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Abstract 

We study the simultaneous uni-directional fl.ow of water and oil in a heterogeneous 

medium modelled by the Buckley-Leverett equation. It is shown both by analytical 

solutions and by numerical experiments that this hyperbolic model is unstable in the 

following sense: Perturbations in physical parameters in a tiny region of the reservoir 

may lead to a totally different picture of the fl.ow. This means that simulation results 

obtained by solving the hyperbolic Buckley-Leverett equation are unreliable. 
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Symbols and notation 

x* spatial coordinate 

L * characteristic length 

x dimensionless spatial coordinate 

t* time coordinate 

t* characteristic time c 

t dimensionless time coordinate 

s water saturation 

v* total filtration (Darcy) velocity 

J fractional flow function varying with s and x 

'l/J* diffusion function varying with s and x* 

'ljJ dimensionless diffusion function varying with s and x 

P; capillary pressure function 

p~ characteristic pressure 

Pc dimensionless capillary pressure function 

<P porosity 

k* absolute permeability 

k; characteristic absolute permeability 

k dimensionless absolute permeability 

krw relative water permeability 

kro relative oil permeability 

µ:V dynamic water viscosity 

µ~ dynamic oil viscosity 

µ~ characteristic viscosity 
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µw dimensionless dynamic water viscosity 

dimensionless dynamic oil viscosity 
<ren.sffy-olwater ___ - -- --- - --- - ---- --- - ------- --- - -- ----------- ------

density of oil 

f!~ characteristic density 

f!w dimensionless density of water 

f!o dimensionless density of oil 

g acceleration due to gravity 

a angle between flow direction and horizontal direction 

W, /3, v dimensionless numbers defined by equations (4), (5) and (6) 

c parameter measuring the capillary effects 

Is interval containing a low permeable rock 

b length of Is 

x centroid of Is 

J value of f outside Is 

J value of f inside Is 

ss s for a fixed value of b in section 3 

81, 82, 83 constant values of s 

a1, a2, a shock speeds 

T value oft 

~x spatial grid spacing 

~t temporal grid spacing. 

Xj spatial grid point, Xj = j~x 

tn temporal grid point, tn = n~t 

Sj numerical approximation to s(xj, tn) 

fj value off at Sj and Xj 
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1/Jj 
x(t) 

x+ 

value of 1/; at Sj and x; 

discontinuity curve in (x, t) space 

dglii IiIIliting value of x 
x- left limiting value of x 
SL left state of S (wrt. x) 

sR right state of s (wrt. x) 

J local approximation of f around x 
1-, j+ values of J 
8 value of s at x 
S similarity solution 

( argument of S 

L1 the space of absolutely integrable functions 

L 00 the space of bounded functions 
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1 Introduction 

n ___A_n, _imiw~:rtant ~pJ>licati911__~Lrnathell!_atic_M_!llodels~l<:>!~twcr-~h_a~~ :por_o~~medi~_ flow in ______ _ 

reservoir engineering is the simulation of waterflooding, that is, displacement of oil in an 

oil reservoir by injected water. Most of the mathematical theory for water flooding models, 

including stability properties, has been developed under the assumption of a homogeneous 

or a smoothly varying heterogeneous medium. Our purpose with this paper is to demon-

strate that a certain instability phenomenon may arise when these models are applied for 

discontinuous heterogeneous media and capillary pressure effects are neglected. 

Let us consider two-phase flow of water and oil in a porous medium. If the flow is one­

dimensional, both phases are incompressible and if the volumetric flow rate is known, the 

saturation of the water phase s(x, t), at position x and time t, is governed by the following 

(dimensionless) equation: 

8s 8f a ( 8s) 
</> 8t + v 8x = 8x e,,P 8x · (1) 

Here </> is the porosity, v is the (scaled) volumetric total flow rate, f is the fractional 

flow function, and e'lj; is related to capillary pressure effects. Both f and 'ljJ are functions 

of s, and if the medium is heterogeneous they may also· depend explicitly on x. In the 

latter case </> may also be a function of x. Equation (1) is derived from the principle of 

mass conservation for each phase, Darcy's law with relative permeabilities for each phase 

and the assumption of incompressible phases. The particular scaling used to derive (1) 

is described in Section 2. The one-dimensional flow equation (1) is commonly used as a 

simple tool for understanding the important performance properties of waterflooding. 

