ISBN 82-553-0%%9-1

Applied Mathematics
No 2 - March 17 1978

THE VELOCITY FIEID INDUCED BY OSCILLATING
CYLINDERS IN A VISCOUS INCOMPRESSIBIE
FLUID '

by )

Arnold F. Bertelsen
' Oslo

-

PREPRINT SERIES -~ Matematisk institutt, Universitetet i Oslo



a

The velodity field induced by oscillating

cylinders in a viscous incompressible fluid

by

Arnold F.,Bertelsen

Abstract

This report deals with the calculation of the velocity field
induced in a viséoua incompressible fluid enclosed between two
coaxial cylinders of which one is performing transvérse, small

amplitude, simple harmonic oscillations.

The cases RS << 1 and RS >> 1 are investigated, where
R8 is the steady streaming Reynolds number. For RS << 1 some
new terms of a perturbation expansion of the secondary steady
stream function are calculated; The importance of these higher

order terms %8 discussed on the basis of numerical examples. In

the specilal case Rs = 0 and none outer boundary a comparison
with an inner and an cuter asymptotic expansion of the theory of
Holtsmark & al. (1954) is carried out. Identical term-wise agree-
ment is found. For Rs >> 1 higher order approximations of the

stead& boundary layer flow close to the lnner cylinder are calcu-

lated and the effect of the outer cylinder on this boundary layer

flow 1s also estimated. Improved agreement with experimental data

1s cbserved.




This report deals with the velocity field induced in a vis-
cous, incompressible fluld confined by two co-axial cylinders, of
which one is performing small amplitude simple harmonic vibrations
orthogonal to 1ts gener&tors. The velocity field has a time depen-
dent and a time independent part. We focuse attention upon the
steady streaming component. Higher order termsAof asgmptotic
expansions applied by others are calculated sﬁbject to

A

= Yo =ay = A
€ ma<<1, M a\/:>>1, N a>>1’Rs

V Rs >> 1, where Uy 1s the velocity amplitude of the oscillating

cylinder, w the angular frequency, v the kinetic viscosity of

e2M2 << 1 and

the fluid, a and A the radius of the inner and the outer cylin-
ders, respectively. The physical relevance of the parameters are:
€, dimensionless amplitude of the oscillating cylinder; M, modi-
fied Reynolds number assoclated with the oscillatory motion; N, di-
mensionless radius of the outer boundary; RS, steady streaming

Reynolds number.

The kﬁew%edge—ef~%he—s%e&dy—stre&ming—genepated—by—neniinear—ﬁAfvﬁ

effects in the viecinity of oscillating boundaries of a viscous fluid
is quite extensive. Already in the last century Faraday (1831)
observed such streaming and Rayleigh (1945) and Schlichting (1931)
gave theoretical explanations of the gross features of the flow. In

recent years Westervelt (1953), Nyborg (1953), Holtsmark, Johnsen,

Skavlem & TJgtta (1955), Segei (1961), Stuart (1966), Riley (1965,
1967), Wang (1968), Bertelsen, Svardal & Tjgtte (1973) have paid
attention to this streaming problem. But in spite of these efforts
Bertelsen (1974) amd Riley (1975) observe discrepancies between

exlsting theories and experimental data in the case RS > 1.



For Rs << 1 solutions including the effect of the outer
boundary on the steady streaming were given by Skavlem & al. (1955)
and Svardal (1965, but are formally restricted to R = 0. We
apply the method of matched asymptotic expansions (hereafter
abbreviated MAE) to obtain a solution of the stream function in-
cluding terms due to finite RS and the importance of the various
terms are discussed by means of numerical examples. In the case
N =« and Rs = 0 our results are compared with asymptotic ex-
pansions of the theory of Holtsmark & al. (1954) and identical

term-wise agreement is observed.

For Rs >> 1 the secondary steady streaming develops its
own boundary layers around the inner cylinder. 1In this case a
first order boundary layer solution of stream functlon associated
with this flow were given by Stuart (1966) and Riley (1965).
Riley (1975) applied numerical methods to obtain a second order
steady boundary layer solution. We calculate second order terms
~~ analytically and an estimate of the effect of the outer boundary
> on the steady streaming in the vicinity of the inner cylinder is

also given subject to

\,HB
+ 0
[( +2)N]3R
~ RS T
- SN e

This brings theoretical predictions in accordance with observed
velecities in the steady boundary layer at the lnner cylinder.
In spite of this improvement, the theoretical description of the
effect of the outer boundary 1s unsatisfactory with respect to

several points which are discussed in section 6.2.
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2. Formulation of the problem

2.1 Basic equation

The geometry of the problem is as indicated in figure 1 where

a polar coordinate system (r,e) 1s introduced.
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. Pigure 1. The figure indicates the inner cylinder of
radius a and the outer cylinder of radius

>
A which have the constrained motion Ugcosw T,

Let ¥(r,8,t) be the stream function in physical dimensions re-

lated to the veloclty field by the equation

P 3 . . - Nl
vi{r,e,t) = - VX(!(I',E,'C)J.Z)

+ .
where .iZ 18 the unit vector orthogonal to the plane of motion, and |
3 129
= + fx - =
vx = 1x 35 Tx 7 35

The non-dimensional vorticity équation expressed in terms of the

non-dimensional stream function y(r,6,t), is,
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3 g2 1 3(p,v29) _ 1 on
(1) STV toe o “3%?73%1 =z Y ¥

where ?(f,e,f) = eUgay(r,6,t), t = wt, V2 is the two-

"
i

-]
dimensional Laplacian and v* = v2v2, The outer cylinder 1s

assumed to have the constrained motlon,
-+ -+
(2) Up = Uo(nfrcose +1.siné Jcos T .

We shall mainly be concerned with the calculation of the secondary

steady streaming effects subject to the conditions,

e << 1, M>>1,N=%>>1,R =32M2<<1,andRs>>1.

The formulation of this problem with a view to the application of
the method of MAE for N = « has been thoroughly investigated
by Riley (1965) and (1967). The formulation 1s easily adjusted to

include large, but finite N. In order to linearize equation (1),

we put,

(3) Py o~ ‘,)0 + E(WI(I‘,B) + lpgu) (I"e,f)) 4+ o000

which inserted into equation (1),gives the equation for y,,

(4) '3: v2y, = -1'27 vh, .

The general equation for the steady part ¢, of the second order

stream function is ,

1 -
(5) fM_z‘ Vu‘pl <'I'.'

€ 3(y1,9290) , €2 3(y;,9%yy)
o sir,eS YT 3(r,e) Z»

where the triangle bracket means time averaging.
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2.2 Boundar conditions

- e - o -

The boundary conditions must be expanded 1n powers of ¢
corresponding to the expansion (3) of the stream-function (see
Skavlem and Tjgtta (1954, pp.27). The non-dimensional velocity
6f the outer cylinder is,

->

(6) Ug = (-Ircos o+ Iesine Jcos T

which 1s a Lagranglian velocity. This velocity can be expressed
in terms of the Eulerian velocity field by performing a Taylor
exéansionuaround the equllibrium position of the oscillating
cylinder (see Svardal 1965, pp.8). Thus we have,

(7 ;(§+s)jﬁgdr,rj==$(ﬁ,r)+ E[Jﬁgdt].[vG] . + aves = 6:(9,1) s
r=

. _
where N 1s the position vector of any point on the outer cylinder
in its equilibrium position. According to the expansfon (3) of the

-
stream function, we know that the solution of the velocity field v,

wlll be expressed in a power serles of e, 1t is,

- ) o
(8) v = vO + ng + oce

which inserted into equation (7), gives

- -» e -»> -** ! -> > -
(9) VO(N,t) + eV (N,7) + eIUodt-[Vvo] . + eee = Ug(e,t).
r=

Lt

Equation (9) gives the linearized and second order boundary condi-
tlons at the outer cylinder. Since the inner cylinder is at rest,
the boundary conditions at this surface are obvious. Thus the

linearized boundary conditions are,

[;O(r,e,r)] 0

r=1

(10)

-+ + >
vo(r,e,t)]r_N = (-ircose + iesine Jcos T
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The second order steady boundary conditlons are

o~

[§§S)(r,e)]

0
r=1

(11)

[?§5)(r,e)]

(.

* -+
-< IUodT ‘[wo }>

r=N r=N

where the last condition can be expressed explicitly when the

linearized solution is known.

3. The linearized solutlon

The problem of solving equation (4) subject to M >> 1,
. N »> 1 and the boundary conditions (10); will be regarded as a
singular perturbation problem and treated by the method of MAE.

In order to apply this method, we have to construct,

a) an outer asymptotic expansion ®, of ¢,, valid outside

the Stokes layers at the boundaries,

(12) Wo(r,e,T;M;N)r fixeddw@g(r,B;M;N)= GOO(M)Oooo(N)Gooo(P,B,T)
M-+ .

N

+ 001(M)[°o1o(N)°01o(r,6,1) + 5511 (N)Og1 (r,0,1) + ;;.}

4+ oca

'b)  an inner asymptotic expansion X, of ¥,, Vvalid in the

Stokes layer at the inner cylinder,

(13)  wolr,6,7;M;N) ~ Xo(n,y8,T;M;N) = Bog(Muggo(N)Xgge(n,8,t)
n fixed
e
N

+ 301(M)[uo1o(N)xolo(n,9,T) * uo11(N)Xgg1(n,0,1) + "‘]

+ BOZ(M)[UOZO(N)xozo(ﬂ,e,‘t) + .oo]

+ oo

|
—
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c) an inner asymptotic expansion ¢, of y,, valid in the
Stokes layer at the outer cylinder
(14) i’o(i',e,‘r;M;N) ~ (Do(}\,e,T;M;N) = KOO(M)SOOO(N)‘DOOO()‘DO’T')
A fixed
Mo

Neteo

+ K01(M)[501o(N)¢olo(l,9,1) + 5011(N)¢o11(k,9,1)]

+ Foé(M)[Gozo(N)wozo(A,e,T) + 8021 (N)pgoy(r,0,1) + ---]

+ eoove R
M M M M
where = —(r-1) = and = ~—(N=r) = — Y are the sealed
n = pre1) =y FN-T) =

boundary layer coordinates in the Stokes layers at the inner and

the outer cylinder, respectively. Tﬁése length scales are deter-
mined by claiming viscous and inertia terms in equation (4) to be

of the same order of magnitude in the Stokes layers. Most of the
other gauge ifunctions are in due course determined from the matching
and the boundary conditions, but some of them must also be adapted
to the order of magnitude of the inhomogenelty terms of the diffe-
eential equations in question. In order to obtaln the asymptotic
expansions listed above, the gauge functions must be asymptotic

sequences and fulfil the followlng requirement, here exemplified

by {GOn(M)}

11mu—————7in-= O'WW:

M+

- The matching conditions are evaluated from the following equations

by equalizing terms of the same order of magnitude;



a) for matehing at the inner cylinder,

(15) ,(QOO(M)oooo(I‘i){’ooo“se"‘) + [i:;%"‘“']r

=1

+ QOI(M)[OOIO(N){@010(1,G,T) + [E%%ln] y + eve }
1
]

+ 0011(N){°o11(1,9,r) + [Egﬁll} Y+ y..}
+ aOZO(M)Uozo(N)°020(1,B’T) + ooo)
y fixed
M+
N
=(300(M)"000(N)X000($% ¥:8,T)

+ 8 (M) (N)X ( ,B ) + ceoe + ooe
02 {uozo 020 0,71 ] )y rixed

M 4+
b) for matching at the outer cylinder, N

R &Fﬁi&g&] . t2+...}

+a01(M)[0010(N){0010(N,e,r) . [ ] IR }

Ve

(16) (GoofM)UooocN7{°000(N eT)*[ 3T ]

r

+ GOZO(M){Qozo(N,e,T) + ['a'g}n:z'p'] Y + eoee )
r= Y fixed
Mo

+ K01(M){5010(N)¢010(5% Y:9:T)+5011(N)wo11($% Y,B,r)+---}

+ Koz(M){ﬁozo(N)wozo($% Yse:1)+5021(N}w021(§% Y,9,1)+'?'}

~

)y fixed
M+
New



(17 2= 720y,

The différentiai equations for the first terms of the outer
asymptotic expansion (12) are obtained by inserting this expansion
into eguation (4) and then performing an outer asymptotic expansion
of thatrequation subject to the condition r fixed, M + « and

N + =, This gives

=0
(3

37 ?®010 = 0

%; V2®p12 = 0
\

s ' :

37 V2®550 = O

(19) 22 v20,, = 0
3
.

