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Absgstract

A finite difference scheme is used in order to study the
generation and propagation of long barotropic waves and storm
surges along the western coast of Norway. The performance of
the numerical scheme is invegtigated by comparing with analy-
tical solutions for a model with a straight coastline and a
continental shelf of uniform depth and width. Simulations with
a model of the west coast of Norway show that the wind stress
and the atmospheric pressure are of about equal importance for
the large storm surges. The maximum elevatlon of the sea surface

occurs at the coast and the sea level decreases nearly linearly

- over the shelf. The surge amplitude at the coast agrees well -
with observations. The sea level changes outside the shelf are
small and for the most part due to the pressure. Shelf waves

are mainly generated by the wind stress, and Kelvin waves are

mainly generated by the pressure field.



1. INTRODUCTION

Changes in sea level and currents induced by wind stress and
air pressure have been the subject of numerous studies, In parti-
cular there has been made a conslderable effort to develop methods
which enable forcasting of storm surges. Reviews of the literature

has been given by Bretschneider (1967).

Along -a coast with a relatively narrow shelf,long barotropic
wavethrapped to the shelf or the coastal boundary play an important
role for sea level changes and currents. The dynamics of these waves
"~ have been studied in many papers especilally in the last decade, and
the general properties of these waves are now well known (Le Blond
and Mysak, 1978). Most of the theoretical studies have been concerned
with very idealized conditions where bottom topography as well as
the atmospheric foreing are represented by simple models. For that
reason it will be of general interest to investigate the generation
and propagation of long barotropic waves in cases where the bottom
'"Ecpogféﬁﬁywéﬁd”fﬁé”éﬁﬁééﬁﬁéfié"férdlﬁg”éfé given more realistic repre-
sentations.

The present actlvity on the Norwegian shelf requires more know-
ledge of the sea level variations and the currents that are induced
by travelling weather systems. In this study we have therefore modeled
the western coast of Norway. Storm surges in thils area were first |
studied by Gjevik and RSed (1976), and the maximum sea elevation due
to atmospheric effects along this coast is of the order 1.5 - 2.0 m
Gjevik (1978). Martinsen (1978) used a numerical model for sea level
variations along the western coast of Norway and demonstrated that

the topography of the shelf had an important effect.




In this study we will refine his numerical model, and simulate
different weather situations. We will also compare numerical and
analytical solutions for a simple step-shelf model. This gives a
check on the performance of the numerical scheme. Moreover the
results for the step-shelf model enable us to see how the response

of the ocean 1s modified when the bottom topography is more complex.

2. BASIC EQUATIONS AND NUMERICAL PROCEDURE

Since we are interested in the barotropic response of the ocean
to disturbances of large horizontal extent compared to the depth we
shall use the linearized, depth integrated shallow water equations
for an inviscid fluid. In a Cartesian coordinate system with hori-

zontal axis x and y these equations can be written
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Here U and V denote respectively the volume flux in the x and
y direction; n 1is the elevation of the sea surface above the

_equilibrium leveljy Ty 2nd T, are the x and y components of

the wind stress acting on the sea surface, p the atmospheric pressuré
at the sea surface, Pg is a mean density of sea water; h is the
depthy c¢2 = gh, where g is the acceleration due to gravity; and

f 1s the Coriolis parameter. Since the friction at the bottom is




of minor importance for the flow phenomena that we will study (See

section 4), terms which should represent the bottom stress is neglected
in egs. (2-1) - (2-2).

The coast i1s thought to be impermeable and no flow perpendicular
to the coast is therefore permitted. Hence if K denotes the unit
vector normal to the coast and W the flux vector {U,V}, the

boundary condition at the coastline can be written
Den = 0 . (2-4)

Since we will study flow phenomena confined to a limited region along
the coast we will also wuse the open boundary condition n + 0 at

boundaries far away from this region.