For many reservoir engineering purp9ses the capillary effects are quite small, and the 

diffusion term in (1) is often neglected. In such cases sis governed by the Buckley-Leverett 

equation 

(2) 

The Buckley-Leverett equation is an example of a hyperbolic conservation law for which a 

rigorous mathematical theory exists. It is an essential part of the Buckley-Leverett theory 

that for each x the function f is a nonlinear function of s. In most applications f is 

considered to be an "s-shaped" function of s. In the present paper we shall primary be 

interested in effects that occur due to the spatial variation of the fractional flow function 
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f. This variation will occur e.g. if the absolute permeability of the medium depends on x. 

The Buckley-Leverett equation is usually studied as an initial value problem with a 

given=initial-csataTati{)n-s(x,-07c;··-Jtcis-welHm0wn-that~ich1:1=s0lution~-of~n{}nfrnea1·~€0nser-vnti0ft--~---. ----­

laws of the form (2) can develop discontinuities. Hence, in order to obtain global solutions 

in time, we have to allow discontinuous weak solutions of the differential equation (2). 

Furthermore, extra entropy conditions for the discontinuities have to be added to the 

model in order to pick the physical solution. The proper discontinuities, which satisfy the 

·entropy condition, will be referred to as shock waves. We will describe these well-known 

properties of scalar conservation laws more detailed in Section 5. 

If the fractional flow function f varies smoothly with x, the properties of the entropy­

solutions of equations of the form (2) are well understood. For example, stability (in the 

L1-norm) with respect to perturbations in the initial data is established by Kruzkov (1970), 

and stability with respect to perturbations in the fractional :flow function is discussed by 

Lucier (1985). However, if f is allowed to be a discontinuous function of x then most of the 

established theory for scalar conservation laws does not apply. In particular, there seems to 

be no result in the literature which confirms that the solution depends continuously on the 

fractional :flow function in this case. Since discontinuous media are frequently encountered 

in reservoir modelling, and since the fractional :flow function only can be specified with 

limited accuracy, this seems to be an essential question for the application of the Buckley­

Leverett theory to heterogeneous media. We mention that Riemann problems for scalar 

conservation laws with discontinuous :flux functions are discussed by Gimse and Risebro 

(1990). 

The purpose of this paper is to investigate the properties of (2) in regimes where the 
. ' 

fractional :flow function f is a discontinuous function of x, by numerical experiments. In 

particular, we are concerned with the dependence of the solution on the fractional :flow 

function. Our experiments show that small perturbations in the fractional :flow function 

may lead to large perturbations 1nttre solutions. Hence, in·-ims sense the Buckley-Leverett 

equation is not a well-posed problem in these regimes. 

In our calculations we have used piecewise constant fractional :flow functions (as func­

tions of x ). This corresponds to a layered porous medium. If the initial data also are 

piecewise constant with respect to x, the solution of the initial value problem will, at least 
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for a short time, correspond to solutions of several Riemann problems. In fact, our exam­

ples of noncontinuous dependence will typically be constructed by considering situations 

· --wnicncorres1Yoncl-t-0tw<nronintera.ctin~ftiemann~lamr.------- -----------_-_ ·-~~-~~--~-- -- c 

It seems that the instability p:operty for the model (2) is only present when both 

positive and negative characteristic speeds are allowed. Physically this corresponds to 

a nonhorizontal reservoir where gravitational effects are significant. In some sense the 

instability observed for the model (2) is closely related to similar properties for non-strictly 

hyperbolic 2 x 2 systems (cf. e.g. Isaacson and Temple, and Tveito and Winther, 1990). 

In order to obtain a better understanding of the· instability phenomenon described 

above, we will compare the results obtained by the Buckley-Leverett equation (2) with 

results obtained by model (1) which includes diffusion effects. We will study both a non­

linear physical diffusion, generated by the capillary pressure, as well as a linear counterpart 

where 'ljJ is considered constant. 

The results of the numericci.l experiments with the convection diffusion models show 

that the continuous dependence of the solution with respect to the fractional fl.ow function 

is regained when a diffusion term is included in t~e model. ·Hence, our experiments seems to 

indicate that, in regimes where the fractional flow function is allowed to be a discontinuous 

function of x, the hyperbolic Buckley-Leverett equation is not a satisfactory model. In 

contrast to the homogeneous case, a diffusion term has to be included in order to obtain a 

well-behaved model. 