\

Likewlse, the differential equations f;;ﬂthe first terms of the
inner asymptotic (13) are obtained by insertion of this expansion
into equation (4) and then performing an inner asymptotic expansion
of that equation subject to the conditions n flxed, M + =

and N + «», This yields,

20y 2"Xp00 o 9%geg oo

an 3tdn?
4

(21) a'%a10 _ 5 23Xau0 o oy {_ 33%g00 o EZXQQQ]
an 3tdn2 an3 - 3Tdn

(22a) Eiinﬁl _ o 33X - 0

an 3TaIn

4 3

(22b) 9 Xg12 _ 5 37X912 .

an dtan?
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; a%xq. a3x [ 33X510 o+ 9%Xg30
(23) ant 3TN vz an3 3tan

| 3 3
- VZn X000 4 vz 2%X0go 4 vz, 2X000

3TN 31302 an>
1 32Xpno _ gz 2*Xpog ]
vZ  an? an2302

The differential equationsvof the four first terms of the asymptotilc
expansion (14) are obtained by inserting this expansion into equation
(4) and then performinz an innér asymptotic expansion of that equa-
tion subject to the conditions A fixed, M + « and N + ~. After

some calculations we find,

(24) 3%@non _ , 230000

| =O
gl 3t3A2
al} . 33 \
(25) 2 9010 _ p 27%010 - ¢
At 3tar?
(26) 2'omir . p 2001 - g
AT 3TIN?
(27a) mﬂ_gﬁ‘{’_ﬂ%ﬂ.go
Ak 9TaA
ol 23 (33 32¢ )
___ﬂln.%_]._g__m.]_=2 9°®p1) _ 279011
(270) 3 3taA2 VZ aAs 3AT/
3%pgag 3%@pag
(28a) ” -2 =0
R B W 3T
" 3 3 2
28b a1 _ 5 e - (__(egma, __E’__cw_a)
(\ ) aal 3taA vz ax 3TIA

It should be noticed that some of the information that can be
drawn from the matching‘and the boundary conditions already have been
used in order to establish the differential equations listed above.

The generation and the solving of the differential equations must of
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course be carried cutsuccessively as suggested in appendix A.

When carrying out this successive procedure, the gauge functions

also are determined. The calculations give in due course,

’ apo(M) = 1, 81 () =&, eoM) =1,
1
) 0000(N) = 0g19(N) = 0g20(N) = - 5
(29) T 1 -
0011(N) = gg23(N) = —
1-N"2)282
1
0012(N) = ggp2(N) .= —_—
- A-N"2)2N3
(Boo(M) = ‘-frf > Bo1(M) = I{‘z’ , Bo2(M) = 'r\q% s
(30) 41900 (W) = ug1o(N) = ugao(N) = , ;»_2 ,
(oo M) = .1, wo (M= L2 co.m) = Y2
00 A 01_ M 02 M2
(31) <8000(N) = N, 8g10(N)= 1, 5011(“')360.20(1‘)’4‘5030(3)"“’"-}{_‘2‘ 5
. ' (1-N )N
S021() = 6033 (N) = —
= (1-N"2)n3

-

— ~The differential equatiom (17), (18), (19), +++ and (28b) cam be

] solved by elementary methods subjJect to the boundary conditions
(10) and the matching conditions evaluated from equations (15) and
(16). The details of these simple calculations are omitted here,
but exemplified in appendix A. The final results are, in complex
notations, where physical significance 1s ascribed to the real parts

of the solutions, only,
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(r~l-r)sin e et

(32) @poo(r,8,1) =

i~

(332) @pyo(r,8,t) VZ(1-1)r 'sinee

VZ(1-1)(r~Y-r)sin ¢ e17

(33p) @py1(r,6,1)

ﬂ(1-i)(r'1-r)sin g el”

(33c) _.n1z(r,9,t)

1 rlsine ej"t

n

(3b4a) @p20(r,6,1)

1(50~Y-r)sine el”

(34b) @g21(r,06,1)

(3tc) @gp2(r,6,t) =1(8r '-lr)sine el®

(35)  Xggo(n,6,t) = {-(1-1>+2n+(1-1)e'“+1)"}51nee-“,

(36) Xo10(n,0,1) VT{%*G-i)n-n2+(-%4-Z%iin)e'(1+i)"}sine eir

2\ﬂ'{1+(1-1)n-1 e'(1+1)"}81n 0 elt

(372) Xp11(n,0,1)

2W{1+(1-i)n—1 e'(1+i)"}sin pelf

(37b) Xp32(n,6,1)

(38) Xp20(n,0,1) {-lﬁi-in-2(1-i)n2+2n3

+[l§'j; + % in + %(1-i)n2]e—(1+1)“}sine elt

it

slnee

- (39)  @ppg(r,8,1)

- asino el”

(40)  @o10(2,0,1)

(41) ®o11(A,0,1) {(1-1)-2A-(1-i)e-('1+1)A}sin eeiT

(428) ©g20(2,0,1) zvz{-:,.u-i)u 1 e'“*i”}sin o elt
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(42b) ©pa1(2,0,1) = \/2'{»%1 -(1-1)x-x2+(-§1-3-2‘-4-A)e'“*1)" sine elT

(43a) @gg0(2r,0,1) = {-(1+1)+21x+(1+1)e'“"i)*}sin pel”

(43b) ©pay(h,6,t) = {-3(1f1)+u11-2(1-1>x24[3(1+1)+211}e'(1*1)“}sineei?

It should be noticed that Xggg(n,8,t) 1s identical to a correspon-
ding linearized solution found by Schlichting (1932,pp329). Likewise
the term Xgy;9{(n,0,t) was first given by Riley (1967, pp.423).
However, the gauge functions wugeo(N) and wug;9(N) were not in-

cluded in the calculations of Schlichting and Riley.

The main effect of the finite radius of the outer boundary,
described by wugoo(N), is to increase the amplitude of the shear
wave Xggo{n,8,t). The term Xg10(n,8,t) 18 to be interpreted as
a modificétion of the asymptotic stream function Xggg(n,e,t) due

to the curved boundary (the inner cylinder) and the displacement flow.

Xp11(n,8,1) 1s an effect of the finite radius of the outer boundary.
The higher ofder term Xgg9(n,8,t) describes more complicated in-
fluences of curvature and displacement flow. The main component of
the inner solution at the outer boundary is the potential oscilla-
tions given by Nwooo(k,e,r)+-%% ©o10(2,6,7t). There 1is also a shear
wave @g11(2,0,1), which corresponds to Xgpg(n,8,t) 1in the inner

‘solution at therinn§§wcylihder,‘put the émpli?ﬁ??u9§,4?QLL§1i9111";§HHW

reduced with the factor N"2 rpelative to Xpoo(n,0,1).

The flow outside the Stokes layers is potential oscillations

as indicated by the equations (17), (18) and (19).




~ tor 1s presupposed), we get,

b, The non-linear steady streaming effects

It 1s well known that the Reynolds stresses in an oscilla-
tory boundary layer flow induces secondary steady and oscillatory
motion. Referring to equation (3) these motions are described by
wl(r,e) and wo(u)(r,e,r), respectivély. We pay attention to the
second order steady stream function wl(r,e), only, which will be

discussed in the two cases Rs << 1 and Rs >> 1. ‘

4.1 The second order steady boundary conditions

T O G G A D G S A A G GV . S e e e Gh e e e kS

The second order steady boundary conditions formally stated
by equation (11), can now, with the knowledge of the iihearized
solution, be given specifically. Inserting into equation (11) 30
glven by '

(44) Vy = - 7x (wozz)

(where an appropriate inner asymptotic expansion of the curl opera-

3G ey T A 1 4
sy [ 0o | = {5l —L— (4 stn2e) + ov7"]
1 1 3 -l -2
8 P e T L) M)
‘ »(8) N - )
w6 [3 (n, 0303 ]»D,"'O =0,

Equation (45) has a noticable property, namely,

[31(A,9;M;N)] + ®
A=0
M-

N finite

It should be mentioned, however, that the singularity demonstrated

above, and all the other terms of equation (45), are cancelled by
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the Stpkes drift. The time averaged particle velocity is thus
zero at the outer boundary, a result which is expected on phy-

g8ical basis also.

4,2 The case R_ << 1.

The general equation of the steady part ¥y of the second
order stream function is given by equation (5). Inspection of
this equation with the inner and the outer expansions of the linea-
rized solution in_mind, leads us, wlth a view to the application

Qf the method of MAE, to introduce the following expansions

(a) an lnner asymptotic expansion X; of y, constructed to be

valid in the Stokes layer at the inner cylinder,

47) ¥, (r, 8;M;N;R ) Nle{é“’e‘M;N‘Rs) = By (Muy o (N)X;g0(n,0)

3

o 2z R
511

s
+B“GM){HIIO(N)Xno("’e;Rs) * u111(N)x111("’9;Rs)}

+81, (M, (NXg,0(n,05R ) + o

(b) an inner asymptotic expansion 9, of wl constructed to be

valid in the Stokes layer at the outer cylinder,

(48) ¥, (r,0;M;N;R,) ~ (pl(l,e_;M;N;Rs) = kM), 4 (Mo, ((2,0)

-~

A I
Mo e e e e e

N
Rs+0

* *11(M’{5110(N)¢110(A’°) * 6111‘”"”111("’9)}

+ KIZ(M){GIZO(N)‘pIZO()"e;RS) + 6121‘0121(}‘39;Rs)+.°°}

+ oo
c) an outer asymptotic expansion o, of wl constructed to be

valid outside the Stokes layers at the boundaries,
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C(49) v, (r,8;M,N;R ) ~ & (r,0;M,;R.) = vlo(Rc){alOO(M)[alooo(N)°1ooo(r’e)
r flxed )

M 4+
N +=

RS+ 0

(r,o) + ologg(N)Qlozo(I‘,e) + o0 ]

+

(N)o

%1010 1010

“110(M)[°1100(N) ®1100(Ta®s) * o° ] toees }

+

+

711(Rs){alo1(M)[cloo1(N)01°11(r,e) + ses ] + eee }

+ 712(Rs){“162 (M)[°1002(N)°1o;2(rs9) + ees ]'+ ass }

Inserting into equation (5), the expansions defined above and

taking into account that all the terms of the outer asymptotic

expansion g, describe pbtential oscillations, we can formally

write,

1 o 1 agx?,v2xnz -
(50) ") THX) - o < > >= 0

]
o

B 1ﬁ,€@ *Vl e )
4 - - __T14_T$LA
(51) v 01 Rs r a(r,e

1 I - l 3(@n,Y29p) -

where of course only the real parts of xo and @, can be used in

"~ the calculation of the non-linear terms. The matching conditions

- for the second order terms X,, ¢, and ®; can also be settled B
formally now. These conditions can be evaluated from the followlng

equations by claiming terms of the same order of magnitude to be

equal,

(a) for matching at the inner cylinder,



{
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— fao, (r,6;M;N;R) 3012 (r,0:M;N:Rg)
(53) (°1(1,6,M;N,R8)+ [ 1 i 8 ]y + g[ 1 v S521g24000
r=1 r=1
' y fixed
M4
N+w
RS+0