The wind stress is related to the atmospheric pressure distur-
bance and we willl use a simplified model for simulating this relation-
ship. A propagating pressure disturbance is described by

p = pg(e) el F XUt # (yyo-vet)?I/RE (g

where py 1is a function of time; xy, yp 1s the initial position
of the center of the pressure disturbance; u, and vy are the x
and y components of the propagation velocity; and R is a constant

which defines the horizontal extent of the pressure disturbance.

The wind velocity components ug and vg respectively along

the x and y directions are taken to be a fraction of the geo= -

strophic wind components. Hence

u o= -2
g fo, oy
v = 2 2R
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where Pa is the density of the air and the ratio o 1is positive
and less than unity. Asymptotic wind fields are simulated by

choosing o as a function of x and y.

The wind stress is related to the wind velocity by the empirical

relations
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(2-6)
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where cp is the drag coefficient.

Egs. (2-1) - (2-3) will be solved by a finite difference scheme
and we will use a staggered grid for the discreﬁization in space. The
grid we use corresponds to lattice C, p.47, Mesinger and Arakawa (1976).
In time we have used forward differeﬁces in the continuity equation |
(2-3) and backward differences in eqs. (2-1) - (2-2) except for the
Coriolls term in eq. (2 1) This 13 done in order to obtain a numeri-
cally stable scheme even when the bottom friction terms are neglected

Heaps (1969), Sielecki (1968). A set of difference equations corre-

sponding to egs. (2-1) - (2-3) can be written
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where the upper and lower indices indicate respectively the time and

space discretization. The operators 3 ay and the averaging

x,

opéfator are defined by
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The time and space increments are At and 4As, and y = At/24s. In

eq. (2-7) X and Y are taken to represent the forcing terms due to
atmospheric pressure and wind stress at the surface of the sea. The

staggered grid enables a simple representation of the boundary condi-
tion at the coastline since the coastline can be drawn along lines

which only requires specification of either U or V.

The numerical stability of the homogeneous difference equations

(2-7) can easily be done by a standard procedure, Mesinger and Arakawa

(1976). We assume uniform depth and find that in order to obtain a

stable scheme

At < A8 \/_—2: (2-8)

gh

The numerical dispersion and dissipation of free waves can be studied

by a similar technique. We find that the numerical scheme has no nume-

" Pical dissipation. Fig. 1 summarizes the dispersion Tor a model WwWhere
the depth varies between 250 m and 2000 m. In these camputations
At = 200 s, As = 2+10m, g = 10.0 ms™2, £ = 1.3-107"s”'. The time

step corresponds to the largest tlime allowed by the stability condition




(2-8) with h = 2000 m. These results indicate that with this time
step the numerical scheme will perform well for disturbances with
length scale larger than say 8As in a model where the depth varies

between 250 and 2000 m.

3. ANALYTICAL AND NUMERICAL SOLUTIONS FOR A STEP-SHELF MODEL.

Fig. 2 shows the bottom topography and coastline for the step-
shelf model. The sea is of uniform depthy; H; on the shelf and H1
off the shelf. The width of the shelf is L and the coastline is

straight.

The dispersion properties of free waves in this model have been
investigated by Munk, Snodgrass and Wimbush (1970)., When the forcing
terms in eqs. (2-1) and (2-2) are omitted, we assume solutions of the

form

{U,V,n} = {U',V',nt}eik(X—ct)

where U', V' and n' are functions of y only. The wave number k
and the phase speed ¢ are constants. The boundary conditions,

n+0 for y+«, V and n continuous at y = 0, and V = 0 at

y = - L, lead to the relation
tanh(ayl) = cag(f-cay) > (3-1)
R 2 S
where
co = VgHQ 5

ey = VEH, ,



coag = VI2+(c,%-c?)k? ,
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Eq.(3-1) determines the dispersion relation for free waves. For
low frequency waves kc < f, only two trapped modes are possible.
These wave modes are the shelf wave and the Kelvin type edge wave

and the dispersion relations for %% = 0,35 and %% = 0 55 are

depicted in fig. 3. The values of the parameters which characterize
the step-shelf model are representative for the shelf along the

western coast of Norway.

