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Abstract

For a long time, the preferred machine learning algorithms for doing graph
classification have been kernel based. The reasoning has been that kernels
represent an elegant way to handle structured data that cannot be easily
represented using numerical vectors or matrices. An important reason for
the success of kernel methods, is the ’kernel trick’, which essentially replaces
computing the feature representation, with a call to a kernel function, thus
saving computation and memory cost. For some of the most successful kernels
in the graph domain however, such as graphlets, this is not feasible, and one
must compute the entire feature distribution in order to obtain the kernel.
We present experimental evidence that using graphlet features presented to
different neural networks gives comparable accuracy results to kernelized
SVMs. As neural networks are parametric models that scale well with data
size and can yield faster predictions than SVMs, our results suggest that
they are attractive models for graph classification. Our experiments show
that increasing the depth of the network gives a highly significant speedup in
convergence, but no effect on accuracy on our datasets. In addition to this,
we present an experimental method of using latent node representations from
a method called DeepWalk as input to a neural net for graph classification.
This method under-performs both kernel based methods and our graphlet
based method. Finally we discuss several ways to extend both graphlet based
and embedded representation based classification methods.
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Chapter 1

Introduction and motivation

In many branches of science, problems have emerged which involve studying a
large set of random variables connected by an intricate dependency network.
This dependency network may be explicitly encoded in the data, like in
social networks, or it may be latent and hence must be inferred from time
series observations of the random variables [38]. The mathematical formalism
for studying these dependency networks is known as graph theory, and the
application of graph theory to real world graphs has spawned the relatively
young but very active field of network science. From failure prediction in
power grids to toxicology assessment and social network analysis, the number
of problems that can be approached via graph analysis is vast. And because
graphs are such general objects, advances in the field of graph and network
analysis can often instantly be applied to problems in other fields where it is
useful to represent data as graphs or where a graph-based structure can be
inferred.

Increasingly, when researchers or people in industry need to make sense
of complex datasets, be it object recognition in images, speech recognition,
speech translation or stock market prediction [40], they turn to machine
learning. Originating as a sub-field of artificial intelligence (AI), machine
learning explores the construction of systems that can learn from, and
make predictions about, data. These machine learning systems are often
attempting to model a complex underlying reality but can observe only the
data that is presented to them. For a long time it has therefore been a
priority for those who build such systems to hand engineer features that are
appropriate to the task at hand, such as edge detectors for object recognition
systems etc. Coming up with features is "difficult, time-consuming, and
requires expert knowledge" to quote Andrew Ng [49]. With the advent of
what is called Deep Learning we are seeing the emergence of algorithms
capable of generating features from raw data with no or minumal human
intervention [40]. Current state of the art systems in many of these domains
now rely on little or no hand engineering of features. In addition, all
major commercial speech recognition systems are now based on deep learning
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methods [25], [12]. Adoption of these types of algorithms help cut the
development time of machine learning systems and lowers the need for
domain specific expertise when designing the system.

The last couple of years have seen some applications of modern neural
networks to graph and network analysis, such as Deep Graph Kernels [62]
which attempt to mitigate the diagonal dominance problem encountered by
conventional graphlet kernels via the use of a context encoding matrix. Other
interesting examples include DeepWalk [52] which uses deep learning for
generating latent representations of graph vertices, deep locally connected
networks which generalizes convolutional neural networks to graphs via
multiscale graph clustering and spectral networks which uses a generalization
of the Fourier transform on graphs to learn filters over the eigenvalues of the
graph Laplacian. But by and large there has for a substantial time been
a domination of methods using hand engineered features such as graphlet
kernels [57], [58], [22], [4]. A powerful argument for using kernels is that they
in some cases are able to computationally cheaply access an implicit higher
dimensional feature space by employing what is called the ’kernel trick’. For
many graph kernels however, computing the actual feature representations is
necessary in order to obtain the kernel. This means that one might as well
exploit the entire feature representation as input to a classifier, instead of
restricting oneself to kernelized support vector machines.

A common problem in analysis of graph datasets is graph classification.
That is, given a set of graphs belonging to mutually exclusive classes, how
can we design a system that can learn which class a given graph belongs
to by observing either the graph itself or features derived from the graph.
We present two contributions to the graph classification problem. The first
is an examination into various neural network architectures’ capabilities of
using graphlet kernels [57] [58] and structurally smoothed graphlet kernels
[61] to do graph classification. The second is a method using the latent node
representations from DeepWalk [52] as features for graph classification. We
show that neural networks are capable of classifying graphs with the same
accuracy as SVMs given graphlet input.
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Chapter 2

Graph Theory

“Mathematics is the art of
giving the same name to
different things.”

Henri Poincaré

“The founders of Google
computed the Perron-Frobenius
eigenvector of the web graph
and became billionaires.”

Andries E. Brouwer
Willem H. Haemers

Networks are everywhere. Some of them are obvious, such as your social
network of friends, family and acquaintances, or the web. Others are slightly
more hidden, such as banking or logistics networks. And finally, some are
primarily known to specialist researchers such as cell signaling networks
in biology or reaction networks in chemistry. If looking closely, one can
see that nature and society are permeated by networks at almost every
scale except perhaps the very largest (cosmology) and the very smallest
(elementary particles) [18]. So it is with good reason that theoretical research
into networks and graphs has become a highly active research area over the
last decades: general results in network theory can instantly be applied to
fields where data is meaningfully represented as networks. The theory and
science of networks is relatively young, but its roots go far back and touch
many academic domains. The next section will present a short history of
network science. Because of the interdisciplinary nature of the field, the
jargon can be somewhat confusing. Erring on the side of oversimplifying
we can say the difference between graph theory and network science is that
graph theory studies abstract hypothetical mathematical structures, whereas
network science attempts to model an underlying existing network using the
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mathematical abstractions from graph theory or qualitative tools from the
social sciences. We will use graphs and networks, nodes and vertices, edges
and connections interchangeably throughout the thesis.

Figure 2.1: Visualization of the internet ca 2005. The bright spots are
clusters of densely connected computers. Source: www.opte.org/maps

In A First Course in Network Theory [18], the authors list several ways to
define networks by their connections, ranging from the physical to the more
conceptual:

• Edges representing physical links. This refers to networks where
nodes are physically connected, such as railroad networks, biological
neural networks, power grids etc.

• Edges representing physical interactions. In some networks,
nodes are connected by physical interactions such as the physical
interaction among proteins in protein-protein networks.

• Edges representing ’ethereal’ connections. Some nodes are
connected by the exchange of information, irrespective of the exact
physical route of the information, as in cellular networks or the web.

• Edges representing geographic closeness between nodes. In
structures such as maps and biological tissue, we use nodes to denote

8



a region of a surface, and connections to represent the neighbour or
nearness relation.

• Edges representing exchange of mass or energy. In networks
such as food webs, trade networks or metabolic networks, the edges are
represented by their transfer of mass or energy between the nodes.

• Edges representing social connections. In social networks edges
can represent any kind of social tie, such as family, friendship,
acquaintance, colleague etc.

• Edges representing conceptual linking. Nodes may be conceptu-
ally connected to each other such as in academic citation networks or
in wikipedia. Almost any given wikipedia article, will lie in a cluster of
articles vaguely related to each other.

• Edges representing functional linking. Edges can represent
functional relationships, such as between parts of certain machine,
brain regions etc.

The authors note that these concepts are not disjoint, and that there are cases
where it is beneficial to interpret a network using several of these points of
view.

2.1 A brief history of graph theory and network
science

The branch of mathematics studying graphs stretches back to Eulers 1736
paper on the bridges of the city of Königsberg in Prussia. The city (Now
Kaliningrad in Russia) was spread out over both sides of the river Pregel,
and two large islands which were connected to each other and the mainland
by seven bridges. A puzzle that occupied the people of Königsberg was
to find out if it was posssible to have a stroll accross the seven bridges
without crossing any of them twice. Euler proved that this was indeed
not possible, and with that, lay the seeds for the study of both topology
and graph theory. Euler observed that the exact route taken from bridge
to bridge on a given landmass was irrelevant. Indeed the only relevant
information is the landmasses and their connections. This allows one to
abstract the problem into what we today would call vertices (landmasses)
and edges (bridges). Euler also observed that during any walk, a person
enters a non-terminal landmass as many times as the person leaves it. So if
every bridge is to be crossed only once, it follows that each landmass (except
the start and ending point of the walk) must have an even number of bridges
connecting to it. As all the landmasses in Königsberg are connected by an
odd number of bridges, Euler showed that it was impossible to traverse all
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bridges without crossing one of them twice. Today, a path in a graph which
visits each edge only once is called an Eulerian path. The invention of graph
theory was not much of a Big Bang however. The formalism of what we
today call graph theory was invented incrementally over the course of two
centuries after Euler’s paper. Early important results include William Rowan
Hamiltons and Thomas Kirkmans work on hamiltonian paths and cycles. It
also found applications in chemistry and it was in this context the term graph
was coined, by mathematician James Joseph Sylvester. It took exactly two
hundred years from Euler’s paper to the publishing of the first book on graph
theory by Dénes König, a Jewish Hungarian mathematician. In 1969, the
American mathematician Frank Harary also published a textbook on Graph
Theory. In it he standardized much of the modern formal terminology and
thus broadened the reach of the field to researchers in physics, statistic, social
sciences and electrical engineering. Graph theory contains many interesting
problems and theorems, a famous one being the four color theorem, which
can be stated as "given any separation of a plane into contiguous regions,
producing a figure called a map, no more than four colors are required to
color the regions of the map so that no two adjacent regions have the same
color. Two regions are called adjacent if they share a common boundary that
is not a corner, where corners are the points shared by three or more regions."
This problem was first posed by the South African mathematician Francis
Guthrie in 1852 when he noticed that he only needed four colors to color the
counties of England. The problem was not solved until over a hundred years
later in 1976. Interestingly, it was also the first major theorem to be proved
by the aid of a computer.

Figure 2.2: Eulers sketch of the Seven Bridges of Königsberg

In 1959-60, Paul Erdõs, Albert Rényi and Edgar Gilbert introduced the
concept of random graphs. Up until then graph theory was mostly focused
on results concerning graphs where the connectivity is fixed. Conversely, a
random graph is a graph where the connectivity is stochastic. As such, the
field of random graphs lies at the intersection of probability theory and graph
theory and studies distributions over graphs and the properties of random
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graphs. The first model of a random graph is the Erdös-Renyi model G(n,p)
where a graph with n vertices is constructed by randomly connecting nodes
such that the probability that two nodes are connected is p. The potential
for real world applications of their work was understood by Erdös and Renyi,
as evidenced by the following prescient quote in their 1960 paper "On the
Evolution of Random Graphs" [16]:

In fact, the evolution of graphs may be considered as a rather
simplified model of the evolution of certain communication nets
(railway, road or electric network systems, etc.) of a country or
some other unit. (Of course, if one aims at describing such a real
situation, one should replace the hypothesis of equiprobability
of all connections by some more realistic hypothesis.) It
seems plausible that by considering the random growth of more
complicated structures (e.g. structures consisting of different
sorts of "points" and connections of different types) one could
obtain fairly reasonable models of more complex real growth
processes (e. g. the growth of a complex communication net
consisting of different types of connections, and even of organic
structures of living matter, etc.).