_ X M
(BIOCM)uloo(N) 100(V52y’e)

+

Y R L NI N C SN T

+

y fixed
Moo
N-+e

Rs+0

By (Muyp0 (N)x1zo(%§ ¥>8;R,) * ?--)

(b) for matching at the outer cylinder,

(54) (°1(N’e)‘ [301(r.6;M;N;Rg) ]Y . 1{3 ®;(r,o arf‘ ] . ._.)

ar
r=N r=N
Y fixed
M-

N
R a0
n_=u

8

-u

M
(“10(M)6100<N)w100(7§ ¥,0)

+

M M
K11(M){5110(N)‘°110(7§ Y,8) #8111 (Neyy, (T2 Y,0) # "']

M
P k(8,0 (Meyp, (T5 Y,05R,) "‘) A .
— Y fixed
Moo
Nae
RSOO

The formal expansion (47) are introduced into equation (50). An
inner asymptotic expansion of the operator v* and the non-linear
term is performed by putting r = 1 + %Z n. Equalizing terms of

the samekorder-of magnitude, then leads to
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3
(55) X100 - 2<- _*nnn 8Xpoo 37Xono 5
an* ' an 3n  an2a6
~ a4x | 3 3x 3000 33%p10 4 3Xpoo 33Xp3g
6) —314L = . 2vy7 100 4+ <2[ +
(56) an and 26 an3 on  an2ae
8Xg30 3%%pg0 4 3Xp1g 33X ]
v L an3 an  3nae
i + zvzh[ilnnn 33Xp00 _ 3Xpoo 33Xoan§
' an3 AN 3n230

3n2 an ande
3"X&11 [ 3Xgog 33%Xg5y3 aXog0 33Xg11
= < +
'(57) an 2 36 3“3 on 3n239

_ 2v7{5x30n32x011 _ 3Xppg 32Xpqg ]>

_ 3Xpyy 33%g0n , 3Xnyy 33Xgag ]>

3 3 an  3n2%ae
4 3 4
(58) 3 Xizn = - 2y7 3°X110 4 Un 33 X]nn + 2 3 x]nn I 9*X100
an an3 an3 an2 an2302

3 3 X 3x
+¢_2f__nnn 9°X020 t;,gg;gLQ,lg1ng*78 020 3°Xg00
30 an3 20 an 36 an?3

-VZ n __aLn éilnnn + VI n _Ennn 3.%§lﬂ+2n2 __nnn Qilnng}
an3

+ 2{3x000 3%%020 4 X010 3%X010 4 X020 3%Xgqg
N ande an 3n230 an an?3g

-y P '#5'3* VI a1a 23X ,. 2 8Xgog 3%%g00]
; n-du an an<and an2 an236 i

3X 32X 3Xpypn 92X 3Xpop 33Xgap

- 2’/2["5‘3'0’& T,Tg'm* se "ang" —2v2n =4 TE ]

+ 4[3§nnn 3Xo00 3Xg00 33Xg0p 3Xpgo 33Xpgg ] s
) an 20 anag2 an 363



- 20 -

The asymptotic expansicn (48) 1s inserted into equation (52). An
inner asymptotic expansion of the operator v“ and the non-linear
term are carried out by putting r = N - %% A. Equalizing terms

of the same order of magnitude then yields,

(59) i%%%ﬂﬂ-: 2 < _Egnn.2§§%xx

(60a) %m= vz< 2000 %g-u >

(60b) 2%%%ll =2 3%%%nﬁ + V2<-J§gﬂl 3%%%ll>
(61a) %ﬂ=ﬂ<a—‘§gmi:-‘§gm>

(610) 20121 . gv7 00 4 vz< 2000 2L

Finally, the asymptotic expansion (49) 1is introduced into equation

(51). Equalizing terms of the same order of magnitude, then gives,

(62) v“éloio =0, 1=0,1,2

(63) V4110 = 0 i=0,1,2,3

(64) 40,00 = 0, ) -
(65) " 001 * % . 3 gf: )

_ 1[sé® V20 (0 V2@
(66) V4@ 5gp = F[ ( air,eS L+ X 1630 ]
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i 2 3 v2
(67) v4®1011 % %[3191§%%;§7° L, 2o air,e? )]
68 vl o 1[3(®1000, V20 (e V20 )
(68) Vi®1101 = 4 3(r,o + aEr,eS

It should be noticed that the differential equations listed above
and their solutions must be worked out successively. The gauge
functions are also determined term by term. Some of the informa-
tion which can be drawn from the gauge functions have already

been used to establish the egquations mentioned above. The equa-
tions can be solved by elementary methods, but the calculation of
some of the particular solutions are rather laborious., The detaills
of the calculations are omitted here,but exemplified in appendix B.

The final results of the calculations are,

B0 =, a0 =X, e, 8
(69)
N 1 1/
1o (N) = () = np, (M) = pyyp (N =
Lfloo 110 120 (1-N’2)2 > Fi111v (1-N'2)3N2
a300(M) =1, (M) =3, o, (M) =1 o= 1
100 ’ 110 M 120 mM2°® %1017 @aj02= 1o
nin(R) =R}, n =0,1,2 |
1
OIOOO(N) = a (N) = Qg (N) = —
1100 1200 (1-N-2)2
] T 7 T T
o (N) = o (N) =
1010 (1-N—2)QN2 4 1020 (1_N-2)uNu
(70) j
03110(M) = 12 57 > O1120(N) = 12
(1-N"%)°n (1-N"2)5x"*
: 1 1
o (N) = o (N) =
1130 {1-N—2}6N6 1011 (1 N-2)3N2
1
UIOOI(N)‘= 011 (N) =0 (N) = —
01 1002 (1-N-2)2

S
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QIO(M) =1, KII(M) = Mﬁ s KIZCM) = M@
(T1)< 6. (N) = 6., (N) = ——— | 5.  (N) = 1
100 = %110 (1-N"2)N2 111 (1-N-2)N3
1 1
- N - =
2™ = e 0 ™ T e

(12) %X gy(n,0) = [ -

n -(2+n)e "sinn- 3¢ "cosn- -14-e'2"]sin2e

Njw

9

(73) 1y,,(n,03Ry) = VE{[-13L+ 32 n+F n24(-4+F2na 202)stnn &7

"

+(%§4-9n)cosne'“+(%+-%)e'2"]sin29‘

; 3 2 R 2 }
33 Rsn sinde+ O(Rs )

(74) an(n,e;Rs) = \/2'{[3 -3+ e "(sinn -cosn )+ % e'zn}sinZe

- 32 R n?sindo + O(RSZ)}
4099 1359 294
(75) X120(n,6;Rs) ={ 35 " ~32 n--—g— n2 - 6n3
. [10878 209, 28 5 _ 25 n3]sinn =
- + {_2%2 - 2%2 n - 2%2 n2Jcosn e~ !
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(76)  ©;44(2,8) = - 1e"*sin A sin2e

"

(77) ‘9110()"9) %[1 - r"Main A +cos A )]sinze

- 2e *ain rsin2e

(78) wlll(k,e)

(79) @;,4(2,8) \/‘2[-} - 3% - %— cos )\e'l]sin%

\/2[1 -1 A (8in ) +cos A )e')‘]sinze

(81) (r,0) = T(r 2 1)sin2e

©1000

(82) (r,0) = 1;( -49r~2+75)sin26

Ci100

(83) ®;,,,(r,8) = 7E(1359r™% - 1907)51n2e

o (BM) & o(r,8) =3 3(r2- 2+ r2)sin2e
(85) elozo(r 8) = z(-r 2 4 1412 —r‘*)sin2e
(85? ®111¢(r,0) = gz(-i44r'2+ 294 - 150r2)sin2s6

“fﬁ??”ﬁw“”—~€r~ﬁ§- —4Qk—4a9r:34—sss-249r24~45rk}sina&

1120
(88) @ ,,,(r,0) = %(2241-'2 - 560 + 448r2 - 112r"*)sin2se
\
(89) @.. . (r,0) = sox(-r"*+2r"%- 1)sinde

ioo1 i§8



(90) @y4p2(r,0) = Eﬁ%g[(-10r'"-28r-2-72r_21n1'—24ln1'+38)sin26

+ (r'6-3r'“+3r'2-1)sinﬁe]

*_2r~2+1)s1inde

75 -
(91) @11\01(1‘,'9) -ﬁ-ég(r

g%(r“*-3+2r2)sin4e

'(92) ®1011<r:e)

The solution xloo’ equation (75), was first given by
Schlichting (1932). Riley (1965) and Stuart (1966) reconsidered\
this solution using the method of MAE, and their results agreed
identically with Schlichting's. Schlichting also calculated an

outer solution corresponding to :
91000%1000 ¥ 9101091010 * 91020%1020 >

but the gauge functions, 0,4, (1=0,1,2), which are implicitly

present in his calculations, differ from ours.

The physical interpretation 6f the terms mentioned above 1is:
X100 describes the steady flow induced by the Reynolds stresses in
the Stokes layer. This flow causes by viscous drag a steady motion
outslide the Stokes layer which for M = « ¥y N = = and RS = 0 1is
giﬁen by @400+ For finite M, displacement flow and curvature

- corrections to the flow in the Stokes layer described by X,:4,

propagate to the outer region and are in this region depicted by
@100+ For R, finite &,,4, suffers self-interaction and generates
the term @,,4;. In this way, by studying the source terms and the
boundary conditions, the higher order approximations can be glven

some sort of physical interpretation. The effect of finite N in-

cludes a discussion of the Stokes layer at the outer boundary, but this

is most conveniently done in terms of the Lagrangian stream funetion,
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4.3 Calculation of the steadx_flow in the case R > 1 .

In this section we seek a solution of equation (5) subject

to the conditions ¢ << 1, M > 1, N> 1 and Rs » 1. |
The leading term X,,, of the second order steady stream function
in the Stokes layer 1is, as pointed out by Riley (1967,pp.428), un-
changed relative to the case R_ << 1. Therefore, this term st111
introduces a slip ﬁelocity at the outer edge of the Stokes layer,

but the Reynolds numberl Rs ~assoclated with this slip,veloeity,eis
now a&sumed to be large. For this case the steady flow develops -
its own boundary layer Just outside the Stokes layer, as emphgsized.
by Stuart (1966). The typical thickness &  of the steady boundary

layer, is
8
s

which indicates that the scale 6, 1s a factor + larger than
the Stokes layer thickness §,,. Riley (1965) studied the flow in

the steady boundary layer for N = =. He 1ntrqduced'B1aeius series

| expansions around 6 = % (and o - %) where the-siip'Velocity

n

at the outer edge of the Stokes layer indicates forward stagnafibn;f
points in the steady boundary layer. Riley calculated the three . .
first terms of the Blasius series. In the later paber, Riley (1975)
incorporated the second order term in the steady boundary layer

“approximation of the stream function, but still the ealculations

left some discrepancies between the theory and the experimental data

of Bertelsen (1974). Therefore the theory is reconsidered here."

