as Ivanov describes [6]. In turn, this transformation rule was seen in
the introduction to imply non-Abelian interchange properties.

Finally, we considered the p+ip model on an annulus with constant parameters. We
approximated the ground state as a linear combination of edge modes, living on the
circular boundaries of systems with only one edge each. We focused on the param-
eter regime ηT > (δ0/2)2. In this case, the energy splitting between the edge modes
was found to be exponentially suppressed in the boundary separation. The splitting
also contained oscillations, which led to a zero mode condition that reminded of
an interference phenomenon. Our analytical results were verified by the numerical
implementation as the boundary separation was large compared to the decay length
scale. Moreover, we have not been capable of finding any references with a similar
consideration of this system, even though related discussions were found in [34, 35].

Seen in a wider perspective, topological superconductivity can be characterized as
a field of research with great potential. The unambiguous observation of Majorana
fermions in topological nanowires or in vortex bound states would be a milestone.
Not only because it would confirm a theoretical prediction from 1937, but also be-
cause it would give the field a solid experimental foundation. It would probably also
shift the focus experimentally to the natural follow-up aspect of Majorana fermions:
confirmation of their non-Abelian interchange properties. The flourishing experi-
mental activity in this field is likely to trigger discoveries of new applications and
techniques. Despite experimental barriers to overcome, topological superconductors
may ultimately turn out to be a platform where a topological quantum computer
can be brought to life. And even if that is not the case, the physics of topological
superconductors has proven to have great theoretical value in its own right.
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Appendix A

The Geometrical Phase

In 1984 Michael Berry described adiabatic evolution of energy eigenstates as the
parameters of a quantum system perform a loop in parameter space [25, 26]. During
an adiabatic evolution, the Adiabatic Theorem ensures that if the system prior to
the change was in the ground state, it will remain so as long as there is a finite
energy gap to the first excited state. Adiabatic evolution is the focus of Appendix
B, but we merely mention that the ground state will obtain a phase factor that
can be separated into an energy dependent part and an energy independent part.
The energy independent phase is known as the Berry phase for closed contours, and
it has three central properties: 1) it is gauge invariant, i.e. a physical measurable
quantity, 2) it is a geometrical phase that does not depend on the details of the
path in parameter space, and 3) it contains analogies to gauge theory and classical
electrodynamics. In this section useful expressions for the geometric vector field, and
the corresponding curvature field, are derived. This presentation follows [23] closely
and to some extent [26]. For notational convenience in this section, differential
operators are sometimes placed inside the ket, such as |∂iψ〉. This is understood to
mean ∂i |ψ〉. Summing over repeated indices is implied.

A.1 The Quantum Metric

In the quantum formalism there is a concept of length defined by the metric

ds2 = 〈dψ|dψ〉 , (A.1)

with |dψ〉 being the difference between the state vectors |ψ + dψ〉 and |ψ〉. This
metric must, however, be modified to stay invariant during arbitrary phase changes
of |ψ〉 and |ψ + dψ〉. After all, phase factors do not represent physical change. A
modified metric that takes this into account is

ds2 = 〈dψ|dψ〉 − 〈dψ|ψ〉 〈ψ|dψ〉 . (A.2)
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Assume next that {|ni〉} is a basis of the Hilbert space, such that a general state
can be expanded in it,

|ψ〉 = ψi |ni〉 . (A.3)

Using this expansion in the modified metric (A.2) yields the metric on coordinate
form,

ds2 = γij dψ∗idψj, (A.4)

with

γij = 〈ni|nj〉 − 〈ni|ψ〉 〈ψ|nj〉 (A.5)

as the metric tensor. This formulation is strikingly similar to the tensor formulation
in general relativity, but in the quantum version γij is generally complex and her-
mitian. Assume that there is a parameter space specified by a set of m coordinates,
{xi}mi=1. For each set of coordinates there is an associated state vector |nx〉. An
infinitesimal change in the state |nx〉 is then caused by changes in the coordinates,

|dnx〉 = dxi
∂

∂xi
|nx〉 ≡ |∂inx〉 dxi. (A.6)

By inserting this in the metric in (A.4), we find that

ds2 =
[
〈∂inx|∂jnx〉 − 〈∂inx|nx〉 〈nx|∂jnx〉

]
dxidxj. (A.7)

Summation over i and j ensure that only the symmetric part of the tensor above
remains. This symmetric part is

gij(x) ≡ 1

2

[
〈∂inx|∂jnx〉 − 〈∂inx|nx〉 〈nx|∂jnx〉+ 〈∂jnx|∂inx〉 − 〈∂jnx|nx〉 〈nx|∂inx〉

]

= Re
[
〈∂inx|∂jnx〉 − 〈∂inx|nx〉 〈nx|∂jnx〉

]
.

