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Abstract

The influence of the formation and destruction of the agregates
on viscosity of magnetic fluid is considered. The kinetic equations
are used to describe the process of formation and destruction of
the agregates. The coefficient of kinetic equations are calculated
for shear and uniacial extensional or compression flows.

1 Introduction

The coagulation of particles is one of the intereseting phenomena in suspen-
sion. This phenomenon is studied by a lot of authors in different articles,
e.g. [1-7]. Influence of the different forces of interaction (the forces of
attraction, the forces of repulsion), the hydrodynamical interaction, Brow-
nian motion and flow of liquid on process of coagulation is studied usually.
The problem of coagulation is very important not only for studying the ef-
fect of instability of suspension. The mechanical properties of suspension,
viscosity in particular, are changed by coagulation also. It is well-known
that viscosity of suspension depends on form and size of particles. But the
particles can form the agregates in process of coagulation. The destruction
of the agregates by mechanical forces (in particular, by viscous forces) can
take place in suspension also. That is why destraction of agregates by vis-

- cousforcesisa i 1 eoretical problem and solution of it may  ~~ [

be used in practical applications.
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2 General equations and assumptions

Let us have a suspension in which the formation and destruction of agre-

_gates take place. We shall consider the agregates as the spheroids with

basic dimensions a and b (a >b). Let I' be the volume fraction of parti-
cles and agregates of particles in suspension and I' < 1. The particles and
agregates of particles are immersed in incompressible fluid of viscosity 7.
Viscosity of suspension  may be presented by following expression

n=mno(l+ain +an2+--- 4 anyny) (1)

Here, n; is the number of particles or agregates of the same form and
dimensions in unit of volume of fluid, a; is a coefficient which depends on
form and size of particles or agregates. The number n; of particles and
agregates of the same form and sizes is changed and we must write the
kinetic equations for it. The Smoluchowski kinetic equations are usually
used when the coagulation in suspension is considered. The equations are
written as [1,6]

on;
6_t' = - E Ajnjn,- + ; Bknkn;_k . (2)
These equations describe the formation of the agregates only. We must
write the new addends in equation (2) if we want to describe the process
of destruction of the agregates. The kinetic equation for common case is
written as ’

% = —;Ajnjn,- +;Bknkn,~-k +;C;1n1 — D;n;; (k<i, l>i) (3)
Having used the equations (3) and (1) we get the expression for viscosity of
suspension. But the calculation of the coefficients A;, Bi, Cy, D; is a very
difficult problem. The expressions for coefficients A;, By are considered in
the works [1,6,7]. The coefficient D;; was calculated in the work [9]. We
shall calculate coefficients Cy, D; using another assumption than the one
used in work [9].

Let the ambient flow field arround a spheroid have velocity @ which can
be characterized instantaneously by a uniform rate-of-strain tensor
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and a rigid-body rotation with angular velocity &
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We may write the following expression for the velocity @
Ui = % Tj + wi; T;

The orientation of spheroid in the flow of fluid is defined by vector € along
the large axis a. The fluid acts on the surface of the spheroid by a viscous
force. The expression of the viscous force acting on a unit area of surface
may be written as [§]

T; 3 T 87!'7}03 3 Te
P = —posa—? — 498 (g aojAjj ZI? + W eZ=;.A,'ca—g (4)
-1/2
Heres=(§-+i’;+z—f) ,

" 3 "
A = 300 a5i LYt — =1 Yok AUk Yil
;=

oA +2al)

= T o o e g Y
T e /ow(b2 + 5)(da£2 +E2

oy = ajy = /Ow(bg n 6)3{({1&2 ¥ oz’

o "o__ o fdé.