In the following decades, many candidates for a more realistic hypothesis
than the equiprobable connection hypothesis were suggested. Already in
1965, Derek de Solla showed [59] that the numbers of citations a paper
received followed a power law, which implied that the citation network was
what would later be called a scale-free network. A network is called scale-
free if the degree distribution of the nodes in the network follows a power
law. Interest in scale-free networks increased in 1999 when Albert-László
Barabási and Réka Albert independently introduced what we today call the
Barabási-Albert model, a model for generating scale-free networks from a
process called preferential attachment. The model works as follows: The
network begins with a set of m0 initial nodes that are all connected. Each
new node is then connected to m ≤ m0 existing nodes with a probability
proportional to the connectedness of the existing node. The probability pi
that the new node is connected to the existing node i is

pi =
ki∑
j kj

(2.1)

where ki is the degree of node i, and the denominator is the total degree
of the network. The result of this is that new nodes have a preference to
attach to nodes that already have a high number of connections, leading
to the growth of hubs. In parallel with the research in the natural and
informational sciences, sociologists started applying networks to the studies
of groups of people. In 1933, Jacob Moreno presented the Sociogram [42], a
graph based representation of connections in social networks. This method of
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representation was well received and eventually led to the creation of the field
of social network analysis. The interest in studying relational data increased,
and after the 1940’s what we today call network science was also adopted by
social anthropologists, organizational scientists and social psychologists and
economists [21]. A famous study is Stanley Milgram’s Small World Problem.
It was the first research to produce evidence suggesting that human society
was characterized by short paths, meaning that any two humans on average
are removed by only a few degrees of separation. The experiment (technically
a series of experiments) was carried out by choosing random people in Omaha
and Wichita and asking them to forward a letter to a random person in
Boston. If the person knew the Bostonian, he or she was to forward it directly,
otherwise the person was to think of another person who might know that
person and then forward the letter to them with the same instructions. A
postcard was also mailed back to the researchers in order to let them track the
letter’s journey. From the results the researchers concluded that people in the
United States are separated by six people on average, leading to the phrase
six degrees of separation. Though criticized for having some methodological
flaws (selection and non-responsive bias among others), it was nonetheless
seen as groundbreaking in shedding a light on the topology human society
and remains one of the most cited papers in psychology. Interestingly, the
social network site Facebook (1.55 billion monthly users at the moment of
writing) estimated the average degree of separation on their entire social
network to be 3.57 see Figure 2.3 (with the author of this thesis achieving an
average degree of separation of 3.37)[15]. The 90’s and onwards saw a surge

Figure 2.3: The estimated degree distribution of the Facebook social
network

in network research in physics and chemistry and biology as it was used
to model gene regulatory [34], protein interaction networks[1] and found
several applications condensed matter physics and statistical physics [17].
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The advent of the information age and its accompanying interconnectedness
and exponential growth in data production has further increased the interest
in network science. Data from the web now fuel large amounts of research
into networks in general and social networks. Examples include modeling the
topology of the world wide web [19], predicting cascades of content sharing
on social media sites [7], the recurrence of cascades [8] and how connectivity
suddenly grows in real world networks [13]. As a recognized field of it’s
own, however, network science is very young (Cambridge University Press’
Network Science Journal was only founded in 2013). This is because, as the
first editorial of the journal notes[5], network science came about as a result
of people in a wide array of sciences focusing on interdependent relations,
and borrowing from what had been done in other fields in order to research
this.

2.2 Graph Classification

With graph structured data becoming ubiquitous, algorithms for mining and
analyzing them for the purpose of doing statistical inference is of growing
importance. Problems of interest include graph classification, which the
topic of this thesis, node classification, graph compression for compact
representation of data, graph clustering for finding important dense sub-
networks and link/edge prediction for the prediction of graph evolution.
Graph classification and regression has been of special importance in bio-
and chemoinformatics, both are fields with large datasets of graph structured
data. In areas like drug development for example, it is important to identify
molecules that are active towards intended targets but not towards other
targets. In 2012 the pharmaceutical company Merck organized a Kaggle
competition offering $40 000 to the creators of the most accurate algorithm
for molecular activity [45]. Interestingly, graph classification has also been
used to help programmers debug noncrashing buggy code by identifying
program regions that lead to faulty code [43].

2.3 Key Concepts from Graph Theory

This section covers the basic mathematical formalism and terminology of
graph theory and several key concepts useful for the material further on. A
graph is a representation of a set of objects and their relations. Formally
it is an ordered pair G = (V,E) where V = {v1, v2,...,vn} is the ordered
set of vertices (or nodes) and E ⊆ V × V is the set of edges between the
vertices. Two edges are called adjacent if they are connected by an edge, or
more formally; two vertices vi, vj ∈ V are adjacent iff (vi,vj) ∈ E. Similarly,
two vertices are incident if they share a vertex, i.e. all edges (v,vi) ∈ E are
incident on v. We denote the size of the graph by |V |, in this case n. If
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(vi, vj) ∈ E ⇐⇒ (vj,vi) ∈ E the graph is called undirected, otherwise it is
directed.

Figure 2.4: A random graph

Given a graph G = (VG, EG) and a graph H = (VH , EH) we say
that H is a subgraph iff there is an injective mapping α : VH → VG s.t.
(v,w) ∈ EH ⇐⇒ (a(v), a(w)) ∈ EG, and denote it by H v G. That is,
if VH is a subset of VG and EH is a subset of EG, then H is a subgraph of
G. If for every vi, vj ∈ VH we have that (vi,vj) ∈ EH ⇐⇒ (vi,vj) ∈ EG
we say that H is an induced (or full) subgraph of G. An intuitive way to
understand the concept of induced subgraphs is that they are the subgraphs
that you can obtain by deleting nodes and their incident edges from G. If all
pairs of vertices of an undirected graph are adjacent, we say that the graph is
complete. An induced subgraph that is complete is called a clique. If the clique
is not a subset of any other clique, it is called a maximal clique. We say that
the neighbourhood of a graph N(v) is defined as N(v) = {vi ∈ V |(v,vi) ∈ E}.
We define the degree of a vertex as deg(v) = |N(v)|. An edge is called a self
loop if it is of the form (vi,vi). If a graph is undirected and has no self loops
we say that is is a simple graph.

We say that two graphs G and H are isomorphic if there exists a bijective
mapping β : VG → VH such that (vi,vj) ∈ EG ⇐⇒ (β(vi), β(vj)) ∈ EH .
Deciding if two graphs are isomorphic is a non-trivial problem that holds
an interesting place in computational complexity theory. It is clearly in NP,
while it is suspected not to be NP-complete and not to be in P.
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Figure 2.5: A random graph with a maximal clique consisting of nodes
1,2,5,6

2.4 Matrix Representations of Simple Graphs
Graphs can often be represented using matrices. This is very convenient
because by employing matrix representations we can turn certain analysis of
graphs into a linear algebra problems, for which we have a vast machinery
of efficient algorithms and methods at our disposal. Indeed it has been show
that many important properties of a graph is encoded in the characteristic
polynomial, eigenvalues, and eigenvectors of its matrix representations [23].
We therefore review some of the most important matrix representations in
this section.

Adjacency Matrix A simple graph G of size n can be represented as an
n × n matrix A where the entries ai,j = 1 iff (vi,vj) ∈ E and 0 otherwise.
The adjacency matrix of a simple matrix is symmetric.

Incidence Matrix The incidence matrix of a graph is a |V | × |E| binary
matrix M with mi,j = 1 iff vi is incident upon edge ej and 0 otherwise.

Degree Matrix The degree matrix of a graph contains information about
the degree of each vertex. It is a diagonal matrix D such that di,j = deg(vi)
for i = j.

The Graph Laplacian The graph laplacian is defined as L = D − A for
a simple graph, where A is the adjacency matrix and D is the degree matrix.
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The entries of L are thus given by

li,j =


deg(vi) if i = j

−1 if i = j and vi is adjacent to vj
0 otherwise
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Chapter 3

Machine Learning & Neural
Networks

“Let the machine take care of
the machines, and I’ll go spend
more time with my family, or
golf.”

Mark Goddard

In order to understand how neural networks can be applied to the problem
of graph classification, it is necessary to have an understanding of Machine
Learning in general, and Artificial Neural Networks in particular. The former
is a sub-field of Artificial Intelligence (A.I.) which deals with methods for
making computers learn patterns from data, and the latter is a particular set
of data structures and algorithms used to achieve this goal. Machine learning
is commonly divided into three main types [27]:

• Supervised Learning In this type of learning we are trying to learn
a hypothesis h : X → y which maps from the input data domain to
the outputs (or training signal). If the output set Y is finite, we say
that the task is a classification task, if it is continuous we say that it
is a regression task.

• Unsupervised Learning If all we have is the input data X and
no output data to guide our training, the task is called unsupervised
learning. The focus in this type of learning is to discover hidden
structure in the data. Common problems in unsupervised learning are
dimensionality reduction and clustering of the input data.

• Reinforcement Learning In reinforcement learning we have a
situation where the learning algorithm interacts with an environment
and is trying to learn how to behave. The cues for whether or not
the algorithm is behaving optimally is given only occasionally in the
form of (usually) scalar reward values. Reinforcement learning can be
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viewed as a a form of semi-supervised learning where the training signal
is sparse and delayed. It can also be viewed as planning in a domain
with stochastic transitions.

As the focus on this thesis is graph classification, the scope of our
discussion of machine learning extends only to the supervised learning
problem. We will start this chapter by a quick overview of the theory
of statistical learning, followed by an introduction to several neural
network architectures such as logistic regression, multilayer perceptron and
convolutional neural networks. The chapter then finishes with a discussion on
the specifics of training neural networks regarding optimization, computing
the gradient, and regularizing the network.
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3.1 Statistical Learning Theory

Statistical learning theory provides a theoretical framework for the discussion
of machine learning, grounding it in probability theory and statistics [44], [20].
This section presents some basic concepts from this field which allows us to
compare different machine learning methods and test them in a theoretically
rigorous fashion. Again, we restrict the discussion to supervised learning, as
it is the most relevant part for this thesis. For the mathematical description of
neural networks and backpropagation, we will borrow notation from Michael
Nielsen’s book Neural Networks and Deep Learning [50].

Let X be the vector space of possible inputs and Y be the space of all
possible outputs, and let Z = X × Y be the product space. We assume
that there is a hidden distribution P (Z) = P (X ,Y) over this product
space. Denote by H the hypothesis space of functions f : X → Y . The
total product space Z is unobserved, but we have a training set S =
{(x1,y1),(x2,y2),...,(xn,yn)} = {z1,z2,...zn} of n i.i.d samples drawn from
P (Z). The supervised learning problem in its essence, is to use the training
data from S to pick a hypothesis fH from H such that fH(x) ≈ y for hitherto
unseen data from P (Z). For our purposes, fH usually takes the form of a
parametrized function.

3.1.1 Training & Model Performance

Conditioning the model to draw reasonable hypotheses’ from H, is called
training, and consists of finding the model parameters that maximizes or
minimizes a certain performance criterion J(θ), where θ is the set of model
parameters, that quantifies how the model performs. How a model is
trained vary across model families. Certain linear models for instance, allow
for closed form estimation of optimal parameters for certain performance
criterions. For neural networks however, iterative approaches employing
numerical optimization methods must be used. As the focus of this thesis
is classification, this discussion will primarily cover performance measures
relevant to this. Functions of this type are referred to as loss functions and
penalize erroneous classification and reward correct classification. Several
loss functions have been suggested in the machine learning literature. An
intuitive performance measure for a classifier is the zero-one loss, or mis-
classification rate:

J =
1

N

N∑
i=1

If(xi)6=yi

19



where N corresponds to the number of training examples, I is the indicator
function:

Ix =

{
1, if x is True
0, if x is False

and f(xi) and yi refer to the model output and correct label for example
i, respectively. We see that by minimizing this objective function, we get
parameters that maximizes the accuracy on the training set S. A serious
drawback with the zero-one loss however, is that is prohibitively expensive
to optimize for large models as it is not differentiable. This has led to
the adoption of other loss functions such as Mean Square Error and Cross
Entropy:

J =
1

2N

N∑
i=1

||f(xi)− yi||2 (3.1)

J = −
N∑
i=1

log
(
f(xi)

yi(1− f(xi))
1−yi
)

(3.2)

While both are used frequently for classification purposes in both research
and industry, cross-entropy, which corresponds to the negative log-likelihood
of a series of Bernoulli trials, is a more natural fit for the classification setting.

3.1.2 Model complexity, generalization and regulariza-
tion

A sufficiently complex model (complex in the sense of number of trainable
parameters, also referred to as model capacity) can be taught to learn its
training data perfectly. But it is the ability of the method to perform well on
unseen data, called generalization, that matters for most practical supervised
learning tasks. If a model performs well on training data, but poor on test
data, we say that the model has overfitted. This means that the model is
putting to much weight on the peculiarities of the training set. If a model
fails to get good performance on both the training and test set we say that
the model underfits. A model that underfits lacks the complexity necessary
to express the relationship between the features and the labels. A model
generalizes well when its performance on the training set translates to the
test set.

A rigorous method for finding optimal model capacity given a problem,
or dataset, is still an open problem in machine learning. A common
heuristic method for solving this problem is to build models with excessive
complexity and then penalize model complexity through a process known
as regularization [11]. Regularization refers to an extensive set of methods
applied to model training that reduce overfitting, and is a highly active
research area. A common method for regularization is the introduction of
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Figure 3.1: An illustration of overfitting. The function f(x) = −x2 + ε
(ε ∼ N(0,1) ) is fitted with polynomials of degrees 1,2 and 9. The model in

the leftmost figure is unable to capture the nonlinear relationship and
underfits. The model in centre figure achieves a good fit. The model in the

rightmost figure fits all datapoints perfectly but oscillates significantly
between them, indicating overfitting.

a regularization term to the loss function. This regularization term is often
a function of the the model parameters, thus large parameter values (which
tend to increase model variance and overfitting) are penalized during training
for giving the model a higher loss. For machine learning algorithms trained
using numerical optimization, a regularization technique called early stopping
is also often employed. Early stopping refers to terminating the training
procedure when the model stops improving on the validation criteria. There
are several variants of this technique, and they will be discussed in more
detail in the section on Neural Network Training.