- We assume N >> 1 which means that the boundary layers at
the inner and the outer cylinder do not overlap. Therefore similar
Blasius series expansions as used by Riley (1965) are attempted '

here, but we include gauge functions to take account of fiﬂite' N.
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Accordingly, an asymptotlc expansion of the steady stream function,
constructed to be valid in the steady boumdary layer, 1s tentatively

written,

(94) vy (rog, MINSR) ~ F1(g,E5MN;R )

fixed

2R e 0
¥+ ¢4
Bamo

= aid{;;— ProolMF ge(es8) + Py (NJRHF gy (g5g) +--
S

+ Ao py (NP (g,) + 27 i}
Rg
where [ V3Rs y 1s the scaled steady boundartifayer coordlnate,
and £ =9+ Since the boundary layers at the inner and the
outer cylinder are assumed not to overlap, an outer regiom of
approximately inviscid flow i1s expected. The asymptotic expansion

of the steady stream function associated with the flow in this

region, cén formally be stated as,

(95) v1(r, 53 M;N;R ) ~  Gy(r,g;M;N;R)
r fixed
e+ 0
M+ =
N + o
%+w
= S 6N.),74 . - R N - S R -
e s auu{ \/‘,H‘ i 816)0 (I‘,j) + ng;(N;Rs)Gln‘l (I’, E) t ° N
. s 8

+ —1- (N)Gyq1o(T,E) + oo
R di10 110\T>E }

S

The matching of the steady Stokes layer solution with the steady

boundary layer solution can be expressed by the following equation,
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6 V2 cee |
(9 ) [ _+ﬁ uloo(N)x100(7§E,e) + P j

+ 4+ ¢+ +um
[

8 8 8 O vt ¥
[0}
+ Q

L]

o0 © ey

B8

- ago fo -Eﬁian . ‘ “oe
[?%zip‘na(n) (?100(0,5) + 3T ]C=%Ac+ )

1 ) aF e o 20 @
* pygy (NiRG)(Fygy(0,0) + (5T841 e ¢ )+
1 |
+ N p1oo(n)(Fno<°a5) * tif ]c§5 )+ Jl; fixed
- e.‘# 0
M+
N *.o
Rg*> =

This equatysar ylelds in due course,

(97) F10:0(0,8) =0

(99) Fi10(0,8) =0

(100) [_"ZE.LG.L]%

$101) F110(0,5> =0

(102) [%%\J.D_} . = 0
1::

4
(1 - N“Z )'2" :

(103) pigo(N9y =
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Whemaoo=V3, a1=--§-, a2=12-§ and 333-%q

The matching of the steady boundary layer solution with the outer

inviscid flow solution, can be formulated as the following,
[_1
(104) o0 [VEC Proo(MFyqo(VIRS ¥,8) + Dy (N,BF) 4 (VIRGY,E) e

+ %&1 P110(N)F110(VIR] ¥,8) + "°}
8 fixed

L 20 K B 4
8 8 8

n ZR2o0g

- [aoo{glgﬁéﬁl( 100(1,8) + [ ] 1y+ ...)

+ @101 (R (0101(1,8) + 2310Lge won) ¢ vee |

+ 200 q),0(N)G110(1,8) + °"]
5

Equalizing terms of the same order of magnitude in equation (104)>gives,

(105a) 1im  F100(V3R]y¥,E) = Gig0(1,8)
: y fixed - e ,

(105b) 1im Pro1(N,RIF; 01 (V3RS ¥,8)4= dy01(N,Ry y[2%asl. y
S s [ or
y fixed _ e

R »+ =
S

N + o -

(1050) G101(1,E) =0

(106) a100(N) = pygo(N)
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The asymptotic expansion (94) is inserted into equation (5) and

an asymptotic expansion of the operator v% and the non-linear

term of the equation is performed by putting r = 1 + — .

V3Rg

Equalizing terms of the same order of magnitude then yields,

(107)

(108)

(109)

8%Fi00 . _

ogh

3%F 01 = -

arh

3F3100 2%F100 , 3F100 33F190
At oz 3 8L 3r23¢

3Fy 00 33Fy101 4 2F100 33F103
dE ag3 a3z  3%3¢

_ 3F101 83F10n7+ 3F101 33F1gq

LY
£
Elj
+
n

9g o3 2z 3z293¢E
3%F100 - _ 3F1pg 33F110 + F100 33Fy10
g3 ¢ ag3 3z azlaE

_ 3F119 33F1bp + 3110 33F]QQ

. :[aFlnﬁ 83F;100 _ 83F100 a3F]nQ]
3g g’ 3T ag2ag

*ja-FTovnfalFTo*nTa*annf%AFftqfu R
13 ag? 14 9LE

Partial Integration and some manipulation leads to using equation

(105),

(110) 33F100. .- 8F100 3%F100 4 8F100 22F100
2 o a2 s auee

(111) BaFln] s - 3F]QQ BzFlol + 93Fy00 32F101

: ar3 3 ag? 14 3LdE

_ 3F10; 32F300 , 3F103 3%Fi10q

.14 32 Y4 9C3E
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~

8°F 3F100 22F1310 3F100 9%F110 e
= - - + .
(112) T T TR TFY:
_ 8F3310 32F309 , 3F139 3%Fyq0
96 pg2 | 9L 0L0E
- ¢ 2100
ar3

Riley (1965) calculated an approximate solution of equation (110)
by introducing a Blaslus series as the following,

(113) Froo(s,8) = [ 2 Floon(8) 620

We attempt similar expansions of F;43;(%,E) and Fjp;4(%,E),

~

® 2n+1
(114) FIOI(;’E) = 2 bn Fl()l!‘l(c)‘s !

n=0

® 2 +1
(115) Fii0(taE) = nZO cp Frion(@)E

The three first terms og {F } were given by Riley (1965) and

100n
his results are quoted in appendix C. For later use we need a

solution of F,,,(z,8) with better accuracy than obtained by these

f——n———————te?m&—and—there£ere——FTﬁ§§£;)4uis4calculated,falsofingappgndlzgggfgggfgf

A three-term and a four-term Blaslus series expansion of F,,,(z,&)
are plotted in figure 10 which indicates that the discrepancies
between theory ahd experiment, mentioned introductorily in this

section, scarcely can be resolved by higher order terms/of the

Blasius series. Therefore, the effect of the outer boundary is

. _investigated more closely. S o

The main features of the steady flow field are sketched in

figure 9 and can be characterized as follows: The steady boundary
lajers, outside the Stokes layers at the inner cylinder, impinge

on each other at ¢ = % and £ = - % and form narrow outgoing jets.
For the presence of an outer boundary, these Jets colllide with this

boundary and form boundary layer flows resembling the essentials of
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wall jets. The wall jJets impinge on each other in pairs at & = 0
and & = 7 and two returning jets are created. It turns out that
these returning jets affect the boundary layer flow at the inner

cylinder appreciably. This influence will be estlimated analytically.

The outgoing jets.

Following Riley (1974) the outgoing jets are approximated by
the two-dimensional jet solution. The free constants of the solu-
tion are determined assuming the volume and the momentum flux of
the impinging steady boundary layers at the inner cylinder to be
transferred to the jets. Riley used numericél integration of the
boundary layer equations to obtain sufficient accuracy of the volume
and the momentum flux at ¢ = % % . However, a four term Blasius
serles expansion of F,,,(t,£) glves these quantities with satis-
factory precision. Referring\to the results in appendix C, the

volume flow in a steady boundary layer at ¢ = % is, in physical

dimensions,
(116) = el af‘m{[ § a F. (1) 2“”] \
B = Ho® v Lo roon®ET
£=3
o] )
- F
[n=0 n loon(c)&
£=0
o .
= el n 200 . E=3 R

where G, © 1,239,

Likewise, the momentum flux in the boundary layer 1ﬁ question 1s,

for § =%,
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a Qo
(117) M = pe20 2 g 200 I

VR; 2n+1]

2

aFioo (2)E | } dg

0 =T
-2

Hre-1w

el

3
= pe2{f.2g 200
peﬂoavR_m.b

8

where my ~ 0,3284.

The two-dimensional Jet solution represented by the stream
function (see for example Batchelor 1967,pp.345) is in physical
dimensions

/ -
(118) ‘i’g(x,z;RS) = 6«::(R$)v(x+xo)1 3tanh[a(Ré)(x+xo) 2/32]\

where x 1s measured along and z orthogonal to the jet. The
virtual momentum source of the jet is situated at x = -Xgs 2 = 0.
The free constants are av and x,. The volume and the momentum
flux 'in the z-direction of one of the symmetrical halves of the jet
(a half-jet) are, respectively,

(119) Qy(xp) = 6avx, '
(120) M, = 2l p v2q3
Claiming, ~
(121) Qe(xy) = Q(3)
(122) My E M (3)

yields,

(123) o = co[é-rn-nb?] RB
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3
Ay,

(124) Xo = .ﬁ a .

This completes the jet-solutlon 1n question.

]

The outgoing jets impinge on the outer cylinder for x= (N-1)a.
Each of them are 1n regions of stagnating flow (see figure 9), split
into two eguivalent halves which are the sources of the wall jefs.
The detalls of the flow in the stagnating regions are not considered,
but 1t is sﬁpposed that the volume and the momentum flux of each
half-Jet are transferred to the associated wall jet. These assump-
tions are used to determine the free constants of the wall jet solu-
tion (see Glauert 1956). The general wall jet solution, rebresented

by the stream function in physical dimensions, is,

(125) ¥ (S,Y) = [uo'ev(s+ so)]llur(A)

where

[ 58 ]1/“ ¥
-32v3(8+8,) 3
S 1is measured along and Y orthogonal to the wall., S = '.So’

'Y = 0 are the position of the virtual source of the jet. S = 0,

0

Y = 0 correspond to the stagnation polnt of the assoclated outgoing

Jet. The function f(A) 1is given implicitly as follows,

(126) £(a) = (g(n))?
(127) A = log !I;EEEE + V3 Arctan %%E
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(129) uw(éo) = p[gggfg]xﬂf

The volume and the momentum flux along the wall for S = 0 are,

respectively,

(128) Q(sg) = [4os uso]ll"

The outgoing jets impinge on the outer cylinder with the following

¥olume and momentum flux in each half Jet,
£ .

,(;30) , Qg((N-1)a) ~ Qg(Na ~ 6av(Na)l/3
(131) Mg = 24 padv2

Claiming,

(132) Q,(8y) = Q (Na)

(133) M, () = M,

glves

(134) S, fwéﬁé

(135) B =~3@?a§;a(wa)1/3

which completes the wall jet solutlon 1n question. Of course, the

Béiﬁfioﬁ héé'bhﬁsidai 751gnificancémin this case for S € (O,g Na),

only.

The returning jets.

----- L T T A L )
The wall jets originating at, say ¢ = % and & = - % R

impinge on each other at & = 0 and a new Jet, flowing towards the
inner cylinder, is formed. An equivalent returning jet develops at

L
£ = 7
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‘'The returning jets are approximated by the two-dimensional jet solu-~

tion which for this application is written,
(136) ¥ (X,2) = 6yw(Z+X)"/? tann| v(Xx+x )"/27],

Here X is measured along and 7 orthogonal to the jet. The posi-
tion of the virtual source of the jet is X =-X0, Z =0.
The returning jets are created with the following volume and momentum

flux (in each symmetrical half), respectively,

(137) Q, (%) = 6yv X/
(138) M, = 24p v V@
Claiming,

(129) Q. (X)) = Q,(5Na)
(140) M,. = 4 (5Na)
we find,

(141) X = (m+71)Na
(142) Y = E;:;%w7wg

and this completes the jet solution in question.

The returning jets impinge on each other and a stagnating

- flow develops around the inner cylinder. In this region the jet

solution referred to above is not valid, of course. Nevertheless,
an approximate solution of the stagnation flow must be known before
the effect og the returning jets on the steady boundary layer cén
be estimated. This approximate solution is established subject to

the condition,
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[(m2m?/3 o,

VB

which physically means that the width of the returning Jjets is

(143)

much larger than the diameter of the inner cylinder. The convective
inertia term of the momentum equation, which is balanced by viscous
forces in the returning Jjets must in the region of stagnation flow
be balanced by pressure forces. Therefore, the stagnation flow

can be characterized as an effectively inviscid flow with vorticity.
The general equation for this type of motion in two dimensions is

(see Batchelor 1967, pp. 536)
3y = £(y)

where ¢ is the stream function and the vorticity distribution
f(¥) , which is arbitrary so far as inviscid fluid theory is con- |
cerned, must be known. The history of the establishment of the

steady flow determines the vorticity distribution. In accordance

v e 1) e v () %]

with the approximations already introduced into the problem con- |
sidered here, the vorticity distribution in question is supposed

to be generated by the returning jets and transported essentially
unchanged through the region of stagnation flow. The solution of

the returning jets (equation 136) gives,

- vanh®[ v(2+%)™2/32 ]} + 0(v3vx5?)
where X; = X +Na = (m+2)Na . Since X, >> a, we put ,
(145) ¥, % 6vvX) Prann(vx;2/%2,)

which is valid for [X| <«<X, .
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Introducihng,

(146) H_ = tenh(vX;>/22)

we get,

(147) vH  =-2v?x, 5 -8 2)

where terms of order Y2X4'8/3 has been neglected. According to
the assumptions stated above, the flow in the stagnation region

must be governed by an equation formally equal to equation (147),

i.€.,
(148) v H,(,8) ==H,(p,8) +H (p,5)°
where .p = JZ Y X,.,"'E/ 3%
' 2 2
2 Lo} 1 9 1 9
and v = + = +
AR

Unfortunately, no linearization parameter appeared in equation (148).

