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Abstract

Using Commercial off-the-shelf (COTS) software over networks that are
Disconnected, Intermittent and Limited (DIL) may not perform satis-
factorily, or can even break down entirely due to network disruptions.
Frequent network interruptions for both shorter and longer periods, as
well as long delays, low data and high packet error rates characterizes
DIL networks. In this thesis, we designed and implemented a prototype
proxy to improve the performance of Web services in DIL environments.
The main idea of our design was to deploy a proxy pair to facilitate HTTP
communication between Web service applications. As an optimization
technique, we evaluated the usage of alternative transport protocols to
carry information across these types of networks. The proxy pair was
designed to support different protocols for inter-proxy communication.
We implemented the proxies to support the Hypertext Transfer Proto-
col (HTTP), the Advanced Message Queuing Protocol (AMQP) and the
Constrained Application Protocol (CoAP).

By introducing proxies, we were able to break the end-to-end
network dependency between two applications communicating in a
DIL environment, and thus achieve higher reliability. Our evaluations
showed that in most DIL networks, using HTTP yields the lowest Round-
Trip Time (RTT). However, with small message payloads and in networks
with very low data rates, CoAP had a lower RTT and network footprint
than HTTP.
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Chapter 1

Introduction

Today the Internet connects millions of users from all over the world. It
plays an important role for both businesses and people in their everyday
life by enabling the possibility to access and exchange information. The
communication infrastructure in today’s society provides fast and stable
access to the Internet. However, this infrastructure might not be present
in all use-cases requiring the exchange of information over the Internet.
Consider for example a nature disaster damaging the communication
infrastructure, which limits the quality of network connections. In such
a scenario the exchange of information is critical for public health and
security services. Another consideration is the development of the
Internet of Things (IoT), where more and more devices are becoming
connected to the Internet. Typical IoT devices are sensors with limited
energy and wirelessly connected to the Internet. High packet loss
rates, low data rates, and instability may characterize such wireless
networks. They are often referred to as Low-Power and Lossy Networks
(LLNs). In this thesis, we look into improving the performance of Web
services operating in these types of conditions, with a focus on military
application.

Military units may operate in areas where conditions like terrain,
obstacles, and radio interference make communication difficult. They
may operate far from existing communication infrastructure and rely
only on wireless communication. Such communication is often charac-
terized by unreliable connections with low data rate, long delays, and
high error rates. In a military scenario, it is necessary for units to ex-
change information seamlessly across different types of communication
systems. This ranges from remote combat units at the tactical level, to
commanding officers at the operational level in a static headquarters
packed with computer support. To the North Atlantic Treaty Organiza-
tion (NATO), this concept is referred to as Network Enabled Capability
(NEC). In a feasibility study, NATO identified the Service Oriented Archi-
tecture (SOA) paradigm and the Web Service technology as key enablers
for information exchange in NATO [1].

Web service technology is well tested and in widespread use in civil
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applications where the network is stable and the data rate is abundant.
However, military communication may suffer from limited networks,
which can leave Web services built for civilian use unusable. How to
overcome these challenges are investigated in this thesis. The primary
approach looks into how using alternative network transport protocols
may increase speed and reliability.

1.1 Background and Motivation

NATO is a military alliance consisting of 28 member countries [2] and
which primary goal is to protect the freedom and security of its members
through political and military means. In joint military operations,
the relatively large number of member countries can be a challenge
when setting up machine-to-machine information exchange. Differences
in communication systems and equipment contribute to making the
integration of such systems more difficult. To address this issue, NATO
has chosen the SOA concept, which when built using open standards
facilitates interoperability between member nations [1].

1.1.1 Service Oriented Architecture

SOA is an architectural pattern where application components provide
services to other components over a network. SOA builds on concepts
such as object-orientation and distributed computing and aims to get a
loose coupling between clients and services. In their reference model for
SOA, the Organization for the Advancement of Structured Information
Standards (OASIS) defines SOA as [3]:

Service Oriented Architecture is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of
different ownership domains. It provides a uniform means to offer,
discover, interact with and use capabilities to produce desired effects
consistent with measurable preconditions and expectations.

In SOA, business processes are divided into smaller parts of business
logic, referred to as services. A service can be business related, such
as a patient register service, or an infrastructure service used by other
services and not by a user application. OASIS defines a service as [3]:

A service is a mechanism to enable access to one or more capabilities,
where the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as specified by the
service description.

Services are provided by service providers and are consumed by
service consumers as illustrated in fig. 1.1. The service provider
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Figure 1.1: The three roles in SOA

is responsible for creating a service description, making the service
available to others and implementing the service according to the
service description. Services are provided to service consumers through
a form of service discovery. This can be a static configuration, or more
dynamic with a central service registry, where service providers publish
service descriptions. Service consumers find the services they need by
contacting the service registry. The communication between services
occurs through the exchange of standardized messages.

Following the SOA principles dictate a very loose coupling between
services and the consumers of those. This allows software systems to
be more flexible, as new components can be integrated with minimal
impact on existing systems. Another aspect of loose coupling is
concerning time, which enables services and its consumers not to be
available in the same instance of time. This allows asynchronous
communication. Loose coupling with regards to location permits the
location of a service to be changed without needing to reprogram,
reconfigure, or restart the service consumers. This is possible through
the usage of runtime service discovery, which is the dynamic retrieval of
the new location of the service.

Furthermore, SOA enables service implementation neutrality. The
implementation of a service is completely separated from the service
description. This allows re-implementation and alteration of a service
without affecting the service consumers. Thus, this can attribute to keep
development costs low and avoiding proprietary solutions and vendor
lock-in. Another benefit with SOA is re-usability by dividing common
business processes into services, which may help cost reduction and
avoids duplication.

SOA is only a pattern, and a range of technologies can realize the
concepts. The most common approach used is the World Wide Web
Consortium (W3C) Web service family of standards, which use the SOAP
messaging protocol. To achieve interoperability between systems from
different nations and vendors, NATO has chosen this technology in order
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to realize the SOA principles [4]. This allows member countries to
implement their own technology as long as they adhere to the standards.
The Web service technology is discussed in detail in section 2.2.1.
Another method to realize the SOA principles is Representational State
Transfer (REST), an architecture style which has gained a lot of traction
in the civilian industry. We discuss REST further in section 2.2.2.

Both REST and W3C Web services are in widespread use both
in the civilian and military world. However, employing Web service
solutions directly for military purposes may not be so straightforward.
These technologies were not specifically designed to handle the network
conditions found in certain military communication networks. In the
following sections, we present an overview of military networks, discuss
the characteristics of them and the possible challenges of using Web
services in them.

1.1.2 Military Networks

Military communication networks are complex and consist of many
different heterogeneous network technologies. We can group them into
layers, which have different characteristics as can been seen in fig. 1.2.
At the highest level, there is fixed infrastructure and a relatively static
number of services. At the lower levels, there are fewer services, but the
units operating at this level are much more dynamic. The lower levels
are called tactical networks and are discussed in the next paragraph.

Figure 1.2: Complexity of military networks (from [5])
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Tactical Networks

Tactical networks are characterized by that the military units are de-
ployed to operate on a battlefield. We distinguish between deployed and
mobile tactical networks, where deployed may use existing communica-
tion infrastructure. Mobile tactical networks have no existing communi-
cation infrastructure and therefore experience the largest communica-
tion challenges.

In tactical networks, military units use tactical communication equip-
ment, which includes technologies like VHF, UHF, HF, tactical broad-
band and satellites [6]. Examples of such units are mobile units like
vehicles, foot soldiers and field headquarters. NATO studies[7] have
identified tactical networks to have the following characteristics:

Disadvantaged grids are characterized by low bandwidth, variable
throughput, unreliable connectivity, and energy constraints imposed by
the wireless communications grid that link the nodes.

These types of networks are often called disadvantaged grids or
Disconnected, Intermittent and Limited (DIL) environments, which is
the term we use in this thesis.

1.1.3 Disconnected, Intermittent and Limited Networks

To improve the performance of Web services in tactical networks, it
is important to understand their limitations. The DIL concept refers
to three characteristics of a network: Disconnected, Intermittent and
Limited.

Disconnected Military units that participate in a tactical network
may be highly mobile and may disconnect from a network either
voluntarily or not. Unplanned loss of connectivity can be due to
various reasons, such as loss of signal or equipment malfunction.
The disconnected term refers to that units may be disconnected
for a long time, possibly for multiple hours or even days.

Intermittent Units operating in a DIL environment may lose connec-
tion temporarily before reconnecting again. The duration can
range from milliseconds to seconds. As an example, consider a
military vehicle that is driving on a countryside road. It may tem-
porarily lose connection due to the signal being obstructed by trees
beside the road, driving into tunnels or by having a bad radio sig-
nal.

Limited Limited refers to various ways a network can be constrained.
The available data rate may be low, the network delay may be high,
and the Packet Error Rate (PER) may be high. The term data
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rate refers to the speed that data that can be transmitted over
a network. Delay means the time it takes for data to travel from
machine to machine. The packet error rate refers to the percent
of packets being sent incorrectly due to the data being erroneous
altered in transmission. A packet is considered as incorrect if at
least one bit error in the data occurs. Section 2.1.3 elaborate on
these metrics.

In addition to network limitations, other factors may also limit
communication for military units. As an example, consider a military
foot patrol that is operating out in the field. To communicate critical
information with other units they use radios. The radio communication
equipment is powered by batteries, which the soldiers have to carry with
them. Running applications and the sending and receiving of data can
consume a considerable amount of power. Thus, the battery could be
a scarce resource for the units operating in a DIL environment. This is
similar to the constraint imposed on IoT devices.

1.2 Problem Statement

The Web service technology enables interoperability between systems,
but also increases the information overhead, requiring higher data rate
demands. Most of the Web service solutions used today are aimed
for civilian purposes and do not necessarily perform well in military
environments. In contrast to civilian networks where the data rate is
abundant, mobile tactical networks may suffer from high error rates,
low data rate, and long delays. Adapting Web service solutions meant for
non-military networks directly for military purposes may not be possible.
Therefore, Web services need to be adapted to handle unreliable and
limited networks. However, it can be very expensive to alter existing
Web service technology and incorporate proprietary solutions.

1.3 A Suggested Approach

The NATO research group titled "SOA Challenges for Real-Time and
Disadvantaged Grids" (IST-090) has previously investigated which
improvements that could be made to enable the usage of Commercial
off-the-shelf (COTS) applications in DIL networks. COTS is a term used
to describe the purchase of standard manufactured systems rather than
custom made. The research group pointed out the desire to optimize
Web services, but without the need of incorporating proprietary and ad-
hoc solutions [6]. IST-090 did not find a magic bullet that would solve all
problems with using Web services in DIL networks but identified some
factors that would offer measurable improvements. The most notable
findings were:
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• Foundation on open-standards.

• Ease of management and configuration.

• Transparency to the user.

• The Web services should be optimized without the need to
incorporate proprietary, ad hoc solutions that ensure tighter
coupling between providers and consumers of services.

The last bullet point refers to the issue of when we have identified
optimization techniques for DIL environments, where do we apply them?
One approach could be to modify Web service applications themselves.
However, this would mean that every application deployed in a tactical
network would require modification. The alteration would require a lot
of resources and severely limit the flexibility of using standardized Web
services.

IST-090 recommends another approach; applying optimizations in
proxies without altering the Web services themselves [6]. A proxy
is a node deployed somewhere in a network, which applications can
tunnel their network traffic through. With this approach, the only thing
required to do is to configure the applications to send and receive data
through the proxies. The proxies will then handle the optimization for
tactical networks. Figure 1.3 illustrates a setup like this, where clients
can invoke Web services through a proxy pair over a DIL network. By
placing the optimization in proxies, the Web services themselves can
remain unchanged.

Figure 1.3: Proposed proxy solution

This approach is identified by IST-090 and is explored in this thesis.
Based on this recommendation, we create a proxy with the aim of
facilitating Web service usage in DIL networks.
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1.4 Premises of the Thesis

In this section, we define the premises for the thesis and the proxy being
developed as a part of it. As we have previously discussed, W3C Web
services are in widespread use in NATO. Also, the REST architectural
style has been identified as a technology of interest to NATO. As we
discuss later in section 2.2, Hypertext Transfer Protocol (HTTP) is the
by far most common transport protocol used by these types of services.
The first and second premise are therefore that the proxy must be able
to support both REST and W3C Web services deployed in a DIL network.

Next, to optimize Web services in DIL environments, the applications
themselves should not be required to be customized. All optimization
should be placed in proxies. By doing this, we retain the interoperability
with standards-based COTS solutions. The fourth and final premise are
that the proxy must work with standard security mechanisms. In our
case, this means that any messages sent through the proxies must be
exactly the same at the receiver as it would have been without the
proxies. The reason for this is due to both the header fields and the
body of the message can be part of security mechanisms, such as digital
signatures and the presence of authentication header fields.

To summarize, the premises of this thesis are that the proxy solution
must:

1. Support HTTP RESTful and W3C Web services.

2. Work in DIL networks.

3. Be interoperable with standards-based COTS solutions.

4. Work with security mechanisms.

1.5 Scope and Limitations

The goal of this thesis is to investigate optimization techniques for Web
services in DIL environments. We limit it to techniques that can be
applied to the application or the transport layer of the Internet protocol
suite (see table 2.1). The reason for this is that NATO has previously
decided that all data communication in NATO should occur with IP
packets [1]. We, therefore, limit our optimization possibilities to the
mentioned layers.

We mainly focus on the performance of Web services, yet security is
of paramount importance in military networks. Hence, any optimization
techniques applied should be possible to use together with common
security mechanisms. Another aspect is that applications that are to be
used in military networks need to be approved by security authorities. If
the application is too complex, e.g. it has a very large code base or use a
lot of external frameworks, the approval process can be very lengthy. It
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is therefore an important consideration to make the proxy as relatively
simple as possible.

1.6 Research Methodology

Research is the systematic investigation of how to find answers to a
particular problem. It is broadly classified into Basic Research and
Applied Research [8]. Basic research, also called fundamental or
pure research, is research on basic principles and reasons for the
occurrence of a particular event or process or phenomenon. It does
not necessarily have any practical application. Applied research, on the
other hand, is concerned about solving problems employing well known
and accepted theories and principles. In this thesis, we set out to solve
the actual real-world problem of optimizing Web services. Thus, we
perform applied research. To address this problem we need a systematic
approach of how to conduct the research. This is referred to as research
methodology and says something about how the research is to be carried
out.

In our work, we are performing research in the area of Computer
Science, a scientific discipline defined as [9]:

The systematic study of algorithmic processes that describe and
transform information: their theory, analysis, design, efficiency, imple-
mentation, and application.

Denning et al. have identified three main processes for the computer
science discipline, theory, abstraction and design [9]. Theory derives
from the mathematics discipline and applies to the areas of computer
science that rely on underlying mathematics. Examples of this are the
computer science areas of algorithms and data structures that involve
complexity and graph theory. The next process, abstraction, deals
with modeling potential implementations. The design process is the
process of specifying a problem, transforming the problem statement
into a design specification, and repeatedly inventing and investigating
alternative solutions until a reliable, maintainable, documented, and
tested design is achieved.

The research methodology used in this thesis is based on the design
process. The four steps and the efforts undertaken in them are
summarized here:

Specify the problem The primary focus of this thesis is how to improve
the performance of Web services in DIL environments. We
formulate a problem statement in section 1.2 and propose a
possible solution in section 1.3. Moreover, we present the technical
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background in chapter 2 and previous related work in this area in
chapter 3.

Derive a design specification based on the requirements Based on
the premises, scope of the thesis, studies of the technological back-
ground, and related work, we derive a set of requirements and
specifications in chapter 4.

Design and implement the system After we identify the require-
ments for the proxy solution, we design and implement them.
Chapter 5 elaborate this step.

Evaluate the system Finally, the solution is assessed through a series
of tests. The purpose of this is to evaluate if we are in fact able
to solve the problem we set out to solve. We cover the testing and
evaluation in chapter 6 and draw a conclusion in chapter 7.

1.7 Contribution

The outcome of this thesis is a recommendation regarding which
optimizations techniques can be used in DIL networks to increase the
performance of Web services. As a part of this work, we implement a
prototype DIL proxy.

1.8 Outline

The remainder of this thesis is organized as follows:
Chapter 2 presents the technical background for this thesis. We

introduce computer networks in general before we dive into different
communication paradigms and protocols. Then, in chapter 3, we
discuss previous work done in the area. In chapter 4, we derive a
specification for the proxy, before we in chapter 5 present the design
and implementation details. Next, in chapter 6 we show the testing
of the proxy solution and how the solution fulfilled the premises and
requirements. Finally, in chapter 7, we summarize our work and provide
reflections on possible future work within this field.

In the appendix, we include information about the test results, proxy
configuration and the source code developed as a part of this thesis.
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Chapter 2

Technical Background

In this chapter, we present the technical background of the central
concepts and protocols on which this thesis is based. We first give
an introduction to computer networks in general and how they are
organized. Next, we introduce a set of network metrics used to
characterize different types of DIL networks in this thesis. Then we
look into two very common communication patterns. Next, we present
the W3C Web service technology commonly used for exchanging data in
military systems. We also introduce the REST style of services. Finally,
we look into a number of protocols that we can replace HTTP/TCP with
to increase the performance of Web services.

2.1 Computer Networks

A computer in a network is often referred to as a node. These nodes can
be interconnected and form large computer networks. The most well-
known network is the Internet, which is a large network of networks
facilitating communication between nodes all over the world. The
Internet is linked together by nodes using a set of protocols called the
Internet Protocol Suite [10]. The functionality of the protocol suite is
organized into four abstraction layers outlined in the following sections.

2.1.1 Network Layers

The Internet Protocol Suite is organized into four layers, each one built
upon the one below it as shown in table 2.1.

Application Layer

Transport Layer

Internet Layer

Link layer

Table 2.1: The layers of the Internet Protocol Suite
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Link Layer

The lowest layer of the protocol suite is the link layer, where the link
is the physical component used to interconnect two adjacent nodes in a
network. Ethernet is an example of a link layer protocol facilitating the
transfer of data between two physically connected nodes.

Internet Layer

Where the link layer is only concerned with moving data over a link to
an adjacent node, the Internet layer is concerned with how to deliver
data all the way from a source to a destination, possible passing through
multiple nodes on its way. It does not guarantee delivery of data since
data can be lost on the way to the destination but provide a best-effort
approach. Guaranteed delivery is usually handled by the higher network
layers of the Internet Protocol Suite.

The Internet Protocol (IP) is the protocol that enables the transfer
of messages between two nodes in a network. Messages between two
nodes are sent as IP packets and are routed through possibly multiple
other nodes before it reaches its destination. This routing function is
fundamental for the Internet, as it allows nodes to communicate without
knowing the exact network path to each other.

To provide a common transport mechanism for all types of transmis-
sions links, NATO has decided that data communication in NATO sys-
tems should be based on IP [1].