3.1.3 Model Evaluation

Evaluating a given model has two primary steps, the first is to select an
evaluation criterion. The second step is to validate the model’s performance
in a methodologically sound fashion.

3.1.3.1 Performance Criteria

For the binary classification task, which corresponds to many of the
experiments in this thesis, there a several evaluation criteria available, most
of which relate to the relative cost of the error types seen in table 3.1. A Type
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Table 3.1: Statistical decision making and error-types

Predicted Condition
Predicted Positive Predicted Negative

True
Condition

Positive True Positive False Negative
Type II Error

Negative False Positive
Type I Error True Negative

I error refers to predict positive when the truth is negative (rejecting a true
null hypothesis), Type II error refers to predicting negative when the truth
is positive (failing to reject a false null hypothesis). There is usually a trade-
off between these two errors, which is why choosing a suitable evaluation
criterion is important. The most common evaluation criterion reported
on several benchmarking datasets in machine learning (MNIST, CIFAR-
10, CIFAR-100) is accuracy: ACC =

∑
True Positive +

∑
True Negative

Total Population . This is
a sensible measure to pick if the cost of false negatives and false positives
are reasonably similar. In practical applications however, the cost of the
two types of errors can be very different. In cancer detection systems for
instance, it can be acceptable to increase the risk of false positives in order
to minimize the number of false negatives (undiagnosed cancers). In such
a case, a criterion like false negative rate FNR =

∑
False Negatives∑

Condition positive can be a
good choice.

3.1.3.2 Cross-Validation

In order to evaluate the performance of a model in a sound way it is common
to split datasets into training and validation sets. The training set is used
for estimating model parameters, and the validation set is used to gauge
the model’s performance on unseen data. Some people include a third set,
the test set, that is not presented to the model until all hyperparameter
tuning is done. The reason for this is that information can leak from the
validation set and into to the model during repeated training and validation
attempts as one eventually ends up trying to optimize against the validation
set. There is a trade-off in deciding how much of the data to use for training
and how much to use for validation. The more data one uses for training,
the better the model will be at generalizing. However, this will lead to
greater uncertainty in the model’s performance on unseen data, as this now is
estimated form a smaller sample. A class of methods that attempt to mitigate
this trade-off this is called cross-validation. There are many variations of
cross-validation, we will only discuss the one applied in the experimental
part of this thesis, stratified K-fold cross-validation. This is performed by
partitioning the dataset into K equally sized folds in such a way that the
statistical properties of the response value of all the folds are roughly the
same. For binary classification this means equal proportions of both classes in
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each fold. After the dataset is partitioned, the model is trained onK−1 folds,
and evaluated on one fold, K times. The folds are rotated in such a way that
each fold is used exactly once as validation data. In addition to sidestepping
the training/testing trade-off, cross validation gives researchers K measures
of model performance, which can be used to infer expected performance on
unseen data, and the variance of the performance. For a thorough discussion
of the different types of cross-validation and the properties of the validation
estimates we refer the reader to [27].

3.2 Neural Network Architectures

The history of neural networks is long, and involve researchers and works
spanning multiple generations, so we will not have the space to deal with it
extensively here. For a good summary of the history we recommend Jürgen
Schmidhuber’s excellent review article [56].

The recent resurgence in neural network research can to a great extent
be explained by the creation of neural architectures and hardware capable
of mitigating the effect of what is known as the vanishing gradient problem,
which refers to an exponential weakening of the training signal in the number
of layers, leading to slow convergence. In 1997 Hochreiter & Schmidhuber
presented the Long Short-Term Memory model [31], which implements a
gating system for ’locking’ the network state during training. Yann LeCun
and others created Convolutional Neural Networks [10], [41], [39], which
drastically reduce the numbers of parameters needed in the network, which
again speeds up training. In 2006 Geoffrey Hinton published the Deep
Belief Network [30]. A neural network where the each layer was pretrained
using unsupervised learning, and later fine-tuned using back propagation. In
addition to the theoretical contributions from machine learning researchers,
developments in the hardware space and the creation of very large datasets
have contributed significantly towards the feasibility of deep learning as a
technology. The advent of highly parallel GPU computing, in particular, has
significantly reduced the training time for most neural architectures.

This section will discuss the different neural network architectures deployed
in our experiments.

3.2.1 Logistic Regression

Logistic regression is simple machine learning model that can be thought of
as a one-layer neural network for binary classification (no hidden layers):

P (y = 1|x) = f(x) =
1

1 + exp(W Tx)
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P (y = 0|x) = 1− f(x)

Where x is the training example and y is the example label. While not
really a neural network, the Logistic Regression (or Softmax regression in the
multinomial case) is useful to analyze because many other neural network
architectures have a logistic regression/softmax as the output layer. This
means that by comparing the results of logistic regression with more complex
architectures we can gauge the importance of the feature learning performed
in the hidden layers of the more complex architectures. Logistic regression
is usually trained numerically by minimizing the cross-entropy via stochastic
gradient descent, which will be explained further into this chapter.

3.2.2 Multilayer Perceptron

This family of neural networks have many names in addition to Multilayer
Perceptron (MLP); vanilla neural networks, fully connected network, or
simply feedforward neural network. It refers to neural networks consisting
of L layers, an input layer, an output layer and L − 2 hidden layers. Each
neuron in layer l is connected to each neuron in layer l − 1 via a matrix W l

of trainable weights.

More formally: Let (x, y) be training data sampled from some unknown
data generating distribution P (X,Y). Let fθθθ be a parametrized family of
functions describing how a model will behave on new examples from the data
generating distribution. Training the model means adjusting the parameter
set θθθ given the training data. Let J ∈ R denote the aforementioned objective
function describing the loss associated with the algorithms prediction ŷ =
fθθθ(x) and the target y. With these definitions in mind we can define a
feedforward neural network as a set of layers acting on the output of the
previous layers. We define the j-th neuron in the l-th layer as

alj = σ

(∑
k

wlj,ka
l−1
k + blj

)
(3.3)

where the sum runs over the K neurons in the previous layer, wlj,k denotes
the weight mapping from the neuron alj to the neuron al−1k , blj denotes a
trainable bias term and σ(x) is the non-linear activation function (usually
sigmoid, hyperbolic tangent or rectified linear unit) which is applied element-
wise to its inputs. In vector notation

al = σ
(
W lal−1 + bl

)
(3.4)

Additionally, we define a1j = xj, that is, the first layer is the training example
presented to the network. From this definition we see that we can interpret
a neural network as a sequence of nested affine transformations with non-
linearities stacked between them. The final layer is then used as input in
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the cost function. Showing the input as a single vector is a simplification
done for notational simplicity, in most actual implementations of such neural
networks, the data is presented to the network in mini-batches consisting
of several training examples. This is done in part because mini-batches
tend to give more stable gradient estimates than single examples, and in
part because mini-batch training utilizes matrix-matrix multiplication which
is highly efficient on modern GPUs [29]. Like logistic/softmax regression,
these models are usually trained by numerically minimizing a cost function
via stochastic gradient descent. It is worth noting that for a long time,
training architectures with multiple hidden layers was impossible due to the
computational cost of calculating the gradient of the cost function. This was
only made feasible by the discovery of the backpropagation algorithm [55],
which is discussed in detail in section 3.3.2.

3.2.3 Convolutional Neural Network

An architecture that is related to the multilayer perceptron and now widely
adopted for many supervised learning problems is the Convolutional Neural
Network [40]. The CNN architecture differs from that of the MLP in the
following important ways [36]:

Layers are composed of volumes. Layers in a multilayer perceptron
have one dimension, often referred to as width, which corresponds to the
number of neurons in the layer. In convolutional neural networks however,
layers are organized in volumes that have width, height, and depth.

Figure 3.2: A traditional neural network with layers represented as columns
of neurons (Picture from Stanford’s CNN for Visual Recognition course:

http://cs231n.github.io/convolutional-networks/).

Different types of layers. An MLP only implements one type of layer,
consisting of a non-linear activation function that transforms the weighted
input to the layer. A CNN usually implements several types of layers such as
convolutional layers, pooling layers and fully connected layers (MLP’s). The
pooling layer stands out in that it does not contain any trainable parameters,
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Figure 3.3: A CNN: Notice how the layers are represented as volumes. The
different filters are stacked along the depth dimension (Picture from

Stanford’s CNN for Visual Recognition course:
http://cs231n.github.io/convolutional-networks/).

but instead implements a downsampling of the input data from the previous
layer that serves to create an invariance to small shifts and distortions in
the feature, while at the same time reducing the overall dimension of the
representation [40].

Local connectivity. Each neuron in an MLP is fully connected, meaning
that there is a weight from every input to the neuron. In a convolutional
neural network, the neurons are normally only connected to a small region of
the input volume, called the neurons receptive field. The implication of this
is that we get a drastic reduction in the number of weights that need to be
trained, which speeds up training and memory consumption. If we imaging
an MLP being trained to classify a 300×300×3 images (the third dimension
is for color data), each neuron in the first layer needs 300×300×3 = 270 000
parameters to be trained. Contrast this with a neuron in the input layer of
a convolutional neural network with a 10× 10× 10 receptive field which only
has 300 parameters that need to be trained.

Parameter sharing Another technique that reduces the number of
parameters needed in a CNN is parameter sharing. This refers to the fact
that for a given depth of a layer, all the neurons along the width and height
dimension share the same parameters. This constraint means that we can
view the forward pass of the network in each depth dimension as a convolution
(hence the name) of the inputs with a filter i.e. the weights.

The architectural aspects of CNNs listed here have several important
implications for their performance. One is that with the reduction in
trainable parameters achieved from the use of a receptive field and parameter
sharing, they can be scaled more easily to larger datasets. Another
consequence is that it is easier to explicitly see what a CNN actually is
learning. Each of the filters in the lower layers typically learn basic features.
In image recognition this typically corresponds to something akin to Gabor
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filters etc. The next layer of the network then combines these features to
build more abstract high level features. This process continues up until the
last output volume of the network which holds the class probabilities for
a given input. For a thorough discussion of the mathematical operations
that separates CNNs from conventional feedforward architectures we refer
the reader to [14].

3.2.4 Maxout Networks

A relatively novel innovation in neural networks is the Maxout network [24].
These networks are designed to leverage a highly effective regularization
technique, dropout, that is described in section 3.3.3.2. In a maxout network,
a hidden layer implements

ali = max
j∈1,K

zi,j (3.5)

where zi,j = al−1
T

i Wi,j + bi,j, W ∈ Rd×m×k and b ∈ Rm×k. That
is, instead of passing the result of an affine transformation elementwise
through an activation function like relu, the network computes K such affine
transformations and for each element in the hidden layer, choose the max of
theK outputs. The authors of [24] shows that a maxout layer with arbitrarily
many affine components and just two hidden units can approximate any
given convex function. In a sense this lets the network learn which activation
function is the most appropriate for the task at hand, and then implement
it.

3.3 Training Neural Networks

This section covers the peculiarities of training neural networks. It starts with
a brief discussion of how gradient-based neural network training relates to
optimization and a description of some of the specific optimization algorithms
used. This is followed by a description of the backpropagation algorithm, the
dominating method for finding the gradient of the objective function. After
that follows a discussion of how to do regularization in neural networks.

3.3.1 Optimization and neural network training

Training neural networks is done by minimizing a cost function subject to
model parameters. As such, the theoretical framework of mathematical
optimization has been of significant importance when developing the methods
for training neural networks. However, as discussed in the upcoming
book Deep Learning [2], there are several differences between traditional
optimization and neural network training that need to be taken into
consideration in order to successfully train these models. For instance we
might be interested in minimizing a performance measure P, such as the
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misclassification rate. However, as this is undifferentiable it is an inefficient
choice of loss function, we therefore choose to indirectly minimize P via a
proxy measure J. Another difference is that we can only compute a proxy
of the cost function as we do not have access to the full data generating
distribution P (X ,Y). So instead of observing the expectation of the cost
function according to the data generating distribution:

J(θ) = E(x,y)∼PL (f(x;θθθ),y) (3.6)

we observe the average of cost function for the empirical distribution obtained
from the training set S:

J∗(θ) = E(x,y)∼P̂L (f(x;θθθ),y) (3.7)

where P̂ is the empirical data distribution, L is the loss function for a single
data point and f(x;θθθ) is the predicted output of the model given data x and
parameter values θθθ. An additional layer of abstraction is added by the fact
that we don’t want to minimize 3.7 directly as this tends to lead to overfitting
from memorization of the dataset. Another peculiarity is that because the
objective function can be decomposed as a sum of differentiable functions
(one per training sample), and the accuracy of the estimation of the gradient
scales sub-linearly in the number of examples, the most efficient training
algorithms are not based on evaluating the cost function over the entire
dataset, but rather on smaller batches. This lead to the development of the
most common class of optimization methods for training neural networks:
Stochastic Gradient Descent. For a thorough discussion on the potential
pitfalls and challenges of training neural networks we refer to [2].

