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Abstract

In ﬁhis paper a& theoretical investigation of convectlon
currents 1n anisotropic porous media 1s performed. The porous
layer 1s homogeneous and bounded by two infinite, perfectly
heatconducting horizontal planes. The criterion for the onset
of convection 1s derived. The supercritical, steady two-dimen-
sional motion, the heat transport and the stability of the motion

are investigated. The results may be applied in insulation technique.




NOMENCLATURE

cp, specific heat at constant pressure;

ﬁb, dimensionless tensor of effective thermal diffusivity;
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g » acceleration due to gravity,
H, heat flux;
h , thickness of porous layer;
+ > >
i,J,k, unit vectors;

3¢ dimensionless permeagbility tensor;
K , permeability;

N, truncation parameter;

Nu , Nusselt number;

p, dimensionless pressure;

R, Rayleigh number X,gyATh/kp3v;

R, Rayleigh number for the onset of convection;
T, dimensionless temperature;
T reference temperature;

- AT, temperature difference between lower and upper plane;

44

= (u,v,w), dimensionless velocity vector;

'X,¥,z, dimensionless Cartesian coordinates;

R e ————

*

Greek letters

LT coefficient of thermal voluﬁé expansion;
nl’z,thermal anisotropy parameters defined by (2.8);
I dimensionless temperature;

K, thermal diffusivity;

x> thermal conductivity;
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permeability anisotropy parameters defined by (2.8);
kinematic viscosity;
density;

standard density;

Subscripts

critical;
fluid;
8011d-fluild mixture;

partial derivatives;

tensor components in x-, y- and z-direction, respectively;

longitudinal and transverse tensor components for a
transversely 1sotropic medium.

Superscripts

horizontal mean;

transformation given by (4.1) and (4.2);

,order of series expansion;

small disturbance of the two-dimensional steady solution.



1  INTRODUCTION

Fréé thermal convectlon in porous media has received con-
siderable interest due to its technical and geophysical applica-
tions. So far, theoretical and experimental investigations have
usually been concerned with isotropic porous media. However, in
| many problems the porous materials are 6f anisotropic nature. This
is the case for fibrous insulation materials, where ccnvection
currents may occuf. Another important example 1s groundwater
motion inrsediments and other anisotropic rocks, especilally in

areas with geothermal activity.

The papers on convection In anisotroplic media are rather new
and not numerous. Castinel and Combarnous [1] derlived the stabi-
lity criterion for porous media with anilsotropic permeability, and
made experiments concerning the supercritical heat transport and
temperature field. Ephere [2] extended the stability analysis to
media with anisotropy also in thermal diffusivity, and Tyvand [3]
took into account the effect of hydrodynamic dlspersion caused
- by a uniform basic flow. Burns, Chow and Tien [4] incorporated
anlsotropic ﬁermeability in their study of convection in vertical
slots. Their study is relevant to insulation between walls, while

our present study 1s relevant to insulation between floors and

cellings 1n builldings.

Nonlinear convectiIon In isotropic porous mediza was treated

numerically by Elder [5], Straus [6] and Kvernvold [7], and ana-

lytically by Palm, Weber and Kvernvold {8].

In thls paper the onset of convection 1s analysed for a more
general type of anisotropic media than in [1,2]. Moreover, the

effects of anisotropy on the supercritical motion and the heat
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transfer is analysed. The stability of the two-dimensional steady

motion is also analysed.

In the interpretation of the results we shall concentrate
about transversely isotropic media. A saturated medium 1s deflned
as transversely isotroplc if 1t has equal values of permeability
and thermal diffusivity in all directions normal to a specifiled
direction. Four typical cases of transversely isotroplic media are

sketched in Fig. 1.