Transport Layer

In the Internet protocol suite model, the transport layer provides end-
to-end communication services to applications. It builds on top of the
Internet layer and takes responsibility for sending data all the way
from a process on a source computer to a process on the destination
computer. The by far most used transport protocol is the Transmission
Control Protocol (TCP), which provides reliable transport of data to
applications. With reliable transport, we mean that if data in a
transmission is lost or received in the wrong order, this is handled by the
transport protocol. This provides a valuable abstraction for applications
so that they do not need to deal with these issues themselves.

Application Layer

The top layer of the Internet Protocol Suite is the application layer. Its
role is to serve communication services to applications. When we talk
about application layer protocols, we usually talk about protocols that
applications use to communicate with other applications. Application
layer protocols use the communication services the transport layer
provides. Examples of application layer protocols are HTTP and the
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File Transfer Protocol (FTP), which both rely on TCP as the underlying
transport protocol.

2.1.2 Messaging Patterns

A message pattern describes how applications communicate with each
other. There exist multiple messaging patterns and in this chapter we
look into protocols using two very common approaches:

Request-Response

Request-response is a message pattern where a requester sends a
request to a system. The system then processes the request and
responds with a response message. This pattern is also known as the
client-server model.

Publish-Subscribe

Publish-subscribe is a message pattern where subscribers express their
interest in a type of messages, often called topics or classes. Message
publishers create messages of certain classes and publish them without
needing to know who are subscribing to these types of messages.
Many publish-subscribe systems employ a message broker as seen
in fig. 2.1. The message broker handles published messages from
publishers and receives subscriptions from subscribers. The broker can
perform various tasks, such as message filtering and prioritize queuing.

Figure 2.1: Message Brokers

2.1.3 Network Metrics

When transferring data over a network, the transfer is subject to many
factors that may affect the transmission. A message sent over the
Internet pass through communication infrastructure and equipment of
different quality and properties. Network metrics are used to describe
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various aspects of the data transfer from a node to another. In this thesis
we use the following metrics:

Data Rate The data rate refers to the amount of data that can be
transmitted over a network per unit of time.

Delay The delay is the time it takes for a bit of data from machine
to machine to travel across the network. The Round-Trip Time
(RTT) is the time it takes from a request is sent until a response is
received.

Packet Error Rate PER means the number of incorrectly received
packets divided by the total number of received packets. A packet
is considered as incorrect if at least one bit error occurs.

2.2 Web Services

Web services are client and server applications that communicate over
a network. They can be used to realize the SOA principles, and are in
widespread use in both civilian and military systems. It is worth noting
that the term Web services is a broad term and can be used to describe
different types of services available over a network. The most common
usage of the phrase refers to the W3C definition of SOAP-based Web
services, but could also refer to more simple HTTP-based REST services.

In this thesis, we investigate optimization techniques that should
support both W3C Web services and RESTful web services.

2.2.1 W3C Web Services

W3C has defined Web services as [11]:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards.

This definition points out a set of standards that enable machine-
to-machine interactions. Web service interfaces are described in
documents called WSDL, and communication is based on sending XML-
based SOAP messages. There exist many definitions of Web services
where the core principles are the same, but the finer details may vary.
Figure 2.2 illustrates the fundamental principles. The Web service
technology is a realization of the SOA principles, and provides loose
coupling and eases integration between systems.
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Figure 2.2: W3C Web services

These standards that together make W3C Web services are pre-
sented in the following sections.

Extensible Markup Language

The Extensible Markup Language (XML)[12] is considered as the
base standard for Web services. An XML document consists of data
surrounded by tags and is designed to be both machine and user
readable. Tags describe the data they enclose.

Web Services Description Language

Web Services Description Language (WSDL) is an XML-based interface
definition language that describes functionality offered by a Web
service [13]. The interface defines available functions, data types
for message requests and responses, binding information about the
transport protocol, as well as address information for locating the
service. The interface enables a formal, machine-readable description
of Web service which clients can invoke.

SOAP

SOAP is an application level, XML-based protocol specification for
information exchange in the implementation of Web services [14]. Data
communication in SOAP is done by nodes sending each other SOAP
messages. A SOAP message can be considered as an "envelope"
consisting of an optional message header and a required message body.
The header can contain information not directly related to the message
such as routing information for the message and security information.
The body contains the data being sent, referred to as the payload.
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SOAP is transport protocol agnostic, which means it can be carried
over various underlying protocols. The far most used transport protocol
is HTTP over TCP, but other protocols such as UDP and SMTP can be
used as well.

2.2.2 Representational State Transfer

In the previous sections, we looked into the standards and specifications
that compose W3C Web services. However, there also exist other types
of Web services which do not follow these standards. In 2000, the
computer scientist Roy Fielding introduced REST where he presented
a model of how he thought the Web should work. This idealized model
of interactions within a Web application is what we refer to as the REST
architectural style [15]. REST attempts to minimize latency and network
communication while maximizing the independence and scalability of
component implementations. This is done by placing constraints on
connector semantics rather than on component semantics like W3C Web
services. REST is based on a client-server model where a client requests
data from a server when needed.

Web services that adhere to the REST style are called RESTful Web
services. They are closely associated with HTTP and use HTTP verbs
(e.g. GET, POST, DELETE) to operate on information located on a server.
RESTful Web services typically expose some sort of information, called
resources in REST. Table 2.2 illustrates how a component exposes a set
of operations of an example car resource. Resources are identified by
a resource identifier. While W3C Web services are service oriented, we
can look at REST as being more resource oriented.

Resource identifier HTTP Method Meaning

/vehicles/cars/1234 GET Return a car with ID
1234 from the sys-
tem.

/vehicles/cars/ POST Create a new car
which will be added
to the list of cars.

/vehicles/cars/1234 DELETE Delete a car with ID
1234 from the sys-
tem.

Table 2.2: Example of REST operations

The REST style has gained a lot of traction in the civil industry in
the latest years. Although NATO has chosen W3C Web services as
the technology to do information exchange, REST is identified as a
technology of interest to certain groups in NATO [16]. One potential
downside to NATO with REST, however, is that RESTful Web services
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lack standardization, which may cause interoperability issues.

Closely associated with REST and the most used transport protocol
for W3C Web services are HTTP, which we present in detail in the next
section.

2.3 Hypertext Transfer Protocol

As we have seen in the previous sections, both RESTful and W3C
Web services rely on HTTP as the means of communicating with other
services. The usage of HTTP is very widespread, and it is the foundation
of data communication for the World Wide Web since the early 90’s. It’s
protocol specification is coordinated by Internet Engineering Task Force
(IETF) and the W3C, and is defined as [17]:

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information systems.
It is a generic, stateless, protocol which can be used for many tasks
beyond its use for hypertext, such as name servers and distributed
object management systems, through extension of its request methods,
error codes and headers.

HTTP started out as a simple protocol for raw data transfer across
the Internet and has since been updated in HTTP/1.0, HTTP/1.1 and
most recently a major update in HTTP/2.0. It is a request-response
protocol which means that all data exchanges are initiated with a client
sending a HTTP request and then waits until a server responds with a
HTTP response. A HTTP request consists of a request method, Uniform
Resource Identifier (URI), protocol version, client information, and an
optional body. The server responds with a message containing a status
line, protocol version, a code indicating the success or error of the
request, and an optional body. Both HTTP requests and responses use a
generic message format and can contain zero or more HTTP headers.
Headers are used to provide information about the request-response
or about the message body, e.g. information about the encoding and
caching information.

HTTP, being an application level protocol, relies on a transport
protocol to transfer data to other machines. HTTP communication
most often, but not necessarily, occurs over TCP/IP connections. The
only requirement in the HTTP specification is that a reliable transport
protocol is used.

2.3.1 HTTP Methods

Associated with all HTTP requests is a request method, which indicates
the desired action to be performed on a resource located on a Web
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server. The set of HTTP methods defined in HTTP/1.1 is listed in
table 2.3.

HTTP Method Purpose

OPTIONS Asks the server which HTTP
methods and header fields it sup-
ports.

GET Retrieve information identified by
the resource identifier (Request-
URI).

HEAD Identical to GET, except that the
HTTP body is not returned from
the server.

POST Asks the server to accept the
message payload from the client
as a new resource.

PUT Similar to POST but allows the
client to ask the server to update
a resource identified by the re-
quest URI.

DELETE Requests that the resource iden-
tified by the request URI is
deleted.

TRACE Echoes the HTTP request. Used
for debugging.

CONNECT For use with a proxy that can
dynamically switch to being a
tunnel.

Table 2.3: HTTP methods

2.4 Transmission Control Protocol

TCP is called the workhorse of the Internet because it is so critical for
how the Internet works. It is the primary transport protocol of the
Internet Protocol Suite[10] and provides reliable in-sequence delivery
of two-way traffic (full-duplex) data. TCP was defined in RFC 793[18]
back in September 1981 and has since been improved in various RFC’s.
The main motivation behind TCP was to provide reliable end-to-end byte
streams over unreliable networks. HTTP and other application layer
protocols often use TCP as their transport layer protocol. In the coming
sections, we therefore present TCP in detail and discuss some of the
issues we may encounter using it.
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2.4.1 The Protocol

TCP is a connection-oriented protocol, which means that a connection
between a sender and the receiver must be established before any data
can be transferred. TCP does this by using a three-way handshake
to establish a connection. For each connection, TCP initializes
and maintains some status information such as window size, socket
information and sequence numbers.

Computers supporting TCP have a piece of software which manages
TCP streams and interfaces to the Internet layer. Most often this
software is a part of the kernel [19]. It accepts data streams from local
processes and breaks them up into pieces, before sending them to the
Internet layer. The pieces are called TCP segments, which consist of
a fixed 20-byte header, followed by zero or more data bytes. The TCP
software decides how big the segments should be, but for performance
reasons they should not exceed the Maximum Transfer Unit (MTU) of
the link (the physical network). Each segment should be so small that it
can be sent in a single, unfragmented package over the entire network.
This usually limits the size of each segment to the MTU of the Ethernet,
which is 1500 bytes [20].

When the TCP software receives data from applications, it is not
necessarily immediately sent as it may be buffered before its sent. At the
receiving end, data is delivered to the TCP software, which reconstructs
the original byte stream and delivers it to the destination application.

2.4.2 TCP Reliability

When transferring data over the Internet, the data may pass through
various networks, routers, and physical networks. Some of the routers
may not work correctly, a bit may be flipped when transferring data
wirelessly, or some other factor may come into play. For these reasons,
TCP have to deal with that some of the data will be damaged, lost,
duplicated or delivered out of order.

TCP recovers from such faults by assigning sequence numbers to
each packet being sent. It then requires a positive acknowledgment
from the receiver that the data was actually received. If the
acknowledgment is not received within a timeout interval, the data
is transmitted again. For the receiver, the sequence numbers are
used to ensure that data is received in the correct order, as well as
eliminating duplicates. Furthermore, to detect damaged data, TCP
applies checksums to each segment transmitted. At the receiver, the
checksum is then checked, and damaged segments can be discarded.
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2.4.3 Flow Control

If a fast sender sends data faster than a slow receiver can process,
the receiver will be swamped with data and may experience severe
performance reduction. Flow control is a mechanism to manage the rate
of the data transmission to avoid overflowing a receiver. TCP provides
this feature by maintaining a window of acceptable sequence numbers
that the receiver is willing to accept. With every acknowledgment sent
back to the sender, the window is specified. This allows the receiver to
control which segments, and how fast, the sender can send.

2.4.4 Congestion Control

Congestion control is about controlling the entry of data traffic into a
network to avoid network congestion. On its way from the sender to the
receiver, an IP packet may pass through different subnets with different
capabilities. Network congestion may occur if a node in a network
receives more data than it is able to pass forward. The consequence
of this is that an increase in network traffic to this node would only lead
to a small increase, or even a decrease, of the network throughput [21].

To avoid congestion, TCP uses a number of mechanisms. These aim
to control the rate of data packets entering into the networks to avoid
congestion, but still get as high throughput as possible. One of these
mechanisms is slow-start, which the general idea is to start transmitting
with a low packet rate, then gradually increasing the packet rate. When
TCP notices that a packet is eventually lost, it considers it as a sign of
network congestion and reduces the rate it sends packets.

2.4.5 Issues Using TCP in DIL

DIL networks are characterized by their high delay, low data rate, and
relatively high error rate. Since TCP’s congestion control interprets this
as evidence of congestion, it will back off and send with a lower packet
rate. This could cause TCP to send with a lower rate than the network
actually can provide. Moreover, it could also ultimately lead to the TCP
connection terminating due to those effects [7].

2.5 Protocols of Interest

Since TCP may be sub-optimal or even break down entirely in DIL
networks, we are in this thesis looking into alternative protocols. In
networks with low data rates, protocols with low overhead per IP packet
are beneficial. With frequent disconnects, protocols that are connection-
less may be more suitable than connection-oriented. One important
limitation is that NATO has chosen the "everything over IP", which
means that all optimization must occur on the top of the network layer.
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Because of this, we evaluate protocols in the transport and application
layer.

There exist a vast amount of protocols developed for different use-
cases and by various organizations. In this thesis, we focus on protocols
that are established and/or standardized. Using proprietary solutions,
or protocols which lack standardization, may contribute to the proxy
solution being harder to get approved by military security authorities.
In the following sections, we give an introduction to the protocols we are
investigating in this thesis. The protocols is because of their prevalence
in the civilian and military world or their reported performance in the
IoT. Protocols used in IoT are of interest to us since they are designed
to work in networks which have similar characteristics as DIL networks.

We get started by discussing the User Datagram Protocol (UDP),
which alongside TCP is one of the core protocols of the Internet protocol
suite.

2.5.1 User Datagram Protocol

The Internet has two main protocols in the transport layer, namely UDP
and TCP. They have fundamentally different characteristics and use
cases, which we go through in this section. UDP was formally defined
in 1980 in RFC 768[22] and is a simpler protocol than TCP. It sends
messages, called datagrams, to nodes over the IP network. While TCP
provides reliable transmission along with flow control and congestion
control, UDP only supports the sending of IP datagrams. Furthermore,
it is a connection-less protocol, which means that the protocol can send
messages without establishing a connection first. Since UDP does not
provide guaranteed delivery or in-order delivery of messages, it should
only be used by applications that do not require this.

To summarize, UDP is a more lightweight protocol than TCP. It has
smaller headers and less overhead. The downside is that it does not
provide any mechanisms for congestion control or reliability. UDPs
lack of end-to-end congestion control may result in drastic unfairness
if a UDP stream is competing with a TCP stream [23]. While a TCP
stream will detect congestion and back-down its traffic, a UDP stream
will greedily send at full-throttle, thus causing an unfair share of the
available network. UDP is therefore often referred to as not TCP-
Friendly.

It is worth noting that UDPs lack of reliability may by handled on a
higher level in the application stack on top of UDP. This is done by the
next protocol we are looking into.

2.5.2 Constrained Application Protocol

Constrained Application Protocol (CoAP) is a specialized Web transfer
protocol designed for use with constrained nodes and networks [24]. It
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is intended for machine-to-machine applications typically found in the
Internet of Things. Furthermore, it is designed with a similar interface
as HTTP to easily integrate with Web services. CoAP and HTTP work
similarly in the way that they both use a client-server interaction model.
CoAP is based on the REST style where a server makes resources
available under a URI. Clients can then interact with these resources
using a subset of the HTTP-verbs: GET, PUT, POST, and DELETE.

CoAP messaging is based on asynchronously exchanging CoAP
messages over UDP between two endpoints. The current specification
defines four types of CoAP messages where each message uses a 4-
byte fixed-length binary header. Table 2.4 lists the four types of CoAP
messages. A CoAP header may be followed by options and a payload.
CoAP provides mechanisms for optional reliability since UDP itself does
not guarantee reliable delivery. This is done by sending messages
marked as Confirmable, and retransmitting using a default timeout and
exponential back-off until an Acknowledgment message is eventually
received. Basic congestion control is done by strictly limiting the
number of allowed outstanding requests between a client and a server.
The back-off mechanism also provides basic congestion control.

CoAP message Purpose

Confirmable Message CoAP message that requires an
acknowledgement. Used to pro-
vide reliable transport.

Non-confirmable Message Used when no acknowledgement
is wanted.

Acknowledgement Message Acknowledges that a specific
Confirmable Message has ar-
rived.

Reset Message Indicates that a Confirmable
Message or a Non-confirmable
Message was received, but not
understood by the client.

Table 2.4: CoAP messages

Typical CoAP messages may be small payloads from Internet of
Things devices such as temperature sensors, light switches, etc. The
CoAP specification states that a CoAP message should fit within a single
IP packet to avoid IP fragmentation. However, occasionally larger
messages are needed. Therefore, a blockwise transfer technique has
been proposed as an extension to CoAP in an Internet Draft [25]. The
block option allows for sending larger messages in a block-wise fashion.
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2.5.3 Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP) is an application layer
protocol for sending messages. It supports both the request-response
and the publish-subscribe communication paradigms. AMQP uses TCP
as its underlying reliable transport layer protocol.

An important observation about AMQP is that it has two major
versions which are fundamentally different, version 0.9.1 and 1.0. The
latter has been standardized by OASIS and is a more narrow protocol
as it only defines the network wire-level protocol for the exchange of
messages between two endpoints [26]. The concept wire-level protocol
refers to the description of the format of data sent over a network in
form of bytes. Another difference between the versions is that version
1.0 does not specify the details of broker implementation. We investigate
version 1.0 since it is the newest and has been standardized.

An AMQP network consists of nodes connected via links. Nodes can
be producers, consumers, and queues. Producers generate messages,
consumers process messages while queues store and forward them.
These nodes live inside containers, which can be client applications and
brokers. Each container can have multiple nodes. AMQP version 1.0
does not specify the internal workings of those nodes but defines the
protocol for transferring messages between them. The basic data unit
in AMQP is called a frame and is used to initiate, control and tear down
the transmission of messages between two nodes. The 9 different frames
are listed in table 2.5.

AMQP is connection-oriented since an AMQP connection must be
established before to any communication. A connection is divided into
independent unidirectional channels. An AMQP session correlates two
unidirectional channels to form a bidirectional, sequential conversation
between two containers. To establish a connection, the first operation
is to create a TCP connection between the nodes. Then, the protocol
header is exchanged, allowing the nodes to agree on a common protocol
version. This is exchanged in plaintext (not in an AMQP frame). The
message itself is sent with the transfer frame. Larger messages can be
split into multiple frames.

2.5.4 MQTT

MQTT is a publish-subscribe messaging transport protocol [27]. It
emerged in 1999 and recently became an OASIS standard in 2014.
MQTT is considered to be lightweight and simple to implement, making
it suitable for use in networks where the data rate is limited and/or a
low code footprint is needed. These properties make MQTT popular as a
IoT protocol. The protocol is broker-based and runs on top of the TCP/IP
protocols.

