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ABSTRACT

‘"The two-dimensional radlatlon problem and dlffractlon

problem are dlscussed for submerged elllptlc cyllnders

’when a current 1s present. It is shown that the 1mpact ofA
'the current on the wave amplltudes and wave forces are

large. The 51ngular1ty in the problem,,corrgqundlng_to a .

wave travelling upstream with*a group velocity equal to

. the speed of the current, is examined. As expegted, this -

singularity influences the motion strongly,., We find; - =

however, that the amplitudes and - forces remain finite. -




dingly, when one harmonic wave is diffracted by a submerged body,
normally three new waves are generated when = < 1/4 and bne new
wave when 1 > 1/4. |

The actual wave préblem has been discussed in a recent paper
by Grie and Palm (1985) (hereafter called I) for a submerged body
of form as a circular cylinder. It turns out, however, that the
circular cylinder is no typical representative for a submerged body
of arbitrary two-dimensional form. For example, in the diffraction
problem it is found that a circular cylinder, in contrast to other
bodies; generates only one new wave also for 1 < 1/4. In this
paper we shall consider a submerged elliptical cylinder. The obvi-
ous»advant&ge of this contour is that by changing the eccentricity-
we obtain bodies varying from a circle to a flat plate.

It will be clear that the case 1 = 1/4 is of special inter-
est in this problem. Physically it corresponds to that o¢ is tuned
so that the wave travelling upstream has group velocity equal to

the speed of the current. It seems to be generally accepted in. the

litterature that this case will lead to infinite wave amplitudes
and hence infinite wave forces. We obtain, however, that the wave