3.3.1.1 Training Algorithms

This section covers Stochastic Gradient Descent (SGD), one of the most
common optimization algorithms for training neural networks, SGD with
momentum and AdaGrad which is a more advanced optimization algorithm.

Stochastic Gradient Descent
SGD is essentially normal gradient descent evaluated on minibatches of the
data instead of the the entire training set. It is show in [2] that sampling
minibatches from the data generating distribution and averaging over them
can yield unbiased estimates of the gradient. The SGD algorithm is:

Algorithm 1: Stochastic Gradient Descent
Input: Learning rate εk, Initial parameter θθθ
while stopping criterion not met do

Sample a minibatch of m examples (x,y) from the training set S.
Compute gradient estimate ĝ← +∇θθθ 1

m

∑
i L(f(x(i);θθθ),y).++

Apply update: θθθ ← θθθ − εĝ++
end
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SGD with Momentum
The objective of deep architectures often have so called ravines that are steep
in directions not leading to a minima, and relatively flat in the direction of
the minima [2]. In order to speed up convergence it is common to add a
momentum term to the gradient update. This introduces a degree of inertia
in the gradient updates that can speed up convergence. Pseudocode for
stochastic gradient descent with momentum is given below.
Algorithm 2: Stochastic Gradient Descent with Momentum
Input: Learning rate εk, momentum parameter α, initial parameter θθθ,

initial velocity vvv
while stopping criterion not met do

Sample a minibatch of m examples (x,y) from the training set S.
Compute gradient estimate: ĝ← +∇θθθ 1

m

∑
i L(f(x(i);θθθ),y(i))

Compute velocity update: vvv ← αvvv − εĝ
Apply update: θθθ ← θθθ + vvv

end

AdaGrad
When training neural networks with vanilla SGD it is common to set what
is called a learning rate schedule. This is because empirical experiments
have shown benefits to use a large learning rate in the beginning of training
and the slowly decreasing it. AdaGrad, short for Adaptive Gradient, is an
optimization method that adjusts the learning rate independently for each
parameter at each step, based on previous previous gradients. A weakness
in its design is that it accumulates squared gradients in the denominator,
making the learning rate effectively zero with enough training. Pseudocode
for AdaGrad is given below.
Algorithm 3: The AdaGrad Algorithm
Input: Global learning rate ε, small constant δ, initial parameters θθθ
Initialize gradient accumulation variable r = 000.
while stopping criterion not met do

Sample a minibatch of m examples (x,y) from the training set S.
Compute gradient estimate: ĝ← +∇θθθ 1

m

∑
i L(f(x(i);θθθ),y(i))

Accumulate squared gradient: rrr ← rrr + g � g
Compute update: ∆θθθ ← − ε

δ+
√
rrr
� ggg

Apply update: θθθ ← θθθ + ∆θθθ
end

RMSProp
A very popular optimization method that attempts to rectify the problems
with the vanishing learning rate is RMSProp [29]. Interestingly, it has never
been published properly, so it is usually cited from a set of slides from a
Coursera online course on Deep Learning.
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Algorithm 4: RMSProp
Input: Global learning rate ε, decay rate ρ, initial parameters θθθ, small

constant δ
Initialize accumulation variables r = 000.
while stopping criterion not met do

Sample a minibatch of m examples (x,y) from the training set S.
Compute gradient estimate: ĝ← +∇θθθ 1

m

∑
i L(f(x(i);θθθ),y(i))

Accumulate squared gradient: r← ρr + (1− ρ)g � g
Compute update: ∆θθθ ← − ε

δ+
√
rrr
� ggg

Apply update: θθθ ← θθθ + ∆θθθ
end

3.3.2 Backpropagation

The most common way of obtaining the gradient used for the various
optimization algorithms mentioned is Backpropagation. Fundamentally,
it is an algorithm for calculating derivatives quickly, and it has many
applications beyond the training of neural networks. Because of this, it
has been reinvented multiple times throughout history, in different academic
disciplines. It was the 1986 paper Learning Representations by Back-
Propagating Errors [55] that demonstrated how effective the method was
for learning neural networks and lead to its wide spread adoption in the
machine learning community [50]. The application independent name for
the method is reverse-mode differentiation [51]. The focus in this exposition
of backpropagation is on simplicity rather than generality, as we believe this
is better for gaining an intuitive understanding for what the algorithm does.
We will therefore present it specifically in the case of obtaining gradients for
a multilayer perceptron with MSE for cost function. For an excellent and
thorough discussion on the more general aspects of back propagation we refer
the reader to [2].

The general intuition behind backpropagation is as follows: pass training
examples trough the network from the input layer all the way to the output
layer. At the output layer, compute the error for the cost function used in
the network. Then, propagate the error backwards from the output layer all
the way to the first hidden layer and use it to compute the gradient. The
error terms can then be used to obtain the derivative of the cost with regard
to the individual weights and biases in the network. More formally, assume
a multilayer perceptron with L hidden layers. Let W l denote the weight
matrix s.t. W l

j,k is the weight for the connection from the k-th neuron in
the (l − 1)-th layer to the j-th neuron in the l-th layer. Denote by bl the
bias vector s.t. blj is the bias term for j-th neuron in the l − th layer. Let
al = σ

(
W lal−1 + bl

)
be the activation vector for the l’th layer (The first

hidden layer has the activation vector a2 = σ
(
W lx + bl

)
where x is the
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training example). In order to ease notation we denote by zl the weighted
neuron input zl = W lal−1 + bl. We define the cost function as

J =
1

2n

∑
x

||y(x)− aL(x)||2 (3.8)

where n is the number of training examples, y(x) and aL(x) is the label and
network output for training example x respectively. The objective is to find
∂J

∂W l
j,k

and ∂J
∂blj

such that they can be used for minimizing J . We define the
error of neuron j in layer l as

δlj =
∂J

∂zlj
(3.9)

or in vector notation δδδl = ∇l
zJ . Backpropagation offers a computationally

inexpensive way to find these errors for all L layers, and then relate them
to ∂J

∂W l
j,k

and ∂J
∂blj

. This is primarily done through four equations. The first
equation computes the error of the output layer:

δLj =
∂J

∂zLj
(3.10)

which by applying the chain rule can be expressed as

δLj =
∑
k

∂J

∂aLk

∂aLk
∂zLj

(3.11)

As ∂aLk
∂zLj

= 0 for j 6= k, this simplifies to

δLj =
∂J

∂aLj

∂aLj
∂zLj

(3.12)

which, since aLj = σ
(
zLj
)
, we rewrite as

δLj =
∂J

∂aLj
σ′
(
zLj
)

(3.13)

or
δδδL = ∇aLJ � σ′(zL) (3.14)

in vector notation, where � denotes the Hadamard product (elementwise
matrix multiplication: (s� t)i,j = si,jti,j).
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The second equation relates the error of layer l to the error of layer l + 1,
thus allowing for the backwards propagation of errors. The error of node j
in layer l is defined as

δlj =
∂J

∂zlj
(3.15)

Using the chain rule, we can write this in terms of layer l + 1

δlj =
∑
k

∂J

∂zl+1
k

∂zl+1
k

∂zlj
(3.16)

where the sum is over the parent nodes in layer l+1. Noting that ∂J

∂zl+1
k

= δl+1
k

we rewrite this as

δlj =
∑
k

∂zl+1
k

∂zlj
δl+1
k (3.17)

Recalling the definition of weighted neuron input we can rewrite zl+1
k

zl+1
k =

∑
j

wl+1
k,j σ(zlj) + bl+1

k (3.18)

and differentiate, in order to obtain

∂zl+1
k

∂zlj
= wl+1

k,j σ
′(zlj) (3.19)

Inserting this in 3.17 we get

δjl =
∑
k

wl+1
k,j δ

l+1
k σ′(zlj) (3.20)

or in vector notation:

δδδl =
((
W l+1

)T
δδδl+1

)
� σ′(zl) (3.21)

The third equation relates the derivative of the cost wrt. the bias of layer
l, ∂J

∂bl
to the errors. We begin by noting that

∂J

∂blj
=
∂J

∂alj

∂alj
∂zlj

∂zlj
∂blj

(3.22)

Simplifying the two first factors on the right hand side via the chain rule, we
get

∂J

∂blj
=
∂J

∂zlj

∂zlj
∂blj

= δlj
∂zlj
∂blj

(3.23)

Recalling that zlj =
∑

k w
l
j,ka

l−1
k + blj, we see that

∂zlj
∂blj

= 1 (3.24)
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Inserting in 3.23 we get that the derivative of the cost wrt. the bias is exactly
the error

∂J

∂blj
= δlj (3.25)

The fourth equation expresses the derivative of the cost wrt. an individual
weight in terms of error, and is found in much the same way

∂J

∂wlj,k
=
∂J

∂alj

∂alj
∂zlj

∂zlj
∂wlj,k

(3.26)

Again simplifying the two first derivatives via the chain rule we get

∂J

∂wlj,k
=
∂J

∂zlj

∂zlj
∂wlj,k

= δlj
∂zlj
∂wlj,k

(3.27)

Evaluating ∂xlj
blj

and inserting in 3.27, finally yields

∂J

∂wlj,k
= al−1j δlj (3.28)

With these four equations in hand we can outline a simple version of the
backpropagation algorithm in pseudocode
Algorithm 5: Backpropagation
Input: Training example x, corresponding label y
Assign training example to be the first layer: a1 ← x
for l = 2,3,...,L do

Compute weighted neuron input: zl ← W lal−1 + bl

Compute neuron activation: al ← σ(zl)
end
Compute loss: J ← 1

2
||y − aL||2

Compute error of final layer: δL ← ∇aJ � σ′(zL)
for l = L− 1, L− 2,...,2 do

Compute error of layer l: δδδl ←
((
W l+1

)T
δδδl+1

)
� σ′(zl)

Compute gradient wrt. weights: ∂J
∂W l ← δδδlal−1

T

Compute gradient wrt. biases: ∂J
∂bl ← δδδl

end
return ∇W,bJ

3.3.3 Regularization

Because of their potentially high complexity and number of model parame-
ters, neural networks can be prone to overfitting unless measures are taken.
This section discusses some specific regularization techniques popular for reg-
ularizing neural networks.
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3.3.3.1 Parameter Norm Regularization

A very common type of regularization is what is called parameter norm
regularization. They work by limiting the representational capacity of the
model by adding a penalty function of the parameter norm to the objective
function.

J̃(θθθ;XXX,yyy) = J(θθθ;XXX,yyy) + αΩ(θθθ)

The two most common ones are L1 and L2 regularization with the respective
penalty terms Ω(θ) = 1

2
||www||1 and Ω(θθθ) = 1

2
||www||2. Speaking loosely we can say

that the difference is that L1 regularization promotes sparse parametrization
while L2 spreads the penalty more evenly throughout the weight matrix. For
a thorough discussion of parameter norm regularization we refer the reader
to [2]

3.3.3.2 Dropout

Many machine learning competitions are won not by a single model, but by
averaging the output of an ensemble of models [29]. One framework for doing
this is what is called bagging, which is short for Bootstrap Aggregation. The
essence of bagging is to train k different models on one of k different datasets
generated by sampling with replacement from the original dataset. At test
time all models are evaluated on the input data and the output is averaged. If
the errors of the k models are not perfectly correlated, this will lead to a more
robust prediction than any one of the k models would be able to give [27].
The drawback from this is that it is computationally expensive at test time.
Dropout attempts to approximate this process for a single neural network. It

Figure 3.4: Illustration of the dropout idea. Nodes are removed during
training time (shown in b)), giving rise to a constrained, sparser network.
This prevents the hidden units from co-adapting to much. During testing
and deployment the full network pictured in a) is activated. (Picture from

the Dropout paper [60]).

works by removing a fraction of the neural nets’ nodes at random at training
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time. This can be done by multiplying the output of a unit by zero. The
effect of this is to effectively train by sampling from the exponential number
of sub-nets of the full net during training, which forces each unit to be more
independent and not co-adapt excessively. At test time, the full network is
deployed. The primary difference between traditional bagging and dropout
is model independence, with dropout, the sampled models share parameters.
As dropout effectively reduces the width of the network, the authors suggest
widening the hidden layers of networks when applying dropout, in order to
maintain the representational capacity of the network. If n is the optimal
size of a layer where dropout is applied, and p is the probability of retaining
a neuron at training time, then the authors suggest that the layer should
be widened to n/p. Another issue is that dropout introduces a significant
amount of noise in the gradients. Srivastava et al. suggest mitigating this by
increasing the learning rate by a factor of 10− 100, and using a momentum
value between 0.95 − 0.99. They suggest using retention probability p from
0.5to0.8.