2 GOVERNING EQUATIONS

We consider free thermal convection in a homogeneous porous
layer saturated by a homogeneous fluld. The layer is bounded above
and below by two infinite and impermeable perfectly heat-conducting
horizontal planes. The planes are separated by a distance h and
have constant temperatures T, and T0 + AT, where the lower plane 1s
the warmer. The saturated porous medium is assumed to have coin-
clding principal axes of permeability and thermal diffusivity. One
of these axes 18 dlirected upwards, 1n z-direction. The X- and y-
axes are defined by the directlions of the two other principal axes.

See Fig. 2.

By choosing

b, (e o) h2/2 km&/h5'ATihpovkm§/K3 = e - (2.1)

as units for length, time, velocity, temperature and pressure,
respectively,kthe governing equations in dimenslonless form may be

written (Bear [9], Katto and Masuoka {101)
¥ +%e(vp-RTkK) = 0 ‘ (2.2)

Ve¥ = 0 (2.3)



%% + TeyT = ve (& oyT) (2.4%)

Here Darcy's law and the Boussinesq approximation are utilized, and
the density 1s assumed to be a linear function of the temperature.

R 1s the Raylelgh number defined as

R = KssrgTh (2.5)
ms3

ﬂf and & are dimensionless tensors of permeability and thermal

diffusivity, respectively. They willl be written

> > - .
X =g, i1 + 5,30 + kk (2.6)

> > >
£ = nydi + n,JJ + kk (2.7)

where
E, = KllKaf £, = K, /K,
(2.8)

M= Kmll'cms’ P szlea

By eliminating the pressure from (2.2) and substituting the

field variables written as

T = %% -2z + 98(x,y,z,t)
(2.9)
,§W§W§Lx,y,g,tlﬂ,,”
into (2.2) - (2.4), we obtain the following equations
32 32 32 32 32
AT _ 4 S+ 2 ) o= R(g. 22— + g 3 .
(Elaxl £, 252 azz)w R(Elaxz Ezayz)e (2.10)
VeV = 0 (2.11)
N 32 32 . 32 )
- W+ Veve = 8L 4T
w + veve = (n, Py *on, - + 122 3{06 (2.12)
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The requirements of perfectly heat conducting and impermeable

boundaries yield the boundary conditions

at z = 0,1 _ (2.13)

@
n
=
n
o

3 LINEAR THEORY

The onset of convection 1s glven by the linear version of

(2.10)-(2.13). Since the system is self-adjoint, we may put

3+ = 0. By introducing the solutions

w~zsinneg ei(RX+1y)

(3.1)

]
6 ~ s8in ¥z ei(kX+1y)

where k and 1 are wave numbers in x- and y-direction, respecti-

vely, we find the Rayleligh number for the onset of convection

: 2 2442
R, = 8K FEL7A0T () p24n,12442) (3.2)
g, k2+g,12

Minimizing (3.2) with respect to k and 1, we get the cri-

tical Rayleigh number
c

R =,n2(M1n{(§f)%, (gf)%}+ 1)2 (3.3)

Case A: When

- ny/Ey < nplE, , o (3.4

the critical wave numbers are
1

kg = m(gn) %, 1, =0 (3.5)

"which give rolls with axis aligned in y-direction.



Case B: When

nl/El > ﬂ2/52 . (306)
the critical wave numbers are
kc = 0 2 10 = ﬂ'(gznz) %- (307)

which give rolls with axis aligned in x-direction.
Case C: When
n1/8y = n, /8, : (3.8)

the orientation of the rolls 1s undetermined. The critical wave

number vector
K 1+13 (3.9)
kc = kci ch‘ (3.
is constrained by the relation

(gm0 %k 2 + (g,n)% 1.2 = x2 (3.10)

Included in case C 1s horizontal isotropy; deflned by

El = EZ =k, n1 = nz R (3-11)
Then
2
R, = wz[(n/E)% + 1] (3.12)
3 -1
a, = (k 2+1 2)% = n(&n) * (3.13)

The results for horizontal isotropy were first obtalned by Epherre

[2].

by NONLINEAR THEORY

We shall examine the motion for supercritical Rayleigh numbers.

