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Abstract 

A finite difference scheme is used in order to study the 

generation arid propagation of long barotropic waves an~ storm 

surges along the western coast of Norway. The performance of 

the numerical scheme is investigated by comparing with analy-
' -------- -- --- ----------------- - --------- ------------------ --- ------ -- -------------

t ical solutions for a model with a straight coastline and a 

continental shelf of uniform depth and width. Simulations with 

a model of the west coast of Norway show that the wind stress 

and the atmospheric pressure are of about equal importance for 

the large storm surges. The maximum elevation of the sea surface 

occurs at the coast and the sea level decreases nearly linearly 

. over-tfie ___ s1iel.f.---The--surge-amp1Ituae--at tlie-coa-st--agreeswell ~ 

with observations. The sea level changes outside the shelf are 

small and for the most part due to the pressure. Shelf waves 

are mainly generated by the wind stress, and Kelvin waves are 

mainly generated by the pressure field. 
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1 ·~ INTRODUCTION 

Changes in sea level and currents induced by wind stress and 

air pressure have been the subject of numerous studies. In parti­

cular there has been made a considerable effort to develop methods 

which enable forcasting of storm surges. Reviews of the literature 

has been given by Bretschneider (1967). 

Along -a coast with a relatively narrow shelf ,long barotropic 

waves trapped to the shelf or the coastal boundary play an important 

role for sea level changes and currents. The dynamics of these waves 

have been studied in many papers especially in the last decade, and 

the general properties of these waves are now well known (Le Blond 

and Mysak, 1978). Most of the theoretical studies have been concerned 

with very idealized conditions where bottom topography as well as 

the atmospheric forcing are represented by simple models. For that 

reason it will be of general interest to investigate the generation 

and propagation of long barotropic waves in cases where the bottom 

topography and the atmospheric 1'6rc ing are given more r-earf st ic -repre-

sent at ions. 

The present activity on the Norwegian shelf requires more know-

ledge of the sea level variations and the currents that are induced 

by travelling weather systems. In this study we have therefore mode~_eP. 

the western coast of Norway. Storm surges in this area were first 

studied by Gjevik and Reed (1976), and the maxi~um sea elevation due 

to atmospheric effects along this coast is of the order 1.5 - 2.0 m 

Gjevik (1978). Martinsen (1978) used a numerical model for sea level 

variations along the western coast of Norway and demonstrated that 

the topography of the shelf had an important effect. 
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In this study we will refine his numerical model, and simulate 

different weather situations. We will also compare numerical and 

analytical solutions for a simple step-shelf model. This gives a 

check on the performance of the numerical scheme. Moreover the 

results for the step-shelf model enable us to see how the response 

of the ocean is modified when the bottom topography is more complex. 

2. BASIC EQUATIONS AND NUMERICAL PROCEDURE 

Since we are interested in the barotropic response of the ocean 

to disturbances of large horiz.ontal extent compared to the depth we 

shall use the linearized, depth integr.ated shallow water equations 

for an inviscid fluid. In a Cartesian coordinate system with hori-

zontal axis x and y these equations can be written 

au fV c2 211. h ~ + 1 
at - = - - '[ x ax PS ax PS ' 

( 2-1) 

3.Y. + f U c2 211. b_ .ll?. + 1 
'[ = - -a_t _ay_ _p say __ p s- y ' 

(2-2) 

and 

an au av 
at = - - - - . ax ay (2-3) 

Here U and V denote respectively the volume flux in the x and 

y direction; n is the elevation of the sea surface above the 

x and y components of 

the wind stress acting on the sea surface, p the atmospheric pressure 

at the sea surface, p 15 is a mean density of sea water; h is the 

depth; c 2 = gh, where g is the acceleration due to gravity; and 

f is the Coriolis parameter. Since the friction at the bottom is 
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of minor importance for the flow phenomena that ~e will study (See 

section 4), terms which should represent the bottom stress is neglected 

in eqs. (2-1) - (2-2). 

The coast is thought to be impermeable and no flow perpendicular 

to the coast is therefore permitted. Hence j.f In denotes the unit 

vector normal to the coast and JU the flux vector {U ,V}, the 

boundary condition at the coastline can be written 

(2 ... 4) 

Since we will study flow phenomena confined to a limited region along 

the coast we will also use the open boundary condition n + O at 

boundaries far away from this region. 