A less commonly discussed version of dropout (but presented in the
same paper) is Gaussian dropout [60]. Ordinary dropout can be viewed
as multiplying the activation units with Bernoulli random variable which
takes the value 1 with probability p and 0 with probability 1 − p. This can
be generalized to other probability distributions. Srivastava et al. reports
better results on the MNIST dataset for Gaussian Dropout than Bernoulli
dropout. The Gaussian dropout was performed by multiplying the activation
units with a Gaussian random variable with µ = 0 and σ =

√
1−p
p

where p is
the corresponding probability from the Bernoulli Dropout experiment.

3.3.3.3 Batch Normalization

A relatively new method for improving Neural Network training is the
popular Batch Normalization [33]. Batch normalization works by normalizing
layer input for each training mini-batch. This prevents covariate shift, the
tendency for the distribution of layer inputs to change during trading. Batch
Normalization has shown itself to have several beneficial effects on neural
networks. It allows one to train models with much higher learning rates, thus
increasing the time to convergence. It is also shown to prevent overfitting in
the model. As the whitening of the data is done per batch, and batches are
randomized per epoch, batch normalization can be considered a very light
type of data augmentation (discussed in 3.3.3.5). Since a naive normalization
of input can reduce the representational power of the layer (normalizing input
to a sigmoid constrains the output to be in its linear region), two trainable
parameters γ and β are added to provide an affine transformation of the
normalized value. Batch normalization considers values of x over a mini-
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batch B = {x1, x2,...,xm}. Mini-batch mean is calculated as

µB =
1

m

m∑
i=1

xi (3.29)

and mini-batch variance is calculated as

σ2
B

1

m

m∑
i=1

(xi − µB) (3.30)

Finally the input is normalized

x̂ =
xi − µB√
σ2
B + ε

(3.31)

and transformed
yi = γx̂+ β (3.32)

Note that the whitening is done per dimension individually across each
batch, and not over the full batch and all dimensions. Additionaly, batch
normalization is a differentiable transformation, which means that back-
propagating errors through the transformation works.

3.3.3.4 Early Stopping

Overfitting generally means that the algorithm has gone beyond learning the
function that generated the data and instead is learning the noise in the data.
This can be monitored by evaluating the algorithm on a validation set after
each epoch. A model with high representational capacity will typically have
an error that decays rapidly in the start for both the training and validation
set. When the error is decreasing for the training set but no longer decreasing
for the validation set, that is a strong indicator that the model is starting to
overfit. At this point, we can stop training the model.

Figure 3.5: Early stopping illustration
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There are several ways of doing early stopping in practice. We will in this
section review the method used for the experiments in this thesis: using the
quotient of generalization loss and progress [53]. Let E be the loss function
of the neural network. Let Etr(t), Eva(t) be the loss for the training set and
the validation set after epoch t, respectively. Let

Eopt(t) = min
t′≤t

Eva(t
′)

denote the minimum loss obtained on the validation set from epoch 0 to t.
Let

GL(t) = 100 ·
(
Eva(t)

Eopt(t)
− 1

)
denote the generalization loss at epoch t. Define a training strip of length k
to be a sequence of k epochs n + 1,...,n + k where n is divisible by k. Then
let training progress be defined as

Pk(t) = 1000 ·

( ∑t
t′=t−k+1Etr(t

′)

k ·mintt′=t−k+1Etr(t
′)
− 1

)

This measures the ratio of the average training ratio to the minimum training
error for the strip. Unless the training is globally unstable, this will converge
to zero as the number epochs aproaches infinity. The stopping criterion is
defined as

PQα : stop after the first end-of strip epoch t with
GL(t)

Pk(t)
> α

3.3.3.5 Data Augmentation

The best way to get a neural network to generalize well is to feed it large
amounts of non-redundant data. However, for many problems data might
be scarce. In this case one can simulate a larger dataset by augmenting the
existing data. Augmentation methods include rotation, translation, cropping,
and adding additive noise. For some tasks, such as classification and object
recognition, this works very well. An explanation for this could be that the
objective of a neural network in both of these settings is to recognize different
instances of an object despite the large amount of variations inherent in the
class or object.
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Chapter 4

Related Research

“There is nothing so practical as
a good theory”

Ludwig Boltzmann

4.1 Kernel Methods For Graphs

Formally, the graph classification problem is to correctly assign a label from
the set Y of possible labels (in the case of binary classification Y = {−1,1})
to graphs from the ordered set of n graphs G = {G1, G2,...,Gn} with a
corresponding ordered set L = {y1, y2,...,yn} given features from the graphs
in G. In this chapter we will summarize previous research addressing this
problem. Much of the previous research that most closely resembles ours is
based on kernel methods [57], [58], [62], [22], [4], we therefore devote this
section to a very brief summary of kernel methods in general and some of
the work most related to this thesis.

The main motivation for the use of kernel methods is nicely explained in
Hofman et al. (2008) [32]: the theory and algorithms for problems with linear
dependencies are well developed. However, many real world datasets exhibit
non linear dependencies. Kernel methods solve this by computing the dot
product in a (usually high-dimensional) feature space, and thus implicitly
embedding the data in a high dimensional space where linear estimation
methods can perform well. And as long as the kernel can be computed
directly, there is no need to explicitly compute the feature representation,
this is called the kernel trick.

To describe kernel methods formally we borrow definitions and notation
from [32]. Let x,x′ ∈ X . A kernel function is then a real valued function
k(x,x′) = 〈φφφ(x), φφφ(x

′
)〉 ∈ R, where φφφ maps into the feature space. Typically

k(x,x′) = k(x′,x) and k(x,x′) ≥ 0, which means it can be interpreted as a
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similarity measure. Given a kernel, k and inputs x1,x2,...,xn ∈ X , we define
the Gram matrix as the n×n matrix such that Kij = k(xi,xj). A real n×n
matrix Kij satisfying

∑
i,j cicjKij ≥ 0 for all ci ∈ R is called positive definite.

If equality occurs only for ci = 0 ∀i we say the matrix is strictly positive
definite. A function k : X × X → R which for all n ∈ N, xi ∈ X , i ∈ [n]
gives rise to a positive definite Gram matrix is called a positive definite
kernel, or a Mercer kernel. A function k : X × X → R which for all n ∈ N,
and distinct xi ∈ X gives rise to a strictly positive definite Gram matrix
is called a strictly positive definite kernel. If a kernel is a Mercer kernel,
it is possible to employ the previously mentioned kernel trick and replace
all computations of the inner product feature representation with a call to
the kernel function k(x,x′). This lets the learning algorithm operate in an
implicit higher dimensional space without adding significant cost to memory
and runtime. We here present some kernels applied to graph classification
that relate to our work, before ending with a section on the shortcomings of
kernel methods versus deep architectures.

4.1.1 Random Walk Kernels

The idea behind random walk graph kernels [22], [4], is to measure the
similarity of two graphs G and G′ by counting their number of matching
walks. A walk is defined as a sequence of vertices where repetition of the
vertices are allowed and two walks match if they are the same in two graphs.
If two graphs have many matching walks, then they are similar. The walks
of length k in G can be computed by taking the adjacency matrix of G; A to
the power of k. We then get that Akij = c means that there exists c walks of
length k between vi and vj. In order to get the number of matching walks,
the authors utilize the product graph Gx = (Vx, Ex) defined as:

Vx =
{(
vi, v

′

r

)
: vi ∈ V, v

′

r ∈ V ′
}

Ex =
{((

vi,v
′

r

)
,
(
vj,v

′

s

))
: (vi, vj) ∈ E ∧

(
v
′

r,v
′

s

)
∈ E ′

}
The product graph consists of pairs of identically labeled vertices and
edges from G and G′, so an edge is only present in Gx if and only if the
corresponding nodes are adjacent in both original graphs. The adjacency
matrix of Gx can be computed by taking the Kronecker product of the
adjacency matrices of the original graphs:

Ax = A⊗ A′

and since performing a walk on the product graph corresponds to performing
simultaneous walks on the G and G′, we can now compute the common walks
from Akx. The random walk kernel can then be computed as (though there

42



are many various implementations based on the same principle):

k(G,G′) =
1

|G||G′|
∑
k

λkeTAkxe =
1

|G||G′|
e(I − λAx)−1e

where λ is a decay factor 0 ≤ λ ≤ 1 that ensures the sum converges, e is a
vector with all elements set to 1 and I is the identity matrix.

Random walk kernels in general suffer from two problems. The adjacency
matrix of the direct product graph matrix Ax is of size |V | × |V ′|, and even
if it is sparse, powers of the matrix can be dense. For large graphs this can
lead to significant runtime and memory requirements. The other issue is
that iteratively visiting the same set of nodes for small substructures can
artificially boost the similarity measure and limit the overall expressiveness
of the kernel [4].

4.1.2 Shortest Path Kernels

A different approach is to measure similarity by computing paths (walks
where vi 6= vj iff i 6= j ∀i,j ∈ {1,....,k}). Computing all paths of a graph is
NP-hard, as is finding the longest paths. Finding the shortest path however,
can be done in polynomial time. The idea behind the shortest-path graph
kernel [4] is to transform the original graphs G and G′ into shortest-paths
graphs S and S ′. S contains all the same nodes as G, and there is an edge
between all nodes in S that are connected by a walk in G. Every edge
between vi and vj in S is labeled with the shortest path between them. The
shortest-path kernel is then defined as:

k(S,S ′) =
∑
e∈E

∑
e′∈E′

k
(1)
walk(e,e

′)

where k(1)walk(e,e
′) = 1 if the label of e equals the label of e′, and zero otherwise.

4.1.3 Graphlet Kernels

The previous research that most closely relates to the research presented in
this thesis is the work on graphlet kernels by Shervashidze et. al [57]. They
define graphlets to be non-isomorphic sub-graphs of size k ∈ {3,4,5} Then
they define a graphlet kernel as follows:

Defintion: Graph Kernels Given two graphs G and G′ of size n ≥ k,
the graphlet kernel is defined as

kg(G,G
′) = fTGfG′ (4.1)
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Figure 4.1: All size-5 graphlets

where fG is a vector of length Nk whose i−th component corresponds to
the number of times graphlet(i) occurred in G

In order to eliminate the effect of the size of the graph on the kernel, the
counts are normalized:

Dg =
1

#all graphlets in G
fG (4.2)

resulting in the normalized graphlet kernel:

kg(G,G
′) = DT

GDG′ (4.3)

As counting all graphlets of size k on a graph with n vertices has O(nk)
complexity, they introduce the following sampling theorem in order to ease
the computational burden of creating the kernel:

Theorem 6 (from [57]) Let D be a probability distribution on the finite
set A = {1,...,a}. Let X = {Xj}mj=1 with Xj ∼ D for a given ε > 0 and δ > 0

m =

⌈
2(log 2 · a+ log 1

δ
)

ε2

⌉
(4.4)

This theorem is then applied via setting A to be the set of all size-k
graphlets and assuming that they are distributed according to an unknown
distribution D. By letting m be the number of graphlets randomly sampled
from the graph, theorem 6 guarantees that the empirical distribution
obtained D̂m is at most ε distance away from the true distribution D with
confidence 1− δ.
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4.1.4 The Structurally Smoothed Graphlet Kernel

Graph kernel methods such as [57], [58], [22], [4] suffer from what is called the
diagonal dominance problem. As the number of features grow, only a few of
these features will be common across graphs. As a consequence, many graphs
in the dataset are similar to themselves but not to other graphs, resulting in a
diagonal dominance in the kernel matrix. The structurally smoothed graphlet
kernel attempt to remedy this by smoothing the graphlet frequency vector in
a way that respects the underlying topological relationship between graphlets
of different sizes. This is achieved via the Kneser-Ney [37] smoothing method,
a method originally invented for natural language processing. Kneser-Ney
smoothing computes the probability of an event by discounting raw counts
by a fixed mass and then re-distributing this mass according to a base
distribution

PKN(ei) =
max(ci − d,0)∑

j cj
+

n∑
j=1

|{ej : cj > d}| d∑
j cj

P0(ei) (4.5)

where ci is the number of times event ei occurs in the data, d ≥ 0 is the
discounting parameter, P0(ei) is the probability of ei under the chosen base
distribution and

∑n
j=1 |{ej : cj > d}| is a normalization factor denoting

the number of events the discount is applied to. In order to obtain a
base distribution with desirable properties for graphlets, Yanardag and
Vishwanathan build a directed acyclic graph (DAG) where the empty nodes
are graphlets and edges represent if they are one edit-distance away. The
DAG is organized in k + 1 levels. A level l contains all the graphlets of size
l. The parent nodes of a graphlet gj on level l are graphlets on level l − 1
that can be created by deleting a node (and the attached edges) from gj.
Correspondingly, the child graphlets of gj are graphlets on level l + 1 that
can be created by adding a node and one or more edges to gj. The edge
weight between gj and one of it’s parents gi is defined as

wi,j =
si,j∑

gj′∈Cgi
si,j′

(4.6)

where si,j denotes how many times gi occurs as a sub-graph of gj and Cgi
denote all the children of graphlet gi. This can then be used alongside the
DAG to define a base distribution over the graphlets. The probability of the
root and the subsequent graphlet is 1. The probability of a graphlet gj in
the following layers is defined as

P0(gj) =
∑

gi∈Pa(gj)

wi,jP0gi (4.7)

where gi denotes a graphlet in the preceding layer and Pa(gj) is the set of
parent graphlets of gj. With this, the authors define graphlet probability in
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their Structural Kneser-Ney (SKN) framework as

PSKN(gj) =
max(cj − d,0)∑

gj′∈Gk+1
cj′

+
d∑

gj′∈Gk+1
cj′∑

gj′∈Gk+1

|{gj′ : cj′ > d}|
∑

i∈Pa(gj)

P0(gi)
wi,j∑

gj′∈Cgi
wi,j′

(4.8)

We see that the raw count of all the graphlets are discounted by d, the
total mass is then redistributed to all the graphlets according to the base
distribution. The discount parameter is tuned by using a Pitman-Yor process
[61].