In Section 2 we present the different mathematical models to be considered and the 

relations between them. In Section 3 we discuss some analytical solutions of (2). This 

discussion is the main motivation for the experiments presented in Section 4. Some theo­

retical questions which arise from the results of our computations are considered in Section 

5. In particular, we discuss viscous profiles associated to the shock waves of (2) when 

the shock coincide with a discontinuity in the fractional fl.ow function. The results of this 

u --- --discussion will be -usedm-oroerTo expTrunTile eftects<>Dservea1n our-cafcU.Ta11ons. Fmally;---· 

our conclusions are given in Section 6. 
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2 The mathematical models 

_ _The~=1HlJJ}Oae_nLt]li§~~~tionjs ~tncgiye. a_b:ci~Lreview:_pf the diff e.r~ULIIlathem_atic_aj._rnodelL ____ _ -~--~--

to be used in our experiments. For a more detailed introduction to this material we refer 

to e.g. Aziz and Settari (1979). 

Let x* and t* be the physical space and time coordinate, respectively. From the prin­

ciple of mass conservation of each fluid phase, Darcy's law with relative permeabilities for 

each fluid phase, the assumption of incompressible phases and one-dimensional flow, the 

following equation for the water saturation s(x*, t*) can be derived: 

</>as + v* af = _ _!__ (,P*dP; as), O < x* < L*, 
at• ax• ax• ds ax• 

(3) 

where L* > 0 is the total length of the reservoir. Furthermore, </> denotes the porosity 

of the medium. In a heterogeneous medium </> may be a function of the spatial variable 

x*. The variable v* is the total filtration velocity. Throughout the paper we assume 

that v* is constant in time. Note that v* is independent of x* in one-dimensional flow of 

incompressible phases. If v* is known, equation (3) determines s(x*, t*). 

The fractional flow function f is in general a function of s and x*. It is given by the 

expression 
k [ * ]-1 + k*k k [ * * ·1-1( * *) . f = rw µw rw ro µwµov ew - eo gs1na_ 

krw[µ:,]-I + kr0 [µ~]-l 
The densities of water and oil, denoted by e!, and e~ respectively, are assumed to be con-

stants. Similarly, the constants µ:, and µ~ denote the corresponding (dynamic) viscosities. 

Furthermore, g is the acceleration due to gravity and the constant a denotes the dip angle of 

the reservoir. The absolute permeability is denoted by k*. The relative permeabilities, krw 

and kr0 , are functions of s, while, in a heterogeneous medium, the relative permeabilities 

and the absolute permeability may also depend explicitly on x*. 

The diffusion function ,,P* is given by 

------- ---- rn -- --- -- -- ------ ------ -,P* - k*krw[µ:,] 1 kro[µ~] l -. -

krw[µ:,]-l + kr0 [µ~]-l 
It follows that ,,P* is in general a function of s and x*. 

Finally, Pc* denotes the capillary pressure and is a nonincreasing function of s. In a 

heterogeneous medium Pc* may also vary with x*. Throughout the paper we will assume 

for simplicity that dPc* / ds is a nonpositive constant. 

8 



In order to transform the equation (3) into dimensionless form we introduce character-

istic quantities for time, absolute permeability, viscosity, density and pressure denoted by 

-------i~,-~p,~, e~· and p~ ,-respeciively.-Reefillt-hat-s-amirf>-are-~1m~:nsimlless~byc-t-heir-€lefinit-ien.-c-·· ~­

New dimensionless quantities (without asterix) are then defined as 

x x*/L* 

t t* ft: 

k k*Jk; 

µw *I * µw µc 

µo */ * µo µc 

l!w *I • llw Ile 

l!o 11:111: 

Pc Pc* /p: 

Furthermore, we let the nonnegative constant e be given bye= -W(dPc/ds), where Wis 

a dimensionless number 
*t*k* W _ Pc c c 

- (L*)2µ~. 