Therefore, the following iteration procedure is used to generate

an approximate solution of the equation. ILet,
(149) H (py8) = Hyp(p,8) +H 4(p,8) +H 5(p,5) + ...

and provided,

. then, 8pproxdmatel y———— o )
(151) Vp2qu(pag) = qu(ps §>
(152) 72 H 1, (8,8) ==y (p,8) +Hy7(p,8)
(153) V2 H15(p,8) ==Tyn(p,8) + 3H,07(p, 8)Hy 4 (P, 8)

ses

|
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In analogy to

3 .. 3

sin” € + é%p5

(154) HO(P,E) = :/:l'Z- [P,Sin 5—%9 sin5 € - ...]

the above iteration is expected to give useful results if,
(155) |P- indl g,
With a view to the specification of the matching conditions,

the non-dimensional velocity components of the returning jet
along & = 0O are calculated,

vV, = F [’I z("+9 )E +.-.:]

T [(m+2)N1E?

(156)
- s

® T T(mem1e/?

[g 3-4— 92)§3+...]

which lead to

oH
(157) (42 o T e R
1Xe )
s o
[(m+2)N]=/?
g =0
oH #
g _ 1.1 2vg3
(158) vz ]p I 2 C SV DL
[(m+2)N15/2
g =0

Obviously, Hq(p,gj must be regular for finite r which gives,
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(159) 1inH,(p,8) = [B(p,8)] _, wegular.
r fixed \ '
s
- 0
[(m+2)N]%/?

The interaction between the inviscid stagnation flow and the out-
going jets along & = %- and § =-% can be neglected tc leading
order of magnitude Hq(p,g) of the inviscid flow for p<£1 .
Therefore Hq(P,g) is an approximate solution of the stagnation

flow at least for €€ [0im] and p<1 and the following symmetry

exists,
(160)  H,(p,8) = - Hy(p,m-E)
(167) Hi(p,8) = - Hy(p,-6) .
Therefore,
Hio(p,8) = E_,(p) 8in 28
Hyq(py58) = K p(p) sin 28 +K,4(p) sin” 28

which inserted into equations (151) and (152), respectively, give,

(162) Ko (p) + 3K (p) + (1 -pigmoo(p) -0
iy ' 4 ' 24
(163) K’IO(p) +_p_K’IO(p) + (1 —?>K’IO(°) = - —p?K,M(P)
o) R R0 B i .

The general solutions are,

(165) KOO(P) AO2J2(D> +302Y2(9>

(166) K 0(p)

It

A42J2(P) +B12Y2(P) + qu(p)
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(167) K/H(@) = A16J6(p)+B’l6Y6<p)+P’]’|(p)

where Jn(p) and Yh(p) are Bessel functions of the first and
second kind, respectively, and order n (n=2,6). Owing to the
regularity condition (159),

qu(p) and P,,(p) are particular solutions. With reference to
assumption (150)

(169) H,(p,8) ® Ay, T5(p) sin28

is used for later calculations. The matching conditions (157, 158)
give,

(170) Ayp ® 1,9 ,

(171) Prixed = Po ~ 2220

which show that no overlap-region between the returning jet solution

and thegstggngtigggilow solution exists, as required by the method

6f MAE. This is a very unsatisfactory result, but not surprising
since there in the theoretical approach is an abrupt change of the
governing forces at p = Py -

According to condition (143) the radius of the inner cylinder

is vanishingly small compared to the length scale in the stagnating .

flow region and therefore the cylinder does not affect the gross
features of this flow. Howevér, close to the cylinder, i.e. at
distances of the order of its radius, the flow is obviously affected
by the cylinder. In order to study this effect the inviscid flow

solution is written in physical dimensions,
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(172) ¥4(z,8) = o,o&eera%%mfﬁg [rz-%gf‘% ... :]sin2§ .

1
which shows that for r fixed and fégéﬁﬁ‘*> O the inviscid flow
is asymptotically potential. Therefore, the presence of the inner
cylinder can be accounted for by introducing a region of potential
flow where the function quq(r,g) (see equation 95) have to
satisfy the following boundary and matching conditions,

Es

2
(173) [qqoq(N,Rs)qu(r,i)Jr;;o 0.0846 Trsmyy T sin 28
V%5 %
(rami?’? ~°
174 Gy (T, 6 -0.
(174) [3e: )]NI

The solution is,

(175) quq(r,g) = O.0846(r2-r'2)sin2§

which give the gauge function p101(N’Rs) of equation (94),

JRs

(176) P101(MsRg) = 4401 (NuRg) = Tmimyy
and the constants {bn} of equation (114) are also determined,

b. = 0.3907

(177) < b, = -0.2605

b, = 0.05210

~

The term proportional to r'2 of the solution (175) can be matched

to the inviscid stagnation flow by including Bessel functions of

the second kind in the higher order approximations of this flow.
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The steady boundary layers at the walls of the container and
the jet flows discribed above, induce a potential velocity field
outside these boundary layers. The purpose is to estimate the
influence of this velocity field on the steady poundary layer at
the inner cylinder and the potential velocity field is therefore
approximated with a solution valid for r << N . In this approxima-
tion the suction ih the wall jets at the outer boundary can be
neglected as the contribution from here to the potential flow for
r => 1 4is of order N-2/3 . Consistent with assumptions already
utilized, the potential velocity field is therefore caiculated as
if N =, |
Since the width of the outgoing jets is of the order of

magnitude R;
arsinf=x+a, 0§ <m

the coordinate approximation,

(178) . ar=.X+4a

is valid inside the width of the jet flowing out along E = g-.
Referring to equations (118), (123) and (178), we find,

v ziR) ~ cT) e =2 (o) B )/
s

k& fixed— —

x = (r=1)a

X
where r =1?? - 1% 2 0,35647 (xo by equation 124). Since
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S8 eU a ;a.QQ. (gmb>"/3[r'|/5+;q ~2/3

o) \/R_s-
x = (r=-1)a 5
Bg == | -Tr-5/5+_§,r_r

(179) Yg(X,Z;RS)

x & z fixed

8/3_...]

which is a boundary condition on the outer potential flow in question.
Owing to the symmetry of the problem, it is sufficient to state a
solution valid for --TET <6§g ,f_,g- » Letting G,Ioo(r,é) (see equa=--
tion 95) be this solution, equation (179) gives the following

boundary condition,

G’IOO(r’g') = (%)4/3[1."/5_'_ (o) r-2/3

2 3
(180) < -g-r5/3+-5-;7|— I‘-S/B—... :‘

L G100(Ts =B) == GypolTyB)

while the matching condition evaluated from equation (105a) is,

(181) G,]oo(ﬂ,%) = €-7r27§5 + 0.012817 §5 + 0.000052 " coe
and also,
(182) q’lOO(N) =1,

Since, from equation (125)

(2] = oa/?)

A =>

we get

aGr100] — 0.

=N -»C0O

(183) E

r



Introducing,

(184) GqOO(r,E)

i

Gg(ra g) + Gb(r’ g)
and claiming

o
Gaoo(®»*5)

I

G (r,%3)
(185)

G (1,8) = Gygp(1,8) = Gg(1,5)

and also noticing,

2

(186) v G’qoo(rsg) = 0 )

the solution of Gg(r,g) is,

e Tol> —2/%

- (187) 65(x,8) = (72m)" [P sin g+ F= /P singe

3
- fg-r'5/531n%€-2r2%3-£ r~8/3¢ ., ...]

This leads to,

(188) 6, (1,8) & [0.242077 § - 0.140922 €7+ 0.017278 &

- 0.000237 &7+ ... |
Since, by equations (184) and (185)
Gb(r,i g) =0

Gbgﬂ’;) e#pressed by theAleading terms of its Fourier series, 1is

(189) G, (1,5) ® 0.12692 sin 28 - 0.00290 sin 4§

Therefore, an approximate solution of Gb(r,g) , is,

-2

(190) G, (r,8) = 0.12692 ™% sin 2§ - 0.00290 r~* sin4g

The constants {cn} of equation (115) are hereby determined,
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Co=—0.01252
(191) <4 cq = 0.1607
023-0005555

where the term 0.0290 r"4sin4-§ of Gb(r,E) has been neglected

gince,

10.00290 »™* sin 4§| << [0.12692 £ sin 2|

and moreover, if only three terms of the power series of sin4g
is included, meaningful accuracy of this term is not obtained
for & =1 for which comparison with experimental data will be car-

ried out.’
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Since it was possible to estimate numerical calues of
bo’bﬂ’bz"" and Cu1Cq1C0reees the leading terms of the Blasius

series of quch,g) and F,4,(¢,8) will be given explicitly.

Introducing the expansions (113) and (114) into equation (111) and
by equalizing terms of the same order of magnitude the following

equations for the leading terms of quq(g,é) are obtained,

(192) qur]g(C) + (1-e—c )quqg(g) - 29-£quz\é(g) - e-gF/]OqO(C) =0

mn

(199) F10110) + (1-6701005(0) = 467010, 5(0) - 3675104, (0)

adb " . . "
= ‘B‘,}g[“F'xom(C)Fﬂo'lo“) # 481007 (OF4040(6) = 34001 ()F4046€6) ]
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(194) Fygqp(€) + (=6 )F015(0) - 66™F1015(€) = 5677 01,(C)

anb/”- " ' 1 n
= B 11001 (€)F1071(6) + 21001 (C0F0q4(€) - P1001 (61011 (C) ]

a2bo 1" . 1 ] il
e [‘quoz(‘-;)F'loqéC)* 6F1002(6)F1010(6) - 5F1002(C)F1010(€)]'

Higher order terms of the Blasius series given by equation (114)

is not considered. The equations (192), (193) and (194) are more
closely treated in Appendix D where the following approximate solu-
tions of the equations, subject to the relevant boundary and mat-

ching conditions, are obtained,
(195) Fagq(€) = ;:’{-'188 + 720 + (205+100C+36¢°)e~C~ 186254 e-ﬁc}

a,b
(196) Fa14(8) = £44(6) +5=281(0)
where

(1962) £,,(C) = mur| =348 + 204¢ + (98-48¢+306¢%)e~¢

~-2¢

~ (741 + 306C)e™°" - (61 + 17g)e‘5€}

(196b) gq4(C) = 535-5?-{’156’180 + (~544151449660C ~109548C° - 22032¢0)e™°
+ (366102 + 19%392¢ + 22032¢°)e~2¢

+ (21869 + 10608C + ’1856g2)e'3€}

58404 5840, a0,
(197) quq2(€> = fqgcg) +“B‘é— ng(g) +"""6'é— hqe(g) +"‘5'§— 112(€)

where

(1978) £4,(0) = ] ~752 + 4560 + (4765-18360+1140¢ )e™
~ (3294 +2280¢)e™2C - (739 + 3800)e™ ¢}

while the éigebra involved prohibit solving the equations of
81o() » Bys(C) and i,5() . The typical magnitude of Fi012(8)
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relative to F101(g,€) subject to

¢ —=>©, E=1
. . 2 .
is given by E; and since,

b

2
<< 1
by

in our case, no more effort is sPeﬁt at the Blasius series of

Insertion of the expansions (113) and (115) into equation
(112 leads to,
(198) quog(g)‘*(1‘e—€>quog(g)"Ze-Gquoé(C)"e-quqoo(c) =
1
(o] m
= 'C-O‘C F/]ooo(g)

(199) F1p3(0) + (1™ 010 - o™ F107(0) - 59—QF1101(C>

P (OF110008) + 484005 (6F4100(E) = 384001 (E)P106(E) | ‘
a ‘ (
- jg F1001(6)

(200) By 10m(C) + (=™ )B4 05(6) = 6675, 101(€) = 5™ Ry 155(6) ‘

Bach . ' i
= L F1001 (01101 (0) + 24004 ()F1503(0) - Fjooqcc>quoq(C>]

asc . ‘
czo[‘Fﬂooe(C)Fﬂﬂoo(C)‘*6F1002(C>F4100(€) 5F1002(€)F1100(€)J

+

a
2 m

- (C)
2 1002

Higher order terms of the Blasius series given by equation (115)
is not considered. The equations (198), (199) and (200) are dealt |
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with more closely in appendix D, where the following approximate so-

lutions are obtained,

(201) Faq00(C) = £00(0) + 38 C)
0}

where,

(201a) fZO(C) = quqo(g) (quqo(C) is given by eguatior (195)).