The wind stress is related to the a:tmospheric pressure distur-

bance and we will use a simplified model for simulating this relation­

ship. A propagating pressure disturbance is described by 

P = P (t) e-[(x-xo-uot)2 + (Y-Yo-vot)2]/R2 
-- _o - --- ... - - - .. . .. --- (2-5) 

where Po is a function of time; x0 , Yo is the initial position 

of the center of the pressure disturbance; u 0 and v 0 are the x 

and y components of the propagation velocity; and R is a constant 

which def-ines the horizontal extent of the pressure disturbance. 

The wind velocity compQnents 

strophic wind components. Hence 

v 
g 

= ..!!._ ~ 
fpa ax 

' 

u and 
g vg respectively along 



- 5 -

where pa is the density of the air and the ratio o j_s positive 

and less than unity. Asymptotic wind fields are simulated by 

choosing o as a function of x and y. 

The wind stress is related to the wind velocity by the empirical 

relations 

T = p c (u 2 + v 2 ) ~ u 
x a D g g g ' 

(2-6) 

T : p C (U 2 + V 2 ) ~ V y a D g g g 

where cD is the drag coefficient. 

Eqs. (2-1) - (2-3) will be solved by a finite difference scheme 

and we will use a staggered grid for the discretization in space. The 

grid we use corresponds to lattice C, p.47, ·Mesinger and Arakawa (1976). · 

In time we have used forward differences in th~ continuity equation 

(2-3) and backward differences in eqs. (2~1) - (2-2) except for the 

Coriolis term in eq. (2-1). This is done in order to obtain a numeri-

cally stable scheme even when the bottom friction terms are neglected. 

Heaps (1969), Sielecki (1968). A set of difference e~uations corre-

spending to eqs. (2-1) - (2-3) can be written 

t+At t ( t Vt ) 
nx,y = nx,y - Y ax ux,y + ay x,y ' 

(2-7) 
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wh.ere the upper and lower indices indicate respectively the time and 

space discretization. The operators ax, a and the averaging y 

operator are defined by 

axAx,y = Ax+As,y Ax-As,y 
' 

a A = Ax,y+t.s A x,y-As y x,y , 

= ~A +A +A +A ] 
4 x+As,y+As x+t.s,y-As x-As,y-As x-As,y+As ~ 

The time and space increments are At and As, and y = At/2As. In 

eq. (2-7) X and Y are taken to represent the forcing terms due to 

atmospheric pressure and wind stress at the surface of the sea. The 

staggered grid enables a simple representation of the boundary condi­

tion at the coastline since the coastline can be drawn along lines 

which only requires specification of either U or V. 

The numerical stability of the homogeneous difference equations 

(2-7) can easily be done by a standard procedure, Mesinger and Arakawa 

(1976). We assume uniform depth and find that in order to obtain a 

stable scheme 

At ~As~ (2-8) 

The numerical dispersion and dissipation of free waves can be studied 

by a similar technique. We find that the numerical scheme has no nume­

-flcaI dissipation. ··ng.· i·-summarlzes tne ·c:ttspersl.on·1'<:W a model-wtre-re 

the depth varies between 250 m and 2000 m. 

At = 200 s, 
-2. 

g = 1 O. O ms , 

In these computations 
-4 -1 

f = 1.3•10 s • The time 

step corresponds to the largest time allowed by the stability condition 
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(2-8) with h = 2000 m. These results indicate that with this time 

step the numerical scheme will perform well for disturbances with 

length scale larger than say 86s in a model where the depth varies 

between 250 and 2000 m. 

3. ANALY'.I'ICAL AND NUMERICAL SOLUT.IONS FOR A STEP-SHELF MODEL. 

Fig. 2 shows the bottom topography and coaetline for the step-

shelf model. The sea is of uniform depth; Ho on the shelf and H 
1 

off the shelf. The width of the shelf is L and the coastline is 

straight. 