It will be useful to transfeorm the governing equatlons by
' 1 1 :

* % ok - -
(x,y,z) = ((Elnl) ux, (gzﬂz) "Y,Z) (u-l)
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™ 1 =1

v = ((glnl)-zﬁ, (g,m,) “v,w) | (4.2)

Then (2.10)=(2.12) transform to

" gx2 2" ay2 322
(4.3)

- r (5} 22, (2} 22 ]

R (51) Rl L
* % :
VeV = 0 (4.4)

v+ Feve [yt 2 ;'(ﬂz)* v 2 - 2o (4.5)
- W T Ve = %, = T %7 - 3t .

¢ ax2 ay2  az? 2t
with the boundary conditions

; =e=0 at 2 = 0,1 (4.6)

In this transformed system of equations the anisotropy para-
meters appear only in the ratios £;/n; and Ezlnz’. Accordingly
% and @ are functions of &;/n; and E,/n,. Without loss of
generality, one of the parameters 1n each ratlo can be put equal
to 1. The mathematics will be simplified if we put &, = &, = 1,

Then the equation of motion (2.2) reduces to
-> >
v+9p ~-~RTk = 0 (4.7)

->
which implies kevxV = 0. Together with VeV = 0, this means that

the velocity is a poloidal vector, glven by one scalar function ¥

as

->
v = vx(vxke) = (v ,-V129) B &y (4.8)

xz’¢yz
From (2.10) the temperature field 1s given by

6 = - % v2y (4.9)



- 10 -

Introducing (4.9) into the heat equation (2.12) we obtailn the

governing equation for ¢

2 2 2
{(ﬂl 3—; + ng ?—Z + 3—; - %F)VZ - vaz]w = Byevv2y (4.10)
X y 3z

The boundary conditions (2.13) are expressed as

st  z = 0,1. (4.11)

<

]
<
]
o

zZ

a) ANALYTICAL SOLUTION

Two-dimensional, stationary motion.

The motion is assumed to consist of two-~dimensional rolls with

orientation predicted by linear theory. We consider case A :

ﬂl/El < nZIEZ . (4.12)

which gives motion in the xz-plane,governed by equation (4.10)

32 32 32 -
[(ﬂl %2 + ;;y)vz + R ;;§]¢ = Kw-vyzw (4.13)

Case B, nj/&; » ny/E2, 18 covered by replacing x by y and n,

by L] in (4.13).

The equation will be solved by a method introduced by Kuo [11]

and applied by Palm, Weber and Kvernvold [8}. The expansion para=-

~ meter, e, 1s defined by =

e2 = B (4.14)

The solution of (U4.13) 1s written

o & ‘
v= ) en¢(n) c (4.15)
n=1

According to (4.14) the Rayleigh number is given by
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- R ="
R = 3=l =R,

where

28
R =R /(1-¢ )
0s 0

+ Ros(gz+€u+ ece + ¢

28

)

(4.16)

(4.17)

To each order, s should be chosen so that R 1s given exactly by

(4.16). Substituting (4.14) and (4.15) into (4.13), we obtain an

equation to each power of «€:

L!P“) = [(n1 2 + -3—72-)\;12 + R, 3_2_}4,(1) = 0

9x2 3z 2

L*(n)zuRog((:'g) + ¢;2-u) + ooo) +

]

The boundary conditions are

NG

The solution of (4.18) is

(1)

] = Alcoskx sinngz

- (4.18)
ni1gw(m).vv2¢(n-m),
m=1
n>2 (4.19)
0,1 (4.20)
(4.21)

Following Palm et al. [7], k 1s chosen equal to the initially

preferred wave number
1

k = ﬂnl'“

so that

2
‘R0 =R, = nz(n1%+ 1)

The solution of (4.19) may be written

w(n)

B(n)

= + )
Ancos kx sinnz X pa

p,q

cospk xsing nz

(4.24)

The amplitudes A,,A,,**¢ are found from the solvabllity condition
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A = [§_ ERE nl(ﬂ1%+1)}%

»2 Ry
R R 3
8 Rog 13,1 . 1 “os 11n;+14n,°+3
Ay = (% g2 mtng 0 PG 11743, (4.25)
3”152 Ry 1] 2T R n+10n, 2+1
A, = A, =0

-~

The dimenslonless heat transport 1s given by the Nusselt

number

Nu =1 - (5,)__g (4.26)

The transformed system of equations (4.3)-(4.6) implies that

the Nusselt number i1s a function of §£;/n; when R/Rc is given.