ampli;gggs and wave forces are finite for all values of =<t. It is

~~~

shown, however, that the motion has certain pecularities near =t =

1/4. Thus in the diffraction problem for an incoming k wave

2

~(defined as a wave, travelling upstream) the transmitted wave tends

"towards zero as =t + 1/4 whereas a reflected k wave (defined in

1
section 2) is generated, travelling downstream with an amplitude
equal to the incoming wave. The corresponding result is obtained
for an incoming k1 wave with the kT wave and the k2 wave

changing roles. Due to this fact we may close to <t = 1/4 obtain

practically speaking, total reflection. We find also that the




where j is the imaginary unit, and ‘Réj denotes the real part
(with respect to j). Both x and ¢ satisfy the Laplacian équation
v2y = 0 ; V2¢ =0 (2.2)

Assume that the cylinder is oscillating with its centre at

x = Re.E_exp(jot), y+d = Re.E exp(jot (2.3
jExexp(jot), y st exp(Jjot) (2.3)

dnd rotating with an angular displacement 8. The body.boundary

conditions applied at the mean position of the body surfdace S 1is

% - p | . |

T n, ' E : (2.4)
where %H denotes the normal derivative, and

08 = Re[3oa+u(&-9)vx] + U(SxR) «v(x+x) (2.5)

[

(see Newman 1978 ,eq. 3.28). Here

- N (Ey08,) . . (2.8)

n is the normal vector of the body, and I is the vector from the
centre of the ellipse to a point on the surface (see fig.1).
The linearized boundary condition at y = 0 is obtained by

combining the dynamic and kinematic boundafy conditions which gives

, )
204y ox —
U2 © Fox = O (2.7)
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To solve (2.2) with the proper boundary conditions we shall trans-
form the mathematical problem to an integral equation. This may be
achieved by expressing ¢ (and x) as a source distribution over the

boundary of the submerged body. For a detailed derivation of the

integral equation, we refer to I, and here only give the necessary




and a bar denotes complex éonjugateu With

it 4
vV = ’ T =
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Q

(2.15)
the four wave numbers are defined by

= Y (1+21¢/1+41) (2.16)

x = Y _(1-2t+/1-47) , k
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For 1 > 1/4, k, and k, become complex in i.

1
Before proceeding further, let us discuss shortly the far-
field motion due to the concentrated source. It is seen from
(2.12)-(2.16) that for < > 1/4 the solutién consists of four
waves, viz one wﬁve with wave numbér k2 at x = » and three
waves with Qave‘numbers» k];ik3;'k4*'at,“§.= -, For 7t > 1/4 the
x = » and two waves with wave

solution consists of no waves at

" numhers k3',k4 at x = -,

— ﬁ—f—ﬁ—w——'llhe—va—m'.—eu—&wavevn—mnbefsﬁavreffeundfafsf*sofl:utJ':on'S**oﬁf
i) o= Ukt(gk);E (k=k4,k3) .and ii) .o = (gk)%-Uk (k=k],k2)=where
o 1is positive and kpownlr?he fopr solutions are indicated in‘
figure 2. It is seen from the figure that, in order to get four

- waves, o must be less than a pertain maximal vaiﬁe, i.e. 1T < 1/4.

Furthermore, in the relative frame of reference, both the k] wave

I M_Jumi_thé,wkﬁrwunuLJmavewpositdAmyfﬂyasemveleei%éﬁx}aﬂ%ieh—af§~iaixﬁafw~-

‘than U. The k, wave has, however, a group velocity less than U,

1
and is therefore located downstream. The k2 wave has a group velo-
city larger than U, and is located upstream. The k3 wave has posi-

tive phase velocity smaller than U, and the k4 wave has'negative

phase velocity. These two waves are therefore located downstream.



Equation (2.17) is a (non-singular) Fredholm equation of
second kind. The equation is solved byvusing a collocation method
with cubic splines; A very good convergence is generally obtéined
by using 20-35 collocation points equally spaced. The méfe slender
the body is, the more points afé needed. The aFcuracf is about 1%
of better in'all fesﬁltévpfesénted in this papef,_i

We shall be especially interested in the far-field. By contour

integration we obtain from (2.11), applying (2.12)-(2.14), that

lim £,(z) = Ajexp(-ik,z) IR T (2.21)
X o0 . -
iiTm f{(z) = A]exp(-ik1z) + A3?xp(-ik3z) -'A4exp{-ik4z)~42.22)
where
Ay o= i(]-ij)/T;Z? é v(s)exp(ik, t(s))ds (2.23)
Ay, = i(1+ij)/]_]+4_T é v(s)exp(iky ,C(s))ds (2.24)

For an elliptic contour it is appropriate to write the equa-

“tion for the ellipse on parameter form as

(2.25)

c(o) =‘Rcos(6) + ibsin(e) - i(d+b)

ST

and using 6 as variable instead of s. (For definitions of R, b,

~d and 6, see fig. 1.) I B

3. THE OSCILLATING ELLIPTIC CYLINDER

Let us gonsider an elliptic cylinder oscillating in sway,
heave and roll. The right hand side of the integral equation (2.17)
is now given by (2.19) and (2.5) with fo chosen as zero. Thus
h(s') is given by | |
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and U = 0. As expected, the maximum relative amplitude is obtained
in heave and for the smallest value of b/R, i.e. b/R = 0.05. For .
later reference we note that the maximum amplitude in heave for
S/Rs; 0.3 occurs for VR = 1.2. . e e

To examine the effect of increasing the depth of the cylinder,
