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ABSTRACT

Wave drift damping and low-frequency oscillations of a moored
elliptic cylinder is examined. The cylinder is restricted to move
along a horizontal frictionless constraint. The moorings are
simulated by slack linear springs. The fluid layer is infinitely
deep and the motion is two-dimensional. The fluid flow around the
body and the forces acting upon it are computed in the frame of
reference following the low-frequency position of the body. The

slowly varying force is calculated by the approximation due to

<
Marthinsen (1983). One part of the resulting slowly varying force

is a damping force being proportional to the low-frequency veloc- |
ity of the body. This force is closely related to wave drift force
.damping. For long incoming waves, we obtain positive damping. For
short incoming waves, however, the damping force becomes negative.
Also slowly varying frequency of encounter of the incoming waves

is introduced due to the slowly varying velocity of the body. The
numerical integration. Results for several sea states are examin-

ed. The impact of the damping force obtained here is compared with

the impact of wave drift force damping and viscous damping.




1. INTRODUCTION
An irregular sea will due to non-linearities give rise to

wave forces oscillating with the sum and difference frequencies of

every two waves. If the wave spectrum is narrow-banded, the force

due to the dlfference frequenc1es w1ll be slowly varying in time.
The slowly varylng forces are of small magnltude compared to the
total wave forces. However, if there is a moored body in the waves

with resonance at low frequencies, the slowly varying forces may

excite 1arge low-frequency horizontal displacements of the body,

<8

1ntroduce severe strain in the moorings and cause difficulties in
; p051t10n1ng the body. | |

Slowly varylng forces are exten31vely studled in the litera-
“ture, and a general review can be found in Ogllv1e (1983). How-
ever, mechanisms which are damping low- frequency osc1llatlons are
‘not yet fullylunderstood The present account is therefore devoted
to studylng damping of low-frequency osc111atlons. The body is a

slender elllptlc cylinder being moored w1th weak llnear sprlngs.

The major axis is horizontal and the cyllnder is restrlcted to

move along a frlctlonless horlzontal constralnt. ‘The flow around

the cylinder is two-dimensional. | -
The damping force studied here is cloéely related tounaye

drift force damping, which is studied by Wichers and Huismans

(1984), Nakamura et al. (1986), Faltinsen et al. (1986), Faltinsen

and Sortland (1986) and Huismans (1986). They find that this is an
§innortant damplng force.for.lengthwise.motione of slender bodies
’wnere vlscous damping turns out to be yery small. Wave drift

force damping ie due to change in the mean second order‘force

upon a body when it moves with a constant speed against or in




waves. Mean second order force upon a cylinder is found by the
scattered waves in the far field, as described in Grue and Palm
(1985), and in Grue and Palm (1986) where impact of a uniform
current .upon slowly varying forces is discussed. Incompreésible,
inviscid fluid and irrotational motion is assumed. The water depth
is infinite. The scattered waves are galculated»by applying séurce
distribution along the body surface. The source distribution.is
approximated by piecewise qubic B-splines,:as described by Mo and
Palm (1987). The first order forces, necessary for theAequation
for the first order motions of the body, are found as describéd in
Grue (1986).

In section 2 we obtain values of the mean second order force
~due to the submerged ellipse and formulate the s}pwly varying
force. It is found that the mean second order forcé increases
considerably for increasing current speed, when therbody mbves

against long incoming waves. On the other hand, the mean second

order force decreases when the body moves against waves with wave

-~ length shorter than about three times the horizontal extent of

the cylinder section. This may be a characteristic feature for
submerged bodies and leads to negative damping.
Equation of motion for low-frequency oscillations is

- formulated and results for two incoming waves are discussed in

' section 3. Results for an irregular sea are given in section 4.

Different sea states are studied. The results show that the wave
drift force damping (1.1) is the most important contribution from
taking into account the slowly varying position and velocity of -
the body in calculating the slowly varying force. Finally sections

5 and 6 are respectively devoted to discussion and conclusion.




i The slowly varying position x(t) introduces. encounter frequency
- o(t) given by
o(t) = w + kx(t) ’ (2.4)

o(t) and x(t) are slowly varying functions of time provided
that

|x/c| << 1 (2.5)

where c=w/k denotes the phase velocity of the incoming waves in
the fixed frame of reference. | )
In the relative frame of reference the cylinder undergoes

small first order oscillations with periods 2n/o(t) on a siowly

varying current with speed
U(t) = x(t) » (2.6)

- directed along the negative x 6 ~axis when i(t)>0. When (2.5) is

1
fulfilled, we may as a first approximation calculate the first

order forces upon the cylinder, the first order motions of the

fy-cylindax,.and the scattered waves by assuming. U being uniform in
.- time. The interesting part of the second order force is then found
by the first order flow in the far-field applying the impulse

“ragquation. o

‘2b. Calculation of mean second order force in regular waves

The mean second order force F upon a cylinder moving with
constant speed U against the incoming wave (2.1), may for small

U be written




order terms in (2.7) are very small for U//gR < 0.2.

| Figure 2 shows that the reflected wave amplitude a gets a
pronounced increase for kR less than unity, due to a forward
veiocity of the body. For larger value of kR the reflected wave
amplitude decreases. Figure 3 reveals that e 1is negative for'

_ KR<0.9. Hence, the value of the mean second order force increases
when the cylinder moves with a constant speed against the waves.