(2071b) gp,(C) = é%{80-—(97+64Q+56C2)e'§-yﬂBe'eg-e'Bg}

a,]Co a,‘
(202) F’MO’I(C) = fg/,l(g)‘*' C 824(C)+‘c-,)'h21(g)

where,

(202a) £,,(¢) = 2%E{..969+2o4g+(1498-48g+506g2)e‘5

+ (<741-3060)™°" + (-61-47c>e‘3g} .

(202b) g,4(C) 83%32{1561804-(-544151+49660§

—~ 109548¢°=22032¢2)e™"

+ (366102+193392C+22032¢2 )e~2C

+ (21869+10608+1836¢°)e ¢}

(202¢) h2’l(g)

§

Egg%g;g{-9660924—(5772641-486996§+22032€2

+ 795152¢7)e™"

+ (~UB28452-3222792¢-798660C% )e~2¢

+ (21905-108766C-66402g2)e-BC}

1€ 2,

a
(203) quog(g) = f22(§)+ <5 gzz(g)"'

2(€) hys(0)

P2l L0 42 dpp(O)
Cq 2 c, “22
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where,
f22(€) = fﬂz(g) (fqg(C) is given by equation 197a)
while 822(5) , h22(C) , i22(g) and 322(€) are not given ex-
plicitly for the same reasons as the calculation of the corre-
sponding terms of quq(g,é) was dropped. The typical msgnitude
~of F1102(C) relative to F110(€,§) subject to

C->CO’ g =~ 1

is depicted by

Co
——l and since
€1
C
(204) l_% << 1
€1

in our case (see equation 191), no more attention is paid to the
Blasius series of quq(g,é) . The steady boundary layer solution
which now is known, is discussed more closely in the later section

"Numerical results and discussion'.

5. The Stokes drift.

—— e —— — v — G S m— - g 2 -

The reason to consider the Stokes drift is two-fold. Pri-
marily, the steady streaming motion considered in this paper is of
practicel interest chiefly because it leads to extensive migration
of fluid particles, and secondly, the available experimental data

is Lagrangean velocities (i.e. particle velocities). The Stokes

- ——a@rift-introduced as-an-additial correction term —AY,; 5 to-the- e
Eulerian stream function is (see Raney, Corelli & Westervelt 1954)

to order € ,
1.
(205) Ay, = =ipe ((jyodf)xzo>

where Xb is the linearized solution calculated in section 3,
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Equation (205) givesy

a) 1in the Stokes layer at the inner cylinder,

(206) | Ay ~ A, (M, 035M35R )
: [q]nfixed 1P EYTTs
M-
1 A R T VI 1 ~2n
N —> = ———m— - =+e '(nsin n-cosn)-=e

+ r-fz[- %+ on+ e NeosN+m e (sin -k cosn) ..

- 4n2e'n sinn+ e'2n(--g-+ 2'r]):| + ...} sin 26

b) in the\outer region,

r g L AN2 . 47.-2 :
(207) ‘_A\lf,i]r pirey MBI, = m{. gEﬁ-fF]r +e]sin 26
M —> |
N —> @
R~ 0

c¢) in the Stokes layer at the outer cylinder

] 1 1 -\ .
(208) | a4, | ~ AP, = S e” " sin A
(0 A Ve

M > 00O _

gs—a- 0 + VFIE %i."‘ + e-k(cos A+ sin l)] + ae .}sin 20

where the Stokes drifts (a,b&c) match passing from one region to
another. Comparing equations (76) and (195) it is easily verified
that the singularity in the Eulerian velocity at A = O is cancel-

led by the Stokes drift. The effect of Stokes layer flow at the
outer cylinder on the time averaged particle velocity is at most

of order (N70) .

The results above is valid for R, =0 . In the case R =~ ™,

the leading term of the Stokes drift given by equation (206) is
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unchanged because the linearized solution xooo(n,e,f) (equation 35)
is so. The Stokes drift in the steady boundary layef can not be
calculated unless more accurate time-dependant solﬁtions are known.
It can be verified, however, by considering the order of magnitude
of the terms involved that the Stokes drift in this layer is at

most of the order of magnitude ¢~fR; relative to the typical

steady velocity in the layer.

- e . G T ———  — . —— et

6.1 The case Ra << 1,

Holtsmark & al. (1954) studied the problem treated here by
solving equation (4) on closed form subject to the condition N = <,
This solution of wo was inserted into equation (5) and the equa-
tion solved subject to the formal restriction Ry = O . Thus the
results of Holtsmark & al. (1954) is a good approximation when

€ << 1 N>>1, R; <<1 and almost arbitrary M , only restricted

k]

by the condition €2M2 << 1 . Since the results in section (4.2)
are valid subject to similar conditions, these.results and the
theory of Holtsmark & al. (1954) can be compared by performing
inner and outer asymptotic expansions of the Holtsmark-theory.
Raney, Corelli and Westervelt (1954) carried out an inner
asymptotic expansion of this theory. The inner asymptotic expan-
 sion of the steady part of the second order (0(€)) stream func-

tion is given by their equation (21). The comparable result
achieved by the method of MAE is a two-term inner expansion with
R, =0 and N =%, Referring to our equations (69), (72) and

(73) we can readily write down this expansion in physical dimensions,
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Vo { {32~ 21- Gemsiane
3cosne” - gedM]

P L2 n e 3of

C4+2n+2n?) sinne

(32491 cosne™ M+ (§+H)e ™ Jgin 20 .

(209) ¥{*(n, 037, = 0)

[}

I

+

-+

+

It is easily verified that this solution of Ygi> is identical
with that given by equation (21) in the paper of Ramey & al. (1954)
(notice their sligtly different definition of 1) .

In order to compare the outer asymptotic expansion Qq(r,e)’
(obtained by the method of MAE) with the solution of Holtsmark & al.,
it is necessary to carry out a corresponding expansion of equation
(3.12) in their paper. The equation can be written,

(ee) GD

4
(210) (2,0 = {- F¢ ja(x>ax+,rg jxo(x)ax
T
oo os)

+ ,‘%U ;{-c(x) dx - 2 |xo(x)dx + Jx o(x)dx]
1 1

oo
+ 2%2\}2 J; -;I-[-G(x)dx +3 /J]‘xc(x)dx - ;IyXBO(X)dX:]}Sin 26

where r and x are the non-dimensional radial position and,

(211) a( \ =

- €M4I H(q)(zo) H(ﬂ)(z)+_?H(’l)( )H(q)(Z) +2H(1)(2)H(1)(Z) *

P g’”(zO)Hg’”(zo) )

where z = XM and Hgl)(z), m = 0,2), are Hankel functions.

Standard asymptotic series of the Hankd functions are used to obtain
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an asymptotic expansion of 0(x) . Repeated partial integration of
the integrals involved in equation (95) was used to generate their
asymptotic series. The important feature of the expressions then
achieved, is that they consist of polynomials of (%) multiplicated
by the exponential factors
(= )
NZ

e and e

~(r=-1)M7Z .

The outer asymptotic expansion Yg%) of Y¥,g is defined as,

- (o)
(212) b4 — Y
H y fixed H
M-—o>

where y = r-1 . Referring to the main feature of the outer
asymptotic series mentioned above, this means that only the limit
of integration r =71 contributes to the final result. This turns

out to be

(213) (9 (2,0) = eU a{2(x2~ 1) + g Y2 (- 49v72 + 75)|sin 26

Comparison with the equations (82) and (87), and the gauge func-
tions (73) with N =<, (it is a two-term outer expansion and

R, =0 and N = ) ghows identical agreement with equation (213%).
Thus, two different méthods generate identical two-term inner and
two-term outer expansions of the steady part of the second order

stream function. This agreement we interprete as a justification

of applying the matching principle of the method of MAE.

6.2 The case R_ >> 1 .
5

None analytical results for the case Rs >> 1 and suitable
for comparison with our section 4 are published, at least to the

authors knowledge.
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O Numerlcal results_ and discussion.

6.1 The case Rs << 1,

The main features of the steady streaming pattern in our
problem are known to be an inner and an outer vortex system in each
quadrant (see Holtsmark & al. 1954, figure 7). In order to discuss

- the validity of the method of MAE, we first investigate the inner

asymptotic expansion subject to RS =0 and N =,

v N2

(214) x,l(n,e;RS.—.O; N=x%) = Ex,loo(n 6)+ xﬂo(n,e;Rs'so)

szﬂeo(”’e iy =0)

where the functions X100 xﬂﬂo and X12O are given by equations
(75), (76) and (78), respectively. The thickness 8pc of the innmer
vortex system, defined by the zero-point of the radial velocity
component for 6 = O , say, is an important quantity with respect

to the validity of the theory. Let the location of this zero-point

be 1, . Then we have,

8
DC

21 =42Zn

(215) e o

where 8,., = JE Pigure 2 shows 5DC/6AC versus M for a one-
. ‘two- and three-tern inner asymptotic expansion. We have also plot-
——————%ed-the corresponding curve from the closed form sotutionof ————
— Holtsmark & al. (1954). This solution is of course the best approxi-
mation in the case R, =0 and N =<0, and is therefore used as
a reference for further conclusions. Thus figure 2 indicates that

a one-, two- or three-term inner asymptotic expansion predicts the

thickness b6y, within 10% accuracy for M > 120, M > 60, M > 40 ,
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respectiveiy. Figure 2 in the paper of Raney & al. (1954) should
also be referred to in this connection.

