
Dispersed Two-Phase Flow Simulation

and

Parameter Optimisation

by

Yapi Donatien Achou

Thesis
for the degree of

Master in Applied Mathematics

(Master i anvendt Matematikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

March 2016

Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo





Acknowledgments

This Master’s thesis was worked on during the course of an exciting year
at Simula Research Laboratory. I would like to thank the sta↵ and fellow
students for creating a productive and enjoyable working environment. I
would especially like to thank my two thesis supervisors Xing Cai and Knut
Morken for their guidance along the way. There were many questions and
technical issues, and I greatly appreciate the generosity which Xing Cai
showed me with regards to his availability and time.
The process of writing this thesis has been a journey which allowed me to
discover myself. I am grateful for the opportunity and the challenges that I
have encountered along the way.

Yapi Donatien Achou, Oslo, March 2016





Contents

1 Introduction 3

2 Introduction To Multiphase Flow 7
2.1 Introduction to two-phase flow . . . . . . . . . . . . . . . . . 7
2.2 Direct Numerical Simulation (DNS) . . . . . . . . . . . . . . 11
2.3 Average modelling approach . . . . . . . . . . . . . . . . . . . 12

3 Two Fluid Model 15
3.1 Single phase conservation equations . . . . . . . . . . . . . . . 15
3.2 Conservation equation for two fluid equation . . . . . . . . . 17
3.3 Drag force models . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Volume Of Fluid 27
4.1 Interface capturing method for two-phase flow . . . . . . . . . 27
4.2 Volume of fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Simulation and Parameter Optimisation Strategy 33
5.1 Richardson extrapolation and Grid Convergence Index . . . . 33
5.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Numerical parameters . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Simulation of a single rising bubble . . . . . . . . . . . . . . . 45
5.5 Simulation of fully dispersed two-phase flow . . . . . . . . . . 68
5.6 Parameters optimisation strategy . . . . . . . . . . . . . . . . 78
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion 87

1





Chapter 1

Introduction

Modeling of multiphase flow is of great importance in industry. The mixed
flow of oil, gas and water in a system of pipes has to be well-understood to
avoid rupture of the pipes due to pressure fluctuation. The proportion of
steam in a two-phase flow of steam and water in a geothermal well determines
the amount of electrical energy that can be generated. Multiphase flow is
also ubiquitous among the various features of our environment, whether one
considers sediment transport, pollutant transport in air or in a river. In ad-
dition, critical medical and biological flow such as blood flow is multiphase
flow.

The ability to predict the behaviour of multiphase flow requires a good
understanding of the physical processes involved. There are two di↵erent
ways of predicting the behaviour of multiphase flow: through experimental
analysis or mathematical models. A mathematical model of multiphase flow
is expressed as a set of di↵erential equations. One such model is the two-
fluid model derived by conditionally averaging the single-phase flow equa-
tion. The averaging process introduces extra terms that account for the
complexity of the flow and the loss of information induced by this process.
For example, the Reynolds stress is an extra term introduced for each phase
during the averaging process, and it accounts for turbulence shear stress in
the fluids. Besides averaging a model equation for a two-phase flow, there
are other methods that directly solve the di↵erential equation(s) without
extra assumptions or extra terms. These methods are the so-called interface
capturing methods or free surface methods. In this approach the interface
between the two phases is part of the solution process. The shape and po-
sition of the interface are tracked, and topological changes such as merging,
breaking etc. are captured during the solution process.

The solution process of a mathematical equation representing a multiphase
flow process is an algorithmic procedure. First the flow domain is discre-
tised, meaning decomposed into discrete points, areas or volumes for one,

3



two or three-dimensional problem respectively. The discretisation of the
flow domain is followed by the discretisation of the continuous di↵erential
equations into a discrete set of algebraic equations. This process is achieved
by approximating the derivatives of the continuous equations through nu-
merical methods such as finite volume, finite element, or finite di↵erence
methods. Once the form of the discretised equation is known, one can ei-
ther use direct or iterative methods to derive the solutions of the di↵erential
equations.
Various numerical parameters are needed to control the accuracy and stabil-
ity of the discretised equation solutions. One such parameter is the under-
relaxation factor, which is used to improve the solution of pressure, velocity
and other fields. Other parameters include the mesh size, the time step,
the Courant number, etc. It is important to note that there is a trade-o↵
between accuracy and the time it takes to compute the solution(s). For ex-
ample, by refining the mesh for accuracy, the size of the algebraic equations
increases and the computational cost increases: this is a trade-o↵ that must
be done.

In computational fluid dynamics (CFD), the finite volume method is widely
used as discretisation tool. One of its advantages is that it preserves the
conservation of flow quantities, which is a cornerstone of fluid mechanics.
One CFD tool that uses the finite volume method is OpenFoam, which is
open-source and widely used both in research and industry. In recent years
OpenFoam has become more popular than ever. Its capability can be for
example compared to its commercial counterpart ANSYS Fluent. It has an
extensive range of features to solve complex fluid flow involving multiphase
flow, chemical reaction, turbulence, heat transfer, solid mechanics, electro-
magnetism [20], to only cite a few. Popular Computational Fluid Mechan-
ics algorithms such as SIMPLE and PISO are implemented in OpenFoam.
These algorithms are equipped with numerous parameters in order to con-
trol the accuracy of the solution. The solver also provides utilities to control
and analyse the solution process. Residual information can be accessed from
a log file generated from the solver.
The questions a modeler must ask are: can we solely rely on the residuals
provided by the solver to judge the accuracy of the solution? How can one
choose the numerical parameters involved in the PISO and SIMPLE algo-
rithm to e↵ectively harness their power? The answers to these questions are
not trivial. An understanding of the implemented algorithm in terms of its
strengths and weaknesses is required and assessing numerical errors with a
reliable method is necessary.

To that e↵ect, the objective of this thesis is to use OpenFoam to model
a dispersed two-phase flow. The two-fluid model for fully dispersed turbu-
lence flow and the volume of fluid method applied to a single rising bubble

4



in liquid water will be applied to:

• Identify the numerical parameters a↵ecting the solution of a two-phase
flow process. Both laminar and turbulent flow are considered.

• Once the parameters are identified, explore how they a↵ect the solution
in terms of accuracy and CPU time. The accuracy of the solutions is
assessed by using a variant of the Richardson extrapolation method:
the Grid Convergence Index (GCI) method.

• Derive an optimisation strategy to e↵ectively choose the numerical
parameters based on accuracy and CPU time.

• Test the result for two di↵erent applications: a laminar model for rising
of a single air bubble in liquid water and turbulence model of a fully
dispersed two-phase flow.

The rest of this thesis is divided as follows: chapter Two gives an introduc-
tion to multiphase flow in general and two-phase flow in particular. Direct
numerical simulation and the two-fluid method are briefly presented. In
chapter Three a detailed exposition of the two-fluid equation is given. The
latter is used in chapter Five to model a fully dispersed two-phase flow.
Chapter Four gives an exposition of the volume of fluid method, which is
used in chapter Five to model the rising of a single air bubble in liquid water.
Chapter Five is devoted to the parameter optimisation strategy.

5



6



Chapter 2

Introduction To Multiphase Flow

A multiphase flow can be defined as a flow in which more than one phase
occurs. A phase is a state of matter and can be solid, gas or liquid. From
sediment displacement in a river, pollutant particles flowing in air, flow of
oil and gas in a pipeline, to combustion reaction in an engine, multiphase
flow is all around us. When two phases are involved we refer to the flow as
two-phase flow. In multiphase flow in general and two-phase flow in particu-
lar there is a strong influence or interaction between the phases separated by
an interface. The interface, defined as the boundary separating the phases,
captures the physics of the flow. For example, in liquid-gas flow where a
single bubble of air is rising in liquid water, the interface undergoes large
deformations. The mathematical modelling approach must therefore con-
sider the interaction and influence of each phase and take the deformation
of the interface into account. In this chapter we present basic concepts in-
volved in two-phase flow and present two modelling approaches.

This chapter is organized as follows: we start by defining basic concepts
of two-phase flow in section One. Section Two and Three deal with mod-
elling approaches: in section Two we present the direct numerical simulation
approach and in section Three the average modelling approach.

2.1 Introduction to two-phase flow

The most common two-phase flows involve liquid-liquid, liquid-gas, solid-
liquid, solid-gas and solid-solid. In a two-phase flow involving solid-liquid/
solid-gas, the solid phase is in the form of particles, such as dust particles
in air. The particles are commonly called the dispersed phase while the
liquid/air is called the continuous phase. Although not treated in this thesis,
pipe flow is fundamental in understanding multiphase flow. In fact, pipe
flow can be used to define some basic concepts that can be generalised to all
multiphase flow processes. To this end we introduce some two-phase flow
terminology taken from multiphase pipe flow.

7



Given a pipe with cross-sectional area A and a flow rate Q we define the
superficial velocity of phase k as the velocity of that phase as if it was the
only phase present in the pipe:

U
kS

=
Q

k

A
(2.1)

where U
sk

is the superficial velocity of phase k and Q
k

is the mass flow rate
of phase k. The bulk velocity U

k

of phase k is the actual velocity of that
phase in the pipe:

U
k

=
Q

k

A
k

(2.2)

where A
k

is the cross-sectional area of phase k. The mixture velocity is the
sum of the superficial velocity of the two phases. Assuming a simultaneous
flow of gas and liquid, k = L,G and the mixture velocity would be:

U
mix

= U
LS

+ U
GS

. (2.3)

The slip ratio is the ratio of the bulk velocity of the phases U
G

, U
L

:

S =
U
G

U
L

(2.4)

and the slip velocity is the di↵erence velocity of the phases:

U
S

= |U
G

� U
L

|. (2.5)

Figure 2.1: Vertical pipe flow of gas and liquid

The void fraction or phase fraction ↵
k

for phase k is one of the most im-
portant parameters used to characterize two-phase flows. The void fraction
is defined as the proportion of phase k in the two-phase flow:

↵
k

=
A

k

A
(2.6)

The void fraction is sometimes interpreted as a probabilistic quantity: the
probability of finding phase k in a given region of space at a given time.
Numerous important parameters such as the two-phase mixture density,

8



the relative average velocity of the phases, and the two-phase viscosity are
defined based on the void fraction.
The changes in topology of the flow structure caused by the variation of
the phase velocities are inherent to two-phase flow. This topology changes
are called flow regimes. The main flow regimes for horizontal pipe flow are:
stratified, dispersed bubble, annular (wavy), slug and elongated bubble. For
vertical flow we have the same flow regime exempt that there is no stratified
flow regime; instead we have an additional churn flow regime. The di↵erent
flow regimes for pipe flow are illustrated in Figures 2.2 and 2.3.

Figure 2.2: Vertical pipe flow regime

9



Figure 2.3: horizontal pipe flow regime

The flow regimes encountered in two-phase pipe flow can also be observed
in nature. For example, dispersed two-phase flow can be seen in pollutant
transport in rivers. In this case the solid pollutant particles represent the
dispersed phase, while liquid water represents the continuous phase. The
same is true for pollutant transport in the atmosphere, where air represents
the continuous phase.

Another important type of two-phase flow is the so-called free surface flow,
which can be seen as a separate flow regime, illustrated in Figure 2.4.
A free surface is the surface of a fluid that is subject to both zero perpen-

Figure 2.4: Example of free surface

dicular normal stress and parallel shear stress [33]. Surface waves on the
ocean generated by the interaction between the ocean and air currents, or a
water droplet falling in air are examples of free surface flows. Surface waves

10



on the ocean can be seen as an example of stratified wavy flow. In such
flows the interface or boundary between the flows plays an important role
in the physics of the flow. The interface, also called free surface boundary,
is a part of the solution process. The topology and the position of the free
surface boundary must be known during the flow process. Depending on the
types of two-phase flow we can apply di↵erent modelling approaches. In the
next section we cover di↵erent types of modelling methods for the two-phase
flow phenomenon.

2.2 Direct Numerical Simulation (DNS)

For reference of this section see [4]. Explicit references will be used otherwise.
In the Direct Numerical Simulation approach the Navier-Stokes equations
are solved and the topology of the interface between the flows is treated
as part of the solution. In practical simulations, the mesh size must be
fine enough to resolve a large temporal and spatial scale associated to the
interface such as turbulence length, time scale, or the size of each phase
involved in the two-phase flow. This implies huge amounts of computational
power for large Reynolds numbers, which is the prevalent case for turbulence
e↵ects. In DNS, the position of the interface must be tracked. The di↵erent
techniques used to this aim are collected under the umbrella name interface
capturing methodology or free surface solution procedure. Figures 5.10 and
2.6 show the simulation of a breaking column of water using an interface
capturing methodology implemented in the InterFoam solver in OpenFoam.

Figure 2.5: Interface capturing method implemented in InterFoam solver in Open-
Foam. Simulation of a column of water breaking at t = 0, 0.1s

The DNS approach is mainly used in the research community and deals
in general with laminar flow. Since the Navier-Stokes equations are solved
directly without additional modelling assumptions, DNS allows a deep un-
derstanding and insight to physical phenomena such as breaking, merging of
air bubbles or water droplets, surface tension e↵ects in the flow, deformation
of fluid particles in shear flow etc. It is therefore a great research tool to
understand and validate the existing models or develop new models.

11



Figure 2.6: Interface capturing method implemented in InterFoam solver in Open-
Foam. Simulation of a column of water breaking at t = 0.25, 0.8s

In engineering applications however, most practical two-phase flows are tur-
bulence flows. In these flows, the DNS is not widely used due to the large
computational power necessary to resolve the wide range of scales.
Turbulence flows are dominated by eddies with macro scales and micro
scales. The macro scales are associated to the boundary of the flow. For
example, in practical industrial flows the length scale can be of the order
of kilometres. The micro scale is called the Kolmogorov scale and it is uni-
versal: it only depends on the kinematic viscosity ⌫ and the average rate of
dissipation of turbulence kinetic energy ". These scales (time, length and ve-
locity) are very small and the kinetic turbulence energy dissipates into heat
at these scales. The resolution of the small scales associated to turbulence
e↵ects involves finer resolutions, which in turn requires huge computational
power. For practical engineering problems, this is expensive. In such a case
an alternative approach is to model the two-phase flow by computing average
properties of the flow such as pressure, velocity, phase fraction, turbulence
kinetic energy, rate of dissipation etc. This modelling approach is based on
the fact that turbulence fluctuation and the two-phase flow e↵ect a↵ect the
mean flow properties.

2.3 Average modelling approach

In the averaging approach, the microscopic conservation equations (mass,
momentum and energy) are averaged by using di↵erent averaging proce-
dures. Three averaging procedures can be distinguished: time, volume and
ensemble averaging, defined respectively by

� =
1

T

Z

T

�dt (2.7)

� =
1

V

Z

V

�dV (2.8)

� =
1

N

X
�
r

(2.9)

12



where � is a given scalar or vector quantity. V, T are the volume and time
domains respectively and N is the number of realization in the domain.