The dimensionless diffusion function .,P now becomes 

tP = kk,.w/ µw · k,.o/ µo. 
k,.w/ µw + k,.o/ µo 

If we introduce the dimensionless number~ v and /3, given as 

t*v* 
v _c_ 

L* 

j3 
11~k~g sin a 

µ~v* 

the scaled fractional flow function f can be expressed as 
- - -- ----·- --- -------------·--------------- ---· - - - ---- ----~ -- ------ - -----~--------- - - . --

J = k,.w/ µw + J3kkrwkro[µwµoJ- 1 (1Jw - IJo). 
krw/ µw + kro/ µo 

The governing equation (3) now takes the form 

as Bf a ( as) </>- + v- = e- .,P- , 
at ax ax ax 

O<x<l. 
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(8) 



We recall that f and t/; are in general nonlinear funct~ons of s and x and that the -

diffusion coefficient t/; is nonnegative. If t/; > 0 the model (8) is a parabolic differential­

=~~-- ~-=--~uatiorr;---F"lfl't-h-erm0re;-since-e-usuaMy-cci-s-=sma-H,-the---equ-atien=is=a=---c--oo.vection---d-omina-W 

diffusion equation. If the diffusion term on the right hand side of (8) is neglected, we obtain 

the hyperbolic Buckley-Leverett equation 

(9) 

In our numerical experiments we shall investigate the properties of the two models (8) and 

(9). In addition we will also consider a model with linear diffusion, that is, the equation 

(8) with t/; chosen to be a constant. 

3 An example of instability 

Our aim with this section is to present an example which shows that the solution of the 

Buckley-Leverett equation (9) is very sensitive with respect to certain perturbations in the 

fractional flow function. A perturbation of the fractional flow function on a very small 

spatial interval, for example due to a low permeable thin rock layer, may lead to a large 

perturbation in the solution. This example clearly reduces the reliability of simulation 

results based on hyperbolic models for two-phase flow. 

The qualitative behaviour of the Buckley-Leverett equation is not affected by the nu­

merical values of the constants <P and v. For simplicity we therefore set these constants 

equal to unity. Consider then the Buckley-Leverett equation (9) with a fractional flow 

function on the form 

( ) { 
f(s) if x <f. Is, 

f s, x = A 

f(s) if x E Is. 

Here Is= (x - 8/2,x + 8/2), and J and J are fractional flow functions corresponding to 

difforent values -of the absolute permeability, cf ..µ_)-_ The interval 16 is a low permeable n 

region. Inside Is the absolute permeability function is small, and outside Is the absolute 

permeability is large. In the next section we will give precise data for this situation to be 

used in the numerical experiments. In Figure 1 we have sketched J and J. 
Let S1 denote the point at which the upper fractional flow function, J, takes on it 

minimum, cf. Figure 1. We consider the pure initial value problem for the Buckley-Leverett 
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equation with the initial data 

s(x, 0) = S1. 

Let Ss = ss(x, t) den:~te th~ ;olution-of this--problem-for a fixed value of 8. Weobserve-that ~-~~­

in the case of 8 = 0, the solution of the problem is trivial, 

so(x, t) = S1. 

In the case of 8 > 0 the initial value problem consists of two Riemann problems. We 

refer to Allen, Behie and Trangenstein (1988) for an introduction to Riemann problems for 

the Buckley-Leverett equation. We will return to the discussion of such problems in Section 

5. Here we will merely observe that the initial value problem stated above consists of two 

exact solvable Riemann problems. The first Riemann problem, situated at x = x - 8 /2, 

has the left state S1 and the left flux function f. The right state is also Si, but the right 

flux function is J. The solution of this problem consists of a shock from S1 to a state S2 

with a negative shock speed o-1 , followed by a shock from S2 back to S1 with the shock 

speed equal to zero. The state S2 satisfies /(S2 ) = f(S1) and S2 < S1 • 

In the next Riemann problem, located at x = x + 8 /2, the left and right state are 

still S1 , but now the left flux function is J and the right flux function is /. The solution 

of this problem is composed of a shock of zero speed from S1 to S3 , where S3 satisfies 

f(S1) = f(S3) and S1 < S3 , followed by a shock with positive speed o-2 from S3 back to S1 . 

In Figure 1 the solutions of the two Riemann problems are graphed in the ( s, !) space, 

and in Figure 2 the solutions are shown in the (x, t) space. 

As we mentioned above, the solution of the problem with 8 = 0 consists only of the 

constant state S1 . Consider the solution of the initial value problem with 8 > 0 at some 

fixed time T > 0. In order for this problem to be stable with respect to perturbations in 

the fractional flow function, the solution ss(·, T) must converge towards so(·, T) = S1 as 8 

tends_ to_zero. J'rom Figur~_~_we clearly see that this is not the case. In fact, ~-~tend~-------­

to zero, ss converge towards a function of the form depicted in Figure 3. 