MQTT provides message sending services to applications and offers
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AMQP Frame Purpose

Open Describes the capabilities and
limits of the node

Begin Begin a session on a channel

Attach Attach a link to a session

Flow Update link state

Transfer Transfer a message

Disposition Inform remote peer of delivery
state changes

Detach Detach the link endpoint from the
session

End End the session

Close Signal a connection close

Table 2.5: AMQP Frames

different levels of Quality of Service (QoS), specifying the delivery
policies for a message. This is beneficial in networks where messages
may be lost while traveling through a network. The lowest level of
QoS is at most once, which specifies that a message should arrive at
the receiver either once or not at all. Next, the policy at least once
ensures that the message arrives at the receiver at least once, but
possible multiple times. The last and highest level of MQTT’s QoS,
exactly once, guarantees one, and only one, delivery of the message.
The protocol works by sending different MQTT control packets, listed
in table 2.6. Only exactly once QoS requires the usage of the control
packets PUBREC, PUBREL and PUBCOMP.

2.5.5 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) is a transport-layer
protocol, which offers functionality from both UDP and TCP [28]. The
motivation behind the protocol is that many developers find TCP too
limiting, but still require more reliability than UDP can provide. SCTP
tries to solve these issues. It is message-oriented like UDP, but ensures
reliable, in-sequence transport of messages with congestion control like
TCP. SCTP is a connection-oriented protocol and provides features like
multi-homing and multi-streaming. Multi-homing is the possibility to
use more than one network path between two nodes. This increases
reliability since if one path fails, messages can still be sent over the
other links. Multi-streaming refers to SCTP ability to transmit several
independent streams of data at the same time, for example sending an
image at the same time as a HTML Web page.
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MQTT Control Packet Purpose

CONNECT Client requests a connection to
the Server

CONNACK Acknowledge connection request

PUBLISH Publish a message

PUBACK Publish acknowledgement

PUBREC Publish received

PUBREL Response to a PUBREC Packet

PUBCOMP Publish complete

SUBSCRIBE Subscribe to topics

SUBACK Subscribe acknowledgement

UNSUBSCRIBE Unsubscribe from topics

UNSUBACK Unsubscribe acknowledgement

PINGREQ PING request

PINGRESP PING response

DISCONNECT Disconnect notification

Table 2.6: MQTT Control packets

2.6 Summary

In this chapter, we presented computer networks in general, before
we discussed the two most common types of Web services. Moreover,
we reviewed the protocols that these Web services use to transmit
messages over the Internet. We also introduced protocols designed to
work in "Internet of things" networks, which have many of the same
characteristics as DIL networks. The protocols are summarized in
table 2.7.

Many of the mentioned protocols have been previously researched
for use in DIL networks. In the next chapter, we present relevant work
in this area.
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Protocol Network layer Summary

TCP Transport. Stream-oriented transport pro-
tocol. Reliable and with conges-
tion control.

UDP Transport. Message oriented. Low over-
head, but lacks reliability and
TCP-friendliness.

SCTP Transport. Similar to UDP but also provide
reliable, in sequence transport
of messages like TCP.

HTTP Application. Uses TCP. Widely used and the foundation
for World Wide Web.

CoAP Application. Uses UDP. Low header overhead with op-
tional reliability.

AMQP Application. Uses TCP. Messaging middleware with
store-and-forward capabilities.

MQTT Application. Uses TCP Light weight and simple pub/-
sub protocol.

Table 2.7: Summary of protocols
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Chapter 3

Related Work

In this chapter, we discuss earlier relevant work in the area of improving
the performance of Web services in DIL environments. Improving Web
services is important for both civil and military users as increasing
the performance means that applications can become faster and more
reliable.

In the following sections, we identify studies and recommendations
that apply to this thesis. We get started by looking into the work of
the NATO research groups IST-090 and "SOA Recommendations for
Disadvantaged Grids in the Tactical Domain" (IST-118). IST-118 is an
ongoing follow-on to the work of IST-090, with the goal of creating a
recommendation for a tactical profile for using SOA in disadvantaged
grids. Next, based on these recommendations, we investigate work
done in the area of alternative transport protocols and existing proxy
implementations. Finally, we summarize the findings that are applicable
with regards to the scope and premises of this thesis.

3.1 Making SOA Applicable at the Tactical Level

IST-118 has published a paper[29] where they summarized the findings
of IST-090. Although the paper only looked into W3C Web services, many
of their recommendations are also applicable to RESTful Web services.
They identified three key issues that need to be addressed to adopt Web
services in tactical networks:

1. End-to-end Connections

Web services mostly use transport protocols that depend on a direct,
end-to-end connection between a client and the service. Attempting
to establish and maintaining a connection in a DIL environment can
lead to increased communication overhead and the possible complete
breakdown of communication. Most Web services use TCP as their
transport protocol, which relies on an uninterrupted connection. In DIL
environments with high error rates and high latencies, the congestion
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control of TCP can cause sub-optimal utilization of the network as
previously discussed in section 2.4.5. Similar, HTTP, which is the
application layer protocol most often used together with TCP, struggles
in such environments. HTTP is a synchronous protocol, which means
that the HTTP connection is kept open until a response is received. Long
response times could cause timeouts. IST-090 points out the possible
solution of replacing HTTP and TCP with other, more suitable protocols.

The IST-90 report mentions two approaches to replace HTTP/TCP.
The clients and services themselves can be modified to support other
protocols, or proxies which support alternative protocols can be used
[6]. Moreover, they pointed out that if using a proxy approach, standards
compliance can be retained.

2. Network Heterogeneity

Another issue is when heterogeneous networks are interconnected.
Different performance in networks may lead to the buildup of data in
buffers, risking the loss of information. A proposed solution to this is
to have store-and-forward support which can support that messages are
not dropped, but rather stored and forwarded when possible. Another
important usage of this technique is to overcome network disruptions
because messages can be stored until the network connection is
reestablished.

3. Web Service Overhead

W3C Web services are associated with a considerable amount of
overhead. Web Service technology is based on SOAP, which uses XML-
based messages. It is a textual data format and produces much larger
messages than binary formats. Optimization approaches should seek
to reduce the network traffic generated by Web services by using
techniques as compression to reduce the size of messages. Another
method is to decrease the number of messages being sent, which was
looked into in IST-090 [6]. In their work they investigated three different
ways to do this:

1. Employing caching near the client in order to reuse older
messages.

2. Using the publish-subscribe paradigm, which allows clients to
subscribe to information instead of requesting it. This allows the
same message to be sent to multiple clients.

3. Employing content filtering which filters out unnecessary data.

The scope of this thesis is to optimize for request-response type
of clients and Web services. Furthermore, since we are investigating
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general-purpose optimization techniques without knowledge of the
payload, some of these recommendations does not quite apply to us.
However, to reduce Web service overhead, we can apply the well-known
technique of compression.

Compression

Data compression is the technique of encoding information using fewer
bits than the original representation. In a network with limited data rate,
the reduction could significantly reduce time used to send the data. The
reduction of data is often expressed in the term compression rate, which
represents the ratio between the uncompressed size and compressed
size of the payload. Moreover, there exist two types of compression,
lossy and lossless compression. Lossy compression is used to compress
data such as images and movies where the consequence of losing some
of the data is not critical. Lossless compression utilizes repeating
patterns in the data in order to represents the same information in a
more efficient way.

XML is the data format used by W3C Web services and has a
significant overhead. A previous study evaluated different lossless
compressions techniques for exchanging XML documents using W3C
Web services [30]. They evaluated both XML-specific and general
purpose (payload agnostic) compression techniques. There exist a great
number of different compression techniques, so the authors focused on
a few they saw as promising for use in tactical communication networks.
The first one, Efficient XML (EFX), encodes XML documents in a binary
instead of textual format. The two other were the XML-specific XMLPPM
and general-purpose compression tool GZIP.

In their evaluation, they saw that for all techniques, larger XML doc-
uments achieved a higher compression ratio than smaller documents. As
the average, EFX applied with a built-in proprietary ZIP enabled had the
highest compression ratio followed by GZIP. However, they concluded
that all evaluated techniques provided a significant reduction of payload
size, so the specific technique was of less importance.

3.2 Previous Evaluations of Alternative Proto-
cols

A previous study has investigated potential gains from replacing
HTTP/TCP with alternative protocols [31]. Johnsen et al. looked into TCP,
UDP, SCTP and AMQP for conveying Web service traffic under typical
military networking conditions. The researchers found that SCTP had
the highest success rate in military tactical communication. However,
on links with the lowest data rate, the protocol tended to generate
more overhead than TCP. They pointed out that this was due to SCTP
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having a more complex connection handshake procedure and besides
using heartbeat packets.

Another study has compared the performance of MQTT and CoAP
concerning end-to-end delay and network usage [32]. Thangavel et
al. performed experiments in different emulated networks with varying
message sizes and loss rates. They saw that both MQTT and CoAP were
successfully able to handle packet losses of up to 25 %. With lower
loss rates, messages sent with MQTT had the least delay, but as the
loss rate increased, CoAP had a lower delay. They identified the reason
for this being that the TCP transmission of MQTT had a larger overhead
than CoAP’s UDP transmission. In their experiments with small message
sizes and for all tested loss rates, CoAP had less network overhead than
MQTT. However, when the message size grew, MQTT had less overhead
than CoAP.

Another comparison of CoAP and MQTT was done in a study using
the protocols for sensor applications running on a smartphone [33]. This
study also confirmed CoAP as having lower network usage and a lower
RTT. However, the study pointed out that MQTT has more advanced
QoS services, since it can guarantee exactly-once delivery of messages.
Since CoAP does not have this feature, applications which require this
functionality should consider using MQTT.

CoAP has also been compared against HTTP in work done by Colitti
et al., where they performed an evaluation with regards to response
time and energy consumption by a sensor node [34]. They found that
using CoAP consumed significantly lower energy than using HTTP and
that CoAP also had a lower response time.

3.3 Proxy Optimization

One of the recommendations of IST-090 was the usage of proxies. This
recommendation has been picked-up by other research groups and a set
of proxies for optimizing Web services in DIL networks already exist.
However, many of them do not fulfill all the requirements we have for
our proxy. Some of them do only support SOAP Web services, and others
are unusable due to security reasons. This section lists and discusses
previous implementations of such proxies.

3.3.1 Types of Proxies

A proxy is a node deployed somewhere in a network, which through
network traffic can pass. Proxies have many use cases such caching,
firewalling and security. To adopt Web services into tactical networks,
we mainly talk about two types of proxies. Edge proxies act as gateways
between different networks as illustrated in fig. 3.1 and can perform
adaptations on network traffic passing through it.
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Figure 3.1: Edge proxy

Another type, is point-to-point proxies in a network as illustrated in
fig. 3.2, which involves using a proxy-pair to facilitate communication
between two or more applications.

Figure 3.2: Point-to-point proxy

3.3.2 Delay and disruption tolerant SOAP Proxy

The Delay and disruption tolerant SOAP Proxy (DSProxy) is a point-
to-point proxy solution developed by Norwegian Defence Research
Establishment (FFI) [35][36]. Its goal is to enable the usage of
unmodified standard W3C Web services (SOAP over HTTP/TCP) in DIL
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environments. The concept is to route all SOAP messages through the
proxy. When the proxy receive a message, it is stored locally before
it is forwarded. If the forwarding fails for some reason, it retries
the request until it eventually succeeds. This ability, called store-and-
forward, is one of the fundamental core functionalities of DSProxy.
When a request eventually succeeds, the response is returned to the
client on the original TCP connection initiated by a client. By doing this,
Web service invocations is made possible over unreliable networks by
hiding any network disruptions from the client.

Figure 3.3: DSProxy overlay network (from [36] )

Another core functionality of DSProxy is mechanisms for organizing
an overlay network consisting of multiple proxy instances as seen in
fig. 3.3. The overlay network enabled the ability to traverse multiple and
heterogeneous networks, but also add a lot of complexity to the proxy
application. Apart from the mentioned core functionalities, DSProxy
support a set of pluggable features such as GZIP compression and
caching.

After performing experiments using the DSProxy, the researchers
identified the store-and-forward ability as important in unreliable
networks to avoid having to re-establish end-to-end connections each
time the network connections was lost [35]. One of the downsides with
DSProxy was that it only supported W3C Web services. Moreover, it
became very complicated due to its mechanisms for building overlay
networks and supporting different configurations and plugins.

3.3.3 NetProxy

NetProxy is another point-to-point proxy solution aiming at enabling
SOA applications for use in DIL environments [37]. The proxy is
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a component of the Agile Computing Middleware (ACM), a set of
components that satisfy many of the communications requirements
found in challenged networks. The work is being carried out by
researchers at the Florida Institute for Human & Machine Cognition.

Like DSProxy, NetProxy is a transparent proxy providing integration
between SOA systems without requiring modification of applications
themselves. It works by first intercepting all network traffic from
applications and then do an analysis of it. Together with information
about the network, NetProxy then decides which appropriate action to
take. It can be configured to support protocol remapping by using other
protocols than HTTP/TCP. Integrated with NetProxy is the message-
oriented transport protocol Mobile Sockets (Mockets), which is designed
to replace TCP and UDP and is targeted for DIL networks [37]. Mockets
substitutes the congestion control and reliable transmission algorithms
of TCP with other alternate implementations designed for DIL networks.
It is configurable for different types of networks and offers various QoS
levels.

Performance testing of W3C Web services showed that using
NetProxy with Mockets as the transport protocol yielded a significant
increase in the performance compared to plain TCP [37]. The researcher
attributed this to several factors:

• Mockets handles packet loss much better than TCP since TCP
attributes packet loss to congestion and triggers its congestion
control.

• NetProxy multiplexes all network traffic directed to a single node
onto the same connection and holds it open instead of closing
it after a finishing request. This allows reusing the connections
across consecutive requests, also from other applications.

• Less overhead due to the fact that NetProxy buffers data until it
fills an entire packet before sending it over the network.

• Enabling compression gave a very high gain in the measured
network throughput partly due to the messages subject for
compression was XML documents, which have a relatively high
compression rate.

Although the testing shows some promising results, there are some
issues regarding using the Mockets protocol in our proxy solution.
Applications meant for usage in military systems, must be approved
by military security authorities. Mockets has not been standardized
and lacks usage outside the experiments conducted in the mentioned
research. Because of this, it may be difficult to get applications using
Mockets approved.
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3.3.4 AFRO

Adaption Framework foR Web Services prOvision (AFRO) is an edge
proxy which offers different levels of QoS to Web services through per-
formance monitoring and usage of the context-aware service provision
paradigm [6]. It performs so-called adaption actions, which modifies the
SOAP XML messages by changing their encoding to more efficient data
representation. AFRO also removes information that is acceptable to be
removed by the service requester.

However, since the proxy modifies the data being sent, the digital
signature of the data is also changed. In applications where we want to
be sure that no one has tampered with the data before arriving, digital
signatures are often used. Consequently, this solution would not work
for such applications.

3.3.5 TACTICS TSI Architecture

Another ongoing effort to overcome issues using standard Web services
in tactical networks is the TACTICS project supported by the European
Defence Agency (EDA) [38]. The goal of the project is to propose a
reference architecture for a Tactical Service Infrastructure (TSI) suited
for establishing a tactical SOA of defence-related information systems.
The architecture features a service middleware meant to run on devices
with different capabilities. The purpose of the middleware is to receive
standard Web service invocations or responses and ensure that they
complete. The middleware can forward IP packets between different
radio networks and store and forward messages. The concept is based
on the point-to-point proxy approach.

3.4 Tuning Application Server Parameters

Another approach to improve the performance of Web services is to
configure the way they are deployed. Web services can be deployed
in applications servers, which is a software framework that provides
an environment where the Web services can run. When setting up an
application server, several parameters which can affect the performance
of running applications can be configured. A wrong or bad configuration
may cause inaccurate timeouts and congestion in the network. In
a paper written by researchers at Norwegian University of Science
and Technology (NTNU) and FFI [16], they investigated how tuning
the server parameters of the application server Glassfish affected the
performance of both REST and SOAP Web services. They identified a
number of key HTTP and TCP tuning parameters:

HTTP Timeout Controls how long a HTTP connection can be deemed
as idle and kept in the "keep-alive" state. Having a too low timeout
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on networks with low data rate, can potentially flood the network with
packets that have timed out. Consideration should therefore be taken
when setting this parameter for mobile tactical networks.

HTTP Compression Enables HTTP/1.1 GZIP compression.

HTTP Chunking Allows the server to send data in dynamic chunks.

HTTP Header and Send Buffer Sizes Vary the size of the buffers
that hold the request and send the data.

TCP Idle Key Timeout Sets the time before an idle TCP channel
closes.

TCP Read and Write Timeouts Set the timeout for TCP read and
write operations, respectively.

TCP Selector Poll Timeout Sets the time a Java new/non-blocking I/O
(NIO) selector will block waiting for user requests.

TCP Buffer Size Sets the size of the buffer that holds input streams
created by the network listener.

TCP Batching/TCP NO_DELAY Batches together small TCP packets
into larger packets.

MTU Size The maximum transmission unit size regulates the largest
data unit that can be passed onwards. In tactical military communica-
tion the MTU size can be very low (down to 128 bytes).

After running their experiments, they concluded that few of the
parameters actually had any significant impact on the performance of
the Web Service. However, they identified HTTP Chunking configuration
as having the most impact on the performance. It significantly improved
the performance for both SOAP and RESTful Web services in different
types of networks.

While tuning application server parameters may help improve the
performance of Web services in DIL environments, it is not directly
related to the proxy solution investigated in this thesis. When deploying
Web services, this optimization technique should be considered, but are
not explored further in this thesis.
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3.5 Summary

In this chapter, we looked into efforts previously undertaken in order
to improve the performance of Web services in networks with the
DIL characteristics. We first investigated the work of the research
groups IST-090 and IST-118, and saw how they identified end-to-end
connections and Web service overhead as major issues for enabling
Web services in DIL environments. To overcome these problems, they
recommended the usage of proxies and several techniques for reducing
the overhead. We identified GZIP and EFX with zipping as important
compression techniques to reduce the size of Web service messages sent
over a network. Next, we looked into previously developed proxies for
DIL networks. Although many of them showed promising results, some
of their properties did not fulfill the premises for this thesis. They were
either limited to SOAP-based Web services or are inadequate to be used
due to security reasons. However, we identified some of their techniques
that we carry on in the proxy developed in this thesis.

Finally, we investigated previous attempts with the usage of
alternative transport protocols, before we looked into previous efforts
in the area of tuning application server parameters. Based on
recommendations and studies of previous work, we are in the next
chapter deriving a set of requirements for our proxy.
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Chapter 4

Requirement Analysis

In this chapter, we discuss the requirements for optimization techniques
aiming at enabling Web services in DIL environments. These require-
ments build on the scope and premises discussed in the introduction.
The defining premises were that the proxy should:

1. Support HTTP RESTful and W3C Web services.

2. Work in DIL networks.

3. Be interoperable with standards-based COTS solutions.

4. Work with security mechanisms.

Based on previous studies, in particular the work of the NATO
research groups IST-090 and IST-118, we are in this thesis developing a
point-to-point proxy solution supporting these premises. In the following
sections, we discuss the specific requirements for the proxies.