(A.8)

It is compactly expressed if we introduce, in analogy to gauge theory and covariant
derivatives, a projective derivative,

Dj ≡ ∂j − iaj, (A.9)

with the (state dependent) vector field aj(x) defined as

aj(x) ≡ −i 〈nx|∂jnx〉 . (A.10)
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The metric tensor is expressed in terms of this vector field according to

gij(x) = Re
[
〈Dinx|Djnx〉

]

= Re
[
〈∂inx|∂jnx〉 − 〈∂inx|nx〉 〈nx|∂jnx〉

]

= Re 〈∂inx|∂jnx〉 − aiaj.

(A.11)

Above, we used that ai(x) ∈ R, which is seen from the normalization of |nx〉,

〈nx|nx〉 = 1⇒ 〈∂inx|nx〉+ 〈nx|∂inx〉 = 0⇒ Im ai(x) = 0. (A.12)

The importance of this vector field becomes clear with the Adiabatic Theorem.

A.2 A New Tensor Field

The fact that gij(x) = Re [〈Dinx|Djnx〉] suggests the existence of another indepen-
dent quantity, due the richness stemming from γij being complex a priori. We define
this other object as

fij(x) ≡ 2 Im 〈Dinx|Djnx〉 = 2 Im 〈∂inx|∂jnx〉 , (A.13)

with the factor of 2 simply being convenient. Two equivalent expressions for this
new quantity are derived in this section. The first one is found by observing that

∂iaj − ∂jai = −i
[
〈∂inx|∂jnx〉 − 〈∂jnx|∂inx〉

]

= 2 Im 〈∂inx|∂jnx〉
= fij(x),

(A.14)

which explicitly shows that the tensor is antisymmetric. It also gives associations of
the electromagnetic field tensor. There is an alternative formulation that does not
require taking derivatives of any basis states. The starting point is the Schrödinger
equation with {|nx〉} being a complete, orthonormal set of energy eigenstates for
every set of parameters x,

H(x) |nx〉 = En(x) |nx〉 , 1 =
∑

n

|nx〉 〈nx| and 〈nx|n′x〉 = δn,n′ . (A.15)

Manipulation of these expressions, while assuming n 6= n′, yields

〈nx|
∂H

∂xi
|n′x〉 = ∂i

=0︷ ︸︸ ︷
〈nx|H|n′x〉− 〈∂inx|H|n′x〉 − 〈nx|H|∂in′x〉

= −En′ 〈∂inx|n′x〉 − En 〈nx|∂in′x〉
= (En′ − En) 〈nx|∂in′x〉 .

(A.16)
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We combine this with the expressions for fij(x) in (A.14) and the completeness of
basis states,

fij(x) = −i
[
〈∂inx|∂jnx〉 − (i↔ j)

]

= −i
∑

n′ 6=n

[
〈∂inx|n′x〉 〈n′x|∂jnx〉 − (i↔ j)

]

= −i
∑

n′ 6=n

[
〈nx| ∂H∂xi |n′x〉 〈n′x| ∂H∂xj |nx〉

(En − En′)2
− (i↔ j)

]
.

(A.17)

The parenthesis (i↔ j) is used here to denote the proceeding expression with indices
i and j interchanged. Note that both ai(x) and fij(x) are state dependent, which
we could have used a subscript n to explicitly point out.



