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ABSTRACT 
._, \- -

The two-dimensional radiation problem and·diffraction 

problem are discussed for submerged elliptic cylinders 

when a c~rrent is present. It is shown that the impact of 

the current on the wave arnpli t_~~~s and wave forces,. are 

large. The singularity in the problem, corr!'!spqnd,ing to a 

wave travelling upstream with."'a ·group Vf;?lc;>ci ty ~2Qal. to 
- ' . ' ; . ' ~ ' ' '. . - ;, - . . 

the speed of the current, is exam;i.ned,... ~s .~Xpfjqt,Qd, thi,s 
, - '.; ..... - ' ' .· - : ··- '\ . -- \ '"' 

singularity influences the motion st.rong+y,. \ij~ f:i.I'ltd; 
. . ; ' ·-. ' - .- i~. ' -

however, that the.amplitudes and force$, :i:·emain f»:ini;te •. 
- • ' -·> 

,I' • .- ; •. ~ 

.. ·-------- ---- ----------- -- ----- ------.------------

---- ........ ---··-· 



- 3 -

dingly, 'when one harmonic wave is diffracted by a submerged body, 

normally three new waves are generated when i; < l /4 and one new 

wave when 't > 1/4. 

The actual wave problem has been discussed in a recent paper 

by Gttie· and Palm {1985) {hereafter calied I) for a submerged body 

of form as a circular cylinder. It turns out, however, that the 

circular cylinder is no typical representative for a submerged body 

of arbitraey two-dimensional form. For example, in the diffraction 

problem it is found that a circular cylinder, in contrast t:o other 

bodies, generates only one new wave also for i; < l/4 .~ In this 

paper we shad.l c:onsider a submerged elliptical cylinder. The obvi­

ou~ aidv~ntqge of th;is contour is that by changing the ecc.entricity 

we obtain bodies varying from a circle to a flat plate. 