In order to investigate the performance of the numercial scheme
we have studled the propagation of the shelf wave mode and the edge
wave mode for the same step-shelf model as above. Anaiytical
expressions for these modes are used in order to generate initilal
conditions for the numerical integration. 1In this experiment the
shelf width is 10.5 As. By integrating numerically over a time span
ts corresponding to fts = 8 a mean propagation velocity for the
waves can be found. This has been done for different wave lengths
and the results are shown in fig. 3. For 0 < kL < 1.5 we‘concludev
that the numerical model gives values of the propagation velocity

for the shelf wave mode which 1s within 15% of the correct value. For

the Kelvin edge wave mode the agreement is better (3%). We believe

that the averaging of the Coriolis terms in egs. (2-7) introduces

errors for the shelf wave mode.

For the step-shelf model also a forced solution of eqs. (2-1) -

(2-3) can be found analytically. We will examine a case where the



wind stress decays exponentially off the coast. It 1s acting along

the direction of the coastline, and hence we put

-a(y+L '
Ty = PgTo(x,tle EACEN T, =0 (3-2)

where t,(x,t) 1s a function of x and t which will be specified
at a later stage and o 18 a constant. We define the Laplace and

Fourier-transforms of a function ¢ of x and t by
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Assuming that the Laplace and Fourler transforms exlst with a parti-
cular choice of the functlon 1, the transformation of eqs. (2-1) -

(2-3) leads to

2% -
4 =82?+(15§i£2)$oe“(y+L), o , (3-3)
dy c’s '
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where
52 _ 52+f2+02k2
= X .

For -L<y< 0: c=cy, B=B, and for y > 0: c=c,, B =6,

The initial value of U, V and n are taken to be zero. The

integration constants of (3-3) are determined by the boundary condi-

o

[~
tions % 0 for y+», V=0 for y=-L and n and V
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continuous at y = 0. The resulting expression for ? becomes

rather involved and in order to obtain an attractable expression for

ﬁ, which in turn can be inverted, we introduce some simplifications.
We assume that the wind stress has a longshore extent much larger

that 'L . and that the energy containing part of the spectrum of T,
consists of waves with lengths much larger than the shelf wldth, This
Justifies to use kL << 1 as an expansion parameter. We also assume
that the deformation radius c¢,/f 1s much larger than the shelf width,
i.e. %% << 1. Moreover, we assume Eﬂ§-<<1 and will consider solu-
tions valid for times larger than thecinertial period. These assump-

tions correspond to those used by Gill and Schumann (1974) and a dis-

cussion of the validity of these assumptions can also be found in theiln
paper.

By involing the assumtions above, we obtain when only the most

significant terms are retained

n=0, for y =0, (3-5)

~ _ fL T -

n =%, ¢, s¥ikeL 0 Tor ¥ = -L (3-6)
where

aq = (1-e"y/L .,

In the interval (-L,0)

? varies nearly linearly with y.
We will invert the expression (3-6) for a particular choice of

the function «1,, viz.,

To(x,8) = 1 e N Xin(t) | (3-7)
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where h(t) 1s the Heaviside unit step functlon, and =t and «
are constants. The function (3-7) possesses the simple Laplace and

Fourier transform

The inverted expression for the elevation of the sea surface at the

coast (i.e.- ng, = n(x,y=-L,t)) thus becomes

nL(x,t) = qns[erf(nx) - erf K(X-th)] (3-8)
where
- T VT
S 2K002

and erf denotes the error function

Z

2 -r2

erfz= = e dr .

=
0

The solution (3-8) consists of two terms: a forced solution and a
‘non-dispersive group of free shelf waves propagating along the coast

with velocity fL.