The computational power needed in the DNS approach can be reduced
greatly. However this comes with a price: the averaging process induces a
loss of information. This lost information must therefore be recovered by
introducing additional terms in the averaged conservation equations. These
additional terms are expressed in terms of known mean properties or quanti-
ties involved in the flow. For example, averaging the Navier-Stokes equations
produces the Reynolds stress which appears in the turbulence model.

There are two main approaches when it comes to modelling two-phase flow
with averaging techniques: the Dispersed Phase Element (DPE) approach
(Euler-Lagrange) and the two-fluid approach (Euler-Euler).

Figure 2.7: a) DPE approach and b) two-fluid approach

In the DPE approach one phase is dispersed into the other. For exam-
ple, in gas-liquid two-phase flow where gas bubbles are mixed with liquid
water, the continuous phase is the water, while the dispersed phase is rep-
resented by the gas bubble particles (the Dispersed Phase Element). In this
formulation, each dispersed phase element is tracked through the conser-
vation equation (momentum equation) expressed in a Lagrangian frame of
reference, where each dispersed phase element requires its own conservation
equation.
On the other hand, the conservation equations for the continuous phase are
expressed in an Eulerian frame where the fluid properties are given as a
function of space and time in an absolute inertia frame. This can seen in
Figure 2.7a.
Since each DPE requires it own conservation equations, these give an accu-
rate description of all the properties of the DPEs as an ensemble. However, a
high phase fraction of the DPEs increases the computational power. There-
fore the DPE approach is well suited for low phase fractions of DPEs where

13



an accurate description of the DPEs properties is required.

In the two-fluid model both phases are described in an Eulerian frame of
reference where each phase is treated as a continuum. Each phase possesses
its own conservation equation. The amount of each phase in space and time
is represented by the phase fraction, which expresses the probability that a
certain phase can be found at a given position in time. Since each phase
is treated as a continuum, the transfer of momentum between the phases
is accounted for by an extra term called the interphase momentum trans-
fer term, which represents the forces that each phase exerts on the other.
These forces are the drag force, lift and virtual mass. The averaging process
of the momentum equation introduces Reynolds stress, which is resolved by
introducing a turbulence model.

14



Chapter 3

Two Fluid Model

3.1 Single phase conservation equations

Let V be a connected volume of a collection of fluid particles called material
volume. Such material volume has constant mass. This property is impor-
tant in deriving the conservation equation of mass. Let ✓ be some intensive
property of the fluid. A property is called intensive if it can be defined at a
point within the material volume V . Pressure, temperature and density are
examples of intensive properties of the fluid. In general, ✓ is a function of
the temporal and spatial dimensions:

✓ = ✓(X, t),

and the surface S of the material volume V changes with time.
One interesting question is how the intensive property ✓ changes in time. To
answer this question we must take the time derivative of the total amount
of the intensive property ✓. This time derivative must include the changes
related to ✓ and the surface S wrapping ✓. This is formally stated by the
Reynolds transport theorem:

d

dt

Z

V

✓dV =

Z

V

✓
@✓

@t
+r · (✓v)

◆
dV (3.1)

The temporal change of ✓ is represented by @✓

@t

while r · (✓v) represents the
flux of ✓ through the surface bounding the material volume. Setting ✓ = ⇢ in
(3.1) and using the assumption that the mass of the material volume

R
V

✓dV
is constant in time, the left hand side of (3.1) vanishes and we get:

Z

V

✓
@⇢

@t
+r · (⇢v)

◆
dV = 0,

and for arbitrary V we obtain:

@⇢

@t
+r · (⇢v) = 0, (3.2)

15



which is the mass conservation equation. Here v is the velocity of the fluid.
We can use the same procedure to derive a generic transport equation for
mass, momentum and for the energy equation. This time let  be an exten-
sive property. A property of the fluid is called extensive if it is proportional
to the extension of the fluid. Examples of extensive properties are mass,
volume and kinetic energy.
Taking the time derivative of the intensive property and applying Reynolds
conservation equation we obtain:

d

dt

Z

V

⇢ dV =

Z

V

✓
@⇢ 

@t
+r · (⇢ v)

◆
dV. (3.3)

The time rate of change of the total amount of the extensive property  is
also equal to the sum of all forces acting of the volume V :

d

dt

Z

V

⇢ dV =

Z

S

J · ndS +

Z

V

⇢�dV. (3.4)

Using (3.3) and (3.4) and rearranging the terms we obtain:

Z

V

@⇢ 

@t
dV +

Z

V

r · (⇢ v)dV �
Z

S

J · ndS �
Z

V

⇢�dV. (3.5)

The surface integral in (3.5) can be transformed to a volume integral by
using the divergence theorem:

Z

S

J · ndS =

Z

V

r · JdV

to obtain:

Z

V

✓
@⇢ 

@t
+r · (⇢ v)�r · J� ⇢�

◆
dV = 0,

and for arbitrary V we get the genetic conservation equation:

@⇢ 

@t
+r · (⇢ v)�r · J� ⇢� = 0. (3.6)

Conserved
quantity

 J �

Mass 1 0 0
Momentum v T �g
Energy e T · v� q g · v+ r

Table 3.1: Values of parameters in generic conservation equation (3.6)

16



Table 3.1 gives the di↵erent values of  , J, and � for the conservation
of mass momentum and energy. T is the stress tensor, g the gravity force,
v the velocity of the fluid, q the heat flux and r the distributed heat source
per unit mass.

3.2 Conservation equation for two fluid equation

In most applications of two-phase turbulence flows, the average form of
the conservation equations is solved. These average conservation equations
describe the mean properties of the flow, such as pressure, velocity etc. They
are derived by multiplying the generic conservation equation for single phase
flow given by (3.6) by a phase function defined by:

X
'

(x, t) =

⇢
1 for x in phase '
0 otherwise,

(3.7)

before applying standard averaging techniques [4]. For incompressible fluids,
a conditional averaging process is applied to derive the momentum and
continuity equation for each phase ' [4]:

@↵
'

U
'

@t
+r · (↵

'

U
'

U
'

) +r · (↵Reff

'

) =
↵
'

⇢
'

rp+ ↵
'

g+
M

'

⇢
'

(3.8)

@↵
'

@t
+r · (U

'

↵
'

) = 0. (3.9)

↵
'

phase fraction of phase '
' liquid or gas
U

'

average velocity of phase '

R
eff

'

Reynolds stress plus viscous stress for phase '
p average pressure of the flow

M
'

averaged interphase momentum transfer term for phase '
⇢
'

density of phase '
g gravity force

Table 3.2: Description of parameters in equation (3.8) and (3.9)

Table 3.2 describes the di↵erent terms in the conservation equation of
mass and momentum, i.e. equation (3.8) and (3.9).
The averaged interphase momentum transfer termM

'

represents mass trans-
fer between the phases. In the case of dispersed flow, M

'

is derived by
summing up all the forces acting on a dispersed phase element [4]:

17



M
a

V

↵
a

= F
d

+ F
l

+ F
vm

,

where V is the volume of the dispersed phase element (DPE), F
d

is the drag
force, F

l

is the lift, F
vm

is the virtual mass. The subscript a designates the
dispersed phase, while b stands for the continuous phase. For most practical
computations the di↵erent forces are given by [4]:

F
d

=
1

2
⇢
b

AC
d

|U
b

�U
a

|(U
b

�U
a

) (3.10)

F
d

= ⇢
b

C
l

V (U
b

�U
a

)⇥ (r⇥U
b

) (3.11)

F
d

= ⇢
b

C
vm

V

✓
@U

b

@t
+U

b

·rU
b

� @U
a

@t
�U

a

·rU
a

◆
(3.12)

where C
d

, C
l

and C
vm

are the dead, lift and virtual mass coe�cient respec-
tively.

Alternatively, the momentum exchange term M
'

can be decomposed in
terms of the drag, lift and virtual momentum exchange contributions:

M
'

= M
',drag

+M
',lift

+M
',vm

(3.13)

where these are defined in terms of the dispersed phase a as

M
',drag

=
3

4
↵
b

✓
↵
b

C
D,a

⇢
b

d
a

+ ↵
a

C
D,b

⇢
a

d
b

◆
|U

b

�U
a

|U
b

(3.14)

M
',lift

= ↵
a

↵
b

(↵
b

C
a,lift

⇢
b

+ ↵
a

C
a,lift

⇢
a

)(U
b

�U
a

)⇥ (r⇥U
b

) (3.15)

M
',vm

= ↵
a

↵
b

(↵
b

C
a,vm

⇢
b

+↵
a

C
a,vm

⇢
a

)

✓
@U

b

@t
+U

b

·rU
b

� @U
a

@t
�U

a

·rU
a

◆

(3.16)

The term R
eff

'

representing the Reynolds stress is given by [4]:

R
eff

'

= �⌫eff
'

(rU
'

+rU
T

'

� 2

3
Ir ·U

'

) +
2

3
Ik

'

(3.17)

In discretising the momentum and the continuity equation in the next
section, the Reynolds stress will be explained in detail.

18



3.3 Drag force models

A particle moving through air experiences a resisting or drag force which is
proportional to the square of its velocity or its velocity, depending on the
value of the Reynolds number. This phenomenon was studied experimentally
by Newton and Coulomb. Coulomb established experimentally that the drag
force of a particle in a moving fluid depends partly on the velocity and on
the square of the velocity [7]. By measuring the terminal velocity of a
falling particle with respect to di↵erent particle radius in free-fall, Newton
observed that the drag force was proportional to the square of the terminal
velocity [6]. The theoretical study of a particle moving in a fluid started with
the analytical work of Stokes [4]. Stokes studied the flow around a spherical
particle where inertial forces are small compared to viscous forces. This flow
is called Stokes flow or creeping flow. This is typical for flows with small
velocity. By neglecting the convection part of the Navier-Stokes equations,
Stokes derived the drag force around an ”ascending or descending” spherical
particle in a fluid as [7]

�F = 6⇡µ⇢aV

Where µ, ⇢, a are the fluid viscosity, density and radius respectively. V is
the terminal velocity defined by Stokes as

V =
2g

9µ

✓
�

⇢
� 1

◆
a2

where g is the acceleration of gravity constant and � is the surface tension.
We recall that the terminal velocity is the maximum velocity attained by
an object as it moves through a fluid. From the work of Newton, Coulomb
and Stokes, we see that the drag force varies with the characteristic length
(radius) of the particle immersed in the moving fluid and the properties of
the fluid.

For a two-phase flow, the drag force also depends on other factors, such as
the fluid properties characterised by Eötvös number "0 and Mortons number
M0, and the density and viscosity ratios between the continuous phase and
the dispersed phase (the bubble) [4]:

"0 =
g
eff

|�⇢|d2

�

M0 =
g
eff

µ4
c

|�⇢|
⇢2
c

�3

% =
⇢
d

⇢
c

19



 =
µ
d

µ
c

where
�⇢ = ⇢

d

� ⇢
c

g
eff

= g � @U
c

@t
+ U

c

·r.

The subscripts c and d stand for continuous and dispersed phase. When a
fluid particle (bubble) is set in motion in a fluid (water), the bubble is subject
to di↵erent kinds of motion: a primary upward motion due to buoyancy
forces acting on the bubble, circulation inside the fluid due to momentum
transfer from the continuous phase to the bubble and a deformation of the
bubble shape depending on the Eötvös number "0, see figure 3.1.

Figure 3.1: A↵ect of Eötvös number and Reynolds number on bubble shape

20



For a very low Morton and Eötvös number (around 3), a bubble in a
fluid with low viscosity encounters an unstable or ”wobbling” motion and
the bubble shape is significantly deformed [4], see figure 3.1. This can be
explained as follows: a rising bubble in a fluid must do work on the continu-
ous phase. The work done is equal to the rising velocity times the buoyancy
force. From the conservation of energy or work-energy principle, the net
work is equal to the change in kinetic energy. When viscous forces are dom-
inant the energy is completely damped or dissipated through laminar viscous
dissipation [4]. This means that the kinetic energy is converted into internal
energy (meaning that the fluid is heated). When the viscosity of the fluid
is low, inertia forces dominate and some of the energy is dissipated through
vortex shedding. The fluid passing the bubble creates an oscillatory flow
inducing a low pressure zone around the downstream side of the bubble,
which then moves toward the low pressure zone, creating the ”wobbling”
secondary motion.

3.4 Lift

A particle moving in a fluid can be subject to a force perpendicular to the
direction of the flow. This force is called lift. It was observed by Poiseuille
while studying the movement of blood in capillaries [15]. His observation was
validated by Segre’ and Silberberg in an experiment using a flow apparatus
consisting of a vertical tube, an optical scanning device and an electronics
counting device [12, 13]. For spherical bubbles the lift coe�cient C

L

is
positive, and the lift force acts in direction of decreasing liquid velocity [9].
It was established experimentally and numerically that the lift force changes
direction if the bubble is deformed considerably [9, 10, 11]. By using a single
bubble rising in a shear flow of glycerol water the lift coe�cient was derived
[9, 10] as

C
L

=

8
><

>:

min(0.288 tanh(0.121R
e

), f(E0?)) if E0? < 4

f(E0?) if 4 < E0? < 10

�0.27 if E0? > 10

and is valid for

�5.5  log10(M0)  �2.8 , 1.39  E0  5.74 0  R
e

 10

Where M0 is the Morton number, R
e

is the Reynolds number of the bubble
and

f(E0?) = 0.00105E03? � 0.0159E0? + 0.474.

The modified Eötvös number is given by

E0? =
g(⇢

L

� ⇢
G

)d2?
�

21



with d? being the maximum horizontal extension of the bubble given by
[Wellek-1996]

d? = d
B

�
1 + 0.163E00.757

� 3
2

where d
B

is the diameter of the bubble. With the present parameters the
lift changes direction when the bubble size is 5.8 mm [9].

The causes of lift force on particles are diverse. In a shear flow, that is
a flow where adjacent layers of fluid move at di↵erent speed, inertia and
walls e↵ect are the cause of lift force [14]. Sa↵man derived theoretically the
lift force in this case as

F =
81.2µV a2k

1
2

⌫
1
2

,

assuming that the particle is spherical and moves through a very viscous
fluid with velocity V relative to a uniform simple shear. µ and ⌫ are the
viscosity and the kinematic viscosity, respectively. For a very weak shear
flow it was shown that a cylindrical object can experience a lift force about
16 time larger than the lift force experienced in a large shear flow [5]. This
result proves that lift forces are not only induced by shear forces.

3.5 Turbulence model

The turbulence model is given by the k � " turbulence model [1, 4] for the
continuous phase b. Turbulence on the dispersed phase is accounted for by
scaling the dispersed phase turbulence viscosity:

@k
b

@t
+ (U

b

·r)k
b

�r ·
 
⌫eff
b

�
k

rk
b

!
= P

b

� "
b

+ S
k

(3.18)

@"
b

@t
+ (U

b

·r)"
b

�r ·
 
⌫eff
b

�
"

r"
b

!
=

"
b

k
b

(C1P
b

� C2"
b

) + S
"

(3.19)

k is the turbulence kinetic energy per unit mass and " is the amount of
energy dissipated per unit time. Here b denotes the continuous phase. The
production of kinetic energy P

b

is given by

P
b

= 2⌫eff
b

(rU
b

· dev(rU
b

+ (rU
b

)T )).

