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ABSTRACT 

WAVE DRIFT DAMPING AND LOW-FREQUENCY OSCILLATIONS 

OF AN ELLIPTIC CYLINDER IN IRREGULAR WAVES 

by 
John Grue 

Department of Mechanics 
University of Oslo 

Wave drift damping and low-frequency oscillations of a moored 

elliptic cylinder is examined. The cylinder is restricted to move 

along a horizontal frictionless constraint. The moorings are 

simulated by slack linear springs. The fluid layer is infinitely 

deep and the motion is two-dimensional. The fluid flow around the 

body and the forces acting upon it are computed in the frame of 

reference following the low-frequency position of the body. The 

slowly varying force is calculated by the approximation due to 
\ 

Marthinsen (1983). One part of the resulting slowly varying force 

is a damping force being proportional to the low-frequency veloc-

ity of the body. This force is closely related to wave drift force 

.damping. For long incoming waves, we obtain positive damping. For 

short incoming waves, however, the damping force becomes negative. 

Also slowly varying frequency of encounter of the incoming waves 

is introduced due to the slowly varying velocity of the body. The 

_ _equation _o£ motj on Ior__±.he__~frequency .oscillations .is- solved ~ -~ 

numerical integration. Results for several sea states are examin-

ed. The impact of the damping force obtained here is compared with 

the impact of wave drift force damping and viscous damping. 

·--------- ------- ·-------------- -----------~--- -- . --- ----------------



1. INTRODUCTION 

An irregular sea will due to non-linearities give rise to 

wave forces oscillating with the sum and difference frequencies of 

every two waves. If the wave spectrum is narrow-banded, the force 

due to the difference frequencies will be slowly varying in time. 
·!.. _', 

The slowly varying forces are of small magnitude compared to the 

total wave forces. However, if there is a moored body in the waves 

with resonance at low frequencies, the slowly varying forces may 

excite large low-frequency horizontal displacements of the body, 

introduce severe strain in the moorings and cause difficulties in 

positioning the body. 

Slowly varying forces are extensively studied in the litera-

ture, and a general review can be found in Ogilvie (1983). How­

ever, mechanisms which are damping low-frequency oscillations are 

not yet fully understood. The present account is therefore devoted 

to studying damping of low-frequency oscillations. The body is a 

slender elliptic cylinder being moored with weak linear springs. 
- - - ·--- -

The major axis is horizontal and the cylinder is restricted to 

move along a frictionless horizontal constraint. The flow around 

the cylinder is two-dimensional. 

The damping force studied here· is closely related to wave 

drift force damping, which is studied by Wichers and Huismans 

and Sortland (1986) and Huismans (1986). They find that this is an 

important damping force for lengthwise motions of slender bodies 

where viscous damping turns out to be very small. Wave drift 

force damping is due to change in the mean second order force 

upon a body when it moves with a constant speed against or in 
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waves. Mean second order force upon a cylinder is found by the 

scattered waves in the far field, as described in Grue and Palm 

(1985), and in Grue and Palm (1986) where impact of a uniform 

curre,,n't .. upon ~lo~ly varying forces is di,scq_sfiied. Incoro.pressib],.e, 

inviscid fluid and irrotational motion is assumed. The water depth 

is infinite. The scattered waves are calculated by applying source 

distribution along the body surface. The source distribution is 

approximated by piecewise qubic B-splines, as ~escribed by Mo and 

Palm (1987). The first order forces, necessary for the equation 

far the first order motions of the body, are found as described in 

,Grue . ( 1 986) . 

In section 2 we obt&in values of the mean second order force 

que to the submerged ellipse.and formulate the slowly varying 

force. It is found that the mean second order force increases 

c~nsiderably for increasing current speed, when the body moves 

against long incoming waves. On the other hand, the mean second 

order force- decreases when the body moves against waves with wave 

leng-th shorter than about three times the horizontal extent of 

the cylinder section. This :may be a characteri~tic feature for 

submerged bodies and lea.de to negative damping. 