Accordingly, the anisotropy in permeability 1s 1ncorporated by

replacing n; by n;/&;. Nu(z) and Nu(u) denote the Nusselt

number to second and fourth order, respectively.

R/Rc

Nu(2) 08 2 » (u.27)

| : R 3L 66(3L)25 R
RTAGR CH R gs 1+1 281 51% R“)a“ (4.28)
11 4+ 1001y 0
B EA}+10,§L)+ ‘,‘ o -

The expression for Nu(2) shows that all curves for Nu vs.

start with the same slope. Nu(u), given by (4.28) with s= 2,

i1s a good approximation for R/Rc < 2, say. It is displayed 1in Fig.3

as dotted curves.

The influence of anisotropy on the Nusselt number for slightly
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supercritical Rayleigh number is from (4.28) given by the
function

3
n ny<_
33—66(5) 5

3
n n
E+1°(E) +1

1

which 1s displayed in Fig. 4. The subscripts have been dropped

in order to .cover both case A and B.

b) NUMERICAL SOLUTION

Stationary problem

In order to obtain a sufficiently exact solution of the problem
for larger supercritical Rayleigh numbers, we have to use numerical
methods. Using Galerkin's method, we shall find stationary solu-
tions of (4.10) and later examine the stability of these nonlinear
solutions with respect to small disturbances.

The steady state solution of (4.10) subjected to the boundary

conditions (U4.11), consists of two-dimensional rolls. For case A

we may write

v = A et (2) (4.30)

where

op(z) = sinmwyz (k3D

satisfies the appropriate boundary conditions. The summation in
(4.30) runs through all integers -« <n<e and 1 <m< = ,

The symmetry of the problem implies the restriction

Anm = A-nm (4.32)
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corresponding to convection cells without tilt.

To determine the unknown amplitudes A ., we substitute (4.29)
into (4.10), multiply by e'pkqu(z) and average over the whole
fluid layer. We then obtaln an infinite set of algebraic equations

for Anm:

((n1n2k2 +m?n2)(n2k2+m2n2) _IgnZKZ)Anm

|

A (p2a2+q212)(pm-gs){n=plaZn-(4.33)

- 3 p’qsm,q An--p,(n:n.--q)e;m’q pa .
*ipgq An_p’m.,q(pzaz‘fqzﬂ)(pm+qs)(n-p)a2w = 0 )
where o
1 m»>gq
®m,q © 0 m=gq ' (4.34)

-1, m«<q

In order to solve this set it 1s necessary to truncate the
series (4.33). The numerical computation shows that the series con-
verges more rapidly with increasing n than with increasing m.

Hence, we choose to neglect all terms with

In] + 21> n (4.35)

_where N 1s a sufficiently large number,

Beeause of the symmetry in the equations (4.33), the solution
will only contain amplitudes with n+m even, giving Nx E%l equa~-
tions to be solved. For a glven N the algebralc equations are
solved by a Newton-Raphson iteration procedure. Usualiy we need less
than 5 iterationsto obtaln a satisfactory exact solution. A more

serious problem, however, is the value of the truncation parameter N.
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'/Following Busse [12], we assume the solutlon to be suffieciently

accurate if, when replacing' N by N+1, the Nusselt number varies
less than 1 per cent.

The results of the numericél computations are shown in Fig.
3, 5 and 6. The wave number 1s always chosen so that the Nusselt
number 6btains its maximum for the given values of R/Rc and & /n.
However, the variation of the Nusselt number with the wave number

is very small.