The e↵ective viscosity of the continuous phase ⌫eff
b

is given by

⌫eff
b

= ⌫
b

+ ⌫t = ⌫
b

+ C
µ

k2
b

"
b

22



The source term S
k

and S
"

are given respectively by [4]

S
k

=
2k

b

↵
a

A
d

(C
i

� 1)

⇢
b

+
A

d

⌫tr↵
a

⇢
b

�
a

↵
b

·U
r

S
"

=
2C3"

b

↵
a

A
d

(C
i

� 1)

⇢
b

The coe�cient C
i

= C
t

where C
t

is the turbulence response coe�cient given
by

C
t

=
U0

a

U0
b

where U0
b

and U0
b

are the r.m.s of fluctuation in velocity of the continuous
and dispersed phase, respectively. The rest of the coe�cients are given in
table 3.3 below.

C
µ

C1 C2 C3 �
k

�
"

�
↵

0.09 1.44 1.92 1.0 1.0 1.3 1.0

Table 3.3: Coe�cient in the k � " model

Turbulence is an important aspect of most fluid flow. However, there
is no exact definition of turbulence. At first glance, turbulence flow can
be characterised by the Reynolds number: the Reynolds number measures
the magnitude of inertia forces and viscous forces. When viscous forces are
predominant such that the Reynolds number is below a critical value Re

c

,
the flow is smooth. Adjacent layers of the fluid slide pass each other in an
ordering fashion with no disruption between the layers. The fluid particles
travel along well ordered stream lines. If the boundary condition does not
change with time, the flow is steady [1]. This flow regime is called lami-
nar flow. However, when the Reynolds Number is above the critical value
Re

c

, inertia forces are predominant and the flow properties are characterised
by random and chaotic behaviour. For this reason, the velocity is decom-
posed into fluctuating (u0) and mean part (U) according to the Reynolds
decomposition:

u(t) = U + u(t)0

This has led to define turbulence flow in terms of characteristics such as
randomness and chaotic, hight di↵usivity, large Reynolds number, highly
dissipative, three-dimensional and unsteady, etc.

Despite being chaotic and random, turbulence flows are governed by Navier-
Stokes equations and comprise a spectrum of di↵erent whirls called turbu-
lence eddies. The eddies define the macro structure of turbulence flow.
Corresponding to each eddy is a length, time and velocity scale. Kinetic

23



energy is transferred from one scale to the other through a process called
energy cascade, illustrated in figure 3.2.

Figure 3.2: Energy cascade process

In figure 3.2 part 1 represents the larger scales. These scales are of the
order of the flow geometry and extract kinetic energy from the mean flow. At
these scales the Reynolds number is large. This implies that viscous e↵ects
are negligible and due to hight inertia forces, rapid mixing or turbulence
di↵usion occurs at these scales. After a time scale comparable to the time
scale of the mean flow, the larger eddies breaks up to smaller eddies and
transfer most of their kinetic energy to the intermediate scales called inertial
scales represented by 2 in figure 3.2. The same process will continue and
the inertial scales will transfer their kinetic energy to the smaller scales or
micro scales 3. At the smallest scales called the Kolmogorov scales, viscous
forces are large and the kinetic energy is dissipated into thermal energy at
the rate ". This will end the cascade process. Let L, T and V be the
length, time and velocity scale of the Kolmogorov scale. These scales are
dominated by viscous force and dissipation taking place. Therefore these
scales can be expressed in terms of viscosity ⌫ and rate of dissipation ".
Using dimensionless analysis we can write:

V = ⌫a"b

hm
s

i
=


m2

s

� 
m2

s3

�

from which we get two equations: one for m and one for s:

1 = 2a+ 2b

�1 = �a� 3b

24



when solved gives a = b = 1
4 . Applying the same principle we get

V = (⌫")
1
4

L =

✓
⌫3

"

◆ 1
4

T =
⇣⌫
"

⌘ 1
2

The Reynolds number of the Kolmogorov scales is then

R
e

=
LV
⌫

=

⇣
⌫

3

"

⌘ 1
4
(⌫")

1
4

⌫
= 1.

This implies that at the micro scales, viscous forces completely dominate.

25



26



Chapter 4

Volume Of Fluid Method

In the perspective of fluid mechanics, an interfacial flow or free surface
boundary flow can be defined as a flow in which two or more fluids share a
surface forming a common boundary between the adjacent fluid regions. In-
terfacial flow is commonly encountered in multiphase flow, such as droplets
of oil in liquid water or droplets of water in steam. In industrial processes,
during a casting operation, the interface between the covering slag and the
liquid steel in the casting mould can strongly a↵ect the quality of the fi-
nal product [16]. In biology interfacial flow processing is used to produce a
collagen substrate on which culture cells can align [38]. In interfacial flow,
surface tension plays an import role. For example, when an air bubble rises
in liquid water, the surface tension force strongly a↵ects the shape of the
bubble and can cause breaking of the bubble. The larger the surface tension
force the less the bubble deforms.

The numerical treatment of interfacial flow must take into account the
changing interface between the fluid regions. It must be able to compute
and track the interface but also cope with the topological changes such as
breaking and merging. Among many numerical methods for treating inter-
facial flow, the most prominent are marker and cell, the level set method
and the volume of fluid method [16]. This chapter is organised as follows: in
section 4.1 an overview of the main numerical methods for interfacial flow
is discussed. In section 4.2 the volume of fluid method is covered.

4.1 Interface capturing method for two-phase flow

In the numerical computation of interfacial flow, the numerical method must
be able to sharply define and track the interface to allow accurate boundary
conditions. There are two main numerical frameworks for interfacial flow:
direct method or surface method and indirect method or volume method. In
surface methods, the focus is placed on the interface, while volume methods
focus on the entire flow domain. An example of surface method is the level

27



set method. This class of methods was developed by Osher and Sethian [42].

Level set method
The level set method defines the interface � between fluid 1 and fluid 2 by

�(X, t) = {X;�(X, t) = 0} (4.1)

where � is a smooth function (at least Lipschitz continuous), which can be
viewed as an indicator function. � is said to be the zero level set of �. The
function � indicates the position of the interface because

8
><

>:

� > 0 in fluid 1

� < 0 in fluid 2

� = 1 at the interface

The indicator function � measures the distance away from the interface and
represents the solution of the convection equation

@�

@t
= v|r�| (4.2)

where v is the normal velocity component at the interface defined by

v = v · r�
|r�| (4.3)

where v = (v, u), u being the normal velocity on the interface and u being
the tangential velocity component. The interface is captured for all later
time values t by locating the set �(t) for which �(X, t) = 0 [39]. This allows
topological changes such as breaking and merging to be well-defined [39]. It
can be noted that equation (4.2) is non-conservative, and therefore � is a
non-conservative quantity [40]. This implies that the level set will have a
tendency to induce numerical di↵usion.

Marker and cell method
The method was initially developed for time dependent motion of a viscous,
incompressible fluid in an Eulerian staggered grid system, and it used the
finite element method as discretisation tool [43, 40]. After discretising the
computational domain into cells, the cells are marked with Lagrangian vir-
tual particles [40]. The initial coordinates of each particle are stored and
their subsequent coordinates are computed according to the latest velocity
field by linear interpolation between the cells [43, 40]. A cell with no marker
particle contains no fluid. A cell with marker, adjacent to an empty cell is
considered to be on the interface, and all other cells are considered to be
filled with fluid [43].

28



4.2 Volume of fluid

The volume of fluid method can be seen as a variant of the marker and cell
method. Rather than marking the computational domain, a volume fraction
� defined by

8
><

>:

� = 1 in fluid 1

� = 0 in fluid 2

0 < � < 1 at the interface

is used to track the interface. If �1 is the volume fraction of fluid 1 and u, v
are the x and y velocity components in a cartesian coordinate system then
the phase fraction of fluid 2 is given by

�1 = 1� �2

and �1 can be computed by solving the partial di↵erential equation [18]

@�1
@t

+ u
@�1
@x

+ v
@�1
@y

= 0. (4.4)

As opposed to the marker and cell method, the VOF method is less com-
putationally expensive since there is no need to store information about
each cell in the computational domain. The information about the interface
between the fluids is retrieved by solving equation (4.4). In a Lagrangian
coordinate system or mesh, the solution of equation (4.4) remains constant
in each mesh cell. Thus � serves as a flag to identify cells that are filled
with fluid or empty [18]. In a Lagrangian-Eulerian mesh the solution �1 of
(4.4) is a step function: 1 in fluid 1, 0 in fluid 2 and between 0 and 1 at the
interface. In numerical computations it is common to identify the interface
with �1 = 0.5 [20]. A correct computation of �1 will ensure the sharpness of
the interface while an incorrect computation will lead to a smearing of the
interface.

Standard finite element approximation of (4.4) will lead to a smearing of
the quantity �1 [18]. This is due to the fact that standard finite element
approximations are not conservative and equation (4.4) is written in a non-
conservative form. However, since �1 is a step function, a flux approximation
will preserve its discontinuous nature [18]. To achieve a flux approximation
of �1 equation (4.4) must be reformulated to a conservative form by using
the continuity equation. For an incompressible fluid the continuity equation
can be expressed as

@u

@x
+

@v

@y
= 0. (4.5)

Multiplying equation (4.5) by �1 gives

29



�1
@u

@x
+ �1

@v

@y
= 0. (4.6)

Now we can rewrite equation (4.4) as

@�1
@t

+ u
@�1
@x

+ �1
@u

@x
� �1

@u

@x
+ v

@�1
@y

+ �1
@v

@y
� �1

@v

@y
= 0

and using the product rule for derivatives we get:

@�1
@t

+
@(u�1)

@x
� �1

@u

@x
+

@(v�1)

@y
� �1

@v

@y
= 0. (4.7)

Adding equation (4.6) to (4.7) we get

@�1
@t

+
@(u�1)

@x
+

@(v�1)

@y
= 0. (4.8)

Equation (4.8) is conservative. In fact it is a conservation law. To see this
define F

x

and F
y

as the flux of �1 in the x and y direction by

F
x

= u�1 F
y

= v�1,

then (4.8) can be rewritten as

@�1
@t

+
@F

x

@x
+

@F
y

@y
= 0. (4.9)

For simplicity let us assume a one dimensional case:

@�1
@t

+
@F

x

@x
= 0. (4.10)

By integrating equation (4.10) between the boundary points a and b we get

Z
b

a

@�1
@t

dx+

Z
b

a

@F
x

@x
dx =

@

@t

✓Z
b

a

�1dx

◆
+

Z
b

a

@F
x

@x
dx

=
@

@t

✓Z
b

a

�1dx

◆
+ F

x

(�1(b,t))� F
x

(�1(a,t))

or simply
@

@t

✓Z
b

a

�1dx

◆
= F

x

(�1(a,t))� F
x

(�1(b,t)). (4.11)

Thus we can state that the total amount of the quantity �1 in the interval
[a, b] can only change due to the flux across the boundary points a and b.

In the VOF method formulated by Hirt et al. [18] equation (4.8) is used to
compute the volume fraction �1. To avoid smearing at the interface and thus

30



preserve a sharp interface, the integration of (4.8) over a computational cell
reduces the flux across the interface for a change in �1 [18]. This is referred
to as compression of the interface.

According to [16, 4] the upper boundedness �1  1 is not guaranteed. To cir-
cumvent this problem a surface compression VOF method was implemented
in OpenFoam. In the surface compression VOF method an extra term is
added to equation (4.8) to further compress the interface in order to reduce
smearing at the interface.
The surface compression VOF formulation for �1 is

@�1
@t

+r · (U�1) +r · [U
r

�1(1� �1)] = 0 (4.12)

whereU
r

is an explicitly fixed relative velocity andU is set to be the mixture
velocity of the flow. The semi-discrete formulation of (4.12) is given by [16]

(�1)
n+1
i

= (�1)
n

i

��t (r · [(�1U) + U
r

�1(1� �1)]) . (4.13)

Integrating (4.13) over the control volume v gives

Z

V

(�1)
n+1
i

dV =

Z

V

(�1)
n

i

dV ��t

Z

V

(r · [(�1U) + U
r

�1(1� �1)]) dV.

(4.14)
The term involving r can be computed by using Gauss’s theorem and inte-
grating over a control volume V :

Z

V

[(�1U) + U
r

�1(1� �1)] =
X

f

(�1�)
f

+ (�1�r

(1� �1))
f

(4.15)

where f denotes the face of the control volume and �,�
r

are the fluxes of
the mixture velocity and the relative velocity respectively.

31



32



Chapter 5

Simulation and Parameter Optimi-
sation Strategy

Computational Fluid Dynamics (CFD) uses various numerical methods and
algorithms to solve and analyse fluid flow problems such as multiphase flow.
The solution procedure in any CFD problem involves discretising the flow
domain, discretising the continuous di↵erential equation(s) to produce dis-
crete equation(s) and applying various solution methods to solve the discrete
equation(s).
The open-source CFD software OpenFoam is used here to simulate the rising
of a single air bubble in liquid water, and then a fully dispersed two-phase
flow. The discrete set of algebraic equations is solved either by the PISO
algorithm or by the SIMPLE algorithm.
This chapter is divided as followed: Chapter One presents the Richardson
extrapolation method and Grid Convergence Index (GCI) method. The
GCI method is used to compute the discretisation error. Chapter Two gives
an overview of neural networks. In chapter Three presents the numeri-
cal parameters a↵ecting the numerical solution(s). Chapter Four and Five
present the simulation of a single rising bubble and a fully dispersed two
phase flow respectively. Chapter Six outlines the parameter optimisation
strategy/algorithm follow by results obtained by applying the optimisation
strategy/algorithm.

5.1 Richardson extrapolation and Grid Conver-
gence Index

The solution of a discretised di↵erential equation is prone to di↵erent types
of errors. Since di↵erential equations are typically solved on a computer,
the solution is prone to round-o↵ error. On a computer, each real number is
represented by a fixed number of digits. So in practice each real number is
rounded o↵ to some near approximation, resulting in a round-o↵ error. The

33



discretisation process of the continuous di↵erential equation to its discrete
form involves approximating the continuous derivative to a discrete deriva-
tive though Taylor’s theorem. The truncation error is then defined as the
di↵erence between the true derivative and the finite di↵erence approxima-
tion [26]. A more important type of error is the discretisation error, which
is the main source of numerical error [25]. The discretisation error measures
the error induced by replacing the continuous di↵erential equation by the
discrete equation and by applying various methods to obtain the approx-
imate solution of the continuous problem. It is more concerned with the
entire numerical scheme, including the algorithms and the solution methods
built to solve the di↵erential equation.
Stability, convergence, satisfaction of the CFL conditions etc. are taken into
account, and the error will be a measure of the validity of the entire scheme.

