
Computability 1 (2012) 1–14
DOI
IOS Press

1

On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

Dag Normann
The University of Oslo, Department of Mathematics
P.O.Box 1053 Blindern, Oslo, Norway
dnormann@math.uio.no
http://folk.uio.no/dnormann/

Abstract. We prove that if a closed subset X of the Baire space is searchable in the sense of Escardó [2], and by a functional
definable in Gödel’s T, then X is countable, and the Cantor-Bendixson rank of X is bounded by the ordinal ε0. To this end we
introduce evaluation trees, well founded decorated trees that induce operators from the full set-theoretical class NN→ N to NN.
We prove that when a search operator for a set X is induced from an evaluation tree T , then the Cantor-Bendixson rank of X is
bounded by the Kleene-Brouwer order type of T . Further we use a theorem due to Howard [8], estimating the ordinal complexity
of the reduction tree of a term in system T, to show that all functionals of type (NN→N)→NN definable in T can be computed
using an evaluation tree of ordinal rank below ε0.

Keywords: Searchable, Gödel’s T, Cantor-Bendixson rank

1. Introduction
In this paper, we will give partial answers to the following question:

Let X be a set. Assuming that there is a procedure Φ that to a predicate P on X decides if P is empty on X or
not, what can we say about X?

The question is not very precise, and in order to turn it into a mathematical problem we have to specify

1. What kind of sets X will we consider?
2. What do we mean with a “procedure”?
3. Will we consider all predicates or just a natural collection of them?

If X is a finite set {x1, . . . ,xn}, the answer will be that as long as we allow for using oracle calls P(xi) in our
model for procedures, whatever this model of procedures might be, we can decide if P is empty on X or not.

If X is infinite, a procedure will essentially have to take a function

P : X→{0,1}

as an input, and then give one of the two values 0 or 1 as the output, so the procedure will itself be an object of
type level 2 over X. This suggests that various models for computing with functionals will be of interest when we
make our problem precise. When nothing else is said, we will let X be a compact subset of Baire space NN. X is
then a topological space, and we will either let P range over all functions from X to {0,1} or, as in Section 4, the
continuous ones.

Escardó [2] defined the concepts of searchable and exhaustible sets originally for continuous models of LCF
[15] (or equivalently PCF [14]). We will discuss this in more detail below. Later he also considered these concepts
as induced by the computational model of Gödel’s T [7]. Our main concern will be with searchable sets modulo T,
but we will also consider an intermediate model, Kleene’s S1 - S9 [9]. We will let T and S1 - S9 have their standard
interpretations over the full set-theoretical type structure.

2211-3568/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

2 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

For a detailed introduction to higher order computability, one may consult the forthcoming [12]. Here we will
give brief introductions to PCF, to Kleene’s S1 - S9 and to the calculus we are mainly interested in, Gödel’s T.

1.1. Background
The Kleene schemes S1 - S9 and the corresponding concept of computability was originally defined for the full
type-structure of pure types, and it is a calculus that gives meaning to expressions like

{e}(Φ1, . . . ,Φn) = a.

Here e may be viewed as a Gödel number of an algorithm, Φ1, . . . ,Φn will range over the functionals of some
pure, finite types (coded into e) in the full set-theoretical type structure and a is a non-negative integer. S1 - S9
are nine clauses in a grand strictly positive inductive definition of the set of sequences (e,Φ1, . . . ,Φn,a) such that
{e}(Φ1, . . . ,Φn) = a. However, Kleene’s definition will also make sense in other reasonably closed type structures
of total or partial functionals, and the strength of this model of computability will strongly depend on the typed
structure it is interpreted in.

The Kleene-Kreisel continuous functionals were essentially and independently defined in Kleene [10] and
Kreisel [11]. There are numerous characterizations of this typed structure. The one being most useful for our pur-
pose is via the partial continuous functionals. We define the typed structure of partial continuous functionals over
the integers within the category of Scott-Ershov domains, as initiated in Scott [15]. We then isolate the hereditarily
total objects in this structure with the canonical equivalence relation of extensional equivalence. The equivalence
classes will correspond to the Kleene-Kreisel continuous functionals.

In his seminal, but for a long time, unpublished note [15], Scott introduced the formal calculus LCF, which was
later transformed into a programming language PCF by Plotkin [14]. PCF is a formal calculus without reference
to any particular model, and may be viewed as a typed λ -calculus with least fixed point operators of all types.
The partial continuous functionals will serve as a model for PCF, and in this model PCF and S1 - S9 have the same
computational power. An element of the corresponding equivalence class will be a representative of a functional. We
say that a Kleene-Kreisel functional is PCF-definable if there is a representative of it among the partial continuous
functionals that is the interpretation of a PCF-term. Normann [13] proved that if a Kleene-Kreisel functional has a
representative that can be approximated by a computably enumerable set of finitary elements of the Scott-Ershov
domain, then it is PCF-definable. This also means that there is a representative that is S1 - S9 - computable in the
model of partially computable functionals. This is seemingly in contrast to the theorem in Tait [17], where it is
proved that the fan functional (see discussion later) is not Kleene computable, but fortunately, only seemingly.