Fig. 3 shows the Nusselt number vs, the supercritical Rayleigh
number for selected values of anisotropy. For moderate anisotropy

and moderately supercritical Rayleigh numbers the dev¥ations from

1sotropy are small.

Fig. 5 is analogous to Fig. 4 and shows the Nusselt number
variation with &/n when R/Rc = 5.0. PFig. 6 shows the value of
E/n which gives minimum Nu for each choice of R[Rc. This is not
of practical importance, because these minimum values are always

very close to the values for isotropy.

Stabllity of the steady two-dimensional solution.

To examine the stability of the steady two-dimensional motion,
we replace ¢ by ¢+ y' in (4.10). ¢' means a small disturbance

~ of the steady solution. The equation for ¢' i1s linearlzed, and

becomes——— - T

2% 32, 3% _ 332 2
[("‘ %2 "2 332 | agZ " 2t 70 F RV S

= Tyrevv2y + Tyevv2yr
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The bouﬁdafy dbndifiéné'are"
V=l =0 for z = 0,1 (4.37)
If there exists a solution of (4.36) with growing time depen-

dence, the stationary solution 1s sald to be unstable. Otherwise

it 1s stable.

For case I) we may write

b= § AL Jinkx _1(dx+by)+ot o (2) (4.38)
n,m

where b and d are free parameters.

inkx

For case II), the factor e must be replaced by einly.

‘The equations for the unknowns Aﬁm are obtained by mult;plying
(4.36) by g~1pax e'i(dX+by)'°t wq(z) and averaging over the whole
fluid layer. We neglect, as in the stationary case, all terms with
In] + 951 > N, where N has the same value as in the corresponding
stationary problem. The system of linear homogeneous equations con-
stitute an eigenvalue problem for o¢. The analysis of the eilgen-
value problem 4e simplified because 1t separates into two subsystems

with elther n+m even or n+tm odd.

The eigenvalue is given by
o = o(k,R,b,d) (4.39

~—and for a glven k and R, we have to vary both b and d to find

the most critical disturbances. Fortunately, numerical results show
that the most unstable perturbations occur for either b = 0 or

da = 0. Disturbanceé with b = 0 have axis parallel to the axis of
the stationary rolls. The corresponding instability is termed
Eckhaus instability. Disturbances with 4 = 0 give instability
termed cross-roll instability, when b 1is of the same order of mag-

nlitude as k, and zig-zag instability when b =+ 0,
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We first consider the case of horizontal isotropy, defined by
(3.11). All rolls have the same linear stability, independent of
orientation. In this case it turns out that cross-rolls are most
unstable, except for a small domain with k < kc and R slightly
supercritical where we get zig-zag instabllity. The transformed
equations in the beginning of this chapter imply that the stability
domain 1n the a/ac - R/Rc-plane is a function of £/n. The results
for two rather extreme values of &/n (100 and 1/100) are shown
in Fig. 8. The isotropic case is also displayed as a comparison.

We obtaln corrections of the results given by Straus [6] and
Kvernvold [7] because they overlooked the zig-zag instability. The
domains of stabillity are within closed curves. Accordingly, there
are upper limits for the Raylelgh numbers glving steady two-dimen-
silonal motion. We notice that no oscillatory instability will occur
for horizontal isotropy. Values of E&/n between these extreme

values being displayed, give s8tability regions a8 intermediate cases

of the displayed reglons.

Let us consider media which are horizontally anisotropic. The
stationary problem 1s principally the same as for horizontally iso-~
tropic medla because the properties along the axis of the rolls have
no influence on the steady motion. But there 1s a fundamental

difference with respect to the stability of this motion. When we

_have horizontal anisotropy, the cross-rolls and zig-zags will be

linearly stable for small supercritical Rayleigh number. The sta-
bility reglon is therefore determined by Eckhaus instability in a

certain supercritical domain, which 1s larger the more 51/"1

devistes from izlnz.