For the estimation of the discretisation error in CFD, the most reliable
method is Richardson’s extrapolation method, in particular its variant Grid
Convergence Index (GCI) method [21, 22, 25]. The Richardson extrapola-
tion method was first introduced by Richardson in 1910 and was improved
later in 1927 [21]. In the method the discretised solution u

h

of a di↵erential
equation is assumed to have a series representation depending on the mesh
size h [23, 24]

u(x, h) = u(x) + hg1 + h2g2(x) + h4g4(x) + · · · (5.1)

where u is the exact solution and g
i

is some function which does not depend
on any discretisation [21]. From (5.1) the discretisation error �

j

for grid j
can be defined as

�
j

= u
j

(x, h)� u(x) = hg1 + h2g2(x) + h4g4(x) + · · ·. (5.2)

For a first and second order discretisation scheme equation (5.2) can be
approximated respectively by [25]

�1 = u
j

(x, h)� u(x) ⇡ ghp (5.3)

�2 = u
j

(x, h)� u(x) ⇡ h
j

g1 + h2
j

g2 (5.4)

where p is the apparent order of convergence, h
j

is the characteristic grid
spacing. In practice the exact solution u is the zero grid solution, meaning
the solution at zero grid size:

u = lim
hj!0

u
h

.

In equation (5.3) there are three unknowns: u, g, p, while the unknowns
in equation (5.4) are u, g1, g2. To find these unknowns, the approximate
solution of the di↵erential equation must be computed on three grids , j =

34



1, 2, 3 where 1 is the finer grid, 2 the medium grid and 3 the coarser grid.
The unknowns can then be computed by using a least square root approach
to solve the minimisation problem [22]:

minS(u, g, p) =

vuuut

0

@
3X

j=1

(uh
j

� (u+ ghp
j

))2

1

A (5.5)

minS(u, g1, g2) =

vuuut

0

@
3X

j=1

(uh
j

� (u+ ↵1h2
j

+ ↵2h3
j

))2

1

A (5.6)

A more generalised Richardson extrapolation method was proposed by Roache
[21], called Grid Convergence Index method (GCI). Assuming three locally
computed solutions on mesh 3,2 and 1, the ratio change of the solution R is
computed:

R =
u2 � u1
u3 � u2

(5.7)

and the computational nodes are classified as [22]

0 < R < 1 monotonic convergence (5.8)

R < �1 oscillatory divergence

R > 1 monotonic divergence.

For monotonic divergent computational nodes, the apparent convergence
rate can be computed by [21, 22]

p =
log(1/R)

log(r21)
(5.9)

where r = r21 = h2/h1 = h3/h2, and h
i

is the size of grid i.

The GCI defined in [21], also called error band U1 in [25] can now be
computed on the finest grid. The error band can be interpreted as the
uncertainty on the computed solution or the discretisation error. It is the
uncertainty of how far the computed solution deviates from the zero grid
solution [21]. Even though the zero grid solution can be explicitly computed
from the GCI method, the latter is not conservative [21]. It is therefore
recommended to use the GCI method to evaluate the discretisation error
or error band U1. Using (5.6) and based on the value of p computed from
equation (5.5) or (5.9), and assuming that (3.1) is satisfied, U1 is computed
as follows [25]:

U1 = 1.25|�1|, for 0.5 < p  2

35



U1 = 1.25max(|�1|, |�2|), for 2 < p  3

U1 = 3max(|u3 � u2|, |u2 � u1|), for p  0.5 or p > 3

The admissible values of p for the computation of the discretisation error
are in the range 0 < p < 8 [25].

In Roaches description of the grid convergence index method [21], the er-
ror band for the finer grid GCI1 and the coarser grid GCI2 are computed
respectively from

GCI1 = 100
FsU1

rp � 1
(5.10)

GCI2 = 100
FsU2

rp � 1
(5.11)

where Fs = 1.25, r = r21 = h2/h1 = h3/h2 and

U1 =
u1 � u2

u1
(5.12)

U2 =
u2 � u3

u2
(5.13)

An important notion in the GCI method is the asymptotic convergence
range. Given three grids (coarse, medium and fine), the finer grid is in the
asymptotic range of convergence if the asymptotic convergence rate (ACR)
is approximately equal to one. The latter is given by

ACR =
GCI1
GCI2

1

rp
. (5.14)

Equation (5.14) is based on the general observation that the discretisation
error is proportional to Hp where H is some parameter involving the mesh
size and p is the convergence rate:

error = CHp. (5.15)

If ACR is set to equal one we get

GCI1 = GCI2r
p. (5.16)

Comparing equation (5.15) and (5.16) we can see the equivalences C =
GCI2 and r = H, as GCI1 is the error. As we will demonstrate later,
the GCI method provides an e�cient way to evaluate the discretisation
error, also called error band. The latter can be expressed as the percentage
deviation from the zero grid solution. The importance in computing the
discretisation error lies in the fact that residuals from solvers (interFoam,

36



twoPhaseEulerFoam) do not necessary take into account the overall accuracy
of the solution.

5.2 Neural networks

A neural network or more precisely an artificial neural network is a circuit
composed of interconnected simple circuit elements called neurons. Each
neuron represents a map, typically with multiple input and single or multi-
ple output [28]. The output of a neuron is a function of the sum of the inputs.

Figure 5.1: A single neuron with multiple inputs and a single output. Taken from
[29]

The output of the neuron is called activation function. Figure 5.1 shows
a single neuron with multiple inputs. The output of the neuron is given by

y = '

0

@
nX

j=1

w
j

x
j

+ b

1

A (5.17)

where w
j

are the weights of the neuron network, b is called the bias of the
network and ' is the activation function. Figure 5.1 represented by equation
(5.17) can be viewed as a map from Rn to R. In practical problems it is
custom to use a feedforward neural network where the neurons are intercon-
nected in layers. In such a network, the first layer is the input layer and
the last layer is the output layer. The layers in between the input and the
output layer are called hidden layers.

A feedforward neural network is shown in figure 5.2. This network rep-
resents a generalisation of a neural network as a map from Rn to Rm and

37



Figure 5.2: A feedforward neural network with n inputs, m outputs and several
hidden layers. Taken form [28].

can be defined by

y
s

= fo

s

0

@
lX

j=1

wo

sj

fh

j

 
nX

i=1

wh

ji

x
i

!1

A (5.18)

where fo

s

, fh

j

are the activation functions of the output layer and the

hidden layers respectively. wo

sj

and wh

ji

are the weights of the output layer
and the hidden layers. In this work we are only considering a feedforward
network with one hidden layer, as shown in figure 5.3.

Figure 5.3: A feedforward network with one hidden layer. taken form [28]

38



The activation function of a neural network can be any bounded function
from R to R. For the present work we use the Sigmoid function as activation
function for the hidden layer and the output layer, given by equation (5.19)
and figure 5.4.

fo

s

(✓) = fh

j

(✓) =
1

1 + e�✓

(5.19)

Figure 5.4: The sigmoid function

Given the neural network from figure 5.2 and equation (5.18), the objec-
tive is to approximate a given process defined by input {x

i

}n
i=1 and output

{y
s

}m
s=1. To do this the network needs to be trained. The training process

involves adjusting the weights of the network such that the output generated
by the network for the given input {x

i

}n
i=1 is close to the output {y

s

}m
s=1

as much as possible [28]. The training process can be formulated as the
following optimisation problem [28]

minimise E(w) =
1

2

mX

s=1

(yin
s

� y
s

) (5.20)

where yin
s

is the output of the process while y
s

given by equation (5.18)
is the output of the network in response to the process input x = {x

i

}n
i=1.

The objective of the minimisation problem (5.20) is to find the weights

w = {wo

sj

, wh

ji

: i = 1, · · ·, n; j = 1, · · ·, l; s = 1, · · ·,m},

where l, m are the number of neurons in the hidden and output layer re-
spectively. Problem 5.20 is solved by using the backpropagation algorithm

39



[28] involving the following steps:

1. derive the derivative of the objective function E with respect to wo

sj

by using the chain rule

2. derive the derivative of the objective function E with respect to wh

ji

by using the chain rule

3. formulate the update equation for wo

sj

and wh

ji

By setting

z
q

= fh

q

 
nX

i=1

wh

qi

!

we can simplify y
s

and apply the chain rule to obtain

@E

@w0
sj

(w) = �(yins� y
s

)fo0
s

0

@
lX

q=1

wo

sq

z
q

1

A z
j

and by setting

�
s

= �(yins� y
s

)fo0
s

0

@
lX

q=1

wo

sq

z
q

1

A

we get the partial derivative of E with respect to w0
sj

@E

@w0
sj

(w) = ��
s

z
j

. (5.21)

Similarly,

@E

@wh

ji

(w) = �
mX

p=1

(yins� y
s

)fo0
p

0

@
lX

q=1

wo

pq

z
q

1

Awo

pj

fh0
j

 
nX

r=1

wh

jr

x
r

!

and by setting

v
j

=
nX

r=1

wh

jr

x
r

we get the partial derivative of E with respect to wh

ji

@E

@wh

ji

(w) = �

0

@
mX

p=1

�
p

wo

pj

1

A fh0
j

(v
j

)x
i

(5.22)

40



Now the update equation for w0
sj

and wh

ji

can be formulated for a fixed step
size ⌘:

�
wo

sj

�
k+1

=
�
w0
sj

�
k

+ ⌘(�)k(z
j

)k (5.23)

⇣
wh

ji

⌘
k+1

=
⇣
wh

ji

⌘
k

+ ⌘

0

@
mX

p=1

(�
p

)k(wo

pj

)k

1

A fh0
j

(v
j

)kx
i

(5.24)

with

(v
j

)k =
nX

i=1

wh(k)
ji

x
i

(5.25)

(z
j

)k = fh

j

⇣
(v

j

)k
⌘

(5.26)

(y
s

)k = fo

s

0

@
lX

q=1

wo(k)
sq

(z
q

)k

1

A (5.27)

�
s

= �(yins� (y
s

)k)fo0
s

0

@
lX

q=1

wok

sq

(z
q

)k

1

A (5.28)

41



5.3 Numerical parameters

5.3.1 General formulation of the SIMPLE algorithm

SIMPLE stands for Semi-Implicit Methods for Pressure-Linked Equations.
The algorithm is a guess-and-correct procedure for the computation of solu-
tions of a di↵erential equation [1]. The algorithm has one predictor (guess)
and one corrector step. It was developed by Patankar and Spalding in 1972
[1, 3].
For simplicity let f and g be the discretized momentum and continuity equa-
tions for a steady-state convection-dominated problem given respectively by

f(U, p) = 0 (5.29)

g(U) = 0 (5.30)

where U and p are the correct velocity and pressure fields. To initialize the
SIMPLE algorithm, a guessed value p⇤ of the pressure field is fed into the
discretised momentum equation (5.29), i.e.

f(U⇤, p⇤) = 0. (5.31)

The latter is solved for U⇤. Since p⇤ was guessed, the computed velocity field
U⇤ may or may not satisfy the discrete continuity equation (5.30). Defining
the correction of the velocity and the pressure by U 0 and p0 respectively, the
correct velocity and pressure can be expressed as

U = U⇤ + U 0 (5.32)

p = p⇤ + p0. (5.33)

Subtracting equation (5.29) from (5.31) yields

f(U, p)� f(U⇤, p⇤) = F (U � U⇤, p� p⇤) = 0, (5.34)

and inserting equation (5.32) and (5.33) into (5.34) gives the correction
equation

F (U 0, p0) = 0. (5.35)

The solution of (5.35) can be expressed as

U 0 = Cp0 (5.36)

for some constant C. Inserting the last expression into the correction equa-
tion (5.32) gives

U = U⇤ + Cp0. (5.37)

42



Since continuity must be satisfied, the latter equation is inserted into the
discretised continuity equation (5.30) yielding

g(U⇤ + Cp0) = 0. (5.38)

Equation (5.38) represents the discretised continuity equation as an equation
for pressure correction p0 [1, 3]. Solving for the pressure correction p0 the
correct pressure p is obtained from equation (5.33) and the correct velocity
field U can be computed from (5.36) and (5.32).
The pressure correction equation (5.38) is susceptible to divergence unless
some under-relaxation is used during the iterative process [1]. Thus the
pressure p and velocity U can be under-relaxed as

pnew = p⇤ + �
p

p0

Unew = �
U

+ (1� �
U

)Un�1

where �
p

, �
U

are the under-relaxation factors for pressure and velocity. Note
that in general U = (u, v, w) and to each velocity component corresponds
an under-relaxation factor. Un�1 is the computed velocity at the previous
iteration. The under-relaxation factor is characterised by

0  �  1.

Too large values of � can induce oscillatory solutions or divergent iteration
solutions, and too small values can cause extremely slow convergence [1].
The optimum value of � is flow dependent and must be sought on a case-
by-case basis [1]. The computational flow of the SIMPLE algorithm can be
formulated as [2]:

1. Guess the pressure p⇤

2. Solve the discretised momentum equation (5.29) to obtain U⇤ = (u⇤, v⇤, w⇤)

3. Solve the correction equation (5.38) for p0

4. Compute p from (5.33)

5. Compute U = (u, v, w) from (5.37)

6. Compute other flow field(s) such as turbulence quantities, heat transfer
terms etc . . .

7. Set p⇤ = p and return to step 2 until convergence is achieved

It is recommended to incorporate step 6 into the algorithm only if the com-
puted quantities a↵ect the flow significantly. If this is not the case, this step
should be removed from the algorithm and performed after convergence of

43



the flow field is achieved [2].

Despite the success of the SIMPLE algorithm in producing solutions
for a wide range of problems in computational fluid dynamics, it su↵ers
from a few shortcomings. The original algorithm was developed for steady-
state problems and uses a first order finite di↵erence scheme for problems
involving convection in Cartesian or polar coordinates [3]. Thus for complex
geometry problems the algorithm is not suitable. Instead, for unsteady flow
computations the PIMPLE algorithm must be applied at each time step,
until convergence is achieved. More details about this algorithm will follow.