Martı́n Escardó [2] introduced searchable and exhaustible sets in the framework of PCF, the partial continuous
functionals and the Kleene-Kreisel continuous functionals. A set X of Kleene-Kreisel functionals is searchable in
the original sense of Escardó if there is a PCF-definable operator ε such that whenever P is a continuous function
mapping X into {0,1} then ε(P) ∈ X and

∃x ∈ X(P(x) = 1)⇔ P(ε(P)) = 1.

Escardó proved that all searchable sets are compact and that there are close analogies between being non-empty
and compact and being searchable. In particular he proved an effective analogue of the Tychonoff theorem for
countable products of searchable sets. He also considered searchable sets of hereditarily total functionals in the
Scott-domains, but this will not be of relevance to us.

An important source of inspiration for Escardó’s work was a theorem due to Berger [1]:

There is a PCF-definable representative for the fan functional.

The fan functional is a Kleene-Kreisel functional of pure type 3. We will let C = {0,1}N be our version of the
Cantor set. C is compact, so every continuous functional F of type 2 will be uniformly continuous on F. This again
means that there is a uniform modulus n of continuity, i.e., if f ,g ∈ C agrees on 0, . . .n−1, then F(f) = F(g). The
fan functional Φ “computes” the least such modulus of continuity. Φ has a computable representative, but Tait [17]

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 3

proved that Φ is not computable in Kleene’s original calculus based on S1 - S9. The key to the argument is that a
Kleene algorithm with an input F of type 2 can only utilize F restricted to a countable set, while Φ(F) will need to
know F on the full Cantor set C.

Berger [1] proved that the fan functional is PCF-definable. According to private information from Martin
Hyland, this was known to Robin Gandy, but not published. Simpson [16] used the methods of Berger to prove that
there are PCF-programs for Riemann integration and for computing the maximal value of a continuous function on
a closed, bounded interval, in the sense of the model for exact computing with reals suggested by Di Gianantonio
[4–6].

1.2. Searchability in weaker systems
1.2.1. System T

Our version of T will be like this:

- We consider all finite types over the base type 0. We write

σ = τ1, . . . ,τn→ 0

for σ = τ1→ (· · · → (τn→ 0) · · ·).
- Our term language will be that of typed λ -calculus with extra constants 0̂ of type 0, successor suc of type

0→ 0 and recursors recσ of types 0,σ ,(0,σ → σ)→ σ for each type σ . We write N, M etc. for terms.
We will, by recursion, write n̂ + 1 for suc n̂. The terms n̂ are called numerals

- The conversion rules will be the conversion rules of typed λ -calculus with α- and β -conversion
α: λxσ .M ; λy.M[x/y]
β : (λxσ .M)N ; M[x/N]
where we also accept conversion of subterms. We of course assume that all substitutions are legal.
We have standard conversion rules for the constants:
- recσ 0̂MN ; M
- recσ n̂ + 1MN ; Nn̂(recσ n̂MN)

We will let ; be reflexive and transitive. We extend T to TP by adding a new constant P̂ of type (0→ 0)→ 0.
We will not add conversion rules for P̂ directly, but for each instance P we may consider an infinitary P-rule: If

M is a term of type 0→ 0 and Mm̂ ; f̂ (n) for each n ∈ N, then P̂M ; P̂(f).
We finally say that a term M defines Φ of type ((0→ 0)→ 0)→ 0 if for every P and n, Φ(P) = n if and only

if M ; n̂ when we use the P-rule. We then say that Φ is T-definable. These concepts extend trivially to functionals
into NN.

1.2.2. The conjecture
Escardó [3] found examples of infinite, countable sets that are searchable by operators definable in System T.
The least ordinal > ω closed under addition, multiplication and exponentiation is known as ε0. For each ordinal
α < ε0 Escardó found a compact, well ordered subset Xα of the Cantor-space C of order type β ≥ α , such that X
is searchable by a functional definable in T. T of course offers a weaker model of computability than PCF, so it is
remarkable that for these examples, the search algorithms will even work for all predicates, not just the continuous
ones.

Escardó presented these results, later published in [3], at the workshop Types 2011 in September 2011. There he
suggested that if a set X is searchable via an operator definable in T, then X must be countable. He also mentioned
the possibility of the Cantor-Bendixson rank of X to be bounded by the ordinal ε0 and left this as an open problem.
At a Dagstuhl workshop in October 2011 he presented his results again, this time actually conjecturing that ε0 is an

4 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

upper bound for the topological complexity of T-searchable sets. The main result of this paper is that this conjecture
is true.1

1.2.3. This paper
In Sections 2 and 3 we prove that if X is searchable in T with respect to all predicates on X, then the Cantor-
Bendixson rank of X is bounded by ε0. In Section 2 we introduce the concept of an evaluation tree and, in the case
where there is a search operator for all total predicates P on X computable using an evaluation tree, we show that
the ordinal rank of the evaluation tree induces an ordinal bound on the Cantor-Bendixson rank of X.

In Section 3 we use a result by Howard [8] and show that when an operator of type 3 is T-definable, then it is
computable via an evaluation tree of rank < ε0.

In Section 4 we strengthen the result from Section 2 by only assuming that the search algorithm of the evaluation
tree works for predicates that are continuous on X. This section actually makes Section 2 obsolete, but we believe
that the basic intuition is easier to see from the exposition in Section 2 than it would have been if the sharpest result
had been proved directly.