We have observed that, according to the hyperbolic Buckley-Leverett equation, a change 

in the value of the absolute permeability function in a tiny region in the reservoir totally 

changes the behaviour of the flow. This means that in order to simulate the displacement 

of oil by water in a heterogeneous medium, the values of the absolute permeability function 
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have to be known to an extreme degree of accuracy in order to get reliable results, since 

small uncertainties in this functions produces large uncertainties in the solutions. Now, it 

~-.-.~-· ··_·· -----ts=of-·course impossihl~ain41re---abs0tute~meahili-t-y.411neticml,-or-&ny"-'{}t-h~r=€>f-tl1:e~--~­

physical data involved, to such a degree of accuracy. We therefore have to conclude that 

the Buckley-Leverett model of two phase flow in a heterogeneous medium may produce 

erroneous predictions of the oil recovery. 

Fortunately, the numerical experiments reported in the next section indicate that well­

posedness is restored when a diffusion term is taken into account. 

From a mathematical point of view, it is interesting to note that the hyperbolic problem 

may be stable in a suitable pa.ir of norms. We have observed that small perturbations 

measured in the L1 -norm (with respect to x) of the fractional flow function may lead 

to large perturbations in the L1-norm of the solution. However, we believe that the 

perturbations of the solutions measured in L1 may be bounded by a stronger norm on 

the perturbations of the fractional flow function, say the L 00 -norm. Such a stability 

results has, however, limited practical interest since, due to the heterogeneous medium, 

the uncertanties of the fractional flow function is very large in such a strong norm. 
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s 

Figure 1: Solution of the initial value problem in the (s, !) space. The lower curve is J 
and the upper curve is J. 
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t 

x -h/2 x +h/2 
x 

Figure 2: The solution of the initial value problem in the ( x, t) space. Note that the waves 

olthe two Ri.ema.nn problems are non-interacting for all h > 0 a.nd t > 0. 

s(·,T) 

x 

Figure 3: The limit of ss(·, T) ash goes to zero. Recall that o-1 < 0 a.nd 0-2 > 0. 
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4 Numerical Experiments 

In this section we will present a computational study of the stability for the parabolic 
----=--=-=-==-= - . -- - _--__ __--_- -·- -- _-----~--

problem (8) and the hyperbolic problem (9). A standard numerical scheme will be used to 

generate approximate solutions of the initial value problems of the kind that were studied 

in the previous section. For the hyperbolic model (9) the explicit Lax-Friedrichs scheme is 

used, while, in order to avoid stability problems, we have chosen to use an implicit scheme 

for the parabolic model (8). The convergence of these schemes are rather slow, but since 

we are dealing with one-dimensional problems we can afford to use a rather fine mesh. On 

the other hand, the advantage of the schemes is that both theory and experience seem to 

indicate that they always will converge to the proper solution when they are applied to the 

problems under consideration here. Hence, by using a sufficiently fine mesh, we can expect 

to compute the desired solutions sufficiently accurately. 

Let .D..t > 0 denote the time step and .D..x the spatial grid size. The grid points are 

then defined by (xi, tn) = (j.D..x, n.D..t). We will let Sj denote the approximations of the 

saturations at the grid points, that is, Sj ~ s(xj,tn)· Similarly, we let fj = f(Sf,xi)· 

The parabolic equation (8) is now approximated by the difference scheme 

s~+1 - S"!- 1~+i - 1~+i ·'·7.1+1 (s~+1 - s~+1 ) - ·'·7.1+1 (s~+i - s~+i) 
</> J J + 1+1 1-1 = ( 'l-'3+J/2 J+l J 'l-'3-1/2 J 1-l ) 

.D..t v 2.D..x c ( .D..x )2 ' 
(10) 

where t/Jj:tf12 = t(t/J(Sj+1,xi) + t/J(S'Jtl,xi+i)). This scheme requires the solution of a 

nonlinear system of algebraic equations for each time step. These systems are solved by a 

standard fixed point iteration. 