To the order of approximation considered here there is no Kelvin

edge wave excited by the wind stress.

Eq. (3-8) shows that the wind field generates an elevation of the

sea surface which is confined essentially to the region of the shelf

in front of the location of the maximum wind speed. Due to traveling

shelf-waves the reglon with elevated sea level 1s expanding longshore
with a velocity fL 1in the x-direction. The elevation of the sea

surface has its maximum value on the coast and the elevation decreases
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nearly linedrly toward zero at the outer edge of the shelf. By
utilizing (3-8) the surface elevation due to constant wind stress of
duration T can be written down immediately. For +t somewhat
larger than T the surface elevation is made up of free shelf waves

and the expression for the surface elevation at the coast is

nL(x,t) = qng [eer (x-fL(t-T))-—erfrc(x-th)].

The maximum surface elevation at the coast is

2c1ns erf(ngT).

The surface elevation corresponding to a steady wind stress of
the form (3-7) moving in the x-direction with constant velocity, w ,
can also be expressed in terms of the error function. If u, = fL,
i.e. the velocity of the shelf waves, resonance occurs and the sur-

face elevation at the coast can be written

kL -~k (x-fLt)2
. KL g4 7K (x-fLt)
/T

£

l

In order to obtain large surface elevation by resonance the wind

stress has, however, to move along the coast for a considerable

distance.

For a step-shelf model with ¢;/cp= 0.35 and fL/cy = 0.55,

forcing given by (3-7). The width of the shelf is taken to be

10.5 As. The initial values of the surface elevation and the volum
fluxes are equal to zero. The results of the numerical integration
in two cases are presented here. The contours for the elevation of

the sea surface are depicted in the fig. 4 for the case o = 0,
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k = 1/5L and in fig. 5 for the case o = 1/L and «k = 1/5L.

These figures show that the region with the largest surface ele-
vation is confined to the shelf. On fig. 4 the front of the distur-
bance extends off the shelf and propagates along the coast with a
higher velocity than the rest of the disturbance. The high propaga-
tion velocity and the large extent perpendicular to the coast show
that the disturbance consists of Kelvin type edge waves. The
amplitude of these waves are, however, small compared to the
amplitude of the shelf waves which are responsible for the main part
of the surface elevation. 1In fig. 5 which shows the surface eleva-
tion for a wind field which decays exponentially in the direction
perpendicular to the coast the edge wave mode is almost absent. The
disturbance is essentially made up of a forced disturbance and free
propagating shelf waves. This result is in agreement with the ana-
lytical results of eq. (3-8). By comparing the results of eq. (3-8)
with the results of the numerical integration we also find that the
eq. (3-8) gives the longshore extent of the region with surface ele-
vation with a good dégfeérof approiimation fobivéiﬁég ;f fhértiﬁérrw
larger than 2/f. The maximum surface elevation at the coast differs
by less than 25 % from values obtained by numerical integration. When
eq. (3~8) was derived several approximations was made, but the errors
are difficult to estimate. For that reason eq. (3-8) cannot be used

to determine the accuracy of the numerical integration. TFor a model

with uniform depth an exact solution for the sea elevatioﬁ”éémfhe
coast is available (Gjevik and R&ed, 1976). In this case a numerical
solution based on (2-7) is within 2 % of the corresponding analytical

solution.
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The case when the wind stress is acting in a direction normal
to the coast is more difficult to examine analytically. Order of
magnitude consideration (Gill and Schumann, 1974) shows that a wind
stress acting normal to the coast generates considerably lesé surface
elevation along the coast than a wind stress of similar strength
acting in the direction of the coast.

We have integrated (2-1) - (2—3)‘numerically with the same

bottom topography as above and with a wind stress

™. = 0, T, pto(x,t)e-a(y+L)
where 1o 1s given by (3-7).