It is also reasonable to ask when a set X may be searchable by a functional ε definable in Kleene’s S1 - S9
interpreted in the classical way. If we assume that X ⊆NN is closed and searchable with respect to all predicates that
are continuous on X in this way, results of Escardó [2] give us that X is compact.

Employing the method of Tait [17] we can show that while deciding that the empty predicate O is empty on X,
the computation tree of ε(O) must make an oracle call O(f)? for each f ∈ X. Thus X has to be countable, and there
will actually be an effective enumeration

X = {fn | n ∈ N}

of the elements in X, an enumeration extractable from the computable, infinite and well founded computation tree
of ε(O). We say that X ⊆ NN is computably enumerable when there is a computable enumeration like this. It is an
open problem whether it suffices that a set X is compact and computably enumerable for X to be searchable in the
original sense of Kleene computability over the hereditarily total functionals.

For the sake of completeness, we will define the Cantor-Bendixson rank in the next section. Let us consider here
the set A of pairs (h,g) from NN where g codes a total ordering on a set dom(g), h maps N onto dom(g), and for
each n ∈ N we have that h(n) ∈ dom(g) has a rank in dom(g) that equals the Cantor-Bendixson rank of fn in X. A
will be an arithmetical set, and when (h,g) ∈ A, g will code an ordinal exceeding the Cantor-Bendixson rank of X.
Thus there is a Σ1

1-set of codes for well orderings where each well ordering bounds the Cantor-Bendixson rank of X.
By standard descriptive set theory, this shows that the Cantor-Bendixson rank of X is a computable ordinal. Since
there are no original technical aspects of this argument, we omit further details.

2. Sets that are searchable using evaluation trees
2.1. Preliminaries
It is well known that a countable, compact Hausdorff-space X is homeomorphic to the ordering topology of a
countable successor ordinal. A familiar proof will use the Cantor-Bendixson rank, CB-rank, of the elements of X
defined as follows:

- If x is isolated in X, then CB-rank(x) = 0.
- If α > 0, we do not have that CB-rank(x)< α but there is a neighbourhood B of x such that CB-rank(y)< α

for all y ∈ B that are different from x, we let CB-rank(x) = α .

1The author had intense discussions with Escardó on this conjecture during the Dagstuhl meeting. In May-June of 2012 we met again,
this time at the Newton Institute in Cambridge, UK in connection with the program SAS, and we continued our discussions with some
further progress.

The technical breakthrough came during the autumn of 2012 and was due to the author. We decided, after some discussion, not to
write a joint paper, but the influence of Escardó is important, both as a supplier of motivation and as a discussion partner.

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 5

If X is a compact, countable Hausdorff space, each x ∈ X will have a CB-rank. By sequential compactness, there
will be an element with maximal CB-rank, and there can only be finitely many of those.

We will make use of the following observation. The proof will use sequential compactness, and the observation
may serve as a student exercise in general topology:

Lemma 2.1. Let X and Y be countable, compact Hausdorff-spaces, φ : X→ Y be continuous and surjective.
For each y ∈ Y there is an x ∈ X such that

φ(x) = y and CB-rank(x)≥ CB-rank(y).

In this paper, a tree will be a set of finite sequences from N, closed under sub-sequences. The empty sequence e
will be the root of the tree. The elements of the tree are called nodes.

A subtree of a tree T will be a subset that is also a tree. If s ∈ T , the child tree of s is the set of sequences t such
that the concatenation st ∈ T . In the notation for concatenation, we will identify a number with the corresponding
sequence of length 1.

A branch in a tree will be the set of subsequences of some node in the tree. We will not assume that a branch
necessarily ends in a leaf node, but of course it may do so.

Let <l be the following partial variant of the lexicographical ordering on the set of finite sequences:

a0 · · ·an−1 <l b0 · · ·bm−1 if there is an i < min{n,m} such that ai < bi and aj = bj for all j < i.

Let s ≺ t if s is a proper subsequence of t and let s � t if s is just a subsequence of t. We sometimes write “left
of” for <l.

We will use the Kleene-Brouwer ordering <KB of the set of finite sequences from N defined as follows: s <KB t if
t ≺ s or if s <l t. We let ≤KB be the reflexive counterpart. The Kleene-Brouwer ordering is a total ordering. The key
property is that a tree T is well founded if and only if the Kleene-Brouwer ordering well-orders T . A well founded
tree will have ordinal rank < ε0 if and only if the Kleene-Brouwer ordering of the tree has length < ε0.

Our trees will for the most be decorated, meaning that we attach some mathematical object to each node in the
tree.

2.2. Evaluation trees
Our tool for investigating the Cantor-Bendixson rank of sets searchable in weak systems will be evaluation trees:

Definition 2.2. An evaluation tree will be a well founded, decorated tree T of finite sequences s from N satisfying

- A node s in T is either a leaf node in T , or a full branching node, i.e. the n’th successor sn ∈ T for all n ∈ N.
- If s is a leaf node, then it is decorated with a function fs ∈ NN.
- If s is a branching node, it will be decorated with a continuous functional Fs : NN→ NN.