d/R is in fig. 4 chosen as 2 (the only case where d/R is not ..
one), iﬁnis noticed that the maximum amplitude now is .about 40% of
the maximum amplitude for d[ﬁ = 1.

In figs 5a, 5b,,5¢'are displayed the relative amplitudes
for sway, heave and roll, respectively for the Froude number
Fr(;;U/(gR)% equal to 0.2. The corresponding curvgs'fox Fr = 0.4

are. shown in figs 6a, 6b, 6c. We notice that for Fr = 0.2 thef_kB
wave has a vanishing amplitude. This is also true for the Yk]fbwgye

.except very close to =t = 1/4 (corresponding to VR = 1.5625). .,
Hence, p;ac;icqlly‘speaking, for VR 1less than 1.5625, the motion
for Fr = 0,2 consists of one wave at x = « (the k2 wave) and

one wave at x = -o (the k4 wave). For larger values of = wR

only the Xk, wave occurs.

For Fr = 0.4 three waves occur when =1 ?“1/4, viz the .k

1
wave, the k2 wave and the k4 wave. For Fr = 0.7 amd Fr =.1.0

we find that all four waves have appriciable ampiitudes.wio get an

idea of which of the waves that are important for a given Froude

number, and for which values of WR these waves obtain:their:“

mgximum amplitudes, we examine first the corresponding values

for Fr = 0, As an example, let us consider the heave motion for
Fr = 0.2 (fig. 5b). We have noticed above that for Fr = 0 the
maximum amplitude fqr heave occurs when VR = 1.2 (fig. 3b) . This

corresponds to a far-field motion with kR = 1.2 where k 1is the

wave number. It seems reasonable to expect that also for Fr # O,
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8y(s') *

t(s') exp(-ik,(g(s')- u))dua

1 ¢ e . o
— § y(s)Im,{exp(iB(s')) (i+j) [k, § _ -
® S l{ d 1 o 3 U‘ET—S_T
t(s') exp(-ikjtc(s’)-uyyau }
- k »
‘oo ueTlE)
= o(s) (3.4)
To the same order of accuracy we may set k] = k2 = %k, say. The

inner integral is then evaluated by contour integration. Thereby

dy(s') -

2kImi{(i+j)exp(iB(s') - ikx¢(s')) Sy(s)exp(ikC(s)ds}
s

‘= 0(8)  (3.5)

We notice that the integral in (2.23), with k],k2 k} is exactly
the same as the integral in (3.5). Hence, if y remains finite, we
deduce that A] 2 is finite in the limit, in spite of the factor

5~ 1. This result is valid for an arbitrary smooth body

3.2 The forces

'In;ﬁeny practical problems where a body is oscillating; for

eiéﬁpiemdne to incoming waves, it is important to know the magni—

””tude of*theﬂdamping—force'*Usually this force is mainly'due to

viscous effects. However, if the body is: located near the free

snfféce; tne damping'due to the radiated waves, may be of practical
. . e, . . > P . g s P e e s LA B $om TR N G VTR Ry e

importance To examine the magnitude of this force, we first note

that it can be written as

F = D sin o7 (3.6)
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fig. 7 that it is important to take into account the effect of the
current. | |
It may be of interest to compare the wave damping with the
viscous drag for the restrained body. The latter may'for an ellip-
" tic cylinder be written o o
F=2% chU22b | . (3.11)
where CD is the drag coefficient. The damping force may aceérding

to fig. 7 be written
D = AgpRe : (3.12)
where A\ 1is of order unity or smaller. Hence

A

Mg

3
= — . (3.13)
CDFr
Cc for various elliptic contours is discussed in Modern Develop-

D
ments In Fluid Dynamics (1938, p.415). A reasonable characteristic

value for b/R = 0.3 is CD = 0.15. Let us choose Fr =0.4. The

maximum value of A is then 0.9, and the ratio between the maximum

drag foréé and the viscous drag is
(3.14)

We see that even for'very small €, D/F may be larger than unity.

WWWWwwObvieusiYThwhen—the~depth—md~—efﬂthe%cyiiﬁderﬂishincreased7~~~ e

the damping force decreases. We have examined the magnitude of

this effect for the case U = 0 by also computing the forces when
d/R = 2.0. The damping force for heave in this .case is displayed in
fig. 4. Comparing this with the result for the damping fo:cé for

Fr = 0 in fig. 7, we note that the maximum value in the deeper

case is about 30% of the maximum value for d/R = 1.0.
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(2.24). vy is-obtainedwby“SOIVingﬁ(E.17):”Thé‘:iﬁht hand side of
this equation is now (2.19) with - 3¢/dn = 0 and’ fo(z) given by
- (4.3). In all examples below the distancé between the mean free
surface and the. uppermost point of the-ellipse -is equal to R, as
in almost all examples in section 3.'?ur£héfmofé{ b/R is 0.3,
.except in fig. 9.
In the relative frame of reference, the incoming7WaVe'will be
a wave travelling iﬁ eitherﬁtﬁe same or in the opposite direction
as the body. In the latter case the wave is what we have termed a
k wave. In the first case the wave will be eithér a"ké wave, k

4
wave or kg . wave, depending on the”magnitﬁﬂe’bfbfhe'wavé'numbér.

1

 From the discussion in section 2 it follows that a k, wave has

a large wave length such that both the group ¥eloeity and phase

- velocity are larger than U, a k]v wave  ‘has tmaée vélocity larger

j
- .velocity and~phase weloEity emaller than U. !~

~.and group:velocity smaller than U =and a k wave has both group

~4.1. The far-field motion -