Since there is identical agreement between the asymptotic
expansions of the solution of Holtsmark & al. (1954) treated in
the previous section and the inner and outer expansions generated
by the method of MAE (RS =0, N= ) , we may use a composite
solution, including Rs-terms, to estimate the region of wvalidity
of the solution of Holtsmark & al. (1954) with respect to R_ .

s
The uniformly vald composite solution is,

Nz D 1 ' 1
(216) “’,(IC) = T X100 * 1 Z*110 * #1000 * 21100 * ﬁ?é'lEOO

4 T2
+ Ry #4001 7 ¥101] * Bs” #1002 = Cp(M,85Ry)

where the functions Xqngs X110s #40000 #1000 *12000 #1001 204,
$,101 @are given by the equations (75), (76), (82), (83), (84),
(87), (88) and (90), respectively. The ccmmon part Cp(n,e;RS)

of the inner and outer symptotic expansions is,

(217) € (n,85R,) = ‘ﬁ—}?_gﬂsm 28
. (%)2[(- 142+ n+ £1°)sin 26 - £oR  n° sin 46

The steady radial -velocity component is given by,

() ] e
. PO _— ._.___a.v e —
fo) -— :]_ q
(218) Vi, = -3

and the tangential component,

Coayle)
(219) ig = 3 -

Figure 3 and 4 show the radial velocity at 6 =0 for M = 50
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and 100, respectively. The three different curves in each figure,
represent different values of Ry . The argument 8 =0 1is an
angular position where the Rs-terms should be important. Figure 3
and 4 indicate very little influence of these terms for R <1,
but for RS = 5 , they are of significant importance, The plot of
the tangential velocity component at 6 = 45° . in figure 5 shows
only a minor difference between the curves for RS = 0 and RS = 5,
This is reasonable since terms of magnitude O(RS) are identical
zero for 6 = 450, while terms of magnitude O(RSZ) contribute.
The angular position 6 = 45° is thus a very favourable position
in order to observe good agreement between experiment and a theory
formally valid for RS = 0 , only. On the other hand, such a theory
is expectedvto be a good approximation for Rsi’l.

In order to illustrate the influence of the outer boundary
on the flow field, the following composite solution of the stream-

function is used for numerical examples,

(220) ¥,

]

B1o*100%100 * B114110%1110

2 2

+ Z o

Z0,.. 8%
i=0 110 3=0 1ijo

1ijo * *110%1130%1130

[
By {0101L91001%1001 * F1011#1011)

+

+

“111“1101°1101}

o 2 3 o
+ g $102°1002%1002 T Vp
where Cp is the common part of the inner and the outer expansions

and,

(221) Cp = quuqoo(%-gﬂ)sin 20

+ B’l’l“’l’lovg\:(" :%Z.,,?n + %ﬂe)sin 28 -%RS n2 sin 49]
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»

The gauge functions and the other terms involved in equations (220)

and (221) are given at the end of section 4.2. The solution (220)

is correct to O(M'iN'jRSk) where i+ Jj+k > 2 ., Numerical examples

based on (220) and on the theory of Svardal (1965, equation 4.53,
formally valid for RS==O) are given in figures 6 and 7. For

R, = 0, figure 6 indicate that these solutions give qualitatively
the same increase of 6DC/6AC versus decreasing (A-a)/bAC. More-
over, figure 6 shows that for R, =1 , the solution (220) predicts
the thickness of the inner vortex systems to increase considerably

from e=i§ to 8

=0 or 6 =11, In figure§7 the radial posi-
tion rc/éAC of the core of the outer vortex systems (defined

by v, =vV4 = 0) is plotted versus (A-a)/6AC . The main features
of the figure are decreasing rc/éAC with decreasing (A-g)/bAC,
but for (A-a)/éAC = 25 the core begins to move outwards for
decreasing (A-a)/éAC . This unexpected effect is amplified for

RS='O « The angular position of the core is also, for RS>>O ’

dependant on M and N . This can be recognized from the solution

-

7 Tand thus preserve the Ssymmetry. Unfortumately, the solution{220)—

-

(220), and the effect is depicted in figure 8. Referring to this
figure a resonable question is why the flow field observed by
Bertelsen & al. (1973, figure 7) is so symmetrical for R, = 0,75.
An evaluation of the various terms of the solution (220) reveals
that there are mainly two competing effects, described by the terms

%1001 ~and Qq/_],eq, s which cause distortion in QP_PQ,,S;.'FG dl,reCtlons

is not expected to give sufficiently precise results unless M= 40,
and a quantitative comparison with the éxperimental results of

Bertelsen & al. (1973) is therefore meaningless.
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6.,2. The case R _>> 1 .,

The main features of the flow field in this case is shown
stylisticly in figure 9, except for the Stokes layers at the bounda-
ries., Details of the flow in the steady boundary layer at the
inner cylinder is depicted in figure 10 where a three- and a four-t
term approximation of the Blasius series of quo(g,g) (see appen-
dix C) is the bases of the velocity profiles. Comparison with the
numerical solutions given by Riley (1975, figure 2) indicate fair
accuracy of a Blasius series of quo(g,é) including four terms
for |g| f_g-». This statement is also supported by the good agree-
ment between the terminal momentum flux in the steady boundary
layers at |§| =5 (Riley 1975, p.p. 807, his M=0.964 corre-
sponding to 3m, * 0.9852 here given on page 32).

The velocity profiles in figure 11 is based on the following

solution of the streamfunction,

a 3
00 Z a F (€)§2n+1

222) ¥ = evafifrgo+ " a0 100

a
+ TRBIMLPo™1010(E)5 + DaPi04 (0]

a .
+ 2 06Fr100(0)5 + ©4F1101 (O8]

S

a0, 3
- n=0 °

where the solutions involved are given by equations (72), (C1),
(c2), (¢3), (C5), (199, (196),(201) and (202). The Btokes Arift
is negligible in the steady boundary layers. The measurements of
Bertelsen (1974) are also plotted in figure 11 and good agreement

between these measurements and the tangential velocity based upon
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(222) is observed. The figure also indicate that the correction due
to the suction velocity of the first order steady boundary layer
solution and of the outgoing jet are of about the same mégnitude

as the correction forced upon the boundary layer solution by the
returning jets. A stream line diagram based upon the resuits of
section 43 is shown in figure 12. The diagram resembles the essen-
tials of figure 4b in the paper of Bertelsen (1974).

In spite of the improved agreement between theory and experi-
ment mentioned above,the theory is unsatisfactory with respect to
several points. The following points are emphasized here: The
model adopted is not unique (see Riley 1975, section 3) and the
crude matching of the steady boundary layer flows with the regions
of stagnating flows. But nevertheless the improved agreement bet-
ween theory and experiment indicate that the main influence of the
outer boundary on the steady flow close to the inner cylinder is

preserved in the calculations of section 4.3.
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Appendix A: Calculation of the linearized solution.

The calculation procedure for the linearized solution. ¥
is here demonstrated in some detail. The equations (17), (20),
(24) and (25) is first established as suggested on page 10 and 11.
Using that the stream function according to the boundary conditions
(10) is proportional to sin @ cost , the formal solution in complex

notations can readily be written down,

[

~(1+i
(A1) Xooo(M,8,7) = [Ag 4+ A+ Ae™ (MM, 4 (1400 g50 g o3

iT

0

=17 .
(A 2) Qooo(r,e,f) [Bor+B,lr :!sn.nﬁe

(A 3) o (\,0,7)

]

000 [Co+qu+02e'(q+i)>‘+G e(q"'l))‘:]smee

]

(A 4) Cpoqo(k,e,'r) EDO +D M+ D2e°(1+i))‘+D3e(1+i))‘]sin 6 e1T

The boundary conditions at the inner cylinder give,

(A 5) A(,)+1‘-\,.2-Q-A5 =0

(A 6) Ay~ (’l+i)A2+ (’I+J‘_)A5 =0 .

The matching as expressed by equation (15) yields,
r

(A7) a (N (W){By+B,+ (B,-B,)y+cus)+...

M A
= By (M (N4, +4, ELIAEEE

000

where necessarily A3 = 0 as there are no terms in the outer solu-
tion that can match an exponential growing term., The r-component

of the boundary conditions (10) for r = N now give

(4 8) KOO(M)éoOO(N){CO+02+CB} =N
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which leads to,

(4 9 KOO(H) =1

(A 10) GOOO(N) = N

Now the O-~component of the same boundary conditions yielt?.s,
a1 C, = (’l+i)02+ (’1+-i)(33 =0 .

The matching as expressed by equation (16) give,

B, B,
(A 12) 000 ()00, (MBI + 3¢ + (B, +=5)T+ waa} v o
M M
= w{c, + AT} + xy, (M)851,(M{D, + D,]\-/—?-Y} Foaea
where it has been used that,

(A 13) 05=D3=O

of the same reasons as A5 = 0 above, Matching to leading order,

equation (A 12) give,

(& 1) a, (1) =1
Inserting (A 14) into equation (A 7) we find by term-wise matching,

(4 15) o, (M) =, (V)

a 17) B, =..]3o

Putting B, =-Bo into equation (A 12) reveals,

1
(A 18) UOOO(N) = ']—_F

(A 19) C, =0.
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Combination of the equations (A 11), (A 13) and (A 19) leads to,

- (A 20) CO =
It is,
ir

A21) o (\,8,T) =s8inbe .

000

It should be remembered that the 6-component of the boundary con-
ditions (10) for r = N was not fullfilled by equation (4 11),
Therefore we have to claim, |

(A 22) #pq(M)8(MID, = (141D ==,
giving,
a23) wy,an =

(A 24) 6040(N) = 1

(A 25) D= (14)D, ==1 .

Since the r-component of the boundary conditions (10) for r =N
was exactly fullfilled by equation (A 8), we have to demand,

Inserting (A 17) and (A 19) into equation (A 12) and matching to
‘leading order, gives,

(4 27) Bo'z 1,
and then from equation (A 17)

Introducing the known gauge functions and constants into equation
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(A 12), this equation can be written,

(A 29) N—Y__/l_-? ?Y" Ty =N+:jﬁz

D =+ D,]Y.+ eme =
1 Q

Equalizing terms of the same order of magnitude in equation (4 29),

gives,
which inserted into equation (& 25)'
Equation (A 26) now yields,
(A 52) DQ =0 .
Thus we have,
. iT
(& 33)  9gq0(2,8,T) = -Xgln.eel

and also by equations (A 27) and (A 28),

4 %) &, (r,8,7) = (r=D)sing e’ .
Equation (A 7) can now be written,

2
(-A' 35) 2?*’..- =‘%T‘A0+A/]y+ soe o

Matching to leading order reveals,

(A 36) A, =2,
The boundary conditions (4 5) and (A 6) then give using A3 =0 ,
(A 37) Ao == (1=1)

(A 38) Ay =1-i.



Thus we have
(8 39) %gog(M8yT) = 2{= $(1-1) + n+5(1-1)e™ M) Mgin 6 oT°

The calcﬁlation.procedure demonstrated above can be continued
systematically to arbitrary order of magnitude of the asymptotic
expansions, but further details are omitted here,
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Appendix B: Calculation of the second order steady stream
function ¢, , Ry <<1 .,

The viscous and the inertia forces are presupposed to be of
the same order of magnitude in the Stokes layers. Subject to this

 assumption, the generation of equation (55), leads to,

@1 8,0 =¥

(B 2) uqu(N) =(’I1?-)-2

and equation (55) is then established, The general solution of

this equation is

(B 3)  Xqpp(M9) = Ao(9>+A1(9)n+A2(6)'n2+A3(6)n5
+ E—Be"n sin n-3e " cosn

-ne Nginn -{'re"zn]sin 20 o

In the Stokes layer at the outer cylinder the same assumption yields,

and the equations (59) and (60) are then established. The general

solutions of these equations are,

(B 8) ®105(1,8) = B_(8) +B (8D +Bg(e)x2+35(e)x5

A

- %e" gin A sin 26
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(B 9)  9440(hs8) = C_(8) +C1(8)h+C(8)A% + C5(8)N7

- -g-e")‘(sin A+cosA)sin26 .

The outer expansions of the Stokes layer solutions are now investi-

gated, Thus we find,

@ 10) [ xqooc—-y,m] — Y2 4 _(0)+4, (e)‘“ﬁ INO'a

y fixed
2

and claiming no singular term in this expansion, give

(B 11) A2 =0

(B 12) A5 Q0
The boundary condition (46) demands,
(B 13) xqoo(o,e) =0

B
(B ’|/-|-) -5‘——- n::O’

which yield,
(B 15) A_(8) = 72sin28
(B 16) 4,(8) =-&sin28 ,

A similar treatment of @,,,(1,8) and @,,4(1,8) 1leads to,

(B 17) B (8)

B,(8) = By(8) = B5(8) = 0

0

[[]

(B 18) 01(8)

C,(8). = 03(e>

(B 19) ¢ (8) Ssin2e ,
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Matching to leading order in the equations (53) and (54), give,

B 21) oquO(N) - 1

N = o

Since all the functions ¢ i = 0,1,2 satisfy the same

1010 ?
differential equations and the matching conditions are proportional

to s8in20 , it turns out be convenient to introduce,

(B 22) L,loo(r;N)sin 20 = 5,1000(1*1.)61000(1',9)
* 94010 1010(T48) -
+ 94020 1020(T58)
- which give

(B 23) v*[L,pp(riM)sin26] = 0 .