Definition 2.3. If T is an evaluation tree as above, P : NN → N and s ∈ T , we let [[s]]T(P) ∈ NN be defined by
transfinite recursion as follows:

- If s is a leaf node then [[s]]T(P) = fs.
- If s is a branching node, we let [[s]]T(P) = Fs(λn.P(fsn)).

We will normally drop the lower index T when it is clear from the context.

2.3. The main theorem
This section is devoted to the proof our main technical result:

Theorem 2.4. Let X ⊆ NN be closed. Let T be an evaluation tree such that

P 7→ [[e]]T(P)

6 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

is a search operator for X (where e still denotes the empty sequence).
Then X is countable, and the Cantor-Bendixson rank of the elements of X are bounded by the rank of the Kleene-
Brouwer ordering of T.

We will split the proof into several lemmas, where we assume that X and T are as in the theorem. Our intuition is
that in order to define a search operator, T must implicitly search through X for an f satisfying P, and, when at a node
in T finds an f satisfying P, this information is brought to the top. In this section we turn this intuition, restricted to
one-point predicates, into the definition of being a relevant node. Our construction will be non-constructive, because
we cannot tell in an effective way which are the nodes in T actually contributing to [[e]]T being a search operator
and which nodes are just dummy ones.

We will let O denote the everywhere zero function on NN and for f ∈ X we will let

Pf (g) =
{

1 if f = g
0 if f 6= g

Note that we will have that [[e]](Pf) = f for all f ∈ X.

Definition 2.5. A node s ∈ T is relevant for f ∈ X if [[t]](Pf) = f for all t � s.
A node s in T is critical for f ∈ X if it is �-maximal among the set of nodes relevant for f .

The set of nodes s in T that are relevant for f ∈ X will form a subtree Tf , and the leaf nodes of Tf will be the nodes
that are critical for f .

Since e is relevant for all f ∈ X, there will be at least one critical node for each f ∈ X.

Lemma 2.6. Let f ∈ X and let s be critical for f .
Then f = [[s]](O).

Proof
If s is a leaf node, we have that [[s]](O) = fs = [[s]](Pf) = f , where the last equation follows from the assumption
of the lemma.

If s is a branching node, we have that [[sn]](Pf) 6= f for each n ∈ N, and thus

[[s]](O) = Fs(λn.O([[sn]](O))) = Fs(λn.Pf ([[sn]](Pf))) = [[s]](Pf) = f .

This ends the proof.

This shows in particular that X must be countable.

For each s ∈ T , we now let R(s) be the set of f ∈ X such that s is on the leftmost branch in Tf . 2

We let T∗ be the set of nodes s for which R(s) 6= /0. T∗ will be a subtree of T , and the Kleene-Brouwer ordering
on T∗ will be a sub-ordering of the Kleene-Brouwer ordering of T . Our aim will be to construct a surjective map φ

from T∗ onto X that is continuous with respect to the order topology of the Kleene-Brouwer ordering of T∗. Since
the order topology of T∗ will be compact, X is compact. We then use Lemma 2.1 to obtain the theorem.

Observe that if s� t ∈ T∗, then R(t)⊆ R(s).

Lemma 2.7. If t ∈ T∗, tni ∈ T∗ for each i ∈ N, limi→∞ ni = ∞ and fi is in the closure of R(tni) for each i ∈ N, then

i) [[t]](O) = limi→∞ fi.
ii) [[t]](O) is in the closure of R(t).

2In Section 4 we will just assume that X is searchable by T with respect to continuous predicates, We will then modify our proof and
also define an alternative to R(s).

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 7

Proof
ii) is a consequence of i) and the fact that the closure of R(tni) is a subset of the closure of R(t) for each i ∈ N. In
order to prove i) it is sufficient to assume that fi ∈ R(tni) for each i ∈ N.

The point of selecting the leftmost path is that if n < ni, then [[tn]](Pfi) 6= fi, so Pfi([[tn]](Pfi)) = 0 when n < ni.
It follows that

[[t]](O) = Ft(λn.0) = lim
i→∞

Ft(λn.[[tn]](Pfi)) = lim
i→∞

[[t]](Pfi) = lim
i→∞

fi.

This ends the proof of the lemma.

We now define φ(t) for t ∈ T∗ as follows

- φ(t) = [[t]](O) if [[t]](O) is in the closure of R(t).
- φ(t) ∈ R(t) is arbitrary otherwise.

Lemma 2.8. φ is continuous and onto X, when T∗ has the order topology of the Kleene-Brouwer ordering on T∗.

Proof
φ will be surjective because when t is the leftmost node critical for f we have that f = φ(t).

Let t ∈ T∗. We will prove that φ is continuous in the point t. If t is an isolated point in the order topology, there is
nothing to prove, so assume that t is a cluster point. It suffices to prove continuity with respect to sequences {ti}i∈N
where each ti is a proper extension of t, since any sequence of points different from t, but converging to t, will consist
almost everywhere of extensions of t.

Then, for each i ∈ N there is an ni such that ti extends tni, and we will have that limi→∞ ni = ∞.
Since φ(ti) is in the closure of R(ti) we have, by monotonicity of R, that φ(ti) is in the closure of R(tni), and also

in the closure of R(t).
By Lemma 2.7 we see that [[t]](O) = limi→∞ φ(ti) and thus that [[t]](O) is in the closure of R(t). Then φ(t) =

[[t]](O), and φ is continuous with respect to this sequence. Since continuity is equivalent to sequential continuity in
this case, this proves that φ is continuous.