- For kR>0.9 the converse is true. Compared to U=0, the force
then decréases when the cylinder moves ag&insﬁ the waves. This
occurs when r](k)—2f£7§ ro(k) becomes negative. The fact -that
F, as a function of U, decreases for moderate and:short inceming
waves, is also true for submerged cylinders with other contours,

as discussed in Grue and Palm (1986). We note that only a small
- change in the speed U//§§ leads to a relativeiy large changevin

ﬁ(k,U) for kR<0.9.

2c. Slowly varying force due to irregular-WaVeg

I1f the incoming waves consist of N wave components we may write

the surface. elevation at  x by

1

N
' ) = i + + .
n(xl,t) RemE]Amexp(lwmt kmx(t) kmx]) (2.11)

- where Vém: are compléimaﬁﬁiifudéé]ﬁikéw§7§m"ié”WEVé”ﬁumber of

component m, and Re denotes real part. We now assume that the

amplitudes A are given from a narrow-banded power spectrum
. --.,,‘.,m.,A.v\,.. B PR— PEEEN - - PR T Y [ N N

At - oy - C e e

- S(w) Dby

|a |2 = 28(w_)Aw : (2.12)
m m




¢ (t)(t,x(t)) The term Uaz(t,x(t))a(kL) is a damping term when

a(gL)<O. This term leads, however, to negative damping when

a(kL)>0, which in the present case occurs for kLR>0.9.

" 3. EQUATION OF MOTION

Let us apply a linear mooring force -Cx, where C denotes the

uepring constant. The added mass force —miIE must be added to

the force (2.17) due to the slowly varying acceleratione of the
4?body m1]'$denotes added mass of the submerged elliptic cylinder

'as the frequency of oscillation tends to zero. Calculation glves

m”=0.1434pR2 for b/R=0.2, d/R=1. We denote the mass of the

cylindéf by m (which equalé the displaced water mass);vThe equa-
~tion of motion for the low-frequency oscillations then becomes

mx = -m]l;'- Cx + F(t) (3.1)

3

F(t) is given by (2.17) with U=x.

In (3 1) we have neglected the 1mpact of viscous drag forces,
whldh is very small in the present example. We shall, for compar-
ison, in some cases study solutions of (3.1) with the damping term
in (2.17) replaced by viscous draé. Value of viscous drag upon an

relllptlc cylinder may be found from modern Development in Fluid

(3.2)

where CD=O.1 for b/R=0.2.




The solution of (3.7) is

(0) (0) (0)
X

(t) = -a sin(Awt+6 ) . (3.9)
where a(Q) ‘and 6(0) are unknown. Inserting (3.9) into (3.8)"
and avoiding secular solutions of x(])(t), a(o) and 6(0) _are
‘determined by
T(k_)
(0) L 1
2 T Realk) (k) (3.10)
V4 —7
w
} 4a(kL)ﬁ
0). v
6( ) =0 (3.11)
The soiotion for x(])(t) becomes
x(])‘='; + a(])cos 2Awt . ' T S 43.12)
dhere
- - a? (0),, (0) ,.
x =g ((2+Aka )T(kL)-Awa a(kL)) (3.13)
2
a2 aka@rx ) + 202 ek ). (3.14)
‘.HenCe, the solution of (3.3) becomes approximately
x(t) =% - a'@ain aut + 2l os 200t . (3.15)

The amplitudes of higher order harmonic solutions of (3.3) are

very small.

The oscillation a‘ sin Awt is mainly damped by'£hémdé§é"
drlft force damping (1.1), which in (3 3) is the term x2a2 a(k ).
We note that a( ) is 1ndependent of the amplltude a of the

incoming waves. The validity of the solution (3 15) is based upon

the inequalities (2 5) and (3.4), which corresponds to
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the solution of (3.18) becomes

3n|T(x, )| 2a?T(k_ )
L 5 | L
z;( 4prD ) “sin Awt + c

x(t) = - (3.20)

In ﬁhis case the amplitude of the’oscillation increases linearly
with the incoming wave amplitude. This solution is also displayed
in figure 4. We noté that, for smaller value of a/R,‘tﬁe
solutions.of (3.3) and (3.18) become very close to each other.
This means that the damping force in (3.3) and the viscous drag

force are of equal magnitude.