Let us first consider the -case U = 0. The amplitudes’of the
‘reflected waves are displayed in fig. 9 for various’ values of 'b/R.

Since the amplitude of the reflected wave is zero for b/R =1

 (Dean 1948), we expect this amplitude to imcfeage for decreasing —

values of b/R: This is seen to be true, and ‘for 'b/R = 0.05 we
~ find from the figure that the maximum reflected amplitude is about

0.3 times the incomig amplitude. This value may‘be compared with
_the result for the flat.plate, resently 'discussed by Bjordal

(1985). He'obtains for d/R = 1 that the maximum reflected ampli-

tude is 0.294 times the incoming amplitude.:
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Froude numbers a k3 wave will be generated by an incoming -k4

wave. In this case we have no reflected wave, Bdt the transmitted

wave is splitted in two waves, viz a 'k3 wave and a k4 wave.

In fig. 11 are shown the wave amplitudes for Fr = 0.4. In

, wave and the generated waves

is a k2 wave and a k4 wave. In fig. ITb the iﬁcoming wave is a

k2 “wave, and a k4 wave and a k] wave are 'generated. In both

figs 11a and 11b the k4' wave are, however, aimOStvhegligible.

fig. Tta the incoming wave is a k

~ The most characteristic feature of these two figures is that for
an incoming k] wave (k2 wave) the amplitﬁde tends towards zero
approaching =<t = 1/4, whereas the generated k, ‘wave (k] wave)
obtaines an amplitude for 1 + 1/4 equal to the amplitude of the
incoming wave. This is always found .to be.true. An interpretation

of this result is that a k, wave or k, “wave will ‘be ‘strongly

1 2
reflected near 1 = 1/4 and as <t = 1/4 is approached, we obtain

with a very good approximation total reflection. Another remarkable

feature in fig. 11b is that a,/a,. may be larger than one, i.e.

. 1 U
we have overreflection. The overreflection is even stronger:in fig.
12, where the diffraction properties for PFr = 0.7 ' for an incoming

k2 wave are displayed. : - G en .

In fig. 11c the incoming wave is a- k4 wave. For 1 < 1/4

a k wave and a k wave are set up. Henece in this case the

1 2

motion consists of an incoming wave travelling downstream (the k

]
=

wave), a transmitted wave (the k4 wave), a reflected wave (the k2'
wave) and a generated _k1,wave travelling downstream. For =t > 1/4
the k4 wave . passes by the submerged body without notieing-it. If

the submerged elliptic cylinder is replaced by a circular. cylinder,

the wave motion for =1 < 1/4 is very different. In this case the

k wave and the k2 wave are exactly zero, as shown in I.
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creasing Froude numbers for incoming waves travelling downstream
and decreases for incoming waves travelling upstream.
For Fr = 0.2 and Fr = 0.4 we see that the maximum value of

the first order horisontal force is about 0.4-pgRa.. The ratio

0
between this force and the viscous drag (3.11) is
Xl 0.4 aO' . S o .
F =T _.,0b L (4.6)
CbFr 4 :
Introduc1ng C = 0. 15 and Fr = 0.2 we obtaln that

.X /F ~ 67a /b. The ‘maximum value of the first order vert1cal force

e . b

EN I

is 1.2 pgRa obtained for Fr = 0.4 and 1ncom1ng wave travelllng

o’ ,
downstream. The ratio between this force and the viscous drag is

then X2/F - 200a0/b.

5. THE LEE-WAVE PROBLEM

AR IR

To solve the radiation problem, 1t 1s necessary to f1nd the
lee-wave potent1a1 X The knowledge of the lee-wave solutlon is

also 1mportant to examine the validity of our solutlon. A necessary

condition for the linearized solution to be a good approx1mat10n,
is that dx/dx << 1. In fig. 14 is displayed max]a | at x = --
when b/R = 0.3. It is seen that maxlb | is less than 0.1 for
Froude numbers less than 0.6. For the sake of completeness we have

also shown the amplitudes of the lee-waves for various parameters.

6. SUMMARY AND CONCLUSION
The two-dimensional radiation problem and diffraction problem

are discussed for submerged elliptic cylinders. when a current is

present. The amplitudes of the generated waves, the damping force,

the first order horizontal force and the mean second order horizon-

tal force are computed. It is found that the singularity at

T =1/4 has a great influence on the'magnitude of amplitudes and

forces, but both the wave amplitudes and forces remain finite when
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Fig. 1 Geometry of the problem.

Fig.
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The four wave numbers for given ¢ and U.
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The arrows at the kP-axis indicate T=1/4.
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Fig. 13b. First order horizontal force X;/CgRay and mean second order
horizental force Fy/pgal for Fr=0, 0.2 and 0.4 with incoming wave
travelling upstream (b/R=0.3, d/R=1.0). For Fr=0.2 and 0.4 the in-
coming wave is a k, wave.
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Fig. 14 Amplltude of the lee-wave at y=-o for various values of b/R
(d/R=1.0). The lee-wave number k, is given by kL-g/Uz-l/Fr R. The dotted
curve is max|dy/dx| at x=—= for b/R=0.3 (d/R=1.0).