1/5L and o = 1/2L the maximum surface elevation is

For «

about 0.3 ng: It is established at the coast after a relatively short

time span t 1.3/f. For larger values of t the surface elevation
at the coast decays. Oscillations in the surface elevation occur and
the flow pattern is much more complex than in the cases shown in

figures 4 and 5.

4. A NUMERICAL MODEL FOR THE WESTERN COAST OF NORWAY.

The main feature of the bottom topography and the coastline of
this region is shown in fig. 6a. Fig. 6b shows the model of the bottom
topography and the coastline which is used in most of our numerical

studies. In this model only the main feature of the bottom topography

is included and the depth is uniform on the shelf (250 m) and in the
regions outside the shelf (2500 m). A more refined model of the bottom

topography will modify the flow locally, but it will have minor effect
on the large scale sea level variations on the shelf and along the
poast. We will return to this point 1later.

The open boundary in the model 1s indicated by broken lines in fig.

6b and the distance from the coast to the boundary is shown by arrows.



In fig. 6b the track of the center of the pressure disturbance
is shown for one of the cases which we have studied in detail. The
initial position of the center together with the positions 12, 14
and 16 hours later are marked.

The pressure disturbance is of the form {(2-5) and it is charac-
terized by R = 800 km, wu, = 18.5 ms™ and v, = -16.2 ms~' which
implies that the speed of the center is 25 msnl. Initially po = O
and decreases smoothly to py = =50 mb in 5.5 hours. This is done
in order to avoid the gravity waves generated by rapid pressure
variations.

The maximum wind speed occurs at a distance of 400 km from the
center of the pressure disturbance and with o = 0.7 which is used
here, the maximum wind speed is 31 ms™'. The track, speed and size
of the pressure disturbance is chosen so that it simulates the
cyclone of 2 November 1971. The induced surge combined with astro-
nomic spring tide lead to unusual high sea level along the western
coast of Norway. This situation is analysed by Gjevik and Rd&ed
(1976) and details on the surface pressure, wind and sea level
variation can be found in their paper.

The following numerical values are used for the other parameters

4 =1 2

of the model As = 10 km, At = 90 s, £ = 1.3¢10° s ', g = 9.8 ms_

and ¢p = 3.107°.

In figure 7 the surface elevation due to the combined effect

~ of pressure and wind stress is depicted for % = 12 hours, T4 hours
and 16 hours. The three situations show that the largest surface
elevation occurs at the coast and that the surface elevation outside
the shelf has a much smaller value. On the shelf between Stad and
Lofoten the contours of sea level run nearly parallel and they are
equally spaced which shows that the sea level decreases nearly

linearly over the shelf.




Northwest of Lofoten and in front of the region with the largest
surface elevation we see that the contours for the sea level extend
off the shelf. The picture of the surface elevation at 14 hours and
16 hours (fig. 7) show clearly how Kelvin edge waves are diffracted
around the Northern coast of Norway and into the Barentz Sea. On
the section of the coast between Stad and Lofoten the shelf waves
are important, but it is difficult to estimate the amplitude of these
shelf waves. In order to gain some insight into the process whereby
the different wave modes are generated, we have calculated gseparately
the effects of the wind stress and of the atmospheric pressure
gradients. Figs. 8a and 8b show respectively the surface elevation
at t = 14 hours due to these two different forcing mechanism.

These figures show that in this case the wind stress and the pres-
sure are of about equal importance. The horizontal extent of the

elevated areas are, however, quite different in the two cases. The

surface elevation generated by the pressure propagates into the
Barentz Sea as Kglvinrwayes and along the edge toward Spitzbergen

as double Kelvin waves. The double Kelvin waves canrcleéfiy be
seen on plots subsequent to those in fig. 7. The main surface ele-
vation generated by the wind stress is confined to the shelf and
the form of the elevated area indicates that shelf waves are gene-
rated and that there is very little energy on the Kelvin edge wave