" _
Qgg = Q39 = Py = o (b2 + {)7(a7 +£)3/2 ’

ay E_G, a; = az = F,

Po is the pressure in fluid without spheroid, §2;; is the angular velocity of
spheroid, a;; are the special coeflicients which can be found from following
relations

ajag; =65,  ajai = 6;;




where 6;; is the Kronecker delta. Angular velocity of spheroid €2;; is equal
(8]
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where L;; is a moment of external force, A =(a?—8%)/(a?+b?), e;=a;.
The viscous force acting on all surface of spheroid is equal to zero, of
course. But the viscous force acting on part of surface is not equal to zero.
It means that particles which are contained in agregate can be teared off
by viscous force.
Let the particles be teared off from tip of spheroid. The viscous force
acting on these particles is equal [9]

8
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Here Fj, F, are forces which act along and perpendicular the large axis of
spheroid respectively, the ¢ is a spatial angle which corresponds to surface
of particle on the tip of spheroid. The particles will be teared off from
agregate in the following case .

B — F, + mpa, 20 ©)

where F, is the attraction force between the particle on the tip of spheroid
and other particles which form the agregate, m,, a, are mass and cen-
tripetal acceleration of particle, respectively. For small particles we may
write condition (7) as [9]

F > F, (8)

The value of force Fjj depends upon orientation of spheroid in fluid flow. The
multitude of the orientations for which condition (8) is correct, is denoted
by 4. Consider the function f representing the probability of direction of
the vector €. We shall write the following expression for f

fe 0, for all the orientations from multitude 4
"~ | solution of the equation (9)

The equation for function f is [§]
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Here we consider the case when _the agregates have vector of magnetization
m along the vector €, m=mé, H is vector of external magnetical field, KT
is temperature, D is d1ﬁ'us1on coefficient of Brownian motion. The moment
of external force is equal for this case: L;; =mH (ejh;—e;h;). The solution
of the equation (9) contains an arbitrary multipying constant. We choose
this constant so that

[1 o Jao=1 (10)

where dw is element of solid angle.

The multitude €4 defines some line £ on the surface of sphere with unit
radius. The number of agregates M which have been destroyed in the unit
volume of suspension is equal the flux across the line £. The flux ; has
following expression

j=-DV,f+ fT

Here V, f is gradient of the function f along the surface of unit sphere,
vector T is equal

Pl = leea
We obtain
M=n / Jrdl (11)
y .

where 7 is unit vector along the surface of unit sphere and perpendicular
to line £, n is number of agregates in unit volume of suspension.

Let n; denote the concentration of particles which tear off from agre-
gates and n;_, (1 >2) the concentration of agregates which form by destruc-
tion the agregates of concentration n;. Then we may write the expressions

- for coefficients Cy; and D;: o

C‘ N 2M, for i=1, [>2
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Here,
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The index ¢ is mean the kind of agregates.

3 Application

Let us consider two cases of fluid flows:

1. Couette flow.

0 0O
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We obtain from equation (6) and condition (8)
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The multitude (2, is defined by the last relation. The common solution of

equation (5) for Couette flow is unknown.
We may find the function f for small values of x,e(e = v/D). The
function f of the first order in «, € is equal

f=CQ+xéh + %eges)

This relation may be introduced into equation (10), giving

C= («[!r—ﬂd(l + keh + —D-6263)d(4))

The C may be approximated for the small values B,
(B=3af F,/8mnovy sin® ¢*) by
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and, hence, we obtain

M= 22;2 [ hao(m — 2) + Kha(m — 2) + %”(4 - r)}




2. Uniaxial extensional flow.

0 0 2y
The condition (8) is represented by
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The function of probability f of the first order in «, € is equal
f= C[l + kER + ﬁ(Be2 - 1)]
2D
and for constant C we may write in spherical system of coordinates
-1
= [47r cos (1 — ;\—; sin® 9")]
where 6* = arccos \/1—":;2, (0L 8" < 7). The expression for M may be written
as
Ay (1+B\ [2-B
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The analogous calculations may be made for a uniaxial compression flow.
The expression for M in this case is equal

v [T -
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