It will be clear that the case i; = 1/4 is of special inter-

est in this problem. Physically it corresponds to that <J is tuned 

so that the wave travelling upstream hj\\s group velocity ~ual to 

~~~~t=h=e~s=nee4 of the current. It seems to be general!¥ acce~teq in the 

litterature that this case will lead to infinite wave aJ[\plitudes 
. ~. I : , ·~ • 

and hen.c~ in f.ini te wave fore es. We obtain, however, that the wave 

amplitudes and wave forces are finite for all values of i;. It is 
- :- · ... ! ~ ") ' 

·'·. 
shown, however, that the motion has certain pecularities neC3,r i; = 

1/4. :rtius in the diffraction problem for an incoming k 2 wave 

(defined as a wave.travelling upstream) the transmitted wave tends 

towards zero as i; + 1/4 whereas a reflected k1 wave (defined in 

section 2) is generated, travelling downstream with an amplitude 

equal to the incoming wave. The corresponding result is obtained 

for an incoming k 1 wave with the k 1 wave and the k 2 wave 

changing roles. Due to this fact we may close to i; = 1/4 obtain 

practically speaking, total reflection. We find also that the 
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where j is the imaginary unit, and 
' . 

Re. denotes the real part 
J 

(with respect to j). Both x and' satisfy the Laplacian equation 

v2, = o ( 2 • 2) 

]\f?sµme that the cylinder is oscillating with. its <;:f;!11tr~. at 

x = Re. i; exp( j at) , y+d = Re . i; exp( fat) 
J x J y 

( 2. 3) 

and rotating with an angular displacement Q. The body boundary 

c_ondi.tions applied at the mean position of the body· surface s i'B 

~= an -n x 

where denotes ·the normal derivative, and 

(see Newman 1978,eq. 3.28). Here 

n is the normal vector of-t:ne ooay, and + 
r 

(2. 4) 

(2 • 5) 

(2. 6) 

is the vector from the 

centre of the ellipse to a point on the surface (see fig.1). 

The linearized boundary condition at y = O is obtained by 

combining tbe dynamic and kinematic boundary coR-ditions which gives 
·'·. 

u2~ + ~ = o 
ax2 ax 

(2. 7) 

(2. 8) 

To solve (2 .2) :wit.h the pr~per boundar¥ conditioi:;i.s we shall trans-

form the mathematical problem to an integral equation. This may be 

achieved by expressing . ' (and x> as a source distribution over the 

boundary of th~ submerged body. For a detailed derivation of the 

integral equation, we refer to I, and. here only give the necessary 
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and a bar denotes complex conjugat~. With 

a2 
\I = 

9 
Ua 

't = 
g 

tb~ !9µr wave numbers are defined by 

For i; > 1/4, k 1 and k 2 become complex in i. 

(2.15) 

(2.16) 

Before proceeding further, let us discuss shortly the far-

field motion due to the concentrated source. It is seen from 

(2.12)-(~;16) that for ~ ).1/4 the solution consists of four 

waves, viz one wave with wave number k 2 at x = m and three 

waves with wave nwnbers k 1 , k 3 , k 4 · at ·x = -m. For i; > 1 /4 the 

solution consists of no waves at x = m and two waves with wave 

numbers k 3 , k4 at x = -m. 

-'I'h.e va-F-ious-wave · :n-mnbe:r;.s---are-found----as so-1-utions-----of -

i) a = Uk± (gk) ~ (k=k 4 , k 3 ) and ii) a = (gk) ~-Uk (k=k 1 , k 2 ) where 

a is positive and known. The four solutions are indicated in 

figure 2. It .is seen from the figure that, in order to get four 
·' . 

waves, a must be less than a certain maximal value, i.e. i; < 1/4. 

Furthermore, in the relative frame of reference, both the k 1 wc:ve 

_.-and the --kz-·waue haue -.positiv9 .ph-a-se-ve-lociti--e& '+t'hieh-are- larger - - · 

than U. The k 1 wave has, however, a group velocity less than U, 

and is therefore located downstream. The k 2 wave has a group velo­

city larger than U, and is located upstream. The k 3 wave has posi­

tive phase velocity smaller than U, and the k 4 wave has negative 

phase velocit,y. These two waves are therefore located downstream. 
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Equation ( 2. l 7) is a (non-singular) Fredholm equation of 

second kind. The equation is solved by using a collocation method 

with cubic splines. A very good converg_ence is generally obtained 

by using 20-35 collocation points equally spaced. The more slender 