4. RESULTS FOR IRREGULAR WAVES.

The equation of motion is now

(mtm X - J.taz(t,x)a‘(kL) +Cx = a2(t,x)T(k,) (4.1)

We shall first examine stability of solutions of this equation.
This mhy”bevaéhieVed by stuinng the homogeﬁeous version of (4.15,
i.e. L |

(m?m]])z - iaé(t,x)a(kL) +Cx =0 (4.2)

| w;.;Jﬁt4m;LtipLy_this—equaticmLJaLm§L~4mmiaiateg;ate—££emp—4ﬁj~-tem«tv~We -

fthen obtain
1 C t ‘
e v 2 =x2 = w232 ;
2(m+m.|])x + 3x E, + { x‘a (t,x)a(kL)dt (4.3)
: 0

ore =1 o2 4 o2 - :
where Eg fyz(m+m11)x‘i+ 2%’ at; t=t;. Hence,.every induced




We shall give the sea state.by either a narrow-banded Gauss
curve spectrum, which is very close to the JONSWAP spectrum, or by
the more broad-banded Pierson-Moskowitz spectrum. Let us denote
significant wave height of the incoming waves by Hs. Gauss curve
spectrum with mean frequency Wiy spread 28 and area mO-H§/16 is

then given by

H: (w-w )2
S.(w) = —— exp(—=E—) (4.6)
GH® 16/276 APy

From Houmb and Overvik (1976) the spread 26 is related to the

spectral moments mn=fs(w)wndw by
' 0

=
=]
ro

(4.7)

In the present account we choose 6=0.15wp, and wp=0.40144/g7Hs
equals the peak frequeticy of the Pierson-Moskowitz spectrum. The
~———Pierson-Moskowitz spectrum, given in e.g. Newman (1977), may be

expressed by the significant wave height by

2 2
S (w) = 0.00819 exp (- 0.03249 ) (4.8)
pm - w5 ngh

The Gauss curve spectrum and the Pierson-Moskowitz spectrum are

- dlsplayed in figure 5 for H /R—O 4,0.6. D

The amplltudes of the wave components are given by (2 12)
with Aw=(w -W )/N. and w_, denote respectively the
. max min , maxm‘ LoLman L T P
upper and lower truncatlon of the spectrum. N is the number of
wave components. The frequencies wm of the different wave

components are chosen randomly in the N intervals

w . + (Mm=-1)Aw < w <w . + mAw (4.9)
min m min
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To examine the difference between the solutions of (4.1),
(4.5) and (4.11) more closely, we have run long time series for

x(t) and computed the time average of x(t) and standard devia-

tion x=((x—;)2)%. A bar denotes timevavarage. The resonance
frequency of the system is given by Q/§7§¥(CR/(m+m]])g)sso.os,.
which corresponds to a period P=125.7/§7§. The time series are
run for 119 periods. The transients vanish after 6-7 periods.
Calculation of x and o, are pased upon the 110 finalsperiodé:
of the different time histories. Gauss curve spectrum with
Hs/R=0.4,0.6 is'épplied. Results for'various choice of wave
components are obtained for oy in tables 1 and 2, and for x

in tables 3 and 4.

Number of o

wave components Eq.(4.1) Eqg.(4.5) Eg.(4.11)
100 1.04 1.16 1.14
200 1.08 1.23 1.17
400 . . 0.98 1.15 1.07

Table 1. Standard deviation c*/R' for solutions of egs. (4.1),
(4.5),(4.11). Gauss curve spectrum with HE/R=0.4. 100,
200 or 400 wave components. ' '

Number of

wave componerits  Eg.(4.1) Eq.(4.5) Eq.(4.11)
100 ’ 0.96 0.98  0.98 |

200 112 1.24 1.19

400 1.10 1.16 1.14

Table 2. Same as table 1, but Gauss curve spectrum with HS/R=O.6.
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5. DISCUSSION

Slowly varying forces are most commonly calculated by the approxi-
mation due to Newman (1974). Applying corresponding derivation as

in section 2, this approximation leads te the following expression

for the slowly varying force

N N :
F(t) = -F  + Remzl nE]AmAzrmmexp(i((mm-wn)t+(km-kn)x(t)))
n¥m
° . N N *
-Bx +~xRem£1 nE]AmAnammexp(i((wm--w-n)t+(km-kn)x(t))) (5.1)
- n+m
-where
F, = -2[S(w)T(k(w))dw - (5.2a)
0. , _
B = -2[S(w)a(k(w))dw | (5.2b)
0 : o
T = T(k ) (5.2¢c)
mm m
a o= alk ) (5.2d)