Appendix B

The Adiabatic Theorem

The Adiabatic Theorem is a central pillar in quantum mechanics, first proven in
1928 when quantum theory was still in early development. At that time, the link
to the geometric properties of the Berry phase was not established (of course, the
factor did not carry the name ”Berry phase” either) [26]. We present and prove the
theorem in this section. The proof we present follows [23] closely. Some elements
are inspired by [17]. As in Appendix A, differential operators are sometimes placed
inside the ket in this section. Hence, |∂iψ〉 means ∂i |ψ〉. Summation over repeated
indices is implied. Assume that H = H(x(t)) is the Hamiltonian of a system with
n parameters, x = {x1(t), . . . , xn(t)}, that change slowly with time. The exact
meaning of the word ”slowly” in this context will be revealed in the derivation. Let
|nx〉 denote the nth energy eigenstate in an orthonormal basis,

H(x) |nx〉 = En(x) |nx〉 and 〈nx|mx〉 = δn,m. (B.1)

The Adiabatic Theorem may be formulated:

Theorem 1. If a state is prepared in the (non-degenerate) ground state |0x〉 of
H(x(t)), it will remain in the ground state throughout the time evolution but acquire
a phase factor exp (−iφ(t)), with

φ(t) =
1

h̄

∫ t

0

dt′ E0(t′)− i
∫ t

0

dt′ ẋk 〈0x|∂k0x〉 . (B.2)

Here, ∂k is the derivative with respect to xk, and the dot denotes derivative with
respect to t′.

Proof. The general solution to the time-dependent Schrödinger equation may be
expanded in terms of time-dependent eigenstates,

|ψ(t)〉 =
∑

n

cn(t)eiθn(t) |nx(t)〉 , (B.3)
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with the phase factor θn(t) commonly known as the dynamical phase factor,

θn(t) = −1

h̄

∫ t

0

dt′ En(t′). (B.4)

Taking the time derivative of equation (B.3) and inserting it into the time-dependent
Schrödinger equation yields

ih̄
∑

n

[
ċne

iθn |nx〉+ icnθ̇ne
iθn |nx〉+ cne

iθnẋk |∂knx〉
]

= H
∑

n

cne
iθn |nx〉 . (B.5)

Equation (B.1) ensures that the middle term on the left cancels the term on the
right hand side. Acting with 〈mx| on the remaining equation leaves us with

ċm = −
∑

n

cnẋ
k 〈mx|∂knx〉 ei(θn−θm). (B.6)

The mth coefficient is found by integrating this expression over time, assuming that
the system is prepared in the ground state initially cn(0) = δn,0,

cm(t) = δm,0 −
∑

n

∫ t

0

dt1 cnẋ
k 〈mx|∂knx〉 ei[θn(t1)−θm(t1)]. (B.7)

Consider the evolution on a large time interval T with fixed end points xk(0) and
xk(T ). We study the coefficients on a small interval δt compared to T : δt �
T . Within δt we assume that the energies, En, and the coefficients, cn, may be
considered constant. Using (B.7):

cm(t+ δt) = δm,0 −
∑

n

∫ t+δt

0

dt1 cnẋ
k 〈mx|∂knx〉 ei[θn(t1)−θm(t1)]

= δm,0 −
∑

n

∫ t

0

dt1 cnẋ
k 〈mx|∂knx〉 ei[θn(t1)−θm(t1)]

−
∑

n

∫ t+δt

t

dt1 cnẋ
k 〈mx|∂knx〉 ei[θn(t1)−θm(t1)]

≈ cm(t)−
∑

n

cnẋ
k 〈mx|∂knx〉

∫ t+δt

t

dt1 e
i
h̄

∫ t1
0 dt2 [Em(t2)−En(t2)]

≈ cm(t)
[
1− ẋk 〈mx|∂kmx〉 δt

]

+ ih̄
∑

n6=m

cnẋ
k 〈mx|∂knx〉
Em − En

e
i
h̄

(Em−En)t
(
e
i
h̄

(Em−En)δt − 1
)
.

(B.8)

The final term may be neglected if
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δt� h̄

|Em − En|
, (B.9)

which is called the adiabatic criterion. In this limit the equation above gives an
expression for the ground state coefficient c0(t),

ċ0 = −c0ẋ
k 〈0x|∂k0x〉 ⇒

c0(t) = exp
(
−
∫ t

0

dt ẋk 〈0x|∂k0x〉
)

= exp
(
−
∫ x(t)

x(0)

dxk 〈0x|∂k0x〉
)
.