5.3.2 General formulation of the PISO Algorithm

The PISO algorithm, which stands for Pressure Implicit with Splitting of
Operator, is a pressure-velocity computation procedure. It was originally de-
veloped for non-iterative computation of unsteady compressible flows, but
has also been used successfully for iterative solutions of steady-state prob-
lems [1]. It may be seen as an extension of the SIMPLE algorithm with one
extra corrector step [1]. In the SIMPLE algorithm the correct velocity and
pressure where given by equation (5.32) and (5.33). To illustrate the PISO
algorithm we set

U⇤⇤ = U = U⇤ + U 0

p⇤⇤ = p = p⇤ + p0.

where U and p are the correct velocity and pressure obtained from the first
SIMPLE correction while U⇤ and p⇤ are the guessed pressure and velocity
fields. In the PISO algorithm a second correction is performed by setting

U⇤⇤⇤ = U⇤⇤ + U 00 (5.39)

p⇤⇤⇤ = p⇤⇤ + p00. (5.40)

where U 00 and p00 are the correctors for the velocity and pressure respectively.
The first procedure employed in the SIMPLE algorithm is used in the PISO
algorithm to find a second corrector equation

g(U⇤⇤ + Cp00) = 0, (5.41)

similarly to (5.38). As in SIMPLE, the relationship between the correctors
for pressure and velocity similar to (5.36) is given by

U 00 = kp00 (5.42)

for some constant k. Solving (5.41) for p00 and using (5.42), the correctors
for pressure and velocity are computed. Using (5.39) and (5.40) we compute

44



the correct pressure and velocity, obtained from the second corrector step.
The computational flow of the PISO algorithm can be formulated as follows
[1]:

1. Perform step 1-3 of SIMPLE algorithm

• Solve discretised momentum equation

• Solve pressure correction equation

• Correct pressure and velocities

2. Solve second pressure equation

3. Correct pressure and velocity

4. Solve all other discretised transport equations. If convergence stop,
else go to step 1.

5.4 Simulation of a single rising bubble

In the previous sections we saw that the SIMPLE algorithm required one
pressure correction while the PISO algorithm required two. In addition, the
pressure and velocity fields need to be under-relaxed to avoid divergence. In
practice, to achieve convergence several correction numbers are needed.
In OpenFoam the SIMPLE and the PISO algorithm are combined to form
the PIMPLE algorithm. We therefore expect at least three numerical pa-
rameters from the PIMPLE algorithm: the number of SIMPLE corrections,
the number of PISO corrections and the under-relaxation factor. By using
the Volume of Fluid (VOF) method described in chapter 4 and implemented
in OpenFoam, our objective is to:

1. Simulate the rising of a single air bubble in liquid water

2. Compare our result with reported benchmark data from the literature

3. Show how the above numerical parameters a↵ect the solution in terms
of accuracy and execution time

5.4.1 Interface-capturing model for single bubble in a liquid

In this section we derive the mathematical equation describing the motion
of a single rising bubble in water. A single bubble rising in water is governed
by the Navier-Stokes equations and the Continuity equation [16]

@⇢U

@t
+r · (⇢U U)�r · ⌧ = �rP + ⇢g+ �r�

i

(5.43)

r ·U = 0 (5.44)

45



where the stress tensor ⌧ is given by

⌧ = µ(rU+rUT ).

The volume fraction �2 of air (2) is computed from the volume fraction �1
of water (1) by

�2 = 1� �1.

The mixture density ⇢ and the mixture viscosity µ are given by

⇢ = �1⇢1 + (1� �1)⇢2

µ = �1µ1 + (1� �1)µ2.

The curvature  of the interface is given by

 = �r · n, (5.45)

where the interface unit normal vector n is given by [4]

n =
r�

|r�|+ �
. (5.46)

Since equation (5.45) is only valid at the interface, outside the interface
|r�| ! 0; therefore � which is a very small number is used to avoid division
by zero.
This model assumes that the bubble is subject to gravitational force g and
surface tension forces �. The latter force is the attractive force exerted
upon the surface molecules of the fluid. It is directed inside the fluid. In the
fluid, each molecule exerts an equally strong force in all directions upon each
other, resulting in a zero net force. However, the molecules at the interface
are pulled inside the fluid since they have no neighbouring molecules at the
interface side. The influence of surface tension and gravity forces is given
by Eötvös number [17]

Eo =
g�⇢d2

�
=

gravitational force

surface tension
(5.47)

where �⇢ is the variation in density and d is the diameter of the bubble.
Note that the diameter of the bubble will vary during its ascending motion.
The surface tension � will a↵ect significantly the shape of the bubble.
For small surface tension, gravitational forces dominate and the Eötvös num-
ber is larger. From figure 5.5 we see that the bubble is greatly deformed
for a Reynolds number greater than approximately 2. We can interpret the
surface tension as a cohesive force acting on the bubble.

Equation (5.43) and (5.44) are the same for the continuous fluid (water)
and the bubble filled with air. The volume fraction of each fluid is used as an

46



Figure 5.5: E↵ect of surface tension on bubble size

47



indicator function to define the di↵erence between the two fluids separated
by the interface where a transitional region exists [4]. The indicator function
is given by

�
i

=

8
><

>:

1 in fluid i

0 < �
i

< 1 at the interface

0 in fluid i± 1

and is governed by the transport equation

@�
i

@t
+r · (U�

i

) = 0 i = 1, 2 (5.48)

where U is the velocity of the flow [4, 18].
Note that equation (5.48) is a Conservation Law: it indicates that the quan-
tity modelled by � is neither created nor destroyed. To see this, define the
flux function f by

f(�(y, t)) = U�(y, t)

and assume that the bubble is rising upwards in the y direction. By inte-
grating (5.48) between points a and b we get

Z
b

a

@�

@t
=

d

dt

Z
b

a

�(y, t)dy = �
Z

b

a

df(�(y, t))

dx
dy

= f(�(a, t))� f(�(b, t)).

(5.49)

This means that the rate of change of � can only change due to the flow
across the boundary points a and b. It was noted ([4]) that the form of
equation (5.48), which was in the original formulation of the VOF method
in [18], could not damp the smearing of the interface enough. To circumvent
this an artificial compression term only valid at the interface was added to
(5.48) to give

@�
i

@t
+r · (U�

i

) +r · [U
r

�
i

(1� �
i

)] = 0 i = 1, 2 (5.50)

where U
r

is the velocity needed to compress the interface and given as the
relative velocity between the two fluids. To solve equation (5.50) it su�ces
to only consider one fluid, i = 1.

5.4.2 Setting up the simulation case

The simulation case is taken from [19] where the complete benchmark data
and definition are given. Using nondimensionalization, the simulation do-
main is a rectangle with length scale x : y = 1 : 2. A bubble with original

48



diameter r
b

0 = 0.25 is initially located at position (x, y) = (0.5, 0.5). A no-
slip boundary condition is imposed at the top and bottom of the rectangle,
while slip wall boundary conditions are imposed at the left and right of the
domain, see figure 5.6.

Figure 5.6: Computational domain of a rising bubble. Figure taken from [16] and
simulation configuration taken from [19].

The water occupies a domain ⌦1 while the bubble occupies a domain
⌦2. The interface is then given by @⌦ = ⌦1 \ ⌦2. Using dimensionless
analysis, the characteristic length scale, time scale, and velocity scales are
given respectively by

L = 2r
b0, t =

L

U
g

, U
g

=
p
g2r

b0.

The Reynolds number R
e

, Eötvös number E
o

and the Capillary number Ca
are given respectively by

49



R
e

=
⇢1Ug

L

µ1
, E

o

=
⇢1U2

g

L

�
, Ca =

µ1Ug

�
=

E
o

R
e

.

For comparison with the benchmark data given in [19] and the study done
in [16], the maximum rising velocity u

max

and the maximum rising position
h
max

of the bubble must be computed. To do this we must compute the time
evolution of the centroid and the velocity of the bubble given by [19, 16]:

Y
c

=

R
@⌦ �2ycdAR
@⌦ �2dA

, u =

R
@⌦ �2vcdAR
@⌦ �2dA

. (5.51)

In equation (5.51) Y
c

is the centroid of the bubble, �2 is the volume fraction
of air inside the bubble, y

c

is the vertical component of the bubble centroid,
u is the rising vertical velocity of the bubble computed from the velocity of
the centroid.

5.4.3 OpenFoam simulation

OpenFoam is a C++ library used to create executables known as applica-
tions [20]. There are two types of applications in OpenFoam: Solvers and
Utilities. The Solvers are designed to solve a range of problems in contin-
uum mechanics, while Utilities are used to perform post-processing tasks
[20]. Through the C++ language users can in principle build their own
utilities and solvers, building either on existing ones or from scratch.

Figure 5.7: The structure of OpenFoam [20]

Figure 5.7 shows the structure of OpenFoam. To run an OpenFoam
solver and solve a specific problem, users must select a suitable solver and
prepare a case directory. An OpenFoam case directory contains three subdi-
rectories: the 0 directory, the constant directory and the system directory.
The 0 directory contains files whose contents hold the solution field of the
problem to be solved. For example, if one wants to solve the Navier-Stokes
equation for pressure p and velocity u, then the 0 directory must contain
files u and p. The constant directory contains the physical properties of the
problem and the definition of the mesh. In the system directory the user can

50



specify time step, the duration of the simulation, the finite volume scheme,
the algorithm, and common numerical parameters such as under-relaxation
parameters and the numerical tolerance for each solution. Figure 5.8 shows
a typical directory structure of a simulation case.

Figure 5.8: A case directory structure in OpenFOam

It is custom that a user desires to change the existing solver by adding
additional models. In such a case the user must make a copy of an existing
solver, modify the solver and recompile it. In our case we used the inter-
Foam solver, which is a solver for 2 incompressible fluids, and which tracks
the fluid interface by using the volume of fluid method (VOF).

51



Mesh generation for the rising bubble case

v e r t i c e s
(

(0 0 0)
(1 0 0)
(1 2 0)
(0 2 0)
(0 0 0 . 1 )
(1 0 0 . 1 )
(1 2 0 . 1 )
(0 2 0 . 1 )

) ;

b locks
(

hex (0 1 2 3 4 5 6 7) (80 80 1) simpleGrading (1 1 1)
) ;

boundary
(

l e f tWa l l { type wa l l ; f a c e s ( (0 4 7 3) ) ;}
r ightWal l { type wa l l ; f a c e s ( (2 6 5 1) ) ;}
bottom { type wa l l ; f a c e s ( (0 4 5 1) ) ;}
atmosphere { type wa l l ; f a c e s ( (3 7 6 2) ) ; }
frontAndBack { type empty ; f a c e s ( (0 3 2 1) (4 5 6 7) ) ; }) ;

52



Transport Properties

phases ( water a i r ) ;
water
{

transportModel Newtonian ;
nu nu [ 0 2 �1 0 0 0 0 ] 1e�02; //1e�02
rho rho [ 1 �3 0 0 0 0 0 ] 1000 ;
CrossPowerLawCoeffs
{

nu0 nu0 [ 0 2 �1 0 0 0 0 ] 1e�06;
nuInf nuInf [ 0 2 �1 0 0 0 0 ] 1e�06;
m m [ 0 0 1 0 0 0 0 ] 1 ;
n n [ 0 0 0 0 0 0 0 ] 0 ;

}

BirdCarreauCoef f s
{

nu0 nu0 [ 0 2 �1 0 0 0 0 ] 0 . 0142515 ;
nuInf nuInf [ 0 2 �1 0 0 0 0 ] 1e�06;
k k [ 0 0 1 0 0 0 0 ] 9 9 . 6 ;
n n [ 0 0 0 0 0 0 0 ] 0 . 1 003 ;

}
}
a i r
{

transportModel Newtonian ;
nu nu [ 0 2 �1 0 0 0 0 ] 1e�02; //1e�01
rho rho [ 1 �3 0 0 0 0 0 ] 100 ;
CrossPowerLawCoeffs
{

nu0 nu0 [ 0 2 �1 0 0 0 0 ] 1e�06;
nuInf nuInf [ 0 2 �1 0 0 0 0 ] 1e�06;
m m [ 0 0 1 0 0 0 0 ] 1 ;
n n [ 0 0 0 0 0 0 0 ] 0 ;

}

BirdCarreauCoef f s
{

nu0 nu0 [ 0 2 �1 0 0 0 0 ] 0 . 0142515 ;
nuInf nuInf [ 0 2 �1 0 0 0 0 ] 1e�06;
k k [ 0 0 1 0 0 0 0 ] 9 9 . 6 ;
n n [ 0 0 0 0 0 0 0 ] 0 . 1 003 ;

}
}

sigma sigma [ 1 0 �2 0 0 0 0 ] 2 4 . 5 ;

53



Parameters for PIMPLE algorithm

PIMPLE
{

momentumPredictor no ;
nOuterCorrectors 1 ;
nCorrectors 11 ;
nNonOrthogonalCorrectors 0 ;
nAlhaCorr 1 ;
nAlphaSubCycles 2 ;
cAlpha 1 ;
pRefCel l 0 ;
pRefValue 0 ;
r e s i dua lCon t r o l
{

p rgh
{

t o l e r an c e 1e�06;
r e lTo l 0 ;
absTol 0 ;

}
U
{

t o l e r an c e 1e�06;
r e lTo l 0 ;
absTol 0 ;

}
}

}

r e l a xa t i onFac t o r s
{

f i e l d s
{

U 1 . 0 8 ;
p rgh 1 . 0 8 ;
alpha . water 1 . 0 8 ;

}
equat ions
{

” .⇤” 1 . 0 5 3 ;
}

}

54



Finite volume schemes

ddtSchemes
{
de f au l t Euler ;

}

gradSchemes
{

de f au l t Gauss l i n e a r ; // second order
}

divSchemes
{

div ( rhoPhi ,U) Gauss l inearUpwind grad (U) ;
div ( phi , alpha ) Gauss vanLeer ;
d iv ( phirb , alpha ) Gauss l i n e a r ;
d iv ( ( muEff⇤dev (T( grad (U) ) ) ) ) Gauss l i n e a r ;

}

l ap lac ianSchemes
{

de f au l t Gauss l i n e a r co r r e c t ed ;
}

i n t e rpo la t i onSchemes
{

de f au l t l i n e a r ;
}

snGradSchemes
{

de f au l t c o r r e c t ed ;
}

f luxRequ i red
{

de f au l t no ;
p rgh ;
pcorr ;
alpha . water ;

}

55



Figure 5.9 shows the initial configuration of the bubble for two di↵erent
mesh sizes. It can be seen that the interface is more sharp for finer mesh
resolutions. Table 5.1 and 5.2 show physical properties used in the simula-
tion and the simulation results for various relaxation factors. The results
are compared with the results obtained in [19] and [16].
In [19] there were three di↵erent groups, each solving the rising bubble prob-
lem with di↵erent methods. Group one used the Level Set method and as
discretization method the Finite Element method with non-conforming basis
functions for the phase fraction, pressure and velocity field. A conforming
bilinear basis function was used for the level set function [19]. Group two
used the Level Set method to track the interface, while discretization in
space was achieved with the Finite Element method. Piecewise linear ele-
ments were adopted as basis functions. P1 � isoP2 elements were used for
the pressure and P1 elements for the velocity field [19]. Group three used
a pure Finite Element software package which adopted the inf-sup stable
isoparametric Finite Element method to discretize the Navier-Stokes equa-
tion, and stabilized the Finite Element method to a discretized convection
di↵usion equation [19]. In [16] the software package OpenFoam was used.
The VOF method was used to track the interface.