the body is, the more points are needed. The accuracy ia ~pout 1% 
->' . 

or better in all results presented in this paper. 

We shall be especially interested in the tar-field. By contour 

integration we obtain from (2. 11 ) , applying (2. 1. 2 )- ( 2. 14) , that 

1 im f 1 ( z ) = A 2 exp (- i k 2 z ) 
X+a> 

lim f 1 (z) 
x+-ca 

where 

l = i(l-ij) I y(s)exp(ik 1 , 2 i:C~,))ds 
11-4-r s 

A 314 = i(l+ij) 1 I y(s)exp(ik314i:(s.) )ds 
{l +4-r s 

(2~21) 

(2.23) 

(2.24) 

For an elliptic contour it is appropriate to write the equa-

· tion for· the ellipse on parameter form as 

1:(9) = Rcos(e) + ibsin(9) - i(d+b) 
" ' 

{2.25) .. ~ - . . 

and using 9 as variable instead of s. (For definitions·of Rt b, 

d g,nQ__9, __ S_ee fig.__J_.J __ 

3. THE OSCILLATING ELLIPTIC CYLINDER 

Let us consider an elliptic cylinder oscillating in sway, 

heave and roll. The right hand side of the integral equation (2.l7) 

is now given by (2 .19) and (2. 5) with f 0 chosen as zero .. Thus 

h(s') is given by 
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and U = 0. As e)itpected, the maximum relative amplitude is obtained 

in heave. and for the smallest value of b/R, i.e. b/R = 0. 05. For 

la;ter reference we note that the maximum amplitude in heaye for. 

b/R =. 0. 3 qcqurs. fQF vR, • l . 2. 

To examine the effect of increasing the depth of the cylinder, 

.d/R is in f.ig. 4 chosen as 2 (the on~y case where d/R is 09~ 

one). lt is noticed that the maximum amplitude ·now is about 40% of 

the maximum ampLi t ude for d/R = 1. 

ln figs Sa, Sb, . Sc are displayed the relative am12±~.tuq~~ 

for. sway, heaye and roll, respectively for the Froud,e .number .. 
·.''·'. 

Fr c=: U/ (gR) ~ equal to 0.2. The corresponding curves for }fr.:;:: o. 4 
;,.·. ,;. 

are ... sb._9.\t?Il in figs 6a, 6b, 6c. We ndtice that for Fr::;::: 0.2 the, k.3 

wave has a van;i,.shing amplitude.· This is also tn4e for the k 1 " w~v,e 

e~cept ye~ close to ~ = 1/4 
'.·=,·.· -.. ). ' 

(correspond~ng to vR = l.5iq2~L~ ,, 
' t - ' '« - . l . - ;..; - ' '• ~-

f!ence, prac.tic~+ly speaking, for vR less than 1. 5625. tl:le mot..j.on. -, i' - . ' '· , .. ; 

for Fr = 0, 2 
l': :·:, ... 

consists of one wave at (the k 
2 

wave) and. 

one wave at x = -m (the k 4 wave). For larger values of vR. 

011ly the k 4 wave occurs. 

For Fi;-= 0.4. three waves occur when ~ < 1/4, viz t\;le ... k 1 

wave, the k 2 wave and the k 4 wave. For Fr = 0. 7 and Fr = 1 • Q 

we find that all four waves have appriciable amp'litudes •.. ~o get an 

idea of whic;h of the waves that are in:iportant fo:r a given Froude 
I 
I ---------------- --- ---------------- ------------- ------- - ------------------- -----·1 

munber, and for which values of vR these waves obtain. tJ1eir. I 

maximum amplitudes, we examine first the corresponding values 

;:": , !~; = ; :·~; ·::) ~x:":::~ L::t::e:o::~::r~::: ·~::v~ F:9:~:~ ·:::, __ 
maximum ampli ttide for heave. occurs when . vR = 1_.2 (fig".' 3b) • This 

corresponds to a far-field motion with kR = 1.2 where k is the 

wave number. lt seems reasonable to expect that also for Fr * O, 

·--------
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6y(s') + 

1 . · i: ( s ' ) exp (-De 1 ( C ( s' ) "'" u) ) du 
1t J y(s)Imilexp(i~(s')) (i+j) [k 1 l 1 u-ffST 

exp (-ikft"C (;S' • t"'-u )·)du 1.·. 

- ]j 
\l:~(s) 

= 0( &) (3.4) 

To the same order of accuracy we may set k 1 = k 2 ~ k, say. The 

inner integral is then evaluated by contour integration. Thereby 

6y(s') -

2kim. {Ci+j)exp(i~(s') - ikC(s')) hCs)exp(ikC(s)ds} 
1 s 

= 6( 6) (3.5) 

W~ notice that the integral in (2 .23), with k 1 ,k 2 = k, is exactly 

the same as the integral in (3.5). Hence, if y remains finite, we 
.·· . l 

deduce that is finite in the limit, in spite of the factor 

6-1. This result is valid for an arbitrary smooth body. 

3. 2 The forces 

In many practical problems where a body is os~illating, for 
. . 

example due to incoming waves, it is important to know the magni-
' : ·.- ,. ~: . .,. . - ': . ; 

-- -tua-e~of--the--damp±ng--force-~·-usu-a-l:-ly· th±-s--furc-e· is-ma.-in-1-y-due--tcr 
-------~------------------------------ --------·-·-------