(B.10)

This means that the ground state acquires two contributions to the accumulated
phase factor in time, exp (iθ0(t)− iα0(t)). The first part, θ0(t), is energy dependent
and given by equation (B.4). The second part,

α0(t) ≡ −i
∫ x(t)

x(0)

dxk 〈0x|∂k0x〉 =

∫ x(t)

x(0)

dxk ak(x), (B.11)

is energy independent. It rather depends on the parametric geometry of the ground
state. It is called the geometrical phase and establishes a connection to the vector
field aj(x) introduced in Appendix A. Furthermore, if the parameter evolution is
periodic, x(0) = x(T ), Stokes’ Theorem enables us to rewrite the geometrical phase
as a surface integral,

∮

ζ

dxk ak(x) =
1

2

∫

S
dSij fij(x). (B.12)

Above, ζ is the closed contour determined by x(t), S is a surface with ζ as boundary,
dSij is the element of an infinitesimal surface element, and fij(x) is the tensor field
discussed in Appendix A.2.





Appendix C

Bessel Functions

Bessel functions appear on several occasions in this thesis. A selection of their
properties relevant for our purposes are listed in this section. We also present a
schematic proof on the absolute normalizability of the nth order Bessel function.
The material in this section is based on [36].

C.1 Bessel Functions of the First and Second Kind

Bessel’s differential equation of order α reads

x2 d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0. (C.1)

Two often used solutions to this equations are referred to as solutions of the first
kind, Jα, and solutions of the second kind, Yα. The functions Jα (Yα) are charac-
terized by being finite (singular) at the origin. Frobenius’ method of generalized
power series may be applied to find polynomial expansions of these functions. In
other words, making the ansatz y(x) =

∑∞
n=0 anx

n+s yields a recursion relation in
the coefficients an. The functions Jα(x) correspond to solutions with s = α and
a0 = 1/(2αΓ(1 + α)). This procedure results in the power series

Jα(x) =
∞∑

m=0

(−1)m

Γ(m+ 1)Γ(m+ 1 + α)

(x
2

)2m+α

. (C.2)

Consider the integer ordered Bessel function Jn(x) with n ∈ N. The small argument
expansion follows from (C.2),

Jn(x) =
1

Γ(n+ 1)

(x
2

)n
+O(xn+2). (C.3)

The functions also have a simple asymptotic behaviour,
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Jn(x) ∼
√

2

πx
cos

(
x− 2n+ 1

4
π

)
+O(x−3/2). (C.4)

Furthermore, the integer ordered Bessel functions satisfy the dependency relation
J−n(x) = (−1)nJn(x). One may replace s = −α in Frobenius’ method and obtain
a second class of solutions, J−α(x), which are linearly independent from Jα as long
as α 6∈ N. The following combination of solutions are usually called Neumann or
Weber functions and defines the solutions of the second kind:

Yα(x) =
cos(πα)Jα(x)− J−α(x)

sin(πα)
. (C.5)

The integer ordered Bessel functions of the second kind, Yn(x), are obtained for any
n ∈ N by taking the limit Yn(x) = limα→n Yα(x). They diverge (logarithmically for
n = 0) as x→ 0 and have asymptotic forms similar to Jn(x),

Yn(x) ∼
√

2

πx
sin

(
x− 2n+ 1

4
π

)
+O(x−3/2). (C.6)

A question that naturally arises in section 5.3.3 about Majorana modes concerns
the integrability of Jn(x). Below, we provide a schematic proof, based on basic
techniques from calculus, that answers this question.

Theorem 2.
∫∞

0
dx |Jn(x)|p <∞ if and only if p > 2.

Proof. We only need to consider the tail behaviour of the integral, let us say from
some value M ∈ R to ∞. This means we can apply the asymptotic form of the
function. Using equation (C.4) observe that

|Jn(x)|p ∼ (2/π)px−p/2| cos(x− (2n+ 1)π/4)|p
(

1 +O(x−1)
)
. (C.7)

Assume first that p > 2. Then, the integral of the tail function |Jn(x)|p is clearly
finite since,

∫ ∞

M

dx x−p/2| cos(x− (2n+ 1)π/4)|p ≤
∫ ∞

M

dx x−p/2 <∞ ∀ p > 2. (C.8)

Next order terms, which are bounded by x−p/2−1, are of course also convergent.