56



Figure 5.9: Bubble at t=0 for mesh size x : y = 80, 160 (top) and x : y = 160, 320
(bottom)

57



parameters µ1 ⇢1 µ2 ⇢2 R
e

Ca Eo �
Values 10�2 1000 10�2 100 35017 0.00028 10 24.5

Table 5.1: Physical properties used in the simulation

↵
p

, ↵
U

nCorrectors nOuterCorrectors dt U
max

y
max

present work 1 10 1 0.0125 0.21246 1.00684
present work 1.052 10 1 0.0125 0.2416 1.0882
present work 1.053 10 1 0.0125 0.24216 1.08946
Hysing [19] 1 � � � � 0.2419 1.0812
Hysing [19] 2 � � � � 0.2421 1.0799
Hysing [19] 3 � � � � 0.2417 1.0817
Klostermann [16] � � � � 0.2365 1.0668

Table 5.2: Simulation parameters and results for changing relaxation factor ↵.
Mesh size for group 1,2,3 from [19] is x : y = 160, 160. Mesh size from [16] is
x : y = 160, 160. Mesh size from this work is x : y = 80, 160. The residual obtained
in theis present work is of the order of 10�6

From table 5.2 it can be seen that the residuals are similar for relax-
ation factors 1, 1.052 and 1.53. However, there is a significant di↵erence in
the three results when compared with the benchmark results. From figure
5.12, 5.10 and 5.11 we can clearly see the e↵ect of the relaxation factor on
the solution. When the solution is not relaxed (relaxation factor = 1), the
computed maximum velocity and computed maximum centroid are far away
from the benchmark solution. When the solution is over-relaxed (relaxation
factor = 1.052, 1.053) the computed solution and the benchmark solution
are closer. From numerical experiments, when the solution is under-relaxed
(relaxation factor < 1), with value less than one, the computed maximum
velocity and maximum centroid are very far from the benchmark solutions.
The e↵ect of the relaxation factor cannot be clearly seen on the two dimen-
sional simulation in figure 5.13-5.18, where the three cases for relaxation
factor = 1, 1.052, 1.053 are shown.

58



Figure 5.10: Comparison with benchmark [19]. Bubble rising velocity profile (top),
and centre of mass (bottom). In our simulation all fields are relaxed with relaxation
factor 1. Mesh size x : y = 80, 160

Figure 5.11: Comparison with benchmark [19]. Bubble rising velocity profile (top),
and centre of mass (bottom). In our simulation all fields are relaxed with relaxation
factor 1.052. Mesh size x : y = 80, 160

59



Figure 5.12: Comparison with benchmark [19]. Bubble rising velocity profile (top),
and centre of mass (bottom). In our simulation all fields are relaxed with relaxation
factor 1.053. Mesh size x : y = 80, 160

60



Figure 5.13: Bubble at t = 1s with relaxation factor 1.053: Mesh size x : y = 80, 160

Figure 5.14: bubble at t = 3s with relaxation factor 1.053. Mesh size x : y = 80, 160

61



Figure 5.15: Bubble at t = 1s with relaxation factor 1: Mesh size x : y = 80, 160

Figure 5.16: bubble at t = 3s with relaxation factor 1. Mesh size x : y = 80, 160

Figure 5.17: Bubble at t = 1s with relaxation factor 1.050: Mesh size x : y = 80, 160

62



Figure 5.18: bubble at t = 3s with relaxation factor 1.050. Mesh size x : y = 80, 160

63



We have seen the e↵ect of the relaxation factor on the rising velocity and
on the center of mass of the bubble. There are two other parameters that
can a↵ect the solution: the number of correction in the PIMPLE and SIM-
PLE algorithms on OpenFoam. Recall that the PIMPLE algorithm is the
combined SIMPLE and PISO algorithm. It was designed to take advantage
of the fast convergence of the SIMPLE algorithm together with the accu-
racy of the PISO algorithm. The algorithm will run only in the PISO mode
if nCorrectors is greater than 1, while it will run in SIMPLE mode when
nOuterCorrectors is greater than one. From numerical experiments whose
results will be shown later, it was best to only run the solver in the PISO
mode. The reason for that is that PISO was designed for unsteady state
while SIMPLE, even though it can be used for unsteady-state problems, was
originally designed for steady-state problems.

64



↵
p

, ↵
U

nCorrectors nOuterCorrectors U
max

y
max

Residual time
present work 1.052 100 1 0.25 1.1 9.8.10�8 484
present work 1.052 50 1 0.25 1.1 9.8.10�8 284
present work 1.052 30 1 0.25 1.1 9.9.10�8 206
present work 1.052 10 1 0.2416 1.08882 2.5.10�6 106
present work 1.052 5 1 0.2191 1.03943 4.7.10�5 62
Hysing [19] 1 � � � � 0.2419 1.0812
Hysing [19] 2 � � � � 0.2421 1.0799
Hysing [19] 3 � � � � 0.2417 1.0817
Klostermann [16] � � � � 0.2365 1.0668

Table 5.3: Simulation parameters and results for changing relaxation factor ↵.
Mesh size for group 1,2,3 from [19] is x : y = 160, 160. Mesh size from [16] is
x : y = 160, 160. Mesh size from this work is x : y = 80, 160. The above-mentioned
time is the execution time(CPU time) and is measured in seconds (s)

↵
p

, ↵
U

nCorrectors nOuterCorrectors U
max

y
max

Residual time
present work 1.052 50 200 0.232 1.06634 7.10�8 512
present work 1.052 1 200 0.2384 1.07775 4.8.10�7 370
present work 1.052 1 100 0.2384 1.07775 4.8.10�7 368
Hysing [19] 1 � � � � 0.2419 1.0812
Hysing [19] 2 � � � � 0.2421 1.0799
Hysing [19] 3 � � � � 0.2417 1.0817
Klostermann [16] � � � � 0.2365 1.0668

Table 5.4: Simulation parameters and results for changing relaxation factor ↵.
Mesh size for group 1,2,3 from [19] is x : y = 160, 160. Mesh size from [16] is
x : y = 160, 160. Mesh size from this work is x : y = 80, 160. The above-mentioned
time is the execution time(CPU time) and is measured in seconds (s)

Tables 5.3 and 5.4 show the influence of the number of corrections in
the PISO (nCorrectors) and SIMPLE (nOuterCorrectors) algorithm respec-
tively. For the PISO algorithm the solution does not change after about
thirty iterations and the residual is of order 10�08. The maximum velocity
of the bubble converges to 0.25 while the maximum centroid converges to
1.1. In the SIMPLE algorithm, the maximum velocity converges to 0.2384
while the maximum centroid converges to 1.07775. Convergence is reached
after about approximately 100 iterations and the residual is of the order of
10�07. The CPU time for the SIMPLE is less than the one for the PISO al-
gorithm. Figures 5.19 and 5.20 show the rising velocity and centroid profile
with 50 PISO corrections and 50 SIMPLE corrections respectively.

In the study of the rising bubble problem, several parameters a↵ected
the solution. The main parameter is the relaxation factor. Typically, the
relaxation factor is between 0 and 1 for the under-relaxation factor, and can

65



Figure 5.19: PISO algorithm with 50 PISO corrections

be greater than 1 as seen in this study. Other important parameters are the
number of PISO correctors nCorrectors, the number of SIMPLE correctors
nOuterCorrectors, and the mesh size. The time step can typically be mesh-
dependent to maintain a fixed value for the Courant number Co.

66



Figure 5.20: SIMPLE algorithm with 50 corrections

67



5.5 Simulation of fully dispersed two-phase flow

We now turn our attention to a fully dispersed two-phase turbulence flow.
The objective is to show the e↵ects of the relaxation parameter on the flow.
In the last section we saw how the numerical parameters such as the number
of pressure correctors and the relaxation factors a↵ected the rising velocity
of the rising single air bubble in liquid water. The fully dispersed two-phase
flow is modelled by the two-fluid equation. The turbulence model is the k�✏
model. The solutions are obtained using the twoPhaseEulerFoam solver in
OpenFoam. The latter is a solver for two incompressible fluids. In this case
study we consider air as the dispersed phase and water as the continuous
phase. Our attention will center on the value of the phase fraction of air in
the internal field.

Geometry of the domain and mesh generation

The simulation domain is a rectangular domain with height h = 1m and
width w = 0.15m. The mesh is generated by the OpenFoam utility BlockMesh.
The domain is made of an hexagon with eight corners whose coordinates are
given by the entry vertices. The flow direction is predominantly in the y
direction. The mesh is divided by 25 points in the x direction and 75 points
in the y directions, specified in the blocks entry. The boundaries of the
domain are specified by the entry patches: inlet (bottom), outlet (top) and
walls (left and right).

v e r t i c e s
(

(0 0 0)
( 0 . 1 5 0 0)
( 0 . 15 1 0)
(0 1 0)
(0 0 0 . 1 )
( 0 . 1 5 0 0 . 1 )
( 0 . 1 5 1 0 . 1 )
(0 1 0 . 1 )

) ;
b locks
(

hex (0 1 2 3 4 5 6 7) (25 75 1) simpleGrading (1 1 1)
) ;
patches
(

patch i n l e t ( (1 5 4 0) )
patch ou t l e t ( (3 7 6 2) )
wa l l wa l l s ( (0 4 7 3) (2 6 5 1) )

) ;

68



Initial and boundary condition

The value of the phase fraction of air alpha.air is fixed at the inlet to 0.5
initially. At the outlet (top) there is only air: alpha.air is equal to 1. Slip-
conditions are applied at the wall. The pressure, velocity, turbulence kinetic
energy k and rate of dissipation ✏ are fixed at the boundaries (inlet, outlet
and wall).

alpha . a i r
boundaryField
{

i n l e t
{

type f ixedValue ;
va lue uniform 0 . 5 ;

}
ou t l e t
{

type i n l e tOu t l e t ;
phi phi . a i r ;
i n l e tVa lu e uniform 1 ;
va lue uniform 1 ;

}
wa l l s
{

type zeroGradient ;
}

}

pre s su r e p
dimensions [ 1 �1 �2 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 1e5 ;
boundaryField
{

i n l e t
{

type f i x edF luxPre s su re ;
va lue $ i n t e r n a lF i e l d ;

}
ou t l e t
{

type f ixedValue ;
va lue $ i n t e r n a lF i e l d ;

}
wa l l s
{

type f i x edF luxPre s su re ;
va lue $ i n t e r n a lF i e l d ;

}
}

69



v e l o c i t y o f a i r U. a i r
dimensions [ 0 1 �1 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform (0 0 .1 0) ;
boundaryField
{

i n l e t
{

type f ixedValue ;
va lue $ i n t e r n a lF i e l d ;

}
ou t l e t
{

type p r e s s u r e I n l e tOu t l e tVe l o c i t y ;
phi phi . a i r ;
va lue $ i n t e r n a lF i e l d ;

}
wa l l s
{

type f ixedValue ;
va lue uniform (0 0 0) ;

}
}

k i n e t i c energy a i r k . a i r
dimensions [ 0 2 �2 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 3.75 e�5;
boundaryField
{

i n l e t
{

type f ixedValue ;
va lue $ i n t e r n a lF i e l d ;

}
ou t l e t
{

type i n l e tOu t l e t ;
phi phi . a i r ;
i n l e tVa lu e $ i n t e r n a lF i e l d ;
va lue $ i n t e r n a lF i e l d ;

}
wa l l s
{

type kqRWallFunction ;
va lue $ i n t e r n a lF i e l d ;

}
de fau l tFace s
{

type empty ;
}

}

70



r a t e o f d i s s i p a t i o n ep s i l o n . a i r
dimensions [ 0 2 �3 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 1 .5 e�4;

boundaryField
{

i n l e t
{

type f ixedValue ;
va lue $ i n t e r n a lF i e l d ;

}

ou t l e t
{

type i n l e tOu t l e t ;
phi phi . a i r ;
i n l e tVa lu e $ i n t e r n a lF i e l d ;
va lue $ i n t e r n a lF i e l d ;

}
wa l l s
{

type eps i lonWal lFunct ion ;
va lue $ i n t e r n a lF i e l d ;

}

de fau l tFace s
{

type empty ;
}

}

Physical properties

phases ( a i r water ) ;
a i r
{

diameterModel i s o the rma l ;
i s o the rma lCoe f f s
{

d0 3e�3;
p0 1e5 ;

}
}
water
{

diameterModel constant ;
cons tantCoe f f s
{

d 1e�4;
}

}

71



Turbukence property
s imulat ionType LES ;
LES
{

LESModel continuousGasKEqn ; //Smagorinsky ;

turbu l ence on ;
p r i n tCoe f f s on ;

d e l t a cubeRootVol ;

cubeRootVolCoeffs
{
}

}

the rmophys i ca lPrope r t i e s . a i r
thermoType
{

type heRhoThermo ;
mixture pureMixture ;
t r an spo r t const ;
thermo hConst ;
equat ionOfState per f ec tGas ;
s p e c i e s p e c i e ;
energy s en s i b l e I n t e rna lEne r gy ;

}

mixture
{

s p e c i e
{

nMoles 1 ;
molWeight 2 8 . 9 ;

}
thermodynamics
{

Cp 1007 ;
Hf 0 ;

}
t ran spo r t
{

mu 1.84 e�05;
Pr 0 . 7 ;

}
}

72



drag
(

( a i r in water )
{

type Schil lerNaumann ;
re s idua lA lpha 1e�6;
r e s idua lRe 1e�3;
swarmCorrection
{

type none ;
}

}

( water in a i r )
{

type Schil lerNaumann ;
re s idua lA lpha 1e�6;
r e s idua lRe 1e�3;
swarmCorrection
{

type none ;
}

}

( a i r and water )
{

type seg rega ted ;
r e s idua lA lpha 1e�6;
m 0 . 5 ;
n 8 ;
swarmCorrection
{

type none ;
}

}
) ;

v i r tua lMass
(

( a i r in water )
{

type c on s t an tCo e f f i c i e n t ;
Cvm 0 . 5 ;

}

( water in a i r )
{

type c on s t an tCo e f f i c i e n t ;
Cvm 0 . 5 ;

}
) ;

73



sigma : s u r f a c e t en s i on
(

( a i r and water ) 0 .07
) ;

a spectRat io
(

( a i r in water )
{

type constant ;
E0 1 . 0 ;

}

( water in a i r )
{

type constant ;
E0 1 . 0 ;

}
) ;

74



Finite volume scheme
The finite volumes used are first order in time and second order in space.

ddtSchemes
{

de f au l t Euler ;
}

gradSchemes
{

de f au l t Gauss l i n e a r ;
}

divSchemes
{

de f au l t none ;

div ( phi , alpha . a i r ) Gauss vanLeer ;
d iv ( phir , alpha . a i r ) Gauss vanLeer ;

” div \( alphaRhoPhi . ⇤ ,U.⇤\ ) ” Gauss l imitedLinearV 1 ;
” div \( phi . ⇤ ,U.⇤\ ) ” Gauss l imitedLinearV 1 ;

” div \( alphaRhoPhi . ⇤ , ( h | e ) .⇤\ ) ” Gauss l im i t edL in ea r 1 ;
” div \( alphaRhoPhi . ⇤ ,K.⇤\ ) ” Gauss l im i t edL in ea r 1 ;
” div \( alphaPhi .⇤ , p\) ” Gauss l im i t edL in ea r 1 ;
” div \( alphaRhoPhi . ⇤ , k .⇤\ ) ” Gauss l im i t edL in ea r 1 ;

” div \( alpha .⇤⇤ thermo : rho .⇤\ ) ⇤nuEff .⇤\ ) ⇤dev2 \(T\( grad \(U.⇤\ ) ”
Gauss l i n e a r ;

}

l ap lac ianSchemes
{

de f au l t Gauss l i n e a r uncorrec ted ;
}

i n t e rpo la t i onSchemes
{

de f au l t l i n e a r ;
}

75



Figure 5.21: Phase fraction alpha of air at t = 0, 1s

Figure 5.22: Phase fraction alpha of air at t = 2, 3s

76



Figure 5.23: Phase fraction alpha of air at t = 4, 5s

Figure 5.24: Phase fraction alpha of air at t = 7, 10s

alpha 0.20 0.23 0.24 0.25 0.26 0.27 0.28 0.5 0.95
|p| 0.76 0.13 0.16 0.20 0.20 0.010 0.57 5.6 1.4
Ratio R 1.7 0.91 0.89 0.87 0.87 0.93 1.5 -49.9 -0.37
Asymtotic range 0.83 0.90 0.90 0.90 0.90 0.90 0.86 -0.95 -1
CGI1 62 -133 -110 -84 -197 63 0.86 14 45
CGI2 30 -132 -112 -88 -189 37 -50 -0.26 -50

Table 5.5: E↵ect of relaxation factor on phase fraction, nCorrector = 1,
nOuterCorrectors = 10.�t = 0.5/meshsize.