The dispersion properties of free waves in this model have been 

investigated by Munk, Snodgrass and Wimbush (1970). When the forcing 

terms in eqs. (2-1) and (2-2) are omitted, we assume solutions of the 

form 

{U,V,n} = {U',V',n'}eik(x-ct) 

wher-e Y-' , V' and n ' -are fu-neti-ons- -of y onl-y. The- waiie number k 

and the phase speed c are constants. The boundary conditions, 

n + 0 for y + =, V and n continuous at y = o, and V = O at 

y - - L, lead to the relation 

tanh( a 0L) = caa(f-ca1) 
(3-1) 

where 

co = Vgtr; , 

cl = ~ ' 
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Eq.(3-1) determines the dispersion relation for free waves. For 

low frequency waves kc < f, only two trapped modes are possible. 

These wave modes are the shelf wave and the 

and the dispersion relations for 

edge wave Kelvin type 

and fL = 0 55 
Co are 

depicted in fig. J. The values of the parameters which characterize 

the step-shelf model are representative for the shelf along the 

western coast of Norway. 

In order to investigate the performance of the numercial scheme 

we have studied the propagation of the shelf wave mode and the edge 

wave mode for the same step-shelf model as above. Analytical 

expressions for these modes are used in order to generate initial 

conditions for the numerical integration. In this experiment the 

aheli' _widt_b is 1 Q __ .5 _As~ l)y j._n~~gr>~tJ_!lg _!1Ulll_er!ca._~_ly _over a time span 

ts corresponding to ~s = 8 a mean propagation velocity for the 

waves can be found. This has been done for different wave lengths 

and the results are shown in fig. 3. For 0 < kL < 1.5 we conclude 

that the numerical model gives values of the propagation velocity 

for the shelf wave mode which is within 15% of the correct value. For 

__________ the Kelvin edge_ wave mode the agreement is better (3%). We believe 
--------------------------------------------~--------------~-------

that the averaging of the Coriolis terms in eqs. (2-7) introduces 

errors for the shelf wave mode. 

For the step-shelf mo~el_ also a forced solution of eqs. (2-1) -

(2-3) can be found analytically. We will examine a case where the 
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wind stress decays exponentially off the coast. It is acting along 

the direction of the coastline, and hence we put 

= ( t) -a(y+L) Tx PsTo x, e , (3-2) 

where T 0 (x,t) is a function of x and t which will be specified 

at a later stage and a is a constant. We define the Laplace and 

Fourier-transforms of a fUnction ~ of x and t by 

<P = I -st 
q> e dt , 

0 

+co 

<? = J <? e-ikx dx • 

Assuming that the Laplace and Fourier transforms exist with a parti­

cular choice of the function To the transformation of eqs. (2-1) -

(2-3) leads to 

(3-3) 

q! 

~ = ___1____f c2(ifk~ - s dn) - f ~0 e-a(y+L)] ~ dy 
(3-4) 

where 

132 = 

The initial value of U, V and n _}U'e taken to be zero. The 

integration constants of (3-3) are determined by the boundary condi-

tions 
Ci! 
n + o for 

Ci! 

v = 0 for y = -L and n and v 
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continuous at y = o. The resulting expression for 
Qt 

n becomes 

rather.involved and in order to obtain an attractable expression for 
Clil n, which in turn can be inverted, we introduce some simplifications. 

We assume that the wind stress has a longshore extent much larger 

that ·L . and that the energy containing part of the spectrum of To 

consists of waves with lengths much larger than the shelf width, This 

justifies to use kL << 1 as an expansion parameter. We also assume 

that the deformation radius c 0 /f is much larger than the shelf width, 

f L i.e. -<< 1. 
CO 

2 
Moreover, we assume £D..:... << 1 and will consider solu­

c 12 
tions valid for times larger than the inertial period. These assump-

tions correspond to those used by Gill and Schumann (1974) and a dis­

cussion of the validity of these assumptions can also be found in thei~ 

paper. 