' New term in the present account is

N N .
iaemz] nE]AmA;ammexp(i((wm-wn)t+(kh-kn)x(t))) (5.3)
n¥m

and x(t) occurs in the phase function

- + - .
(wm wn)t (km kn)x(t) (5.4)
The term (5.3) corresponds to (4.12). In the previous section we
‘demonstrated that the part of the slowly varying force (2.17)

corresponding to the sum of (5.3) and the slow drift force damping

—B&, is a démping force. The values of the slowly varying forces
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Sple) = §£S(“l)s(“i'“)IT(k(“1)512§w1, .vi‘ 1(5;?)

where S(w) denotes the power spectrum due to the incoming waves.

The value of x 1is simply obtained by
X = -F,/C (5.10)

Let us then calculate o, by (5.8) and (5. 9) and x by (5 10)

and compare w1th results from time series calculatlons presented
in secton 4. Applying Q/R/g=0.05 and Gauss curve spectfum with

Hs/aib;£{016 we obtain the followingwtable

H /R 0.4 0.6
o /R 1.02 1.20
x/R -~ -0.48 -0.52

Table 5 Standard deviation °x< and mean value X calculated

by (5»-—8 )+(5.9) and (5.10). Gauss cu: rvevspect—r um with
HB/R=O.4,O.6. ‘

' These values shall be compared with the results obtained in tables
]fﬁlfqr_solutions of eq. (4.11), based_upon the approximation due

'to Marthinsen.

Bpplication of slowly varying forces calculated by the approx-
imatione-due'to Newman or Marthinsen leads to an error in the dis-
placement x(t) being of order O0(@/R/g). Hence, for Q/R/g=0.05,

we may expect that3the theoretical predictions of x(t) are
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APPENDIX. Mean second order force for small value of current
speed.

Mean second order force F upon a cylinder submerged in harmonic
waves I & uniferm current is discussed in Grue amd Palm (1985).
We let the current with speed U be directed along the negativé

x,-axis. The incoming waves with amplitude a and wave number Xk

1
is‘propagating in the direction of the current. For small value of
U it may be shown from the results in Grue and Palm (198§)q§h§gy
there is a reflected wavé upstream of the body»with wave ﬁumbé;
¥~ and amplitude a , and only one transmitted wave downstream

. +
with wave number k and amplitude a . The mean second order.

force is then given by

F = -E~ —-g—_ + (E+-E)—9c—‘ ~(b"])
c
whére

. L . S “S— _ o

¢ = (a/x)E, e= ~(g/x)? (A.2a)
- 1 - 1

Cq=3F o GG T | o (Bagp)
£ =10ga"2, EY = %Pga+2', E = %Pgaz" T (A.20)

2

Balance of energy is also derived in Grue and Palm (1985) and .

mf;gads_M e e S

-c U~ = (g¥- S:E‘ - A
E- S (e -0) = (ET-E)TH(c -0) (A.3)

Cc

Inserting (A.3) into (A.1) we obtain

_ c-—U ¢ -c
F_=E —9-—c_ == (A.4)

Il
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horizontal constraint

Figure 1. The moored elliptic cylinder which can move along a
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Figure 4. Time histories for solutions of x(t). Solution (3.15)
' (solid line), solution (3.15) with Ak=0 (dashed 1line),
solution (3.20) (dotted ‘line).
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4 Figure 6. Comparlson between solutions of eq. (4.1) (solid line)
~and eq. (4. 10) (dotted line). Resonance frequency
{Q/—7—-(CR/(m+m )g)?=0.05. 100 wave components.
~a) Gauss curve spectrum, H_/R=0.4,

b) Gauss curve spectrum, HS/R—O 6,
c) Pierson-Moskowitz spectrum, H /R—O 6.
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Flgure 8 Comparlson between solutlons of eq. (4 1) (solid 1line)
and eq. (4.11) (dotted line). Resonance frequency
RYR gs(CR/(m+m )g)?%=0.05. 100 wave components.
a) Gauss curve spectrum, H /R=0.4,
b) Gauss curve spectrum, H_/R=0.6,
c) Pierson-Moskowitz spectrum,'Hs/R=O,6.
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Figure 10. Comparison between solutions of eq.
: and eq. (5.6) with F(t)

given by eq.

1000

(4.1) (solid line)
(5.1) (dotted

line). Resonance frequency Qv/R/g=(CR/(m+m;,)g)™=0.05.
100 wave components, H_/R=0.6. a) Gauss curve spectrum,

b) Pierson-Moskowitz spectrum.
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