mode in this case. Hence the wind stress seems to have the same

effect as we found for the step-shelf model in section 3. The
variation in the width of the shelf does, however, modify the motion
in some respects. This is clearly seen on fig. 8c which displays

the volume fluxes at 14 hours corresponding to the case depicted in
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fig. 7. West of Stad the circulation along the outer edge of the
shelf is clearly associafed with shelf waves. The maximum volume
fluxes occur north-west of Lofoten where the width of the shelf
narrows in to about 40 km. The mean current velocity in this region
is as high as 1.6 ms~ ' and this may partly be due to errors introduced
by the numerical representation ofvthe narrow shelf zone. It is,
however, well known to fishermen that with the wind from south-west
the current is exfremely strong in this region. Measurements of the
current vélocity during storm situations like the one we simulated,

is to our knowledge not available,

In fig. 9 we have displayed the computed sea level variation at
two places on the coast namely: Kristiansund and Rorvik. The sea
level variations due to atmospheric effects are estimated from the
registrations of the sea level on 2 November 1972 and depicted in the
same figure. It should be emphésized that fhe process whereby the
sea level variations are estimated, introduces errors which may be of
the order 0.2 m, The local topography in the vicinity of the recorder
.may alsb have aicdnéidefablereffect onrthe recorded sea level. Hévihg
these effects in mind, we see that the computed and the observed sea
elevation agree reasonably well. Comparison with observation at some
other places is included in Table 1.

In order to investigate how the result§ are affected by bottom

friction, asymmetry in the wind stress and changes in the bottom topo-

 graphy, we have made some simulations with these effects included in

- the model. Bottom friction effects are introduced by adding respec-
tively the terms =-rU/h and -rV/h +to the right hand side of egs.
(2-1) and (2-2), and the friction coefficient r is set to

-3 =1
2.4¢10 ms .
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Tabﬁe 1

]
1

Maximum surf@ce elevation in meters

|
#
:

Estim#ted from

Computed values

obseryations
Location 2 Novi 1971 Basic modﬂl Model with the Model with Model with asymme-
Vgring plateau | bottom friction tric wind field
| Heimsj¢ 1.0 1.16 1.16 1.08 1.16 |
. Rgrvik 1.4 1.51 1.56 1.40 1.50
Sandnessjgen 1.2 1.60 1.66 1.47 1.58
i , .
%vTromssﬁ .5 0.86 0.62 0.85 0.71
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Asymmetric wind stress is simulated by o ='D‘7(1-§ sin @) for
0<o<rm and o = 0.7 for w<@< 271 where the angle cp.is defined
in fig. 6b.

In the experiments with a refined bottom topography a plateau
west of the shelf corresponding to the Vgring Plateau (see fig. 6a)
is introduced in the model.

Some results of these computations are summarized in Table 1.

We see that these refinements have'only a minor effect on the maxi-
mum surface elevation along the coast. In other respects the changes
in the model introduce some local modification. The Vgring Plateau
will for example modify the flow pattern in its vicinity considerably.
The reduction of the wind stress on the northern side of the track of
the low pressure center reduces the outflow of water from the shelf
north of Lofoten, and in Troms@g the maximum sea elevation will occur
about 1 hour earlier than in the case of a symmetric wind stress.

We have also simulated two other weather situations. In the
first case a pressure dlsturbance 1s mov1ng 1n a north easterly
direction along a track which passes north of Norway. The south-
westerly wind along the western coast of Norway has a maximum strength
of about 25 ms '. The maximum surface elevation along the coast is
found to be about 0.7 m. This simulation corresponds to the situation

30 December 1972 which is analysed by Gjevik and Rded (1976) and the

computed surface elevatlon agrees well w1th observatlons. In this

case the wind stress is the far most important mechanlsm for genera-

ting changes in sea level along the Norwegian coast.