4.1 HTTP Proxy

The first premise is that the proxy should support HTTP RESTful and
W3C Web services. While the majority of W3C Web services use HTTP
to transport their SOAP messages, some use for example UDP or TCP.
To avoid the proxy becoming to complex and while still supporting the
majority of Web services, we chose to only support HTTP Web services.
Our first premise therefore implies that the proxy must be able to
forward HTTP messages. Furthermore, the third and fourth premises
have some important implications for our proxy. Our proxy must be
able to accept HTTP requests from a Web service, forward it to the
other proxy, which in turn delivers it to the intended receiver. The
communication between the proxies is not required to be with HTTP,
but rather using a protocol that deals with DIL networks in a better way.
However, since ultimately a HTTP request should be delivered to the
intended receiver, the HTTP properties must be retained. This means
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that the proxy must preserve the HTTP method and headers. Also, since
REST is payload agnostic, the proxy must be able to support different
types of data being sent through it (XML, JSON etc.).

Furthermore, the proxy must be able to handle the challenging
network conditions of DIL. The specific requirements are outlined in the
following sections.

4.2 Cope with DIL Networks

The DIL term refers to three aspects of a network, disconnected,
intermittent and limited. The proxy should be able to overcome the
implications of these issues. In the following sections, we discuss the
requirements each aspect implies.

4.2.1 Disconnected

The Disconnected aspect of DIL refers to disconnects for a longer period
of time. As we saw in the previous chapter, earlier work has identified
the removal of end-to-end dependencies as important to overcome this
aspect. Without proxies, a disconnect for a longer period of time would
cause a timeout exception at the Web service, leaving it up to Web
service itself to deal with the exception. By employing a proxy pair,
the end-to-end dependency is instead moved from between a client and
a Web service, and to between the client and the locally deployed proxy.
As a result, the connection between the proxies over a DIL network can
be lost, while still maintaining the connection between the client and
local proxy. When the connection is reestablished, the proxy must be
able to continue transmission of messages on behalf of clients.

This requires the proxy to have some redelivery mechanism. When a
proxy detects that it unable to transmit messages to the other proxy, it
should ideally wait until the connection is reestablished before trying to
send more messages. However, the only way to know if the connection is
restored is to try and send more messages and see if they succeed. The
first, and maybe naive approach, could be just to retransmit the message
again and again. But by doing this, we could risk overflowing a slow
receiver, as well as causing congestion in a possibly overloaded network.
Different types of networks and different use cases for the applications
involved may require different redelivery mechanisms. Therefore, at
deployment, the proxy should support a set of configurable redelivery
mechanism properties:

Redelivery Delay The proxy should support the retransmission of
messages with a fixed delay between each attempt.

Exponential Backoff If exponential backoff is configured, the proxy
should gradually try resending more and more seldom.
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Maximum Redeliveries The proxy should support user configuration
of how many times a retransmission should be attempted before
giving up.

4.2.2 Intermittent

The proxy should handle brief, temporary disconnects that can occur in
a DIL network. It is comparable to the disconnect aspect, as intermittent
refers to a shorter disconnect. A "long" intermittent disconnect triggers
a timeout at the application layer and should be dealt with by the proxy
retransmission mechanisms. With shorter intermittent disconnects, the
transport protocol should be able to deal with it. This requires using a
reliable transport protocol or handling it in the application layer.

4.2.3 Limited

Limited refers to different ways a network can be limited. Accordingly,
the proxy must cope with very low data rates, possible high error rates,
and long delays. This implies that reducing Web service overhead in
order to lower the amount of bytes that need to be sent over a limited
network is important. Moreover, the proxy may run on machines with
restricted resources (battery capacity), which means that a low CPU
overhead is desired.

4.3 Support Optimization Techniques

The proxy should support a set of optimization techniques to improve
the performance of Web services in DIL environments. As we discussed
in the related works chapter, there exist many approaches to optimizing
Web services. Reducing Web service overhead by using compression
was identified as a technique that yields a significant improvement.
Another method was the usage of alternative transport protocols. In this
thesis, we focus on compression and the usage of alternative protocols
as the means of optimizing Web services. However, the prototype proxy
should be designed to easily support additional optimization techniques
in the future.

4.3.1 Compression

Compression reduces the size of a message sent over a network. To
perform compression, the proxy must be able to modify the payload of
the message. Due to security mechanisms that detect changes to the
payload (digital signatures), the payload must be restored back to its
original form before being forwarded to the final receiver. One of our
premises is that we must support both RESTful and W3C Web services.
RESTful services do not put any restrictions on the data format of a
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message. Thus, we cannot use XML-specific compression, but rather we
need to use general-purpose techniques.

Based on previous work we identify GZIP as the best approach for
general purpose compression.

4.3.2 Inter-Proxy Communication

One of the optimization techniques we identified is the usage of
alternative transport protocols between the proxy pair. The proxies
should support different protocols to allow us to evaluate how they
affect the performance of Web services in DIL networks. Furthermore, if
additional transport protocols are identified in the future, the prototype
proxy should be easily extendable to support these.

We introduced a set of protocols in the technical background chapter
and discussed previous evaluations using them in DIL networks in the
last chapter. In the following paragraphs, we analyze them for usage in
the context of inter-proxy communication in a DIL network.

HTTP The by far most used protocol for Web services is HTTP over
TCP. TCP is an old and proven protocol and was originally
designed to provide reliable end-to-end communication over
unreliable networks. The less intrusive optimization technique
would therefore be that the proxies simply forward HTTP-requests
without using an alternative protocol. Although proxying Web
service requests through proxies would cause some overhead from
processing time and custom proxy headers, we still get the benefit
of breaking the end-to-end dependency and the possibility of using
compression. Furthermore, using HTTP allows us to compare
the "standard" protocol against other protocols. Therefore, we
recommend HTTP as a possible proxy pair communication method.

UDP UDP has less overhead than TCP but lacks mechanisms for
reliability and congestion control. The lack of reliability could be
handled at the application level instead, but would require a library
on top of it. Furthermore, UDP is not TCP-friendly. For these
reasons, we conclude that UDP is unfit for proxy communication
as part of this thesis.

CoAP CoAP is a relatively new protocol intended for use in the Internet
of Things. It is designed to have low overhead, low code footprint
and be easily mapped to and from HTTP. These properties make
the protocol interesting as the means of communication between a
proxy pair.

AMQP AMQP is in widespread use and offers reliable message trans-
mission. Therefore, we recommend AMQP as a possible proxy
pair communication method. AMQP supports both the request-
response and publish-subscribe message paradigms.
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MQTT MQTT is a publish-subscribe messaging protocol and is consid-
ered as lightweight and simple to implement. However, the inter-
proxy communication requires a request-response type of messag-
ing. MQTT does not facilitate this type of communication. With
that said, it is possible to have a request-response paradigm on
top of publish-subscribe by organizing queues and by using some
application logic. However, since MQTT does not natively support
request-response, we do not recommend this protocol for inter-
proxy communication.

SCTP SCTP offers functionality from both UDP and TCP. It is reliable
and has been identified in previous related work as an interesting
protocol for DIL networks. Therefore, we recommend it as a
possible proxy communication method.

The proxy should support the identified protocols found suitable
for communication between proxies over a DIL network. Table 4.1
summarize our recommendations. For evaluation purposes, the proxy
should be easily configured with which protocol to use.

Protocol Recommendation

HTTP Yes

UDP No

CoAP Yes

AMQP Yes

MQTT No

SCTP Yes

Table 4.1: Protocols recommended as communication protocols between
proxies.

4.4 Summary

In this chapter, we have discussed the requirements for our proxy, which
we summarize here:

1. Receive and forward HTTP requests.

2. Retain HTTP request and response headers.

3. Support GZIP compression of payload.

4. Handle frequent network disruptions.

5. Handle disconnects over longer periods of time.

6. Handle low data rates, high delays and high packet error rates.
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7. Allow for configuration of redelivery delay and maximal number of
retransmissions.

8. Support usage of different transport protocols between the prox-
ies.

9. Easy configuration of which protocol to use.

10. Be easily extendable to include other protocols and other optimiza-
tion techniques.

Next, we discuss the design and implementation of our proxy
supporting the premises and identified requirements.
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Chapter 5

Design and Implementation

Based on the premises and requirements identified in the previous chap-
ter, we are in this chapter introducing the design and implementation
details of our proposed proxy solution. Before we start looking into the
specific design and implementation, we present the primary area of use
for our point-to-point proxy solution.

5.1 Area of Use

The purpose of our point-to-point proxy solution is to facilitate commu-
nication between two nodes separated by a DIL network. Military net-
works typically consist of several interconnected tactical networks and
nodes. Within each tactical network, the network conditions normally
are satisfactory, while networks spanning between the different tactical
networks may have the DIL characteristics. Consider for example a mil-
itary patrol consisting of a vehicle and a group of soldiers. Within the
tactical network consisting of the vehicle and the soldiers, the network
conditions are good. However, the communication link to the Headquar-
ter has the DIL characteristics. A proxy pair can then be deployed at the
vehicle and at the Headquarters to facilitate communication over the
DIL network. Figure 5.1 illustrates this example. This concept, where
a local network is connected back to existing communication infrastruc-
ture, is referred to as a reach-back link.

While use cases similar to the previously mentioned example are the
primary area of use for our proxies, they can be deployed between any
two nodes in a network to facilitate communication over a DIL network.

5.2 Design of Solution

In previous chapters, we have argued that all optimization techniques
should be placed in proxies to retain interoperability for COTS applica-
tions, as well as to break their end-to-end network dependency. There-
fore, our design involves deploying a proxy pair to facilitate Web com-
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Figure 5.1: Example area of use for point-to-point proxies

munication over a DIL network. The idea is to deploy the proxy pair in
two different locations separated by a DIL network. Through a locally
deployed proxy, Web applications can then proxy all their data commu-
nication. The proxy then applies different optimization techniques and
forwards requests over a DIL network to the other proxy. When a re-
sponse is returned, it is returned back the original requester. Ideally,
the proxy should be deployed as close to its intended users as possi-
ble, as the communication between an application and its proxy is not
subject to any optimization for DIL environments. Since we design the
proxies accept HTTP requests, they can support any applications that
use HTTP. Besides, the solution is designed to be bi-directional, mean-
ing that requests can originate from either side.

Figure 5.2: Solution concept

5.2.1 Design of Proxy

A deployed proxy is designed to accept arbitrary HTTP requests,
possibly originating from multiple clients, and forward them to the
other proxy as seen in fig. 5.2. The communication between a proxy
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pair is subject to optimizations. Those are primarily concerned about
using different transport protocols as the inter-proxy communication, as
illustrated in fig. 5.3. The purpose of this is to give recommendations
about the usage of transport protocols in DIL networks. Which protocol
to use as the means of inter-proxy communication is therefore designed
to be easily configurable at start-up by the users of the proxy.

Figure 5.3: The proxies were designed to support multiple protocols for
inter-proxy communication

5.3 Choosing a Framework

Requirement 1 implies creating a HTTP proxy which accepts HTTP
requests, forwards them, and finally returns a HTTP response. We
identified some approaches to do this:

1. Build a HTTP proxy from scratch ourselves.

2. Use an existing HTTP proxy.

Building a HTTP proxy ourselves would allow us to customize our
solutions as we wanted, but would require a considerable amount of
implementation efforts. Therefore, we concluded that best use of
our resources was to use an existing configurable proxy. Using an
existing solution allows us to focus on the optimization techniques,
rather than on the specific low-level details of HTTP. There are
numerous HTTP proxies available for use, for example, Nginx[39] and
Squid[40]. Requirement 8 states that the solution must support different
communication protocols between proxies. Because of this, we looked
for software that could easily map HTTP messages into other protocols.
Based on recommendations from the community at FFI we found the
Apache Camel framework.
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5.3.1 Apache Camel

Apache Camel is an open source Java framework developed by the
Apache Software Foundation for rule-based routing and mediation [41].
It has a wide range of use-cases and focuses on making integration
between different enterprise communication systems easier. It supports
a large set of different communication transports (transport protocols).
We chose to use Apache Camel as our HTTP proxy due to its simplicity
and support for various transport protocols.

Routing is a central concept in Apache Camel and consists of defining
a from route. The from route is an endpoint from which Camel consumes
messages. Messages received by Camel are converted into generic
Camel exchanges. Processors can then be invoked on these exchanges,
which allow for modification of message headers and payload. After
consuming a message, Camel can forward the message to a to route,
which can be an application running somewhere else. When a response
is received, Camel can invoke a new set of processors on the message
before it is finally returned to the origin. Figure 5.4 shows the concept
of routing in Camel.

Figure 5.4: Example of a Camel route

To consume and produce messages from different protocols,
databases and other sources of messages, Camel offers a set of com-
ponents. These can be considered as factories for endpoint instances.
For example, the AMQP component allows Camel to route messages us-
ing the AMQP protocol. Camel includes numerous components and is
designed to support user-written components as well.
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5.4 Implementation

Our proxy solution is implemented as a Java 1.8 application using
the Apache Camel framework. A large part of the implementation is
concerned about reading user configuration and setting up routing rules
for Camel. Information about the source code of the proxy is listed in
chapter D of the appendix and table 5.4 lists the software used as part
of the implementation.

We can divide the implementation into four stages:

1. Reading and parsing user configuration.

2. Initializing Camel components.

3. Setting up routes.

4. Runtime.

5.4.1 Parsing Configuration

The first stage involves reading a user provided configuration file.
Details about the configuration are explained in section 5.5.1.

5.4.2 Initializing Components

Depending on which protocol the user has selected for usage as inter-
proxy communication, at startup the respective Camel component is
initiated and added to the Camel context. Due to the time available, we
did not implement support for all of the recommended protocols from the
last chapter. The prototype proxy currently supports the protocols HTTP,
AMQP, and CoAP. However, we design the proxy to be easily extendable
to include additional protocols in the future.

HTTP Component

We made use of the Camel component Jetty to consume and produce
HTTP requests. The component is based on the Jetty Web server[42] and
is used for two purposes. One of them is to consume HTTP requests from
applications. The other is to, if HTTP was configured as the selected
protocol, consume and produce HTTP messages as part of the inter-
proxy communication.

AMQP Component

Apache Camel’s AMQP component supports the AMQP 1.0 protocol
using the JMS Client API of the Qpid project. JMS is a Java
Message Oriented Middleware for sending messages between two or
more clients. In the proxy component initialization phase, the AMQP
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component is initialized to connect to the configured message broker.
Besides, the request timeout value of an AMQP request is set either to
the default value of 20 seconds or the configured value.

CoAP Component

At the time of writing this thesis, there is no Camel component
available for the CoAP protocol. Therefore, we implement our
own custom component, supporting the transport of CoAP messages.
Section 5.6 presents this component in detail. The component utilizes
Californium, which is a Java framework supporting the CoAP protocol
[43]. Californium is open source and is part of the IoT ecosystem of
Eclipse. The component is initialized with the port the CoAP server
should listen for requests. Also, an optional timeout value for a CoAP
request can be added.

5.4.3 Routes

A running proxy listens on two routes. It can either receive messages
from an application or it can receive messages from the other proxy.
This setup can be seen in fig. 5.5. The routing logic is different for these
two cases. We define a request originating from an outside application
as the application route, and a request originating from another proxy
as the proxy route. We discuss these routes shortly, but first, we need
to introduce what we have chosen to call the proxy message format.
Requirement 2 says that we need to retain all the original HTTP headers
from the original request. Consider if the proxy receives a HTTP request
and forwards it to the other protocol using AMQP. The message itself
will arrive correctly, but the original HTTP headers and method would
be lost. Our approach to this was to introduce a custom proxy message
format, which is discussed in section 5.4.4.

Figure 5.5: Proxy routes
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5.4.4 Proxy Message Format

The proxy message format was developed to retain HTTP headers and
other necessary information about the request. Our solution was to
wrap all messages in a JavaScript Object Notation (JSON) document and
include required information as properties in the JSON document. JSON
is a lightweight, text-based data format [44]. We chose this data format
due to its compactness, simplicity and the wide support for libraries
for generating and parsing JSON. Due to a HTTP request and response
having slightly different semantics, we used the same format, but with
different properties for a request and a response. The request format is
defined in table 5.1, and the response format in table 5.2.

Field Purpose Required

path The original request URL from the application.
Specifies the intended final destination of the
original HTTP request.

Yes

method HTTP method of the request. Yes

query Query string associated with the original
HTTP request.

No

headers JSON object containing all the original HTTP
headers of the request.

Yes

body The original payload of the message. No

Table 5.1: Proxy message request fields

Field Purpose Required

headers JSON object containing the HTTP re-
sponse headers.

Yes

responsecode The HTTP response code. Yes

body Response body of the HTTP request. No

Table 5.2: Proxy message response fields

Listing 5.1 includes an example proxy request message. The listing
illustrates a HTTP request originating from an outside application. It is
a HTTP POST to the intended destination http://myservice.com, with a
XML message as payload.

Listing 5.1: "Example proxy request between the proxy pair"

1 {
2 "path" : "http://myservce.com:8080/",
3 "method" : "POST",
4 "query" : "?hello",
5 "headers" : {
6 "Accept" : "Accept",
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7 "User-Agent" : "myuseragent",
8 "Authorization" : "Basic

QWxhZGRpbjpvcGVuIHNlc2FtZQ=="
9 },

10 "body" : {
11 "<note>
12 <to>Tove</to>
13 <from>Jani</from>
14 <heading>Reminder</heading>
15 <body>
16 Don’t forget me this

weekend!
17 </body>
18 </note>"
19 }
20 }

5.4.5 Application Route

The purpose of the application route is to consume HTTP requests from
an outside HTTP request, transform it to a proxy request message
and deliver it to the other proxy using the configured protocol. The
semantics of the protocol specific routes are explained in section 5.4.7.
When a response from the other proxy is received, it is returned to the
application which made the request. The route consists of the following
steps:

1. Defining a HTTP endpoint to consume HTTP requests from. This is
read from the configuration which specifies which hostname and
port to listen on.

2. Consume HTTP request from an outside application

3. Apply the ProxyRequestPreProcessor. This processor converts the
message into a Proxy Request Message.

4. If compression is enabled, compress the entire message.

5. Forward the request to the other proxy using the configured
transport protocol.

6. Receive a response from the other proxy.

7. If compression is enabled, de-compress the message.

8. Restore the HTTP response from Proxy Response Message.

9. Return the response to the application.
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5.4.6 Proxy Route

The purpose of the proxy route is to listen for messages from the other
proxy, de-serialize it, and deliver it to its intended receiver. When a
response is received, transform it into a Proxy Response Message and
return it to the other proxy. The route consists of the following steps:

1. Defining an endpoint depending on the configured protocol.

2. Consume requests from the other proxy.

3. If compression is enabled, de-compress the message.

4. Transform the message into the original HTTP request.

5. Forward the HTTP request to its intended destination.

6. Receive a HTTP response from the intended destination.

7. Transform it into a Proxy Response Message.

8. If compression is enabled, compress the message.

9. Return the response to the other proxy.

5.4.7 Protocol Specific Routes

One of the requirements for the proxy solution was that it should
be easily extendable to support possible optimization techniques and
transport protocols identified in the future. To realize this, we designed
the setup of routes as generic as possible. Each implemented protocol
derive from the abstract class DilRouteBuilder and implements two
required methods. Listing 5.2 shows the DilRouteBuilder class. At
initialization, to easily include additional optimizations, preprocessors
and postprocessors can be added to the routes.