The explicit Lax-Friedrichs scheme for the hyperbolic equation (9) takes the form 

A- sy+1 - t(Sf+i + Sf-1) + !J+1 - fJ"-1 = 0 
'!-' .D..t v 2.D..x · (11) 

We consider the same initial value problem as we described in the previous section 
-----------·----- ~------------~ ----------·---------- -----~------------- - ------- -- -------

with x = 0.3. The absolute permeability function has one value inside the interval Is = 
(x - 8/2,x + 8/2), and another value outside the interval. In the numerical experiments 

we have used the following physical parameters: L* = 625 m, t~ = 8.64·107 s (1000 days), 

k~ = 5 · 10-13 m2 (appr. 500 md), µ~ = 10-4 kg/ms, e~ = 103 kg/m3 , g = 9.81 m/s2 , and 

v* = 1.74 · 10-6 m/s. Values of the dimensionless parameters were ew - e0 = 0.1, µ 0 = 4, 
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µw = 1, sin a = -0.5, </> = 0.24, krw = s2, and kro = (1 - s )2. This implies v = 0.24 and 

f3 = -14.13. The absolute permeability function k(x) was chosen equal to 15 outside Is 

-.-~---··=and=equcal-t-o--'7-;-S~insi-de-i-his--intel"Vftl. 

With these parameters we obtain the following equation 

where the fractional flow function is given by 

f(s,x) = s2 -0.3533k(x)s2 (1- s)2 

s2 +~(1-s)2 

and the diffusion function is given by 

k(x)s2 (1 - s)2 

1/J(s,x) = 0.4608 ( )2 4 2 • 
1-s + s 

This fractional flow function is graphed for two values of x in Figure 1. For these parame­

ters, the minimum of the upper fractional flow function is attained at about 81 = 0.25. 

We also consider the case of a linear diffusion term. This is achieved by approximating 

th~ diffusion function 1/J by the constant value 'f; = 1/J(8i, 0). 

We generate numerical solutions of the equation for (x, t) E (0, 1) x (0, 0.01] with several 

values of c and h. We have used the mesh parameters .6.x = 1/2000 and .6.t = 0.01/2000, 

and the initial condition 

s(x, 0) = 81 = 0.25 Vx E (0, 1). 

In Figure 4 the numerical solutions at t = 0.01 of the initial value problem for c = 0.5 is 

presented for several values of h. We observe that the solution tends towards the constant 

state 81 = 0.25 as h tends to zero. We also observe that the solution of the problem with 

linear diffusion is fairly close to the solution of the problem with nonlinear diffusion for 

all 8. In Figure 5, the corresponding solutions are given for c - 0.1. Again the solutions 

converges towards the constant state 81 as h tends to zero, but the convergence is slower. 

In Figure 6 we have used c = 0.01, i.e. the problem is almost hyperbolic, and we observe 

that the solutions seems to converge towards a certain nonconstant profile as h tends to 

zero. Finally, in Figure 7 the numerical solution of the hyperbolic problem is given. We 

observe, again, that the solution of this problem tends toward a profile different from the 
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0.1'-------''-------'-------'---' 
0 0.2 0.4 0.6 

x 

Figure 4: The numerical solution of the initial value problem for a fixed e = 0.5 with four 

different values of 8. Solid line: non-linear diffusion, dotted line: linear diffusion. 

constant state as 8 tends to zero. This experiment verifies the observations presented in 

the previous section. 

We have seen, both numerically and analytically, that the hyperbolic Buckley-Leverett 

equation is very sensitive to changes in the fractional fl.ow function on small spatial intervals. 

Our computational study clearly indicates that if a certain amount of diffusion is taken 

into account, well posedness is regained. In fact, the experiments indicate that the stability -

of the problem increases with increasing values of e. 
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Figure 5: The numerical solution of the initial value problem for a fixed~= 0.1 with four 

different' values of 8. Solid line: non-linear diffusion, dotted line: linear diffusion. 
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Figure 6: The numerical solution of the initial value problem for a fixed c = 0.01 with four 

different values of 8. Solid line: non-linear diffusion, dotted line: linear diffusion. 
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i.e. fore= 0, with four different values of 8. 
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5 A discussion of viscous profiles 

The purpose of this section is to give a theoretical discussion of the models (8) and (9) 

motivated from the experiments above. We will discuss the entropy conditions for the 

shock waves of (9) and the properties of the associated viscous profiles. In particular, we 

analyze the shock waves which coincide with a discontinuity in the fractional flow function. 

Sirice the qualitative properties of these models are independent of the values of the 

positive constants <P and v, these parameters are taken to be one throughout this section. 