viscous effects. However, if the body is, located near the free 

s~~f a.·ce, - the damping due to the radiated waves, may be of practical 

importance. To examine the magnitude of this force, we first note 

t~at it can be written as 

F = D sin ai; (3.f?) 
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fig. 7 that it is important to take into account the effect of the 

current. 

It may be of interest to compare the wave dampl:ng with the 

visc01:1"S drag· 'for the restrained body. The latter may for an el lip-

tic cy1 ind.er be written 
< • 

(3.11) 

where CD is the drag coefficient. The damping for·oe may acce!>rding 

to fig. 7 be written 

D = >..gpR£ 

where >.. is of order unity or smaller. Hence 

D 
F 

>.. £ 
b c Fr2 

D 

(3.12) 

(3.13) 

CD for various elliptic contours is discussed in Modern Develop­

ments In Fluid Dynamics (1938, p.415). A reasonable characteristic 

value for b/R = 0.3 is · C = 0. l 5'. Let us choose Fr ·= · 0 .4. ·'The 
D 

maximum value of >.. is then 0.9, and the ratio between the maximum 

drag force and the viscous drag is 

D ..,··40 ·e: 
(3.14) F b 

! . . 

We see that even for very small £, D/F may be .. larger than unity. 

. - -- - --- - -----Obv-i-e11-s-1-y-,---wh-en--t-he--dept;-h---El--···-0£.---t~he-cy-l-i-nder-±s--incre-as-ed-1 --- -- -- --- --- --- · 

the damping force decreases. We have examined the magnitude of 

t:his effect for the case U = 0 by al.so computing the forces when 

d/R = ~. 0. The damping force for heave in. this ·.case is displayed in 

fig. 4. Comparing this with the result for ·the :damping force for 

Fr= 0 in fig. 7, we note that the maximum value in· the deeper 

case is about 30% of the maximum value for d/R = 1. O. 
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( 2. 24) • 'f is obtain:ed. by so1ving: f2. 1'7) • 'The'- riijht hand side of 

this equation is now (2. 19} with· · ·a~/Bn = O ·arid· £0 ( z) given by 

( 4. 3). In all examples bel·O\IV ·the dl·stanc~· between the mean free 

in almost all examples in section 3. 'Furthermore, b/R is O. 3, 

.except in fig. 9 .. 

In the relative frame of reference, the incoming wave will be 

a wave trav-elling in either .the same ·or in t.iie opposite dit'ection 

as the body. In the latter case the wave is 'what- 'we have terined a 

k 4 wave. In the first case the -wave will be either a k 2 wave, kl 

wave or k3 ,wave,, depending ·on the''fitetlJ'rli'tude'Uf the' wave· number. 

From the disoo'ssi·on in :s;;ection 2 it· folloo.lra th-fit a k 2 wave.'has 

a large wave length such that both t;he ~ii ~ih-6-ity aria phas~ 

velocity are larger their U; a k 1 wa~ ·'tla'S J;iha:se veloc1 ty larger 

- , and group' velocity ~11:er than u and a k 3 :warve has both group 

,.velocity .and phaBe .-el:0ctty ·~ller tballl · 'll. · ! 

4 • l • The far:- f ie-ld. ,inoticm 

Let us first consider the ·ca:s:e U = O. The amplitudes 'of the 

. reflected waves are ~is played in fig. 9 ·for various· values of· 'b/R. 

Since the amplitude <:of the reflected wave is ·-zero for h/R = l · 

(Dean l 948 )- , . we e-xp.ect ·this ·amplitude tG i?Ydf'~a-&e for• decreasing 

values of b/R• This is see11 to be true, and· 'for 'b/'El = 0. OS we 

find from the figµre that the maximum reflected amplitude is about 

o. 3 times the incomig ·mnplitud·e. '!"his value may be compared wi-th 

. the result for the ,-fl:.&t. pl<&te, resently discussed by Bjordal 

( l 985). He· obtains for d/R = l that the maximum -reflected ampli-

tude is 0.294 times .the inc't:Jming ampllt"tide.·-' 
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Froude numbers a k 3 wave will be generated by an incoming k 4 

wave. In this case we have no reflected wave, but the transmitted 

wave is spl i tted in two waves, viz a k 3 wave and a k 4 wave. 

In fig. 11 are shown the wave amplitudes for Fr= 0.4. In 

fig. Tl a the incoming wave is a k 1 wave and the generated waves 

is a k2 wave and a k4 wave. In fig. 11 b the incoming wave is 

k 
2 

wave, and a k4 wave and a kl wave are ·generated. !n both 

figs 11 a and 11 b the k4 wave are, however, almost negligible. 

The most characteristic feature of __ these two fjgur~s · is that for 

a 

an incoming k 1 wave (k2 wave) the amplitude tends towards zero 