Equation of. motion for low-frequency oscillations is 

. formulated and results for two incoming waves are discussed .in 

-- - ---- ---- --

section 3. Results for ariTrreguTar seaaregiven in section 4. 
---·----------- ----------- --- -··- ·-- --- -

Different sea states are studied. The results show that the wave 

drift force damping (1.1) is the most important contribution from 

taking into account the _slowly varying position and velocity of 

the body in calculating the slowly varying force. Finally sections 

5 and 6 are respectively devoted to discussion and conclusion. 
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, The slowly varying position x(t) introduces. encounter frequency 

o(t) given by 

• 
o ( t ) = w + kx ( t ) (2.4) 

o(t) and x(t) are slowly varying functions of time provided 

that 

I ~/c I < < l (2.5) 

where c=w/k denotes the phase velocity of the incoming waves in 

the fixed frame of reference. 
;· ~- _i_:;' 

In the relative frame of reference the cylinder undergoes 

small first order oscillations with periods 2-rt/a(t) on a slowly 

varying current with speed 

• 
U(t) = x(t) (2.6) 

• 
directed along the negative x 1-axis when x(t)>O. When (2.5) i6 

fulfilled, we may as a .first approximation calculate the firs.t 

order force&:; UJ?OO the cylinder, the first order :mot.ions of the 

., cylinder, and the scattered waves by a.ttsuming. U. .being; un.ifonn in 

tirt1e. The interesting part of the second order force is then found 

by the ·first order flow in the far-field applying the impulse 

,:i 

2b. Ga.l.culatio_n of .mean second order force ·in regular w~ve.s 

-The·mean second order force F upon a cylinder moving with 

constant speed U against the incoming wave (2.1), may for small 

U be written 
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order terms in (2.7) are very small for U/lgR < 0.2. 

Figure 2 shows that the reflected wave amplitude a gets a 

p·ronounced increase for kR less than unity, due to a forward 

velocity of the body. For larger value of kR the re:f lected wave 

amplitude decrease~. Figure 3 reveals that a is negative for' 

kR<0.9. Hence, the value of the mean second order force increases 

when the cylinder moves with a constant speed against the waves. 

F,'or kR>0.9 the converse is true. Compared to U=O, the force 

then decreases when the cylinder moves against the waves. This 

occurs wnen r 1 (k)-21k/g r 0 (k) becomes negative. The fact that 

F, as a function of U, decreases for moderate and.:ahort. inotmdng 

wayes, is also true for submerged cylinders with.other contours, 

as discussed in Grue and Palm (1986). We note that only a small 
.· 

change in the speed U/lgR leads to a relatively large change in 
:.1 

F(k,U) for kR<0.9. 

2c. Slowly varying force due to irregular-wave-. 

If the incoming waves consist of N wave ~.omponents we. may ~ite 

the llilUrface .. ~levation at x 1 by 

N 
TJ(X ,t) = Re l A exp(iw t+k x(t)+k x ) 

1 m=l m m m m 1 
(2.11) 

where are complex- amp1It.\l-d-es-,-lC-=w-?-T9-- rs-wave- number of 
--·------··--------·---··----- .. ·-·------------ -- --- m ____ m__ ____________ . --·---- .. ··---------·--- ----

c'i>mponent m, and Re denotes real part. W~ now as!=Jume that the 

amplitudes A are given from a narrow-banded power spectrum 
lft". _,,... ' -,-~. , ... __ - .......... ·~,.,~-,'II' ,...,J..,; ·~ • -~ ..... ~ ...... , 

S(w) by 

IA 1 2 = 2S(w )6w m m 
(2.12) 
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qi x ( t) ( t, x ~ t) ) • The term Ua 2 ( t, x ( t)) a (kL) . is a damping term when 

a (k,-1) < O. This term leads, however, to negative damping when 

a(kL)>O, which in the present case occurs for k R>0.9. 
L 

J. EQUATION OF MOTION 

Let us apply a linear mooring force -ex, where C denotes the 

spri!'lg constant. 'rhe added mass force must be added to 

the force (2.17) due to the slowly varying acceleration~ of the 
__ ; 

·oody. m · "denotes added mass of the submerged elliptic cylinder 
11 

/ ·~ 

as the frequency of oscillation tends to zero. Calculation gives 

m11 =O.1434pR2 for b/R=O. 2, d/R=(. We denote the mass of the 

cylinder by m (which equals the displaced water mass) •. 'l'he equa-

tion of motion for the low-frequency oscillations then becomes 

F(t) 