Furthermore, since the experiments above indicate that the nonlinearity of the diffusion 

coefficient t/; has minor influence on the properties of the solutions of the parabolic equation 

(8), we have also chosen t/; = 1. Hence, in this section we shall discuss the relations between 

the parabolic equation 

and the hyperbolic equation 
OS 0 f -+-=0 ot ox 

(13) 

(14) 

when f = f ( s, x) is poss:lbly discontinuous as a function of x at a finite number of spatial 

points. 

Let us first consider possible discontinuous solutions of the hyperbolic equation (14). 

Assume that s(x, t) is a piecewise smooth solution of (14) which has an isolated disconti­

nuity along a curve x = x(t). Then we define 

and 

From material balance considerations, or more formally from the requirement that s is a 

. --- --- ------ weak solution of (14), ·.ve obtain the shock relation -- -H-- -- -- - - - --- ------ -·- ---- - - ---- ------ ~·-------

(15) 

where u is the shock speed given by u = dx/dt. If u =I 0, the shock does not follow 

a discontinuity of the medium. Hence, in this case we can assume that f is continuous 
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f (.~x) 

········•····················•···· 

s 

Figure 8: Entropy condition 

as function of x at x. On the other hand, if u = 0 the fractional fl.ow function may be 

discontinuous at x. 
It is well known that in order to obtain unique solutions of hyperbolic conservation laws, 

all discontinuities satisfying (15) can not be allowed. In addition to the shock condition 

(15) an entropy condition is required in order to pick the correct physical solution. If 

u =J. 0, and f is continuous at x, we can adopt the standard entropy condition for scalar 

conservation laws with a smooth fractional fl.ow function (cf. Lax, 1973, Kruzkov, 1970, 

or Smoller, 1982). Hence, a discontinuity with u =J. 0 satisfying (15) is a proper entropy 

solution of (14) if (cf. Figure 8) 

(16) 

A common approach to derive the entropy _condition (16) is. from~ so~called travelling 

wave analysis (cf. e.g. Smoller, 1982). Below we will give a similar analysis when u = 0 

and f is discontinuous at x. We let f-(s) = f(s,x-) and J+(s) = f(s,x+). Hence, the 

shock relation takes the form 

(17) 

The additional entropy condition will be derived from the parabolic equation (13). Locally 
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around x we assume that l(s,x) can be approximated by ](s,x), where 

-( ) { l-( s.) if x < x, l s,x = 
l+(s) if x > x. .. 

Furthermore, since we are considering stationary shocks, the equation (13) is replaced by 

the stationary equation 

(18) 

A piecewise smooth solution s(x) of (18) is, in particular, required to satisfy the continuity 

condition · 

· s(x-) = s(x+) = s (19) 

and the flux condition 

as as 
l-(s) - e-(x-) = l+(s)- e-(x+). ax ax (20) 

Here the second condition (20) expresses the conservation of mass. 

A discontinuity sL, sR, satisfying (17), is said to satisfy tlie entropy condition if it 

admits a viscous profile, that is, there exists a corresponding similarity solution of (18). 

A similarity solution s( x; e) of (18) corresponding to sL, sR is a family of solutions of the 

form 

where S( () satisfies 

x-x 
s(x; e) = S(--), 

e 

lim S(() = sL and lim S(() = sR. 
(-+-oo (-+oo 

(21) 

Moreover, since s is a solution of (18) we derive, by integrating once with respect to (, 

that S must satisfy the first order equation 

dS - - L 
d( = l(S) - l (s ). (22) 

The integration constant l-(sL), which is equal to l+(sR) by (17), follows from (21). 
·--- . ---· ·-··--·-·--·--·-·-· 

We allow three types of viscous profiles, referred to as a left profile, a right profile and 

a centered profile. A left profile is a similarity solution of (18) where S( () = sR for ( > 0, 

that is, 

{ 
sc~:x) 

s(x;e)= 
SR 
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where S(-oo) = sL. Furthermore, (19) implies that S(O) = sR, while condition (20) is 

automatically satisfied by (17). Hence, the discontinuity sL, sR admits a left profile if and 

only if there exist a solution S( () of (22) such that 

S(-oo) = sL and S(O) = sR. 

A necessary and sufficient condition to guarantee this is that 

for all s between sL and sR. In consistency with the entropy condition (16) for scalar 

conservation laws with a smooth flux function we also allow discontinuities which admits 

a composition of several left profiles. Hence, a discontinuity sL, sR, satisfying (17), is an 

entropy shock with a left viscous profile if 

(23) 

for all s between sL and sR. 