By involing the assumtions above, we obtain when only the most 

significant terms are retained 

04 
n = o , for y = 0 , (3-5) 

for y = -L (3-6) 

where 

-aL , q = ( 1 - e ) I aL • 

In the interval (-L,O) 
Q:I 

n varies nearly li neaF ly with Y• 

We will invert the expression (3-6) for a particular choice of 

the function T 0 , viz., 

( -ic2x2 
To x,t) = Tm e h(t) (3-7) 
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where h(t) is the Heaviside unit step function, and and K 

are constants. The function (3-7) possesses the simple Laplace and 

Fourier transform 

The inverted expression for the elevation of the sea surf ace at the 

coast (i.e. nL = n(x,y=-L,t)) thus becomes 

(3-8) 

where 

and erf denotes the error function 

The solution (3-8) consists of two terms: a forced solution and a 

with velocity fL. 

To the order of approximation considered here there is no Kelvin 

edge wave excited by the wind stress. 

Eq. (3-8) shows that the wind field generates an elevation of the 

sea surface which is confined essentially to the region of the shelf 

in front of the location of the maximum wind speed. Due to traveling 

shelf-waves the region with elevated sea level is expanding longshore 

with a velocity fL in the x-direction. The elevation of the sea 

surface has its maximum value on the coast and the elevation decreases 
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nearly line4rly toward zero at the outer edge of the shelf. By 

utilizing (3-8) the surface elevation due to constant wind stress of 

duration T can be written down immediately. For t somewhat 

larger than T the surf ace elevation is made up of free shelf waves 

and the expression for the surf ace elevation at the coast is 

n1 (x,t) = qns [erfK (x-fL(t-T))-erfK (x-fLt)]. 

The maximum surf ace elevation at the coast is 

( KfLT) 2 q n s erf --2- . 

The surf ace elevation corresponding to a steady wind stress of 

the form (3-7) moving in the x-direction with constant velocity, Uo, 

can also be expressed in terms of the error function. If u 0 = fL, 

i.e. the velocity of the shelf waves, resonance occurs and the sur-

face elevation at the coast can be written 

In order to obtain large surf ace elevation by resonance the wind 

stress has, however, to move along the coast for a considerable 

distance. 

For a step-shelf model with e0 /c1 = 0.35 and fL/co = 0.55, 

we have integrated eqs. (2-7) numerically with a stationary wirid 
____ _,. ___ --------~------- - ------ - ----- -- - -- ---- -~----- - - --- - ---- --·---------·---~·------------·--·---

forcing given by (3-7). The width of the shelf is taken to be 

1 0. 5 tis. The initial values of the surface elevation and the vol um 

fluxes are equal to zero. The results of the numerical integration 

in two cases are presented here. The contours for the elevation of 

the sea surface are depicted in the fig. 4 for the case a = O, 
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K = 1/51 and in fig. 5 for the case a = 1/L and K = 1/51. 

These figures show that the region with the largest surf ace ele-

vation is confined to the shelf. On fig. 4 the front of the distur~ 

bance extends off the shelf and propagates along the coast with a 

higher velocity than the rest of the disturbar.ce. The high propaga-

tion velocity and the large extent perpendicular to the coast show 

that the disturbance consists of Kelvin type edge waves. The 

amplitude of these waves are, however, small compared to the 

amplitude of the shelf waves which are responsible for the main part 

of the surface elevation. In fig. 5 which shows the surface eleva-

tion for a wind field which decays exponentially in the direction 

perpendicular to the coas~ the edge wave mode is almost absent. The 

disturbance is essentially made up of a forced disturbance and free 

propagating shelf waves. This result is in agreement with the ana-

lytical results of eq. (3-8). By comparing the results of eq. (3-8) 

with the results of the numerical integration we also find that the 

eq. (3-8) gives the longshore extent of the region with surface ele­

vation with a good degree of approximation for values of the time 

larger than 2/f. The maximum surface elevation at the coast differs 

by less than 25 % from values obtained by numerical integration. When 

eq. (3-8) was derived several approximations was made, but the errors 

are difficult to estimate. For that reason eq. (3-8) cannot be used 

to determine the accuracy of the num-erical integration. For a model 

with uniform depth an exact solution for the sea elevation at the 

coast is available (Gjevik and Roed, 1976). In this case a numerical 

solution based on (2-7) is within 2 % of the corresponding analytical 

solution. 
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The case when the wind stress is acting in a direction normal 

to the coast is more difficult to examine analytically. Order of 

magnitude consideration (Gill and Schumann, 1974) shows that a wind 

stress acting normal to the coast generates considerably less surf ace 

elevation along the coast than a wind stress of similar strength 

acting in the direction of the coast. 