This ends the proof of Theorem 2.4.

2.4. Pre-evaluation trees
In Section 3 we will prove that whenever a functional Φ of type ((0→ 0)→ 0)→ (0→ 0) is definable in Gödel’s T,
then there is an evaluation tree of rank less than ε0 that computes Φ. We will use a theorem from Howard [8], where
he proves that a specific tree related to a term for Φ has rank < ε0. The tree we naturally obtain from Howard’s
analysis will be what we call a pre-evaluation tree. In this section we will define this concept and see that each
pre-evaluation tree can be transformed to an evaluation tree with the same effect without increasing the rank.

Definition 2.9. a) An even pre-evaluation tree will be a well founded decorated tree T of finite sequences of
natural numbers such that
- If t ∈ T has an even length, then tn ∈ T for all n ∈ N, and there is no decoration.
- If t ∈ T has an uneven length, the decoration will be a pair (It,Ft) where It ⊆ N and Ft : (It → N)→ N is

continuous.
- If t ∈ T has an uneven length, then tn ∈ T⇔ n ∈ It.

b) An uneven pre-evaluation tree will be like an even one, except that we switch even for uneven and vice versa
in the definition

c) If T is an even/uneven pre-evaluation tree, t ∈ T and F is of pure type 2 we define [[t]](F) ∈ N if the length of
t is uneven/even and [[t]](F) ∈ NN if the length of t is even/uneven as follows:
- [[t]](F) = Ft(λn ∈ It.[[tn]](F)) when the length of t is uneven/even.
- [[t]](F) = λn.[[tn]](F) if the length of t is even/uneven.

8 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

d) Given two trees T and S that either are evaluation or even pre-evaluation trees, we say that they are equivalent
if λF.[[e]](F) is the same function for the two trees.

Remark 2.1. For even trees, the leaf nodes will be nodes s of uneven length where Is = /0. We may then identify Fs
with an integer.

Lemma 2.10. For every even pre-evaluation tree T of ordinal rank α there is an equivalent evaluation tree T∗ of
rank ≤ α .

Proof
The proof is by transfinite induction over T , but otherwise trivial. Note that we do not require the construction of T∗

from T to be effective, and for our applications, it would be irrelevant to do so.
The induction base is when e has no extensions of even length in T .

Then In = /0 for all n, and Fn is just a number an. Then e will be the one and only node in T∗. We let e be decorated
with λn.an.

The induction step is when In 6= /0 for at least one n.
Let {nimi}i∈N be a surjective enumeration of all sequences nm in T of length 2, and for each i ∈ N we let Ti be the
child tree of nimi.
Bringing the decoration along, Ti will be an even pre-evaluation tree for λF.[[nimi]](F). Let T∗i be the equivalent
evaluation tree for each i, and let T∗ consist of e, all sequences i of length one, and all sequences is where s ∈ T∗i .

We bring with us all decorations from each T∗i and ad a decoration Fe that we describe informally:
In order to compute Fe(f)(n) let

Jn = {i | ni = n∧mi ∈ In∧∀j < i(nj 6= n∨mj 6= mi)}.

Then f restricted to Jn will induce a map g : In→ N. We let Fe(f)(n) = Fn(g).
Since each Fn is continuous, Fe will be continuous.
The verifications of the remaining properties are now trivial.

3. Applications to Gödel’s T
As mentioned in the introduction, our aim is to show that if a set X is searchable with an algorithm expressible in
Gödel’s T, then the Cantor-Bendixson rank of X is strictly bounded by the ordinal ε0. Using Theorem 2.4 it will
be sufficient to prove that if X is searchable in this way, this search can be carried out by an evaluation tree of
ordinal rank below ε0. We will use results from Howard [8] to establish the ordinal bound, and we will be brief
when explaining how we obtain a tree from a term in T.

We will prove that if Φ is T-definable and of type

((0→ 0)→ 0)→ (0→ 0)

then there is an evaluation tree for Φ of ordinal rank < ε0.

Definition 3.1. Let M be a term in T, possibly with free variables.
The Howard tree of M will be the tree of finite sequences of terms where M is at the top node and branching is
generated by the following definition of successor. In all cases except 8 the term of which we define the successors
will be of type 0, we assume that everything is well typed and that necessary uses of α-conversions are implicit:

1. If M is a numeral, then M is a leaf node.
2. If M = (λxM1)N1 · · ·Nk then M1(x/N1)N2 · · ·Nk is the one successor.
3. If M = recσ 0̂N2N3 · · ·Nk then N2N4 · · ·Nk is the one successor.
4. If M = recσ n̂ + 1N2N3 · · ·Nk then (N3n̂(recσ n̂N2N3))N4 · · ·Nk is the one successor.

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 9

5. If M = recσ N1 · · ·Nk where N1 is not a numeral, then N1 is a successor (N1 will be of type 0) and recσ n̂N2 · · ·Nk
are successors for each n ∈ N.

6. If M = suc N then N is the one successor.
7. If M is of the form ZN1 · · ·Nk where Z is a variable, then the successors are N1, . . . ,Nk.
8. If M is a term of type 6= 0, then the successors will be all MN1 · · ·Nk where each Ni either is a variable or a

numeral.