approaching 't = l /4, whereas the generated k 2 ·wave (k 1 wave) 

obtaines an amplitude for i; + l /4 - equal to the amplitude of the 

incoming wave. This is always found .to be true. An interpretation 

of this result is t.hat a k 1 wave or k 2 ·wave ·will :be :st'rongly 

refl&cted- near 't = 1/4. and as i; = 1/4 is approached,- we obtain 

with a very good approximation total reflection4 Another remarkable 

fe.at\,lre in. fig. l lb _!~that __ a 1_/a0 __ may_ be __ larg_er t]lan_onet_:___:i_._.e .. _____ _ 

we have overreflection. '!'he overr·eflection ie even stron9er · ;i:n fig. 

12, where the di:f fraction properties for Fr = 0 ~ 7 for an incoming 

k 2 wave are displayed. 

In fig. 11 c the_ incoming wave is a . k4 wave. For 
,1 .. 

't < 1 /4 

a k 1 wave and. a k 2 wave are set up. Hence in this case· the 
------------------------- -------------------------------

motion consists ot an in'O'Q1ning wav_~ travelling downstream (the 

wave), a transmitted wave (the k 4 wave), a reflected wave (the 

wav~ L ar:id a g~n~rated . k,. wave travelling downstream. For i; > 

k '.:.4--- - --·--

k' 
2 

l /4 

the k4 wave passes by the submerged body without :riotieing ·it. If 

the submerged elliptic cylinder is replaced by. a circular cylinder, 

the wave motion for i; < l /4 is very different. In this case the 

k 1 wave and the k 2 wave are exactly zero, as shown in I. 



,,. 

- 21 -

creasing Froude numbers for incoming waves travelling downstream 

and decreases for incoming waves travel'ling upstream.· 

For Fr = O •. 2 and Fr = O. 4 we see that th~ maximum va.lue of 

the first order horisontal force is about 0.4 · p9Ra0 ~ The. ratio 

between this force and the viscous drag (3.11) is 

(4.6) 

Introducing c0 = 0.15 and Fr = 0.2 we obtain that 

x 1 /F • 67a0 /b. The maximum value of the first order vertical force 
~~ 

is 1.2 pgRa0 , obtained for Fr = 0.4 
• t .i.1--. ~;. .- -- ·-

and incoming wave travelling 

downstream. The ratio between this force and the viscous drag is 

5. THE LEE-WAVE PROBLEM 
.. ! ' ~_ .... 

To solve the radiation problem, it is necessary to find the 

lee-wave potential X• The knowledge of the lee-wave solution is 

also important to examine the validity of our solution. A necessary 

condition for the linearized solution to be a good approximation, 

is that ex/ex << 1. In fig. 14 is displayed maxl~!I at x = -m 

when b/R = 0.3. It is seen that maxl~!I is less than 0.1 for 

Froude numbers less than 0. 6. For the sake of co,):Ylpl_eteness we hav-e 

also shown the amplitudes of the lee-waves for various parameters. 

6. SUMMARY AND CONCLUSION 

The two-dimensional radiation problem and diffraction problem 

are discussed for submerged elliptic cylinders. when a current is 

present. The amplitudes of the generated waves, the damping force, 

the first order horizontal force and the mean second order horizon-

tal force are computed. It is found that the singularity at 

't = 1/4 has a great influence on the magnitude of amplitudes and 

forces, but both the wave amplitudes and forces remain finite when 
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s.o 
vR-

Fig. 3a. Amplitudes for radiated waves 
in sway or heaw for a circle (b/L1.0, 
d/r=1.0) ,· Fr=O. 

• 

Q8 

Q.6 

0.4 

02 

Fig. 3c. Amplitudes for 'r'adiated waves 
in heave, sway and roll (b/R=0.05, 
d/R=l.0), Fr=O. 
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£ 
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QB 
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0.4 

02 

··································· 
1.0 2.0 lO 4.0 SD 

VR-

Fig. 3b. Amplitudes for radiated ~aves 
in heave, sway and roll (b/R=0.3, 
'd/R=1.0), Fr=o. The dotted turve is 
the damping force D/pgR£ in roll . 

·'·. 

"-:~ ' J.Q_ '"·•, - 4D ·i . . ·: ~. ' ... ' ""° 
vR-

Fig. 4. Amplitudes.for radiated waves 
in heave, sway and roll (b/R=0.3, 
d/R=2.0), Fr=O. The dotted curve is 
the damping force D/pgRE in heave. 
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vR- a. 
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Fig. Sa. 

QS 

25 

vR-, , 
Fig. Sb. 

2.5 

vR-

Fig. Sc. ·'·. 