Listing 5.2: "Abstract class that all protocols derive from"

1 public abstract class DilRouteBuilder {
2

3 private final ArrayList<Processor> preProcessors = new
ArrayList<>();

4 private final ArrayList<Processor> postProcessors = new
ArrayList<>();

5

6 public abstract String getToUri();
7 public abstract String getFromUri();
8

9 public void addPreprocessor(Processor processor) {
10 preProcessors.add(processor);
11 }
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12

13 public ArrayList<Processor> getPreProcessors() {
14 return preProcessors;
15 }
16

17 public void addPostProcessor(Processor processor) {
18 postProcessors.add(processor);
19 }
20

21 public ArrayList<Processor> getPostProcessors() {
22 return postProcessors;
23 }
24 }

On startup, depending on which protocol the user has configured for
inter-proxy communication, the endpoint defining the interface between
the proxies is defined. Table 5.3 lists example endpoints of a deployed
proxy located at the IP address 192.168.10.10. The address 0.0.0.0
means that the proxy binds to all known network interfaces.

Component From endpoint To endpoint

HTTP http://0.0.0.0:3001 proxy http://
192.168.10.10:4001/proxy

AMQP amqp:queue:uniquename1 amqp:queue:uniquename2

CoAP coap://0.0.0.0:3001/proxy coap://
192.168.10.10:4001/proxy

Table 5.3: Example endpoints for a deployed proxy.

The following paragraphs discuss the protocol specific routing.

HTTP Route

Two HTTP endpoints are defined if HTTP is configured as the inter-proxy
communication protocol. The first is used to consume from, while the
second is used to produce to. From the user provided configuration,
the hostname and port are retrieved, and the proxy starts listening on
this endpoint. Note that the HTTP component is also used to listen
for requests from other applications. Therefore, only requests with a
URI starting with a proxy prefix will be treated as an incoming proxy
message. In the same way, the produce endpoint is defined. The target
hostname of the other proxy is retrieved from the configuration, and the
proxy prefix is appended.

Including a message body with some of the HTTP methods like
GET and OPTIONS have no semantic meaning according to the HTTP
specification [17]. However, for inter-proxy communication a proxy
message must be included in the request even if the original request
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was without a message body. Therefore, all HTTP requests between
the proxies are designed to be a POST request in order to include a
message body. Upon receiving a HTTP request from another proxy, the
original HTTP method is restored before the request is delivered to the
destination application.

AMQP Route

AMQP messaging is based on the concept of queues. For the routing
of messages between the proxies, we define two queues. One queue
for incoming messages to one of the proxy, and one queue for incoming
messages to the other proxy. A proxy then consumes messages from
its incoming messages queue and produces to the queue for incoming
messages of the other.

CoAP Route

The CoAP route is similar to the HTTP route. It listens on the provided
hostname and port and produces messages to the configured hostname
of the other proxy.

5.4.8 Dealing with Errors

If an error occurs during the routing of a message, for example, a
timeout exception, the default Camel error handling is to propagate the
error back to the requester. One of our requirements is that the proxy
should be able to deal with disconnects. Therefore, we need to handle
exceptions that occur during routing in a more elegant way. Note that
this applies to the routing between the proxies, the proxy route.

We implement this by using the DeadLetterChannel error handler
rather than the default error handler. The DeadLetterChannel allows us
to configure the redelivery policy according to the configuration of the
proxy. The policy can either be set with an exponential delay or with a
fixed delay. Finally, the maximum number of redelivery attempts is set.
This number can be set to infinity.

5.4.9 Runtime

In the running stage, the proxy listens on the defined routes and
forwards requests according to the previously configured routes. All
requests passing through the proxy are logged to the console.

5.5 Functionality

The proxy prototype is packaged as a JAR file and can be started from
the command line as seen in listing 5.3. The path to a valid configuration
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file must be passed as a command line argument.

Listing 5.3: "How to start the proxy"

1 java -jar proxy.jar configfile.conf

5.5.1 Configuration of Proxy

The configuration of a proxy is done by passing a configuration file
as an argument to the proxy at startup. In the configuration, the
user can specify settings such as which protocol to use for inter-proxy
communication and compression settings. We use the typesafe[45]
configuration library to parse configuration files. The supported
configuration options of the proxy are listed in chapter A in the appendix.

Listing 5.4 displays an example configuration of a proxy. The proxy
is configured to listen on port 3001 for messages from applications
and forward them using the AMQP protocol. Messages sent to the
other proxy are set up to be sent uncompressed. At initialization, the
proxy connects to the broker at the given location. It will consume
messages on the given consumeQueue and produce messages to the
produceQueue.

Listing 5.4: "Example proxy configuration file"

1 proxy {
2 useCompression = false
3 protocol = "amqp"
4 hostname = "0.0.0.0"
5 port = 3001
6 timeout = 40000
7 targetProxyHostname = "192.168.11.10:4001"
8 }
9

10 amqp {
11 produceQueue = 4001
12 consumeQueue = 3001
13 brokerConnectionUri = "amqp://vetur:5672"
14 }

5.5.2 Proxy Setup

To enable the applications to tunnel all their HTTP traffic through our
proxy, we need a way to set a proxy without altering the applications
themselves. Fortunately, Java provides mechanisms to deal with proxies
[46]. We configured the Java Virtual Machine (JVM) to get the
applications to tunnel all HTTP traffic through our proxy. This is done
by setting properties to the JVM:
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Listing 5.5: "Setting a proxy on the JVM"

1 java -Dhttp.proxyHost=localhost \
2 -Dhttp.proxyPort=3001 \
3 -Dhttp.nonProxyHosts= \
4 -jar target/client.jar

In listing 5.5, the application client.jar is started, and all HTTP
traffic will go through the proxy server at localhost on port 3001.

5.6 Custom Camel CoAP Component

Since no Apache Camel CoAP component was available at the time
of implementing this proxy, we developed our own. We followed a
tutorial[47] for writing custom components by Apache Camel and made
the component available as open source at GitHub [48].

The component exposes a Camel endpoint, which can be added to
the Camel Context at startup. This allows the user to use CoAP to both
consume and produce messages. The CoAP component extends Camel’s
DefaultEndpoint class and implements two methods: CreateProducer
and CreateConsumer.

5.6.1 CoAP Producer

The purpose of the Camel CoAP producer is to send CoAP messages
to a CoAP server. When Camel routes a message using the CoAP
component, the producer is invoked with a generic Camel Exchange
message. The producer then retrieves the payload from the exchange
and sends it to the CoAP server specified at component initialization.
We use the Californium[43] implementation of CoAP to send and receive
CoAP messages.

When a CoAP response is returned from the CoAP server, the
producer copies the returned message into the response of the
Exchange. The CoAP message response code is mapped into a HTTP
status code according to guidelines for mapping HTTP to CoAP [49]. For
the purpose of creating the proxy prototype, we only support mapping a
subset of all possible mappings.

If a response is not received within a specified timeout, the producer
sets a HTTP Timeout status on the exchange. When Camel continues the
routing process, this will, in turn, invoke Camels error handler allowing
the redelivery mechanism to start retransmitting.

5.6.2 CoAP Consumer

The purpose of the Camel CoAP consumer is to consume CoAP messages
and convert them into Camel Exchanges. At startup of a Camel
application using the CoAP component, a Californium CoAP server is
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started. It starts listening for CoAP messages on a user-specified port.
When a CoAP message is received, the message is converted into a
Camel exchange. Then Camel continues the routing of the message
according to the route configuration. In our proxy implementation,
messages are forwarded to a HTTP application. When a response
is received, the CoAP consumer converts the message into a CoAP
response. The HTTP status response code is mapped into a CoAP
response code using guidelines for mapping HTTP to CoAP [49].

5.7 Software Used

The proxy is implemented in Java using the Apache Camel framework.
Table 5.4 lists the software versions used in the implementation.

Software Version

Java 1.8

Apache Camel 2.16.1

camel-amqp 2.16.1

camel-jetty 2.16.1

javax.jms-api 2.0

Californium 1.0.0

typesafe 1.3.0

Table 5.4: Software used in the proxy implementation

5.8 Summary

In this chapter, we presented the design and implementation details
of the proxy. We introduced the Apache Camel Framework and how
we utilized it to compress messages and facilitate mapping of HTTP
messages to other protocols. Furthermore, we presented how the proxy
could be used and configured by users. We also introduced a custom
open source Camel component we implemented to map messages
between HTTP and CoAP. In the next chapter, we present how the
implemented proxy solution is tested and evaluated.
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Chapter 6

Testing and Evaluation

In this chapter, we outline how the testing and evaluation of the proxy is
performed and present the results obtained. The goal is to validate that
the proxy fulfills the premises and requirements and to measure any
possible improvements (or deteriorations) of the performance of Web
services. Based on the measurements, we then give a recommendation
about which adaptations to make in different types of DIL networks.
Since the proxy is being developed as a prototype for military usage,
we use test scenarios that resemble actual military usage. We also
included one civilian usage based on Enhanced Data rates for GSM
Evolution (EDGE) since civilian mobile phone technology is currently
being considered for military use both by NATO and several nations. For
the purpose of testing, we develop two sets of test applications, one W3C
Web service, and one RESTful Web service. These applications are then
used to test the proxy in networks with different DIL characteristics.

We start this chapter by introducing different types of DIL networks
we can encounter working with tactical networks. Then we present
how these networks can be emulated using the Linux network traffic
tools before we introduce evaluation tools and the two test applications.
Next, we put the proxy to the test in an unlimited network to verify
that it behaves correctly. We call this the function test. Then we
start introducing the DIL characteristics into the tests and measure if
we can improve the performance by using proxies. We introduce the
disconnected and intermittent aspects first before we test the proxy
in six different limited networks. We also test in a setup using actual
military communication equipment. This testing was done to validate
the results from the software emulated networks.

Finally, we discuss the results, their underlying causes, and which
implications they have. Ultimately, we give a recommendation about the
usage of proxies in DIL networks.
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6.1 Types of DIL Networks

Military communication can occur over a wide range of different
technologies and environments. An infinite number of possible network
combinations exist, so we have chosen to focus on five different
network types identified by the task group IST-118 for DIL-testing
[16]. The networks were identified because they represent typical
networks typically found in military communication. These include
Satellite Communication (SATCOM), Line of Sight (LOS), Combat Net
Radio (CNR) and WiFi. WiFi is divided into two types, one indicating
operation in the "sweet spot" and one in the edge of the network.
Some communication technologies, such as satellite communication,
are characterized by long communication delay while others may be by
their low data rate. An overview of selected military communication
technologies can be seen in fig. 6.1.

Figure 6.1: Overview of tested networks (from [50])

We also investigated Long-Term Evolution (LTE), commonly known
as 4G, a network technology which has become in widespread use in the
latest years. The reason for including LTE in addition to the ones from
IST-118 is that the Norwegian Defense is looking into the possibility
of using LTE. This fact makes it interesting for us to investigate the
performance of Web services in this type of network as well. However,
LTE has gotten so fast and reliable that it is not really relevant from a
DIL perspective. We therefore instead looked into EDGE, which is used
as a fallback in geographical areas where LTE and 3G are not available.
Of the networks we evaluate for, EDGE is the only one with asymmetrical
down- and upload speed: 50 kbps up and 200 kbps down [31].

Table 6.1 summarizes the identified networks and their properties.

68



Network Data Rate Delay PER

SATCOM 250 kbps 550 ms 0 %

LOS 2 mbps 5 ms 0 %

WiFi 1 2 mbps 100 ms 1 %

WiFi 2 2 mbps 100 ms 20 %

CNR 9.6 kbps 100 ms 1 %

EDGE 50 kbps up/200 kbps down 200 ms 0 %

Table 6.1: Different network types

6.2 Testing and Evaluation Tools

To evaluate how using the proxies impacts the performance of Web
services in DIL environments, we needed some way of emulating
limited and constrained networks. Obviously, we would have got the
most realistic test environment by testing "out in the field" ourselves.
However, this would require a considerable amount of effort, and it
would be difficult to reproduce the exact same environment and test
results. Therefore, we chose to emulate DIL networks by using a setup
consisting of interconnecting two machines through a third machine.
The third machine is used as a link emulator and controls the network
traffic passing between the two other machines. This setup is illustrated
in fig. 6.2. To emulate DIL networks, the link emulator uses components
in the Linux kernel to control the flow of the network traffic going
through it.

Additionally, we performed experiments using actual military com-
munication equipment. The purpose was to confirm the results from the
emulated network tests. These experiments are presented in section 6.8.

Figure 6.2: Test setup

6.2.1 Linux Network Traffic Control

The Linux kernel offers a rich set of tools for managing and manipulating
the transmission of packets, referred to as network traffic control. The
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central concept in traffic controlling is the concept of queues, which
collects entering packets and dequeues them as fast as the network
hardware can accept them. tc (traffic control) is a Linux program to
configure and control the Linux kernels network scheduler. The Network
Emulator (NetEm) is an enhancement of the traffic control facilities
that allows us to control delay, packet loss and other characteristics of
packets outgoing from a selected network interface [51]. These tools
together enable us to emulate the networks listed in table 6.1.

How to configure NetEm and the Linux traffic control tools is
outlined in the following paragraphs.

Emulating Network Delays

With NetEm, we can emulate delays on outgoing packets on a specific
link. In listing 6.1, we show an example configuration where a fixed
delay of 100 ms to all packets going out of local Ethernet connection.

Listing 6.1: "Emulating the delay of outgoing packets"

1 tc qdisc add dev eth0 parent 1:1 handle 10: \
2 netem delay 100ms

Emulating the Data Rate

To emulate different data rates, we use a part of the Linux traffic
control tool called Token Bucket Filter (TBF). TBF can be used to shape
network traffic and ensures that the configured rate is not exceeded. It
shapes traffic based on the concept of tokens and buckets. Tokens are
generated at the desired data rate and are collected into buckets, which
have a maximum number of tokens they can store. When TBF receives
a packet, it checks if it has a sufficient number of tokens to send the
packet. If not, it is deferred, thus causing an artificial delay for the
packet.

Listing 6.2 shows an example configuration where we configure the
maximum data rate of 50 kilobits per second. The burst value is the size
of the bucket in bytes and describes the maximum amount of bytes that
tokens can be available for instantaneously. The limit is the number of
bytes that can be queued waiting for available tokens.

Listing 6.2: "Emulating the data rate"

1 tc qdisc add dev eth0 handle 1: \
2 root tbf rate 50kbit burst 15000 limit 15000

Emulating the Corruption Rate

The corruption rate allows us to insert random data into a chosen
percent of packets. In listing 6.3, we show how the corruption rate can
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be set to 20 percent.

Listing 6.3: "Emulating the corruption rate"

1 tc qdisc add dev eth0 parent 1:1 handle 10: \
2 netem delay 100ms corrupt 20%

6.2.2 iPerf 3

iPerf 3 is a tool for measurement of maximum achievable date rate on
a network [52]. Since we in this thesis are emulating different DIL
networks, it is critical that the emulation is as correct and realistic
as possible. Misconfiguration or wrongful emulation could cause us to
draw invalid conclusions. IPerf was one of the recommended tools in
a previous study which explored different network monitoring tools for
use in limited capacity networks [53].

To confirm and validate our network emulations we use iPerf 3
alongside the Linux tool ping. The measurements are performed
between the machine hosting the client and the machine hosting the
Web service. They are performed before starting the test cases so that
the network traffic it generates do not interfere. The measurements are
included in chapter C of the appendix.

6.2.3 Wireshark

Wireshark is a packet analyzer and allows for performing network usage
analysis [54]. As an example, this tool allows a user to see all IP packets
sent from a machine over the Ethernet interface.

When performing the testing, we use Wireshark to monitor the
network traffic on the machine hosting the client and its proxy. This
is called a packet capture and allows us to investigate the behavior of
the evaluated protocols in the different types of networks. In particular,
we use it to see how many packets that are sent, as well as the total
number of bytes that are sent over the network.

6.3 Test Sets

For each test network, we perform tests with both a W3C Web service
test case and a RESTful Web service test case. Each test set consists of
a Java client and a Web service. Information about the source code of
the test applications is included in chapter D of the appendix.

In this thesis, we look into ways of improving the performance of
Web services. The purpose of the test sets is to imitate network traffic
generated by real Web services. From evaluating the performance
increase or decrease of the test services when using the proxies, we
can deduce that this applies to applications in actual use as well. As
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performance indicators, we use the average RTT as perceived by the
client application and how the network is utilized.

6.3.1 NFFI W3C Web Service

For the purpose of testing W3C Web service applications, we created
a mock system which allows a client to request a service to report
positions of friendly forces. The position report uses the NATO Friendly
Force Information (NFFI) format, which has an associated XML schema
with it. We refer to this test case as the "NFFI" test case.

One test run is illustrated in fig. 6.3 and consists of a client making a
HTTP POST request to the Web service. Associated with the request is
an XML payload which tells the Web service which operation to invoke.
In our case, the service then returns an XML message containing a large
number of positions in the NFFI format. Table 6.2 shows the HTTP
messages involved in the test.

Figure 6.3: NFFI Web service

Request URI HTTP Method Bytes sent Bytes received

?wsdl GET 192 3527

?wsdl=1 GET 194 4331

/ POST 829 40631

Total: 3 1215 48489

Table 6.2: NFFI Web service HTTP requests

6.3.2 RESTful Car Service

We originally wanted to use a service resembling a military scenario
like the NFFI service. However, no such applications were easily
available for testing at the time of writing the thesis. For the purpose of
testing RESTful services, we chose to develop a small example service
ourselves. The RESTful Car service is a service keeping order of cars
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in a car registry. It is a simple system keeping track of the registration
number and type description of multiple cars. We refer to this test case
as the "Car system" test case.

The service exposes an Application Program Interface (API) which
offers different actions to manage the car system. Clients can invoke
these operations by using HTTP requests and utilizing the associated
HTTP method to indicate what to do with a resource. Since RESTful
services are payload agnostic, we chose JSON to represent the data
being sent between the server and the client. An example of usage of
the Car system is illustrated in fig. 6.4.

Figure 6.4: Example usage of the REST Car system

Each test run of the Car system consists of a client sequentially
invoking the server with different API requests, listed in table 6.3. The
most common HTTP-methods GET, PUT, POST, and DELETE are all part
of the tests. To test that custom HTTP headers are retained when the
HTTP messages are forwarded through the proxy, both the client and
service set a custom header. When a request or response is received,
the application validates that the custom header is present.