Assume now that p ≤ 2. We again consider only the first term in (C.7) since next
order terms are trivially bounded. The 2π-periodicity of the cosine is exploited by
splitting the integral in the partitions Am = [M+2π(m−1),M+2πm). We see that
the intervals Am are disjoint, and that their union covers the integration domain,
∪∞m=1Am = [M,∞). Therefore,
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I ≡
∫ ∞

M

dx x−p/2| cos(x− (2n+ 1)π/4)|p

=
∞∑

m=1

∫

Am

dx x−p/2| cos(x− (2n+ 1)π/4)|p

≡
∞∑

m=1

bm(p).

(C.9)

Moreover, since x−p/2 is strictly decreasing in x for positive p, we have that (M +
2πm)−p/2 < x−p/2 for x ∈ Am, and thereby the inequality

1

(M + 2πm)p/2

∫

Am

dx | cos(x− (2n+ 1)π/4)|p <
∫

Am

dx
| cos(x− (2n+ 1)π/4)|p

xp/2
.

(C.10)

The termNp ≡
∫
Am

dx | cos(x−(2n+1)π/4)|p is independent ofm since the integrand
is periodic in 2π. Consider equation (C.9) again, with the use of the inequality in
(C.10),

∞ = Np

∞∑

m=1

1

(M + 2πm)p/2
<

∞∑

m=1

bm(p) = I. (C.11)

The sum on the left side is a (shifted) divergent series for p ≤ 2 (harmonic series for
p = 2), and the comparison test for convergence of series tells us that I diverges as
well. This completes the proof.

C.2 Modified Bessel Functions of the First and

Second Kind

Bessel’s modified differential equation of order α,

x2 d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0, (C.12)

is obtained by making the replacement x 7→ ix in (C.1). Not surprisingly, its
solutions of the first and second kind, denoted by Iα and Kα respectively, are related
to Jα and Yα by

Iα(x) = i−αJα(ix),

Kα(x) =
π

2
iα+1

(
Jα(ix) + iYα(ix)

)
.

(C.13)
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The hyperbolic Bessel functions, Iα(x) and Kα(x), are adjusted to become real for
real x. In the small x expansion, Iα behaves similarly to Jα, and Kα similarly to Yα.
Their asymptotic forms are given by

In(x) ∼ 1√
2πx

ex
(

1 +O(x−1)
)
,

Kn(x) ∼
√

π

2x
e−x
(

1 +O(x−1)
)
.

(C.14)



Appendix D

Code Attachment

A selection of the code written during this work is listed. The code samples represent
a small fraction of the total amount of code produced. Still, it is meant to illustrate
the diversity of the applied methods and the most essential structures needed to
reproduce the numerical results.

D.1 Diagonalization of the Kitaev Chain

In Listing D.1 a C++ script that diagonalizes the Kitaev chain is provided. This
code is the main ingredient used to produce the results in section 4.4, in particular
Figure 4.5. Compilation and plotting of the results was done with Python. Note
that this script must be compiled with the package Armadillo installed. This pack-
age is described in [27]. In section 6.3 the p + ip model was discretized, and the
BdG equations were formulated as an eigenvalue problem. Thus, the matrix that is
set up in Listing D.1 can be modified to describe A from equation (6.59) instead.
Thereby, this code structure may be reused.

1 // A C++ s c r i p t t ha t d i a g o n a l i z e s the K i t a ev cha i n .
2 // E i g e n v a l u e s a r e w r i t t e n to a t e x t f i l e .
3

4 #i n c l u d e <a rmad i l l o>
5 #i n c l u d e <iomanip>
6 u s i n g namespace std ;
7 u s i n g namespace arma ;
8

9 // Gap f u n c t i o n wi th k i nk d e c l a r e d he r e :
10 doub l e Delta_kink ( i n t x , i n t N , doub l e Delta_0 ) {
11 doub l e s = 10 . 0 ;
12 r e t u r n –Delta_0∗tanh ( ( x – (N– 2) /2 .0 ) /s ) ; }
13

14 i n t main ( i n t argc , cha r ∗∗ argv ) {
15 i n t n , A ; // 2n : mat r i x d imens ion , A : number o f chem i ca l

p o t e n t i a l s .
16 doub l e t , Delta0 , h ; // t : hopp ing parameter , De l ta0 :

a s ympto t i c o r d e r parameter , h : s t e p l e n g t h .
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17 char ∗outfilename ;
18