Theorem 3.2 (Howard [8]). The Howard tree will always be well founded.
Moreover, for each n ∈ N there is an ordinal αn < ε0 such that for each term M with all subterms having types of
level < n, the Howard tree will have rank < αn.

We refer to the original paper [8] for the proof.

Our situation will not be as general as this. The terms we consider will have one free variable P̂ at the most.
Then 7. will reduce to the case P̂N where the successor will be N.

The successors of N will be all terms Nx, where x is a variable of type 0, and Nn̂ for each n. Our reduced Howard
tree will be the one where we only consider successors Nn̂ to terms N of type 0→ 0. These reduced trees will of
course also satisfy Theorem 3.2.

Theorem 3.3. Let Φ of type ((0→ 0)→ 0)→ (0→ 0) be definable in Gödel’s T.
Then there is an evaluation tree of rank < ε0 computing Φ.

Proof
By Lemma 2.10 it is sufficient to produce an even pre-evaluation tree.
Let P̂ be a variable of type (0→ 0)→ 0 and let M0 with at most the variable P̂ free be such that M0 defines Φ. We
will need uneven pre-evaluation trees for the terms M0n̂ for each n in order to produce the even pre-evaluation tree
for Φ, and in order to prove their existence we give a general construction.

Let M be an arbitrary term of type 0 with only P̂ free and let H be the reduced Howard tree of M. The construction
of the uneven pre-evaluation tree will be by the same cases as the definition of H, where some of the cases are treated
together:

1. If M is a numeral n̂, we let Ie = /0 and Fe be the constant n.
2. If M is of cases 2., 3. or 4. in Definition 3.1, let M1 be the immediate successor and we use the uneven pre-

evaluation tree for M1.
3. If M = suc M1 and H1 is the reduced Howard tree of M1, we let our pre-evaluation tree for M be constructed

from H1, except that we increase the values of Fe with 1.
4. If M is of case 5, the pre-evaluation tree will be constructed as a kind of amalgamation of the pre-evaluation

trees of N1 and each recσ n̂N2 · · ·Nk.
Let J be the set of immediate successors of e and let G be the evaluation function for e in the tree for N1. Let
In,Fn be the corresponding items for recσ n̂N2, . . .Nk.
We imbed J and the In’s into disjoint sets J′ and I′n in N, and let I be the union, where p and qn are the injective
maps.
We let the child tree of m ∈ J in our tree for N1 now be the child tree of p(m), and likewise we transport child
trees of m ∈ In to child trees of qn(m) ∈ I. If f : I→ N we compute F(f) as follows: Let n = G(p−1(f)) and
then let F(f) = Gn(Fn(q−1

n (f))). This F will be our new Fe.
5. If M = P̂N, the successors two steps down will be all terms of the form Nn̂. This is where the reduction of the

Howard tree comes in. Our pre-evaluation tree will now have a branching to all n and the node n is continued
with the pre-evaluation tree constructed from the reduced Howard tree of the term Nn̂.

It now follows by an easy transfinite induction on the reduced Howard tree that the uneven pre-evaluation tree will
compute the number that is the value of M.

10 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

4. Search with respect to continuous predicates only
In this section we will still let T be an evaluation tree for a search operator on a closed set X ⊆NN, but we will only
assume that [[e]] is a search operator on X with respect to predicates P that are continuous on X.

The main result of the section will be that the CB-rank of X is still bounded by the Kleene-Brouwer order type
of T . The idea and structure of the proof is like our proof of Theorem 2.4 with an adjusted definition of the predicate
R.

We will let s, t range over nodes in T . We let Σ be the set of finite sequences with extensions in X. We let
σ , possibly with indices, range over Σ. We will consider σ to be a finite partial function, so an expression like
f = limn→∞ σn will make sense. Our argument will work for all compact sets X ⊆NN, but to ease the use of notation,
we let X ⊆ {0,1}N. Violating standard terminology, we let f̄ (n) denote the sequence (f (0), . . . , f (n−1)), and not the
sequence number of this sequence.

We let

Bσ = {f ∈ X | σ ≺ f}

and we let Pσ be the characteristic function of Bσ restricted to X. As before, we let O denote the constant zero func-
tion on X, the characteristic function of the empty predicate. We let P, possibly with an index, denote a continuous
predicate on X given as a characteristic function.

We will now redefine some concepts from the proof of Theorem 2.4 and prove the analogue lemmas and theorem.

Definition 4.1. Let P be a non-empty continuous predicate on X, s ∈ T .
s is relevant for P if P([[t]](P)) = 1 for all t � s.

We say that s is leftmost relevant for P if s is on the leftmost branch in T consisting of t’s that are relevant for P.
We say that s is critical for P if s is relevant for P and there is no k ∈ N such that sk is relevant for P.

We observe that if s is relevant for P and s is a leaf node in T , then s is critical for P. We also observe that e is
relevant for all non-empty continuous predicates P. This is a consequence of the assumption that [[e]] is a search
operator for X. Thus there will be a leftmost path of relevant nodes for P ending in a node that is critical for P.

Lemma 4.2. If s is critical for P, then P([[s]](O)) = 1.