In the second case a pressure disturbance is moving over land

. -1
south of Stad and creates strong north-westerly winds (21 ms ) on
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\
the coast between Stad and Lofoten. On this section of the coast

where the wind stress is toward land, the surface elevation does not
exceed 0.4 m and it is mainly due to the pressure effect. This
result is therefore in agreement with the results for a step-shelf
model which shows that a wind stress normal to the coast creates
relatively small changes in sea level along the coast.

We have also made some studies in order to see how sensitive the
results of the computations are to the grid size and to the position
of the open boundaries. Experiments with the double grid size
As = 20 km, show that the surface elevation and the main features of
the flow reproduced well. There will be some local distortion of
the flow particularly in regions where the shelf is very narrow, and
this does have some effect on flow in the region north-west of
Lofoten. Experiments with the open boundaries further away from the
coast show the same main features of the flow on the shelf. The
modification of the maximum sea level at the coast in the 1971 case

is less than 30 cm.

5. CONCLUDING REMARKS

It should be stressed that we so far have used simple models of
the bottom topography and the atmospheric forcing when simulating sea
level changes along the western coast of Norway. This is justified

since we mainly want to demonstrate the dominant features of the

barotropic response of the sea in this fegion.

of bottom topography and atmospheric forcing may have important local
effects. In a refined model also the distance between the coast and
the open boundaries need to be larger. The results of the preceeding
section show, however, that the present model simulates the large

scale features of the flow and the sea level variations, reasonably

well.

A more refined model
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FIGURE CAPTIONS

Dispersion relation for free waves. k 1is the length of
the wave number vector, w 1is the frequency. Full drawn
lines represent the dispersion relations for analytical
wave solutions of egs. (2-1)-(2-3) with a uniform depth

h = 2560m and h = 2000 m. Broken lines represent disper-
sion relation for the difference equations (2-7). The
direction of prdpagation relative to the x-axis is given in

degrees.
The geometry of the step-shelf model.

Dispersion relation.for trapped waves from eq. (3-1) for
co/c; = 0.35 and fL/c = 0.55. The solid line represents
the shelf wave mode and the broken line represents the
Kelvin edge wave mode. Wave velocities obtained by numeri-

cal integration are marked with (x).

Surface elevation for a step-shelf model and a wind stress

given by eqs. (3-2) and (3-7) with «k = 1/5L and o = 0.

The contours are in Ng units, ¢co/c 0.35 and fL/cy, = 0.55.

The outer edge of the shelf is marked by a dotted line.

Surface elevation for the same model as in fig. 4, but with
stress decaying in the direction normal to the coast,

o = 1/L.



- 24 -

a)

b)

Fig 6
Fig. 7
Fig. 8

~c)

Bottom topography of the sea west of Norway.

Geometry of the numerical model. The outer edge of the
shelf is marked by a boken line - - - . The depth is 250 m
on the shelf and 2500 m outside the shelf. The coastal
boundary is drawn by a solid line. The open boundaries of
the model is marked by a broken line =e-°=°= and the
distance from the coast to these boundaries are shown by
arrows.

The track of the low pressure center for one of the simu-
lation experiments is shown, and the initial position of
the center and the position of the center at 12, 14 and 16
hours are marked.

Maximum wind speed is along the circle.

Sea elevation due to wind stress and pressure at t = 12,
14 and 16 hours. The unit for contours is in meter. The

position of the center of the pressure disturbance is

marked by L. The corresponding track of the center is

shown in fig. 6 b,

Sea elevation and volume fluxes at t = 14 hours for the
same simulafion as in fig. 7.

a) Sea elevation due to wind stress

b) Sea elevation due to pressure

7Y91ﬁme fluxes (combined effect of wind stress and

pressure). The high fluxes north-west of Lofoten

should be noted.
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Fig. 9

Sea elevation at Kristiansund and Rdrvik due to wind
stress and pressure.

Solid line: computed values for the sea elevation.
Dotted line: values estimated from registrations

2 Nov 1971,
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