19 i f ( argc <= 5 ) {
20 cout << ”Bad Usage : ” << argv [ 0 ] <<
21 ” Read a l s o n , ou t f i l e name , A, t and De l ta0 on same

l i n e ” << endl ;
22 exit (1 ) ;
23 }
24 e l s e {
25 n = atoi ( argv [ 1 ] ) ;
26 outfilename = argv [ 2 ] ;
27 A = atoi ( argv [ 3 ] ) ;
28 t = atof ( argv [ 4 ] ) ;
29 Delta0 = atof ( argv [ 5 ] ) ;
30 }
31

32 i n t N = 2∗n ; // mat r i x d imens ion
33 vec mu (A+1) ; // A rmad i l l o v e c t o r o f chem i ca l p o t e n t i a l s
34 h = 4.0∗ t/A ; // d i s c r e t i z a t i o n i n chem i ca l p o t e n t i a l
35 f o r ( i n t j=0; j < A+1; j++) { mu (j ) = – 2 .0∗ t + j∗h ; }
36

37 ofstream ofile ;
38 ofile . open ( outfilename ) ;
39

40 // Outer l oop ove r a l l c h em i ca l p o t e n t i a l s :
41 f o r ( i n t l = 0 ; l < A+1; l++) {
42 // Set up mat r i x and d i a g o n a l i z e i t f o r each v a l u e o f mu:
43 i n t x_int ; // dummy v a r i a b l e ( p o s i t i o n )
44 doub l e mu_val = mu (l ) ; // c u r r e n t v a l u e o f mu
45 mat M (N , N ) ;
46 M . zeros ( ) ;
47 // Set up mat r i x i n a b ru t e f o r c e way :
48 f o r ( i n t i=0; i < N ; i++) {
49 i f (i % 2 == 0) {
50 x_int = i /2 ;
51 M (i , i ) = –mu_val / 2 . 0 ;
52 i f (i < N– 3) {
53 M (i , i+3) = +Delta_kink ( x_int , n , Delta0 ) / 4 . 0 ;
54 M (i+3,i ) = +Delta_kink ( x_int , n , Delta0 ) / 4 . 0 ;
55 M (i+3,i+1) = +t / 4 . 0 ;
56 M (i+1,i+3) = +t / 4 . 0 ;
57 }
58 i f (i < N– 2) { M (i , i+2) = –t / 4 . 0 ; }
59 i f (i > 1) { M (i , i– 2) = –t / 4 . 0 ; }
60 }
61 e l s e {
62 x_int = (i– 1) /2 ;
63 M (i , i ) = +mu_val / 2 . 0 ;
64 i f (i < N– 1) { M (i , i+1) = –Delta_kink ( x_int , n ,

Delta0 ) / 4 . 0 ; }
65 i f (i < N– 1) { M (i+1,i ) = –Delta_kink ( x_int , n ,

Delta0 ) / 4 . 0 ; }
66 }
67 }
68 vec eigval ; // v e c t o r w i th e i g e n v a l u e s
69 mat eigvec ; // mat r i x w i th e i g e n v e c t o r s
70 eig_sym ( eigval , eigvec , M ) ; // f e t c h e i g e n v a l u e s
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71 // Wr i t i ng r e s u l t s to o u t f i l e :
72 ofile << ” E i g e n v a l u e s f o r n = ” << n ;
73 ofile << ” f o r mu = ” << mu_val << endl ;
74 f o r ( i n t i=0; i < N ; i++) { ofile << setw (11) <<

setprecision (8 ) << eigval (i ) << endl ; }
75 } // c a l c u l a t i o n f o r mu val done . Update mu and con t i nu e
76 ofile . close ( ) ;
77 r e t u r n 0 ;
78 } // end o f main program

Listing D.1: A C++ script that diagonalizes the open Kitaev chain with a
spatially varying order parameter ∆x. The returned eigenvalues are written to a
text file that may be read and plotted with a Python script. The parameters of
the problem are provided by the user as command line arguments when running
this script.

D.2 The Radial Majorana Zero Mode Equation

In Listing D.2 we have included the Python script that produces the results plotted
in Figure 5.3(a). This code sample applies the module ODESolver as described in
[33], and it contains tabulated vortex data from [32] that are interpolated with a
cubic spline method from scipy. Note that equation (5.40) is formulated as a cou-
pled set of two first order differential equations in this implementation.