Table 5.5 shows the e↵ect of the relaxation factor on phase fraction of
air. We recall here that for a monotonic convergent solution the ratio R
must be positive according to the Grid Convergence Index (GCI) method
[22, 21]. From the numerical experiment performed and given in table 5.5,
the solution is monotonic convergent when the relaxation factor is between
0.2 and 0.3.

77



5.6 Parameters optimisation strategy

The solution process of the two cases studied involves an algorithmic process,
where certain parameters controlled the accuracy of the solutions. Among
other parameters, were the number of pressure corrections needed to achieve
a certain level of accuracy. In OpenFoam, in particular in the solvers in-
terFoam and twoPhaseEulerFoam used in this thesis, we have two such
parameters: nCorrectors, which is the number of pressure corrections in the
PISO algorithm, and nOuterCorrectors, which is the number of pressure
corrections in the SIMPLE Algorithm. We have shown that for a more ac-
curate solution of an unsteady state di↵erential equation the PISO mode of
the PIMPLE algorithm was preferable. Recall that the PIMPLE algorithm
implemented in the InterFoam solver can run either in the PISO mode, the
SIMPLE mode or in both modes. Another parameter controlling the solu-
tions was the relaxation factor. This factor is typically between zero and
one, but can also be greater than one. It is very di�cult do derive a general
strategy to find an optimum value for the relaxation factor. In fact, opti-
mum values for under-relaxation are flow/application specific [59]. In the
two-phase dispersed flow case study, we saw that the mesh size a↵ected the
accuracy of the solution. There exists an explicit relation between the mesh
size dx and the time step dt through the Courant number Co:

Co = u
dt

dx

where u is the velocity. To maintain stability the Courant number must be
less then a maximum value, typically 1. Table 5.6 summarises the numerical
parameters a↵ecting the flow field in our case study. b is any integer greater
than 1, while � is a small number between 0 and 1.

parameters mesh size nCorrectors nOuterCorrectors relaxation factor dt
Values user specified [1, b] [1, b] [0, 1 + �] �

Table 5.6: Numerical parameters a↵ecting solution and possible range

Based on the analysis of the SIMPLE/PISO algorithms and the two
applications considered, a parameter optimisation strategy or algorithm can
be formulated as follows:

1. Take initial values from user: mesh size, nCorrectors, nOuterCorrec-
tors, time step, relaxation factor, case directory name, tolerance.

78



2. if tolerance is small (10�2) use SIMPLE:

nCorrectors = 1

nOuterCorrectors = max(nCorrectors, nOuterCorrectors)

else use PISO mode:

nCorrectors = 1

nOuterCorrectors = max(nCorrectors, nOuterCorrectors)

set all field (pressure, velocity, phase fraction) relaxation factors to 1

3. Choose step according to the maximum value of nOuterCorrectors or
nCorrectors and decrease the corresponding value (nOuterCorrectors
or nCorrectors) by the step sequentially. For each step make sure that
the computed residual is less then the tolerance given by the user. Do
this until the the tolerance limit is reached. At the end of this step the
minimum values of nCorrectors and nOuterCorrectors are returned.

4. Find the optimum value of the relaxation factor. Use the optimum
values of nCorrectors and nOuterCorrectors obtained from step 1, 2
and 3. Chose a range of value from 0.1 to 1.5 for the relaxation factor.
Sequentially compute the discretisation error for each value in the
range of relaxation factors. To select the best possible values the
following conditions must be satisfied:

• the solution must be monotonic convergent: the value of R com-
puted from equation (5.8) must be positive

• the mesh must be in the asymptotic range of convergence: ASR ⇡
1. Equation (5.14)

• the computed convergence rate must be close to its theoretical
value. Equation (5.9)

• the discretisation error for the finer and coarse mesh must be
within a tolerance value specified. Equations (5.10), (5.10)

5. (Optional). Chose few mesh points in x and y direction ex: 10,20,
30... max. Use the neural network to make a model of CPU time as a
function of mesh points. Use the model to predict the simulation time
of the mesh point you want to use.

By applying the above algorithm we found the results given in Tables (5.7),
(5.8), (5.9), (5.10), (5.11) and Figures (5.25), (5.26), (5.27) and (5.26) for
the interFoam solver applied to the single rising bubble.

79



mesh x mesh y nCorrector nOuterCorrector ↵⇤ CPU time (s) Residual
Initial 80 80 100 100 1 126.8 9.8761.10�8

step 1 80 80 80 1 1 105.75 9.8761.10�8

step 2 80 80 60 1 1 84.42 9.8761.10�8

step 3 80 80 40 1 1 63.52 9.8721.10�8

step 4 80 80 20 1 1 42.41 1.982.10�7

Table 5.7: Parameter optimisation strategy result. ↵⇤ means relaxation factor for
all fields: pressure, velocity and water phase fraction. The tolerance is set to 10�5.
Solver: InterFoam, algorithm mode: PISO

mesh x mesh y nCorrector nOuterCorrector ↵⇤ CPU time Residual
Initial 80 80 75 10 1 99.44 9.8761.10�8

step 1 80 80 59 1 1 85.39 9.8763.10�8

step 2 80 80 43 1 1 67.45 9.875510�8

step 3 80 80 27 1 1 54.27 9.15.10�8

step 4 80 80 11 1 1 30.15 4.1.10�6

Table 5.8: Parameter optimisation strategy result. ↵⇤ means relaxation factor for
all fields: pressure, velocity and water phase fraction. The tolerance is set to 10�5.
Solver: InterFoam, algorithm mode:PISO

mesh x mesh y nCorrector nOuterCorrector ↵⇤ CPU time Residual
Initial 80 80 10 75 1 95.12 7.78909.10�7

step 1 80 80 1 60 1 95.97 7.70909.10�7

step 2 80 80 1 45 1 97.55 6.58861.10�6

step 3 80 80 1 30 1 94.57 9.85948.10�7

step 3 80 80 1 15 1 68.77 4.1.10�6

Table 5.9: Parameter optimisation strategy result. ↵⇤ means relaxation factor for
all fields: pressure, velocity and water phase fraction. The tolerance is set to 10�2.
Solver: InterFoam, algorithm mode: SIMPLE

80



Figure 5.25: Residual as a function of nCorrectors. Graphic representation of table
5.7. The solver InterFoam was running on PISO mode

Figure 5.26: CPU time as a function of nCorrectors. Graphic representation of
table 5.7. The solver InterFoam was running on PISO mode

81



Figure 5.27: Residual as a function of nOuterCorrectors. Graphic representation
of table 5.9. The solver InterFoam was running on SIMPLE mode

82



Figure 5.28: CPU time as a function of nOuterCorrectors. Graphic representation
of table 5.9. The solver InterFoam was running on SIMPLE

83



↵⇤ GCI2 GCI1 Asymptotic range spatial convergence rate ratio change (5.7)
0.9 25.2 -22.1 -0.97 0.23 -0.85
1 0.359 -0.019 -0.99 4.2 -0.053
1.053 2.3 0.5 1.014 2.136 0.23
1.06 2.6 0.62 1.016 2.031 0.24
1.07 3.14 0.85 1.018 1.85 0.28
1.08 4.47 1.55 1.02 1.5 0.35

Table 5.10: Application of grid convergence index method. ↵⇤ means that the relax-
ation factor was applied to all equations. We used second order schemes in space
and first order schemes in time for stability. nCorrector = 11, nOuterCorrector =
1.Based on three grids of size: 20,40,80 with r21 = r23 = 2 . InterFoam solver

relaxation factor 0.6 0.7 0.8 0.9 1 1.01
Residual 4.2.10�6 4.2.10�6 4.2.10�6 4.2.10�6 4.2.10�6 4.2.10�6

Table 5.11: Relaxation factor with corresponding residual values. nCorrectors =
11, nOuterCorrectors = 1,mesh size x = 80, mesh size y = 80. InterFoam solver

mesh size CPU time (s) Approximated CPU time (s) error
35 4 2.8 1.2
65 15 9.8 5.2
151 175 42 133

Table 5.12: CPU time and approximated CPU time. Result obtained by applying
the neural network to predict mesh size as a function of CPU time.

84



5.7 Discussion

Table (5.7) and (5.8) show the optimisation process of nCorrectors and
nOuterCorrectors from applying step 1-3 of the optimisation strategy. Since
the tolerance is set to 10�5 in both cases, the optimisation algorithm forces
the interFoam solver to run in the PISO mode. On the other hand, in Table
5.8 the tolerance is set to 10�2, which forces the interFoam solver to run
in the SIMPLE mode. By comparing the residuals from the solvers we see
that the PISO mode produces lower residuals. From Figures (5.25), (5.26),
(5.27) and (5.26) we can see that the residual and the CPU time as a func-
tion of nCorrectors follows a monotonic trend for the PISO algorithm. On
the other hand, a zigzag trend is observed for the SIMPLE algorithm for
residual versus nOuterCorrectors.
Table (5.10) and (5.11) demonstrate that it is not good practice to only rely
on the residual provided by the solver. We see that for all relaxation factors
ranging from 0.2 to 1 the residual was constant. However, from the Grid
Convergence Index method we see that the solution does not converge for
relaxation factors between 0.2 and 1. A convergent solution is obtained for
relaxation factors in the range 1.053-1.08.
The neural network mentioned on the last step of the algorithm is optional.
In fact the results obtained are not satisfactory. The objective was to create
a model for predicting future mesh sizes as a function of CPU time. Table
(5.5) shows the application of Grid Convergence Index to the simulation of
the turbulent fully dispersed two-phase flow. The discretisation error com-
putation is based on the minimum phase fraction of air in the internal field
flow. The optimum value for the relaxation factor obtained was around 0.2.
The GCI method showed that the coarser grid was better than the finer grid.

The parameter optimisation strategy proposed is solely based on the Open-
Foam solvers interFoam and twoPhaseEulerFoam. Both solvers use the PIM-
PLE algorithm to solve the Navier-Stokes equations and the two fluid model
equation respectively. The PIMPLE algorithm can run in SIMPLE mode,
PISO mode or both. To run in SIMPLE mode the user must set nOuter-
Correctors to a value greater then one and set nCorrectors to one. To run
in PISO mode the opposite is true.
The parameters a↵ecting both CPU time and accuracy are then nCorrec-
tors and nOuterCorrectors. Lower values of these parameters result in higher
residual. This is because these parameters represent the number of pressure
corrections, and more correction means more accurate solution. The relax-
ation factor however seems to a↵ect much more the accuracy of the solution
than the CPU time: the latter is flow/application dependent. The turbulent
two-phase flow simulation is less accurate then the laminar two-phase flow.
The mesh size is a↵ecting the accuracy and the CPU time. This can be
seen from the Grid Convergence Index method, where the finer grid shows

85



more accuracy than the coarser grid. However, from the simulation of the
fully dispersed turbulence flow the opposite was true. This is perhaps due
to the complexity of turbulence flow. The limitation on the fully dispersed
two-phase flow was due to the fact that the physical parameters such as
phase diameter were kept at a constant value. It is well-known that drag
forces are a↵ected by the size of the phases, such as air particle diameter.
This could explain the less satisfactory result in terms of discretisation error
for the fully dispersed turbulence flow.

86



Chapter 6

Conclusion

This thesis was set out to explore the e↵ect of numerical parameters on
two-phase flow. Particular attention was dedicated to the e↵ect of these pa-
rameters on the accuracy and CPU time. An open-source CFD software was
used to simulate the rising of a single air bubble in liquid water and a fully
dispersed turbulence two-phase flow of air and water. From the simulation
results the e↵ect of numerical parameters was shown.
The thesis was also set out to explore the accuracy of solutions in OpenFoam
in terms of the residual provided by the solvers, and answer the question of
whether the residual was a good representative for the accuracy of the so-
lution. Two solvers were used in this study: interFoam and twoPhaseEuler-
Foam. The former solves the Navier-Stokes equations and applies the Vol-
ume Of Fluid method to track the interface between the phases, while the
latter solves the Navier-Stokes equations for each phase and is coupled with
the k � " model to deal with turbulence.

From the simulation of a single rising air bubble in liquid water, the pa-
rameters a↵ecting accuracy and CPU time were the number of correctors in
the OpenFoam solver algorithm PIMPLE: nCorrector and nOuterCorrector.
The PIMPLE algorithm includes two parameters that allow the solver to run
either in PISO mode or SIMPLE mode. The PISO algorithm was originally
designed for unsteady state problems, while the SIMPLE algorithm was
originally designed for steady-state problems but can solve unsteady state
problems as well. To run the PIMPLE algorithm in PISO mode, the param-
eter nCorrectors must be greater than one and the parameter nOuterCor-
rector must be set to one. The converse is true for the SIMPLE algorithm.
From the simulation results it was shown that the PISO mode of the PIM-
PLE algorithm performs better than the SIMPLE mode in terms of residual
computed from the solver. In both cases, the larger the number of correctors
the higher the CPU time, and the lower the residual. This is due to the fact
that the correctors nCorrector and nOuterCorrector correct the pressure to
improve the solutions.