6.3.3 Test Applications Summary

A test run of both the NFFI test case and the Car system test case
consists of sequentially sending HTTP requests to their respective Web
service. However, they have some fundamental differences. The Car
system test involves running 12 HTTP requests while the NFFI request
only invokes three. Also, the payload of each request and response is
generally much smaller for the Car system tests. Moreover, the response
message of the third request of the NFFI service is significantly larger
than any other request or response.
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Request URI HTTP Method Bytes sent Bytes received

/cars DELETE 233 243

/cars POST 293 353

/cars POST 298 358

/cars POST 294 354

/cars POST 299 359

/cars POST 296 356

/cars GET 198 538

/cars/id GET 209 348

/cars/id PUT 309 243

/cars/id GET 209 354

/cars/id DELETE 244 243

/cars/ GET 198 495

Total: 12 3080 4244

Table 6.3: REST Car system HTTP requests

6.4 Test Setup

Both test sets consist of one client and one Web service, where the
client would request the service for some sort of action. The client
is running on one computer while the Web service is deployed in a
Glassfish 4 application server on another computer. The specifications
of the machines used in the testing are listed in table 6.4.

Machine Client ma-
chine

Web service
machine

Link emula-
tor

Model Asus UX 31A
Notebook

HP EliteBook
6930p

HP Compaq
Elite 8000

OS Debian 8.2 Ubuntu 14.04 Ubuntu 14.04

Kernel 3.16.0-4-
amd64

3.13.0-79-
generic

3.19.0-25-
generic

CPU Intel i7 @
1.90GHz

Intel Duo
T95550

Intel Quad
Q9500 @
2.83GHz

Cores 4 2 4

Memory 4 GB 4 GB 12 GB

Network hard-
ware

ASIX AX88772
USB 2.0

82567LM Giga-
bit

82567LM-3 Gi-
gabit

Network inter-
face capacity

100 Mbit/s 1 Gbit/s 1 Gbit/s

Table 6.4: The machines involved in the testing
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6.4.1 Network Setup

The client and Web service machines are connected to each other
through a third computer acting as a link emulator. The link emulator
machine has two Ethernet network cards and interconnects the two
other machines. This setup can be seen in fig. 6.5. For the link emulator
to forward IP packets back and forth between the client and server, IP
forwarding is enabled in the kernel.

Figure 6.5: Network used for testing

The client and Web service machine are assigned an IP address in
two different subnets. This is done by the Linux network interface
administration program ifconfig. In listing 6.4, the client machine is
assigned the IP address 192.168.11.44.

Listing 6.4: "Setting the IP address a network interface"

1 ifconfig eth0 192.168.2.1 up

After setting up the IP addresses, we configure the routing so that the
kernel knows where to route the network traffic. In this case we want
all traffic to go through the link emulator. In listing 6.5 we configure all
IP traffic bound for the subnet 192.168.10.0/24 to be routed through the
link emulator with the IP 192.168.11.1.

Listing 6.5: "Configuring routing rules"

1 ip route add unicast 192.168.10.0/24 via 192.168.11.1

After configuring the IP address and setting up IP routing on both
the client and Web service machine, we start emulating different DIL
networks.

Emulating Different Types of Networks

Since all network traffic passes through the routing machine, we can
control the flow of IP packets here. As we previously discussed, we

75



make use of the network traffic control tools of Linux. For each network
configuration, a bash script is run. This script configures the network
interface to get the correct network behavior. Both interfaces are
configured so the network is symmetrical in both directions, except
EDGE which has asymmetrical data rates. The bash scripts used to
emulate the DIL networks are included in chapter B of the appendix.

6.4.2 Test Execution

The tests were executed with the setup illustrated in fig. 6.6. Machine
2 hosts a test client and a proxy, while machine 1 hosts a proxy and the
Web services. The Web services are deployed in a Glassfish 4 application
server. To facilitate AMQP communication between proxies, a message
broker is also run at the Web service machine. In our tests we use
version 5-13.2 of Apache ActiveMQ [55], an open source message broker
supporting messaging protocols like AMQP and MQTT.

Figure 6.6: Test setup

Each test execution is initiated from a Java client on machine 2. We
then measure how long it takes to complete all requests part of the test,
thus allowing us to measure the Route Trip Time (RTT) as perceived
by the client. All tests are performed at least 10 times to calculate the
mean, standard deviation, and variance. The results used to create the
graphs presented in the following sections are included in the appendix,
chapter C.

Moreover, for each test we perform a packet capture with Wireshark
of one sample test run. The capture allows us to get an indicator
of the network usage of the proxies and the different inter-proxy
communication protocols. It is worth noting that this was only
performed on one test case for each test. Thus, any variance between
test runs may not have detected. This is especially true for the networks
with a chance of packet errors. However, it gives us an idea of the
network traffic during that test.
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The tests are performed with the following parameters:

• Without and with proxies.

• GZIP compression on/off. When testing without proxies, the
messages are not compressed.

• The protocol used to communicate between the proxies. We refer
to proxies using HTTP as the inter-proxy communication protocol
as a HTTP proxy, using AMQP as an AMQP proxy and so on.

6.5 Function Tests

The first part of the testing is performed without any intended
limitations to the network. The objective of the function tests is to
validate that the proxy fulfills the functional requirements we sat for
our proxy:

• Receive and forward HTTP requests.

• Retain HTTP request and response headers.

• Support GZIP compression of payload.

• Support usage of different transport protocols between the prox-
ies.

• Work with security mechanisms.

In addition, the results from the function tests can be used to
benchmark against other tests. We run both with and without proxies,
allowing us to investigate the overhead associated with the usage of
proxies. We use the test setup described in the last section, although
without any intended limitations of the network. The tests are performed
for both test applications and repeated multiple times to get the average
RTT.

6.5.1 Results

Both the NFFI and Car system test cases finish successfully within the
average of 200 ms when not using proxies. Figure 6.7 shows the results
from the function tests and reveals the impact of introducing the usage
of proxies. When using proxies, all test cases still completes successfully,
but their average RTT varies depending on the protocol. The clients
HTTP requests are forwarded through the proxies to the Web service,
which successfully returns a HTTP response back.

We also verified that the proxy solution works with standard security
mechanisms. The HTTP header added by the Car system client and Web
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service is successfully retained. Moreover, we verified the integrity
of the payload of the NFFI test case when using the proxies and
compression. Using Wireshark, we compared the HTTP response body
from one of the requests in the NFFI test using proxies, with one run
where proxies were not used. Diffing the two payloads, we verified that
the proxy did not alter the payload in any way. This verifies that the
digital signature of the payload is intact.

Together with the successful GZIP compression, the functional
requirements for the proxy is therefore identified as fulfilled.

Test Packets sent Packets received

Without Proxy 51 46

Proxy with HTTP 45 44

Proxy with HTTP & GZIP 13 13

Proxy with AMQP 73 94

Proxy with AMQP & GZIP 57 62

Proxy with CoAP 101 101

Proxy with CoAP & GZIP 11 11

Table 6.5: NFFI Function test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 25 21

Proxy with HTTP 28 26

Proxy with HTTP & GZIP 28 28

Proxy with AMQP 180 203

Proxy with AMQP & GZIP 190 207

Proxy with CoAP 12 12

Proxy with CoAP & GZIP 12 12

Table 6.6: REST Function test - IP Packets sent and received by the
client application.
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Analysis

Even in an unlimited network, we still see a significant difference
between the protocols. These trends may be the same or perhaps
reinforced when the protocols are used in DIL networks. Therefore,
in the coming paragraphs, we investigate and discuss the possible
underlying reasons for the results we obtained in the function tests.

In test cases without compression, using proxies results in a longer
RTT. The longer RTT can be due to the overhead of sending requests
through proxies, which includes initializing TCP connections and the
time the proxies use processing requests. When using a HTTP proxy
with compression, we see a decrease in the RTT for the NFFI test
case. Inspecting the network traffic with Wireshark reveals the probable
cause for this. Compressing the relatively large XML documents sent in
NFFI test case yield a very high compression rate. The compression
rates of the rather small JSON documents in the Car System test case
are relatively small in comparison.

Furthermore, we observe that the transport protocol used by the
proxies has a significant impact on the RTT and packets sent over the
network. Table 6.5 and table 6.6 list the IP packets sent over the
networks of one sample run of the two test cases. To better understand
the reasons for the difference in average RTT and network usage, we
are in the following sections investigating the behavior of each protocol
separately.

HTTP Proxy

The HTTP proxy generally performed well. For the NFFI test case with
compression, the proxy is marginally faster than when not using a proxy.
The reduction of data sent and received over the network is reflected by
the reduced number of IP packets. Without compression and for the
Car system test case, the RTT of the HTTP proxy is marginally longer.
The reason could be the overhead associated with the proxy. Using
Wireshark we analyzed one sample run of the Car system test using
a HTTP proxy and found the following network activities:

1. The Car system client starts invoking its first HTTP request. This
is a DELETE request without a message body. Since requests are
proxied through the HTTP proxy, a TCP connection between the
client application and the proxy is established.

2. After receiving the request from the client, the proxy establishes a
TCP connection with the other proxy.

3. The HTTP request is sent from the proxy to the other proxy. The
DELETE request has now been converted to a POST request,
and the message body contains the proxy message. Since the
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request now has a message body, two HTTP headers have been
appended: Content-Type and Content-Length. Besides, the HTTP-
header breadcrumbID has been added, a header used by Camel.
Including the proxy message, the size of the original HTTP request
has now grown from 243 to 635 bytes.

4. A HTTP response is returned from the other proxy. It consists
of two reassembled TCP segments with the total size of 974
bytes. Comparing with the response from when not using a
proxy, indicates a few things. Without the proxy, the response to
the DELETE request is without a message body, while with, the
HTTP body contains a proxy message. In addition, the response
has additional HTTP headers than the original request. For
this examined response, using the proxy introduced a message
overhead of 756 bytes.

5. The response if forwarded from the proxy to the client.

6. The client starts its next request and repeats the mentioned steps.
However, since the TCP connections now are initialized and open,
both between the client and proxy and between the proxies, the
TCP connections are reused.

Using a HTTP proxy successfully forwarded messages, but intro-
duced some overhead. HTTP headers are added and possibly duplicated,
as the proxy encapsulates the original headers inside the proxy message
and then adds its own headers to the HTTP request between the proxies.

AMQP Proxy

AMQP had the worst average RTT of the proxy protocols, especially for
the Car system test case. As seen in table 6.5 and table 6.6, AMQP sends
a lot more IP packets through the network than HTTP. Since AMQP is
broker based, communication occurs through a message broker and not
directly between the proxies. Using Wireshark, we dived down into the
details:

1. A TCP connection between the test client and proxy is first
established.

2. The proxy establishes a TCP connection with the message broker.

3. The proxy and message broker agree on an AMQP version by
exchanging the AMQP protocol header.

4. Next, to forward the first request, the proxy initiates an AMQP
connection. The connection initialization consists of numerous
AMQP frames being sent between the proxy and message broker. It
includes sending the AMQP frames Open, Begin, Attach and Flow.
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First after sending these frames, the first transfer frame carrying
the message is sent.

5. Finally, when a response is returned, both the AMQP and TCP
connection between the proxy and message broker are closed.

6. The proxy returns the response back to the test client.

7. When the next test HTTP request is initiated by the client, these
steps are repeated.

Although all requests are successfully forwarded, the AMQP proxy
cause a significant overhead due to its complex connection procedures.
For every request that is forwarded through the proxy, a new AMQP and
TCP connection had to be established.

CoAP Proxy

Using CoAP as the inter-proxy communication protocol had roughly
the same average RTT as the HTTP proxy, with one exception. In
the uncompressed NFFI test case, it had a longer RTT and sent an
unreasonable higher amount of packets. We discuss the possible reasons
for this in detail in section 6.9. For the test cases not involving large
messages, however, CoAP sent significantly fewer IP packets than the
other proxy protocols. Using Wireshark we looked into the network
traffic of the Car system test:

1. The test client first establishes a TCP connection with the proxy
and sends the first message.

2. The proxy forwards the request in a UDP message to the other
proxy.

3. The other proxy returns the response and acknowledgment in one
UDP message.

4. The proxy returns the response to the test client.

5. The test client invokes a new request, and the steps are repeated.

As we see, CoAP has a more simple messaging pattern compared to
AMQP and partly also HTTP/TCP. CoAP uses UDP, which is a connection-
less protocol, which means that no packets have to be sent to establish
a connection. For the function tests, we see that the CoAP proxy is the
proxy with the least network footprint.

The function tests were done in an unlimited network, so our findings
are not necessarily applicable to DIL networks. In section 6.7, we put
the proxy and protocols to the test in more limited networks. However,
first, in the next section we see how the proxies cope with the disconnect
and intermittent aspect of the DIL.
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6.6 DIL Tests - Intermittent and Disconnected

Intermittent and disconnected refers to the network connection being
lost for some period, but then regained again. Disconnected refers
to the loss of connection over a longer period, while intermittent is
a special case of disconnected and refers to shorter disruptions. The
requirements we set for our proxy were that it should:

• Handle frequent network disruptions.

• Handle disconnects over longer periods of time.

In our testing, we focus on the loss of connections for longer periods
of time. The objective of this testing is to evaluate how the proxy
manages disconnects. We define the success criteria to be that a client
can eventually process his request after the connection is reestablished.
The client’s HTTP request should not be interrupted in any way, other
than it taking a longer time to process the request.

6.6.1 Execution

The tests are performed over an unlimited network and for both the
NFFI and Car system test. The proxy redelivery delay is configured
to be with a fixed 20-second retransmission. The tests are executed
by starting the test applications and then immediately removing the
Ethernet cable between the client machine and the link emulator as
illustrated in fig. 6.8. We then wait around 60 seconds, allowing requests
to trigger timeouts and thus invoking the proxy redelivery mechanism.
Finally, we connect the cable again and observe if the test application is
able to finish its requests successfully.

Figure 6.8: Emulating a disconnect

6.6.2 Results and Analysis

For both the REST and W3C Web service test scenarios, the results
were identical. Without using proxies, the connection timed out, and
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the applications were unable to continue as shown in table 6.7 and
table 6.8. With proxies, the connection did not time out, and the proxy
retransmission mechanisms were able to continue transmission when
the connection was reestablished.

Test Result

Without proxy Connection timeout

Proxy with HTTP Success

Proxy with AMQP Success

Proxy with CoAP Success

Table 6.7: NFFI Web service results

Test Result

Without proxy Connection timeout

Proxy with HTTP Success

Proxy with AMQP Success

Proxy with CoAP Success

Table 6.8: RESTful Web service results

6.7 DIL Tests - Limited

The third DIL characteristic, limited, refers to various ways a network
can be constrained. The limited characteristic includes long delays,
packet loss, and low data rate. In this section, we present the testing
performed for the different types of networks identified in table 6.1.
Through this testing we evaluate how the proxy performs with regards
to requirement 6, stating that the proxy should be able to:

• Handle low data rates, long delays, and high packet error rates.

6.7.1 Satellite Communication

In this test network, we emulate SATCOM. With satellite communi-
cation, all data is relayed through a communication satellite in orbit
around the earth. This type of communication is characterized by its
moderate data rate and high delay.

Results and Analysis

From the SATCOM testing results presented in fig. 6.9, table 6.9 and
table 6.10, we observe the following:

• The HTTP proxy with compression has the overall best RTT.
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• With one exception, AMQP has significantly higher RTT than the
other protocols. For the Car system tests with many subsequent
HTTP requests, we see that AMQP triggers the sending of many IP
packets. In a sample test run, the Wireshark capture revealed that
AMQP sends twenty times the amount of IP packets compared to
CoAP.

• CoAP struggles with large uncompressed messages of NFFI test
case. For the Car system test, however, the CoAP proxy has almost
equal average RTT as the HTTP proxy. A Wireshark capture during
the Car system test shows that CoAP proxy sends very few of IP
packets compared to other protocols.

• Compression can be of less importance in networks with high data
rates and where the long delay is the limiting factor.

Test Packets sent Packets received

Without Proxy 54 47

Proxy with HTTP 47 45

Proxy with HTTP & GZIP 16 14

Proxy with AMQP 88 102

Proxy with AMQP & GZIP 71 68

Proxy with CoAP 101 101

Proxy with CoAP & GZIP 11 11

Table 6.9: NFFI SATCOM test - IP Packets sent and received by the
client application.

Test Packets sent Packets received

Without Proxy 27 22

Proxy with HTTP 26 25

Proxy with HTTP & GZIP 30 28

Proxy with AMQP 244 238

Proxy with AMQP & GZIP 240 240

Proxy with CoAP 12 12

Proxy with CoAP & GZIP 12 12

Table 6.10: REST SATCOM test - IP Packets sent and received by the
client application.

85



 0

 13000

 26000

 39000

 52000

 65000

 78000

 91000

 104000

 117000

 130000

Without Proxy HTTP Proxy AMQP Proxy CoAP Proxy

A
ve

ra
ge

 R
T

T
 (

m
s)

Without Compression
With Compression

(a) NFFI

 0

 13000

 26000

 39000

 52000

 65000

 78000

 91000

 104000

 117000

 130000

Without Proxy HTTP Proxy AMQP Proxy CoAP Proxy

A
ve

ra
ge

 R
T

T
 (

m
s)

Without Compression
With Compression

(b) REST

Figure 6.9: SATCOM tests - Average RTT Time for the client application.
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6.7.2 Line-of-Sight

In this test scenario, we emulate LOS networks which are characterized
by being a radio-based type of network with no physical obstacles
between the nodes in the network. LOS has high data rate, low delay,
and zero error rate.

Results and Analysis

The average RTT of the LOS tests is shown in fig. 6.10. IP packets sent
and received in a sample run of the NFFI and Car system test cases
are listed in table 6.11 and table 6.12. The significant findings are
summarized here:

• HTTP proxy yielded the lowest average RTT in the NFFI test case,
while not using a proxy had the best RTT in the Car system test.
In the Car system tests, the CoAP proxy is marginally faster than a
HTTP proxy.

• We observe the same trends regarding CoAP and AMQP as in the
function testing. The LOS type of network is a relatively unlimited
network. The results have the same characteristics as the results
from the function tests.

• For the Car system test, we see that enabling compression yields a
slightly longer average RTT. The reason for this can be the time
used to compress the payload is larger than the time saved by
reducing the size of the message.
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Figure 6.10: LOS tests - Average RTT Time for the client application.
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Test Packets sent Packets received

Without Proxy 46 43

Proxy with HTTP 43 44

Proxy with HTTP & GZIP 14 13

Proxy with AMQP 68 91

Proxy with AMQP & GZIP 54 59

Proxy with CoAP 101 101

Proxy with CoAP & GZIP 11 11

Table 6.11: NFFI LOS test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 25 21

Proxy with HTTP 28 26

Proxy with HTTP & GZIP 24 24

Proxy with AMQP 189 201

Proxy with AMQP & GZIP 187 201

Proxy with CoAP 12 12

Proxy with CoAP & GZIP 12 12

Table 6.12: REST LOS test - IP Packets sent and received by the client
application.