1 # A python s c r i p t t ha t i n t e r p o l a t e s r e f e r e n c e date
2 # f o r a v o r t e x o f v o r t i c i t y l = – 1 .
3 # The i n t e r p o l a t i o n i s a p p l i e d i n s o l v i n g the d i f f e r e n t i a l

e qua t i on
4 # d e s c r i b i n g a Majorana z e r o mode bound to the v o r t e x .
5

6 from scipy . interpolate impor t interp1d

7 # The module ODESolver has Runge Kutta 4 th o r d e r method b u i l t i n :
8 from ODESolver impor t ODESolver , RungeKutta4

9 from math impor t sqrt , pi

10 impor t numpy as np

11

12 # I n i t i a l c o n d i t i o n s and pa ramete r s a r e f i x e d i n t h i s b l o ck :
13 rho_min = 0.01
14 rho_max = 14.99
15 u_init = [ 1 . 0 , 0 . 0 ] # i n i t i a l c o nd i t i o n s , [ u (0 ) , du/ drho (0 ) ]
16 n = 800 # g r i d r e s o l u t i o n
17 D0 = 1.0 # asympto t i c v a l u e o f the o r d e r paramete r
18 eta = 1.0 # chem i ca l p o t e n t i a l
19

20 # Funct i on to f i n d the v a l u e o f R from which the s o l u t i o n s t a y s
21 # l e s s than a f r a c t i o n p o f i t s maximum va l u e :
22 de f less_than_p (R , func_vals , p ) :
23 m = l e n (R )
24 tol = max( abs ( func_vals ) ) ∗p
25 R_tol = 0.0
26 f o r i i n x range (m ) :
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27 i f abs ( func_vals [ i ] ) > tol :
28 R_tol = R [ i ]
29 r e t u r n R_tol

30

31 # Trape zo i d a l i n t e g r a t o r used f o r n o rma l i z a t i o n :
32 de f Trapezoidal_integrator (R , func_vals ) :
33 h = R [ 1 ] –R [ 0 ]
34 m = l e n (R )
35 S = 0.0
36 f o r l i n range (1 , m– 1) :
37 S += func_vals [ l ]∗ h
38 S += ( func_vals [0 ]+ func_vals [ m– 1 ] ) ∗h /2 .0
39 r e t u r n S

40

41 # A c l a s s s t r u c t u r e tha t c o n t a i n s an i n t e r p o l a t o r
42 # of t a bu l a t e d v o r t e x v a l u e s and c a l l a b l e f u n c t i o n s
43 # tha t r e t u r n the r i g h t hand s i d e s o f the d i f f e r e n t i a l e qua t i on
44 # exp r e s s e d as two coup l ed f i r s t o r d e r e qua t i o n s .
45 # The i n s t a n c e s o f t h i s c l a s s shou l d be pas sed to ODESolver .
46 c l a s s Vortex_numerical_l1 :
47

48 de f __init__ (self , Delta0 , mu , activate_g=1) :
49 self . D = f l o a t ( Delta0 )
50 self . mu = f l o a t (mu )
51 self . boo l = activate_g # boo lan v a r i a b l e . I f 0 the o r d e r

paramete r i s s e t to 0 .
52 # Tabulated r e f e r e n c e data f o r a v o r t e x w i th l = – 1 :
53 self . rho_num =

np . array ( [ 0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 ,
54 1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 , 3 . 5 , 4 . 0 , 4 . 5 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 ,
55 9 . 0 , 1 0 . 0 , 1 1 . 0 , 1 2 . 0 , 1 3 . 0 , 1 4 . 0 , 1 5 . 0 ] )
56 self . g_l1_num =

self . D∗np . array ( [ 0 . 0 , 0 . 0 58250 , 0 . 1 16064 , 0 . 1 73022 ,
57 0 .228729 ,0 . 282827 ,0 . 335001 ,0 . 384990 ,0 . 432586 ,
58 0 .477636 ,0 . 520039 ,0 . 692060 ,0 . 804926 ,0 . 874944 ,
59 0 .917461 ,0 . 943364 ,0 . 959460 ,0 . 969771 ,0 . 976620 ,
60 0 .984730 ,0 . 989150 ,0 . 991845 ,0 . 993627 ,0 . 994874 ,
61 0 . 995784 , 0 . 996470 , 0 . 997000 , 0 . 997418 , 0 . 997755 ] )
62 # Ca l l a b l e f u n c t i o n o f cub i c s p l i n e i n t e r p o l a t e d v a l u e s :
63 self . f = interp1d ( self . rho_num , self . g_l1_num ,

kind=’ cub i c ’ )
64

65 # Help f u n c t i o n tha t r e t u r n s the o r d e r paramete r :
66 de f f_val (self , rho ) :
67 i f self . boo l :
68 value = self . f ( rho )
69 e l s e : value = 0.0
70 r e t u r n value