Therefore, a horizontally anisotropic medlum has larger sta-
bility reglon than the horizontally isotropic medium with the same

stationary problem.
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We display only one example of stabllity for horizontally
anisotropic media, curve II on Fig. 8, which is gilven by
Ey/n; =10 and £,/n, = 1. Curve I gives the stabllity region
for a horizontally isotropic medium with the same statlonary
problem. The stability domains are bounded by solid curves, indi-
cating exponential instabilities, and one broken curve, indicating
oscillatory instability. The dotted curve is the neutral curve of

linear stabllity, which is common for both cases.

5  APPLICATIONS IN INSULATION TECHNIQUE .

From the above general results we will discuss the insulation
properties of transversely isotropic porous materials. Our aim is

to minimize the loss of heat through a horizontal layer. )

Let KI and KII denote longitudinal and transverse permea-
bility,nrespectively, and KT and KnII longitudinal and trans-

verse effectlive thermal diffusivity, respectively.

In the conduction regime the heat transport is proportional to
the vertical thermal diffusivity. It 1s therefore important to
orientate the material in order to get minimum vertical diffisivity.

It is also important to delay the onset of convection, both to

prevent convective heat transport and perhaps also to prevent wearing

of the porous material by convection currents. For horizontal iso-

tropy given by

€y = &y = Kpp/Kg,  my = np = kppp/epg (5.1)
the critical temperature difference is from (3.12)

2
vr2 mIT

K 3
a1, = -é-gﬁ[(Rl;—If" + g ] (5.2)
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* When the material is turned 90° we get, say, 1sotropy in the

xz-plane, We then have

€1 = Kp/Kpps ny % kpr/kprrs £, G n, <1 (5.3)
giving from (3.3)
2 “mI.% mII,? KmIT, 312
o, = 3fwan{ (217, GEEL®) + @BEL)?] (5.4)
¢ gah Kp 7 K I
The class of materlals deflned by
KmI/KI > KmII/KII (5.5)

may appropriately be termed "parallel, perforated plates", see
Fig. 1 (a) and (b). Egs. (5.2) and (5.4) imply that horizontal
plates have larger critical temperature difference than vertical
plates.

The other class of materials defined by

/K (5.6)

KmI/KI b i i

will be termed "parallel fibres", see Fig. 1 (c) and (d). The
criticai temperature difference is the same for horizontal and

vertical fibres.

The dimensionless heat transport after the onset of convection

e — 48 measured by the Nusselt number, Fig. 3 shows that Ehe Nusselt”ﬂ”

number dependence on R/Rc 1s different for different anisotropy.
It is, however, the dimensional heat transport which is of impor-

tance from a physical polnt of view. But, because of the different
effects involved in the heat transport, 1t 1s not possible to gilve

further general conclusions.

An interesting specilal case 1s the thermally isotropic material
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(kp7 = KmII). This 1s usually a good approximation for insulation

materials. In thils case we conclude:

1. Horizontal fibres always gilve less heat transport than
the same fibres turned vertically. The critical temperature diffe-
rence is the same, and the difference in heat transport 1is solely

due to the difference in Nusselt number as given by Fig. 4 and 5.

2. For perforated plates the problem is more complicated.
The Nusselt number for horlzontal plates is glven by the lower
branch (dotted curve) in Fig. 4 and 5. It 1s less than the Nusselt
number for vertical plates when &/n 18 small and greater when &/n

1s large. The Nusselt number for vertical plates is the same as for

isotropy. The critical temperature difference is, however, higher for

horizontal plates than for vertical plates, so that the total peat
transport (conduction + convection) 1is greater for vertical plates
than for horizontal plates. This 1s seen from Flg. 9 where we have
displayed the heat flux vs, temperature difference for varlous values
of KI, while KII and KpT = ¥p1T  2Fe constant, Curve V gives
the heat flux for vertical plates, and curve VI and VII give the heat
flux for two types of horizontal plates., From this figure we also

conclude that the type of media giving best insulation, is horizon-

- tally isotropic media with as small vertical permeability as possible.