. , ~ ' 

.. 
mx = -m x ·- ex + F(t) 

11 

is given by (2.17) with ·-U=X·· 

(3.1') 

In (3.1) we have neglected the impact of viscous drag forces, 

which is very small in the present ex~mple. We shall, for compar­

ison, in some cases study aolutions of (3.t) with the damping term 

in (2.17) replaced by viscous drag. Value of :viscous drag upon an 

elliptic cylinder may be found from modern Development in Fluid 

Dynamics ( 1950-,-p-.-- 41 5). For . large Reynolds nttmber . the -drag. foice 

is 

(3.2) 

where c0 ::.0.l for b/R=0.2. 
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The solution of (3.7) is 

(3.9) 

where a(Q). and 6{0J are unknown. Inserting {3:9) intd' (3.Sl" 

and avoiding secular solutions of x ( 1 ) ( t), a ( O) and 6 f'O) are 

determined by 

(0) 
T(k ) 

1 . L 
a ::;: 

6wca:(kL) T~kL) 
1 + 

4a(kL)~ 

(3.10) 

(O) 
0 6 = (3.11) 

The solution for x(l) (t) becomes 

( 1 ) 
IE + a(l)COB 26wt x . - {3.12) 

where 

· a2 (0) .. (O) · 
x = ~((2+6ka )T(kL)-6wa a(kL)) (3.13) 

a ( 1) = ~~(~k~:(-O)'!'(k_I) + 6w_a_co_>aJ]cLJ),~ (3.14) 

Hence, the solution ·Of ( 3. 3) becomes approximately 

(3.15) 

The amplitudes of higher order harmonic solutions of (3.3) are 

v--ery . sma lJ. . 
---------+(~eH-) ----------- --------. ---·- --·····-· ·-··-· 

The oscillation a sin l.wt is mainly damped by the wave 

• 2 
drift force damping (~-'~1), which in (3.3) is the term_ x_~a--_a(kL). 

We no.te th~t- a (O) is independent of the ~pij_~~~e a of the 

incoming waves. The validity of the solution (3.15) is based upon 
... 

the inequalities (2.5) and (3.4), which corresponds to 
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the solution Of (3.18) becomes 

x(t) "" (3.20) 

In this case the amplitude of the oscillation increases linearly 

with the incoming wave amplitude. This solution is also displayed 

in figure 4. We note that, for smaller value of a/R, the 

solutions of (3.3) and (3.18) become very close to each other. 

This means that the damping force in (3.3) and the viscous drag 

force are of equal magnitude. 

4. RESULTS FOR IRREGULAR WAVES. 

The equation of motion is new . 

( 4 .1 ) 

where a(t,x) ·is given by f2. f4), (2.15) and k oy·c2.16). 
L 

We shall first examine stability .of solutions of this equation. 
·~ .. 

This may be achieved by studying the homogeneous version of {4.1), 

i.e. 

(4. 2) 

• 
u We iaultiply this equation 'by ....x-. aQd .i.n"t.eqlt'ate from t 0 -W·· . ..:t;. ..... .we 

then.obtain 

1 . • 2 c 2 
2(m+mll )x + 2x 

where 

t 
= E0 + J i2a2(t,x)a(kL)dt 

to 

at. · t=t0 • Hence, every induced 

( 4. 3) 
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We shall give the sea state by either a narrow-banded Gauss 

curve-15pectrum, which·is very close to the-JONSWAP spectrum, or by 

the more broad-banded Pierson-Moskowitz spectrum. Let us denote 

significant wave height of the incoming waves by H . Gauss curve 
s 

spectrum with mean frequency wp' spread 26 and area m0=H~/16 is 

then given by 

H 2 (w-w ) 2 

SG(w) = 5 exp( P ) 
.16'56 262 

(4.6) 

From Houmb and Overvik (1976) the spread 26 is related to the 

spectral mome,n,ts 
a> 

m =fS(w)wndw 
n 0 

by 

(4.7) 