71

72 # This f u n c t i o n r e t u r n s the term g∗g ’
73 # with a nume r i c a l d i f f e r e n t i a t i o n o f g = \ s q r t { f } .
74 # A symmetr ic f o rmu la f o r d i f f e r e n t i a t i o n i s used .
75 de f g_dg_numerical (self , rho , h=1E– 6) :
76 i f self . boo l :
77 term = sqrt ( self . f_val ( rho+h ) ) –sqrt ( self . f_val ( rho–h ) )
78 d_sqrt_g = term /(2∗h )
79 value = d_sqrt_g∗sqrt ( self . f_val ( rho ) )
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80 e l s e : value = 0.0
81 r e t u r n value

82

83 de f __call__ (self , u , rho ) :
84 # u i s a two–component v e c t o r .
85 # u [ 0 ] i s the same as u ( rho )
86 # u [ 1 ] i s the same as du ( rho ) / drho
87 # This f u n c t i o n r e t u r n s the d e r i v a t i v e s o f u [ 0 ] and u [ 1 ]
88 v , w = u

89 term1 = –self . f_val ( rho ) – 1 .0/ rho
90 term2 = –self . g_dg_numerical ( rho )
91 term2 –= self . mu
92 term2 –= self . f_val ( rho ) / (2 . 0∗ rho )
93 r e t u r n [ w , term1∗w + term2∗v ]
94

95 rho = np . linspace ( rho_min , rho_max , n , endpoint=True )
96 V = Vortex_numerical_l1 ( Delta0=D0 , mu=eta ) # i n s t a n c e wi th v o r t e x
97 V0 = Vortex_numerical_l1 ( Delta0=D0 , mu=eta , activate_g=0) #

i n s t a n c e w i thout v o r t e x
98

99 # Pas s i ng i n s t a n c e V to RK4 s o l v e r :
100 method = RungeKutta4 (V )
101 method . set_initial_condition ( u_init )
102 u , rho = method . solve ( rho )
103 u0_values = u [ : , 0 ] # e x t r a c t i n g the s o l u t i o n ( not no rma l i z ed ye t )
104

105 # Norma l i z i ng s o l u t i o n :
106 u0_square = rho∗u0_values∗∗2 # i n t e g r a nd
107 I = Trapezoidal_integrator (rho , u0_square )
108 N = 1.0/ sqrt (2∗pi∗I ) # no rma l i z a t i o n con s t an t
109 u0_values ∗= N # norma l i z ed s o l u t i o n i s now ready f o r p l o t t i n g
110

111 R_c = less_than_p (rho , u0_values , 0 . 0 1 )
112 p r i n t ” C r i t i c a l r a d i u s at which the s o l u t i o n i s l e s s than 1%

of maximum : ” , R_c

113 p r i n t ” Value o f the v o r t e x p r o f i l e a t c r i t i c a l r a d i u s : ” ,
V . f_val ( R_c )

114

115 # S im i l a r c a l c u l a t i o n w i thout v o r t e x as a r e f e r e n c e c a l c u l a t i o n :
116 method0 = RungeKutta4 (V0 )
117 method0 . set_initial_condition ( u_init )
118 v0 , rho0 = method0 . solve ( rho )
119 v0_values = v0 [ : , 0 ] ∗ N # e x t r a c t i n g the s o l u t i o n and s c a l i n g i t

w i th the n o rma l i z a t i o n o f u0

Listing D.2: A Python script that applies cubic spline interpolated values of
reference data for the order parameter profile from [32]. The values are used
when solving the radial Majorana zero mode equation (5.40), which is done with
the Runge-Kutta 4th order method. The Python module named ODESolver,
which is importet and used in this script, was taken from [33] and can be found
documented and explained in that reference. This module was used due to its
object oriented and compact implementation.
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