4.1.5 Deep Graph Kernels

Yanardag, Vishwanathan also have another method aimed at mitigating
the effect of diagonal dominance [62]. The method is based on building
a context encoding matrix M that learns co-occurence relationships between
the underlying features. Formally: Instead of the canonical graph kernel

k(G,G′) = φ(G)Tφ(G′)

they propose a kernel

k(G,G′) = φ(G)TMφ(G′)

where M is the |V | × |V | matrix encoding the relationships between features
and V represents the vocabulary of features. They propose two methods
for constructing M . The first is based on using the fact that some features
such as graphlets have an inherent edit-distance relationship which means
that one can obtain size k + 1 graphlets by adding nodes or edges from size
k graphlets and vice-versa. This edit-distance can then be used to encode
similarity between features into M . The second method is based on using
recently introduced neural language models [46][47] (discussed in detail in
section 4.2.1.1) to learn latent representations φφφ ∈ R|V | of the features. These
latent feature representations are then used to construct a diagonal matrix
M by computing Mii as φφφTi φφφi and Mij = 0 for i 6= j.

4.1.6 The Shortcomings of Kernel Methods

Deep learning researchers have criticised kernel methods for being funda-
mentally un-scalable to larger and more complex machine learning tasks [3]
(such as AI), primarily stemming from kernel methods in general being shal-
low two-layer architectures. The authors break down the limitations to four
points.
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• The first point is based on a depth-breadth tradeoff in circuit design [26],
where many computations can more cheaply be computed by deeper
architectures than by shallow ones. This suggests that deeper learning
architectures can more cheaply represent complex functions.

• The second point is that kernels can be inefficient at representing
functions that have many variations, as is often the case with high
dimensional real world data. Many kernels imply a local smooth
function around each training example, which means one needs a large
amount of data in order to appropriately cover the function with locally
smooth pieces.

• Most learning algorithms for kernels are quadratic in the number of
training data or worse. In general, large scale datasets require linear-
or sub-linear-time learning algorithms.

• The most important point stems from the problem of shallowness
(first point) and locality (second point). The authors argue that the
combination of locality and shallowness make kernel machines too
inefficient in the number of inputs and trainable parameters, to learn
more complex tasks such as the ones being currently tackled by deep
architectures.

The authors note however that kernel machines do have a place in AI,
as kernel machines that take in kernels trained by deep architectures (as
opposed to pre-specified by humans) are quite powerful.

4.2 Neural Network based approaches
This section is presents some recent contributions to graph classification via
neural networks.

4.2.1 DeepWalk

DeepWalk gets its inspiration from a class of models from natural language
modeling, word2vec. As it is such a critical part of DeepWalk, we will give a
presentation of word2vec here, with notation and explanation based on [54]:

4.2.1.1 word2vec

In 2013, a new and very successful type of language model, commonly
known as word2vec, was introduced [46], [47]. These models embed
one-hot encoded words into a lower-dimensional continuous vector-space
based on their context (where context is defined as the C preceding and
succeeding words). Though often referred to as belonging to the class of
deep Learning algorithms, word2vec models are in fact shallow two-layer
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networks. To further increase confusion they are often referred to as if they
were one monolithic entity, whereas they actually encompass a small space
of algorithms with much variation in composition and performance.

The key to the success of word2vec is its capability to build word
representations that encode grammatical and semantic information. In many
language processing systems, words are treated as atomic units; one-hot
encoded vectors of length V , where V is the size of the vocabulary. This yields
two problems if one wants to use text as input to machine learning systems:
sparsity, and lack of meaning. Sparsity means a machine learning algorithm
needs significantly more data in order to perform. The second question
is more serious. Atomic representations provide no useful information
about relationships between words. Knowing the atomic representation for
cat, gives you no indication of what the atomic representation of kitty is.
Word2vec provides a way to get representations that are dense, and where
the set of word representations encode a structure in the vector space that
respects meaningful relationships between words. This allows a model to
leverage information about entities it knows a lot about when processing data
about entities it knows little about. In a 2013 paper Linguistic Regularities
in Continuous Space Word Representations [48], it was shown, among other
things, that

vec(King) - vec(Man) + vec(Woman)
produces a vector very close to Vec(Queen). This means that the
representations are capable of encoding analogies. We now give a short
summary of the two main models for generating representations in the
word2vec framework, Continuous Bag-of-Word (CBOW) and Skip-Gram.

CBOW
Continuous Bag-of-Words takes as input a set of C context words
wi−C

2
,...,wi−1,wi+1,wi+C

2
from a vocabulary of size V , and outputs a word

wi. As such it can be viewed as predicting a word given its context. The
model consists of an input layer, a hidden layer, and an output layer,
with corresponding weight matrices W ∈ RV×N for the input-to-hidden
connections andW ′ ∈ RN×V for the hidden-to-output connections, producing
the parameter set θ = (W,W ′). The input is presented to the network as one-
hot encoded vectors xi. The hidden layer is calculated as

h =
1

C
W · (xi−C

2
+ ,..,+ xi−1 + xi+1 + ,...,+ xi+C

2
) (4.9)

Which, since the vectors x are one-hot encoded, amounts to copying the
activated row from the weight matrix W . The rows of W correspond to the
N -dimensional vector representation of the word (referred to as the input
word, wI), these are then averaged

h =
1

C
· (vw

i−C
2

+ ,..,+ vwi−1
+ vwi+1

+ ,...,+ vw
i+C

2

) (4.10)
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The hidden matrix is then multiplied with the hidden-to-output matrix giving
a score uj for each word in the vocabulary.

uj = v′
T
wj
h (4.11)

In order to obtain the posterior distribution of the words, a softmax function
is used with the scores as input

p(wj|wI) = yj =
exp(uj)∑V
j′=1 exp(uj′)

(4.12)

Maximizing the log of this give us the cost function

Figure 4.2: Continuous bag-of-words model. Image from [54]

J(θ) = −v′TwO
· h + log

V∑
j′=1

exp(v′
T
w′j
· h) (4.13)

Skip-Gram
Skip-gram is in a way the mirror image of CBOW as it takes a word as
input and maximizes the probability of the context. This means that instead
of sharing a input-to-hidden matrix W across input words, as in CBOW, a
hidden-to-output matrix W ′, is shared across C output vectors. The input
is a one-hot encoded vector which is multiplied by W , yielding the hidden
layer h

h = W(k,·) = vwI
(4.14)
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This is then the input to the C output layers

uc,j = uj = v′
T
wj
· h, c = 1,2,...,C (4.15)

Finally, the posterior distribution is computed for all C words in the context
using the softmax function.

p(wc,j = wO,c|wI) = yc,j =
expuc,j∑V
j′=1 expuj′

(4.16)

The cost function then becomes

J = − log p(wO,1,wO,2,...,wO,C |wI)

= − log
C∏
c=1

expuj∗c∑V
j′=1 expuj′

= −
C∑
c

= 1uj∗c + C · log
V∑
j′=1

expuj′

(4.17)

where j∗ is the index of the True label.

Figure 4.3: Skip-gram model. Image from [54]

Hierarchical Softmax Computing C Softmax normalizations for large
vocabularies are quite expensive. There has therefore been a focus on
developing efficient approximations to full softmax, such as hierarchical
softmax and negative sampling [46]. Hierarchical softmax builds a binary
Huffman tree based on the frequencies of the words in the vocabulary.
Then, the posterior probability of a given word is a computed as a chain
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of multiplications from the root of the tree to the leaf node containing the
word.

p(w|wI) =

L(w)−1∏
j=1

σ
(

[n(w,j + 1) = ch(n(w,j))] · v′Tn(w,j)vwI

)
(4.18)

To quote [46]: "In probabilistic terms, one N-way normalization is replaced
by a sequence of O(logN) local (binary) normalizations."

4.2.1.2 DeepWalk

Building on this framework, Perozzi, Al-Rfou and Skiena present DeepWalk
[52], a method for learning latent node representations in networks that can
be used for multi label classification. They adopt the word2vec framework
by treating vertices as words, and random walks on the network as sentences
that provide the context. DeepWalk uses a set of short truncated random
walks as the corpus and the graph vertices as vocabulary. It uses SkipGram to
build the representation and hierarchical softmax to approximate the softmax
function of the final layer. The model is trained by stochastic gradient decent,
using backpropagation to compute the gradient, much like in a conventional
neural network. The representations are tested as input to a one-vs-all logistic
regression on the multi-label classification task. Perozzi et al. show that the
representations generated by DeepWalk produce F1 scores up to 10% higher
than competing methods for datasets where label data is sparse. It also in
generally outperforms baseline methods while using significantly less data.
Algorithm 6: DeepWalk
Input: graph G(V,E), window size w, embedding size d, walks per

vertex γ, walk length t
Sample Φ from U |V |×d
Build a binary tree T from V
for i = 0,1,...,γ do
O = Shuffle(V )
foreach vi ∈ O do
Wvi =RandomWalk(G,vi,t)
SkipGram(Φ,Wvi , w)

end
end
return Vertex representation matrix Φ ∈ R|V |×d

4.2.2 Spectral Networks and Deep Locally Connected
Networks

A long way into this thesis, we were made aware of two papers showing very
promising approaches to learning deep representations of graphs: Spectral
Networks and Deep Locally Connected Networks on Graphs [6] and Deep
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Convolutional Networks on Graph-Structured Data[28]. These papers present
two novel approaches to generalizing Convolution Neural Networks to graphs.
As the authors explain[28], deep learning models have shown themselves to be
extremely successful in the fields of speech recognition, image classification,
object recognition, translation etc. because they are able to exploit
stationarity and compositionality through local features. Stationarity is
important because it is what gives rise to the translation invariance of
features, which implies the possibility for using weight sharing. This is
what CNNs exploit when a trained feature detector is convolved over the
input signal (weight sharing in space). It is also what RNNs exploit when
they recognize the same phoneme at different times in a speech signal
(weight sharing in time). Compositionality is important because it is what
allows for the use of low level features to build successively more complex
representations of the input signal in the higher layers of the network. The
authors note that one can think of these signals as being defined on a low
dimensional grid, where stationarity is defined via the translation operator on
the grid, locality is defined via the metric of the grid and compositionality is
obtained from down-sampling[28]. It is thus possible to think of these signals
as special cases of data defined on a low-dimensional graph. General graph
data may have much higher dimensionality and not respect the properties of
stationarity and compositionality in the same way as data defined on grids.

This section describes the methods introduced in [6] and [28]. Two methods
are proposed, in order to generalize CNNs to graph-structured data. [6]
introduces Spectral Networks and Deep Locally Connected Networks and [28]
extends this to higher dimensional cases, and cases where the graph structure
is latent in the data and must be inferred.

4.2.2.1 Deep Locally Connected Networks

The first architecture proposed is the Deep Locally Connected Network.
Define a graph G = (Ω,W ), where Ω is the set of the graph’s m vertices
and W is a m × m symmetric and non-negative matrix. Deep Locally
Connected Networks performs a spatial construction by performing a multi-
scale hierarchical clustering on G, and defining layers of local receptive fields
on this clustering. Let K be the number of scales in the clustering and
Ω0 = Ω. For each k = 1,2,...,K, define Ωk as a partition of Ωk−1 consisting of
dk clusters. Let Nk = {Nk,i i1,2,...,dk−1} be the collection of neighborhoods
around each cluster in Ωk−1. Where a neighborhood is defined as

Nδ(j) = {i ∈ Ω: Wi,j > δ}

for a given threshold δ.