In the present a.C!aount we choose 6=0.15w , and w =0.4014419/H 
p p 8 

equals the peak frequency of the Pierson-Moskowitz spectrum. '!'he 

Pier-sgn--Moe.kawitz -epectrum, given in- e.g. -Newman H977h may be 

expressed by the significant wave height by 

8 (w) = o.00819 2 exp(- 0.032492) 
pm w5 H2w4 

s 

(4.8) 

The Gauss curve spectrum and the Pierson-Moskowitz spectrum are 

displayed ±n--f±gu-re --5- for H /R-0;-4--,0. 6;;­
s 

The amplitudes of the wave components are given by (2.12) 

with ~w=(w -w . )/N. w and w . denote respectively the 
' ~ ,nu :Q.. - ... ma.:it ,, . J\l,l. p, 

upper and lower truncation of the spectrum. N is the number of 

wave components. The frequencies w of the different wave 
m 

components are chosen randomly in the N intervals 

w . + (m-l)~w < w <w + m~w 
Inl.n m min 

(4.9) 
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To examine the difference between the solutions of (4.l), 

(4.5) and (4.11) more closely, we have run long time series for 

x(t) and computed the time average of x(t) and standard devia-

ti on 
- ~ crx=((x-x) 2 ) • A bar denotes time avarage. The resonance 

fi-equency of the sya-tem ie given by Q./R/9 ... (CR/(m+m 11 )q)~-0.05, 
which corresponds to a period P=125.7./R/g. The time series are 

run for 119 periods. The transients vanish after 6-7 periods. 

Calculation of i and a are based upon the 110 final. period• x 

of the different time histories. Gause curve spectrum with 

H /R=0.4,0.6 is applied. Results for various choice of wave 
s 

components are obtained for 

in tables- 3 and 4. 

Number Qf 
wave components Eq. ( 4. 1 ) 

100 1 • 04 
------- - ~----- --

200 1 .oa 
400 0.98 

a in tables 1 and 2, and for x 
x 

Eq.(4.5) Eq. ( 4. l 1 ) 

1 • 16 1 • 14 
---- - - -

1. 23 1.17 

1.15 1 • 07 

Table 1. Standard deviation crx/R. for solutions of eqs. (4.1), 
(4.5),(4.11). Gauss curve spectrum with H8 /R=0.4. 100, 

200 or 400 wave components. 

Number of 
wave componertts- _ 

100 
200 
400 

Eq. ( 4.1--) 

0.96 
1 • 12 
1 • 1 0 

Eq. (4-.5) 

0.98 
1 • 24 
1.16 

-~.(4.1-1) 

0.98 
1.19 
1.14 

Table 2. Same as table 1, but Gauss curve spectrum with Hs/R=0.6. 
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S •. -DISCUSSlON 

Slowly va.rying forces. are most commonly calculated by the a.pproxi­

mation due to Newman (1974). Applying corresponding.derivation .as 

in sectian 2; this ap.prox.imation leads t.o the fo.llowing · eapJr...a:ion 

for the slowly varying force 

N N 
F ( t) = -F O + Re l 

m=l 
l A A*T exp(i{ (w -w }t+(k -k )x(t))) 

n=l m n nm m n m n 
n*m 

N 
• • -Bx +·xRe l 

m=l 

N * . l A A a exp(i( (w -w )t+(k -k. )x(t))) 
n=l m n mm m n m n 
n*m 

-where 
... 

FO = -2fS(w)T(k(w})dw 
0 

m 

B = -2fS(w)a(k(w))dw 
0 

T = T(k ) 
mm m 

a = a (k ) 
nun m 

New term in the present account is 

N 

xRe I 
m=l 

N 

l A A*a._:EtXp(i((w -oo )t+(k·--k )x(t))) 
1 m n ....... m · n · m n n= 

n*m 
' 

and x(t} occurs in the phase function 

(w -w }t + (k ~k )x(t) 
m n m n 

( 5 .. 1) 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.3) 

( 5. 4) 

The term (5.3) corresponds to (4.12}. In the previous section we 

demonstrated that the part of the slowly varying force (2.17} 

corresponding to the sum of (5.3} and the slow drift force damping 

• 
-Bx, is a damping force. 'l'he values of the slowly varying forces 
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""' 
(5.9) 

' -~ . 

where S(w) denotes the power spectrum due to the incoming waves. 