The proof is essentially the same as the proof of Lemma 2.6.

We now define the alternative R+ of R:

Definition 4.3. Let t ∈ T . Let f ∈ R+(t) if t is leftmost relevant for Pf̄ (n) for infinitely many n ∈ N.
Let

T+ = {t ∈ T | R+(t) 6= /0}.

Lemma 4.4. Let s ∈ T be a branching node. Let kn ∈ N and σn ∈ Σ for each n ∈ N. Assume that skn is leftmost
relevant for Pσn for each n ∈ N.
Assume further that limn→∞ kn = ∞.
Then

[[s]](O) = lim
n→∞

σn.

Proof
[[s]](O) = Fs(λk.0).
By the assumption

Pσn([[sk]](Pσn)) = 0

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 11

for k < kn so since limn→∞ kn = ∞ we have that

λk.0 = lim
n→∞

λk.Pσn([[sk]](Pσn)).

Then, since Fs is continuous,

[[s]](O) = lim
n→∞

Fs(λk.Pσn([[sk]](Pσn))) = lim
n→∞

[[s]](Pσn).

Since s≺ skn for all n we have that s is relevant for each Pσn , so σn ≺ [[s]](Pσn).
Finally we observe that since there are only finitely many σ of a fixed length and each kn can be repeated at most a
finite number of times, the lengths of the σn’s will converge to ∞.
The claim of the lemma now follows.

Lemma 4.5. If f ∈ X, there is a node s ∈ T+ such that f ∈ R+(s) and [[s]](O) = f .

Proof
We know that f ∈ R+(e) since e is (leftmost) relevant for all continuous predicates.

Since T+ is well founded it is sufficient to prove that if f ∈ R+(s) then either f = [[s]](O) or f ∈ R+(sk) for some
k.

So assume that f ∈ R+(s) and that f 6= [[s]](O).
Let {ni}i∈N be an increasing sequence such that s is leftmost relevant for Pf̄ (ni)

for each i ∈ N. For each i ∈ N we
have that either is s critical for Pf̄ (ni)

(which will be the case when s is a leaf node) or there is some ki such that ski
is leftmost relevant for Pf̄ (ni)

.
If s is critical for Pf̄ (ni)

, we use Lemma 4.2 and see that f̄ (ni) ≺ [[s]](O). Since we assumed that f 6= [[s]](O)
this can only be the case for finitely many i ∈ N, so for all but finitely many i ∈ N there is a leftmost ki such that ski
is relevant for Pf̄ (ni)

.
If {ki | i ∈N} is unbounded we may find a strictly increasing subsequence {kij}j∈N and then, by Lemma 4.2, we

have that

f = lim
j→∞

f̄ (nij) = [[s]](O),

contradicting our assumption.
Thus {ki | i ∈ N} is bounded, and there will be one number k and a subsequence {nij}j∈N of {ni}i∈N such that

kij = k for all j ∈ N.
Then f ∈ R+(sk). This ends the proof of the lemma.

We now let φ : T+→ X be defined as before:r φ(s) = [[s]](O) if [[s]](O) is in the closure of R+(s).r φ(s) ∈ R+(s) is chosen arbitrarily otherwise.

As before we have that

t � s⇒ R+(s)⊆ R+(t)

and then, by construction, we have that φ(t) is in the closure of R+(s) whenever s� t.
By Lemma 4.5 we have that φ is surjective. We will prove that φ is continuous, and draw our main consequence

as before.

Lemma 4.6. Let s ∈ T+, let ski ∈ T+ for each i ∈ N.
Assume that limi→∞ki = ∞ and let fi be in the closure of R+(ski) for each i ∈ N.

12 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

Then

[[s]](O) = lim
i→∞

fi.

Proof
It is sufficient to assume that fi ∈ R+(ski) for each i.
Let {ni}i∈N be a strictly increasing sequence from N such that ski is leftmost relevant for Pf̄i(ni)

for each i. The
existence of this sequence follows from the definition of R+.

By Lemma 4.2 we have that

[[s]](O) = lim
i→∞

f̄ (ni) = lim
i→∞

fi.

This ends the proof of the lemma.

Lemma 4.7. The function φ is continuous.

The proof is as the proof of Lemma 2.8.

We now have everything we need to prove the following

Theorem 4.8. Let X ⊆ {0,1}N be closed and assume that there is an evaluation tree T such that for all continuous
predicates P on X we have that

∃f ∈ X(P(f) = 1)⇔ P([[e]](P)) = 1.

Then X is countable, and the Cantor-Bendixson rank of X is bounded by the Kleene-Brouwer order type of the tree
T.

5. Concluding remarks
5.1. Summary
We have been investigating the topological nature of sets in NN that are searchable via an operator definable in
Gödel’s T. Howard [8] showed how terms in T give rise to computation trees of rank less than ε0, and we have
transformed his trees to what we called evaluation trees. The main technical result is that if a set X is searchable
for all predicates on X with the aid of an evaluation tree, then the rank of the Kleene-Brower ordering bounds the
Cantor-Bendixson rank of X. It is sufficient to assume that this holds for continuous predicates on X.

We also discussed the consequence of X being searchable in the sense of Kleene’s original S1 - S9.