87



Another important parameter a↵ecting the accuracy was the relaxation fac-
tor. The e↵ect of the relaxation factor on the solution could not be seen
from the residual computed from the solvers (interFoam and twoPhaseEuler-
Foam). In fact, for a range of relaxation factors from 0.2 to 1.05 the residual
from the solver was constant for all relaxation factor values. To reveal the
importance of the relaxation factor on the solution, the Grid Convergence
Index (GCI) method was used. The method is a multi-grid method. It uses
three local solutions computed on a coarse, medium and finer grid to com-
pute the Grid Convergence Index. The latter is the percentage of how far
the computed solution is away from the zero grid solution.
The GCI method also provides a way to compute the zero grid solution.
However this solution is not conservative. It is therefore recommended to
use the GCI method to compute the discretisation error. Using the GCI
method we saw that a value of 1.05-1.08 provided a better solution for the
rising velocity of the bubble. The rising velocity computed was further com-
pared to benchmark data provided from the literature and the results were
satisfactory. The residual computed from the solver is therefore not repre-
sentative of the absolute accuracy of the solution. To test the solution extra
methods must be used to evaluate the discretisation error.

The solution computed for the turbulent dispersed two-phase flow obtained
from the twoPhaseEulerFoam solver was not as good as the solution com-
puted from the rising bubble problem. In the dispersed flow problem, the
discretisation error computed on the phase fraction of air in the two-phase
flow was quite large: 62 percent on the finer grid and 30 percent on the
coarser grid. This means that on the finer grid the computed solution is 60
percent far away from the zero grid solution, while 30 percent away on the
coarse grid.

In order to e↵ectively optimise the numerical parameters involved in this
study an optimisation strategy/algorithm based on the performance of the
PIMPLE algorithm was derived: (i) run the PIMPLE algorithm on the PISO
mode to achieve better convergence, (ii) use the GCI method to sequentially
find the optimum relaxation factor.
In the course of this study a neural network was used to test the possibility
to predict CPU time for a chosen mesh size. This would give the user the
flexibility to choose appropriate mesh size depending on the computational
power available. The prediction power of the neural network was limited for
values far away from the one used to train the network.

One of the limitations of this study was the fact that the turbulence model
only considers the e↵ect of numerical parameters on the solutions. Con-
siderations should have also been given to the physical parameters such as

88



the size of the phase diameters. This would have allowed a more general
setting for the parameter optimisation. The parameter optimisation study
performed in this thesis was limited to few numerical parameters.
A natural extension of this thesis is to study both numerical and physical
parameters and provide an optimisation strategy by considering all numeri-
cal and physical parameters. Ultimately, an interesting extension would be
to incorporate the optimisation at the solver level: this means redesigning
the solvers to incorporate automatic discretisation error computation and
numerical and physical parameter optimisation capabilities.

89



90



Bibliography

[1] H.k. Versteeg, W. Malalasekera An Introduction to Computational Fluid
Dynamics. The Finite Volume Method. Second edition, Pearson, London,
2007

[2] Suhas V. Patankar Numerical Heat Transfer and Fluid Flow Series
in computational methods in mechanics and thermal sciences, HEMI-
SPHERE PUBLISHING CORPORATION, Washington, New York
London

[3] Patankard S.V, Spalding, D.B A calculation procedure for heat, mass
and momentum transfer in thee-dimensional parabolic flows Int.J of Heat
and Mass Transfer, Volume 15,issue 10, October 1972, Page 1787-1806

[4] H.Rusche Computational Fluid Mechanics of Dispersed Two Phase Flows
at Higher Phase Fraction. PHD thesis, University of London, 2002.

[5] S.K Jordan and J.E Fromm Fondamentals concerning wave loading on
o↵shore structures. Phys. Fluids, 15(6):972-976, 1972

[6] Newton I Philosophiae Naturalis: Principia mathematica. Colloniae Al-
lobrocum, Sumptibus CI. and Ant.Philibert Bibliop., Roma, 1760

[7] Stokes G.C ON the e↵ect of internal friction of fluids on the motion of
pendulums. Trans. Camb. Phil. Soc., 9;8-27,1851

[8] Smolianski A. Haario H. Luukka P Vortex Shedding Behind a Rising
Bubble and Two-Bubble Coalescence: A numerical Approach. Zurich,
Lappeenranta.

[9] T. Ma., T.Ziegenhein., D.Lucas.,E.Krepper.,J.Frohlich Euler-Euler large
eddy simulation for dispersed turbulent bubbly flows. International Jour-
nal of Heat and Fluid Flows 56 (2015) 51-59

[10] A. Tomiyama., H.Tamai., I.Zun., S. Hosokawa Transverse migration of
a single bubble in a simple shear flow . Chem. Eng. Sci. 57, 1849

[11] M. Schmidtke Investigation of the Dynamics of Fluid Particles Using
Volume of Fluid Method. PHD-Thesis, Universitat Paderborn

91



[12] G. Segre And A. Silberberg Radical particle displacement in Poiseuille
flow of suspensions. Nature, 189:209-210, 1961

[13] G. Segre And A. Silberberg Behaviour macroscopic rigid spheres in
Poiseuille flow. J. Fluid Mech., 14:115-157, 1962

[14] P. G. Sa↵manm The lift on a small sphere in a slow shear flow. J. Fluid
Mech. (1965), vol. 22, part 2,pp.385-400

[15] J.L.M Poiseuille Recherches sur le mouvement du sang dans les vein
capillaire. Mem. de l ’ academide des Sciences, 7:105-175,1841

[16] Klostermann J,. Schaake K,. Schwarze R Numerical simulation of a
single rising bubble by VOF with surface compression International
Journal for Numerical Methods in Fluid, 2012.

[17] Clift R., Grace J.R Weber M.E Bubble, Drops and Particles Brown
University. Report GEOFLO/5, DOE/ET/27225-8,Rhode Island, USA,
1981.

[18] Hirt. C.W,. Nichols B.D Volume of Fluid (VOF) Method for the Dy-
namics of the Free Boundaries Journal of Computational Physics 39;201-
225(1981)

[19] Hysing S. Turek S. Kuzmin D. Parolini N. Burman E. Ganesan S. Quan-
titative benchmark Computation of two-dimensional bubble dynamics
International Journal for Numerical Methods in Fluid 2009; 60:1259-
1288

[20] OpenFOAM. Thee Open Source CFD Toolbox User Guide. Version
3.0.1 13th December 2015

[21] Roache P.J Perspective: Method for Uniform Reporting of Grid Re-
finement Studies Journal of Fluids Engineering 406 Vol. 116 September
1994

[22] Bodvarson, Eca L,. Hoekstra M. A verification Exercise for Two 2-D
Steady incompressible Turbulence Flows European Congress on Compu-
tational Methods in Applied Science and Engineering. CCOMAS 2004

[23] Richardson L.F ,The Approximation Arithmetical Solution by Finite
Di↵erences of Physical Problems involving Di↵erential Equations, with
an Application to the Stress in a Masonry Dam Trans. Roy. Soc. Lond.
Ser. A 210, 307-357

[24] Richardson L.F ,The deferred approach to the limit Trans. Roy. Soc.
Lond Ser A 226, 229-361

92



[25] Kranke J. Frank W. , Application of generalised Richardson extrapo-
lation to the computation of the flow across an asymmetric street inter-
section Journal of Wind Engineering and Industrial 96(2008)1616-1628
ELSEVIER

[26] Celia M. A, Gray W. G Numerical Methods for Di↵erential Equa-
tions. Fundamental Concepts for Scientific and Engineering Applica-
tions. Prentice Hall, New Jersey. 1992

[27] Brenner C. Susanne, Scott L. Ridgway The mathematical theory of
finite element methods. Springer, Third edition, New York, 2008.

[28] Edwin K.P Chong. Stanislaw H Zak An introduction to Optimisa-
tion Wiley-Interscience Series in Discrete Mathematics and Optimisa-
tion, Second edition, 2001.

[29] Balaz Csanad Csaji Approximation with artificial neural networks
Master thesis. Faculty of science Eotvos Lorand University of Hungary.
20011.

[30] Bringedal. C Linear and nonlinear convection in porous media between
coaxial cylinder. Master of science thesis in applied computational math-
ematics, University of Bergen, 2011.

[31] Schulkes R. Introduction to multiphase in pipe. Lecture Note.

[32] Hill D. The computer simulation of dispersed two phase flows. Doctorate
thesis, Imperial College of science and technology, London.

[33] Wikipedia the free encyclopaedia
https://en.wikipedia.org

[34] Chetveryk, H. Analytical and numerical modeling of cold water in-
jection in to Horizontal reservoir,. Geothermal training program, The
United Nation University, Iceland, 2000, Report number 4

[35] Daryl L. Logan A first course in finite element method. THOMSON,
Canada, Fourth edition, 2007.

[36] Edwards A.L Trump: A computer program for transient and steady
state temperature distribution in multi dimensional systems Report
UCRL-14754. Rev. 3. Lawrence Livermore National Laboratory. Liver-
more CA. USA, 1972.

[37] Evan, S. L Partial Di↵erential equation,. AMS, RHodes Island., VOL-
ume 19 2000

[38] Go�n A.J.J; Rajadas J;Filler G.G Interfacial flow processing of collagen
American Chemistry Society, 2009.

93



[39] Osher Level set methods: An overview and some recent results, 2000

[40] Mckee, S. Tome M.F; Ferreira V.G Ciminato J.A The MAC method
Computers And Fluid 37 (2008) 907-930

[41] Weston Ben A marker and cell solution of the incompressible solution of
Navier-Stokes equation for the free surface. Numerical Analysis Report
6 2000

[42] Osher, S., and Sethian J.A Front propagating with curvature dependent
speed: Algorithms based on the Hamilton-Jacobi formulation Comput.
Phys. 79,12-49 (1998)

[43] Harlow F.H and Welch J.E Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with free Surface. Physics of Fluids
8, 2182 (1965).

[44] Gudmudsson, J.S and G. Olsen,S. Thorhalsson, 1985 Svartsengi Field
Production and Depletion Analysis , Proceeding, Tenth Workshop on
Geothermal Reservoir Engineering, Stanford University, Stanford, Cali-
fornia , January 22-24, 1985

[45] Gudmudsson, J.S and G. Olsen, 1987 Water-influx modelling of
the Svartsengi Geothermal field Iceland. ,SPE Reservoir Engineering
(Feb.1987),77-84

[46] Hagdu T, Zimmerman R. W, Bodvarsson G Coupled Reservoir-
Wellbore Simulation of Geothermal Reservoir Behavior. Geothermics,
Vol, 24, No. 2.pp. 145-166, 1995.

[47] Hjartarson A. Bjornsson G. Saemundsson K Stimulation and measure-
ment in well MN 8 in Munadarnes. A report prepared for Orkuveita
Reykjavik by Iceland geosurvey, 2003.

[48] Holden, H. Risebro, H.H Front tracking for Hyperbolic Conservation
Laws,. Springer, Berlin. New York-USA., 2th edition, 2007

[49] Kjaran, S:P., G:K. Halldorsson, S. Thorhallson and J. Eliasson, 1979,
Reservoir engineering aspects of Svartsengi geothermal area Geoth.
Ressources Concil Trans.,3,337-339.

[50] Kocabas, I. Geothermal characterization via Thermal injection back
flow and inter wells tracer testing,. Geothermic, 34, 27-46 (2005)

[51] Logg Anders Automated solutions of di↵erential equations by the finite
element methods. Germany , 20011.

94



[52] Narasimhan T.N, Witherspoon P.A An integral finite di↵erence method
for analysing fluid flow in porous media. Water Resour. Res. 12.57-64,
1976.

[53] Narasimhan Norton D.L Theory of Hydrothermal systems. Ann. Rev.
Earth Planet. Sci 1984. 12:155-77

[54] Miller C.W Wellbore Users Manual. Berkley University of California.
Report , No LBL-10910, USA 1980.

[55] Ockendon, J. Howinson, S Applied Partial Di↵erential equations,. Ox-
ford, New York.,Revised edition2003

[56] Olver, p.J Equivalence, Invarients, and symmetry, Cambridge Univer-
sity press 1995

[57] Osullivan, M.J, Karsten Pruess, Marcelo J Lippman State of the art of
geothermal reservoir simulation. Geothermics 30(2001). 395-429 .

[58] Pritchett J. W STAR: A geothermal simulation system. Proceedings of
the World Geothermal Congress, 1995.

[59] Barron R.M, and Neyshabouri A. A .S E↵ect of under relaxation factors
on Turbulent flow simulation int J. Numer. Meth Fluids 2003; 42:923-
928

[60] Pruess Kasten Mathematical modeling of fluid flow and heat transfer
in geothermal systems-An introduction in five lectures. United state
University, Iceland, Reykjavik , 2002.

[61] Sayantan G. Kumar M Geothermal Reservoir- A brief Review Journal
of Geological Society of India. Vol.79, Jun 2012, pp.582-602

[62] Stark M.A, W.T Box Jr, J.J Beall, K.P Goyal and A.S Pingol, 2005 The
Santa Rosa-Geyser Recharge Project . Geyser Geothermal Field Cali-
fornia, Proceedings of the World Geothermal Congress 2005, Antalya,
Turkey, April, 9 pp

[63] Stefansson V., 1997 Geothermal Reinjection experience. Geothermics,
26, 99-130

[64] Salas, D.M The curious events leading to the theory of shock
waves,. Invited lecture at the 17th shock International symposium, Rome-
Italy(2006)

[65] Springer reference. Springer. www.springerreference.com

[66] Vinsome P.K.W., Shook, G.M Multi-Purpose Simulation. Petrol Sci-
ence and Engineering 9(1)29-38.

95



[67] Wajnarowski, P. Stapo, S Analytical model of cold water front move-
ment in a geothermal reservoir,. Geothermics, 35, 59-64 (2006)

[68] Young, H.D. Fredman, R.A University physics,. Addison Wesley,
Boston, New York.,11th edition2004

[69] Zoback, M.D Reservoir Geomechanics ,. Cambridge University press,
United Kingdom, 2008

[70] A. Logg., Injection at the Beowa geothermal reservoir, Elsvier, USA,
2011.

[71] P. S. Pacheco., Tracing of injection in the Geysers, Elsvier, USA, 2011.

[72] Wang K., 2005 Studies of the Reinjection Tests in Basement Geother-
mal Reservoir, Tianjin, China. Proceedings of the World Geothermal
Congress 2005, Antalya, Turkey, April, 12 pp.

[73] Woods. John,. P. K nobloch., vaporisation of a liquid moving front mov-
ing through a hot rock porous medium, Advance in computation mathe-
matics, USA, 2007

[74] Whiting, R.L,Ramey, H.J., Application of Material and Energy Bal-
ances to Geothermal Steam production, J.Pet.Tech. (July,1989) 893-900

[75] Iceland Geosurvey Iceland Geosurvey webpage www.isor.is

[76] US Department of energy Energy E�ciency and Renewable Energy
www1.eere.energy.gov

96