By similar arguments as given above we can also derive conditions which guarantee the 

existence of solutions of (18) of the form 

if x < x, 
if x > x, 

and conclude that the ent~opy condition with a right viscous profile is satisfied if 

(24) 

for alls between sL and sR. The conditions (23) and (24) are illustrated in Figure 9, and 

typical left and right profiles are depicted in Figures 10 and 11, respectively. 

Finally, a centered profile is a similarity solution s(x; c:) = sc~~x) of (18) which is 

neither a l~ft profile nor a right profile. By arguments similar to those given above we 

derive that a discontinuity sL, sR, satisfying (17), is an entropy shock with a centered 

viscous profile if there exists an s such that 

i) for all s between sL and s 
sign(s - sL)(J-(s) - f-(sL)) ~ 0, 

ii) for all s between s and sR 
(25) 

sign(sR - sL)(J+(s) - J+(sR)) ~ 0. 
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s s 

·Figure 9: Entropy conditions corresponding to left and right profiles 

x x 

Figure 10: Left profile. 
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x x 

Figure 11: Right profile. 

The condition (25) is illustrated in Figure 12 and a typical centered profile is depicted in 

Figure 13. 

In summary we conclude that a discontinuity sL, sR, satisfying (17), is said to be an 

entropy shock at x if one of the three conditions (23)-(25) holds. 

We will use the viscous profiles derived above in order to discuss the results of Sections 

4 and 5. Recall the initial value problem for the hyperbolic equation studied in Section 3 

which consists of two noninteracting Riemann problems. The solution of this problem is 

composed of four shocks as illustrated by Figures 1 and 2. The slow shock of the left Rie­

mann problem and the fast shock of the right Riemann problem are ordinary scalar shocks 

corresponding to a continuous fractional flow function, while the two intermediate shocks 

correspond to a discontinuous fractional flow function as described above. In particular, 

both these intermediate shocks have speed zero, and therefore the initial distance between 

them, 8, remains the same for all time. 

If we consider the two intermediate shocks in view of the discussion of viscous profiles 

above, we easily discover that they both satisfy the entropy condition. Furthermore, the 

shock of the left Riemann problem has a right profile, while the shock of the right Riemann 

problem has a left profile. Hence, this indicates, that when 8 is sufficiently large compared 
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Figure 12: Entropy condition corresponding to a centered profile 

---. 
' ' 

x 

Figure 13: Centered profile. 
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Figure 14: The solution of the hyperbolic problem is drawn with a solid, and the solution 

of the parabolic problem is drawn with a dotted line. 

to c, the solution of the hyperbolic equation and the corresponding solution of the parabolic 

equation have the forms sketched in Figure 14, where the profiles decays to S1 as a function 

of 1 / c times the distance to the shock. 

However, when 8 becomes sufficiently small compared to c, the two viscous profiles for 

the intermediate waves will interact. This therefore partially explains the observation done 

in Section 4 that the parabolic solution and the hyperbolic solution behave qualitatively 

different when 8 is small. 

6 Conclusions 

In this paper we have studied the Buckley-Leverett equation modelling one-dimensional, 
~--··----· ------··-·······-···-··-·-··· 

incompressible two-phase fl.ow in a heterogeneous porous medium with gravity effects. 

The heterogeneity corresponded to a layered reservoir with a thin internal low permeable 

region. It has been shown both by analytical solutions and by numerical experiments that 

the hyperbolic version of this model is unstable in the sense that perturbations in physical 

parameters in a tiny region of the reservoir may lead to a totally different fl.ow picture. A 
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consequence is that simulation results obtained by solving the hyperbolic Buckley-Leverett 

equation are unreliable. We have also studied diffusion effects in the fl.ow model. Roughly 

speaking, the stability decreases with decreasing diffusion. Our main limitation of the one-­

dimensional fl.ow model used herein is considered to be the assumption of uni-directional 

fl.ow. However, in two- and three~dimensional fl.ow situations the instability phenomenon 

is expected to arise if the fl.ow is locally uni-directional and if the internal low permeable 

layer has a sufficiently large extent in the directions normal to the fl.ow. 

It must be emphasized that all our results concern the mathematical model. Physical 

experiments are required to determine whether the instability effects have any physical 

significance. Similar instability phenomenon are obviously present in other mathematical 

models consisting of hyperbolic partial differential equations, for example the equations 

governing sound or water surface waves in heterogeneous media. 
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