_______ Figs s ~li tudes for radiated waves i.n_s_way Ts-ar, --neave--(sol-ana 

roll (Sc) for Fr• 0.2 (b/R = 0.3, d/R = 1.0). The arrows 

at the vR-axis indi·cate ~ = 1 /4. On fig. Sb are indicated 

the values .. ot, 1;he wave numbers k 2 and k 4 .. 

·'' ·'· . .. -~ ..... '. . . . . . . . .. . .. . . ; :···. . , .. . . ... ... ~ ·. . 
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Fig. 6a. 

1.0 1.5 20 

vR-. 20-----------------------. 

1D 

Figs 6 

Fig. 6b. 

,I,. 

VR-

Fig. 6c. 

Amplitudes for radiated waves in sway (6a}, heave (·6b) and 

roll (6c} for Fr = O. 4 · (d/R = 1. 0) .' The arrows at the vR-
~ . • • . ·= .: . • 

axis indicate ~ = 1/4. 

2.5 
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\ ··~._..... Fr:0.2 . . . . : : , . . 
l ~ Fr=0.4 
: i .. . . . . .. 
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as 1.0 1.5 
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2.0 

Fig. 7. Damping force D/p:,Re: and mean 
second order horizontal force Fx/pge: 2 

in heave for Fr=O, 0.2 and 0.4. The 
first arrow at the vR-axis indicates 

2S 

T= 1I4 for Fr•O. 4 and the second· arrow 
-r=1/4 for Fr=0.2. 
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pg RE 

Fig. 8. Damping force D/pgRe: 
and II!t!an second order horizontal 
force Fx/PgE 2 in roll for 
Fr=0.7. Radiated amplitudes are . ) . . 
dotted. The arrow at the vR-axis 
indicates -r=1/4. · 
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0.00 
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VR-

Fig. 9. Amplitudes of reflected waves 
in the diffraction problem for various 
values of b/R (d/R=1.0), Fr=O. 

025 

k..R-
050 075 

2D 25 

Fig. 10a. Amplitudes of the reflected 
.. , ·f.4 .wf!-."'.e, and t.:~nsmit.t~d ].{_z. wave. wh.~n- . 

. .. , .. ,·a lc2 wave ·'is ufc'iderit upon· the ·cylin-
der (b/R=0.3, d/R=1.0), Fr=0.2. 

. 04. 

03 

02 

1.0 1.5 2.0 2.5 

Fig. 10b. Amplitudes of the reflected 
k 2 .wave and transmittedk4 wave when 

. '8 . k4 . wave,. 'in· inc id en t" u\)on· ·the .cyi in..;.. .. 
der (b/R=0.3, d/R=1.0), Fr=0.2. The 
arrows at the kR-axis indicate T=1/4. 
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Fig. 11a. Amplitudes of the reflected 
k~ wave, generated k4 wave and trans­
mitted k 1 wave when a k1 wave is 
incident upon the cylinder (b/R=0.3, 
d/R=1.0), Fr=0.4. The arrows at the 
kR-axis indicate T=1/4. 
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Fig. 11b. Amplitudes of thi: re­
flected k4 wave and k 1 wave and 
transmitt·ed k2 wave when a k2 
wave is incident upon the cylin­
der (b/R=0.3, d/R=1.0), Fr=0.4. 
The arrows at the kR-axis 
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Fig. 11c. Amplitudes of the generated k 1 wave, re­
flected k 2 wave and transmitted k4 wave when a k 1 

wave is incident upon the cylinder (b/R=0.3, d/R;1,0), 
Fr=0.4. The arrows at the kR-axis indicate 1=1/4. 
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·Fig. 12. Amplitudes of the reflected k4 wave, k 1 wave 
and k3 wave and transmitted k2 wave when a k~ wave is 
incident upon the cylinder (b/R=0.3, d/F=l.OY, Fr=O.i. 
The arrows at the kP-axis indicate T=l/4. 
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Fig. 13a. First order horizontal force x1/pgRa0 and mean second order 
horizontal force Fx/pga6 for Fr=O, 0.2 and 0.4 with incoming wave 
travelling downstream (b/R=0.3, d/R=l.O). For Fr=0.2 and 0.4 the 
incoming wave is a k4 wave. 
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Fig. 13'.:i. First order horizontal force X1/cgRa0 and mean s,;cond order 
horizo~tal force Fx/pga& for Fr=O, 0.2 and 0.4 with incoming wave 
travelling upstream (b/R=0.3, d/R=1.0). For Fr=0.2 and 0.4 the in­
coming wave is a k 2 wave. 
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Fig. 13c. First order vertical force x2/pgRa0 for Fr=O (---),for Fr=0.2 
and 0.4 with incoming wave travelling downstream(···) and for Fr=0.2 and 
0.4 with incoming wave travelling upstream(~-), (b/R=0.3, d/R=1.0). 
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Fig. 14. Amplitude of the lee-wave at x=-m for various values of b/R 
(d/R=1.0). The lee-wave number k1 is given by k1 =g/U 2 =1/Fr 2 R. The dotted 
curve is maxlax/3xl at x=-m for b/R=0.3 (d/R=1.0). 