The value of x is simply obtained by 

x = -F /C 
0 ( 5. l O) 

Let us then calculate ax by (5.8) and (5.9) and x by (S.10) 
. ' . 

an.d compare with results from time series calculations presented 

in secton 4. Applying Q/R/g=0.05 and Gauss curve spectrum wit.h 

H iii=6 .4, o'. 6 we obtain the following table 
s 

H /R 0.4 0.6 
s 

.";< 

a /R l .02 l .20 x 
x/R -0.48 -0.52 

~- -r. '·-~ 

' 

Table 5. Standard deviation a and mean value x calculated 
by' '{'5·.a-L {-5:9) and {5~10}. Gaus~ cuFve ·sp~c~l."'~m with • · 

H /R=0.4,0.6. s 

These values shall be compared with the results obtain,ed in ta'Qles 
• ,' . - ' ',.'\< ~ -

1-4 fqr solutions of eq. ( 4. 11), based UJ;>On the apprqx_imation due 
~ ~- _, - ~ -

imations due to Newman or Marthinsen leads to an error in the dis-

placement x(t) being of order O(CIR/g). Hence, for CIR/g=0.05, 

we may expect that ·.the th~oretical predictions of x ( t) are 



APPENDIX. Mean second order force for small value of. cu-rrant. 
speed. 

Mean second order force F upon a cylinder submerged in harmonic 

waves in1 a· ·uai·fonn ou1'T!ent is· discvssed in G~llM MJd> Palm ( 1985r}i .... 

We let the current. w:lt.h spe~d U be cf!rected along t'he ~at.iv• 

x1 -axis. The incoming waves with amplitude a and wave number k 

is propagating in the direction of the current. For small value of 

u it may be shown from the results in Grue and Palm (1985.l that /,. ,~~;. ~rr:· 

there is a reflected wave upstream of the body with wave number 

k- : and amplitude a , and only one transmitted '\Jave downstream 

with wave number k and qmplitude + a • Tbe meal} sec9o4 order .. i j': l 

force is then given by 

where 

-c -u c -u 
F = -E- _s__ + (E+-E)_s__ 

c c 

c = (g/k -y~ , c _ i_c_ _ __ __ -~ 

c. - -(g/k) 

1 
t;;g :;: ~ 

E+ 1 +2 = 2pga I 

(A.2a) 

(A .• _~p) 

(A~2c) 

. ' -. ..~ '/ 

Balance of energy is also derived in Grue and Palm (1985) and· 

reads 

-
E- c -u(c--u) = 

c- g 
+- c-U (E -E)-(c -U) 

c g 

Inserting (A.3) into (A.1) we obtain 

-
c -u -F = E- _s__ £__.=.£ 

c-U 
c 

(A. 3) 

(A. 4) 
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Figure 1. The moored elliptic cylinder which can move along a 
horizon_tal constraint._._ _ _____ _ 
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Figure 4. Time histories for solutions of x(t). Solution (3.15) 
(solid line), solution ( 3. 15) with tik=O (dashed line), 
solution (3.20) (dotted line). 



• 

- -t -
x ( t) 

R 

i 
x(t) 

R 

t 
x (t) 

R 

2 

0 

-2 

-4 
0 

4 

2 

0 

2 

(a) 

200 400 600 800 1000 
t \./g]"R -+ 

(b) 

200 400 600 800 1000 
tVg/R -+ 

( c) 

. -4.··"1 -------......--...-----.,,......-----....... ,-......... -,-· ._.....;..........! 

Figure 

·'. 0 200 400 600 800 1000 
tVg/R·-. 

6. ·Comparison between solutions of eq. (4.l) (solid line) 
. and· eq. (4.10) (dotted line). Resonance frequency 
.: OIR/g= (CR/ (m+m11 ) g) ~=O. 05. 100 wave components. 
a) Gauss curve spectrum, H8 /R=0.4, 
b) Gauss curve spectrum, Hs/R=0.6, 
c) Pierson-Moskowitz spectrum, H /R=0.6. s. . . 
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