We have integrated (2-1) - (2-3) numerically with the same 

bottom topography as above and with a wind stress 

T = 0 , x 
-a(y+L) 

T = p To (x,t)e y 

where To is given by (3-7). 

For K = 1/51 and a = 1/21 the maximum surface elevation is 

about 0.3 ns· It is established at the coast after a relatively short 

time span t = 1.3/f. For larger values of t the surface elevation 

at the coast decays. Oscillations in the surface elevation occur and 

the flow pattern is much more complex than in the cases shown in 

4. A NUMERICAL MODEL FOR THE WESTERN COAST OF NORWAY. 

The main feature of the bottom topography and the coastline of 

this region is shown in fig. 6a. Fig. 6b shows the model of the bottom 

topography and the coastline which is used in most of our numerical 

studies. In this model only the main feature of the bottom topography 

is included and the depth is uniform on the shelf (250 m) and in the 

regions outside the shelf (2500 m). A more refined model of the bottom 

topography will modify the flow locally, but it will have minor effect 

on the large scale sea level variations on the shelf and along the 

coast. We will return to this point later. 

The open boundary in the model is indicated by broken lines in fig. 

6b anq the distance from the coast to the boundary is shown by arrows. 
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In fig. 6b the track of the center of the pressure disturbance 

is shown for one of the cases which we have studied in detail. The 

initial position of the center together with the positions 12, 14 

and 16 hours later are marked. 

The pressure disturbance is of the form (2-5) and it is charac-

terized by R = 800 km, 
-l -1 

u 0 = 18.5 ms and v0 = -16.2 ms which 
-1 

implies that the speed of the center is 25 ms Initially Po = 0 

and decreases smoothly to p 0 = -50 mb in 5.5 hours. This is done 

in order to avoid the gravity waves generated by rapid pressure 

variations. 

The maximum wind speed occurs at a distance of 400 km from the 

center of the pressure disturbance and with cr = 0.7 which is used 
-1 here, the maximum wind speed is 31 ms The track, speed and size 

of the pressure disturbance is chosen so that it simulates the 

cyclone of 2 November 1971. The induced surge combined with astro­

nomic spring tide lead to unusual high sea level along the western 

coast of Norway. This situation is analysed by Gjevik and Roed 

(1976) and details on the surface pressure, wind and sea level 

variation can be found in their paper. 

The following numerical values are used for the other parameters 

of the model 6s = 10 km, 

and 
-3 

CD : 3a10 • 

-4 -1 
tit= 90 s, f = 1.3°10 s ' 

-2 
g = 9.8 ms 

In figure 7 the surf ace elevation due to the combined effect 
. - ·-·-·-----

of pres-sur_e_ ancf-wind_ s_tr_e_s_s Ts- depict:eO-Tor ... t -= TI nours ;· n·-110urs -

and 16 hours. The three situations show that the largest surface 

elevation occurs at the coast and that the surface elevation outside 

the shelf has a much smaller value. On the shelf between Stad and 

Lofoten the contours of sea level run nearly parallel and they are 

equally spaced which shows that the sea level decreases nearly 

linearly over the shelf. 
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Northwest of Lofoten and in front of the region with the largest 

surface elevation we see that the contours for the sea level extend 

off the shelf. The picture of the surface elevation at 14 hours and 

16 hours (fig. 7) show clearly how Kelvin edge waves are diffracted 

around the Northern coast of Norway and into the Barentz Sea. On 

the section of the coast between Stad and Lofoten the shelf waves 

are important, but it is difficult to estimate the amplitude of these 

shelf waves. In order to gain some insight into the process whereby 

the different wave modes are generated, we have calculated separately 

the effects of the wind stress and of the atmospheric pressure 

gradients. Figs. Ba and Sb show respectively the surface elevation 

at t = 14 hours due to these two different forcing mechanism. 