Let x1 be a real signal defined in Ω, and fk be the number of filters created
at layer k. The network transforms a fk−1 dimensional signal indexed by

52



Ωk−1 into a fk dimensional signal indexed by Ωk as follows:

xk+1,j = Lkh

(
fk−1∑
i=1

Fk,i,jxk,i

)
, (j = 1,..,fk) (4.19)

where Fk,i,j is a dk−1×dk−1 sparse matrix with nonzero entries in the locations
given by Nk, h is an element-wise activation function and Lk outputs the
result of a pooling operation over each cluster in Ωk.

4.2.2.2 Spectral Networks

The second architecture generalizes the convolution operator via the
spectrum of the graph-Laplacian. As with Deep Locally Connected Networks,
we view the input signal x as a real signal defined on G = (Ω,W ), where
Ω = {v1,v2,...,vm} andW is an m×m symmetric and non-negative similarity
matrix. The graph Laplacian is defined as

L = I −D−
1
2WD−

1
2 (4.20)

where D = W · 1. Denote the eigenvectors of L as U = (u1, u2,...,um). The
graph convolution of x with a filter g on G is then defined as

x ∗ g = UT (Ux� Ug) (4.21)

where � denotes element-wise multiplication and U denotes the diagonal
matrix of eigenvalues. Learning filters on a graph is equivalent with learning
spectral multipliers wg = (w1, w2,...,wm)

x ∗G g = UT (diag(wg)Ux) (4.22)

Filters in conventional CNNs are defined to have localized spatial support
on the input signal. In order to construct filters with this property in the
Fourier domain, the authors exploit the fact that in the grid, fast spatial
decay corresponds to smoothness in the frequency domain since∣∣∣∣∂kx̂(ξ)

∂ξk

∣∣∣∣ ≤ C

∫
|u|k|x(u)|du (4.23)

where x̂(ξ) is the Fourier transform of x. The author in [6] suggest using a
smoothing kernel KN×N0 to obtain smoothed spectral multipliers

wg = Kw̃g (4.24)
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Pseudocode for training a Spectral Network from [28] is given below:
Algorithm 7: Train Graph Convolution Layer
Input: Graph Fourier Transform matrix U , similarity kernel K,

weights w
Forward Pass:
Fetch input batch x and gradients w.r.t outputs ∇y
Compute interpolated weights: wf ′,f = Kw̃f ′,f
Compute output: ys,f ′ = UT (

∑
f Uxs,f � wf ′,f )

Backward Pass:
Compute gradient w.r.t. input: ∇xs,f = UT (

∑′
f ∇ys,f ′ � wf ′,f )

Compute gradient w.r.t. interpolated weights:
∇wf ′,f = UT (

∑′
f ∇ys,f ′ � xs,f )

Compute gradient w.r.t. weights: ∇w̃f ′,f = KT∇wf ′,f
return ∇w̃f ′,f
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Chapter 5

Thesis Contributions

This chapter covers the thesis contributions to the graph classification
problem. The primary challenge when doing graph classification via
convolutional neural networks or other deep learning architectures is the
choice of input representation. The general aspect of this problem is that
graphs are very general objects and have several equivalent representations
and also lend themselves to a wide array of feature extraction methods such
as the kernels in [22], [4], [57]. The more specific aspect of the problem is
that the feedforward neural networks investigated here can only handle fixed
input dimensions due to the need for a fixed-size weight matrix from the last
convolutional layer to the first fully connected- or output layer. A second
and perhaps more serious issue is that in CNNs, spatial relationships in the
input data representation matter, and this is not always the case for raw
graph representations such as adjacency matrices (where the overall graph
structure is invariant to shuffling of both rows and columns).

We present two contributions to graph classification, representing two very
different ways of attacking the problem of graph representration. The first
method is based on learning to distinguish graphlet frequency vectors [57] and
is essentially an investigation into deeper networks ability to learn higher
order features from graphlet distributions. The second method uses the
collection of high-dimensional node representations obtained by DeepWalk
[52] to build compressed node representations for graph classification.

5.1 The Data

MUTAG (Debnath et al., 1991) is a data set of 188 mutagenic aromatic
and heteroaromatic nitro compounds labeled according to whether or not
they have a mutagenic effect on the Gram-negative bacterium Salmonella
typhimurium. The dataset is not balanced, but split 0.665/0.335.
PTC (Toivonen et al., 2003) contains 344 chemical compounds tested for
carcinogenicity in mice and rats. The classification task is to predict the

55



carcinogenicity of compounds. The dataset is fairly balanced and is split
0.558/0.442.
NCI1 and NCI109 represent two balanced subsets of data sets of chem-
ical compounds screened for activity against non-small cell lung cancer
and ovarian cancer cell lines respectively (Wale and Karypis (2006) and
http://pubchem.ncbi.nlm.nih.gov).
D&D is a data set of 1178 protein structures (Dobson and Doig, 2003). Each
protein is represented by a graph, in which the nodes are amino acids and
two nodes are connected by an edge if they are less than 6 Angstroms apart.
The prediction task is to classify the protein structures into enzymes and
non-enzymes. The dataset is not balanced, and is split 0.4134/0.5866.
REDDIT-MULTI-5K is a dataset of 5000 graph representations of threads
on reddit.com. Nodes corresponds to users and there is an edge between
them two nodes if either of the users have commented on at least one of each
others posts. The classification task is to identify which subreddit a given
graph/discussion belongs to. The data is equally split among five classes.
COLLAB is a dataset of 5000 ego-networks obtained by compiling 3 public
collaboration datasets; high-energy physics, condensed matter physics and as-
tro physics. The classification task is to identify which field the ego-network
of a given researcher belongs to. The dataset is not balanced.
IMDB-MULTI is a dataset of 1500 ego networks of actors and actresses. The
nodes are actors and actresses and there is an edge between two nodes if two
actors appear in the same movie. The classification task is to determine if
the collaboration graph belongs to a comedy, romance or sci-fi movie. The
dataset is balanced.
IMDB-BINARY is equivalent IMDB-COMEDY-ROMANCE-SCIFI to ex-
cept that there are 1000 networks and the categories are action and romance
movies. The dataset is balanced.
Due to time constraints we were unable to evaluate our first method on
REDDIT-MULTI-5K, COLLAB, IMDB-MULTI and IMDB-BINARY.

5.2 Hardware & Software

All experiments were run on a desktop with an Intel i7− 6700K CPU, 32GB
Ram and a GTX Titan X GPU. All models were built using either Tensorflow
or Keras.

5.3 Neural Networks on Graphlet Frequency
Distribution Vectors

Our first approach attempt to classify graphs by learning to distinguish
their graphlet frequency distribution vectors via neural networks. This
method relies extensively on the work of Shervashidze et al. [57], in
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particular the sampling theorem and the use of graphlets as underlying
features. The hypothesis is that as the graphlet kernel in eq. 4.1 is
computed, some of the information in the component graphlet frequency
vectors is lost. We therefore instead feed the frequency vectors directly
to the various neural network architectures. In addition to the standard
graphlet frequency vector, we also test on the smoothed frequency vector
from [61], using the same hyperparameter as them. We deploy four different
architectures. Logistic/softmax regression, a multilayer perceptron with a
single hidden layer, a CNN with two convolutional layers and a CNN four
convolutional layers. The motivation for using several architectures is to
observe if the deeper architectures are able to extract higher level features and
thus converge faster to a good accuracy, as well as seeing if the convolution
operator brings any benefits.

5.3.1 Input data

For each graph in our dataset G = {G1, G2,...,Gn} we compute the graphlet
frequency distribution vector defined as

Dg =
1

m
fG (5.1)

where m is defined as in eq. 4.4 and fG is defined as in eq. 4.1. For graphlets
of size k = 5, Dg ∈ R0

34 etc. This vector essentially serves as an estimate
of the probability mass function of the distribution of graphlets in the graph.
Figure 5.1 shows a graph model of a protein and its corresponding graphlet
distribution. The respective locations of the different graphlet counts in
eq. 5.1 and eq. 5.1, are somewhat arbitrary but in general more connected
graphlets are located farther out in the vector. In [61] a topological sorting
of the graphlets according to their edit distance is presented, however all that
is required is that the ordering is consistent across graphs.

5.3.2 Network Architectures

Four separate architectures were built and tested: a one layer logistic regres-
sion, a multilayer perceptron with one hidden layer and two convolutional
nets: one with two convolutional layers and one with four convolutional lay-
ers.

Logistic Regression The softmax has 34 input units (number of size k = 5
graphlets), which feeds to a sigmoid function.

Multilayer Perceptron The MLP has the following architecture

• Input layer 34 input units.
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Figure 5.1: Graph model of protein and its corresponding graphlet
distribution.

• Hidden layer 40 hidden units with rectified linear activation units
(relu).

• Output layer Sigmoid output layer

CNN with four convolutional layers The deepest of the two networks
has the following architecture.

• 1st Convolutional Layer 64 filters of size 34 × 1 (same as input),
followed by a Relu layer.

• 2nd Convolutional Layer 64 filters of size 17×1, followed by a Relu
layer and a Max pooling layer with kernel size: 2× 1

• 3rd Convolutional Layer 32 filters of size 9× 1, followed by a Relu
layer and a Max pooling layer with kernel size: 2× 1

• 4th Convolutional Layer 16 filters of size 5× 1, followed by a Relu
layer and a Max pooling layer with kernel size: 2× 1

• 1st Fully Connected Layer Fully connected layer with 128 hidden
units and Relu activation functions.

• 2nd Fully Connected Layer Fully connected layer with 64 hidden
units and Relu activation functions.

• Output Layer Sigmoid ouput layer.
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CNN with four convolutional layers The shallow of the two networks
has the following architecture.

• 1st Convolutional Layer 32 filters of size 17× 1, followed by a Relu
layer and a Max pooling layer with kernel size: 2× 1.

• 2nd Convolutional Layer 16 filters of size 9× 1, followed by a Relu
layer and a Max pooling layer with kernel size: 2× 1

• 1st Fully Connected Layer Fully connected layer with 64 hidden
units and Relu activation functions.

• Output Layer Sigmoid output layer.

5.3.3 Training and Validation

The performance of each network is validated using 5-fold cross validation.
The networks are trained with cross entropy as the cost function and
AdaGrad as the optimization algorithm with a learning rate of 0.01. For each
fold the network is trained for 1000 epochs with a batch size of n/4 where n
is the number of examples in the fold. In order to avoid overfitting several
regularization methods were deployed simultaneously. L2-regularization was
performed on the weights, early stopping as described in 3.3.3.4 and dropout
of 50% was performed between each layer.

5.3.4 Hyperparameter tuning and network design

Hyperparameters where tuned on the NCI1 dataset, as this is one of the
larger datasets. Once satisfactory parameter values where found, they where
kept constant during training and validation on the other datasets.

5.4 Graph Classification via Compressed La-
tent Node Representations

As mentioned in the introduction, a major goal in neural network research
is to be able to build end-to-end neural architectures without relying on
specialized features such as the graphlet frequency vectors of the previous
method. In this section we present an advancement in this direction for
graph classification, by applying collections of the latent node representations
generated by DeepWalk [52], which is described in detail in section
4.2.1.2. DeepWalk uses Skip-Gram to build latent node representations in
a continuous vector space by performing a series of random walk on the
graph and maximizing the probability of a given walk given a node in the
walk. Our method then uses the collection of these node representations as
input to a highly regularized and relatively shallow neural network. The
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current implementation is a two-step process. For each graph in our dataset
G = {G1, G2,...,Gn} we use DeepWalk to compute Φ, the matrix of vector
node representations. This matrix is then passed to the neural network for
classification. For graphs with more than 150 vertices, we sampled node
representations of 150 vertices without replacement instead of building the
full Φ.

5.4.1 DeepWalk

As input to DeepWalk we used the edgelist of the graphs. We trained the
model using standard settings from the paper. At each vertex in the graph,
10 random walks of length 40 are started. The window-size for Skip-Gram
was set to 5, and the dimensionality of the node representations is 64.

5.4.2 The Neural Network Architecture

The node vector representation matrix Φ is of size |V |×N , where N = 64 in
our case. In order to deal with varying input size we compute the size of the
largest graph in the dataset K = maxg G, and insert Φ in a K × N empty
matrix Φ∗. The first layer of the network consists of K parallel MaxOut
layers that each take a row vector x ∈ R64 from Φ∗ and output a compressed
node representation h(x) ∈ R where h represents the MaxOut transformation.
These compressed node representations are then merged into a single hidden
maxout layer of width K. This layer is then followed by another maxout
layer of size K, before a final output layer with a sigmoid (softmax in the
case of multinomial classification) activation function.