6.7.3 WiFi 1

With this type of network, we emulate communication over WiFi where
the conditions are relatively good. The data rate is high, the delay is
moderate, and the packet error rate is 1 %.

Results and Analysis

The results of the tests in this type of network are presented in fig. 6.11,
table 6.13 and table 6.14. We see the following:

• Again we observe the same trends from previous tests. AMQP has
the longest average RTT while CoAP struggle with large messages.

• For the NFFI test, HTTP proxy with compression yields the lowest
average RTT.

• For the Car system tests, running without using proxies have the
lowest average RTT.
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Figure 6.11: WiFi 1 tests - Average RTT Time for the client application.
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Test Packets sent Packets received

Without Proxy 50 45

Proxy with HTTP 45 45

Proxy with HTTP & GZIP 13 14

Proxy with AMQP 76 93

Proxy with AMQP & GZIP 60 60

Proxy with CoAP 104 104

Proxy with CoAP & GZIP 11 11

Table 6.13: NFFI WiFi 1 test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 28 22

Proxy with HTTP 26 24

Proxy with HTTP & GZIP 30 27

Proxy with AMQP 192 211

Proxy with AMQP & GZIP 198 208

Proxy with CoAP 12 12

Proxy with CoAP & GZIP 12 12

Table 6.14: REST WiFi 1 test - IP Packets sent and received by the client
application.

6.7.4 WiFi 2

This type of network also emulates wireless communication, but instead
in the “outer” areas of the wireless range. It has good data rate,
moderate delay, and very high packet error rate (20 %).

Results and Analysis

Figure 6.12 shows the average response times of the WiFi 2 test cases.
Table 6.15 and table 6.16 list the packets sent and received from the test
applications in a sample test run. For the tests ran in an emulated WiFi
2 network, we see the following:

• A significantly longer average RTT for all test cases. The variance
of the test results has increased compared to the other test
networks. The high variance can be attributed to the high
probability of packet errors, since some test runs may experience
few errors, while other more.

• The HTTP proxy with compression had the overall best average
RTT.
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• In the NFFI test case with a CoAP proxy without compression,
the proxy was not able to forward the request. The reason for
this is that the CoAP request between the proxies timed out.
The retransmission mechanism of the proxy was invoked, but the
consecutive attempts were unsuccessfully as well. Furthermore,
we observe that even with compression did the CoAP proxy have a
longer average RTT than the other proxies protocols.

• We also see that for the NFFI test cases, compressing the messages
yields a substantial performance increase with regards to the
average RTT. This is probably due to since fewer IP packets need
to be sent over the network, it is a less chance for packet errors.

Test Packets sent Packets received

Without Proxy 51 54

Proxy with HTTP 45 52

Proxy with HTTP & GZIP 15 13

Proxy with AMQP 101 111

Proxy with AMQP & GZIP 76 71

Proxy with CoAP 0 0

Proxy with CoAP & GZIP 14 12

Table 6.15: NFFI WiFi 2 test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 32 39

Proxy with HTTP 37 30

Proxy with HTTP & GZIP 31 28

Proxy with AMQP 332 317

Proxy with AMQP & GZIP 231 243

Proxy with CoAP 18 15

Proxy with CoAP & GZIP 24 17

Table 6.16: REST WiFi 2 test - IP Packets sent and received by the client
application.
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Figure 6.12: WiFi 2 tests - Average RTT Time for the client application.
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6.7.5 Combat Net Radio

CNR is characterized by its very low data rate, moderate timeout and
packet error rate of 1 %.

Results and Analysis

In fig. 6.13 we show the average RTT of the tests for the emulated CNR
network. Table 6.17 table 6.18 shows the IP packets sent/received in a
sample run of the test cases. We observe the following:

• CoAP proxy with compression had the best average RTT and sent
the fewest number of IP packets.

• The NFFI tests without compression have a very high average RTT.

• The AMQP test without compression was not able to complete
before it timed out.

• If we compare the test cases without proxy and proxy with HTTP,
we can see the overhead caused by using proxies. The increased
HTTP message size caused by the proxy leads to a higher average
RTT.
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Test Packets sent Packets received

Without Proxy 70 71

Proxy with HTTP 66 67

Proxy with HTTP & GZIP 14 13

Proxy with AMQP 0 0

Proxy with AMQP & GZIP 56 62

Proxy with CoAP 103 103

Proxy with CoAP & GZIP 11 11

Table 6.17: NFFI CNR test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 25 21

Proxy with HTTP 28 27

Proxy with HTTP & GZIP 24 24

Proxy with AMQP 233 240

Proxy with AMQP & GZIP 220 225

Proxy with CoAP 14 13

Proxy with CoAP & GZIP 12 12

Table 6.18: REST CNR test - IP Packets sent and received by the client
application.

6.7.6 EDGE

EDGE is characterized by a low upload data rate and a moderately low
download rate. We emulate EDGE with a moderate delay and zero
packet loss.

Results and Analysis

Figure 6.14 shows the average response times of the EDGE test cases.
Table 6.19 and table 6.20 list the packets sent and received from the test
applications in a sample test run. We observe the following:

• HTTP proxy with compression has the overall lowest average RTT.

• Again we see that CoAP struggles with large messages.
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Test Packets sent Packets received

Without Proxy 50 45

Proxy with HTTP 45 44

Proxy with HTTP & GZIP 14 13

Proxy with AMQP 78 95

Proxy with AMQP & GZIP 59 59

Proxy with CoAP 101 101

Proxy with CoAP & GZIP 11 11

Table 6.19: NFFI CNR test - IP Packets sent and received by the client
application.

Test Packets sent Packets received

Without Proxy 27 23

Proxy with HTTP 28 27

Proxy with HTTP & GZIP 29 27

Proxy with AMQP 194 201

Proxy with AMQP & GZIP 201 212

Proxy with CoAP 12 12

Proxy with CoAP & GZIP 12 12

Table 6.20: REST EDGE test - IP Packets sent and received by the client
application.

6.8 Experiments with Tactical Broadband

The majority of the testing was performed over software emulated
networks. To validate these results, we performed experiments with
military communication equipment. We used two WM600 radios
developed by Kongsberg Defence & Aerospace (KDA), intended for users
"on-the-move". WM600 can be used as IP radios through the Ethernet
interface and support data rates up to 2500 kbit/s [56]. A picture of the
radio can be seen in fig. 6.15.

We performed the testing in a communication laboratory located at
FFI with the setup illustrated in fig. 6.16. It is a point-to-point setup
with two radios and without any multi-hop functionality. The radios have
the capacity to work as a multi-hop Mobile ad hoc network (MANET),
but this was not tested in this thesis. The radios were attached to
configurable attenuators, which could reduce the power of a signal by
distorting its waveform. The purpose of the attenuators is to facilitate
radio experiments with varying signal strength.

During our experiments, the attenuators were set to 30 DB. The
measured data rate of the network was around 90 kbit/s and with a ping
response time of 23 ms.
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Figure 6.15: The KDA WM600 radio (from [56])

Figure 6.16: Tactical broadband testing environment

Results and analysis

Figure 6.17 shows the average RTT of the test cases performed over
tactical broadband. We make the following observations:

• We see the same trends as in the software emulated networks.

• Compression yields a significantly lower RTT for the NFFI tests
and a small decrease for the Car system tests.

• The CoAP proxy struggles with large messages but otherwise has
the overall best RTT.
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6.9 Discussion

In all emulated networks we see some consistent trends. Compressing
the messages between the proxies generally lowered the RTT, especially
for large messages of the NFFI test case. The exception is in some of the
DIL networks with relatively high data rates, the time spent to compress
and decompress a message was longer than the time saved by sending
a compressed message.

In all test cases, the AMQP proxy had a significant overhead for
each HTTP request forwarded by the proxy. We believe this is due
to the laborious connection initialization of the AMQP protocol. This
is especially noticeable to the many subsequent HTTP requests of
the Car system test. We saw that for each HTTP request, a new
AMQP connection was established, which generated a lot of network
traffic. It is possible to avoid this by reusing connections over multiple
requests, often referred to as connection pooling. However, the Camel
AMQP component did not offer this functionality at the time of the
implementation of this proxy. Regardless of this, compared against
HTTP/TCP and CoAP, AMQP generates more network traffic.

Another consistent trend was that the CoAP proxy struggled with
large messages in the NFFI test case. A Wireshark capture reveals that
the CoAP proxy could utilize the Ethernet link in a better way. The
maximum size of an IP packet sent over Ethernet is 1500 bytes [20],
while the packet capture shows that CoAP splits larger messages into
CoAP messages of only 512 bytes. Sending more than necessary packets
over the network introduces some overhead:

• The minimum size of an IP packet header is 20 bytes. For each
additional unnecessary packet sent, at least 20 more bytes are
therefore sent over the network. Furthermore, since the receiver
acknowledges each message, an additional packet is sent over the
network.

• The more IP packets sent, the greater is the chance of packet loss.
This especially applies to networks with high error rate.

• The messages have to be splitt at the sender and then reassembled
at the receiver, consuming CPU power.

The maximum size of an IP packet is 65535 bytes [57] while the
underlying transmission links usually have a much lower maximum size
on its packets. Thus, if an IP packet larger than 1500 bytes is sent over
Ethernet, it has to be fragmented into smaller fragments before they
are sent. The maximum size of a packet that can be transmitted over
a network without causing fragmentation is called the Path MTU. We
generally want to avoid causing IP fragmentation due to the overhead
associated with it [58].
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To avoid IP fragmentation, and to support sending messages larger
than 65 535 bytes, CoAP supports the block-wise feature splitting larger
messages into smaller blocks. At the receiving end, these blocks
are reassembled before they are delivered to the higher layers. The
implementation we used for CoAP, Californium, supports the block-wise
transfer feature. According to the specification of the feature, the byte
size of each block must be of a power-of-two [25]. When we looked into
the source code of Californium, we saw that the default size of a block is
512 bytes. This may be reasonable in some cases where the path MTU
is not known or simply is low. However, in our case with a path MTU
of 1500 bytes, the block size could have been set to 1024 to reduce the
number of packets sent by the CoAP proxy.

Regardless of this, the CoAP proxy still performed equal to, or even
better than, the HTTP proxy in some of the emulated networks. This can
be due to CoAP’s low overhead by having a small binary header and a
simple messaging model.

6.10 Summary

In this chapter, we introduced six types of DIL networks and presented
two test cases. We performed a function test of the proxy and saw
that the premises and requirements were fulfilled. Then we showed
how disconnects would cause clients not using a proxy to fail while the
ones using a proxy were eventually successful. Finally, we evaluated the
proxy solution with regards to the average RTT perceived by a client and
network usage.

Overall, we saw that the HTTP proxy or not using a proxy yielded
the lowest average RTT in the limited networks. However, not using
a proxy is vulnerable to disconnects which the HTTP proxy handles
better. Therefore, as the general recommendation, we recommend using
a HTTP proxy in limited networks. In some special cases, however, the
CoAP proxy may be a viable option. When the data rate of a network
is low, and the message size is low, the CoAP proxy proved itself with
a lower average RTT and less network usage than the HTTP proxy.
Table 6.21 summarize our recommendations.
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Network NFFI Web service recom-
mendation

REST recommendation

SATCOM HTTP proxy with GZIP HTTP proxy with GZIP

LOS HTTP proxy with GZIP HTTP proxy with GZIP

WiFi 1 HTTP proxy with GZIP HTTP proxy with GZIP

WiFi 2 HTTP proxy with GZIP HTTP proxy with GZIP

CNR CoAP proxy with GZIP CoAP proxy with GZIP

Edge HTTP proxy with GZIP HTTP proxy with GZIP

Table 6.21: Recommendations
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis and suggest potential future
work.

7.1 Conclusion

The goal of this thesis was to investigate different ways to improve the
performance of Web services in networks characterized by unreliable
connects, high error rates, and low data rate. Web services enable
interoperability between systems, but adapting Web services meant for
civilian use into limited networks may not be feasible due to the network
limitations. To adapt standard Web services into DIL networks without
requiring incorporating proprietary solutions, we introduced the usage
of proxies based on previous research. The proxy applies optimization
techniques to facilitate the usage and to increase the performance of
Web services in DIL. As a part of the thesis, we specified a set of
requirements for the proxy and implemented it using the Apache Camel
framework. Table 7.1 lists the premises and requirements.

In our evaluation, we tested whether our proxy solution fulfilled
these premises and the more detailed requirements we specified in
section 4.4. Through the function testing, we were able to prove that
the proxy worked with a test set of Web service applications. The Web
services successfully forwarded the requests through a deployed proxy
pair, without requiring modifications except configuring the usage of
proxies. This fulfilled premises one and three, as well as requirement 1
and 2.

Furthermore, we tested how the proxies facilitated the usage of
Web services in DIL networks. We verified that the proxy was able to
overcome the disconnect aspect of DIL by implementing a redelivery
mechanism. This fulfilled requirement 5 and the disconnect aspect
of premise 2. Requirement 4 regarding frequent network disruptions
was not explicitly tested, but should be achieved by design since the
proxy employs reliable protocols and an application layer redelivery
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Premise 1 Support HTTP RESTful and W3C Web services.

Premise 2 Work in DIL networks.

Premise 3 Be interoperable with standards-based COTS solu-
tions.

Premise 4 Work with security mechanisms.

Requirement 1 Receive and forward HTTP requests.

Requirement 2 Retain HTTP request and response headers.

Requirement 3 Support GZIP compression of payload.

Requirement 4 Handle frequent network disruptions.

Requirement 5 Handle disconnects over longer periods of time.

Requirement 6 Handle low data rates, high delays and high packet
error rates.

Requirement 7 Allow for configuration of redelivery delay and
maximal number of retransmissions.

Requirement 8 Support usage of different transport protocols
between the proxies.

Requirement 9 Easy configuration of which protocol to use.

Requirement 10 Be easily extendable to include other protocols and
other optimization techniques.

Table 7.1: Premises and requirements

mechanism.

Requirement 3 was fulfilled by implementing GZIP compression on
messages between proxies. Compression was identified to yield a
significant performance increase with regards the RTT time perceived
by Web service clients.

We also validated that the proxy could overcome the limited aspect of
DIL as the test cases were successful in all emulated DIL networks. This
fulfilled premises 2 and requirement 6. Furthermore, we supported a set
of transport protocols as the means of transporting data between proxies
and with that fulfilled requirement 8. We saw how different transport
protocol affected the performance of Web services. In most of the
various types of DIL environments, using HTTP/TCP as the inter-proxy
protocol was identified as the best transport. However, we saw that in
cases where the message payload was low and in networks with low
data rates, using a CoAP proxy was the best option. We also discovered
how the Californium implementation of CoAP with default configuration
caused a sub-optimal utilization of an Ethernet link. Tuning the block-
size configuration could improve the CoAP’s proxy performance also for
larger payloads.

Next, we were able to show that the proxy works with security
mechanisms by verifying that the digital signature of the payload is
intact, by diffing the payload when not using proxies with the payload
when using proxies.
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Finally, the proxy implements a configuration setup that allows the
user to specify different properties of the proxy. A user of the proxy can
easily configure properties of the redelivery mechanism and change the
transport protocol used between proxies. The proxy has been designed
to be easily extendable to include other protocols and optimization
techniques. The Apache Camel framework used in the implementation
facilitates this by supporting a component based transport mechanism,
as well as easily allowing customization of the payload. This satisfies
requirement 7, 9 and 10.

All in all, the goal of the thesis was reached. We developed a
prototype proxy and gave a recommendation regarding optimization
techniques for Web services in DIL environments. Table 7.2 summarize
our recommendations.

DIL Network Optimization recommendation

SATCOM HTTP proxy with GZIP

LOS HTTP proxy with GZIP

WiFi 1 HTTP proxy with GZIP

WiFi 2 HTTP proxy with GZIP

CNR CoAP proxy with GZIP

Edge HTTP proxy with GZIP

Table 7.2: Optimization recommendations for DIL networks

Further possible investigations in this area and improvements to the
proxy are discussed in the next section.

7.2 Future Work

The proxy solution developed as a part of this thesis primarily focus
on alternative transport protocols and compression as the means of
optimization. Further investigations should consider other optimization
techniques as well, such as caching and content filtering. Moreover,
due to the time available, we were not able to test the SCTP protocol for
use in the proxies. We identified SCTP as a potential protocol for DIL
networks, so further optimization investigations should consider this
protocol as well.

Security is of vital importance in military communication. Another
area that could be investigated further is to perform tests with IPSEC
enabled. IPSEC is a protocol suite designed to provide interoperable
cryptographic security on the IP layer [59]. Performing tests with IPsec
enabled would give knowledge of how this security mechanism affects
the performance of Web services.
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7.2.1 Improving the proxy

In our evaluation, we saw that which transport protocol had the best
performance depended on the message size and the current network
conditions. Future optimization of the proxy solution may include a
runtime selection of the transport protocol instead of selection at start-
up. Furthermore, we saw that the CoAP implementation we used, sent
large messages split over small Ethernet frames. Setting a higher CoAP
block size may yield a potential performance increase when sending
large messages with the CoAP protocol.

To reduce the overhead of the proxy, further optimization may
improve the proxy message format implementation. Instead of using
a textual message format, a compact binary header could be used.

Known Bugs

During our Wireshark analysis of the test results, we discovered
that when using the proxy, some of the HTTP request headers was
propagated into the HTTP response headers. This happened for all
inter-proxy protocols and is caused by the way Camel exchanges are
implemented. This could be fixed by explicitly removing the headers
when routing the message back to the requester. Although this implies
that the proxies are not completely transparent, we do not believe this
had any significant impact on the testing. The payload of messages is
still exactly the same, and all headers are present. However, for each
unnecessary header sent, additional bytes has to be transferred over the
network. Although the number of additional bytes is relatively small,
fixing this bug would reduce the overhead of using the proxy.
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Appendix A

Proxy Configuration

The proxy is configured by passing a path to a valid configuration file
at startup, as seen in listing A.1. The configuration fields of the proxy
are listed in table A.1. When using the AMQP protocol for inter-proxy
communication, a message broker and queue names must be configured
as shown in listing A.2.

Listing A.1: "How to start the proxy"

1 java -jar proxy.jar configfile.conf

Listing A.2: "AMQP Proxy configuration example"

1 proxy {
2 useCompression = false
3 protocol = "amqp"
4 hostname = "0.0.0.0"
5 port = 3001
6 timeout = 40000
7 targetProxyHostname = "192.168.11.10:4001"
8 }
9

10 amqp {
11 produceQueue = 4001
12 consumeQueue = 3001
13 brokerConnectionUri = "amqp://vetur:5672"
14 }
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Field Purpose Required Type

useCompression Turn GZIP com-
pression on/off

Yes boolean

protocol Inter-proxy com-
munication proto-
col

Yes String

hostname Hostname to lis-
ten on

Yes String

port Which port the
proxy should lis-
ten for messages

Yes Integer

targetProxyHostname The hostname
and the port
of the opposite
proxy

Yes String

timeout The timeout
value of a request
between proxies

No Integer

useExponentialBackoff Turn on/off expo-
nential backoff of
retransmission

No Integer

redeliveryDelay Number of mil-
liseconds to wait
before trying re-
delivery

No Integer

maximumRetransmissions Maximum num-
ber of attempted
retransmissions.
-1 indicates infin-
ity

No Integer

Table A.1: Configuration fields of the Proxy
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Appendix B

Network emulating

This appendix lists the different scripts that were used to emulate the
different types of networks in the evaluation.