6 SUMMARY

A theoretical analysis of thermal convectlon in anisotropic
porous media 1s performed. The <criterion for the onset of convection
is derived. Moreover, the supercritical steady two-dimensional

motion 1s investligated both analytically and numerically, and the
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stabllity reglon of this motion 1s found. The analytical results
are valid for Rayleigh numbers less than 2 times the critical value
Rc, and for all values of the anisotropy parameters £,, €, M and
n,. The numerical results, which are valid in the whole domain of
stable, steady two-dimensional motion, are only given for some re-

presentative values of the anisotropy parameters.

It 1s shown that the Nusselt number and the stabllity regions
/
are functions of the anlsotropy parameters in the forms Ellnl

and &,/n,.

It is found that the steady two-dimensional motion is princi-
pally the same for horizontally anisotroplic as for horizontally
isotropic media. The stabllity regions, however, are considerably
larger for the former type of media and principally different from

those of horizontal isotropy.

The theory may be of interest in hydrologlcal science and in
insulation technique. The nonlinear effects of anisotropy are,
however, surprisingly small compared with the linear effects known
from earlier work [1,2]. Burns, Chow and Tien [4] also found small
nonlinear effects of anisotropy. But their problem is so different

from ours that the results cannot be compared.
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FIGURE LEGENDS3

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Sketches of transversely 1sotropic medlia composed of equally
spaced, parallel perforated plates or parallel fibres.

(a) Horizontal plates.

(b) Vertical plates.

(¢) Vertieal fibres.

(d) Horizontal fibres.

General model.
Nu vs. R/Rc for some choices of E/n.

f as a function of E&/n. The s80lid curve covers

0 < £/n < 1 expressed by (E/n)% as abscissa. The
dotted curve covers 1 < &/n < = expressed by (&/n)"
as abscilssa.

Nu as a function of ¢&/n for R/Rc = 5,0. Abscissas
as in Fig. 4.

The value of &/n giving minimum Nu for each value
of R/Rc.

Stability domains for the steady two-dimensional motion in
the a/a, - R/Rc - plane, for selected values of ¢&/n
(horizontal isotropy).

Stabillity domains for the steady two-dimensional motion in
the k/ké - R/RG - plane.
I : Horizontal isotropy, &/n = 10.

IT : LI/TLI = 10 g /ﬂn = 10, o

III1 ‘Neux44ﬂr4uugmLiknLJuua_onset_zdlxunnmuudxug_ S
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Fig. 9 Comparison of the heat flux vs. temperature difference
for different medla with equal, isotropic diffusivity

and KII kept fixed.

I : KI/KII = 100, 1longitudinal direction vertically
II -"- =100, o horizontally
IIT : -"- = 10, —_— vertically
Iv. ¢ -"- = 10, —_— horizontally
\' "< 1, —_— horizontally
VI ~"- = 1/10, —_—— vertically
VII : ="- = 1/100, " vertically

Broken curve means two-dimensional, steady motion unstable.




V<

s et




1 (p)

Fig.




T Ki, W

KII' M’mll

OOOO/
OO OO

cooo /

Kis Mon J/

Fig. 1 (¢)

V0PI S S DO

V<

o ama ol e e






Z )

w w

//////// T




e

Nu

numerical results

------ analytical results to
fourth order

€ "3t4



for dotted curve

(E/m) "2
0.L5 | . 110
(g/1)"2

for solid curve

1.0

Fig. 4




| 4
(/M) "2¢or dotted curve

3? 1 ]
0 05 1.0
( E/'n)‘/? for solid curve

Fi g- 5

ot Al bt - b ain



Fig. 6




.:Fi-g. 7

12

100




f% [ —exponential
|- - Eckhaus

cross-roll

] .
oscillatory
///—Eckhaus

cross-roll

zig-zag

exponential
Eckhaus




=1

Fig. 9