These figures show that in this case the wind stress and the pres-

sure are of about equal importance. The horizontal extent of the 

elevated areas are, however, quite different in the two cases. The 

surface elevation generated by the pressure propagates into the 

BarentzSea as Kelvin waves and along the edge toward Spitzbergen 

as double Kelvin waves. The double Kelvin waves can clearly be 

seen on plots subsequent to those in fig. 7. The main surface ele-

vation generated by the wind stress is confined to the shelf and 

the form of the elevated area indicates that shelf waves are gene-

rated and that there is very little energy on the Kelvin edge wave 

mode in this case. Hence the wind stress seems to have the same 
- ------------ --·----~--------·------ --- ------ -· --~----------·---· . - -- --- - - - - - - - ---- ----~ -- --- - -----

effect as we found for the step-shelf model in section 3. The 

variation in the width of the shelf does, however, modify the motion 

in some respects. This is clearly seen on fig. Sc which displays 

the volume fluxes at 14 hours corresponding to the case depicted in 
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fig. 7. West of Stad the circulation along the outer edge of the 

shelf is clearly associated with shelf waves. The maximum volume 

fluxes occur north-west of Lof oten where the width of the shelf 

narrows in to about 40 km. The mean current velocity in this region 
-1 

is as high as 1.6 ms and this may partly be due to errors introduced 

by the numerical representation of the narrow shelf zone. It is, 

however, well known to fishermen that with the wind from south-west 

the current is extremely strong in this region. Measurements of the 

current velocity during storm situations like the one we simulated, 

is to our knowledge not available. 

In fig. 9 we have displayed the computed sea level variation at 

two places on the coast namely: Kristiansund and Rorvik. The sea 

level variations due to atmospheric effects are estimated from the 

registrations of the sea level on 2 November 1972 and depicted in the 

same figure. It should be emphasized that the process whereby the 

sea level variations are estimated, introduces errors which may be of 

the order 0.2 m. The local topography in the vicinity of the recorder 

may also have a considerable effect on the recorded sea level. Having 

these effects in mind, we see that the computed and the observed sea 

elevation agree reasonably .well. Comparison with observation at some 

other places is included in Table 1. 

In order to investigate how the results are affected by bottom 

friction, asymmetry in the wind stress and changes in the bottomtopo-
-- -- -------- -·--·----- -~---- ----------- ·-·· ----------------·- -------------------------- ----·----- -- - -

graphy, we have made some simulations witT1--ihese--effec--fsin:cTude-d-iri __ _ 

the model. Bottom friction effects are introduced by adding respec-

tively the terms -rU/h and -rV/h to the right hand side of eqs. 

(2-1) and (2-2), and the friction coefficient r is set to 
-3 -1 

2.4°10 ms 
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Asymmetric wind stress is simulated by 
. 2 

a = 0.7(1-3 sin cp) for 

0 < <P < 'IT and a = 0. 7 for lT < cp < 27T where the angle <P is defined 

in fig. 6b. 

In the experiments with a refined bottom topography a plateau 

west of the shelf corresponding to the V¢ring Plateau (see fig. 6a) 

is introduced in the model. 

Some results of these computations are summarized in Table 1. 

We see that these refinements have only a minor effect on the maxi-

mum surface elevation along the coast. In other respects the changes 

in the model introduce some local modification. The V¢ring Plateau 

will for example modify the flow pattern in its vicinity considerably. 

The reduction of the wind stress on the northern side of the track of 

the low pressure center reduces the outflow of water from the shelf 

north of Lofoten, and in Troms¢ the maximum sea elevation will occur 

about 1 hour earlier than in the case of a symmetric wind stress. 

We have also simulated two other weather situations. In the 

first case a pressure disturbance is moving in a north-easterly 

direction along a track which passes north of Norway. The south­

westerly wind along the western coast of Norway has a maximum strength 

of about 25 ms -1 The maximum surface elevation along the coast is 

found to be about 0.7 m. This simulation corresponds to the situation 

30 December 1972 which is analysed by Gjevik and Roed (1976) and the 

computed surface elevation agrees well with observations. In this 

case the wind stress is the far most important mechanism for genera-

ting changes in sea level along the Norwegian coast. 