B.1 SATCOM

Listing B.1: "Emulating SATCOM"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 250kbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 550ms

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 250kbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 550ms

B.2 LOS

Listing B.2: "Emulating LOS"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 5ms

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 5ms
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B.3 WiFi 1

Listing B.3: "Emulating WiFi 1"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 100ms corrupt 1%

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 100ms corrupt 1%

B.4 WiFi 2

Listing B.4: "Emulating WiFi 2"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 100ms corrupt 20%

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 2mbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 100ms corrupt 20%

B.5 CNR

Listing B.5: "Emulating CNR"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 9.6kbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 100ms corrupt 1%

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 9.6kbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 100ms corrupt 1%
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B.6 EDGE

Listing B.6: "Emulating EDGE"

1 #!/bin/bash
2

3 sudo tc qdisc add dev eth0 handle 1: root tbf rate 200kbit
burst 15000 limit 15000

4 sudo tc qdisc add dev eth0 parent 1:1 handle 10: netem
delay 200ms

5 sudo tc qdisc add dev eth1 handle 1: root tbf rate 50kbit
burst 15000 limit 15000

6 sudo tc qdisc add dev eth1 parent 1:1 handle 10: netem
delay 200ms
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Appendix C

Results

In this appendix, the data material from the evaluations is presented.
Each test case was run a number of times, ranging from 10 to 100
runs. The mean, Standard Deviation (STD) and variance was calculated
by using the Apache Commons Mathematics Library [60]. An example
of how this was done running NFFI Web service tests can be seen in
listing C.1.

Listing C.1: "Calculating statistic values"

1 DescriptiveStatistics stats = new DescriptiveStatistics();
2

3 for (int i=0; i<antall; ++i) {
4 long ts1 = System.currentTimeMillis();
5 NFFIDataResponse response = pullDataOperation(null);
6 long ts2 = System.currentTimeMillis();
7 stats.addValue(ts2-ts1);
8 }
9

10 System.out.println("Mean: " + stats.getMean());
11 System.out.println("Standard Deviation: " +

stats.getStandardDeviation());
12 System.out.println("Variance: " + stats.getVariance());
13 System.out.println("Min: " + stats.getMin());
14 System.out.println("Max: " + stats.getMax());
15 System.out.println("Median: " + stats.getPercentile(50));

We also performed an analysis of the network utilization using
Wireshark. This was done by starting a packet capture, running one
test run and inspecting the packet capture. The calculation of bytes
sent and received was done by:

1. Starting Wireshark on the same machine as the client.

2. Filtering traffic to only show traffic between the IP addresses of
the client and Web service.
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3. Using the TCP/UDP conversation view of Wireshark.

C.1 Function Tests

• Ping measured to ~1 ms.

• Iperf3 measured data rate: 7.76 Mbits/sec.

C.1.1 NFFI Web Service

Test Mean STD Variance Test runs

Without proxy 122 ms 29 869 300
Proxy with HTTP 163 ms 25 601 300
Proxy with HTTP & GZIP 99 ms 19 346 300
Proxy with AMQP 529 ms 60 3690 300
Proxy with AMQP & GZIP 490 ms 62 3847 300
Proxy with CoAP 285 ms 33 1122 300
Proxy with CoAP & GZIP 122 ms 33 1091 300

Table C.1: Mean response times of NFFI Web Service - Function Test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 51 4609 46 51706
Proxy with HTTP 45 5392 44 55489
Proxy with HTTP & GZIP 13 2781 13 2585
Proxy with AMQP 73 10284 94 64472
Proxy with AMQP & GZIP 57 8731 62 15244
Proxy with CoAP 101 8120 101 57137
Proxy with CoAP & GZIP 11 1680 11 5502

Table C.2: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent – Function Test
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C.1.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 30 ms 12 147 100
Proxy with HTTP 160 ms 97 9486 100
Proxy with HTTP & GZIP 159 ms 76 5822 100
Proxy with AMQP 1919 ms 128 16388 100
Proxy with AMQP & GZIP 1880 ms 109 11919 100
Proxy with CoAP 124 ms 64 4079 100
Proxy with CoAP & GZIP 128 ms 64 4109 100

Table C.3: Mean response times of RESTful Car System - Function Test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 25 4738 21 5638
Proxy with HTTP 28 9677 26 15147
Proxy with HTTP & GZIP 28 8735 28 12993
Proxy with AMQP 180 30366 203 47484
Proxy with AMQP & GZIP 190 30224 207 42314
Proxy with CoAP 12 4757 12 8369
Proxy with CoAP & GZIP 12 3943 12 6053

Table C.4: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - Function Test

C.2 Satellite Tests

• Ping measured to ~1100 ms.

• Iperf3 measured data rate: 402/291 Kbits/sec.

C.2.1 NFFI Web Service

Test Mean STD Variance Test runs

Without proxy 4978 ms 378 142762 10
Proxy with HTTP 4511 ms 71 5009 10
Proxy with HTTP & GZIP 3530 ms 50 2472 10
Proxy with AMQP 25709 ms 793 628112 10
Proxy with AMQP & GZIP 25780 ms 1159 1343947 10
Proxy with CoAP 111636 ms 59 3437 10
Proxy with CoAP & GZIP 12347 ms 41 1652 10

Table C.5: Mean response times of NFFI Web Service - Satellite test
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Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 54 4811 47 51623
Proxy with HTTP 47 5532 45 55563
Proxy with HTTP & GZIP 16 2987 14 7177
Proxy with AMQP 88 11342 102 65040
Proxy with AMQP & GZIP 71 9731 68 15679
Proxy with CoAP 101 7810 101 56827
Proxy with CoAP & GZIP 11 1668 11 5486

Table C.6: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - Satellite test

C.2.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 13386 ms 401 160523 10
Proxy with HTTP 13643 ms 427 182464 10
Proxy with HTTP & GZIP 13825 ms 897 804893 10
Proxy with AMQP 102748 ms 3065 9396423 10
Proxy with AMQP & GZIP 94163 ms 568 322659 10
Proxy with CoAP 13545 ms 217 47260 10
Proxy with CoAP & GZIP 13562 ms 223 49522 10

Table C.7: Mean response times of RESTful Car System - Satellite test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 27 4878 22 5712
Proxy with HTTP 26 9538 25 15075
Proxy with HTTP & GZIP 30 8873 28 13010
Proxy with AMQP 244 34841 238 49914
Proxy with AMQP & GZIP 240 33739 240 44625
Proxy with CoAP 12 4751 12 8380
Proxy with CoAP & GZIP 12 3940 12 6063

Table C.8: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - Satellite test

C.3 Line-of-Sight Tests

• Ping measured to ~11 ms.

• Iperf3 measured data rate: 2.34/2.15 Mbits/sec.
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C.3.1 NFFI Web Service

Test Mean STD Variance Test runs

Without proxy 242 ms 26 663 100
Proxy with HTTP 299 ms 40 1577 100
Proxy with HTTP & GZIP 162 ms 34 1177 100
Proxy with AMQP 821 ms 60 3588 100
Proxy with AMQP & GZIP 693 ms 75 5632 100
Proxy with CoAP 1359 ms 45 1988 100
Proxy with CoAP & GZIP 262 ms 36 1314 100

Table C.9: Mean response times of NFFI Web Service - LOS test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 46 4267 43 51343
Proxy with HTTP 43 5260 44 55489
Proxy with HTTP & GZIP 14 2847 13 7103
Proxy with AMQP 68 9950 91 64274
Proxy with AMQP & GZIP 54 8529 59 15044
Proxy with CoAP 101 7565 101 56582
Proxy with CoAP & GZIP 11 1647 11 5466

Table C.10: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - LOS test

C.3.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 156 ms 15 214 100
Proxy with HTTP 288 ms 77 6000 100
Proxy with HTTP & GZIP 292 ms 86 7382 100
Proxy with AMQP 2567 ms 102 10333 100
Proxy with AMQP & GZIP 2579 ms 129 16595 100
Proxy with CoAP 256 ms 69 4775 100
Proxy with CoAP & GZIP 263 ms 69 4693 100

Table C.11: Mean response times of RESTful Car System - LOS test
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Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 25 4738 21 5638
Proxy with HTTP 28 9704 26 15201
Proxy with HTTP & GZIP 24 8486 24 8486
Proxy with AMQP 189 30968 201 47352
Proxy with AMQP & GZIP 187 29979 201 41927
Proxy with CoAP 12 4756 12 8397
Proxy with CoAP & GZIP 12 3934 12 6059

Table C.12: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - LOS test

C.4 WiFi 1 tests

• Ping measured to ~200 ms.

• Iperf3 measured data rate: 1.72/1.67 Mbits/sec.

C.4.1 NFFI Web Service

Test Mean STD Variance Test runs

Without proxy 1202 ms 162 26326 100
Proxy with HTTP 1213 ms 354 125628 100
Proxy with HTTP & GZIP 820 ms 154 23586 100
Proxy with AMQP 5026 ms 460 211385 100
Proxy with AMQP & GZIP 4964 ms 637 405390 100
Proxy with CoAP 25615 ms 3185 10142866 10
Proxy with CoAP & GZIP 2823 ms 1425 2031770 100

Table C.13: Mean response times of NFFI Web Service - WiFi 1 test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 50 4531 45 51475
Proxy with HTTP 45 5560 45 57003
Proxy with HTTP & GZIP 13 2793 14 8297
Proxy with AMQP 76 10494 93 64406
Proxy with AMQP & GZIP 60 8941 60 15126
Proxy with CoAP 104 9214 104 58817
Proxy with CoAP & GZIP 11 1682 11 5491

Table C.14: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - WiFi 1 test
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C.4.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 2581 ms 265 70406 100
Proxy with HTTP 2728 ms 270 73000 100
Proxy with HTTP & GZIP 2818 ms 369 136307 100
Proxy with AMQP 19236 ms 490 240174 10
Proxy with AMQP & GZIP 18925 ms 722 521008 10
Proxy with CoAP 3184 ms 1565 2447810 100
Proxy with CoAP & GZIP 3024 ms 946 894686 100

Table C.15: Mean response times of RESTful Car System - WiFi 1 test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 28 5146 22 6060
Proxy with HTTP 26 9564 24 15061
Proxy with HTTP & GZIP 30 9476 27 12925
Proxy with AMQP 192 31450 211 49663
Proxy with AMQP & GZIP 198 30730 208 42380
Proxy with CoAP 12 4754 12 8366
Proxy with CoAP & GZIP 12 3945 12 6035

Table C.16: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - WiFi 1 test

C.5 WiFI 2 Tests

• Ping measured to ~200 ms.

• Iperf3 measured data rate: 125/99.6 Kbits/sec.

C.5.1 NFFI Web Service

Test Mean STD Variance Test runs

Without proxy 13235 ms 9070 82266227 10
Proxy with HTTP 12042 ms 6908 47717943 10
Proxy with HTTP & GZIP 3938 ms 4793 22970668 20
Proxy with AMQP 31096 ms 20578 423443967 10
Proxy with AMQP & GZIP 15243 ms 9267 85874508 10
Proxy with CoAP 0 ms - - 1
Proxy with CoAP & GZIP 37073 ms 46459 2158462617 20

Table C.17: Mean response times of NFFI Web Service - WiFi 2 test
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Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 51 5198 54 64805
Proxy with HTTP 45 5736 52 67172
Proxy with HTTP & GZIP 15 3846 13 8548
Proxy with AMQP 101 12862 111 78455
Proxy with AMQP & GZIP 76 10653 71 16773
Proxy with CoAP 0 0 0 0
Proxy with CoAP & GZIP 14 1863 12 6061

Table C.18: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - WiFi 2 test

C.5.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 8132 ms 7853 61661813 20
Proxy with HTTP 7259 ms 1764 3111671 20
Proxy with HTTP & GZIP 8611 ms 2815 7924419 20
Proxy with AMQP 85609 ms 26355 694606921 10
Proxy with AMQP & GZIP 76636 ms 34666 1201698634 10
Proxy with CoAP 24183 ms 14067 197893185 10
Proxy with CoAP & GZIP 21096 ms 11300 127698638 10

Table C.19: Mean response times of RESTful Car System - WiFi 2 test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without proxy 32 6 136 39 11 065
Proxy with HTTP 37 12 434 30 16 596
Proxy with HTTP & GZIP 31 9 575 28 13 901
Proxy with AMQP 332 49 793 317 65 154
Proxy with AMQP & GZIP 231 34 501 243 54 626
Proxy with CoAP 18 6 895 15 10 640
Proxy with CoAP & GZIP 24 7 730 17 8 566

Table C.20: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - WiFi 2 test

C.6 Combat Net Radio Tests

• Ping measured to ~200 ms.

• Iperf3 measured data rate: 41/36 Kbits/sec.
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C.6.1 NFFI Web service

Test Mean STD Variance Test runs

Without proxy 44332 ms 773 597167 10
Proxy with HTTP 48434 ms 3255 10595445 10
Proxy with HTTP & GZIP 5696 ms 522 272157 10
Proxy with AMQP 0 ms - - 1
Proxy with AMQP & GZIP 13241 ms 1071 1147182 10
Proxy with CoAP 48302 ms 1046 1095139 10
Proxy with CoAP & GZIP 3803 ms 1218 1482324 10

Table C.21: Mean response times of NFFI Web Service - CNR test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 70 5831 71 64836
Proxy with HTTP 66 6670 67 71551
Proxy with HTTP & GZIP 14 2847 13 7104
Proxy with AMQP 0 0 0 0
Proxy with AMQP & GZIP 56 8697 62 15253
Proxy with CoAP 103 7718 103 57745
Proxy with CoAP & GZIP 11 1652 11 5741

Table C.22: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - CNR test

C.6.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 4055 ms 960 921629 20
Proxy with HTTP 11478 ms 2842 8077362 10
Proxy with HTTP & GZIP 9526 ms 2701 7292955 10
Proxy with AMQP 41255 ms 3171 10057224 10
Proxy with AMQP & GZIP 36540 ms 3281 10767443 10
Proxy with CoAP 5872 ms 2056 4226612 10
Proxy with CoAP & GZIP 3840 ms 1366 1865202 10

Table C.23: Mean response times of RESTful Car System - CNR test
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Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 25 4738 21 5638
Proxy with HTTP 28 9677 27 15213
Proxy with HTTP & GZIP 24 8473 24 12762
Proxy with AMQP 233 34279 240 54257
Proxy with AMQP & GZIP 220 32420 225 45833
Proxy with CoAP 14 5435 13 9065
Proxy with CoAP & GZIP 12 3919 12 6023

Table C.24: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - CNR test

C.7 EDGE Tests

• Ping measured to ~400 ms.

• Iperf3 measured data rate: 140/97 Kbits/sec.

C.7.1 NFFI Web service

Test Mean STD Variance Test runs

Without proxy 2437 ms 18 340 20
Proxy with HTTP 2587 ms 40 1583 20
Proxy with HTTP & GZIP 1381 ms 38 1477 20
Proxy with AMQP 9334 ms 65 4216 20
Proxy with AMQP & GZIP 8909 ms 158 24930 20
Proxy with CoAP 40855 ms 46 2151 20
Proxy with CoAP & GZIP 4630 ms 38 1481 20

Table C.25: Mean response times of NFFI Web Service - EDGE test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 50 4531 45 51475
Proxy with HTTP 45 5404 44 55489
Proxy with HTTP & GZIP 14 2847 13 7101
Proxy with AMQP 78 10630 95 64538
Proxy with AMQP & GZIP 59 8871 59 15050
Proxy with CoAP 101 7948 101 56965
Proxy with CoAP & GZIP 11 1660 11 5480

Table C.26: Wireshark analysis of NFFI Web Service - Packets & Bytes
Sent - EDGE test
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C.7.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 4884 ms 132 17328 20
Proxy with HTTP 5116 ms 139 19459 20
Proxy with HTTP & GZIP 5061 ms 138 18960 20
Proxy with AMQP 35393 ms 764 583712 20
Proxy with AMQP & GZIP 35192 ms 446 199015 20
Proxy with CoAP 5063 ms 59 3488 20
Proxy with CoAP & GZIP 5064 ms 60 3604 20

Table C.27: Mean response times of RESTful Car System - EDGE test

Client->Web service Web service->Client
Test P. sent B. sent P.sent B.sent

Without Proxy 27 4886 23 5570
Proxy with HTTP 28 9677 27 15213
Proxy with HTTP & GZIP 29 8798 27 12941
Proxy with AMQP 194 31292 201 47325
Proxy with AMQP & GZIP 201 31006 212 42611
Proxy with CoAP 12 4761 12 8375
Proxy with CoAP & GZIP 12 3943 12 6068

Table C.28: Wireshark analysis of RESTful Car System - Packets & Bytes
Sent - EDGE test

C.8 Tactical Broadband Tests

• Ping measured to ~23 ms.

• Iperf3 measured data rate: 99/82 Kbits/sec.

C.8.1 NFFI Web service

Test Mean STD Variance Test runs

Without proxy 1379 ms 230 52988 100
Proxy with HTTP 1313 ms 139 19430 100
Proxy with HTTP & GZIP 464 ms 77 5874 100
Proxy with AMQP 2838 ms 318 101162 100
Proxy with AMQP & GZIP 1841 ms 220 48240 100
Proxy with CoAP 2720 ms 120 14457 100
Proxy with CoAP & GZIP 463 ms 25 618 100

Table C.29: Mean response times of NFFI Web Service - Tactical
Broadband test
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C.8.2 RESTful Car System

Test Mean STD Variance Test runs

Without proxy 1061 ms X X 100
Proxy with HTTP 1522 ms X X 100
Proxy with HTTP & GZIP 1404 ms X X 100
Proxy with AMQP 7353 ms X X 100
Proxy with AMQP & GZIP 7241 ms X X 100
Proxy with CoAP 906 ms X X 100
Proxy with CoAP & GZIP 840 ms X X 100

Table C.30: Mean response times of RESTful Car System - Tactical
Broadband test
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Appendix D

Source Code

The source code of the different projects are available at the URL
provided in table D.1.

Project URL

Proxy https://github.com/Quist/dil-proxy

Camel CoAP Component https://github.com/Quist/camel-coap

Car System Service https://github.com/Quist/master-car-backend

Car System Client https://github.com/Quist/master-car-client

NFFI Service https://github.com/Quist/master-nffi-service

NFFI Client https://github.com/Quist/master-nffi-client

Table D.1: Source code repositories
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