5.2. Related problems
Our proof is non-constructive, even from the point of view of classical logic, since there are no algorithms for
constructing the trees T∗ and T+ used in the proofs. Thus our proofs do not say much about the internal structure of
searchable sets beyond the bounds on the Cantor-Bendixson rank. We are nowhere near a characterization of when
a closed set may be searchable in T, neither with respect to continuous predicates nor with respect to all predicates.

Problem 5.1. If X is T-searchable with respect to continuous predicates, is X then T-searchable with respect to all
predicates?

The problem may not be so interesting in itself, but a positive solution will probably give us more information about
the structure of search algorithms. We may ask a similar question for searchability by evaluation trees.

We also discussed briefly what can be said about a set X that is searchable in S1-S9, and concluded that X is
computably enumerable and compact. We sketched an argument showing that when X is compact and computably
enumerable, then the Cantor-Bendixson rank of X is a computable ordinal.

Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T 13

The natural problem here is if we can characterize all sets X ⊆ NN that are S1 - S9 - searchable in Kleene’s
original sense. It is easy by the methods developed in Escardó [3] to prove that we for every computable ordinal
α can find a set X searchable in this sense and with a CB-rank exceeding α . We know that if X is a S1 - S9 -
searchable subset of the Cantor space, then X is closed, computably enumerable and the set of neighbourhoods
containing elements from X is decidable. It is not likely that these properties are sufficient for proving the converse.
The problem will be to find some informative characterization of the compact sets X that are S1 - S9 - searchable.

The following problem is also open

Problem 5.2. Assume that X is S1 - S9 - searchable. Is X then searchable by a computable evaluation tree?

The search operators constructed by Escardó [2, 3] do not just provide an element of each non-empty set, they
search through all the elements of X (or a dense subset of X when we only consider continuous predicates) until
they find an element satisfying P, and then this element will be the output. This behaviour cannot be described as
a denotational property of the search operator, but it is tempting to look for further properties of search operators
that might be used to analyse when a set e.g. is sequentially searchable. One possible such property is the following
monotonicity property:

If e(P) = f ∈ P and f ∈ Q⊆ P then e(Q) = f .

We believe that the concept of searchability must be strengthened if we want to deduce further properties of the
operational semantics from the denotational interpretation of a search operator and the mere fact that it is definable
in some given calculus.

Acknowledgements
During the research for this note, I had, as explained in footnote 1, important and valuable discussions with Martı́n
Escardó. To a large extent these discussions took place at the Isaac Newton Institute for Mathematical Sciences in
Cambridge, England. I am grateful to the Institute for hosting the program Semantics and Syntax: A Legacy of Alan
Turing and for inviting me to take part in this program. During this stay, I also benefitted from discussions with the
proof theorists Arnold Beckmann, Anton Setzer and Monica Seisenberger.

An anonymous referee gave valuable feedback on the exposition.

References
[1] Berger, U.: Totale Objekte und Mengen in der Bereichtheorie (in German), Thesis, München 1990.
[2] Escardó, M. H.: Exhaustible sets in higher-type computation, Logical Methods in Computer Science 4(3), 2008.
[3] Escardó, M. H.: Infinite sets that satisfy the principle of omniscience in all varieties of constructive mathemat-

ics, Journal of Symbolic Logic 78(3), 2013, 764 - 784.
[4] Di Gianantonio, P.: A Functional Approach to Computability on Real Numbers, Thesis, Università di Pisa -

Genova - Udine 1993.
[5] Di Gianantonio, P.: Real Number Computability and Domain Theory, Information and Computation 127, 1996,

11 - 25.
[6] Di Gianantonio, P.: An abstract data type for real numbers, Theoretical Computer Science 221, 1999, 295 -

326.
[7] Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12, 1958,

280- 287.
[8] Howard, W. A.: Ordinal analysis of terms of finite type, Journal of Symbolic Logic 45(3), 1980, 493 - 504.
[9] Kleene, S. C.: Recursive functionals and quantifiers of finite types I, Transactions of the American Mathemat-

ical Society,91(1), 1959, 1 - 52.

14 Dag Normann / On the Cantor-Bendixson rank of a set that is searchable in Gödel’s T

[10] Kleene, S. C.: Countable functionals, in A. Heyting (ed.) Constructivity in Mathematics, North-Holland, 1959,
81 - 100.

[11] Kreisel, G.: Interpretation of analysis by means of functionals of finite type, in A. Heyting (ed.) Constructivity
in Mathematics, North-Holland, 1959, 101 - 128.

[12] Longley, J. R. and Normann, D.: Higher Order Computability, to appear, Springer Verlag.
[13] Normann, D.: Computability over the partial continuous functionals, Journal of Symbolic Logic 65(3), 2000,

1133 - 1142.
[14] Plotkin, G. D.: LCF considered as a programming language, Theoretical Computer Science 5(3), 1977, 223 -

255.
[15] Scott, D. S.: A type-theoretical alternative to ISWIM, CUCH, OWHY, Unpublished notes, Oxford 1969.
[16] Simpson, A. S.: Lazy Functional Algorithms for Exact Real Functionals, Mathematical Foundations of Com-

puter Science 1998, Springer LNCS 1450, 1998, 456 - 464.
[17] Tait, W. W.: Continuity properties of partial recursive functionals of finite type, unpublished notes 1958.