The general solution of (B 23) is,

(B &) Dyy(riM)ein26 = [D (N2 + D,(N) + Dy(M)r° + Dy (M)r*lein20 .
The matching conditions evaluated from equations (53) and (54) yield,

(r3N)
(s 26) [ e okaty =-% (1_;'%2

=

- (B 27) quo(NgN) =0

-—
=

) raLfioo(riN)]
L

(B 28 ==

r=N

These equations leads to,
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(B 29) D (N) = 2

2 >
B D (N) =~ -
(3 20) 2,0 4(1NS)F  2(1-N"C) e

, 3 3
B A1 D,(N) = .
(B 1) Do) e a2y

B 32) D (N) =-2
( 3») 5() R s

The solution L,loo(-r;N)sin 20 can now be reorganized by using
equation (B 22), Thus we find,

t]

1
(B 34) 9a010W) = T 22

1

(B 36) %,0500(T8) = £(r™> = 1)sin 20

(B 37) #4,40(Ts8) = #(r2 -2+ 1°)sin 26

(B 38) 61020(1-,9) = g(- r"2+ 1 +r2-r4)sin29

The calculation procedure demonstrated above can be continued
systematically to arbitrary order of magnitude, but further details

are not given here,
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Appendix C . The steady boundery layer solution in
the case Rs > 1,

As mentioned in section 4.3, Riley (1965 pp. 167) gave the
three leading terms of the Blasius series (113), His results are

quoted here in our notations,

(© 1) Fagpo(C) = 1-6~

(C2) Fppoq(C) = gl 12+ (74360)e™C - 18672¢ — 67¢ ]

©3)  FypgalQ) = £5(0)+ :g“ g,(C)
where,
£,(0) = ’IBFBZ [ 440 + (706347200 o™ - 72003‘2C

- 1200e~2¢ - 100e~*¢ - 3¢ 5‘]

8o(C) = EgptEmm] 99216 - (5392720+477900C + 2504520C )e
+ (548694045009040¢ Je~2¢

4 (« 1m0eS57200)e™0C

- 53270e~+¢ 4 489e"5€:]

The equation of the fourth term is;

m. n []

-C -C
(C4) Fipoy + (1=07 )F,]OOB-Be F1005~ 76" F100%
8n 4 O n - R -
Lﬁ%ﬂmﬂf&%ﬂz
38>
O " ] ] "
* E.%"[.‘5F1001 82 +8F1001 B2~ 3001 82] -

Putting,
; 32, 3

(05 Baop3(6) = £3(0) +=BL0 g3(0) + 52— ny(c)
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the equations of f3(€> . ga(g) and h3(€) will read,
(g 6) fy+ ('1/.«3"C )ty - 8e"cf'3 - 7e‘Cf3 -0

-~

(©7) g+ (1=e gy =B~ g5 - 7™ 5 = 5Py 00175 + BB 00 T5 = Big0q T2

m -\ " =C, =C n 1 "
(C8)  hy+(1-e7")hy - 8e™ hy - 767 "hy = ~5F10487 + BF100182 = 2100182

The relevant term of the boundary conditions (98) is claimed satis-

fied by f5 , and thus &3 and h3 must fulfil homogeneous
boundary conditions, i.cs,
! N
f5(o) =1

© 9
£5(0)

fé(oo) =

1]

(C 10) 85(0) = g5(0) = gz() =

c 1) h;(O)

h5(0) = hz(®) = 0

The solutions can formally be written as,

e e e Cﬁv]?—)v - —zf -— Z—« ———- *Cm—lle’ - - e

m=0 1N=0 i

which leads to,

(©13)  £300) = TomTEEs 151200 + (1957874 + 1058400¢ Je™*

-1 5876009"2C7 - 4410006 ~2¢ - 735003'4C - 6615¢~2¢

- 29a™C _5™7C}

Putting,
(C 14) 85(C) = g3,(0) +85,(C)

(G 15) hz(C) = by (€) +15 (O



where index

"h" and "p" indicate homogeneous and particular

solutions, respectively, we find subject to the conditions (C 10)

and (C 11),

(C 16) 83}1((;) = A

(G 17) 835(C) = prdmmg| 7254 - 4520007 6™5+ (112611 + 1296000 )e

38e'C + 338{1 51200 + 1058400Ce™"C ~ 15876006~2°
— 44100083 - 735006 ~+¢ - 66150~2¢ - 294e~C - 567/C}

-2

+ (<7426 + 25200¢ e~ 26 + (= -49%54 2400¢ Yo~ ¥e

+ (= 28?2+ 90¢)e~2¢ ‘-g%le-& + %e'%}

Ay ™= 0,704077008
(c 18) .
By, %= 0496801791« 1077
g
-C ~C ~2¢
(G 19)  hg(C) = Agpe +33h{151200+1o58400ge ~ 1587600e
- 1441000e~2¢ - 735006 ™#¢ - 66156™7¢ - 294670¢ — 5677¢}
‘ A 47666 p) 3y ~C
(¢ 20) »hBP(c) = W{, _7_,7_2i + (=8181C° + 751356(7 e

- (A&7 | 9430020¢ + 4508136¢2 )e ™20

+ (22282221 |, 823240 ¢ _ 563517¢%)e ™"

+ (16 0601 +,|9,‘772§)e—4§

- (%ﬁ + _E_MO"I ¢)e=¢

+ 20078 =60 _ 2301 ,=7C)
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(A5, ™~ 0.0880122017

c 214 ~ | ,
]\Bah ~ 0.334608072 « 10~

The general homogeneous solution of (C 6), (C 7) and (C 8) consists
of three linear independant solutions, one of which increasing
prbporfionally to { as ( ~>oco, Subject to the conditions at

. infinity (see equations C 9, C 10 and C 11) this solution must be

dropped.
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Appendix D ., The higher order steady boundary layer
approximations.

Using test solutions of the form-

B m _~-ng
(D 1) Amnc e | |

the following general solution of equation (192) can be cbnstructed,

\

(D2)  Fupyo(C) = Booe"c-s»Bo,](’] +ce~®)

© n-1 _-ng
1.2 =C (=1) e
+ B ld+l+=wC"e >+ Z
02 2 n=2 (n-1)!n"(n-2)"

For the further'calculations an approximate form of (D 2) is chosen,
i.€a, |
(D 3)  Faproll) = Byue™  +B(1+ce™®)

+ BO2G-4+ C +%g2 e'g-z}e’ec-u-q;ge"x)

which subject to the boundary conditions {99) and (100), and the
matching condition (104) give F,..~({) as presented by equation

(195). This approximate form of F,,,,(¢) and the solution (c 2)
of quoq(g) yield inserted into equation (193),

m

(D 4)  Foh(0)+ (1= 0By 013(0) - 4™ 11(0) - 53-CF1011Q_€).

aﬂbo 1 2+, =C
= -2 = | - 6640 + 2664 - 38830 )e

+ @ 1048 + 8784C + 2592(% e =¢
+ (7164 + 4680¢ - 614-8£2)e'3C
+ (34— 04g)e™ " + 180070}

quqq(g) is decomposed by writing,



- 74 -

(D 5)  Fagpq(C) = qucc)+f-g-:—°gqq<c>

which is used to construct a homogeneous equation of qu(C) and
a inhomogeneous equation of gqq(g) . The solutions are claimed to

satisfy the following conditions,

qu(o) = fq;(o) =0

(D &) '
| | Taq(2) =1

(D7) 844(0) = g14(0) = g43(®) =0

which-are found from the equations (99), (100) and (104), The

general solution of f£,,(¢) is,
(D 8) £,4(0) = Byge~C+B,,(1+ 3¢~ -5e™2F - o)

+ Bopfdp-50+ (5c-c)e s Ce‘2§

b gt ag ) e 44 T ()R (Bl one)

n=o0 (nl)

The general solution of g,4({) can be written,

(D 9) 811 = Sqthg) +g11p(C)

where index "h" and "p" indicate homogeneous and particular

solutions, respectively, and

- '

as far as the general solutions are concerned, Since an approxima-
tion already is introduced by FﬂOﬂO(c) , the following form of

(D 8) is used,
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(D 1) £44(0) = Byge™ 4By (143¢e™ = $e™0 - pye™
vl G g

and a corresponding approximation of the particular solution

gqqp(C) is ,

(D 12) g145(0) = pepet~ 22822 + 4296 - 1296¢ 6~¢

+ (6886-F4932€-+1296€2)e-2g-+(&8£4-266§-+108§2)e"ac}.

The solution (D 11) subject to the conditions (D 6), and the solu-

tion of 311(§) , (constructed as the sum of (D 11) and (D 12),

subject to the conditions (D 7), leads to the specific solutions

of £,,(¢) and g,4(C) given by equations (196a) and (196b).

Thé typical magnitude of the error introduced by the approximations

mentioned above, is 0(10'3°e'4c) relative to the solution in

question, which‘is;regarded as sufficient accuracy for our purposes.
A general homogeneous solution of equation (194) is calculated

using test solutions of the type (D 1) and subject to the boundary

conditions,

- [£4200) = 245(0) = 0 |
) 13)1~ . \
f,l2(¢ﬂ) = 1 ’

where f12(g) is defined by equation (197), an approximate solution

of f£,,(¢) is that given by equation (197a), The particular s

tions of equation (194) are not considered in detail for reasons
mentioned before.
The same procedure as sketched above is used to obtain the

solutions (201a), (201b), (202a), (202b) and (202c) of eguations
(198) and (199).
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Figure 3, Dimensionless radial velocity versus r for ¢ = 0° and
M = 50, Curve I, R, = 03 Curve II, Ry = 1; Curve III, R, = 5.
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Figure '7. Thé radial position ci/dlc of the core of the outer vortex system versus
(A - a)/ AC, CLurve I and IT are ba|sed on equation (220), both curves with M = 50, but
Ry, =0in I a¢d Ry = 1 in IL quatlon (4.53) of Svardal (1965) is the basis of curve
III where M = l9 5. |
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Pigure 8, ©Stream lime diagram in one quadrant based on
equation (220) a2nd the parameters are: Full lines; M = 50,}
R, = 0, Dashed lines; M = 50, Rs =1,

s
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Figure 9, Sket
are bounded by
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inviscid flow,

ch of the stream 1inés in the case R >)-1 where regions with special features

daghed lines: A, steady boundary 1ayer at the inner cylinder; B, outgoing jets;
tagnating flows at the outer boundary; E, wall jets; E, stagnating flow around
der owing to the colllslon of the returning jets; G, returning jet; H, outer
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Figure 10, Dimensionless steady tangential velocity in the steady
boundary layer based on first order boundary layer theory: Full
lines; three-terms Blasius series expansion (Riley 1965), Dashed
lines; four- terms Blasius series expansion.
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Figure 11. Steady tangential velocity in the boundary laver at
the inner cylinder: Curve I, solutions due to Stuart (1966) and
L Riley (1965); Curve II, numerical solution of Riley (1975);

— = -Gurve III; based on equation (222) here, Circles indicate measur-

N ed velocities of Bertelsen (1974).
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Figure 12, Stream line diagram based on composite solutions
constructed of: Full lines, steady boundary layer solution and
outer solution; Dashed lines, outgoing jet solution and outer

_solution. Dotted lines indicate possible matching of the -stream - —

lines through a region in which the stream function is not known.