In the second case a pressure disturbance is moving over land 
-1 

south of Stad and creates strong north-westerly winds (21 ms ) on 
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the coast between Stad and Lofoten. On this section of the coast 

where the wind stress is toward land, the surface elevation does not 

exceed 0.4 m and it is mainly due to the pressure effect. This 

result is therefore in agreement with the results for a step-shelf 

model which shows that a wind stress normal to the coast creates 

relatively small changes in sea level along the coast. 

We have also made some studies in order to see how sensitive the 

results of the computations are to the grid size and to the position 

of the open boundaries. Experiments with the double grid size 

bs = 20 km, show that the surface elevation and the main features of 

the flow reproduced well. There will be some local distortion of 

the flow particularly in regions where the shelf is very narrow, and 

this does have some effect on flow in the region north-west of 

Lofoten. Experiments with the open boundaries further away from the 

coast show the same main features of the flow on the shelf. The 

modification of the maximum sea level at the coast in the 1971 case 

is less than 30 cm. 

5. CONCLUDING REMARKS 

It should be stressed that we so far have used simple models of 

the bottom topography and the atmospheric forcing when simulating sea 

level changes along the western coast of Norway. This is justified 

since we mainly want to demonstrate the dominant features of the 
---- ---·------------- -------.-~-~---- - ---,--~---------- --- -- ---------·-------- --------------

barotropic response of the sea in this region. -A--more--refined moder-- -

of bottom topography and atmospheric forcing may have important local 

effects. In a refined model also the distance between the coast and 

the open boundaries need to be larger. The results of the preceeding 

section show, however, that the present model simulates the large 

scale features of the flow and the sea level variations, reasonably 

well. 
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FIGURE CAPTIONS 

Dispersion relation for free waves. k is the length of 

the wave number vector, w is the frequency. Full drawn 

lines represent the dispersion relations for analytical 

wave solutions of eqs. (2-1)-(2-3) with a uniform depth 

h = 250 m and h = 2000 m. Broken lines represent disper­

sion relation for the difference equations (2-7). The 

direction of propagation relative to the x-axis is given in 

degrees. 

The geometry of the step-shelf model. 

Dispersion relation for trapped waves from eq. (3-1) for 

c 0 /~ = 0.35 and fL/c = 0.55. The solid line represents 

the shelf wave mode and the broken line represents the 

Kelvin edge wave mode. Wave velocities obtained by numeri­

cal integration are marked with (x). 

Surf ace elevation for a step-shelf model and a wind stress 

given by eqs. (3-2) and ( 3-T) wi-e:n K: = 1 /-5L an-d Cl = 0; 

The contours are in ns units, Co I C1 = 0.35 and fL/c0 = 0. 5~. 

The outer edge of the shelf is marked by a dotted line. 

Surface elevation for the same model as in fig. 4, but with 

stress decaying in the direction normal to the coast, 

o. = 1/L. 



Fig 6 a) 

b) 

Fig. 7 
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Bottom topography of the sea west of Norway. 

Geometry of the numerical model. The outer edge of the 

shelf is marked by a boken line - The depth is 250 m 

on the shelf and 2500 m outside the shelf. The coastal 

boundary is drawn by a solid line. The open boundaries of 

the model is marked by a broken line -•- 0 - 0 - and the 

distance from the coast to these boundaries are shown by 

arrows. 

The track of the low pressure center for one of the simu-

lation experiments is shown, and the initial position of 

the center and the position of the center at 12, 14 and 16 

hours are marked. 

Maximum wind speed is along the circle. 

Sea elevation due to wind stress and pressure at t = 12, 

14 and 16 hours. The unit for contours is in meter. The 

position of the center of the pressure disturbance is 

marked by L. The corresponding track of the center is 

shown in fig. 6 b. 

Sea elevation and volume fluxes at t = 14 hours for the 

same simulation as in fig. 7. 

a) Sea elevation due to wind stress 

b) Sea elevation due to pressure 

c) Volume fluxes (combined effect of wind stress and 
----- - ""~------ ---------------------- ------ -- ---- ----

pressure). The high fluxes north-west of Lofoten 

should be noted. 
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Sea elevation at Kristiansund and Rorvik due to wind 

stress and pressure. 

Solid line: computed values for the sea elevation. 

Dotted line: values estimated from registrations 

2 Nov 1971. 
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