5.4.3 Training and Validation

The performance of each network is validated using 5-fold cross validation.
The networks are trained with cross entropy as the cost function, RMSProp
as the optimization algorithm with a learning rate constant at 0.001, ρ = 0.9
and ε = 1e − 06 as the optimizer. For each fold the network is trained for
2000 epochs with a batch size of n/4 where n is the number of examples in
the fold. In order to avoid overfitting several regularization methods were
deployed simultaneously. L2-regularization was performed on the weights,
early stopping as described in 3.3.3.4 and batch normalization and dropout
with p = 0.5 is performed before the second hidden layer and before the
output layer.

5.4.4 Hyperparameter tuning and network design

Neural networks often need extensive hyperparameter tuning before they
perform satisfactory. The inherent danger in this is that it can introduce
severe data snooping bias if the tuning is done using to much of the data.
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We used half of the NCI1 dataset for tuning, as this is one of the larger
datasets we had access to. The decision to split the first layer into K
layers learning compressed node representations was made in order to reduce
network capacity and thus prevent overfitting. For datasets containing graphs
with more than 150 vertices, fully connecting the input to the first hidden
layer would translate to 150×150×64+150 = 1 440 150 trainable parameters.
This is excessive for datasets containing between 188 and 4000 graphs. By
constraining the units of the first hidden layer to each only see one node
representation, this number was cut to 150× 64 + 150 = 9 750.

Early attempts using softmax and vanilla multilayer perceptrons failed to
yield satisfactory results due to excessive and fast overfitting. This led to the
decision to design a highly regularized network. The introduction of batch
normalization between hidden layers proved crucial to obtain the results.
With batch normalization, each sample is normalized in accordance to the
batch it is currently in (batches are shuffled between epochs), this leads to
a very light form of data augmentation that gives an illusion of training om
more data. Conventional hidden layers were abandoned in favor of MaxOut
layers which leverage and enhances the ensemble training effects of dropout.
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Chapter 6

Results

6.1 Neural Networks on Graphlet Frequency
Distribution Vectors

As stated in the machine learning chapter, the benefit of using deeper
architectures is that if the data allows it, they can build higher level
representations of the data that improve performance. Usually this means
complex non-obvious features that are combinations of transformations of
the raw input data. The plots in figure 6.1, 6.2, 6.3, 6.4, and 6.5 shows
how validation loss developed with number of epochs for the benchmark
datasets. The training losses are averaged over 10 folds and both smoothed
and unsmoothed frequency distributions are used, as indicated by the dotted
and full lines.

Figure 6.1: Validation loss on the MUTAG dataset.

From the plots we see that there is a qualitative difference in the
convergence of the neural networks versus the softmax, with the cnn
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Figure 6.2: Validation loss on the DD dataset.

architectures in general reaching the lowest loss levels. On all the dataset
except PTC, the neural network architectures manage a rapid convergence
which it then improves on until the early stopping criterion is triggered,
whereas the softmax algorithm takes significantly more epochs to reach
comparable loss levels. When considering that the final layer of all four
architectures is identical (softmax/sigmoid output), we can view all the
preceding layers as essentially feature generators for a logistic/softmax
regression. In this light, the significant difference in speed of convergence
both in epochs and time indicates that learning of non-obvious features is
taking place. When looking at table 6.1 and 6.4 however, a more complicated
picture appears. We find that all architectures report similar accuracies on all
datasets, and all are comparable to the various graphlet kernel methods. We
speculate that the explanation for the phenomenon of divergence in speed but
convergence in accuracy can in part be because of the deeper architectures’
ability to relatively quickly compute salient features. Note that accuracies
are comparable to results in [57] and [61]. In addition, our training and
validation times are significantly lower than reported in [57]. Though this of
course somewhat affected by the development we have seen in hardware.

6.2 Compressed Latent Node Representations
This method performs markedly worse than the graphlet based one. In the
chapter on Further Research 7, we present two sections that discuss why
this probably is the case, and potential remedies. The first considers using
negative sampling from all classes, instead of just the graph the node is in.
The second considers embedding entire walks in a vector space, and not just
nodes.

64



Figure 6.3: Validation loss on the PTC dataset.

Table 6.1: Accuracy for unsmoothed graphlet density

Accuracy Results (Unsmoothed)
DATASET Softmax MLP CNN2 CNN4
MUTAG 81.92%

(+/- 4.30)
80.84%
(+/- 2.95)

80.31%
(+/- 2.21)

79.27%
(+/- 3.26)

PTC 56.98%
(+/- 6.4)

57.27%
(+/- 1.56)

56.68 (+/-
1.45)%

55.52%
(+/- 0.99)

DD 75.13%
(+/- 1.63)

75.47%
(+/-1.81)

74.96%
(+/- 1.73)

75.13%
(+/- 1.28)

NCI1 62.63%
(+/- 1.15)

62.60%
(+/- 1.02)

62.34%
(+/- 1.02)

62.55%
(+/- 1.28)

NCI109 62.30%
(+/- 0.88)

62.59%
(+/- 0.84)

61.96%
(+/- 0.83)

62.20%
(+/- 0.79)

Table 6.2: Time for unsmoothed graphlet density per fold in seconds

Training and validation time (Unsmoothed)
DATASET Softmax MLP CNN2 CNN4
MUTAG 123.66 10.69 3.39 3.57
PTC 41.63 2.38 11.90 13.06
DD 70.77 10.79 4.27 50.90
NCI1 121.44 40.86 7.62 131.82
NCI109 131.32 131.12 9.70 160.48
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Figure 6.4: Validation loss on the NCI1 datset.

Figure 6.5: Validation loss on the NCI109 dataset.

Table 6.3: Time for smoothed graphlet density per fold

Training and validation time (Smoothed)
DATASET Softmax MLP CNN2 CNN4
MUTAG 92.23 10.95 2.52 18.48
PTC 68.14 3.08 11.47 41.31
DD 233.16 8.33 16.39 17.63
NCI1 198.63 24.05 15.64 89.35
NCI109 210.19 14.80 32.26 71.50
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Table 6.4: Accuracy for smoothed graphlet density

Accuracy Results (Smoothed)
DATASET Softmax MLP CNN2 CNN4
MUTAG 80.84%

(+/- 3.22)
80.84%
(+/- 2.95)

80.31%
(+/- 2.21)

76.63%
(+/- 3.80)

PTC 59.59%
(+/- 1.13)

59.60%
(+/- 1.02)

57.86%
(+/- 1.31)

57.56%
(+/- 0.71)

DD 75.22%
(+/- 1.66)

75.56%
(+/-1.83)

75.13%
(+/- 1.58)

75.81%
(+/- 1.47)

NCI1 62.60%
(+/- 1.21)

62.41%
(+/- 1.05)

62.41%
(+/- 0.67)

62.26%
(+/- 1.08)

NCI109 62.44%
(+/- 0.85)

62.39%
(+/- 0.86)

61.71%
(+/- 0.84)

62.05%
(+/- 0.58)

Table 6.5: Accuracy for embedded node representations

Accuracy Results (Smoothed)
DATASET Accuracy Standard

Error
Average
Time
(seconds)

MUTAG 85.12% 0.2% 12.49
PTC 58.15% 1.5% 89.38
DD 71.4% 1.6% 490.17
NCI1 58.27% 1.05% 608.38
NCI109 57.6% 1.12% 785.11
COLLAB 65.2% 0.06% 755.09
IMDB-BINARY 22.8% 0.08% 444.51
IMDB-MULTI 43.73% 0.17% 178.86
REDDIT-
MULTI

31.90% 0.09% 784.38
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Chapter 7

Discussion and Further Research

The biologist and complex systems scientist Stuart Kauffman has coined
a concept he calls the adjacent possible, meaning the state space of
configurations made possible by a system’s current state. It has been
described as a ’shadow future, hovering on the edges of the present state
of things, a map of all the ways in which the present can reinvent itself’ [35].
The term has been adopted by many fields, such as innovation theory, where
it is used to ask what products can built, given what components, supply
chains and customer sentiments exist. In the spirit of the adjacent possible,
this chapter contain ideas for further research that unfortunately did not
emerge until the main ideas in this thesis were fully explored, and thus did
not make it to the thesis contributions due to time constraints.

7.1 Multiscale graphlet distributions

One of the main issues with using graphlets as features is the trade-off
between modeling the local and global topology of the graph [61], [62]. Large
graphlets can capture more global structure, but as the graphlet size increases
the number of graphlet increase exponentially, with only a few of them being
represented in a given graph. As mentioned, this often leads to a very sparse
representation and often, diagonal dominance.

We propose a multi-scale graphlet distribution built by combining the
hierarchical clustering from the Deep Locally Connected networks from [6]
and conventional graphlets from [57]. The distribution would be built as
follows. A graph G = (Ω,W ) is completely defined as the set of nodes Ω and
the similarity matrix W (adjacency matrix, if the graph structure is explicit
and unweighted). As in [6], consider K scales. Set Ω0 = Ω and for each
k = 1,...,K, define Ωk, a partition of Ωk−1 into dk clusters, and a collection
of neighborhoods around each element of Ωk−1. For a given graphlet size
l, compute the graphlet distribution of Ω0. For each successive Ωk, treat
each cluster as a node, connected to other nodes by the cluster neighborhood
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relation. Then compute the graphlet distribution over this graph. This will
allow for a graphlet distribution over a successively downsized graph, which
as the scale increases should allow for the capture of more and more global
features of the graph. Experimental research will need to be carried out in
order to analyze what graphlets to use at different graph scales etc.

7.2 Negative sampling from a mixed corpus

DeepWalk is built for generating representations for multi-label classification.
It is intuitive that the representations work well for this task, as inference is
done on the same graph that is used for building the representations. It is
somewhat more surprising that these representations work as well as they do
for graph classification. Representations are built using information that is
local in the dataset, but used to do inference globally over the whole dataset.
What essentially happens when one is using Skip-Gram is that the vector
representation of the nodes are ’pushed’ towards their correct contexts and
’pulled’ away from incorrect contexts. An idea for further research could be
to explore the effect of using negative sampling where the negative samples
were walks obtained from graphs not belonging to the desired class, or a
mix of both. If certain walks are completely absent in a graph, this should
manifest itself as a context that the node representations are pushed away
from. Given that two classes have a different topology that can be seen in
the walks it permits, this should give better node representations.

7.3 Embedding walks instead of nodes

The vector representations of nodes in DeepWalk encode topological data
from the graph they belong to, but it might be even more effective to
embed entire walks and use them as features for classification. As mentioned,
DeepWalk is built for generating representations to do node inference. There
is most likely a substantial amount of redundancy in using the collection of
all node representations as features for a graph. Redundancy hurts classifier
performance, especially for small datasets.

7.4 Recurrent Neural Networks

The novelty of DeepWalk lies in generalizing a model originally designed for
language modeling, to graphs. There is another class of neural networks,
which we have not discussed in this thesis, that are frequently used for
language modeling, namely recurrent neural networks (RNN). For a thorough
discussion of RNNs, we refer to Alex Graves’ PhD dissertation Supervised
Sequence Labelling with Recurrent Neural Networks, from where we will
borrow some notation. RNNs are neural networks that process sequences
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of information and where neurons feed their own state information back into
themselves, and to other neurons at the next time-step. Formally, consider
an RNN with a size N input layer, one hidden layer of size H, and K output
units. Denote by W I and WH the input-to-hidden and hidden-to-hidden
connections respectively. The network takes an input sequence x of length
T . Let xti be the value of input i at time t and ath be the i-th hidden unit at
time t. The hidden unit is then defined as

ath = σ(
I∑
i=1

wi,hx
t
i +

H∑
h′=1

wh′,ha
t−1
h′ ) (7.1)

where σ is the nonlinerarity applied elementwise to every neuron in the hiden
layer. These so called ’vanilla’ RNNs proved to be difficult to train. This led
to the development of more advanced architectures such as the Long Short-
Term Memory model (LSTM) [31] and the Gated Recurrent Unit (GRU)
[9], which are now common in state of the art implementations of sequence
processing. Notable contributions are the word prediction work by Zaremba,
Sutskever and Vinyals [63] and the sequence-to-sequence modeling in [9]. In
[63], the task is to predict the next word given a sentence on the Penn Tree
Bank dataset. In [9], the task is to map a sequence of arbitrary length to
a different sequence to arbitrary length, the method is applied to statistical
machine translation where the input sequence is a sentence in one language
and the output sequence is the translated sentence in another language. In
both papers, the words that the sentences are composed of are embedded in
a continuous vector space à la word2vec in order to increase performance.

There are several possibilities for using RNNs to extend this research
further. One possible direction for further research could be suggest to
extend the language-to-graph analogy of DeepWalk and pass walks of densely
represented nodes to recurrent neural networks such as LSTMs for graph
classification. Indeed it could be interesting to see results even without node
embedding. Especially for graphs with labeled nodes, the network should be
able to infer some measure of graph topology without node embeddings.
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